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We introduce a method, dubbed the flux-fusion anomaly test, to detect certain anomalous symmetry
fractionalization patterns in two-dimensional symmetry-enriched topological (SET) phases. We focus on
bosonic systems with Z2 topological order and a symmetry group of the form G ¼ Uð1Þ ⋊ G0, where G0 is
an arbitrary group that may include spatial symmetries and/or time reversal. The anomalous fraction-
alization patterns we identify cannot occur in strictly d ¼ 2 systems but can occur at surfaces of d ¼ 3

symmetry-protected topological (SPT) phases. This observation leads to examples of d ¼ 3 bosonic
topological crystalline insulators (TCIs) that, to our knowledge, have not previously been identified.
In some cases, these d ¼ 3 bosonic TCIs can have an anomalous superfluid at the surface, which is
characterized by nontrivial projective transformations of the superfluid vortices under symmetry. The basic
idea of our anomaly test is to introduce fluxes of the U(1) symmetry and to show that some fractionalization
patterns cannot be extended to a consistent action of G0 symmetry on the fluxes. For some anomalies, this
can be described in terms of dimensional reduction to d ¼ 1 SPT phases. We apply our method to several
different symmetry groups with nontrivial anomalies, including G ¼ Uð1Þ × ZT

2 and G ¼ Uð1Þ × ZP
2 ,

where ZT
2 and ZP

2 are time-reversal and d ¼ 2 reflection symmetry, respectively.
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I. INTRODUCTION

Following the theoretical prediction [1–6] and exper-
imental discovery [7,8] of time-reversal invariant topologi-
cal band insulators, it has become clear that symmetry plays
a rich and varied role in topological phases of matter. New
families of symmetric topological phases have been iden-
tified theoretically, and significant strides have been made
in the classification and characterization of such phases.
Much of the recent progress, with some important excep-
tions, has focused on systems with internal (or on-site)
symmetry, such as time-reversal, U(1) charge symmetry,
and SOð3Þ spin symmetry. For example, free-fermion
topological insulators and superconductors with internal
symmetry have been fully classified [9,10]. Subsequent
work identified the symmetry-protected topological (SPT)
phases, some of which are strongly interacting generaliza-
tions of topological insulators that do not admit a free-
electron description [11–16].
Less attention has been given to the role of crystalline

space-group symmetry in topological phases, especially in

the setting of strongly interacting systems. Of course, such
symmetry is common and varied in real solids, in contrast
to a relatively small number of realistic internal sym-
metries. Therefore, with an eye toward eventual experi-
mental realizations of new topological phases, it is
important to develop theories of such phases with crystal-
line symmetry [17–29]. To accomplish this task, new
theoretical approaches are needed, as some of the existing
tools to classify and characterize topological phases are
limited to internal symmetry.
In this paper, we consider two-dimensional (d ¼ 2)

topologically ordered systems, where crystalline and other
symmetries play a nontrivial role via their action on anyon
quasiparticle excitations [17,19,30–33]. Such systems are
said to be in symmetry-enriched topological (SET) phases.
We introduce a method, the flux-fusion anomaly test, which
allows us to show that some putative SET phases cannot
exist in strictly two dimensions. However, such states can
exist as surfaces of d ¼ 3 SPT phases. Our method allows
us to identify new examples of d ¼ 3 SPT phases dubbed
bosonic topological crystalline insulators (TCIs), which
are outside the scope of existing theoretical approaches, via
their surface SET phases. Bosonic TCIs in d ¼ 3, named
after electronic TCIs [29], are SPT phases where the
protecting symmetry includes both U(1) and the space-
group symmetry of a clean d ¼ 2 surface. These states are
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interesting not only in the context of spin or boson systems
but as a possible stepping stone toward understanding
electronic TCIs with strong interactions, and we hope our
results can spur more progress in this direction.
The jumping-off point for our approach is a consider-

ation of symmetry fractionalization patterns in d ¼ 2.
Provided we assume symmetry does not permute anyon
species, the action of symmetry fractionalizes into an action
on individual anyons, hence the term symmetry fraction-
alization. The classic example is the fractional charge of
Laughlin quasiparticles in fractional quantum Hall liquids
[34]. We refer to a complete description of symmetry
fractionalization in a topologically ordered system as a
symmetry fractionalization pattern. Distinct patterns of
symmetry fractionalization—including those for crystalline
symmetry—have been classified [17,19,31], and the sym-
metry fractionalization pattern is a universal property of a
SET phase [19].
A symmetry fractionalization pattern may be anomalous,

which means that it cannot occur in a strictly d ¼ 2 system
but is instead realized at the surface of a d ¼ 3 SPT phase
[35–38]. In this case, we say we have a surface SET phase.
SPT phases [11–16] have an energy gap, lack spontaneous
symmetry breaking, and, upon weakly breaking whatever
symmetries are present, are in the trivial phase; that is, the
ground-state wave function can be adiabatically continued
to a product state when symmetry is explicitly broken. It
follows that SPT phases lack bulk excitations with non-
trivial braiding statistics. Instead, edge or surface properties
are generally nontrivial; for d ¼ 3 SPT phases, one
possibility is to have a surface SET phase with anomalous
symmetry fractionalization.
While a number of results have been obtained on

anomalous symmetry fractionalization of internal sym-
metry [35–38], generalization to incorporate crystalline
symmetry is not straightforward. Our approach, the flux-
fusion anomaly test, is a method to test for anomalous
symmetry fractionalization for symmetries of the form
G ¼ Uð1Þ ⋊ G0, where G0 is an arbitrary group that may
include crystalline symmetry. We focus on bosonic sys-
tems, such as spin models or systems of bosons. We note
that some results on anomalous reflection symmetry
fractionalization have recently appeared in Ref. [28]. We
also note that the “monopole tunneling” approach devel-
oped in Ref. [36] and used in Ref. [37] is closely related but
not equivalent to the flux-fusion anomaly test, as discussed
further in Sec. VIII.
The basic idea of the flux-fusion anomaly test is to start

with a symmetry fractionalization pattern for a d ¼ 2 SET
phase, to introduce fluxes of the U(1) symmetry, and then
to determine whether the fractionalization pattern can be
extended to an action of G0 symmetry on the U(1) fluxes.
Sometimes this is impossible, signaling anomalous sym-
metry fractionalization. These considerations only depend
on the fusion rules of fluxes and anyon excitations, hence

the name for the anomaly test. We emphasize that we
do not need to consider flux threading or flux insertion as a
dynamical process.
We implement this idea by gauging a subgroup Zn ⊂

Uð1Þ and studying the resulting theory. Gauging symmetry
has been employed to study SPT phases, where different
phases can be distinguished using the statistics of excita-
tions in the gauged theory [39]. Here, the gauged theory is
itself a SET phase with G0 symmetry. We are able to show
that some symmetry fractionalization patterns are anoma-
lous by studying the action of G0 symmetry on the anyons
of the gauged SET phase.
We primarily consider symmetries of the form G ¼

Uð1Þ ×Gspace and G ¼ ðUð1Þ ⋊ ZT
2 Þ × Gspace, where ZT

2 is
time reversal and Gspace is a d ¼ 2 space group. These
symmetries arise in a variety of physical settings. For
example, both symmetries are natural in systems of bosons,
including situations where electrons form sufficiently
tightly bound Cooper pairs. The former symmetry can
arise in a Heisenberg or XY spin system if one ignores
time-reversal symmetry. The latter symmetry occurs in a
Heisenberg model in a Zeeman field; the field naively
breaks time reversal but preserves a combination of time
reversal and a π spin rotation perpendicular to the field axis.
We focus on situations where G constrains the symmetry
fluxes to be bosons, which simplifies the analysis; we show
that this occurs whenever time-reversal or reflection sym-
metry is present.
We do not discuss symmetries of the form G ¼ Uð1Þ×

ZT
2 ×Gspace. This important class of symmetries occurs in

time-reversal symmetric XY or Heisenberg spin models.
Application of our anomaly test for these symmetries is
subtle (see Sec. VIII) and requires a more intricate analysis,
which will be presented in a separate paper [40].
Partially for simplicity and partially for its physical

relevance, we concentrate on two-dimensional Z2 topo-
logical order, which means that the fusion and braiding of
the anyon quasiparticles are the same as the deconfined
phase of Z2 gauge theory with gapped matter or, equiv-
alently, Kitaev’s toric code model [41]. SET phases withZ2

topological order are synonymous with gapped Z2 quan-
tum spin liquids (QSLs) [41–49], which are of current
interest in part because of evidence that such a phase occurs
in the S ¼ 1=2 Heisenberg antiferromagnet on the kagome
lattice [50–52]. While the symmetries we consider here are
more relevant for other systems, Z2 QSLs can also occur in
those systems. Showing that a given symmetry fraction-
alization pattern is anomalous constrains the possibilities
for d ¼ 2 Z2 QSLs.
As mentioned above, each anomalous symmetry fraction-

alization pattern we find provides a surface theory for a
d ¼ 3 bosonic TCI. Unlike the case of SPT phases protected
by internal symmetry, there is not an existing theory of d ¼ 3
bosonic TCIs, so it is particularly useful to obtain examples
of such phases. We are able to obtain many such examples,

MICHAEL HERMELE and XIE CHEN PHYS. REV. X 6, 041006 (2016)

041006-2



and to discuss some of their physical properties, via their
anomalous surface theories. It is not our goal to provide
complete classifications of bosonic TCIs.
For some bosonic TCIs, we can go beyond surface SET

phases and construct a dual vortex field theory for an
anomalous surface superfluid. These superfluids, like some
of the surface theories for bosonic topological insulators
studied in Ref. [35], are distinguished by nontrivial
symmetry fractionalization of their vortex excitations
[53–55]. The dual vortex field theories thus obtained are
convenient to work with and can be used to explore surface
phase diagrams and phase transitions, which may be an
interesting direction for future work.
While it is not the focus of this paper, our approach can

be used to study internal symmetries whenG ¼ Uð1Þ ⋊ G0,
and it is complementary to existing approaches in that case.
In particular, for G ¼ Uð1Þ × ZT

2 , where ZT
2 is time

reversal, our approach shows that certain fractionalization
patterns are anomalous, a result also obtained in previous
works [35,37]. The flux-fusion approach confirms that
result, without making assumptions about the form of the
edge theory of d ¼ 2 SET phases [37] or relying on a
complete analysis of all possible phases of a surface field
theory [35].
Table I summarizes the main results. Underlying the

detailed results of the table are three distinct types of
anomalies:
(1) For G ¼ Uð1Þ × ZT

2 , ðT mÞ2 ¼ −1 is anomalous,
where T m gives the action of time reversal on visons.

(2) Whenever G contains a Uð1Þ × ZP
2 subgroup, where

ZP
2 is reflection symmetry, ðPmÞ2 ¼ −1 is anoma-

lous, where Pm gives the action of the reflection on
visons.

(3) Whenever G contains a Uð1Þ ⋊ ZT
2 subgroup and

also contains some discrete unitary operation g that
commutes with the Uð1Þ ⋊ ZT

2 subgroup, then

T mgm ¼ −gmT m ð1Þ

is anomalous, where T m and gm give the action of T
and g, respectively, on visons. For example, g can be
a lattice translation or reflection.

The first two types of anomalies can be understood in terms
of dimensional reduction to d ¼ 1 SPT phases, but it
appears that the third type of anomaly cannot be understood
in this manner (Sec. V).
We now provide some additional details in order to

present Table I, followed by an outline of the remainder of
the paper. As noted, we focus on Z2 topological order,
which supports four types of quasiparticle excitations,
labeled by 1, e, m, ϵ. Of these, 1-particles are topologically
trivial and can be created by local operators, while the
remaining particle types are anyons that cannot be locally
created. We describe the fusion and braiding properties in
Sec. III A. Here, we simply note thatZ2 topological order is
realized in the deconfined phase of Z2 gauge theory with
gapped, bosonic matter, in which case e is the bosonic Z2

gauge charge, m is the bosonic Z2 gauge flux, and ϵ is the
fermionic charge-flux bound state. We also refer to m
particles as visons.
Throughout the paper, we assume that symmetry does

not permute the anyon species. In this case, the action of
symmetry on the anyons is determined by giving the
fractionalization class of e and m [56]. For each of e
and m, the fractionalization class is an element of
H2ðG;Z2Þ. Here, this is specified uniquely by two pieces
of information: (1) whether the particle carries integer or
half-odd integer U(1) charge, and (2) an element ½ωe�,
½ωm� ∈ H2ðG0;Z2Þ that describes the action of G0. Each of
e and m transforms as a projective representation of G0,
and ½ωe� and ½ωm� encode information about these projec-
tive representations that is a universal property of a SET
phase (or surface SET phase). We always choose e to carry

TABLE I. Summary of results. Each row is a distinct symmetry group, given in the first column. The last column indicates the type or
types of anomalies that appear, as described in the text. The meaning of the other columns is discussed in the text. Z1 denotes the trivial
group. In all these cases, we consider Z2 gauge theory whose gauge charge e carries half U(1) charge while the gauge fluxm carries zero
charge.

Symmetry
G ¼ Uð1Þ ⋊ G0

Vison fractionalization
classes [H2ðG0;Z2Þ]

Anomaly-negative vison
fractionalization classes (N )

d ¼ 3 SPT phases distinguished
by anomaly test (S)

Anomaly
type

Uð1Þ × ZT
2

Z2 Z1 Z2 1

Uð1Þ × ZP
2 (reflection) Z2 Z1 Z2 2

Uð1Þ × pm (translation and
parallel reflection)

ðZ2Þ4 ðZ2Þ2 ðZ2Þ2 2

ðUð1Þ ⋊ ZT
2 Þ × p1

(translation only)
ðZ2Þ4 ðZ2Þ2 ðZ2Þ2 3

ðUð1Þ ⋊ ZT
2 Þ × pm ðZ2Þ8 ðZ2Þ3 ðZ2Þ5 2,3

Uð1Þ × p4mm (square
lattice)

ðZ2Þ6 ðZ2Þ3 ðZ2Þ3 2

ðUð1Þ ⋊ ZT
2 Þ × p4mm ðZ2Þ10 ðZ2Þ4 ðZ2Þ6 2,3
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half-odd-integer charge and m to carry integer charge. One
motivation for this choice is that it describes most Z2 QSLs
that have been proposed to occur in fairly realistic models
of spins or bosons. It can be shown, via a coupled-layer
construction [37], that all such symmetry fractionalization
patterns (in fact, any consistent symmetry fractionalization
pattern) can occur as a surface of some d ¼ 3 SPT phase,
which may be the trivial SPT phase (see Appendix F).
Deciding whether the bulk SPT phase is nontrivial is
equivalent to determining whether the corresponding sym-
metry fractionalization pattern is anomalous.
Under these assumptions, the flux-fusion anomaly test

shows that some choices of ½ωm� imply that the symmetry
fractionalization pattern is anomalous. This result is inde-
pendent of ½ωe�, which does not play a role in the anomaly
test. Column 2 of Table I is simplyH2ðG0;Z2Þ, the set of all
possible vison fractionalization classes for G0 symmetry.
The anomaly test gives a subset of vison fractionalization
classes that “test negative” for an anomaly and thus may
occur strictly in d ¼ 2. We refer to such classes as anomaly-
negative; they form a subgroup N of H2ðG0;Z2Þ given in
column 3 of Table I. It is important to note that anomaly-
negative fractionalization classes may still be anomalous;
the flux-fusion anomaly test cannot establish that a sym-
metry fractionalization pattern is nonanomalous.
Finally, for a fixed ½ωe�, the anomaly test gives a set

of distinct d ¼ 3 SPT phases (one of which is always
the trivial SPT phase), which are labeled by elements of the
quotient S ¼ H2ðG0;Z2Þ=N , given in column 4 of the
table. It is important to note that the anomaly test does not
distinguish all SPT phases with a given symmetry, so
column 4 does not give the full classification of such
phases.
We now give an outline of the remainder of the paper.

Section II gives a simple, somewhat heuristic illustration of
the anomaly test in the case of G ¼ Uð1Þ × ZT

2 (time-
reversal) symmetry. The anomaly test is then described in
more detail and greater generality in Sec. III. First, in
Sec. III A, we describe the fusion and braiding properties
both before and after gauging Zn ⊂ Uð1Þ. In Sec. III B, we
describe the action of G0 symmetry on the Zn flux Ω and
use this to present the anomaly test. Especially for spatial
symmetry, it is important for our analysis that Ω is a boson,
which is shown to be the case in Appendix B whenever
time-reversal or reflection symmetry is present.
In Sec. IV, we apply the anomaly test to the examples of

G ¼ Uð1Þ × ZT
2 , G ¼ Uð1Þ × ZP

2 , G ¼ Uð1Þ × pm, and
G ¼ ðUð1Þ ⋊ ZT

2 Þ × p1, where pm is a d ¼ 2 space group
containing translation and reflection operations, and p1 is
the d ¼ 2 space group consisting only of translations. We
find anomalous symmetry fractionalization patterns in each
case. The first three of these symmetries have anomalies of
types 1 and 2 as described above; this can be understood
from the viewpoint of dimensional reduction to d ¼ 1 SPT
phases, which is a different way to apply the anomaly test

(Sec. V). In contrast, the last symmetry has type 3
anomalies, which apparently cannot be understood in terms
of dimensional reduction, as discussed in Sec. V.
Section VI describes how the results from the flux-fusion

anomaly test can be used to identify and distinguish some
nontrivial d ¼ 3 SPT phases, including d ¼ 3 bosonic
TCIs. As discussed in Sec. VII, some of the bosonic
TCIs that we find can have an anomalous surface superfluid
that preserves the G0 symmetry. These anomalous super-
fluids are characterized by vortex excitations that transform
projectively under the G0 symmetry in a way that is not
allowed strictly in d ¼ 2. We describe how to construct
dual vortex field theories that provide a convenient means
to study the physical properties of these surface superfluids
and neighboring surface phases.
The paper concludes in Sec. VIII with a discussion of

open issues raised by the present results. Some of the more
technical aspects of our results are presented in several
appendixes, and, in Appendix G, the anomaly test is
applied to a few more examples of symmetry groups.

II. SIMPLE ILLUSTRATION OF
THE ANOMALY TEST

We begin by giving a somewhat heuristic illustration
of the flux-fusion anomaly test, for the case of G ¼
Uð1Þ × ZT

2 symmetry. This symmetry is chosen for sim-
plicity and for the fact that it has been previously studied
using a different approach [37]. Here, we focus on convey-
ing the intuition and some of the key ideas of our approach.
A more rigorous and more general discussion follows in
Sec. III.
Here and throughout the paper, we assume d ¼ 2 Z2

topological order and that symmetry does not permute the
anyon species. To specify the symmetry fractionalization
pattern, we need to give the fractionalization class for both
e and m particles. For the present symmetry, we need to
specify whether each particle carries integer or half-odd-
integer U(1) charge and whether it transforms as a Kramers
singlet [ðT aÞ2 ¼ 1] or a Kramers doublet [ðT aÞ2 ¼ −1],
where a ¼ e,m, and T a gives the action of time reversal on
anyon a. We denote particles with half-odd-integer charge
byC, and Kramers doublets by T, while 0 is used to indicate
particles carrying trivial quantum numbers (integer charge
and Kramers singlet). A fractionalization pattern is thus
specified, for example, by the notation eCmT [37]; in this
case, e particles carry half-odd-integer charge and are
Kramers singlets, while m particles carry integer charge
and are Kramers doublets.
We restrict our attention to the case where e carries half-

odd-integer charge and m carries integer charge, which
includes four fractionalization patterns: eCm0, eCTm0,
eCmT, and eCTmT. It is known that the former two
patterns are nonanomalous (can be realized in d ¼ 2); this
can be established, for example, via explicit construction of
parton gauge theories. The latter two patterns were argued
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in Ref. [37] to be anomalous, via an approach that we
contrast with ours at the end of this section.
Our anomaly test is based on introducing fluxes Ωϕ of

the U(1) symmetry, where ϕ ∈ ½0; 2πÞ. For the purposes of
the present discussion, these fluxes are static point defects
in space, obtained by modifying the Hamiltonian. The
symmetry flux Ωϕ is defined by the following property: If
Q is a local (i.e., nonanyon) excitation carrying unit U(1)
charge, bringing Q counterclockwise around Ωϕ results in
the statistical phase ϕ. We make the restriction 0 ≤ ϕ < 2π
because Ωϕ and Ωϕþ2π have the same mutual statistics with
Q and thus carry the same symmetry flux.
Given a fractionalization pattern, the flux-fusion

anomaly test proceeds via two steps, which we summarize
before proceeding. First, we study the fusion of symmetry
fluxes and show that, roughly speaking, ϕ ¼ 2π flux is not
trivial but instead is an m particle excitation. Second, we
consider the action of ZT

2 symmetry on symmetry fluxes ϕ
and ask whether it is possible to choose this symmetry
action to be consistent with the assumed symmetry frac-
tionalization of m, given the fusion properties of the fluxes.
We will see that there is an inconsistency if m is a Kramers
doublet, so eCmT and eCTmT are anomalous fractionali-
zation patterns.
To study the fusion properties of symmetry fluxes, we

first consider the mutual statistics of a flux Ωϕ with anyons
e, ϵ, m. We choose particular anyons e and ϵ carrying U(1)
charge 1=2, and m, which is neutral under U(1). We could
consider anyons with other allowed values of the charge
(for example, there will also be e particles with charge
−1=2), but this does not affect the results. Let Θa;Ωϕ

be the
statistical phase angle when anyon a is brought counter-
clockwise around the flux ϕ. Then, given the assumed
charge values for the anyons, we have

Θe;Ωϕ
¼ Θϵ;Ωϕ

¼ ϕ

2
; ð2Þ

Θm;Ωϕ
¼ 0: ð3Þ

To obtain some intuition for the fusion properties of the
symmetry fluxes, suppose for the moment that we relax
the restriction ϕ < 2π. Then, if ϕ ¼ 2π, we have formally
Θe;Ω2π

¼ Θϵ;Ω2π
¼ π and Θm;Ω2π

¼ 0. Since Ω2π carries
trivial symmetry flux (it has trivial mutual statistics with
Q), it must be identified with one of the anyon quasipar-
ticles. Putting ϕ → 2π in Eqs. (2) and (3), we have the
identification Ω2π ¼ m. Along the same lines, we can
identify Ω4π ¼ 1.
We prefer to keep the restriction 0 ≤ ϕ < 2π, in which

case, essentially the same result can be obtained as follows.
Suppose that we have two π fluxes Ωπ . The total flux is 2π,
which is equivalent to no symmetry flux at all. Therefore,
we have the fusion rule

ΩπΩπ ¼ a; ð4Þ

where a is a quasiparticle excitation that carries no
symmetry flux but may be a nontrivial anyon. The particle
a can be identified by its mutual statistics with e, m, and ϵ,
which follows from the additivity properties of statistics.
For example,

Θe;a ¼ Θe;ΩπΩπ
¼ 2Θe;Ωπ

¼ π: ð5Þ

Similarly, Θϵ;a ¼ π and Θm;a ¼ 0, which implies a ¼ m
and

ΩπΩπ ¼ m: ð6Þ

It should be noted that this result has a discrete character
and does not make use of the fact that U(1) is a continuous
group. Indeed, the same result holds if we replace U(1) by
the discrete group Z2.
Next, we consider the action of time-reversal symmetry

T on the symmetry fluxesΩπ . First, we observe that T does
not change the value of the flux ϕ because T commutes
with U(1) rotations. Therefore, Ωπ transforms either as a
Kramers singlet or a Kramers doublet under time reversal.
If we assume that m is a Kramers doublet, we now have a
contradiction with Eq. (6): WhetherΩπ is a Kramers singlet
or doublet, the composite ΩπΩπ must be a Kramers singlet.
We have thus found that eCmT and eCTmT are

anomalous fractionalization patterns. This is true because,
in strict d ¼ 2, it should always be possible to introduce
U(1) symmetry fluxes and to view these as point objects, so
the contradiction we obtained means that a fractionalization
pattern cannot occur strictly in d ¼ 2. On the other hand,
on the surface of a d ¼ 3 SPT phase, symmetry fluxes are
line objects that penetrate into the bulk, and it may not be
sensible to view them as point objects where they pierce the
surface. Therefore, eCmT and eCTmT may occur on the
surface of a d ¼ 3 SPT phase. Indeed, this is the case, and it
was demonstrated in Ref. [37] via an elegant coupled-layer
construction.
The above analysis is complementary to the approach of

Ref. [37]. There, among other results, Chern-Simons theory
was used to construct chiral boson edge theories for SET
phases with Z2 topological order and G ¼ Uð1Þ × Z2

symmetry. For some symmetry fractionalization patterns,
including eCmT and eCTmT, it was shown that no
corresponding edge theory can be constructed, and it
was concluded that these symmetry fractionalization pat-
terns are anomalous. Strictly speaking, to draw this con-
clusion, one has to assume that the class of edge theories
considered is, in some sense, sufficiently general, and,
while this assumption seems reasonable, we do not know of
an argument that this is the case. The flux-fusion approach
requires no such assumption, and in the present case, its
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results agree with those of Ref. [37], for those fractionali-
zation patterns where both approaches can be applied.

III. FLUX-FUSION ANOMALY TEST:
GENERAL DISCUSSION

A. Gauging Zn ⊂ Uð1Þ symmetry

The simple discussion of the anomaly test in Sec. II is
based on inserting U(1) symmetry fluxes, which are static
point defects in space. Because our objective is to consider
crystalline symmetry, this approach is not ideal because
inserting a nondynamical flux at some point in space will
usually partially or fully break the crystalline symmetry. In
addition, there is not an existing theory describing the
action of G0 symmetry on fluxes of the continuous U(1)
symmetry.
Therefore, we prefer to proceed by gauging a Zn

subgroup of the U(1) symmetry, for all integers n ≥ 2.
In other words, we imagine minimally coupling our
system to a dynamical Zn gauge field, where the Zn gauge
group is identified with Zn ⊂ Uð1Þ global symmetry.
In Appendix A, we give an explicit procedure showing
that, for the symmetry groups considered in this paper,
it is possible to gauge this Zn subgroup while preserving
G0 ⊂ G symmetry. The resulting theory is a gauged SET
phase, where the symmetry flux behaves as a gapped,
dynamical quasiparticle excitation. This allows us to
study symmetry fluxes without breaking crystalline sym-
metry. In addition, we can build on existing results to
describe the action of G0 on the excitations of the gauged
SET phase.
We consider a d ¼ 2 SET phase with Z2 topological

order and G ¼ Uð1Þ ⋊ G0 symmetry. We now describe the
fusion and braiding properties of the anyons of the SET
phase. Fusion of anyons is described by the Abelian group
A ¼ Z2 × Z2, generated by e and m, which obey the
relations

e2 ¼ m2 ¼ 1; ð7Þ

ϵ≡ em ¼ me: ð8Þ

We assume that e carries half-odd-integer charge under
U(1). Under Zn ⊂ Uð1Þ symmetry, this means that

ðUe
nÞn ¼ −1; ð9Þ

where Ue
n is a unitary operator representing the action of a

generator of Zn on a single e particle. Half-odd-integer
charge is only nontrivial for even n; if n is odd, then Eq. (9)
can be trivialized by the allowed redefinition Ue

n → −Ue
n.

Therefore, we restrict our attention to even values of n. We
also assume thatm carries integer U(1) charge so that under
Zn we have ðUm

n Þn ¼ 1. The action of G0 on e and m is
characterized below in Sec. III B.

To specify the statistics, we introduce some notation
that will be particularly helpful in describing the gauged
SET phase. For anyons a, b ∈ A, let θa give the self-
statistics angle of a, and let Θa;b be the mutual statistics
angle, where a is taken counterclockwise around b. These
quantities satisfy the following general properties for any
a, b, c ∈ A:

θ1 ¼ Θ1;a ¼ 0; ð10Þ

Θa;a ¼ 2θa; ð11Þ

Θa;b ¼ Θb;a; ð12Þ

Θab;c ¼ Θa;c þ Θb;c; ð13Þ

θab ¼ θa þ θb þ Θa;b: ð14Þ

These and other equations for θa and Θa;b are always
understood to be true modulo 2π. The statistics of Z2

topological order is then fully specified by

θe ¼ θm ¼ 0; ð15Þ

Θe;m ¼ π: ð16Þ

These equations say that e and m are bosons with
Θe;m ¼ π mutual statistics.
We now consider the gauged SET phase, obtained by

gauging Zn ⊂ Uð1Þ. The anyons of the gauged SET phase
are Abelian; this follows from Eq. (399) and the surround-
ing discussion of Ref. [32]. The fusion rules are described
by the Abelian group AG, which is generated by e, m, Q,
and Ω. Here, Q is the unit Zn symmetry charge, which is a
local excitation of the ungauged theory, but it is now an
anyon in the gauged SET phase. Ω is the unit Zn symmetry
flux. Upon gaugingZn, the e andm sectors in the ungauged
theory each break into n different sectors with distinct Zn
symmetry charge. In the gauged SET phase, e and m each
correspond to a particular choice among such subsectors.
The choice of subsector is arbitrary and can be changed
by redefining e or m by binding symmetry charges; for
example, e → Qe is an allowed redefinition. There is also
arbitrariness in the choice of symmetry flux, which can be
redefined by Ω → QΩ, or by Ω → aΩ, where a is an anyon
of the ungauged theory.
The fusion rules are

Qn ¼ 1; ð17Þ

e2 ¼ Q; ð18Þ

m2 ¼ 1; ð19Þ

Ωn ¼ aQk: ð20Þ
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Equation (17) is obvious. Equations (18) and (19) correspond
to making a particular choice of e andm among the possible
subsectors. The most important fusion rule in our analysis is
Eq. (20). There, a is an anyon of the ungauged theory to be
determined, and k is some yet unknown integer satisfying
0 ≤ k < n. This equation expresses the fact thatΩn carries no
Zn symmetry flux but otherwise, at this stage in the analysis,
could be an arbitrary particle in the gauged SET phase.
In order to fix the fusion rule, Eq. (20), we consider the

statistics of the gauged SET phase. We have

θe ¼ θm ¼ 0; ð21Þ

Θe;m ¼ π; ð22Þ

θQ ¼ Θe;Q ¼ Θm;Q ¼ 0; ð23Þ

ΘQ;Ω ¼ 2π

n
; ð24Þ

Θe;Ω ¼ π

n
þ peπ; ð25Þ

Θm;Ω ¼ pmπ: ð26Þ

Here, Eqs. (21) and (22) are the braiding statistics for the
ungauged SET phase. Equation (23) holds because the
symmetry charge Q must have trivial braiding with itself
and with anyons of the ungauged theory. Equation (24) is
the defining property of the symmetry flux Ω. Finally,
Eqs. (25) and (26) follow from Eqs. (18) and (19),
respectively, with unknown parameters pe, pm ¼ 0, 1.
We redefine e andm to set pe ¼ pm ¼ 0. For example, if

pe ¼ 1, we redefine e → Qn=2e. This leaves the fusion
rules unchanged and results in Θe;Ω ¼ π=n, without modi-
fying the other statistics angles.
Now, we use the statistics to constrain the flux fusion

rule, Eq. (20). Using Θm;Ω ¼ 0, we have Θm;Ωn ¼ 0.
Consistency with Eq. (20) then requires either a ¼ 1 or
a ¼ m. Similarly, Θe;Ω ¼ π=n implies Θe;Ωn ¼ π, which
requires either a ¼ m or a ¼ ϵ. Therefore, a ¼ m and

Ωn ¼ mQk: ð27Þ

So far, we have not mentioned θΩ, the self-statistics of
the symmetry flux. Unlike the other statistics angles, this
parameter does not follow immediately from our assump-
tions, but it can be related to the integer k appearing in
Eq. (27). First, Eq. (27) implies that Ωn is a boson, so
θΩn ¼ n2θΩ ¼ 0; therefore,

θΩ ¼ 2πq
n2

ð28Þ

for some integer q satisfying 0 ≤ q < n2. In fact, we can
further restrict the range of q. To see this, we make the

redefinition Ω → eΩ andm → Qn=2m, which preserves the
fusion rules and leaves all the statistics angles unchanged
except θΩ. The effect of this redefinition is to shift
q → qþ n=2, which allows us to restrict 0 ≤ q < n=2.
We can now relate q and k by noting that ΘΩ;Ωn ¼

2nθΩ ¼ 4πq=n, and also ΘΩ;Ωn ¼ ΘΩ;mQk ¼ 2πk=n, so
that 4πq=n ¼ 2πk=n. This has no solution if k is odd,
so k must be even. Given the restrictions on the range of k
and q, the unique solution for q is then q ¼ k=2, and we
have shown

θΩ ¼ πk
n2

; ð29Þ

where k is even and it satisfies 0 ≤ k < n. In particular, for
n ¼ 2, we have Ω2 ¼ m, as stated in Sec. II.
Physically, we expect k to parametrize the quantized Hall

response. Inserting 2π flux at some point in space produces
a local charge accumulation of σxy, in appropriate units. If
we view fusion of n fluxes Ω as equivalent to a dynamical
process where n fluxes are inserted, then, because m is
neutral under Zn, Eq. (27) implies

k ¼ σxymod n: ð30Þ

This physical interpretation of k leads us to expect k ¼ 0
whenever G0 symmetry forbids a quantized Hall response.
Indeed, in Appendix B, we show that k ¼ 0 whenever G0
contains time-reversal or spatial reflection symmetry.
Whenever k ¼ 0, by Eq. (29), Ω is a boson. This will

enable a simple description of the action ofG0 symmetry on
Ω and m, so from now on, we will always assume
conditions are such that we can take Ω to be a boson.
Under this assumption, we collect the properties of the
gauged SET phase obtained from the discussion above. The
fusion rules are

Qn ¼ 1; ð31Þ

e2 ¼ Q; ð32Þ

m2 ¼ 1; ð33Þ

Ωn ¼ m; ð34Þ

and the statistics are specified by

θe ¼ θm ¼ 0; ð35Þ

Θe;m ¼ π; ð36Þ

θQ ¼ Θe;Q ¼ Θm;Q ¼ 0; ð37Þ

ΘQ;Ω ¼ 2π

n
; ð38Þ

FLUX-FUSION ANOMALY TEST AND BOSONIC … PHYS. REV. X 6, 041006 (2016)

041006-7



Θe;Ω ¼ π

n
; ð39Þ

Θm;Ω ¼ 0; ð40Þ

θΩ ¼ 0: ð41Þ

These are precisely the fusion rules and statistics of Z2n
gauge theory or, equivalently, the Z2n version of the toric
code model. For Abelian anyons, fusion rules and statistics
are enough to uniquely specify the unitary modular tensor
category that describes a theory of anyons [57,58].
Therefore, the theory of anyons in the gauged SET phase
is identical to that in the Z2n toric code.

B. Symmetry action on m, Ω and the anomaly test

In order to apply the anomaly test, we first have to
characterize the action ofG0 symmetry on the anyons of the
ungauged SET phase [19]. In general, the fractionalization
class of e orm is an element of the groupH2ðG;Z2Þ. In the
present case, as is shown in Appendix C, it is enough to
specify separately the action of U(1) and G0 on each of e
and m. In other words, there is no additional information
associated with the interplay between U(1) and G0.
Each of e and m transforms under a Z2 projective

representation of G0, denoted Γe and Γm, respectively. We
focus on m particles; the corresponding equations hold
for e particles with trivial modifications. For g1, g2 ∈ G0,
we have

Γmðg1ÞΓmðg2Þ ¼ ωmðg1; g2ÞΓmðg1g2Þ; ð42Þ

where ωmðg1; g2Þ ∈ Z2 is called a Z2 factor set. The
corresponding object for e particles is denoted ωe.
Associative multiplication of the Γm’s implies

ωmðg1; g2Þωmðg1g2; g3Þ ¼ ωmðg1; g2g3Þωmðg2; g3Þ: ð43Þ

In general, any Z2-valued function ωmðg1; g2Þ satisfying
Eq. (43) is called a Z2 factor set.
Physical properties are unchanged under a redefinition

ΓmðgÞ → λ−1ðgÞΓmðgÞ for λðgÞ ∈ Z2, which induces a
projective transformation on the factor set,

ωmðg1; g2Þ → λ−1ðg1Þλ−1ðg2Þλðg1g2Þωmðg1; g2Þ: ð44Þ

Here, λ−1ðgÞ ¼ λðgÞ, but the inverse signs are kept to
expose the formal similarities with the discussion of
symmetry action on Ω, as given below. Equivalence
classes of factor sets under such projective transforma-
tions are denoted ½ωm�Z2

and are the distinct fractionali-
zation classes of m. The Z2 subscript reminds us that
both ωm and the projective transformations λ take values
in Z2. In the language of group cohomology theory,
fractionalization classes ½ωm�Z2

are elements of the

Abelian group H2ðG0;Z2Þ, the second group cohomology
of G0 with Z2 coefficients. The group multiplication in
H2ðG0;Z2Þ is obtained from multiplication of functions;
that is, if ωabðg1; g2Þ ¼ ωaðg1; g2Þωbðg1; g2Þ, then
½ωa�Z2

½ωb�Z2
¼ ½ωab�Z2

.
Considering all symmetries together, the symmetry

fractionalization pattern of the SET phase can be denoted
eC½ωe�m0½ωm�, where C (0) indicates that e (m) carries
half-odd-integer (integer) U(1) charge. When using this
notation, to avoid cumbersome expressions, we drop theZ2

subscript for the fractionalization classes.
The flux-fusion anomaly test will be able to determine

that eC½ωe�m0½ωm� is anomalous for certain choices of
½ωm�Z2

, independent of ½ωe�Z2
. When the anomaly test does

not find an anomaly, we say that a symmetry fractionali-
zation pattern is anomaly negative. This terminology
recognizes that the flux-fusion anomaly test is not expected
to detect all possible anomalies, and some anomaly-
negative fractionalization patterns can still be anomalous.
To proceed, we now consider the gauged SET phase and

characterize the action ofG0 symmetry onΩ. First, we need
to consider the possibility that some operationsmay permute
the anyons of the gauged SET phase and, in particular, may
mapΩ to some other anyon. For some operation g ∈ G0, let
g ⋆ Ω denote the anyon resulting from applying g to Ω.
If g commutes with U(1), is unitary, and is either an
internal symmetry or a proper space-group operation, then
g ⋆ Ω ¼ Ω. This follows from the fact that such an operation
leaves Q, e, and m invariant, and it also leaves the statistics
invariant; that is, Θg⋆a;g⋆b ¼ Θa;b. However, it is not the
case that all g ∈ G0 leave Ω invariant; in particular, we are
interested in time reversal and reflection symmetry. These
operations may send Ω ↦ Ω or Ω ↦ Ω2n−1, depending on
whether the operation in question commutes with U(1), as is
discussed in detail in Appendix B.
Because some operations in G0 may not preserve the

anyon type of Ω, in describing the action of symmetry,
we have to go somewhat beyond the framework developed
in Ref. [19]. We introduce field operators ψk
(k ¼ 1;…; 2n − 1). Each ψk is a many-component object,
with components not explicitly written, where each com-
ponent creates a Ωk particle in some state. In particular, ψn
creates an m particle. These field operators are nonlocal
objects. However, because all the Ωk particles are bosons
and have bosonic mutual statistics, the nonlocal character
of ψk is not expected to play a role in the following
discussion. It is also convenient to collect all the field
operators into the object Ψ ¼ ðψ1…ψ2n−1Þ.
All physical states and local operators are invariant

under Z2n gauge transformations implemented by the
unitary operator G½λ�, for λ ∈ Z2n, which acts on the field
operators by

G½λ�ψkG½λ�−1 ¼ λkψk: ð45Þ
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For a symmetry operation g ∈ G0, we denote the corre-
sponding unitary or antiunitary operator by SðgÞ, which
acts on field operators by

g∶Ψ ↦ SðgÞΨSðgÞ−1: ð46Þ
The operators SðgÞ form a representation of G0 up to Z2n
gauge transformations, that is,

Sðg1ÞSðg2Þ ¼ G½ϕnðg1; g2Þ�Sðg1g2Þ; ð47Þ
for ϕnðg1; g2Þ ∈ Z2n. This is the most general multiplica-
tion law consistent with the requirement that SðgÞ act
linearly on local operators, for example (schematically),
ðψ1Þ2n. Mathematically, we have defined a kind of gener-
alized projective representation, which is similar but not
identical to the projective representation describing the
action of symmetry on m [Eq. (42)].
The crucial difference between SðgÞ and more familiar

projective representations is that, in general, SðgÞ does not
commute with the gauge transformation G½λ�. We note that
some symmetries g ∈ G0 map g∶Ω ↦ Ω2n−1. We keep
track of this information by defining

sðgÞ ¼
�þ1 g∶Ω ↦ Ω
−1 g∶Ω ↦ Ω2n−1:

ð48Þ

In addition, some operations in G0 may be antiunitary, so
we define

uðgÞ ¼
�
1 g unitary

−1 g antiunitary:
ð49Þ

We note that both s and u are group homomorphisms
mapping G0 → Z2. We then introduce the function

tðgÞ ¼ sðgÞuðgÞ: ð50Þ
By considering the action of SðgÞ and gauge transforma-
tions on field operators, it is straightforward to show

SðgÞG½λ� ¼ G½λtðgÞ�SðgÞ; ð51Þ
from which it is apparent that tðgÞ characterizes the
noncommutativity of SðgÞ and gauge transformations.
We thus refer to SðgÞ as a t-twisted Z2n projective
representation of G0.
Equation (51) allows us to use associativity of the

product Sðg1ÞSðg2ÞSðg3Þ to derive the associativity con-
dition on ϕn,

ϕnðg1; g2Þϕnðg1g2; g3Þ ¼ ϕnðg1; g2g3Þ½ϕnðg2; g3Þ�tðg1Þ:
ð52Þ

We refer to ϕn, and, indeed, any Z2n-valued function
satisfying Eq. (52), as a t-twisted Z2n factor set. Paral-
leling the discussion of ordinary projective representations

above, we are free to redefine SðgÞ by a gauge trans-
formation,

SðgÞ → G½λ−1ðgÞ�SðgÞ: ð53Þ

This induces a projective transformation on the factor set,

ϕnðg1; g2Þ → λ−1ðg1Þ½λðg2Þ�−tðg1Þ½λðg1g2Þ�ϕnðg1; g2Þ: ð54Þ

Equivalence classes ½ϕn�Z2n
of factor sets under such

transformations characterize the action of G0 symmetry
on Ω. These equivalence classes are elements of the
cohomology group H2

t ðG0;Z2nÞ, where the t subscript
denotes the nontrivial action of G0 on the Z2n coefficients,
encoded in the function tðgÞ. We refer to this as t-twisted
cohomology. We note that, for G0 finite, on-site, and
unitary, we have recovered a special case of the twisted
cohomology theory used to describe the action of sym-
metry on anyons in the category-theoretic description of
SET phases [32,59].
In fact, ½ϕn�Z2n

simultaneously characterizes the action of
G0 on all particles Ωk obtained by fusing Ω’s together. This
includesm ¼ Ωn. The action of symmetry onm is given by
considering the action of SðgÞ on ψn; in particular,

Sðg1ÞSðg2ÞψnSðg2Þ−1Sðg1Þ−1
¼ ½ϕnðg1; g2Þ�nSðg1g2ÞψnSðg1g2Þ−1
≡ ωmðg1; g2ÞSðg1g2ÞψnSðg1g2Þ−1: ð55Þ

Therefore, we have shown

ωmðg1; g2Þ ¼ ½ϕnðg1; g2Þ�n: ð56Þ

Equation (56), which holds for all even n ≥ 2, is the
crucial equation underlying the anomaly test. The essential
idea is to take advantage of the fact that Ω is an “nth root”
of m in the gauged SET phase and to ask whether a given
symmetry action on m can be consistently extended to a
symmetry action on its nth root Ω. If not, then an anomaly
has been detected.
In more detail, the logic is as follows: Given ½ωm�Z2

, we
choose some particular factor set ωmðg1; g2Þ in the desired
equivalence class (the particular choice within the class
does not matter). Then, for each even n ≥ 2, we ask
whether it is possible to solve Eq. (56) for ϕnðg1; g2Þ,
where ϕn is required to satisfy Eq. (52). If for any even
n ≥ 2 a solution fails to exist, the symmetry fractionaliza-
tion pattern is anomalous. If a solution exists for all even
n ≥ 2, the symmetry fractionalization pattern is anomaly
negative.
Equation (56) immediately implies that anomaly-

negative m-particle fractionalization classes form a sub-
group, which we denote N ⊂ H2ðG0;Z2Þ.
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At first glance, it might appear cumbersome to apply the
flux-fusion anomaly test. Fortunately, it is not necessary to
consider Eq. (56) directly for every even n ≥ 2. Instead,
there is a simple and easily computable characterization of
which ½ωm�Z2

are anomaly negative. To describe this
characterization, we first note that ωm can be viewed as
a t-twisted U(1) factor set. This means that, given
ωmðg1; g2Þ, we allow for projective transformations

ωmðg1; g2Þ → λ−1ðg1Þ½λðg2Þ�−tðg1Þ½λðg1g2Þ�ωmðg1; g2Þ;
ð57Þ

where λðgÞ ∈ Uð1Þ. The corresponding equivalence class
under these transformations is denoted ½ωm�Uð1Þ, and it is an
element of the cohomology groupH2

t (G0;Uð1Þ). Formally,
there is a map ρ2∶H2ðG0;Z2Þ → H2

t (G0;Uð1Þ) defined by
ρ2ð½ωm�Z2

Þ ¼ ½ωm�Uð1Þ. (In Appendix D, we show that ρ2 is
well defined, that it is a group homomorphism, and that it is
unique in a certain natural sense.)
Intuitively, it seems natural for cohomology with U(1)

coefficients to arise out of the flux-fusion anomaly test.
Ultimately, it ought to be possible to dispense with gauging
Zn ⊂ Uð1Þ for all even n, in favor of working directly
with continuous U(1) fluxes. Either approach should give
the same results, so we speculate that the H2

t (G0;Uð1Þ)
cohomology may describe the action of G0 symmetry on
U(1) fluxes. Moreover, as discussed in more detail in
Sec. VII, ½ωm�Uð1Þ does have a nice physical interpretation:
It characterizes the symmetry fractionalization of vortex
excitations in a superfluid. This allows us to obtain results
on anomalous d ¼ 2 superfluids. We note that t-twisted
U(1) cohomology also appears in the cohomology
approach to SPT phases with time-reversal symmetry,
where antiunitary operations act nontrivially on the U(1)
coefficients, and the cohomology groups are denoted by
Hn(G;UTð1Þ) [16].
Anomaly-negative m-particle fractionalization classes

½ωm�Z2
are fully characterized by the following theorem,

which is proved in Appendix D.
Theorem 1. If H2

t (G0;Uð1Þ) ¼ Uð1Þk × A, where A is
a finite product of finite cyclic factors, then the symmetry
fractionalization pattern eC½ωe�m0½ωm� is anomaly nega-
tive if and only if ½ωm�Uð1Þ ¼ ρ2ð½ωm�Z2

Þ lies in the
connected component of H2

t (G0;Uð1Þ) that contains the
identity element.
The assumption on the form of H2

t (G0;Uð1Þ) is true for
all the examples we have considered, and we believe it is
likely to be true in general.
This theorem allows us to apply the flux-fusion anomaly

test via the following procedure:
(1) Compute the group H2ðG0;Z2Þ of m particle frac-

tionalization classes under G0 symmetry. Find a
convenient explicit parametrization of distinct frac-
tionalization classes ½ωm�Z2

.

(2) Compute the t-twisted cohomology group
H2

t (G0;Uð1Þ), and find an explicit parametrization.
(3) Find the map ρ2 discussed above, for which

½ωm�Uð1Þ ¼ ρ2ð½ωm�Z2
Þ.

(4) For each m particle fractionalization class ½ωm�Z2
,

determine whether ½ωm�Uð1Þ can be continuously
deformed to the identity element of H2

t (G0;Uð1Þ).
If this is impossible, the fractionalization pattern
eC½ωe�m0½ωm� is anomalous, for any ½ωe�Z2

.
(5) The results for a given symmetry G ¼ Uð1Þ ⋊ G0

can be summarized by describing the m particle
fractionalization classes for which eC½ωe�m0½ωm� is
anomalous.

This procedure is illustrated in detail, and made more
concrete, in the examples presented in Sec. IV and
Appendix G.

IV. EXAMPLES

In this section, we apply the flux-fusion anomaly test in a
few cases, in order of increasing complexity. In each case,
we fix a symmetry G and follow the procedure outlined in
Sec. III B. A crucial aspect is the calculation of second
cohomology groups, forG0 presented in terms of generators
and relations. We illustrate our approach to these calcu-
lations in each example, leaving a more careful mathemati-
cal justification to Appendix E.
These examples enable a more concrete discussion of

bosonic TCIs in Sec. VI and anomalous d ¼ 2 superfluids
in Sec. VII. A number of other examples are considered in
Appendix G.

A. G = Uð1Þ × ZT
2

We begin with the case of G ¼ Uð1Þ × ZT
2 symmetry,

which was already discussed in Sec. II and in previous
works [35,37]. This symmetry is simple enough to analyze
using Eq. (56) directly; that approach, in fact, is essentially
identical to the treatment in Sec. II. However, to pave the
way for more complex examples, we follow the procedure
outlined in Sec. III B.
It is convenient to present the group G0 ¼ ZT

2 in terms of
generators and relations. Here, this is trivial; the single
generator T obeys the relation T 2 ¼ 1. Next, we consider a
general Z2 projective representation giving the action of G0
on an m particle. The generator is now written T m, and the
relation becomes

ðT mÞ2 ¼ σmT ; ð58Þ

for σmT ∈ Z2. We are allowed to redefine T m → −T m, but
this does not affect σmT . Therefore, because σmT ¼ �1 is
invariant under projective transformations, we can tenta-
tively conclude that it labels two distinct fractionalization
classes ½ωm�Z2

. To be sure this conclusion is correct, we
need to check that each choice of σmT in fact corresponds to
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a factor set ωmðg1; g2Þ, for g1, g2 ∈ ZT
2 . This can be

accomplished by exhibiting a projective representation
for each choice of σmT . In the present case, these repre-
sentations are just familiar Kramers singlets (σmT ¼ 1) and
doublets (σmT ¼ −1). Therefore, H2ðG0;Z2Þ ¼ Z2, with
σmT ¼ �1 explicitly parametrizing the cohomology group
and labeling the distinct fractionalization classes ½ωm�Z2

.
Next, we have to compute H2

t (G0;Uð1Þ). To do this, we
consider a general t-twisted U(1) projective representation
of G0 ¼ ZT

2 , again in terms of generators and relations. We
denote the generator by T t. We also have to specify the
function tðgÞ; it is sufficient to give the values of t for the
generators, and in this case, tðT Þ ¼ −1. The relation
becomes

ðT tÞ2 ¼ αT: ð59Þ

Here, αT is shorthand for the gauge transformation
G½αT �, with αT ∈ Uð1Þ. So, for example, we can write
T tαT ¼ α−1T T t. It is important to note that we can adjust the
phase of the generator by redefining T t → λT t, but this
leaves αT unchanged.
Because αT is invariant under projective transformations,

it is tempting to conclude that αT ∈ Uð1Þ labels distinct
equivalence classes ½ω�Uð1Þ ∈ H2

t (G0;Uð1Þ). However, this
conclusion is not correct because the possible values of αT
are constrained. In other words, there does not exist a t-
twisted U(1) factor set for arbitrary αT ∈ Uð1Þ. To see this,
we conjugate both sides of Eq. (59) by T t and readily obtain
ðT tÞ2 ¼ α−1T . This result is consistent only if αT ∈ Z2.
As before, we need to verify that both choices αT ¼ �1

actually give rise to t-twisted U(1) factor sets. The same
Kramers singlet and doublet representations can be viewed
as t-twisted U(1) projective representations, so, once again,
we can exhibit a representation realizing each choice of αT .
Therefore, H2

t (G0;Uð1Þ) ¼ Z2, which is explicitly para-
metrized by αT ∈ Z2.
To find the map ρ2 giving ½ωm�Uð1Þ in terms of ½ωm�Z2

,
suppose we have a Z2 projective representation as described
in Eq. (58) with some value of σmT . This Z2 projective
representation can immediately be viewed as a t-twisted
U(1) projective representation, with αT ¼ ρ2ðσmT Þ ¼ σmT . In
this case, then, ρ2∶Z2 → Z2 is the identity map; more
nontrivial examples will arise for other symmetries.
To conclude, we see that σmT ¼ 1 is anomaly negative

because ρ2ð1Þ ¼ 1. On the other hand, σmT ¼ −1 is anoma-
lous because ρ2ð−1Þ ¼ −1, which is not continuously
connected to the identity element in H2

t (G0;Uð1Þ) ¼ Z2.
The group N of anomaly-negative vison fractionalization
classes is thus trivial, N ¼ Z1.

B. G = Uð1Þ × ZP
2

Next, we consider the case of a single lattice reflection
symmetry (ZP

2 ), which commutes with U(1). Of course, any

realistic system with reflection symmetry will also have a
larger space group, including translation symmetry. A
physically reasonable viewpoint is to imagine that we
are interested in a system that has additional space-group
symmetry beyondZP

2 , but we are “forgetting” about the rest
of the symmetry and only making use of a Uð1Þ × ZP

2

subgroup in our analysis.
Our discussion parallels the treatment given above for

time-reversal symmetry. The group G0 ¼ ZP
2 is generated

by P, which obeys the relation P2 ¼ 1. Acting on m
particles, the generator is written Pm and obeys

ðPmÞ2 ¼ σmP ; ð60Þ

with σmP ∈ Z2. As before, σmP is invariant under Pm → −Pm.
Both choices of σmP can be realized; for example,
we can choose one-dimensional representations Pm ¼ 1
(for σmP ¼ 1) and Pm ¼ i (for σmP ¼ −1). Therefore,
H2ðG0;Z2Þ ¼ Z2, parametrized by σmP. A physical conse-
quence of σmP is that, if a pair of m particles are created and
moved to reflection symmetric points, the resulting wave
function has a reflection eigenvalue of σmP , relative to the
reflection eigenvalue of the ground state.
Next, we consider a general t-twisted U(1) projective

representation generated by Pt, obeying the relation

ðPtÞ2 ¼ αP; ð61Þ

with αP ∈ Uð1Þ. In Appendix B, it is shown that P maps
the symmetry flux Ω to Ω2n−1; since P is unitary, this
implies tðPÞ ¼ −1.
At this point, the analysis is mathematically identical to

that given for G ¼ Uð1Þ × ZT
2 symmetry in Sec. IVA. In

other words, we have αP ∈ Z2, and H2
t (G0;Uð1Þ) ¼ Z2.

In addition, αP ¼ ρ2ðσmP Þ ¼ σmP . Therefore, σmP ¼ 1 is
anomaly negative, while σmP ¼ −1 is anomalous; the group
of anomaly-negative vison fractionalization classes is
N ¼ Z1. Introducing notation similar to that used in
Sec. II for time-reversal symmetry, we have found that
the symmetry fractionalization patterns eCmP and eCPmP
are anomalous, where P denotes an anyon for which
P2 ¼ −1.

C. G = Uð1Þ × pm

We now move on to an example in which G0 is a d ¼ 2
space group. We choose G0 ¼ pm, which is generated by
translations Tx, Ty, T−1

x , T−1
y and a reflection Px; these

operations are illustrated in Fig. 1 and obey the relations

TxTyT−1
x T−1

y ¼ 1; ð62Þ

TyPxT−1
y Px ¼ 1; ð63Þ

P2
x ¼ 1; ð64Þ
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TxPxTxPx ¼ 1; ð65Þ

which define the group pm.
Acting onm particles, the general form of the relations is

Tm
x Tm

y Tm−1
x Tm−1

y ¼ σmtxty; ð66Þ

Tm
y Pm

x Tm−1
y Pm

x ¼ σmtypx; ð67Þ

ðPm
x Þ2 ¼ σmpx; ð68Þ

Tm
x Pm

x Tm
x Pm

x ¼ σmtxpx; ð69Þ

with the σm’s taking values in Z2. All the σm’s are invariant
under projective transformations of the generators (e.g.,
Tx → −Tx), which suggests H2ðG0;Z2Þ ¼ Z4

2. Because
these relations are a subset of those used to present the
square lattice space group in Ref. [19], it follows from
Appendix A of that work that all 24 possible choices of the
σm’s indeed correspond to a factor set ωm, and indeed
H2ðG0;Z2Þ ¼ Z4

2 (see also Appendix G1 of this paper).
The fractionalization classes are thus parametrized by
½ωm�Z2

¼ ðσmtxty; σmtypx; σmpx; σmtxpxÞ.
Now, we need to compute H2

t (G0;Uð1Þ), noting that
tðPxÞ ¼ −1, while tðTxÞ ¼ tðTyÞ ¼ 1. The general form of
the relations in a t-twisted projective representation is

Tt
xTt

yTt−1
x Tt−1

y ¼ αtxty; ð70Þ

Tt
xPt

xTt
xPt

x ¼ αtxpx; ð71Þ

ðPt
xÞ2 ¼ αpx; ð72Þ

Tt
yPt

xTt−1
y Pt

x ¼ αtypx; ð73Þ

where the α’s take values in U(1). If we redefine
Tt
y → ðαtypxÞ1=2Tt

y, this sends αtypx → 1, leaving the other
α’s unchanged. In addition, the other α’s are unchanged by
redefinition of the other generators, so we have arrived at a
convenient canonical gauge choice to describe a general
t-twisted projective representation.
Next, conjugating Eq. (72) by Pt

x, we find αpx ∈ f�1g,
and similarly, we find αtxpx ∈ f�1g by conjugating
Eq. (73) by Tt

xPt
x. This result suggests thatH2

t (G0;Uð1Þ) ¼
Uð1Þ × Z2 × Z2, with the elements of the cohomology
group parametrized by ½ω�Uð1Þ ¼ ðαtxty; αpx; αtxpxÞ.
To verify this, we need to exhibit t-twisted projective

representations that correspond to a generating set of
H2

t (G0;Uð1Þ). (It is enough to exhibit a generating set
because the corresponding factor sets can then be multi-
plied to obtain a factor set with arbitrary cohomology
class.) We introduce field annihilation (creation) operators
vr (v†r) for some fictitious particles residing on the sites
r ¼ ðx; yÞ of the square lattice. Each vr is a two-component
vector. The generators are chosen to act on the field
operators by

TxvrT−1
x ¼ ðαtxtyÞrygtxvrþx̂; ð74Þ

TyvrT−1
y ¼ gtyvrþŷ; ð75Þ

PxvrP−1
x ¼ gpxv

†
Pxr

; ð76Þ

where αtxty ∈ Uð1Þ, Pxr ¼ ð−x; yÞ, and gtx, gty, gpx are
2 × 2 unitary matrices. Gauge transformations act on the
field operators by

G½λ�vrG−1½λ� ¼ eiλσ
z
vr; ð77Þ

G½λ�v†rG−1½λ� ¼ e−iλσ
z
v†r ; ð78Þ

for λ ∈ Uð1Þ, with σz one of the 2 × 2 Pauli matrices, and
where v†r denotes Hermitian conjugation of the components
of vr but does not include transposition in the two-
component space. Choosing gtx ¼ gty ¼ gpx ¼ 1 gives a
continuous family of representations with ½ω�Uð1Þ ¼
ðαtxty; 1; 1Þ. Next, αtxty ¼ 1, gty ¼ i, gpx ¼ iσy, gtx ¼ σz

is a representation with ½ω�Uð1Þ ¼ ð1;−1; 1Þ. (Here, again,
σx, σy, σz are the usual 2 × 2 Pauli matrices.) Finally,
αtxty ¼ 1, gty ¼ 1, gpx ¼ σx, gtx ¼ σz has ½ω�Uð1Þ ¼
ð1; 1;−1Þ. The factor sets of these three families of
representations are a generating set for H2

t ðG0;Uð1ÞÞ ¼
Uð1Þ × Z2 × Z2.
To find the map ρ2, we begin with ½ωm�Z2

¼
ðσmtxty; σmtypx; σmpx; σmtxpxÞ. Viewing a corresponding projec-
tive representation as a t-twisted U(1) projective

FIG. 1. Illustration of the operations generating the d ¼ 2
space group pm. A square lattice, which is invariant under pm
symmetry, is shown to aid visualization. Tx and Ty are trans-
lations by one lattice constant along the x and y axes,
respectively. Px is a reflection, with the axis indicated by the
left-hand vertical dashed line. The group pm has two types of
reflection axes, with Px being of one type and TxPx being of the
other type. The reflection axis for TxPx is shown as the right-
hand vertical dashed line.
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representation, we can redefine Tm
y → ðσmtypxÞ1=2Tm

y , which
sets σmtypx → 1 and thus puts this projective representation
in the canonical gauge described above. Therefore, we have
found

ðαtxty; αpx; αtxpxÞ ¼ ρ2ð½ωm�Z2
Þ ¼ ðσmtxty; σmpx; σmtxpxÞ: ð79Þ

This can be continuously deformed to the identity in
H2

t (G0;Uð1Þ) if and only if σmpx ¼ σmtxpx ¼ 1.
Therefore, we have found that the fractionalization pattern

eC½ωe�m0½ωm�, with ½ωm�Z2
¼ ðσmtxty; σmtypx; σmpx; σmtxpxÞ, is

anomalous if σmpx ¼ −1 or σmtxpx ¼ −1 (or both).
Equivalently, we can observe that anomaly-negative
½ωm�Z2

are given by ½ωm�Z2
¼ ðσmtxty; σmtypx; 1; 1Þ, which form

the subgroup N ⊂ H2ðG0;Z2Þ, with N ¼ ðZ2Þ2.

D. G = ðUð1Þ ⋊ ZT
2 Þ × p1

The group p1 is the d ¼ 2 space group consisting only of
translation symmetry. Here, we consider this symmetry
combined with time reversal, which enters via the semi-
direct product Uð1Þ ⋊ ZT

2 . This example is straightforward
to analyze by following the steps in Sec. IV C and
Appendix G 1, so we only quote the results.
We have G0 ¼ p1 × ZT

2 , which is generated by trans-
lations Tx, Ty, their inverses, and time reversal T . The
relations are

TxTyT−1
x T−1

y ¼ 1; ð80Þ

T 2 ¼ 1; ð81Þ

T Tx ¼ TxT ; ð82Þ

T Ty ¼ TyT : ð83Þ

The m particle symmetry fractionalization is specified by

Tm
x Tm

y Tm−1
x Tm−1

y ¼ σmtxty; ð84Þ

ðT mÞ2 ¼ σmT ; ð85Þ

T mTm
x ¼ σmTtxT

m
x T m; ð86Þ

T mTm
y ¼ σmTtyT

m
y T m; ð87Þ

where the σm’s are Z2-valued phase factors. The group
of vison fractionalization classes is H2ðG0;Z2Þ ¼ ðZ2Þ4.
The anomaly-negative fractionalization classes are those
with σmTtx ¼ σmTty ¼ 1, and they form the groupN ¼ ðZ2Þ2.
We thus have an anomalous fractionalization pattern when
σmTtx ¼ −1, σmTty ¼ −1, or both. The disjoint sets of SPT
phases distinguished by the anomaly test are labeled by
elements of S ¼ H2ðG0;Z2Þ=N ¼ ðZ2Þ2.

It is interesting to note that, in this case, we find
anomalies involving time reversal that cannot be under-
stood in terms of Uð1Þ × ZT

2 subgroups ofG; these are type
3 anomalies as discussed in Sec. I. These anomalies occur
when one or more of σmTtx or σ

m
Tty are equal to −1. It appears

these anomalies cannot be understood in terms of dimen-
sional reduction to d ¼ 1 SPT phases, as explained
in Sec. V.

V. DIMENSIONAL REDUCTION VIEWPOINT

For type 1 and 2 anomalies (see Sec. I), which include
the examples described in Secs. IVA–IV C, the flux-fusion
anomaly test can be understood in terms of dimensional
reduction to d ¼ 1 SPT phases. This viewpoint provides a
different way of applying the anomaly test, which does not
depend on some of the formalism introduced in Sec. III. In
particular, for the discussion below, we do not need the
description of symmetry action onZn fluxesΩ presented in
Sec. III B. Our discussion makes significant use of the
results of Ref. [25], especially for the case of reflection
symmetry.
We imagine putting the ungauged d ¼ 2 SET phase

with Z2 topological order on a cylinder with large but
finite circumference, in such a way that the symmetry is
preserved. The longitudinal dimension of the cylinder
remains infinite. We can approach the limit of an infinitely
long cylinder either via finite-length cylinders with open
boundary conditions or via those with their ends identified
periodically. The minimally entangled states (MES) of the
SET phase are those with definite anyon flux threaded
along the cylinder (see Ref. [25] for a more complete
discussion). The cylinder is a d ¼ 1 system, gapped and
symmetric. Therefore, each of the MES is in a d ¼ 1
SPT phase.
Starting from any of the MES, we imagine threading an

anyon a along the cylinder (see Fig. 2). This can be

FIG. 2. Illustration of the flux-fusion anomaly test using
dimensional reduction to a d ¼ 1 cylinder. The Z2 ⊂ Uð1Þ flux
Ω is threaded twice along the left-hand cylinder, while m is
threaded along the right-hand cylinder. Because of the fusion rule
Ω2 ¼ m, these two systems are in the same d ¼ 1 SPT phase.
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accomplished by a process creating an a‐ā pair in the
bulk (ā is the antiparticle of a) and then separating a and
ā to infinity. This process maps the initial MES to a
different MES and so can be thought of as a mapping of
d ¼ 1 SPT phases. In Ref. [25], it was argued that this
mapping between SPT phases only depends on the nature
of the symmetry action on a in the original d ¼ 2

SET phase.
Now, we consider the case ofG ¼ Uð1Þ × ZT

2 symmetry,
making our usual assumptions that the e-particle
(m-particle) carries half-odd-integer (integer) U(1) charge.
Starting with some MES, we thread m along the cylinder.
We use only the ZT

2 symmetry to analyze the dimensionally
reduced d ¼ 1 SPT phases so that there are two phases
distinguished by a Z2 invariant, which corresponds to the
presence or absence of Kramers doublet end states at the
open boundaries [60,61]. If the m is a Kramers singlet
[ðT mÞ2 ¼ 1], then threading it along the cylinder leaves
this Z2 invariant unchanged. On the other hand, if m is a
Kramers doublet [ðT mÞ2 ¼ −1], threading it along the
cylinder flips the Z2 invariant.
To apply the anomaly test via dimensional reduction, we

next introduce fluxes of theZ2 ⊂ Uð1Þ symmetry. Note that
we do not fully gauge the Z2 symmetry; it is enough to
consider static flux defects of this symmetry, without
introducing a dynamical gauge field. We can thread the
flux Ω along the cylinder, which amounts to introducing a
flux defectΩ near one end and the corresponding antidefect
Ω̄ near the other end. Because the time-reversal symmetry
maps Ω ↦ Ω (as shown in Appendix B), this can be done
while preserving ZT

2 , and threading Ω gives another map
between d ¼ 1 SPT phases. This map either flips the Z2

invariant or leaves it the same.
Finally, because Ω2 ¼ m, threading Ω twice along the

cylinder is the same as threading m, as illustrated in Fig. 2.
But threading Ω twice must leave the Z2 SPT invariant
unchanged, which means that threading m must also leave
this invariant unchanged. This recovers the result that m
being a Kramers doublet is anomalous [62].
In this argument, we used the fact that time reversal maps

Ω ↦ Ω. It is important to note that this is not a priori
obvious simply becauseΩ is a π flux of the U(1) symmetry,
because Ω may be attached to an anyon under the action
of symmetry, as indeed occurs in the following example.
Instead, we need the considerations of Appendix B to
conclude Ω ↦ Ω under time reversal.
For G ¼ Uð1Þ × ZP

2 symmetry, a very similar discussion
applies. We choose the ZP

2 symmetry to exchange the two
ends of the cylinder; that is, the d ¼ 2 reflection symmetry
becomes d ¼ 1 reflection symmetry upon dimensional
reduction. SPT phases in d ¼ 1 protected by such ZP

2

symmetry are also characterized by a Z2 invariant [60,61].
Reference [25] argued that threading m along the cylinder
preserves this invariant if ðPmÞ2 ¼ 1, and it flips the

invariant if ðPmÞ2 ¼ −1. Again, we consider the effect
of threading a flux Ω, of the Z2 ⊂ Uð1Þ symmetry, along
the cylinder. Because ZP

2 maps Ω to the antiflux Ω̄ ¼ Ω3 ¼
mΩ (Appendix B), this can be done while preserving
the ZP

2 symmetry. Therefore, threading Ω either flips or
preserves theZ2 SPT invariant. At this point, the discussion
proceeds identically to the case of time reversal above, and
we find that the symmetry fractionalization pattern with
ðPmÞ2 ¼ −1 is anomalous.
This discussion also applies directly to the case of

G ¼ Uð1Þ × pm symmetry because the anomalous sym-
metry fractionalization patterns found in Sec. IV C are
associated with two different ZP

2 subgroups of pm. One of
these is generated by Px, and the other is generated
by TxPx.
Using the approach of Sec. III, we also find anomalies

associated with the interplay between time-reversal and
other symmetries, which apparently cannot be understood
from the dimensional reduction point of view. These
were designated type 3 anomalies in Sec. I, and they arise
when time reversal forms a semidirect product with
U(1) [i.e., Uð1Þ ⋊ ZT

2 ⊂ G]. They occur in the examples
G ¼ ðUð1Þ ⋊ ZT

2 Þ × p1 (Sec. IV D) and G ¼ ðUð1Þ ⋊
ZT

2 Þ × pm, G ¼ ðUð1Þ ⋊ ZT
2 Þ × p4mm (Appendix G).

For example, in each of these cases, Tm
x (T m) gives the

action of translation in the x direction (time reversal) on
m-particles, and these generators obey the relation

T mTm
x ¼ σmTtxT

m
x T m; ð88Þ

where we find that σmTtx ¼ −1 is anomalous. If we try to
apply dimensional reduction here, we observe that time
reversal maps the flux Ω to the antiflux Ω̄, without
exchanging the two ends of the cylinder. This means that
the state obtained upon threading Ω breaks time reversal
and is thus not a d ¼ 1 SPT phase preserving the
symmetries involved in the anomaly.

VI. BOSONIC TOPOLOGICAL
CRYSTALLINE INSULATORS

Here, we use the results from the flux-fusion anomaly
test to identify and distinguish some d ¼ 3 bosonic TCIs.
We focus on the examples of G ¼ Uð1Þ × ZP

2 and G ¼
Uð1Þ × pm symmetry discussed above in Sec. IV; the latter
example is sufficiently complex to illustrate the corre-
sponding general results. The discussion for SPT phases
withG ¼ Uð1Þ × ZT

2 symmetry entirely parallels that given
in Sec. VI A, where we also comment on that case. The
focus is on understanding the extent to which information
obtained from the anomaly test can distinguish the TCI
phases identified, without using further information, while
also illustrating what additional information can be used to
make finer distinctions among phases.
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A. G = Uð1Þ × ZP
2

In Sec. IVB, we found that the symmetry fractionalization
patterns eCmP and eCPmP are anomalous. A coupled-layer
construction (see Ref. [37] and Appendix F) shows that
these fractionalization patterns—indeed, any fractionaliza-
tion pattern—can be realized as a surface of a d ¼ 3 SPT
phase, or bosonic TCI. Because each fractionalization
pattern is anomalous, its corresponding SPT phase must
be nontrivial.
Having established that the eCmP and eCPmP SPT

phases are nontrivial, we would like to understand whether
these phases are distinct from one another. Moreover,
as is well known, SPT phases can be added together by
combining two decoupled systems and observing that the
combined system thus obtained is also a SPT phase. This
operation is expected to form an Abelian group. We would
also like to know how the eCmP and eCPmP SPT phases
behave under this addition operation.
Let us consider adding together two copies of the eCmP

SPT phase. This results in a surface with two decoupled
surface SET phases, which we denote by eCmP ⊕ eCmP.
Denoting the anyons in one SET phase by e1,m1, and in the
other by e2, m2, we consider the result of condensing e1e2
and m1m2. This condensation destroys the topological
order since all anyons of the eCmP ⊕ eCmP surface
are either condensed or confined because of nontrivial
mutual statistics with the condensate. In addition, both
the condensed particles have integer charge and P2 ¼ 1,
so they can be condensed without breaking any sym-
metries. Therefore, we have obtained a gapped, symmetry-
preserving, trivial surface, and the resulting SPT phase is
the trivial phase.
The same conclusion clearly holds for the eCPmP

SPT phase. Indeed, the conclusion holds for any SPT
phase with surface Z2 topological order (at least as long as
the symmetry does not permute the anyon species). To find
SPT phases with order higher than two under addition, we
would need to consider other types of topological order
(e.g., Zn topological order) or potentially those with
symmetries permuting the anyon species.
Next, we consider adding together the eCmP and

eCPmP SPT phases, obtaining a eCmP ⊕ eCPmP sur-
face. This surface can be simplified by condensing m1m2,
which again can be done without breaking any symmetries.
This results in a new surface SET phase withZ2 topological
order, with anyons e, m, given in terms of the original
anyons by e ¼ e1e2 and m ¼ m1 ≃m2. Therefore, the
fractionalization pattern after condensing m1m2 is ePmP.
The flux-fusion anomaly test provides no information

about ePmP, so without additional information, we cannot
draw any further conclusions. It has been shown via other
methods that ePmP is anomalous [28,63], so the two SPT
phases are different.
The flux-fusion anomaly test on its own allows us to

distinguish a pair of SPT phases. We can take this pair to be

either the trivial phase and the eCmP phase, or the trivial
phase and the eCPmP phase. Both pairs form a Z2

subgroup under the addition of SPT phases; this is the
result appearing in the fourth column of Table I.
The same discussion holds for G ¼ Uð1Þ × ZT

2 , replac-
ing “P” by “T” everywhere, so that we consider the
nontrivial SPT phases with eCmT and eCTmT surfaces.
In this case, we note that eTmT has also been argued to be
anomalous [35,37].

B. General results and G = Uð1Þ × pm

We now consider bosonic TCIs for the general case
of G ¼ Uð1Þ ⋊ G0 symmetry, using the example of G ¼
Uð1Þ × pm to illustrate the discussion. First, we make
some fixed but arbitrary choice for the fractionalization
class of the e particle, ½ωe�Z2

∈ H2ðG0;Z2Þ, and we
consider fractionalization patterns of the form

Fi ¼ eC½ωe�m0½ωi
m�; ð89Þ

where we have introduced an index i to label the distinct
vison fractionalization classes ½ωi

m�Z2
∈ H2ðG0;Z2Þ. Each

fractionalization pattern Fi corresponds to a bosonic TCI
(d ¼ 3 SPT phase), for which it describes a surface SET
phase (see Appendix F). In general, not all the Fi’s
correspond to distinct or nontrivial SPT phases.
Formally, it will be convenient to refer to a map
φ∶fFig → GSPT, from the set of fractionalization patterns
described in Eq. (89), to the (Abelian) group of distinct
d ¼ 3 SPT phases of the given symmetry, which we denote
by GSPT.
Adding together the SPT phases corresponding to Fi and

Fj gives the surface SET phase Fi ⊕ Fj. Labeling the Fi

anyons by e1, m1, and the Fj anyons by e2, m2, this surface
theory can be simplified by condensing e1e2, which can be
done without breaking symmetry because both e particles
have the same fractionalization class. The resulting surface
theory has Z2 topological order, with anyons e ¼ e1 ≃ e2
and m ¼ m1m2, so that we have

Fi ⊕ Fj ≃ eC½ωe�m0½ωi
mω

j
m�: ð90Þ

We thus see that the fractionalization patterns add accord-
ing to the same operation governing multiplication of
½ωi

m�Z2
in H2ðG0;Z2Þ, and therefore, the set fFig can be

viewed as a group isomorphic to H2ðG0;Z2Þ. In addition,
this shows that the map φ can be viewed as a group
homomorphism φ∶H2ðG0;Z2Þ → GSPT.
We know the group H2ðG0;Z2Þ, and the flux-fusion

anomaly test gives us some knowledge about the map φ.
The goal is to use this information to learn as much as
possible about GSPT. If Fi is a fractionalization pattern
known to be anomalous, then φðFiÞ ≠ 1; that is, the
corresponding SPT phase is nontrivial. In the example
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G¼Uð1Þ×pm, recall that ½ωm�Z2
¼ðσmtxty;σmtypx;σmpx;σmtxpxÞ,

and the corresponding SPT phase is nontrivial whenever
σmpx ¼ −1, or σmtxpx ¼ −1, or both.
In addition, we would ideally like to know which

fractionalization patterns are nonanomalous and thus
map to the trivial SPT phase. Formally, the set of such
fractionalization patterns is the kernel of φ and is a
subgroup of H2ðG0;Z2Þ denoted by Kerφ. In general,
we do not know Kerφ. However, we do know which
fractionalization patterns are anomaly negative; these also
form a subgroup denoted N ⊂ H2ðG0;Z2Þ. In the present
example, N ¼ Z2 × Z2 consists of those fractionalization
classes of the form ½ωm�Z2

¼ ðσmtxty; σmtypx; 1; 1Þ. In general,
we have Kerφ ⊂ N ⊂ H2ðG0;Z2Þ; that is, nonanomalous
fractionalization patterns are a subgroup of anomaly-
negative ones.
Now, we consider the group S ¼ H2ðG0;Z2Þ=N , ele-

ments of which are cosets of N . We see that there are at
least as many distinct SPT phases as there are elements
of S. From the fact Kerφ ⊂ N ⊂ H2ðG0;Z2Þ, it follows
immediately that distinct elements of S map to disjoint sets
of SPT phases in GSPT [64]. The disjoint sets of SPT phases
are thus labeled by elements of S; this is the group that
appears in the fourth column of Table I.
In the present example, S ¼ Z2 × Z2, and its elements

p1;…; p4 are the four cosets

p1 ¼ ð1; 1; 1; 1Þ ×N ; ð91Þ

p2 ¼ ð1; 1;−1; 1Þ ×N ; ð92Þ

p3 ¼ ð1; 1; 1;−1Þ ×N ; ð93Þ

p4 ¼ ð1; 1;−1;−1Þ ×N : ð94Þ

Each of these cosets corresponds to four different surface
SET phases, depending on the element chosen from N .
Surface SET phases belonging to the same coset may or
may not correspond to the same SPT phase, but surface
SET phases belonging to different cosets correspond to
different SPT phases. Therefore, in this example, there are
at least four bosonic TCIs (one of which is trivial).
To obtain additional information, we need to determine

Kerφ ⊂ N . For example, in some cases, it may be true that
Kerφ ¼ N , if all the anomaly-negative fractionalization
patterns are in fact nonanomalous. The number of distinct
SPT phases obtained from each coset of N is jN j=jKerφj.
Throughout this discussion, we have fixed the e-particle

fractionalization class, but it is also natural to consider
fractionalization patterns with different e-particle fraction-
alization classes, as we did for the case of G ¼ Uð1Þ × ZP

2

symmetry in Sec. VI A. Suppose we add together F1 ¼
eC½ω1

e�m0½ω1
m� and F2 ¼ eC½ω2

e�m0½ω2
m�, to obtain an

F1 ⊕ F2 surface, where ½ω1
e�Z2

≠ ½ω2
e�Z2

. If it happens that

½ω1
m�Z2

¼ ½ω2
m�Z2

, we can condense m1m2 to obtain a
surface SET phase with fractionalization pattern
e0½ω1

eω
2
e�m0½ω1

m�. Here, none of the anyons carries frac-
tional U(1) charge. There is not a general understanding of
which fractionalization patterns of this type are anomalous.
However, many such patterns can be explicitly constructed
strictly in d ¼ 2, using, for instance, exactly solvable
models or parton gauge theory [65]. This has been done
for square lattice space-group symmetry using exactly
solvable models [65] and could be done for other symmetry
groups as needed. In addition, in the case of reflection
symmetry, the ePmP fractionalization pattern is anomalous
[28,63]. Results along these lines can thus be used to obtain
further information on bosonic TCI phases, which we leave
for future work.

VII. ANOMALOUS SUPERFLUIDS

Our results on anomalous symmetry fractionalization
patterns can also be used to obtain anomalous surface
superfluid states of d ¼ 3 bosonic TCIs. The anomalous
nature of these superfluids arises from the symmetry
fractionalization of vortices, which transform projectively
under G0 symmetry. It is particularly useful to identify such
anomalous superfluids because it is straightforward to
proceed from their formal description to explicit field
theories, which can be used to describe not only the surface
superfluid phase but also nearby surface phases and phase
transitions.
A related prior work is Ref. [35], which studied d ¼ 3

bosonic topological insulators [with U(1) and time-reversal
symmetry] by constructing field theories for anomalous
surface superfluids. Some of these superfluids are charac-
terized by nontrivial vortex symmetry fractionalization
and were argued to be anomalous based on the impos-
sibility of realizing a trivial, gapped surface in an explicit
dual vortex field theory for the surface. Our results are
complementary, allowing one to establish that some dual
vortex field theories for d ¼ 2 superfluids are anomalous
without a detailed and potentially subtle analysis of
possible phases.
As usual, we consider a surface SET phase with Z2

topological order and symmetry fractionalization pattern
eC½ωe�m0½ωm� but making the additional assumption that
½ωe�Z2

¼ 1; that is, the e particle transforms trivially under
G0. It is therefore possible to condense an e particle
carrying U(1) charge 1=2 and obtain a superfluid, with
spontaneously broken U(1) symmetry, where G0 symmetry
is preserved. Under these circumstances, the vison of the
SET phase becomes the elementary 2π-vortex of the
superfluid [46], so the vortex thus inherits the G0 trans-
formation properties of the m particle. If we start with an
anomalous surface SET phase, the resulting surface super-
fluid must also be anomalous because both are surfaces of
the same nontrivial SPT phase.
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It is well known that vortices can transform projectively
under symmetry [53–55]. This can be seen conveniently
in the dual description of a superfluid, where vortices carry
the charge of a noncompact U(1) gauge field, for which
the photon is nothing but the superfluid sound mode.
Symmetry operations acting on vortices can thus be
augmented by U(1) gauge transformations, and the sym-
metry acts projectively. In fact, in more detail, vortices
transform as a t-twisted U(1) projective representation of
G0, and vortex fractionalization classes are thus elements
of H2

t (G0;Uð1Þ). This can be seen by introducing field
operators for the vortices, as was done in Sec. III B for the
Zn flux Ω. Here, the field operators are labeled by an
integer, which is simply the vorticity, and we have U(1)
gauge transformations rather than Z2n gauge transforma-
tions. Otherwise, the discussion entirely parallels that given
in Sec. III B.
Because an m particle becomes a vortex upon entering

the superfluid phase, the vortex fractionalization class
½ωv� ∈ H2

t (G0;Uð1Þ) is given by

½ωv� ¼ ½ωm�Uð1Þ ¼ ρ2ð½ωm�Z2
Þ: ð95Þ

Remarkably, ½ωm�Uð1Þ, which provides a simple mathemati-
cal characterization of which fractionalization patterns are
anomaly negative, also has direct physical meaning as the
fractionalization class of vortices in the superfluid phase.
This allows us to establish that superfluids with certain
vortex fractionalization classes are anomalous.
This conclusion is bolstered by proceeding in the reverse

direction; that is, we can start with a superfluid and
condense pairs of vortices to obtain a SET phase with
Z2 topological order. This can be done without breaking
symmetry as long as the vortex fractionalization class
satisfies ½ωv�2 ¼ 1 so that vortex pairs transform trivially.
The fractionalization class of the m particle must satisfy
Eq. (95), but we note that this does not completely
determine ½ωm�Z2

given ½ωv�. We expect that, given ½ωv�,
the different possible choices of ½ωm�Z2

correspond to
inequivalent condensates of paired vortices; a detailed
study of this point is left for future work.
Which vortex fractionalization classes are anomalous?

We answer this question for the example of G¼Uð1Þ×pm
symmetry and then make some comments on the answer
more generally. First, Eq. (95) implies that ½ωv� ¼ ðαtxty ¼
�1; αpx; αtxpxÞ is anomalous whenever αpx ¼ −1,
αtxpx ¼ −1, or both, because these ½ωv� are obtained from
anomalous ½ωm�Z2

.
We can also find more anomalous vortex fractionaliza-

tion classes by starting with an anomalous superfluid and
adding a layer of d ¼ 2 superfluid. This can be done by first
assuming that each layer has an independent U(1) sym-
metry and then breaking the resulting Uð1Þ × Uð1Þ down to
U(1); that is, we allow unit charge excitations to tunnel

between the two layers. Before breaking the Uð1Þ × Uð1Þ
symmetry, each layer has independent vortices, schemati-
cally labeled by v1 and v2. After breaking the symmetry, v1
and v2 vortices are confined together, so the new superfluid
state has vortices v ¼ v1v2. This results in a modified
vortex fractionalization class ½ωv� ¼ ½ωv1 �½ωv2 �.
In the present example, vortex fractionalization classes

½ωv� ¼ ðαtxty; 1; 1Þ, with αtxty an arbitrary U(1) phase, can
occur in d ¼ 2. Writing αtxty ¼ e2πin̄, such superfluids
occur for bosons on the square lattice at filling n̄. This
is easily seen via straightforward application of boson-
vortex duality to such a model; briefly, the vortices feel the
background boson density as a magnetic flux of 2πn̄ per
plaquette and thus transform projectively under translation
symmetry. By adding layers of such nonanomalous super-
fluids, we can see that the only nonanomalous vortex
fractionalization classes are ½ωv� ¼ ðαtxty; 1; 1Þ, and all
others are anomalous.
This result can be stated in a more general fashion,

namely, ½ωv� is nonanomalous if and only if it can be
continuously deformed to the identity element of
H2

t (G0;Uð1Þ). We conjecture that this result holds for all
symmetries G ¼ Uð1Þ ⋊ G0, but we do not have a general
argument, for two reasons. First, we note that the discussion
above relied on being able to find all nonanomalous vortex
fractionalization classes for G ¼ Uð1Þ × pm symmetry.
Second, in this case, H2

t (G0;Uð1Þ) was a product of
U(1) and Z2 factors, containing no Zn factors for n > 2.
If there were such Zn factors, some vortex fractionalization
classes could not be obtained by condensing the e particle
of a SET phase with Z2 topological order. It is likely that
this could be handled by generalizing the flux-fusion
approach to SET phases with Zn topological order, a
problem that is left for future work.
We conclude this section, and illustrate the utility of the

present results, by describing the construction of a field
theory for the surface of a bosonic TCI with symmetry
G ¼ Uð1Þ × pm. We work in a dual description of the
surface superfluid, introducing a two-component complex
field Φv for the superfluid vortices. Here, Φv carries unit
charge of the U(1) gauge field aμ, in terms of which the
global U(1) current is jμ ¼ ϵμνλ∂νaλ=2π. We work in
Euclidean space time. We choose the pm symmetry
generators to act on the vortices as follows:

Tx; Ty∶Φvðx; y; τÞ → Φvðx; y; τÞ; ð96Þ

Px∶Φvðx; y; τÞ → ðiσyÞΦvð−x; y; τÞ: ð97Þ

As usual, we neglect the action of lattice translations Tx
and Ty on the spatial position of the continuum field Φv,
as this only leads to subleading gradient terms. The
presence of the Pauli matrix iσy in the action of Px implies
that P2

x ¼ −1 acting on Φv, and we have the vortex
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symmetry fractionalization ½ωv� ¼ ð1;−1;−1Þ. This frac-
tionalization class is anomalous, so we are not describing a
d ¼ 2 superfluid but rather the surface of a bosonic TCI.
We note that we choseΦv as a two-component field in order
to realize this nontrivial fractionalization class.
The Lagrangian is

L ¼ jð∂μ þ iaμÞΦvj2 þ
Ks

2

X
μ

j2μ þ VðΦvÞ þ � � � : ð98Þ

Here, the first term is the vortex kinetic energy, the second
term controls the superfluid stiffness, and VðΦvÞ is a
potential for the vortex field, whose form is dictated by
gauge invariance and the action of the microscopic sym-
metries. The ellipsis includes various other perturbations
allowed by symmetry. This field theory can be used to
study the superfluid phase itself (where Φv is massive),
neighboring phases described as condensates of Φv (which
break lattice symmetries), surface SET phases where Φ2

v is
condensed, and transitions among these phases.

VIII. DISCUSSION AND OUTLOOK

We introduced the flux-fusion anomaly test, a method
to detect some anomalous symmetry fractionalization
patterns in d ¼ 2 SET phases with Z2 topological order.
This method constrains the possible physical properties of
strictly d ¼ 2 SET phases and is a step toward the full
classification of such phases in the presence of crystalline
symmetry. In addition, the same results allow us to identify
and distinguish some d ¼ 3 SPT phases via their surface
theories, including some bosonic TCIs that have not
previously been identified, to our knowledge. For some
of the bosonic TCIs, we identified not only surface SET
phases with anomalous symmetry fractionalization but also
anomalous surface superfluids distinguished by the pro-
jective symmetry transformations of vortex excitations.
We note that the flux-fusion anomaly test is closely

related but not equivalent to a “monopole tunneling”
approach developed in Ref. [36] and used in Ref. [37].
In this approach, one considers a d ¼ 3 SPT phase with
U(1) symmetry, gauges the U(1) symmetry, and studies
magnetic monopole excitations in the bulk. If one has
Uð1Þ × ZT

2 symmetry, the monopole can be a Kramers
doublet, indicating that the bulk SPT phase is nontrivial.
Tunneling a monopole into the bulk through a superfluid
surface leaves a vortex behind on the surface, which must
also be a Kramers doublet. Condensing double vortices on
the surface leads to the eCmT state, which is thus a surface
SET of a nontrivial SPT phase.
Using the description of symmetry action on vortices

given in Sec. VII, very similar reasoning can be applied to
the symmetries considered in this paper, and the same
anomalies we find can presumably be diagnosed. However,
the two approaches are not equivalent. In particular, the

flux-fusion method is more general, as it can be applied
for discrete symmetries, e.g., G ¼ Zn ⋊ G0, as mentioned
below.
In this paper, we focused primarily on symmetries of the

form G ¼ Uð1Þ ×Gspace and G ¼ ½Uð1Þ ⋊ ZT
2 � ×Gspace,

where Gspace is a d ¼ 2 space group. The latter symmetry
is particularly relevant for systems of bosons. We did
not consider the very important class of symmetries
G ¼ Uð1Þ × ZT

2 ×Gspace, which are relevant for spin sys-
tems with continuous spin rotation symmetry. For example,
when Uð1Þ ⊂ SOð3Þ, these are the symmetry groups of
Heisenberg spin models. The reason for this omission is a
surprising finding that complicates application of our
anomaly test: For these symmetries, it is sometimes
impossible to gauge Zn ⊂ Uð1Þ without breaking
ZT

2 ×Gspace symmetry, even in strictly two dimensions
[40]. This can occur when some lattice sites transform in a
projective representation of the on-site Uð1Þ × ZT

2 ⊂ G
symmetry; for example, when Uð1Þ ⊂ SOð3Þ, this means
that there are S ¼ 1=2 or other half-odd-integer spins in the
system. Naively, it would appear that the anomaly test is
less useful for these symmetries, but, remarkably, it turns
out that this obstruction to gauging the symmetry makes the
anomaly test significantly more powerful. These results
will be presented in a forthcoming work [40].
More generally, to which symmetry groups does the

flux-fusion anomaly test apply? One point is that U(1)
symmetry is not required, and it is simple to generalize the
results of this paper to symmetries G ¼ Zn ⋊ G0 in a
straightforward manner. This works as long as n is even
(so that we can sensibly choose e to carry half charge ofZn)
and as long as the G0 symmetry constrains the Zn flux to
be a boson. We note that, if G ¼ Z2 ×G0, the Z2 flux is
always a boson, independent of G0 (see Sec. III A). In
principle, we can also consider G ¼ Go ⋊ G0, where Go is
some finite, on-site, unitary symmetry. In practice, in the
latter case, one generally obtains a non-Abelian gauged
SET phase, which can be expected to increase the complex-
ity of analysis required.
A related point is that the requirement that symmetry

fluxes are bosons is not fundamental but is rather imposed
because it simplifies the analysis. For on-site, unitary
symmetries that do not permute the anyons of the gauged
SET phase, we believe it likely that this requirement plays
no role and can simply be ignored. More generally, one
needs a description of the action of symmetry on non-
bosonic anyons, which is subtle and not yet fully under-
stood for crystalline symmetry [19,21,25,28]. However, we
expect that the necessary theory will become available with
further progress, in which case it can be applied to broaden
the applicability of the flux-fusion anomaly test.
It is also interesting to consider generalizing the flux-

fusion anomaly test to other topological orders. The basic
idea of the anomaly test is, given an action of symmetry
on the anyons of an ungauged SET phase, to determine
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whether this action can be extended consistently to sym-
metry fluxes. This idea applies more generally to SET
phases with topological orders and symmetries beyond
those considered here, although we do not expect our
detailed analysis to apply in general. For on-site, discrete,
unitary symmetries, the framework of a G-crossed tensor
category provides a comprehensive description of SET
phases [32] and a systematic means of detecting anomalies
[32,38]. For symmetries where both approaches apply, the
flux-fusion anomaly test as developed in this paper is
certainly less general than the G-crossed tensor category
approach, but it has the advantage of identifying some
anomalies in a physically intuitive way. Moreover, without
the need to introduce fluxes for all symmetries, the flux-
fusion approach can be easily applied to continuous,
antiunitary, and spatial symmetry, as illustrated by the
examples discussed in this paper.
The examples studied in this paper can be analyzed

without resorting to G-crossed tensor category theory
because of the simplicity of the topological orders involved.
The magnetic sectors of the Z2 topological order and the
gaugedZ2n theory have trivial F and Rmatrices. Therefore,
when analyzing their transformation under symmetry, we
do not need to worry about the “gauge transformation” on
fusion spaces, as discussed in Eq. (58) of Ref. [32]. This
greatly simplifies the mathematical structure involved, and
the flux-fusion procedure as discussed in this paper can be
implemented.
General SET phases can have nontrivial F and R

matrices, and it is important to take gauge transformations
into account when analyzing symmetry action. To avoid
this complexity, we can restrict ourselves to the case
where the symmetry flux Ωh (for h ∈ G) remains invariant
under the symmetry action of g ∈ G. In other words, we
require that (1) h commutes with g, so that Ωh remains the
same symmetry flux, and also that (2) Ωh remains in the
same topological sector and is not attached to an anyon
under the action of g. The second condition can be
violated when g and h act noncommutatively on the
anyons. For example, in the projective semion example
of Ref. [38], with G ¼ Z2 × Z2 symmetry, the two Z2

symmetries anticommute with each other on the semion,
and the flux of one Z2 is glued to a semion under the
action of the other Z2. The F and Rmatrices are nontrivial
in this example, so we do not expect a straightforward
generalization of the flux-fusion method described in this
paper to apply.
When the above two conditions are satisfied, symmetry g

has a local action on Ωh, and we can talk about the
symmetry fractionalization of g on Ωh without worrying
about gauge transformations. Here, we remark that g and h
can be the same type of symmetry operation. More
precisely, in the main text, we only discussed cases where
g and h lie in two different factors of a semidirect product.
However, this is not necessary, and the flux-fusion idea can

apply even when g ¼ h. We discuss such an example in a
study of d ¼ 3 SET phases [66].
Beyond the anomaly test itself, one natural direction

for further studies is to develop an understanding of the
physical properties of the bosonic TCIs we have identi-
fied. In light of prior work on bosonic topological
insulators with U(1) and time-reversal symmetry [35],
we expect that the surface dual vortex field theories
discussed in Sec. VII will be particularly useful in this
regard. Along the same lines, it will be interesting to
look for simple, physically reasonable models realizing
bosonic TCIs.
We also hope that our results on bosonic TCIs will be

useful as a stepping stone to identify and perhaps classify
TCIs of interacting electrons. As has been established for
electronic topological insulators [with U(1) and time-
reversal symmetry], there are nontrivial electronic topo-
logical phases that can be understood by forming
composite bosonic particles out of electrons (Cooper
pairs, or spins) and putting these objects into a bosonic
SPT phase [67]. This is an important part of the classi-
fication of interacting electronic topological insulators
given in Ref. [67].
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Note added.—Recently, some closely related work has
appeared. In particular, Ref. [68] extended the flux-fusion
anomaly test to Z2 spin liquids with SOð3Þ spin rotation
symmetry and showed that the vison symmetry fraction-
alization in S ¼ 1=2 Heisenberg models on square and
kagome lattices is completely fixed. References [69,70]
adapted and used flux fusion to constrain the symmetry
fractionalization of the chiral spin liquid phase of the
kagome Heisenberg model. Another related development is
the work of Ref. [63], which presented an approach to
classify SPT phases protected by point group symmetry
based on a kind of dimensional reduction; we anticipate
that this approach can be generalized to provide an alternate
characterization and more complete classification of the
bosonic TCIs identified here.
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APPENDIX A: PROCEDURE TO GAUGE
Zn ⊂ Uð1Þ SYMMETRY

Here, we consider symmetry groups G ¼ ½Uð1Þ ⋊ ZT
2 �×

Gs, where Gs is a d ¼ 2 space group, and describe an
explicit procedure to gauge the Zn ⊂ Uð1Þ symmetry. In
particular, we verify that this can be done while preserving
G0 ¼ ZT

2 ×Gs symmetry. We also discuss the case of
G ¼ Uð1Þ × ZT

2 , giving a procedure to gauge Zn ⊂ Uð1Þ
while preserving ZT

2 . While these conclusions may appear
obvious, they do not hold, in general, for other symmetry
groups [in particular, for G ¼ Uð1Þ × ZT

2 ×Gs]. This has
interesting consequences that will be explored in a future
publication [40].
First, we discuss the case G ¼ ½Uð1Þ ⋊ ZT

2 � × Gs. We
consider a bosonic model defined on a lattice with sites r,
which is invariant under the space-group symmetry Gs.
Each g ∈ Gs acts on lattice sites, which we write formally
as r ↦ gr. There is a Hilbert spaceHr associated with each
lattice site, and the full Hilbert space is the tensor pro-
duct H ¼ ⊗r Hr. Because the U(1) symmetry is on site,
for each lattice site r, there is a charge density operator Nr
with integer eigenvalues. Because time reversal forms a
semidirect product with U(1), we have

T NrT −1 ¼ Nr: ðA1Þ

In general, we might wish to allow for a shift Nr →
Nr þ δNr under time reversal. But, since we assume the
ground state is invariant under T , we must have hNri ¼
hNri þ δNr and δNr ¼ 0. Moreover, the space-group
operation g ∈ Gs is represented by Ug and acts on the
charge density by

UgNrU−1
g ¼ Ngr: ðA2Þ

To gauge the Zn ⊂ Uð1Þ symmetry, we introduce Zn
electric field and vector potential operators that reside on
oriented links l ¼ ðr; r0Þ, where each link joins a pair of
lattice sites r and r0. The set of links is chosen to make the
lattice into a connected graph that is invariant under space-
group symmetry; for example, choosing links to join
nearest-neighbor sites is sufficient in many cases.
The electric field el and vector potential al act on the

Hilbert space of link l ¼ ðr; r0Þ, which we choose to be n
dimensional with basis fj0i; j1i;…; jn − 1ig. The link
operators are defined by

aljki ¼ exp

�
2πik
n

�
jki; ðA3Þ

eljki ¼ jðkþ 1Þmod ni: ðA4Þ

These lattice vector fields are oriented so that if l̄ ¼ ðr0; rÞ
is l with reversed orientation, then el̄ ¼ e†l and al̄ ¼ a†l.

We impose the Gauss law constraint

Y
l∼r

el ¼ exp

�
2πi
n

Nr

�
; ðA5Þ

where the product is over those links l that join r to other
sites, with orientation pointing away from r. Choosing
time-reversal and space-group operations g ∈ Gs to act on
err0 by

T err0T −1 ¼ e†rr0 ; ðA6Þ

Ugerr0U−1
g ¼ egr;gr0 ; ðA7Þ

we see that the Gauss law constraint respects G0 symmetry.
In addition, the Hamiltonian has to be made gauge invariant
via the minimal coupling prescription, which can be done
while respecting G0.
Now, we consider the case G ¼ Uð1Þ × ZT

2 . Again, we
have a lattice with sites r; because there is no space-group
symmetry, the lattice does not have to satisfy any symmetry
conditions. Each site again has a charge density operatorNr
with integer eigenvalues. Time reversal now acts by

T NrT −1 ¼ δNr − Nr; ðA8Þ

where δNr must be an integer. By making constant integer
shifts of Nr, we may choose δNr ¼ 0, 1. Next, by
combining pairs of sites together as needed, and making
further integer shifts of Nr, we can set δNr ¼ 0.
Introducing Zn electric fields and vector potentials as

above, and imposing the Gauss law Eq. (A5), we choose
time reversal to act on the electric field by

T err0T −1 ¼ err0 : ðA9Þ

With this choice, the Gauss law constraint respects ZT
2

symmetry, as desired.

APPENDIX B: CONDITIONS UNDER WHICH Ω
IS A BOSON, AND PERMUTATION OF ANYONS

IN THE GAUGED SET PHASE

Here, we show that theZn symmetry fluxΩ is a boson in
the gauged SET phase whenever time-reversal or reflection
symmetry is present. We also show that these operations
either map Ω ↦ Ω or Ω ↦ Ω2n−1, depending on whether
they commute with the U(1) symmetry.
The starting point for the analyses below are the fusion

rules and statistics of the gauged SET phase. According to
the discussion of Sec. III A, the fusion rules are

Qn ¼ 1; ðB1Þ

e2 ¼ Q; ðB2Þ
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m2 ¼ 1; ðB3Þ

Ωn ¼ mQk; ðB4Þ

and the statistics are specified by

θe ¼ θm ¼ 0; ðB5Þ

Θe;m ¼ π; ðB6Þ

θQ ¼ Θe;Q ¼ Θm;Q ¼ 0; ðB7Þ

ΘQ;Ω ¼ 2π

n
; ðB8Þ

Θe;Ω ¼ π

n
; ðB9Þ

Θm;Ω ¼ 0; ðB10Þ

θΩ ¼ πk
n2

: ðB11Þ

Here, 0 ≤ k < n is an even integer.
The statistics of the gauged SET phase must obey

certain conditions in the presence of time-reversal or
reflection symmetry. For ZT

2 time-reversal symmetry
generated by T , we write the action of T on some
anyon a in the gauged SET phase as T ⋆ a. The statistics
must satisfy

θT ⋆a ¼ −θa; ðB12Þ

ΘT ⋆a;T ⋆b ¼ −Θa;b: ðB13Þ

These relations hold because the time-reversed (clock-
wise) exchange process with time-reversed anyons must
give the same result as the ordinary exchange process
before time reversal.
Next, under ZP

2 reflection symmetry generated by P,
we denote the action of P on a by P ⋆ a. Equations (B12)
and (B13) again hold, simply replacing T by P. This is the
case because a counterclockwise exchange process is
mapped to a clockwise one under P.
We use these relations to show that Ω is a boson

whenever ZT
2 or ZP

2 symmetry is present. There are four
cases to consider, whereG contains a subgroup Uð1Þ × ZT

2 ,
Uð1Þ × ZP

2 , Uð1Þ ⋊ ZT
2 , or Uð1Þ ⋊ ZP

2 . We handle these
cases one by one:
Case 1.—G contains a subgroup Uð1Þ × ZT

2 .
Because T reverses the sign of U(1) charge, in the

gauged SET phase we have

T ⋆ Q ¼ Q̄ ¼ Qn−1: ðB14Þ

To determine the action of T on e andm, note that T leaves
these anyons invariant in the ungauged SET phase, but it
reverses their U(1) symmetry charges. The e sector of the
gauged SET phase consists of those e particles of the
ungauged SET phase whose U(1) charge modulo n is 1=2.
Similarly, the m sector in the gauged SET phase consists of
those m particles in the ungauged SET phase with the U(1)
charge 0mod n. Therefore, we have

T ⋆ e ¼ Q̄e; ðB15Þ

T ⋆ m ¼ m: ðB16Þ

Now, let Ω0 ≡ T ⋆ Ω. In general, we can write

Ω0 ¼ epΩq; ðB17Þ

for integers 0 ≤ p, q < 2n − 1 that we will determine. This
is a unique parametrization of all ð2nÞ2 anyons in the
gauged SET phase.
Using Eq. (B13),

0 ¼ Θm;Ω ¼ −Θm;Ω0 ¼ −pΘm;e ¼ −pπ: ðB18Þ

This implies that p is even, and letting ~p ¼ p=2, we have
Ω0 ¼ Q ~pΩq. Next, we apply Eq. (B13) again, this time to
the mutual statistics of e and Ω, to obtain

π

n
¼ Θe;Ω ¼ −ΘeQ̄;Ω0 ¼ −ΘeQn−1;Q ~pΩq ðB19Þ

¼ −
�
q
π

n
þ ðn − 1Þq 2π

n

�
ðB20Þ

¼ q
π

n
: ðB21Þ

This implies q ¼ 1, and so far we have shown
Ω0 ¼ Q ~pΩ.
Finally, we consider the self-statistics of Ω and apply

Eq. (B12), finding

πk
n2

¼ θΩ ¼ −θΩ0 ¼ −θQ ~pΩ ðB22Þ

¼ −θΩ − ~pΘQ;Ω ðB23Þ

¼ −
πk
n2

−
2π ~p
n

: ðB24Þ

This implies

2πk
n2

¼ −
2π ~p
n

; ðB25Þ

which has the unique solution k ¼ ~p ¼ 0.
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Therefore, we have shown that

T ⋆ Ω ¼ Ω: ðB26Þ

We also showed that k ¼ 0, so Ω is a boson (θΩ ¼ 0).
Case 2.—G contains a subgroup Uð1Þ × ZP

2 .
In this case, reflection does not act on U(1) charge, and

we have

P ⋆ Q ¼ Q; ðB27Þ

P ⋆ e ¼ e; ðB28Þ

P ⋆ m ¼ m: ðB29Þ

As above, we let Ω0 ≡ T ⋆ Ω and write

Ω0 ¼ epΩq; ðB30Þ

for integers 0 ≤ p; q < 2n − 1 to be determined.
We follow the same strategy as in case 1, repeatedly

applying Eqs. (B13) and (B12) to determine Ω0. First, we
have

0 ¼ Θm;Ω ¼ −Θm;Ω0 ¼ −pπ; ðB31Þ

which implies p is even. We define ~p ¼ p=2, so that
Ω0 ¼ Q ~pΩq. Then,

π

n
¼ Θe;Ω ¼ −Θe;Ω0 ðB32Þ

¼ −qΘe;Ω ¼ −q
π

n
: ðB33Þ

This implies that q ¼ 2n − 1, and so far we have shown
Ω0 ¼ Q ~pΩ2n−1. Finally,

πk
n2

¼ θΩ ¼ −θΩ0 ðB34Þ

¼ −½θΩ2n−1 þ ΘQ ~p;Ω2n−1 � ðB35Þ

¼ −
�
ð2n − 1Þ2 πk

n2
þ ð2n − 1Þ ~p 2π

n

�
: ðB36Þ

Rearranging terms and dropping those that vanish modulo
2π, this equation is equivalent to

2πk
n2

¼ 2π

n
ð ~pþ 2kÞ; ðB37Þ

which has the unique solution k ¼ ~p ¼ 0.
Therefore, we have shown that

P ⋆ Ω ¼ Ω2n−1: ðB38Þ

We also showed that k ¼ 0, so Ω is a boson (θΩ ¼ 0).

Case 3.—G contains a subgroup Uð1Þ ⋊ ZT
2 .

Here, time reversal does not change the U(1) charge, so
we have

T ⋆ Q ¼ Q; ðB39Þ

T ⋆ e ¼ e; ðB40Þ
T ⋆ m ¼ m: ðB41Þ

These equations are identical to those for P in case 2.
Because the symmetry conditions on statistics are the
same for T and P symmetry, the analysis proceeds exactly
as in case 2, and we have T ⋆ Ω ¼ Ω2n−1 and θΩ ¼ 0.
Case 4.—G contains a subgroup Uð1Þ ⋊ ZP

2 .
In this case, P reverses U(1) charge, so as in case 1,

we have

P ⋆ Q ¼ Q̄; ðB42Þ
P ⋆ e ¼ Q̄e; ðB43Þ

P ⋆ m ¼ m: ðB44Þ

Because these equations are identical to those in case 1,
the analysis proceeds identically so that P ⋆ Ω ¼ Ω
and θΩ ¼ 0.

APPENDIX C: SPECIFYING
FRACTIONALIZATION CLASSES IN TERMS OF
U(1) AND G0 FRACTIONALIZATION CLASSES

By definition, the fractionalization class of e or m is an
element ½ω� ∈ H2ðG;Z2Þ. In this paper, we consider
G ¼ Uð1Þ ⋊ G0, and we specify the fractionalization class
by two pieces of information: (1) whether the particle carries
integer or half-odd integer U(1) charge, and (2) an element
½ω0� ∈ H2ðG0;Z2Þ. Here, we show that all fractionalization
classes can be uniquely specified in this manner.
We observe that ½ω� ∈ H2ðG;Z2Þ uniquely determines

elements of H2(Uð1Þ;Z2) [corresponding to the U(1)
charge modulo 1] and H2ðG0;Z2Þ. These elements are
obtained by restricting the arguments of the factor set
ωðg1; g2Þ to the U(1) and G0 subgroups, respectively.
Therefore, we need only show that no additional informa-
tion is needed to uniquely specify [ω].
We consider a projective representation of G, where

ϕ ∈ Uð1Þ is represented by eiϕQ and g ∈ G0 is represented
by ΓðgÞ. Letting σq ¼ 1 (σq ¼ −1) correspond to integer
(half-odd-integer) U(1) charge, we have

e2πiQ ¼ σq; ðC1Þ

Γðg1ÞΓðg2Þ ¼ ω0ðg1; g2ÞΓðg1g2Þ: ðC2Þ

So far, we have only specified σq and ½ω0� ∈ H2ðG0;Z2Þ.
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To complete the description of the projective represen-
tation, we need to describe the multiplication of an element
of U(1) with an element of G0. First, fix g ∈ G0, and
suppose that ϕg ¼ gϕ for all ϕ ∈ Uð1Þ. Then, in the
projective representation,

eiϕQΓðgÞe−iϕQ ¼ fgðϕÞΓðgÞ; ðC3Þ

where fgðϕÞ ∈ f�1g. Setting ϕ ¼ 0, clearly fgð0Þ ¼ 1.
Moreover, the left-hand side is a continuous function of ϕ,
so fgðϕÞ must also be continuous, and fgðϕÞ ¼ 1 for all ϕ.
The other possibility we need to consider is a fixed

g ∈ G0, where ϕg ¼ gð−ϕÞ for all ϕ ∈ Uð1Þ. In the
projective representation,

eiϕQΓðgÞeiϕQ ¼ fgðϕÞΓðgÞ: ðC4Þ

Here, the same arguments show that fgðϕÞ ¼ 1.
We have thus shown that the fractionalization class

½ω� ∈ H2ðG;Z2Þ is completely specified by σq and
½ω0� ∈ H2ðG0;Z2Þ.

APPENDIX D: CHARACTERIZATION
OF ANOMALY-NEGATIVE

FRACTIONALIZATION PATTERNS

We recall that, by definition, the symmetry fractionali-
zation pattern eC½ωe�m0½ωm� is anomaly negative if and
only if, for each even n ≥ 2, there exists a t-twisted Zn
factor set ϕnðg1; g2Þ solving the equation

ωmðg1; g2Þ ¼ ½ϕnðg1; g2Þ�n; ðD1Þ

where g1, g2 ∈ G0. In this section, we prove a simple
characterization, stated as Theorem 1 in Sec. III B, of which
m particle fractionalization classes ½ωm�Z2

give rise to
anomaly-negative fractionalization patterns.
It will be convenient to relate the Z2 and Z2n factor sets

ωm and ϕn to t-twisted U(1) factor sets. To proceed, let k
be a positive integer. Z2

t ðG0;Z2kÞ is the Abelian group
of t-twisted Z2k 2-cocycles (factor sets) for the group G0.
B2
t ðG0;Z2kÞ is the corresponding Abelian group of 2-

coboundaries, which are factor sets of the form
ωðg1; g2Þ ¼ λðg1Þ½λðg2Þ�tðg1Þ½λðg1g2Þ�−1, for λðgÞ ∈ Z2k.
The second cohomology group is defined by
H2

t ðG0;Z2kÞ ¼ Z2
t ðG0;Z2kÞ=B2

t ðG0;Z2kÞ. There is a pro-
jection homomorphism π2k∶Z2

t ðG0;Z2kÞ → H2ðG0;Z2kÞ.
Note that if k ¼ 1, we can drop the t subscripts everywhere
since in that case the twisting by tðgÞ is trivial. The same
definitions hold for U(1) coefficients, in which case we
call the projection homomorphism πUð1Þ∶Z2

t (G0;Uð1Þ) →
H2

t (G0;Uð1Þ). There is an obvious inclusion map
i2k∶Z2

t ðG0;Z2kÞ → Z2
t (G0;Uð1Þ), which just expresses

the fact that ω ∈ Z2
t ðG0;Z2kÞ can also be viewed as a t-

twisted U(1) factor set.
For each k, we would like to define a homomorphism

ρ2k∶H2
t ðG0;Z2kÞ → H2

t (G0;Uð1Þ) so that the following
diagram is commutative:

ðD2Þ

In fact, we will see that ρ2k is the unique homomorphism
making this diagram commutative.
Why do we want to define ρ2k? Given ω ∈ Z2

t ðG0;Z2kÞ,
we can define a U(1) fractionalization class by
½ω�Uð1Þ ¼ πUð1Þ(i2kðωÞ) ∈ H2

t (G0;Uð1Þ). If we can find a
unique ρ2k, commutativity of the diagram tells us that
½ω�Uð1Þ depends, in a unique way, only on the Z2k

fractionalization class ½ω�Z2k
¼ π2kðωÞ ∈ H2

t ðG0;Z2kÞ, by
½ω�Uð1Þ ¼ ρ2kð½ω�Z2k

Þ. Therefore, it is meaningful to talk
about ½ω�Uð1Þ as a function of ½ω�Z2k

.
We define ρ2k as follows. Pick some element c ∈

H2
t ðG0;Z2kÞ. Choose a representative ω ∈ Z2

t ðG0;Z2kÞ so
that c ¼ π2kðωÞ. Then, define ρ2kðcÞ ¼ πUð1Þ(i2kðωÞ).
First, we have to check that ρ2k is well defined, which

means it must be independent of the particular represen-
tative ω. It is easy to see that ω, ω0 ∈ Z2

t ðG0;Z2kÞ,
belonging to the same cohomology class, also belong to
the same cohomology class after mapping under i2k to
Z2
t (G0;Uð1Þ), so ρ2k is well defined. Next, we check

that ρ2k is a homomorphism. Let c, c0 ∈ H2
t ðG0;Z2kÞ,

with corresponding representatives ω, ω0. We have
cc0 ¼ π2kðωÞπ2kðω0Þ ¼ π2kðωω0Þ, so ωω0 is a representa-
tive for cc0. Then,

ρ2kðcc0Þ ¼ πUð1Þ(i2kðωω0Þ) ¼ ρ2kðcÞρ2kðc0Þ: ðD3Þ

Finally, we check that ρ2k is the unique homomorphism
making the diagram commutative. Suppose ~ρ2k also makes
the diagram commutative, but for some c ∈ H2

t ðG0;Z2kÞ,
we have ρ2kðcÞ ≠ ~ρ2kðcÞ. Let ω ∈ Z2

t ðG0;Z2kÞ be a
representative for c; then it follows that πUð1Þ(i2kðωÞ) ¼
ρ2k(π2kðωÞ) ¼ ~ρ2k(π2kðωÞ), which implies ρ2kðcÞ ¼
~ρ2kðcÞ, a contradiction.
Now we return to Eq. (D1). Viewing ωm and ϕn as U(1)

factor sets, and applying πUð1Þ to both sides of the equation,
we have

½ωm�Uð1Þ ¼ ð½ϕn�Uð1ÞÞn: ðD4Þ

Therefore, another way of putting the anomaly test is that,
in order for ½ωm�Z2

to be anomaly negative, ½ωm�Uð1Þ must
have an nth root in H2

t (G0;Uð1Þ) for all even n ≥ 2.
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Now, we can prove the desired characterization of
anomaly-negative ½ωm�Z2

. We assume that H2
t (G0;Uð1Þ) ¼

Uð1Þk × A, where A is a finite product of finite
cyclic factors. This assumption is true in all the
examples we studied, and we believe it is likely to hold,
in general.
Proposition 1. Suppose that ½ωm�Uð1Þ lies in the con-

nected component of H2
t (G0;Uð1Þ) that contains the

identity element. Suppose also that H2
t (G0;Uð1Þ) ¼

Uð1Þk × A, where A is a finite product of finite cyclic
factors. Then, ½ωm�Z2

is anomaly negative.
Proof. It follows from the assumptions that ½ωm�Uð1Þ

has an nth root in H2
t (G0;Uð1Þ) for any n > 0. This

holds by the assumption that H2
t (G0;Uð1Þ) is a product

of U(1) and finite cyclic factors, so the connected
component containing 1 is just a product of U(1)’s.
Then, we have

ωmðg1; g2Þ ¼ λ−1ðg1Þ½λðg2Þ�−tðg1Þλðg1g2Þ(Ωnðg1; g2Þ)n;
ðD5Þ

where Ωn ∈ Z2
t (G0;Uð1Þ) and λðgÞ ∈ Uð1Þ.

We choose 0 ≤ θðgÞ < 2π so that λðgÞ ¼ eiθðgÞ. Then, we
define αðgÞ ¼ eiθðgÞ=n, and we choose

ϕnðg1; g2Þ ¼ α−1ðg1Þ½αðg2Þ�−tðg1Þαðg1g2ÞΩnðg1; g2Þ: ðD6Þ

This is, by construction, an nth root of ωmðg1; g2Þ, so
ϕnðg1; g2Þ ∈ Z2n. To show ϕn ∈ Z2

t ðG0;Z2nÞ, we note that
ϕnðg1; g2Þ clearly satisfies the relevant associativity con-
dition. For the given ωm, we have thus constructed a
solution to Eq. (56) for each even n > 0. ▪
The converse of Proposition 1 is also true:
Proposition 2. If ½ωm�Z2

is anomaly negative, and
if H2

t (G0;Uð1Þ) ¼ Uð1Þk × A, where A is a finite product
of finite cyclic factors, then ½ωm�Uð1Þ lies in the same
connected component of H2

t (G0;Uð1Þ) that contains the
identity element.
Proof. Under the assumption, Eq. (D4) holds; that is,

½ωm�Uð1Þ has an nth root inH2
t (G0;Uð1Þ) for all even n > 0.

We write ½ωm�Uð1Þ ¼ ðα; βÞ, where α ∈ Uð1Þk and β ∈ A.
We will show that β ¼ 1, which implies ½ωm�Uð1Þ lies in the
connected component containing the identity.
Write A ¼ Zp1

× � � � × ZpN
and β ¼ ðb1;…; bNÞ.

Observe that ½ωm�2Uð1Þ ¼ 1, which implies β2 ¼ 1. If pi

is odd, β2 ¼ 1 implies bi ¼ 1. Now consider pi even. Then,
by assumption, there exists a pith root of β, β ¼ γpi for
γ ∈ A. This implies bi ¼ cpi for some c ∈ Zpi

, but for any
c ∈ Zpi

, bi ¼ cpi ¼ 1. Therefore, β ¼ 1. ▪
Taking these two propositions together, we have proved

Theorem 1.

APPENDIX E: COMPUTING SECOND
COHOMOLOGY GROUPS USING
GENERATORS AND RELATIONS

Here, we provide some details to justify and explain the
procedure used for computing second cohomology groups
in Sec. IV and Appendix G. We focus on the t-twisted Z2n

cohomology group H2
t ðG0;Z2nÞ. This includes H2ðG0;Z2Þ

as a special case (setting n ¼ 1), and the treatment for
H2

t (G0;Uð1Þ) proceeds identically, simply by replacing
Z2n with U(1) throughout the discussion.
The group H2

t ðG0;Z2nÞ can be computed by finding, and
distinguishing, all possible equivalence classes of t-twisted
Z2n factor sets ωðg1; g2Þ, for g1, g2 ∈ G0. Recall that such a
factor set is any Z2n-valued function satisfying the twisted
associativity condition, Eq. (52), and that we are referring
to equivalence classes under projective transformations
defined in Eq. (54).
Rather than directly studying factor sets, we can equiv-

alently study t-twisted Z2n group extensions of G0. Such a
group extension is a group E for whichZ2n ⊂ E is a normal
subgroup, satisfying E=Z2n ¼ G0. An arbitrary element
e ∈ E can be written e ¼ auðgÞ, where a ∈ Z2n, and uðgÞ
is chosen to satisfy π½uðgÞ� ¼ g, where π∶E → G0 is the
projection map associated with the quotient of E by Z2n.
We refer to uðgÞ as a representative of g in E. We require the
additional property

uðgÞa ¼ atðgÞuðgÞ; ðE1Þ

where t∶G0 → Z2 is the twisting homomorphism discussed
in Sec. III B. We note that the representative uðgÞ is
arbitrary up to projective transformations

uðgÞ → λ−1ðgÞuðgÞ; ðE2Þ

where λðgÞ ∈ Z2n.
It follows from the definition that

uðg1Þuðg2Þ ¼ ωðg1; g2Þuðg1g2Þ; ðE3Þ

where ωðg1; g2Þ ∈ Z2n. Associative multiplication of the
uðgÞ’s, together with Eq. (E1), implies that ω satisfies
Eq. (52) and is thus a t-twisted Z2n factor set. In addition,
under projective transformations, Eq. (E2), the factor
set transforms as in Eq. (54). So we have shown that a
group extension is associated with a unique equivalence
class ½ω� ∈ H2

t ðG0;Z2nÞ.
Now, we show that, given a factor set ωðg1; g2Þ, we can

construct a corresponding group extension. We consider
a set E whose elements are ordered pairs ða; gÞ, where
a ∈ Z2n and g ∈ G0. We make this set into a group by
defining the multiplication operation

ða1; g1Þ × ða2; g2Þ ¼ ða1atðg1Þ2 ωðg1; g2Þ; g1g2Þ: ðE4Þ
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With this multiplication, it can be checked that E is a group,
and indeed a t-twisted Z2n group extension [71]. Choosing
uðgÞ ¼ ð1; gÞ, we have uðg1Þuðg2Þ ¼ ωðg1; g2Þuðg1g2Þ, as
desired.
It follows from the above discussion that, if we would

like to construct all possible factor sets (or equivalence
classes thereof), it is enough to construct all possible group
extensions. We now describe, in general terms, how to do
this for a group G0 presented in terms of generators and
relations. This procedure is worked out in Sec. IV and
Appendix G for specific examples. We note that in those
sections, to simplify the discussion in the main text, we
slightly abuse terminology and refer to projective repre-
sentations, which are group extensions with additional
vector space structure. This additional structure is not used
in the cohomology group calculations, which can be
viewed more simply as calculations with group extensions.
To begin, we describe the presentation ofG0 in terms of a

finite number of generators hi ∈ G0 (i ¼ 1; 2;…). Note that
our goal here is not to define G0 abstractly in terms of
generators and relations but rather to give a description of
G0 in this manner, assuming that G0 is already defined by
some other means. For every g ∈ G0, we choose a fixed
canonical form in terms of the generators, for example,
g1 ¼ h1h23. In general, different choices of canonical form
are possible for each g, and fixing the canonical form
should be viewed as an arbitrary choice. Fortunately, while
we use the canonical form to justify our calculation
procedure, it is not necessary to make a specific choice
in the explicit calculations. It is important to note that h−1i is
not automatically included as a generator, but sometimes it
may need to be included so that all g ∈ G0 can be written as
a product of generators.
The generators obey a finite number of relations, for

example,

h21 ¼ 1; ðE5Þ

ðh1h2Þ4 ¼ 1; ðE6Þ

and so on. For the present purposes of general discussion,
we work in a convention where the right-hand side of each
relation is the unit element; however, this is not always
convenient in practice. The relations must be chosen so
that, given any g1, g2 ∈ G0 expressed in canonical form, the
relations alone can be used to bring the product g1g2 to
canonical form.
Now suppose E is a t-twisted Z2n group extension of G0.

For each g ∈ G0, by making suitable projective trans-
formations, we can choose a canonical form for uðgÞ,
which is the product of uðhiÞ corresponding to the
canonical form of g. For example, if g1 ¼ h1h23, we choose
uðg1Þ ¼ uðh1Þ½uðh3Þ�2, with a trivial Z2n coefficient. It is
always possible to make such a choice, by making
projective transformations uðgÞ → λ−1ðgÞuðgÞ, where

λðhiÞ ¼ 1. We also choose uð1Þ ¼ 1. In addition, if hi
and h−1i are both generators, we choose uðh−1i Þ ¼ ½uðhiÞ�−1,
which can be accomplished via a projective transformation
λðgÞ, where λðgÞ ¼ 1 if g ≠ h−1i .
The relations now become relations for the uðhiÞ, with

the right-hand side modified to be an arbitrary element of
Z2n, for example,

½uðh1Þ�2 ¼ α1; ðE7Þ

½uðh1Þuðh2Þ�4 ¼ α2; ðE8Þ

for α1, α2 ∈ Z2n. We note that, because of the special
choice of uðh−1i Þ when both hi and h−1i are generators, we
automatically have αi ¼ 1 for the relation hi · h−1i ¼ 1.
These relations allow us to bring any product uðg1Þuðg2Þ
into canonical form uðg1g2Þ, up to a Z2n phase factor
determined by the fαig. This phase factor is nothing but
ωðg1; g2Þ ∈ Z2n and uðg1Þuðg2Þ ¼ ωðg1; g2Þuðg1g2Þ. The
set fαig thus determines ωðg1; g2Þ. We note that the sets
fαig can be multiplied according to

fαig × fβig ¼ fαiβig; ðE9Þ

which corresponds to the multiplication of factor sets.
It is clear that any extension E can be described by a

corresponding set fαig. (Note that the converse of this
statement is not true.) This fact allows us to find all
equivalence classes ½ω� ∈ H2

t ðG0;Z2nÞ via the following
procedure. First, we consider the αi to be free parameters.
We then exploit the remaining freedom to make projective
transformations, where λðgÞ ≠ 1 only if g is a generator,
to “fix a gauge” for the αi. After gauge fixing, distinct
sets fαig are inequivalent under projective transformations.
Next, we need to determine which sets fαig are consistent,
giving rise to an extension E (or, equivalently, to a factor set
ω). Some sets fαig can be ruled out by algebraic manip-
ulations of the relations; for example, one can conjugate
various relations by one of the generators, which often puts
constraints on some of the αi. After ruling out some sets
fαig in this manner, one can tentatively conclude that the
remaining gauge-fixed sets fαig correspond to elements of
H2

t ðG0;Z2nÞ. This not only gives a computation of the
group H2

t ðG0;Z2nÞ but also an explicit parametrization in
terms of gauge-fixed sets fαig, with the group multiplica-
tion given by Eq. (E9).
To verify this tentative answer for H2

t ðG0;Z2nÞ, one
needs to show that each fαig in fact gives rise to a factor
set. It is enough to do this for sets fαig that generate
H2

t ðG0;Z2nÞ. In each case, we can verify the existence of
the corresponding factor set by, for example, exhibiting a
projective representation for which the relations realize the
set fαig.
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APPENDIX F: COUPLED-LAYER
CONSTRUCTION

The fact that all symmetry fractionalization patterns are
possible on the surface of some d ¼ 3 SPT phase (which
may be the trivial SPT phase) plays an important role in the
discussion of this paper. Here, we establish this fact using a
simple generalization of the coupled-layer construction of
Ref. [37]; the discussion in the first part of this appendix
closely follows Sec. IV of that work.
We consider a symmetry group G and a fractionalization

pattern e½ωe�m½ωm� (perhaps anomalous) for a d ¼ 2

state with Z2 topological order. Here, ½ωe�Z2
, ½ωm�Z2

∈
H2ðG;Z2Þ are the fractionalization classes of e and m
particles, respectively. There are no restrictions on ½ωe�Z2

and ½ωm�Z2
; that is, ð½ωe�Z2

; ½ωm�Z2
Þ is an arbitrary pair of

elements of H2ðG;Z2Þ.
We build a d ¼ 3 system as a stack of d ¼ 2 layers of

SET phases with Z2 topological order, alternating between
layers where we label the two bosonic anyons as Ei,mi, and
layers where they are labeled ei,Mi, as shown in Fig. 3. We
choose the Ei to have fractionalization class ½ωe�Z2

, and the
Mi to have fractionalization class ½ωm�Z2

. The ei and mi

have a trivial fractionalization class. We argue below that
such layers can indeed be realized strictly in d ¼ 2.
We assume that we have a total of N layers with N

even, and we condense the composite particles Eieiþ1Eiþ2

(for i ¼ 1; 3;…; N − 3) and Mimiþ1Miþ2 (for i ¼
2; 4;…; N − 2). These particles are bosons with trivial

mutual statistics, so they can indeed be condensed simul-
taneously. Moreover, the fractionalization classes of these
particles are trivial, so they can be condensed without
breaking symmetry.
In the state obtained upon condensation, all anyon

excitations in the bulk are either confined or condensed.
Since the symmetry is not broken by the condensation, the
resulting state is thus a d ¼ 3 SPT phase, which may be the
trivial SPT phase. At the i ¼ 1 surface, the particles E1 and
m1M2 remain deconfined and have fractionalization classes
½ωe�Z2

and ½ωm�Z2
, respectively. These are the quasiparticles

of the desired surface SET phase with Z2 topological order
and fractionalization pattern e½ωe�m½ωm�. The same holds
at the i ¼ N surface, for the particles EN−1eN and MN .
To conclude the discussion, we need to verify that

the layers in our construction are allowed strictly in
d ¼ 2. Equivalently, we need to argue that the fractionali-
zation pattern e½ωe�m0 is nonanomalous for arbitrary
½ωe�Z2

∈ H2ðG;Z2Þ. To do this, we construct a Z2 gauge
theory where the matter field carrying Z2 gauge charge
transforms with fractionalization class ½ωe�Z2

, and we show
that this gauge theory can arise as a low-energy theory for a
spin model.
The Z2 gauge charge is carried by a multicomponent

boson field b†rα, where r labels the sites of a lattice invariant
under the symmetry, and α labels the components. We take
the symmetry operation g ∈ G to act on the boson field by

g∶b†rα ↦ ΓðgÞαβb†gr;β: ðF1Þ

Here, the matrices ΓðgÞ are chosen to form a projective
representation of G whose factor set belongs to the desired
fractionalization class ½ωe�Z2

.
We choose a set L of lattice links l ¼ ðr; r0Þ that make

the lattice into a connected graph respecting the symmetry,
and we introduce a Z2 gauge field defined on links l ∈ L.
On each link l ∈ L, we introduce a two-dimensional
Hilbert space, acted on by the Z2 vector potential σzl
and the Z2 electric field σxl. These operators can be thought
of as 2 × 2 Pauli matrices. Apart from the action of space-
group operations on links, symmetry acts trivially on these
fields, that is

g∶σx;zl ↦ σx;zgl : ðF2Þ

The Hamiltonian takes the form

H ¼ −h
X
l∈L

σxl − K
X
p

Y
l∈p

σzl þ u
X
r

b†rαbrα; ðF3Þ

where h, K, u > 0, and the second sum is over a set of
elementary plaquettes p of the lattice. We may add addi-
tional short-ranged terms consistent with symmetry, but we
will not need to do so for the present discussion. We also

1

2

3

4

5

6

E m

e M

E m

e M

E m

e M

FIG. 3. Coupled-layer construction. Each layer is a SET phase
with Z2 topological order. E and M particles transform non-
trivially under symmetry G, while e and m transform trivially.
Composite particles indicated by ovals are condensed to obtain a
d ¼ 3 SPT phase (which may be the trivial SPT phase). The
particles in dashed boxes remain deconfined and uncondensed,
and give rise to surface SET phases at the top and bottom
surfaces. By choosing the fractionalization classes of E and M,
surface SET phases with any desired symmetry fractionalization
pattern can be realized by this construction.
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have to specify the Gauss law constraint, which we take
to be

Y
r0∼r

σxrr0 ¼ ð−1Þb†rαbrα ; ðF4Þ

where the product is over those sites r0 joined to r by
some link ðr; r0Þ ∈ L.
We consider two limits of the Hamiltonian. First, when

h ¼ 0, the Hamiltonian is exactly solvable, and it describes
a Z2 gauge theory in its deconfined phase, with gapped
bosonic matter. The e particles, which are simply the b†rα
bosons, have fractionalization class ½ωe�Z2

. To see that the
m particles have trivial fractionalization class, we note that
we can integrate out the bosonic matter in the limit where u
is large, to obtain a pure Z2 gauge theory with gauge
constraint

Q
r0∼rσ

x
rr0 ¼ 1. Because there is no background

Z2 gauge charge, symmetry acts trivially on them particles,
and the m-particle fractionalization class is trivial.
Therefore, this gauge theory indeed realizes the e½ωe�m0
fractionalization pattern.
We also consider the limit h ≫ u, K, which is a

confining limit for the Z2 gauge field. In this limit, we
may put σxl ¼ 1, and the gauge constraint becomes

ð−1Þb†rαbrα ¼ 1: ðF5Þ

This constrains the number of bosons to be even on each
lattice site and defines the Hilbert space for a bosonic
model, for which the Hilbert space is a product of site
Hilbert spaces. Because all operators acting within this
Hilbert space add or remove even numbers of bosons, such
operators transform linearly underG, which is an important
requirement for any physical model with G symmetry. We
thus recover a sensible spin model in the confining limit of
the gauge theory, and, therefore, the gauge theory can arise
as a low-energy effective theory of such a spin model. We
then expect that the deconfined phase with an e½ωe�m0
fractionalization pattern can occur in this spin model, albeit
for some unknown and possibly complicated Hamiltonian.
In certain special cases, it has also been shown via

construction of exactly solvable spin models (i.e., not
parton gauge theories) that all fractionalization patterns
e½ωe�m0 can occur strictly in d ¼ 2. This has been done for
arbitrary finite, unitary, on-site symmetry [72], and also for
p4mm square lattice space-group symmetry [65].

APPENDIX G: MORE EXAMPLES

1. G = ðUð1Þ ⋊ ZT
2 Þ × pm

This symmetry is closely related to the case G ¼
Uð1Þ × pm but now with time-reversal symmetry added.
The ZT

2 time reversal forms a semidirect product with U(1).
The generators are as in Sec. IV C, with the addition of the
time-reversal operation T , and we have the relations

TxTyT−1
x T−1

y ¼ 1; ðG1Þ

TyPxT−1
y Px ¼ 1; ðG2Þ

P2
x ¼ 1; ðG3Þ

TxPxTxPx ¼ 1; ðG4Þ

T 2 ¼ 1; ðG5Þ

T Tx ¼ TxT ; ðG6Þ

T Ty ¼ TyT ; ðG7Þ

T Px ¼ PxT : ðG8Þ

The m symmetry fractionalization is specified by

Tm
x Tm

y Tm−1
x Tm−1

y ¼ σmtxty; ðG9Þ

Tm
y Pm

x Tm−1
y Pm

x ¼ σmtypx; ðG10Þ

ðPm
x Þ2 ¼ σmpx; ðG11Þ

Tm
x Pm

x Tm
x Pm

x ¼ σmtxpx; ðG12Þ

ðT mÞ2 ¼ σmT ; ðG13Þ

T mTm
x ¼ σmTtxT

m
x T m; ðG14Þ

T mTm
y ¼ σmTtyT

m
y T m; ðG15Þ

T mPm
x ¼ σmTpxP

m
x T m; ðG16Þ

where the σm’s take values in Z2. All the σm’s are invariant
under projective transformations of the generators, so we
tentatively conclude that ½ωm�Z2

∈ H2ðG0;Z2Þ ¼ ðZ2Þ8. To
be sure this is correct, we need to show that each of the
possible 28 choices of the σm’s can actually be realized by a
corresponding factor set. It is enough to give a set of
projective representations whose cohomology classes gen-
erate H2ðG0;Z2Þ; this is done in Table II.
Next, we need to compute H2

t (G0;Uð1Þ), noting that
tðPxÞ ¼ −1 and tðTxÞ ¼ tðTyÞ ¼ tðT Þ ¼ 1. Time reversal
acts trivially on the U(1) coefficients because T is anti-
unitary and T ⋆ Ω ¼ Ω2n−1; these two effects cancel out so
that tðT Þ ¼ 1. We start by specifying

Tt
xTt

yTt−1
x Tt−1

y ¼ αtxty; ðG17Þ

Tt
yPt

xTt−1
y Pt

x ¼ αtypx; ðG18Þ

ðPt
xÞ2 ¼ αpx; ðG19Þ
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Tt
xPt

xTt
xPt

x ¼ αtxpx; ðG20Þ

ðT tÞ2 ¼ αT; ðG21Þ

T tTt
x ¼ αTtxTt

xT t; ðG22Þ

T tTt
y ¼ αTtyTt

yT t; ðG23Þ

T tPt
x ¼ αTpxPt

xT t; ðG24Þ

where the α’s take values in U(1).
Following the analysis of the case of pm symmetry

without time reversal (Sec. IV C), we adjust the phase of Tt
y

to set αtypx ¼ 1 (this does not affect αTty), and we can
restrict αpx, αtxpx ∈ Z2. Next, we can set αT ¼ 1 by
adjusting the phase of T t. Making this adjustment modifies
αTpx → α−1T αTpx ≡ α0Tpx, without changing other parame-
ters. While this can be absorbed as a redefinition of αTpx,
we keep track of it explicitly, as this is important to work
out the map ρ2. Next, we can conjugate the last three
relations by T , which gives αTtx, αTty, α0Tpx ∈ Z2.
Therefore,

Tt
xTt

yTt−1
x Tt−1

y ¼ αtxty; ðG25Þ

Tt
yPt

xTt−1
y Pt

x ¼ 1; ðG26Þ

ðPt
xÞ2 ¼ αpx ∈ Z2; ðG27Þ

Tt
xPt

xTt
xPt

x ¼ αtxpx ∈ Z2; ðG28Þ

ðT tÞ2 ¼ 1; ðG29Þ

T tTt
x ¼ ½αTtx ∈ Z2�Tt

xT t; ðG30Þ

T tTt
y ¼ ½αTty ∈ Z2�Tt

yT t; ðG31Þ

T tPt
x ¼ ½α0Tpx ∈ Z2�Pt

xT t: ðG32Þ

Note that we have not used the freedom to adjust phases of
Tx or Px. However, adjusting these phases has no effect on
the α’s. This suggests the result

H2
t ðG0;Uð1ÞÞ ¼ Uð1Þ × ðZ2Þ5; ðG33Þ

with ½ω�Uð1Þ ∈ H2
t ðG0;Uð1ÞÞ parametrized by ½ω�Uð1Þ ¼

ðαtxty; αpx; αtxpx; αTtx; αTty; α0TpxÞ, with the first entry a
U(1) phase and the last five Z2 phases.
To confirm this result, we need to show that each element

is actually realized by some t-twisted U(1) factor set. We
introduce two-component field operators vr as for G ¼
Uð1Þ × pm symmetry in Sec. IV C. We choose Tx, Ty and
Px to act on the vr as in Eqs. (74)–(76), and T acts by

T vrT −1 ¼ gTv
†
r : ðG34Þ

Here, gT is a 2 × 2 unitary matrix satisfying g2T ¼ 1, so
that T 2 ¼ 1 acting on vr. We find six families of repre-
sentations, whose factor sets form a generating set
for H2

t ðG0;Uð1ÞÞ ¼ Uð1Þ × ðZ2Þ5:
(1) gtx ¼ gty ¼ gpx ¼ gT ¼ 1 gives a continuous family

of representations with ½ω�Uð1Þ ¼ ðαtxty; 1; 1; 1; 1; 1Þ.
(2) αtxty ¼ 1, gty ¼ i, gpx ¼ iσy, gtx ¼ σz, gT ¼ 1 is a

representation with ½ω�Uð1Þ ¼ ð1;−1; 1; 1; 1; 1Þ.
(3) αtxty ¼ 1, gty ¼ 1, gpx ¼ σx, gtx ¼ σz, gT ¼ 1 is a

representation with ½ω�Uð1Þ ¼ ð1; 1;−1; 1; 1; 1Þ.
(4) αtxty ¼ gty ¼ gpx ¼ 1, gtx ¼ σz, gT ¼ σx is a repre-

sentation with ½ω�Uð1Þ ¼ ð1; 1; 1;−1; 1; 1Þ.
(5) αtxty ¼ gtx ¼ gpx ¼ 1, gty ¼ σz, gT ¼ σx is a repre-

sentation with ½ω�Uð1Þ ¼ ð1; 1; 1; 1;−1; 1Þ.
(6) αtxty ¼ gtx ¼ gty ¼ 1, gpx ¼ σz, gT ¼ σx is a repre-

sentation with ½ω�Uð1Þ ¼ ð1; 1; 1; 1; 1;−1Þ.
As in Sec. IV C, the above analysis allows us to

immediately determine the map ρ2∶H2ðG0;Z2Þ →
H2

t (G0;Uð1Þ), and we have

ðαtxty; αpx; αtxpx; αTtx; αTty; α0TpxÞ ¼ ρ2ð½ωm�Z2
Þ

¼ ðσmtxty; σmpx; σmtxpx; σmTtx; σmTty; σmT σmTpxÞ: ðG35Þ

This result implies that anomaly-negative fractionalization
patterns are those with σmpx ¼ σmtxpx ¼ σmTtx ¼ σmTty ¼
σmT σ

m
Tpx ¼ 1. The group N of anomaly-negative vison

fractionalization classes is thus N ¼ ðZ2Þ3. The disjoint

TABLE II. Set of eight projective representations whose
cohomology classes generate H2ðG0;Z2Þ ¼ Z8

2, where
G0 ¼ pm × ZT

2 . Note that the cohomology classes of the first
four representations listed generate H2ðpm;Z2Þ ¼ Z4

2. The first
column numbers the representations 1 through 8. The middle four
columns specify generators of the group in the corresponding
representation (time reversal is T ¼ UTK, where K is complex
conjugation). All representations in the table are two dimen-
sional. Generators are specified in terms of the Pauli matrices
σx;y;z. The last column lists those σ’s that are equal to −1 for the
corresponding representation.

Representation number Tx Ty Px UT σ’s that are −1

1 σx 1 iσy 1 σpx; σtypx
2 σx 1 σz 1 σtxpx
3 σx σz 1 1 σtxty
4 1 σx σz 1 σtypx
5 1 1 1 iσy σT
6 σx 1 1 σz σTtx
7 1 σx 1 σz σTty
8 1 1 σx σz σTpx
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sets of SPT phases distinguished by the anomaly test are
labeled by elements of S ¼ H2ðG0;Z2Þ=N ¼ ðZ2Þ5.

2. G = Uð1Þ × p4mm

The group p4mm is the space-group symmetry of the
square lattice. We choose generators Tx, Ty, T−1

x , T−1
y , Px,

and Pxy. These operations are illustrated in Fig. 4 and obey
the relations

TxTyT−1
x T−1

y ¼ 1; ðG36Þ

TyPxT−1
y Px ¼ 1; ðG37Þ

Ty ¼ PxyTxPxy; ðG38Þ

P2
x ¼ 1; ðG39Þ

TxPxTxPx ¼ 1; ðG40Þ

P2
xy ¼ 1; ðG41Þ

ðPxPxyÞ4 ¼ 1: ðG42Þ

Them particle symmetry fractionalization is specified by

Tm
x Tm

y Tm−1
x Tm−1

y ¼ σmtxty; ðG43Þ

Tm
y Pm

x Tm−1
y Pm

x ¼ σmtypx; ðG44Þ

Tm
y ¼ Pm

xyTm
x Pm

xy; ðG45Þ

ðPm
x Þ2 ¼ σmpx; ðG46Þ

Tm
x Pm

x Tm
x Pm

x ¼ σmtxpx; ðG47Þ

ðPm
xyÞ2 ¼ σmpxy; ðG48Þ

ðPm
x Pm

xyÞ4 ¼ σmpxpxy; ðG49Þ

where the σm’s take values in Z2. The relation Eq. (G49)
has no σm parameter, as this can be removed by adjusting
the phase Tm

y → −Tm
y . The m-particle fractionalization

classes form the group H2ðG0;Z2Þ ¼ ðZ2Þ6; a generating
set of projective representations verifying this result is
exhibited in Appendix A of Ref. [19].
To compute the H2

t (G0;Uð1Þ) cohomology, we begin by
specifying the relations

Tt
xTt

yTt−1
x Tt−1

y ¼ αtxty; ðG50Þ

Tt
yPt

xTt−1
y Pt

x ¼ αtypx; ðG51Þ

Tt
y ¼ Pt

xyTt
xPt

xy; ðG52Þ

ðPt
xÞ2 ¼ αpx; ðG53Þ

Tt
xPt

xTt
xPt

x ¼ αtxpx; ðG54Þ

ðPt
xyÞ2 ¼ αpxy; ðG55Þ

ðPt
xPt

xyÞ4 ¼ αpxpxy; ðG56Þ

where the α’s take values in U(1). We note that
tðTxÞ ¼ tðTyÞ ¼ 1, while tðPxÞ ¼ tðPxyÞ ¼ −1.
First, we adjust the phase of Tt

y to set αtypx → 1. In order
to leave Eq. (G52) unchanged, we must also correspond-
ingly adjust the phase of Tt

x. Next, we adjust the phase of
Pt
x to set αpxpxy → 1, which does not affect the other

relations. Finally, conjugating Eq. (G53) by Pt
x, Eq. (54) by

Tt
xPt

x, and Eq. (55) by Pt
xy, we have αpx; αtxpx; αpxy ∈ Z2.

The relations thus take the form

Tt
xTt

yTt−1
x Tt−1

y ¼ αtxty; ðG57Þ

Tt
yPt

xTt−1
y Pt

x ¼ 1; ðG58Þ

Tt
y ¼ Pt

xyTt
xPt

xy; ðG59Þ

ðPt
xÞ2 ¼ αpx ∈ Z2; ðG60Þ

Tt
xPt

xTt
xPt

x ¼ αtxpx ∈ Z2; ðG61Þ

ðPt
xyÞ2 ¼ αpxy ∈ Z2; ðG62Þ

ðPt
xPt

xyÞ4 ¼ 1: ðG63Þ

This suggests that H2
t (G0;Uð1Þ) ¼ Uð1Þ × ðZ2Þ3, with

½ω�Uð1Þ ∈ H2
t (G0;Uð1Þ) parametrized by ½ω�Uð1Þ ¼

ðαtxty; αpx; αtxpx; αpxyÞ.

FIG. 4. Illustration of the operations generating the d ¼ 2 space
group p4mm, the symmetry group of the square lattice. Tx and Ty

are translations by one lattice constant along the x and y axes,
respectively. The vertical dashed line is the axis for the reflection
Px, and the diagonal dashed line is the axis for the reflection Pxy.
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To verify this, we proceed as in the caseG ¼ Uð1Þ × pm
in Sec. IV C, and introduce two-component field operators
vr, with r labeling the sites of the square lattice. The
generators act on the field operators by

TxvrT−1
x ¼ ðαtxtyÞry=2gtxvrþx̂; ðG64Þ

PxvrP−1
x ¼ gpxv

†
Pxr

; ðG65Þ

PxyvrP−1
xy ¼ gpxyv

†
Pxyr

; ðG66Þ

where αtxty ∈ Uð1Þ, Pxr ¼ ð−x; yÞ, Pxyr ¼ ðy; xÞ, and gtx,
gpx, gpxy are 2 × 2 unitary matrices. The action of Ty

follows from Eq. (G59) and is

TyvrT−1
y ¼ ðαtxtyÞ−rx=2gtyvrþŷ; ðG67Þ

where gty ¼ gpxyg�txg�pxy.
The following families of projective representations form

a generating set for H2
t (G0;Uð1Þ):

(1) gtx ¼ gpx ¼ gpxy ¼ 1 gives a continuous family of
representations with ½ω�Uð1Þ ¼ ðαtxty; 1; 1; 1Þ.

(2) αtxty ¼ gpxy ¼ 1, gtx ¼ σz, gpx ¼ iσy is a projective
representation with ½ω�Uð1Þ ¼ ð1;−1; 1; 1Þ.

(3) αtxty ¼ gpxy ¼ 1, gtx ¼ iσz, gpx ¼ σx is a projective
representation with ½ω�Uð1Þ ¼ ð1; 1;−1; 1Þ.

(4) αtxty ¼ gtx ¼ gpx ¼ 1, gpxy ¼ iσy is a projective
representation with ½ω�Uð1Þ ¼ ð1; 1; 1;−1Þ.

Finally, the map ρ2 is given by

ðαtxty; αpx; αtxpx; αpxyÞ ¼ ρ2ð½ωm�Z2
Þ

¼ ðσmtxty; σmpx; σmtxpx; σmpxyÞ: ðG68Þ

Therefore, the anomaly-negative fractionalization patterns
are those with σmpx ¼ σmtxpx ¼ σmpxy ¼ 1. The group N of
anomaly-negative vison fractionalization classes is
N ¼ ðZ2Þ3. The disjoint sets of SPT phases distinguished
by the anomaly test are labeled by elements of
S ¼ H2ðG0;Z2Þ=N ¼ ðZ2Þ3.
We remark that in this case, all the anomalous fraction-

alization patterns we find can be understood in terms of the
symmetry Uð1Þ × ZP

2 , by choosing different ZP
2 subgroups

of p4mm.

3. G = ðUð1Þ ⋊ ZT
2 Þ × p4mm

This is closely related to the caseG ¼ Uð1Þ × p4mm but
now with time-reversal symmetry added. The ZT

2 time
reversal forms a semidirect product with U(1). The gen-
erators are as in Appendix G 2, with the addition of the
time-reversal operation T , and we have the relations

TxTyT−1
x T−1

y ¼ 1; ðG69Þ

TyPxT−1
y Px ¼ 1; ðG70Þ

Ty ¼ PxyTxPxy; ðG71Þ

P2
x ¼ 1; ðG72Þ

TxPxTxPx ¼ 1; ðG73Þ

P2
xy ¼ 1; ðG74Þ

ðPxPxyÞ4 ¼ 1; ðG75Þ

T 2 ¼ 1; ðG76Þ

T Tx ¼ TxT ; ðG77Þ

T Px ¼ PxT ; ðG78Þ

T Pxy ¼ PxyT : ðG79Þ

The m-particle symmetry fractionalization is specified by

Tm
x Tm

y Tm−1
x Tm−1

y ¼ σmtxty; ðG80Þ

Tm
y Pm

x Tm−1
y Pm

x ¼ σmtypx; ðG81Þ

Tm
y ¼ Pm

xyTm
x Pm

xy; ðG82Þ

ðPm
x Þ2 ¼ σmpx; ðG83Þ

Tm
x Pm

x Tm
x Pm

x ¼ σmtxpx; ðG84Þ

ðPm
xyÞ2 ¼ σmpxy; ðG85Þ

ðPm
x Pm

xyÞ4 ¼ σmpxpxy; ðG86Þ

ðT mÞ2 ¼ σmT ; ðG87Þ

T mTm
x ¼ σmTtxT

m
x T m; ðG88Þ

T mPm
x ¼ σmTpxP

m
x T m; ðG89Þ

T mPm
xy ¼ σmTpxyP

m
xyT m; ðG90Þ

where the σm’s take values in Z2. The m-particle
fractionalization classes form the group H2ðG0;Z2Þ ¼
ðZ2Þ10; a generating set of projective representations
verifying this result is exhibited in Appendix A of
Ref. [19].
To compute the H2

t (G0;Uð1Þ) cohomology, we begin by
specifying the relations

Tt
xTt

yTt−1
x Tt−1

y ¼ αtxty; ðG91Þ
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Tt
yPt

xTt−1
y Pt

x ¼ αtypx; ðG92Þ

Tt
y ¼ Pt

xyTt
xPt

xy; ðG93Þ

ðPt
xÞ2 ¼ αpx; ðG94Þ

Tt
xPt

xTt
xPt

x ¼ αtxpx; ðG95Þ

ðPt
xyÞ2 ¼ αpxy; ðG96Þ

ðPt
xPt

xyÞ4 ¼ αpxpxy; ðG97Þ

ðT tÞ2 ¼ αT; ðG98Þ

T tTt
x ¼ αTtxTt

xT t; ðG99Þ

T tPt
x ¼ αTpxPt

xT t; ðG100Þ

T tPt
xy ¼ αTpxyPt

xyT t; ðG101Þ

where the α’s take values in U(1). Here, tðT Þ ¼ 1, and t is
specified for the other generators in Appendix G 2.
Proceeding first as in Appendix G 2, we adjust the phase

of Tt
y to set αtypx → 1. In order to leave Eq. (G101)

unchanged, we must also correspondingly adjust the phase
of Tt

x. Next, we adjust the phase of Pt
x to set αpxpxy → 1,

which does not affect the other relations. We also adjust the
phase of T t to set αT → 1. This modifies αTpx → α0Tpx ¼
α−1T αTpx and αTpxy → α0Tpxy ¼ α−1T αTpxy. Conjugating
Eq. (G94) by Pt

x, Eq. (G95) by Tt
xPt

x, and Eq. (G96) by
Pt
xy, we have αpx; αtxpx; αpxy ∈ Z2. Finally, conjugating the

last three relations by T t gives αTtx, α0Tpx, α
0
Tpxy ∈ Z2.

The relations thus take the form

Tt
xTt

yTt−1
x Tt−1

y ¼ αtxty; ðG102Þ

Tt
yPt

xTt−1
y Pt

x ¼ 1; ðG103Þ

Tt
y ¼ Pt

xyTt
xPt

xy; ðG104Þ

ðPt
xÞ2 ¼ αpx ∈ Z2; ðG105Þ

Tt
xPt

xTt
xPt

x ¼ αtxpx ∈ Z2; ðG106Þ

ðPt
xyÞ2 ¼ αpxy ∈ Z2; ðG107Þ

ðPt
xPt

xyÞ4 ¼ 1; ðG108Þ

ðT tÞ2 ¼ 1; ðG109Þ

T tTt
x ¼ ½αTtx ∈ Z2�Tt

xT t; ðG110Þ

T tPt
x ¼ ½α0Tpx ∈ Z2�Pt

xT t; ðG111Þ

T tPt
xy ¼ ½α0Tpxy ∈ Z2�Pt

xyT t: ðG112Þ

This suggests that H2
t (G0;Uð1Þ) ¼ Uð1Þ × ðZ2Þ6, with

½ω�Uð1Þ ∈ H2
t (G0;Uð1Þ) parametrized by ½ω�Uð1Þ ¼ ðαtxty;

αpx; αtxpx; αpxy; αTtx; α0Tpx;α
0
TpxyÞ.

To verify this, we introduce field operators vr as
in Appendix G 2, for the case of Uð1Þ × p4mm
symmetry. The action of Tx, Px, Pxy, and Ty is given by
Eqs. (G64)–(G67). Time reversal acts by

T vrT −1 ¼ gTv
†
r ; ðG113Þ

where gT is a 2 × 2 unitary matrix, satisfying g2T ¼ 1 so
that αT ¼ 1.
The following families of projective representations form

a generating set for H2
t (G0;Uð1Þ):

(1) gtx¼gpx¼ gpxy¼gT ¼1 gives a continuous family of
representations with ½ω�Uð1Þ ¼ ðαtxty;1;1;1;1;1;1Þ.

(2) αtxty¼ gpxy¼gT ¼1, gtx ¼ σz, gpx ¼ iσy is a projec-
tive representation with ½ω�Uð1Þ ¼ ð1;−1;1;1;1;1;1Þ.

(3) αtxty¼ gpxy¼gT ¼1, gtx ¼ iσz, gpx ¼ σx is a projec-
tive representation with ½ω�Uð1Þ ¼ ð1;1;−1;1;1;1;1Þ.

(4) αtxty ¼ gtx ¼ gpx ¼ gT ¼ 1, gpxy ¼ iσy is a projec-
tive representation with ½ω�Uð1Þ ¼ ð1;1;1;−1;1;1;1Þ.

(5) αtxty¼ gpx¼gpxy¼1, gtx ¼ σz, gT ¼ σx is a projec-
tive representation with ½ω�Uð1Þ ¼ ð1;1;1;1;−1;1;1Þ.

(6) αtxty¼ gtx¼gpxy¼1, gpx ¼ σz, gT ¼ σx is a projec-
tive representation with ½ω�Uð1Þ ¼ ð1;1;1;1;1;−1;1Þ.

(7) αtxty¼ gtx¼gpx¼1, gpxy ¼ σz, gT ¼ σx is a projec-
tive representation with ½ω�Uð1Þ ¼ ð1;1;1;1;1;1;−1Þ.

Finally, the map ρ2 is given by

ðαtxty; αpx; αtxpx; αpxy; αTtx;α0Tpx; α0TpxyÞ ¼ ρ2ðfσm’sgÞ
¼ ðσmtxty; σmpx; σmtxpx; σmpxy; σmTtx; σmT σmTpx; σmT σmTpxyÞ: ðG114Þ

Therefore, the anomaly-negative fractionalization patterns
are those with σmpx ¼ σmtxpx ¼ σmpxy ¼ σmTtx ¼ σmT σ

m
Tpx ¼

σmT σ
m
Tpxy ¼ 1. The group N of anomaly-negative vison

fractionalization classes is N ¼ ðZ2Þ4. The disjoint sets of
SPT phases distinguished by the anomaly test are labeled
by elements of S ¼ H2ðG0;Z2Þ=N ¼ ðZ2Þ6.
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