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Nearly all animals forage to acquire energy for survival through efficient
search and resource harvesting. Patch exploitation is a canonical foraging
behaviour, but there is a need for more tractable and understandable math-
ematical models describing how foragers deal with uncertainty. To provide
such a treatment, we develop a normative theory of patch foraging decisions,
proposing mechanisms by which foraging behaviours emerge in the face of
uncertainty. Our model foragers statistically and sequentially infer patch
resource yields using Bayesian updating based on their resource encounter his-
tory. A decision to leave a patch is triggered when the certainty of the patch
type or the estimated yield of the patch falls below a threshold. The time
scale over which uncertainty in resource availability persists strongly impacts
behavioural variables like patch residence times and decision rules determin-
ing patch departures. When patch depletion is slow, as in habitat selection,
departures are characterized by a reduction of uncertainty, suggesting that
the forager resides in a low-yielding patch. Uncertainty leads patch-exploiting
foragers to overharvest (underharvest) patches with initially low (high)
resource yields in comparisonwith predictions of the marginal value theorem.
These results extend optimal foraging theory and motivate a variety of
behavioural experiments investigating patch foraging behaviour.
1. Introduction
Foraging is performed by many different species [1–5] and engages cognitive
computations such as learning of resource distributions across spatio-temporal
scales, route planning and decision-making [6]. Comparing species, one can ask
how these integrated processes have been shaped by natural selection to opti-
mize returns in the face of environmental and physiological constraints [6,7].
Foraging thus provides the opportunity to study and quantify how both
evolution and neural circuitry shape a natural behaviour [8–11].

In natural landscapes, foraging involves a decision hierarchy that unfolds
across multiple length and time scales, which consider both where to forage as
well as how long to exploit a certain resource [12,13]. On long time scales, animals
accumulate evidence to choose which of a collection of large areas they will
dwell in and forage, during which their activity does not appreciably change
the resource landscape. Following previous work, we refer to this as ‘habitat
choice’ [12]. Within habitats, animals exploit resources on shorter time scales,
while their activity depletes resources in visits to localized regions. We refer
to this behaviour as ‘patch exploitation’ or ‘patch leaving’. Questions of
where to forage and how long to exploit local patches of resource constitute a
multi-level framework for examining behaviour across spatial scales; still
larger scales consider the home range of an individual, as well as the species
range [13,14]. For both habitat choice and patch leaving, the local regions of
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Figure 1. Patch-departure tasks and model. (a) Task environments: on long time scales, an animal decides between habitats whose resource yields change slowly;
on shorter time scales, the animal exploits patches whose resources are depleted more quickly. In our model analysis, we assume that the forager is solving one of
these problems at a time, but not both simultaneously. (b) Ideal observer foraging model: the initial yield of the patch is drawn from the distribution p(λ0),
generating random resource encounter times t1:K, and updating the belief of the current resource yield rate λ(t) for the patch. We illustrate the movement of
the forager and subsequent time series of resource encounters x(t), resulting in a refinement of the posterior p(λ|x(t)). The maximum-likelihood estimate
λMLE approaches the true λtrue yield rate over time.
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an environment can be conceptualized as a ‘patch’; the key
difference is in whether or not the forager’s activity impacts
the resource availability in the landscape. As a decision pro-
blem, both are sequential choice processes, so the forager
does not make a choice between discrete alternatives that
are presented simultaneously, but rather only receives evi-
dence from the current patch and must decide whether to
stay or go [15]. Thus, habitat choice and patch leaving are
related but differ in the length and time scales involved
(figure 1a). However, most theoretical work has considered
these two problems separately.

Regarding habitat choice, the optimal behaviour is clear: the
forager should locate and spend as much time as possible in
the habitat patch that maximizes fitness outcomes. Observa-
tional studies of habitat choice often consider the combined
effects of multiple factors to ask howwell they predict observed
habitat use (e.g. [16]). Theoretical and experimental studies have
investigated multiple factors, such as density-dependent effects
predicted by the ideal free distribution when there are multiple
foragers on a landscape [17] and how perceptual constraints
may lead to deviations from optimal choices [18]. Our focus
here is specifically on understanding an accumulation process
by which individuals use information to reach decisions on
habitat choice, and deriving this result in amathematically tract-
able model that can more precisely parameterize strategy and
performance in a wide range of environments.

Patch leaving considers shorter time scales, where the for-
ager substantially depletes the patch during its visit and must
subsequently decide when to leave the current patch in
search of another. A basic result in behavioural ecology, the
marginal value theorem (MVT), states that an animal can
optimize the resource intake rate by leaving its current
patch when the estimated within-patch resource yield rate
falls below the global average resource intake rate of the
environment [19]. While this theory has been validated in
multiple behavioural studies [20–29], it does not explicitly
indicate how beliefs about environmental features (e.g.
resource distribution) are accumulated over time or how
decision rules might be applied to these beliefs in the form
of concrete dynamical equations. To explain how foraging
decisions are shaped by the presence and reduction of uncer-
tainty based on resource encounters, it is useful to have
normative Bayesian models of patch leaving that ask how
animals use limited information to make foraging decisions.
However, those that do tend to consider a narrow range of
environmental conditions [30,31–46]. General models that
have been proposed are challenging to analyse mathemat-
ically [47], making it difficult to reveal how environmental
parameters shape an optimal forager’s strategy and yield in
many different environments.

The aim of our study is thus to develop a Bayesian frame-
work of foraging behaviour, treating decisions as a statistical
inference problemand connectingnormative theoryof foraging
decisionswithmechanistic evidence accumulationmodels [48].
Normative strategies provide a best-case scenario for a parti-
cular objective, which can then be used as a touchstone for
comparison with heuristics and actual animal behaviours.
Animals may actually use evidence accumulation mechanisms
that approximate Bayes’ optimal strategies, such as energy
measurement via the passage of food through the gut [49], so
we consider our model to be an abstraction that such physical
strategies can be measured against. We first define a general
mathematical framework to model patch-foraging decisions
that applies at different time scales with regards to search and
depletion of the resource. These represent the different ecologi-
cal decision cases described above: ‘habitat choice’ and ‘patch
leaving’. Because these cases are only separated in the time
scale of resource depletion, we treat both with the framework
ofpatch foragingas an evidence accumulationprocesswhereby
a threshold on available evidence triggers a decision.

Using several mathematically tractable cases in which
probabilistic updating based on the receipt of resources
within a patch can be modelled by stochastic differential
equations (SDEs), we determine patch-leaving statistics via
solutions to first-passage time problems. We thus obtain
analytical expressions for optimal decision thresholds that
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connect to observable quantities of interest, including patch
residence time, travel time, resource consumption over time
and patch yield rate over time. For both habitat choice and
patch leaving, we show that, in uncertain or resource-poor
environments, uncertainty causes even an ideal Bayesian obser-
ver to tend to stay too long in low-yielding patches
(overharvesting) and not long enough in high-yielding patches
(underharvesting). Past studies have suggested that such devi-
ations can also arise from patch-discrimination limits [18] or
behavioural state dependence [50]. Though our work is not
the first to demonstrate that over- and underharvesting can
arise from uncertainty in statistical inference models [51,52],
we are able to show how these trends vary across a wide
range of environments owing to our model’s mathematical
tractability. By establishing a general Bayesian framework for
patch foraging at multiple scales, our study provides a platform
to study behavioural and neural mechanisms of naturalistic
decision-making akin to how trained decision-making behav-
iour is studied within systems neuroscience [8,53].
8:20210337
2. Sequential sampling model framework
The patch-foraging model framework, which describes
both habitat choice and patch leaving, considers an animal
searching its environment, which contains distributed resource
patches (figure 1a). When the animal enters a patch, it con-
sumes resources within the patch. In the case of habitat
choice, we assume that resources are depleted slowly enough
that the depletion is negligible, whereas for the patch leaving
problem resources are depleted.We represent the decision pro-
cess to leave a patch via a sequential sampling model for an
ideal observer’s posterior of its current patch’s yield rate, λ(t).
This assumes that an animal learns over time the yield of the
patch it is currently in and to decide if and when it should
leave and search for another patch.

The initial yield rate lk0 determines the rate at which the
animal initially encounters a resource in the patch and is
drawn from the distribution p(λ0). We assume that the forager
knows and initializes its belief with the prior p(λ0) when
arriving in a patch (figure 1b). This simplifying assumption
allows us to obtain tractable solutions. Considering randomly
timed resource encounters within a patch, we use a Poisson
rate λ(t) = λ0− ρK(t) generating exponentially distributed
waiting times between encounters (as in random search
[54]) that decreases with K(t), the number of resource encoun-
ters so far, where ρ is the impact of each resource encounter
on the underlying yield rate of the patch. Resource encounter
history can be described by the summed sequence of encoun-
ters, each at time tj: x(t) ¼ K0(t) ¼ PK(t)

j¼1 d(t� tj). An ideal
forager performs a Bayesian update of its belief about the cur-
rent patch yield rate λ,

p(ljx(t)) ¼ p(x(t)jl) p0(lþ K(t)r)
p(x(t))

/ (l=rþ K)!
(l=r)!

e�ltp0(lþ Kr),

l � 0: (2:1)

In general, resource encounters both: (i) give evidence of
higher yield rates λ, since encounters are more probable
in high-yielding patches; and (ii) deplete the patch,
decrementing the yield rate λ by ρ (figure 1b).

Varying ρ changes the rate of patch depletion relative to
the time scale of the foraging process. Small relative values
of ρ/λ0 represent a large resource patch that the forager
depletes very slowly. The limiting case ρ/λ0→ 0 represents
the habitat choice problem. Alternatively, when this ratio is
intermediate up to unity (ρ/λ0∈ [10−2, 1]), the forager con-
siderably depletes the patch with each encounter. We refer
to this as the patch leaving problem, and show that, in such
cases, uncertainty in the patch yield can play a major role
in shaping the departure strategy. We first consider the habi-
tat choice problem in §3; following this, we consider the patch
leaving problem in §4.
3. ‘Habitat choice’: minimizing time to find
high-resource habitats

Habitat choice refers to patch use at scales where the forager’s
activity does not significantly affect the resource distribution
or, in other words, that resource depletion occurs very slowly
relative to the time needed for the search process. We represent
this with the mathematically tractable yet representative limit
of zero patch depletion. In this case, the optimal behaviour is
to quickly locate a patch with the highest yield and remain
there. Although in real environments habitats eventually
deplete and the forager would leave, our theoretical treatment
of a ‘remain in the high-yielding patch’ strategy can simply
translate to a ‘stay a long time in the initially high-yielding
patch’ strategy, with results applying similarly to both because
of the separation of time scales: for habitat choice, the time
needed to search and decide on a high-yield patch to remain
in (which we denote as Tarrive) is much less than the time that
would be needed to actually deplete the patch.

Upon entering a patch, the forager must use its experience
of resource encounters to decidewhether to stay in the patch or
leave for another. We first consider a simplified binary environ-
ment where there are only two patch types—high-yield versus
low-yield—and that the forager knows these possible patch
types and their return rates. Here, the optimal behaviour is to
infer whether or not it is currently in a high-yield patch, and,
if so, to stay, but otherwise to leave. Uncertainty and stochasti-
city of resource encounters means that the forager will visit
some low-yielding patches until it learns the yield rate and
departs, and may also visit and depart from high-yielding
patches if the type is incorrectly inferred. We then consider
more general cases, and show that the general trends and opti-
mal strategies from the simpler binary case still apply; this
includes environments with multiple patch types and environ-
ments with continuous distributions of patch types where the
forager has a threshold for accepting a patch as sufficiently
dense with resources. With this approach, we can explicitly
derive statistics associated with patch departures and examine
how the efficient identification of high-quality habitats
depends on environmental parameters like patch discrimin-
ability (e.g. λH/λL) and high-yield patch prevalence (pH).

3.1. Two patch types
An environment with two possible patch types—high yielding
and low yielding—is a mathematically tractable case that gives
insight into optimal decision strategies and their resulting
behavioural observables. Here, the probability distribution of
patch types (likelihood that the next-visited patch is of a certain
type) is p0(λ) = pHδ(λ− λH) + pLδ(λ− λL): H denotes the higher
yielding patch and L denotes the lower yielding patch. As
stated, we assume that the forager knows the values λH and
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λL and uses these as prior information to infer the type of the
current patch. Using the limit of slow depletion (ρ→ 0) to rep-
resent habitat choice, the animal determines which patch type
it is currently in using the log-likelihood ratio (LLR) y(t)≡
log( p(λH|x(t))/p(λL|x(t))). With this, their belief update can
be written as an SDE:

dy
dt

¼ log
lH
lL

X1
j¼1

d(t� tj)� (lH � lL), (3:1)

with initial condition set by the prior y(0) = log((pH)/(1− pH)).
Resource encounters provide evidence for the high-yielding
patch (first term) while elapsed time between resource encoun-
ters builds up evidence for the low-yieldingpatch (second term).
Equation (3.1) has a simple form similar to classic evidence
accumulation models of decision-making psychophysics
[55,56], recently extended to foraging decisions [48].

The long-term resource intake rate is maximized if the
forager finds and remains in a high-yielding patch (figure 2a).
If the forager remains in a high-yielding patch, then the
energy intake rate will reach λH in the limit of long time.
Before locating and deciding to remain in a high-yielding
patch, the forager may also visit low-yielding patches, leaving
when its belief crosses the threshold (figure 2a), and may also
visit anddepart fromhigh-yielding patches, if they aremistaken
for low-yielding ones. The departure threshold sets the cer-
tainty that the forager obtains before leaving: a low threshold
means high certainty of the patch type before leaving: while a
high threshold will result in more departures. Too low a
threshold can lead to too much time spent in low-yielding
patches while gathering more evidence, while too high a
threshold can lead to (incorrectly) departing fromhigh-yielding
patches before gathering enough evidence to distinguish their
type. By setting the optimal threshold that balances uncertainty
to minimize the time to arrive and remain in a high-yielding
patch, we can ask how the environmental characteristics of rela-
tive patch yield, relative patch density and travel time influence
behaviour and expected return of resources.

The forager’s strategy is determined by the threshold θ on
its belief (LLR), given by equation (3.1), shaping the time to
find and remain in a high-yield patch �Tarrive(u). This quantity
can be computed from the patch-departure statistics of the
forager, using first-passage time methods, given the prior
y(0) = log(pH/(1− pH)) [57,58]; τ is the mean travel time
between patches, which we assume is known or determined
from experience. Using this, the time to arrive and remain in
a high-yield patch is

�Tarrive(u) ¼ (1� pH)
1þ eu

pH � (1� pH)eu

� �

� log( pH=(1� pH))� u

(lH � lL)� lL log(lH=lL)
þ t

� �
: (3:2)

The minimum of this, corresponding to θopt (figure 2b,c), can
be determined numerically (solid lines in figure 2d,e). An
explicit approximation of θopt is obtained by differentiating
equation (3.2), dropping higher order terms and solving for

uopt � W�1 �(1� pH)
lH
lL

� �lLt

e�(lH�lL)te2pH�1

" #
þ At

þ log
pH

1� pH
þ 1� 2pH , (3:3)
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where A ¼ (lH � lL)� lL log lH
lL

is defined for ease of nota-
tion (A = 0 for λH = λL, and A > 0 for λH > λL) and W−1(z) is
the (− 1)th branch of the Lambert W function (inverse of
z =WeW). This approximation matches well with the numeri-
cally obtained minima of equation (3.2) (dotted lines in figure
2d,e), and can be further simplified using the approximation
W−1(z)≈ log (−z)− log(−log(−z)), yielding

uopt � log (1� pH)� log [At� log(1� pH)� 2pH þ 1], (3:4)

indicating the scalings of the optimal threshold in limits of
environmental parameters (dashed lines in figure 2d,e). Details
on the derivation of the optimal threshold can be found in [58].

How should an animal best adapt its habitat search strat-
egy to the statistics of the environment? When high-yield
patches are rare (low pH), travel times are large (high τ) or
patches are easily discriminable (high λH relative to λL), the
forager should gain higher certainty by deliberating longer
before departing a patch; indeed, from equation (3.4) and
figure 2d,e we see that the optimal threshold decreases with
ρH, τ and λH. Increasing discriminability (λH/λL) or the
high-yield patch fraction pH decreases the minimal mean
time Topt

arrive needed to arrive and remain in a high-yield
patch (figure 2f ), since this makes finding a high-yielding
patch easier for the animal.

Furthermore, the outcome �Tarrive(u) is most sensitive to the
strategy (choice of threshold θ) in environmentswith lowdiscri-
minability and a small fraction of desirable patches (figure 2b,c).
In experiments, the value of Tarrive is an observable that can be
used to infer the effective value of θ that an animal is using.
The parameter sensitivity suggests that an animal’s patch-
selection strategy—i.e. the value of θ it is using—could be
more precisely inferred when high-yield patches are rare or
more difficult to identify. Note that the patch leaving rule
of thresholding one’s LLR is mathematically equivalent to
thresholding the mean estimated resource yield rate since
�l ¼ (lH þ e�ylL)=(1þ e�y), analogous to previous patch-
departure rules developed [31,41]. Next, we generalize this
approach to environments with more than two patch types,
so decisions use multiple LLRs, such that optimal decisions
do not simply map to thresholding the estimated yield rate.

3.2. Multiple patch types
Animals may have to select from any number of patch types in
an environment, which begs the question as to how decision
and search strategies should extend to more general environ-
ments. With multiple patch types, decisions made by
computing only two LLRs is sufficient to obtain near optimal
performance in terms of minimizing the time to find and
remain in a high-return patch. This result thus complements
and extends previous work that has considered optimal strat-
egies for two patch types [33,34] or more general models that
are intractable to a mathematical study of how behaviour and
yield varywith environmental and strategy parameters [47,59].

To model multiple patch types, consider environ-
ments with N patch types having resource yield rates λ1 >
λ2 > · · · > λN ≥ 0 with patch fractions p1, p2,…, pN. Defining
LLRs yj = log( p(λ1|x(t))/p(λj+1|x(t))) for j = 1,…, N− 1,
yields the N− 1-dimensional system fully describing an
ideal observer’s belief about the current patch type

y0j ¼ log
l1
l jþ1

X1
j¼1

d(t� tj)� (l1 � l jþ1), (3:5)
where yj(0) = log ( p1/pj+1), and any likelihood can be recov-
ered as p(l jþ1jx(t)) ¼ e�yj=(1þPN�1

k¼1 e�yk ), j = 0, 1,…, N− 1,
where y0 = 0 for j = 0.

As in the binary case, the optimal strategy is to find
and remain in the highest yielding patch (λ1). We again
represent patch leaving decisions by thresholding the prob-
ability of being in the high-yielding patch, such that when
p(λ1|x(t)) = ϕ∈ (0, p1) the forager exits the patch. We approxi-
mate this thresholding process by requiring yj≥ θ (for j = 1, 2,
…, N) to remain in the patch, so the forager departs given suf-
ficient evidence that it is not in the highest yielding patch (see
figure 3a for three patch types).

We also consider how effective reduced strategies are, for
which the observer only tracks the first L LLRs y1, y2,…, yL
and compares these with the threshold θ to decide when to
leave the patch. Thus, we compute the mean time to arrive
and remain in the high-yield patch, which depends on the
escape probability π1(θ) from the high-yielding patch and
the mean time to visit each patch �Tj(u, L) when escaping,

�Tarrive(u) ¼ p1(u, L)
1� p1(u, L)

(�T1(u, L)þ t)

þ 1� p1
p1

PN
j¼2 pj(�Tj(u, L)þ t)

1� p1(u)
, (3:6)

where the patch-departure strategy depends on the number L
of LLRs thresholded and the threshold θ used.

The mean high-yield patch arrival time �Tarrive depends
strongly on the high-yield patch resource yield rate λ1, which
decreases considerably as the patch becomes more discrimin-
able (three patches: figure 3b; five patches: figure 3d). On the
other hand, �Tarrive depends weakly on the worst patch’s yield
rate λ3 (figure 4a), so uncertainty among the less valuable
patches has little effect on behaviour. In a related way, �Tarrive is
much more strongly affected by changes in the fraction of the
high-yieldingpatch (p1: figure 3c) thanbychanges in thebalance
of the mid- (λ2) and low-yielding (λ3) patches (figure 4b).

Again, the optimal threshold decreases when patches are
more discriminable: as λ1 increases the forager should gain a
higher certainty before leaving (figure 3b). The average high-
yield patch arrival time �Tarrive depends weakly on the
threshold near the optimum, but the optimum threshold
shows a non-monotonic dependence on p1. The lower opti-
mum threshold for both low- and high-yield p1 values
represents that, in these cases, it is optimal to be more certain
of the future harvest rate before leaving: for low p1 this occurs
because high-yield patches are rare (and thus there is a higher
premiumon distinguishing the high-yielding patchwhen actu-
ally in one), and for high p1 this occurs because they are
plentiful (one is more likely to land in a high-yielding patch,
so one can afford to require more certainty to depart). Such
an increased premium placed on information gathering for
the reduction of uncertainty about the future yield of a patch
in sparse environments has been identified in previous
analyses of foraging models governed by statistical decision
theory [59,60]. Between these cases, although the optimal
threshold is slightly higher, the dependence is weak. Addition-
ally, this demonstrates that, if the forager did not know p1
(we assumed that this is known and is used to formulate the
leaving decisions), the best strategy would be to err on the
side of choosing a low threshold, because the sensitivity of
�Tarrive to threshold is relatively weak for choices too low but
can be higher for choices too high (figure 3c).
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In an environment with five patches, performance
depends weakly on how many LLRs are used to make
patch-leaving decisions for L > 2. It is sufficient to simply
track the LLRs between the first three patches, which corre-
spond to using L = 2 (figure 3d ). This is because the forager
only needs to know whether it is in one of the best patches
or not, since the goal is to eventually settle in one such
patch as a habitat. This demonstrates again that the key fea-
tures of uncertainty that matter to the optimal forager are
the discriminability and prevalence of the best and second
best patch type.
3.3. Continuum limit: many patch types
Building on the N-patch case, we now consider a scenario
where there is a continuous distribution of patch qualities
(N→∞), so the resource yield rate for each patch λ is drawn
from a continuous distribution p0(λ), which serves as a prior
for the posterior p(λ|x(t)) with each patch visit (figure 5a).
For any continuous probability distribution function p0(λ),
the maximum λ will never be sampled, so arriving and
remaining in the ‘maximum’ yielding patch is not possible.
We therefore assume that the forager seeks patches with
yield rates λθ or above, but deems lower yield rates to be insuf-
ficient. With this formulation, the forager updates an LLR
based on a belief of whether the current patch is greater or
less than λθ. Because this divides the continuous distribution
into two categories, the mathematical treatment is similar to
the binary case, but with added uncertainty because the
patches in each category do not have the same return.

To model this, given a reference yield rate λθ, we represent
decisions in an environment with a continuous distribution of
patch qualities by tracking P(l . lujx(t)) ¼

Ð1
lu
p(ljx(t)) dl.

For the case of an exponential prior p0(λ) = αe−αλ, given K(t)
resource encounters, we define ρ(t) = log (P(λ > λθ|x(t))/
P(λ < λθ|x(t))) and state that the forager departs the patch
when r(t) �û or when P(l . lujx(t)) � u : ¼ 1=(1þ e�̂u).
Note that, to allow evidence accumulation, we require that
u , a

Ð1
lu
e�al dl ¼ e�alu ; f, which represents the fraction

of patches where λ≥ λθ.
Computing the probability of escaping a high-yield patch,

pH(u; lu) ¼
Ð1
lu
p0(l)p(u; l) dl, and the mean time per visit to

high- and low-yield patch types, �TH(u; lu) ¼
Ð1
lu
p0(l)�T(u; l) dl

and �TL(u; lu) ¼
Ð lu
0 p0(l)�T(u; l)dl, when departing (using

Monte Carlo sampling), we then use equation (3.2) to compute
the time to arrive in a high-yielding patch (figure 5b). Placing a
higher threshold λθ on the quality of an acceptably high-yielding
patch increases the time to arrive in an acceptably high-yield
patch. Moreover, the optimal threshold θ decreases, as more
time must be spent in patches to discriminate a high-yielding
patch, which become rarer as λθ increases. Increasing λθ
corresponds to making sufficiently high-yield patches more
discriminable and more rare.

With this formulation, the mathematical treatment in the
case of a continuous distribution of patches is then the
same as the binary case, and we can map corresponding
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results: setting a higher lu is equivalent to decreasing pH and
concurrently increasing λH. Although we considered
an exponential distribution for p0(λ), we note that if this
distribution changes, then this will affect the relationship
between lu and the equivalent mapping onto the binary
case (in terms of pH and λH). Another possibility would be
to further ‘bin’ the continuous distribution to correspond to
three effective types, instead of two, as we did using a
single threshold. The continuous case then would be treated
analogously to a three-patch-type environment, and could be
represented with two LLRs. However, further binning may
not be necessary to achieve near-optimal decisions. Overall,
this demonstrates that effective strategies for foraging
environments with a continuum of patch types could be gen-
erated using particle filters that compute likelihoods over a
finite set of patch types [61].

3.4. Summary of results: habitat choice problem
In general, we see that strategies that divide the environment
into two patch types work well in efficiently finding the best
or near-best patches, even in the presence of many patch
types. The optimal time to arrive and remain in the highest
yielding patch decreases as the high-yield patch discriminabil-
ity increases and as high-yield patches becomemore common.
Considering more than two patch types, the associated fora-
ging strategies are most strongly coupled to environmental
parameters of the highest and second highest yielding patch
types. It is not necessary to compute LLRs associated with
all possible types in order to efficiently find a high-yield
patch—even considering only a single LLR gives reasonable
results, and the average time to arrive in a high-yield patch
is not strongly affected when the number of LLRs continues
to increase beyond two. This suggests that animals select habi-
tats by estimating a possible range of high-quality patches and
then making patch-departure decisions based on whether
patches meet those criteria or not.
4. Patch leaving: depletion- versus uncertainty-
driven decisions

When the scale of a patch is smaller, the forager will signifi-
cantly deplete the patch’s resources during its visit. The
decision is then not of which patch to remain in, but rather
of when to leave the current patch in search of another. We
therefore refer to this as patch exploitation (figure 1a;
[12,62]). While the nature of the resource differs for different
animals (and typical patch residence times can accordingly
vary from seconds up to hours—for some examples, see
[30,36,45,63,64]). These cases all have in common that each
resource patch is small enough that availability within the
patch is affected by the consumption of the forager.

The MVT sets the optimal time to leave a patch in order to
maximize resource consumption over time: when the current
patch yield rate equals the overall average yield rate for the
environment [19]. However, the MVT is simply an optimal
rule, and does not specify the mechanistic process of how
an animal uses its experience to reach a decision to leave a
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patch. Previous work has demonstrated that rewards in
discrete chunks—instead of as a continuous rate—can affect
the process an animal uses in decision-making [21,24,48].
From a Bayesian perspective, decisions should use available
information about the resource distribution in the environ-
ment. If resource availability within a patch is discrete or
uncertain, even an ideal observer may not be able to accu-
rately infer the actual rate of return, and thus would not be
able to implement the leaving rule prescribed by the MVT.
Experiments show that, while the general trends predicted
by the MVT hold in many cases, animals often deviate
from an MVT-predicted strategy [50]. Moreover, in cases
where patches contain very few items (e.g. 0 or 1 resource
chunks), reward is not described by a rate function, and the
MVT leaving rule does not apply.

Here we consider an animal that encounters resources in
discrete chunks and infers the state of the environment and sub-
sequently acts. This allows us to ask when the MVT rule is
actually optimal versus when it does not apply, when devi-
ations from the MVT occur owing to uncertainty and how a
forager can incorporate prior knowledge about the resource dis-
tribution in the environment to reach a patch leaving decision.
We first treat the simple case of homogeneous patch types to
establish the basic theoretical approach. Then, we consider
an environment with two patch types to show how the infer-
ence procedure affects decisions in different environmental
configurations, which we refer to as the ‘depletion-dominated’
versus ‘uncertainty-dominated’ regimes.

4.1. Homogeneous environments
To show how discreteness of resources affects decisions
[21,24], we first consider the simple case of a homogeneous
environment with a single patch type. An ideal forager
with prior knowledge of the initial yield rate λ0 can track
time and resource encounters to determine the current yield
rate λ(t), and then depart the patch when the inferred value
of λ(t) falls below some threshold lu. Prior knowledge of
the initial patch yield can be used in order to infer

l(t) ¼ l0 � K(t)r, (4:1)

which represents the true underlying value of λ(t). Using this
in a patch leaving decision strategy is equivalent to departing
after a fixed number of resource encounters [48].
Using this inference strategy, we calculate the long-term
resource intake rate by assuming that λθ is an integer multiple
of ρ. With this, the number of chunks consumed before
departure is mθ≡K(T(λθ)) : = (λ0− λθ)/ρ. Linearity of expec-
tations allows us to compute the mean departure time as
the sum of mean exponential waiting times between resource
encounters Tlu ¼ [Hm0 �Hm0�mu

]=r, where Hn is the nth har-
monic number. Thus, we can approximate the long-term
resource intake rate given λθ as

Rlu � m0r� lu
log (rm0)� log lu þ rt

, (4:2)

which is valid for m0≫ 1. There is an interior optimum mθ

that maximizes the long-term resource consumption rate,
which we can estimate by computing the approximate critical
point equation of equation (4.2)

m0r� lu
lu

¼ log
rm0

lu
þ rt: (4:3)

For largem0 (many chunks per patch), lu ¼ Rlu , i.e. the leaving
threshold is equal to the overall average rate of return in the
environment; this is the optimum prescribed in the MVT [19].
Using the exact formula in equation (4.2), we can numerically
determine the optimal threshold for small m0 (a few chunks
per patch). This shows that, when there are only a few
chunks per patch, the true optimal threshold is close, but not
exactly equal, to Rlu (figure 6a). Note that the current estimate
of the encounter rate is monotonically related to the future
expected harvest rate, so a patch-departure rule based on
either can easily be mapped to the other.

4.2. Binary environments
In binary environments, the forager estimates the underlying
yield rate of the current patch, ~l(t), and departs when this
falls below a threshold λθ. Constant threshold strategies are
our focus owing to their relative simplicity, but we note
that alternatively dynamic programming could be used to
determine optima of a more general class of departure strat-
egies [65]. We assume that the forager uses knowledge that
two different patch types exist to estimate the yield rate
of the current patch; this involves using prior informa-
tion to discriminate the patch type (high or low), combined
with resource encounters which decrement the estimated
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yield rate. The belief can be determined according to a non-
autonomous SDE for an LLR,

dy
dt

¼
XKmax

j¼1

log
lH � (j� 1)r
lL � (j� 1)r

� d(t� tj)� (lH � lL), (4:4)

where y(0) = log ( pH/(1− pH)) as in the case of habitat choice.
We focus on two different scenarios, which we refer to as:

(i) depletion-dominated regime, where the initial yield rate of
the patch is known, and therefore leaving decisions are based
solely on depletion, and (ii) uncertainty-dominated regime,
where the type of patch is not known upon entry, and optimal
leaving decisions must consider uncertainty in the estimate of
the current yield rate of the patch. For the uncertainty-domi-
nated regime, we consider first the cases where low-return
patches contain zero resources, and then generalize to different
amounts of resources per patch type.

Depletion-dominated regime. To represent what we term the
depletion-dominated regime, we assume that the forager
arrives in a patch and immediately knows the patch type λj
( j∈ {H, L}) in which it resides (e.g. owing to information pro-
vided by conspecifics or visual cues). In this case, the forager
can make an accurate estimate of the true underlying yield
rate of the patch, and therefore there is no uncertainty.
Thus, leaving decisions are driven by depletion of the
patch, as determined by when the estimated yield rate falls
below some level lju.

Following our calculations from the homogeneous case,
the long-term resource intake rate depends on the initial
resource chunk count in patches of type j, mj

0, and the depar-
ture thresholds, so in the large mj

0 limit

RlH,L
u � pH(mH

0 r� lHu )þ pL(mL
0r� lLu)

pH ~TH(lHu )þ pL~TL(lLu)þ rt
, (4:5)

where ~Tj(l
j
u) ¼ log(rmj

0)� loglju and the critical point
equations for each partial derivative @

l
j
u

RlH,L
u ¼ 0 imply

pH(mH
0 � lHu )þ pL(mL

0r� lLu)

¼ l
j
u pH( log (rmH

0 )� loglHu )þ pL( log (rmL
0)� log lLu)þ rt

� �
:

(4:6)
This can be rewritten as RlH,L
u ¼ l

j
u ( j =H, L). The aforemen-

tioned equation shows that, like the homogeneous case, an
optimal strategy when there are many chunks per patch is
to depart as the inferred yield rate equals the mean rate of
resource encounters for the environment; additionally, the
optimal threshold only depends on the average yield rate
for the environment, and not the individual patch types
(MVT; figure 6b). When there are a few chunks per patch,
the optimal threshold may slightly differ from this value
(see results for the homogeneous case in figure 6a). The
depletion-dominated regime is similar to a homogeneous
environment: since the forager knows the initial yield rate of
the patch it is currently in, it can accurately infer the true under-
lying yield rate, and depart based on depletion of the patch. As
in the homogeneous case, the optimal decision strategy can be
formulated equivalently as either leaving when the estimated
rate of return falls below a threshold or as counting—leaving
after consuming a certain amount of resources.

Uncertainty-dominated regime—empty low-yield patch. In the
‘uncertainty-dominated’ regime, the forager does not know
the initial yield rate of the patch upon entry. However, we
assume that it has prior knowledge of the types of patches
in the environment, i.e. that it knows the values of λH and λL.
We first consider the tractable scenario where the low-yielding
patch is empty (λL = 0). Such situations occur if certain regions
of the environment appear to have food (e.g. fruiting veg-
etation) but on closer inspection turn out to be empty (e.g.
already foraged or rotten). The optimal strategy is for the obser-
ver to first wait a finite time Tθ to depart if no resources are
encountered, but if resources are encountered before t = Tθ to
consume those resources until the inferred yield rate drops to
λθ = (m0−mθ)ρ. Early/late decisions are thus driven by uncer-
tainty/depletion. Assuming m0≫ 1, we can continuously
approximate the long-term resource intake rate and find that
it is maximized using a waiting time Tθ that is insensitive to
pH. However, the threshold λθ depends on both pH and travel
time, because these parameters affect the overall average rate
of resources available in the environment (figure 6c). The
optimal threshold l

opt
u is not specified by theMVT, since uncer-

tainty drives the forager to spend non-zero time in empty
patches, adding extraneous time to the foraging process.



habitat choice

time

threshold

time spent in habitat

remainsearch

patch exploitation

M
L

E
 a

rr
iv

al
 r

at
e

time

threshold

deplete and depart

(a) (b)

L
L

R
 (

hi
gh

/n
ot

 h
ig

h)
single habitat visit single patch visit

in
iti

al
 p

at
ch

 y
ie

ld

lo
w

hi
gh

ha
bi

ta
t y

ie
ld

 r
at

e

lo
w

hi
gh

time spent in patch

Figure 8. Summarized taxonomy of foraging strategies. See table 1 for details. In different environments with three patch types (low: red, medium: yellow, high:
green yielding), the different time series of decision variables (for a single patch decision) and patch visit time intervals. (a) In habitat choice, an animal must
determine whether its current patch is of the highest yielding type, departing if the probability that it is not in the highest reaches some threshold, and undergoing
a sequence of patch visits until finding and remaining in a high-yielding patch. (b) An ideal forager performing patch exploitation infers the yield rate of its current
patch and departs when the resource yield rate reaches a threshold, continuing patch visits indefinitely in large environments.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210337

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 J

ul
y 

20
21

 
Many resource chunks. Next, we generalize to examine
binary environments in which mH

0 . mL
0 are arbitrary inte-

gers. In this case, the belief y(t) = log (P(λH−K(t)ρ|x(t))/
P(λL −K(t)ρ|x(t))) evolves according to equation (4.4). The
forager estimates the current yield rate of the patch from
this belief,

~l(t) ¼ lH þ e�ylL
1þ e�y � rK(t), (4:7)

and an optimal strategy is to depart when ~l(t) � lu. The
threshold λθ should be tuned to l

opt
u so the long-term resource

intake rate

Rlu ¼ pH �mH þ pL �mL

pH �TH þ pL�TL þ t

is maximized. We can compute departure times �TH and �TL

numerically via Monte Carlo sampling. For an environment
where the overall availability of resources is low and there
are few resource chunks per patch, the optimal strategy when
the patch type is known is to fully deplete each patch before
leaving—this is represented by a threshold of lu ¼ 0 for the
inferred return rate. However, this is only optimal when
the patch type is known; in the case of an unknown patch
type, the forager has uncertainty in whether or not there are
remaining resources in the patch, and this causes the optimum
threshold to be non-zero. In both cases, the discreteness of
resource encounters causes the optimal threshold to be lower
than predicted by the MVT, although within this range of
threshold values the average resource intake actually received
is similar (figure 7a). In the case of high resource availability
andmany chunks per patch, the optimal thresholds are similar
whether or not the forager knows the patch type upon arrival
(figure 7b; compare black/blue curves) and coincide with the
optimal threshold predicted by the MVT.

Comparing cases, we see that foragers in sparser
environments (lower average initial resource amount
�m0 ¼ (�mH

0 þ �mL
0)=2) stay in low-yield patches too long and

leave high-yield patches too soon in comparison with observers
that immediately know their patch type, owing to their uncer-
tainty about their current patch before and at the time of
departure (figure 7c). Uncertainty thus drives animals to under-
exploit (overexploit) high (low)-yielding patcheswhen high- and
low-yield patches are different enough that it is optimal to spend
significantly more time in high- versus low-yield patches, but
similar enough as to not be immediately distinguishable. Opti-
mal leaving decisions in the uncertainty-dominated regime
must use a rate-estimation process, because of the associated
uncertainty in the true yield rate of the current patch.
5. Discussion
Patch foraging is a rich and flexible behaviour where an
animal enters a patch of resources, harvests them and then
leaves to search for another patch. An animal’s behaviour
can be quantified by its patch residence time distribution,
travel time distribution, the amount of resources consumed
and the movement pattern between patches. In this work,
we used principles of probabilistic inference to establish a nor-
mative theory of patch-leaving decisions. With this general
framework, we showed how foraging at different temporal
and spatial scales is connected by a similar decision problem:
‘habitat choice’ refers to larger scales when foragers do not sig-
nificantly deplete a resource, and ‘patch exploitation’ refers to
smaller scales when the forager’s activity depletes the patch.
For habitat choice the optimal behaviour is to quickly locate
and remain in a high-yielding habitat, while for patch exploi-
tation it is optimal to use prior information along with reward
encounters to estimate the current underlying yield rate to
determine when to leave the patch (figure 8 and table 1).

In ecological contexts, these activities are part of a behav-
ioural hierarchy, where an animal must decide where to forage
and how long to exploit a certain resource.

In the case of habitat choice, the forager should use its
experience of reward encounters to determine whether to
stay or leave; in our model an optimal forager departs a habi-
tat when its LLR for the probability of high-yield versus other
habitats falls below a threshold. Optimal decisions are based
on inference of habitat quality, with uncertainty being the
driving factor in habitat departure times; while this is related
to resource intake rates, it is not the same, because of how
prior information can be used in patch inference. We
showed that, with multiple different patch types, it is not
necessary to track LLRs for all patch types—behaviour is
most strongly affected by inference related to the highest
and second-highest yield habitat types. The optimal time to
arrive and remain in a high-yielding habitat is lower when
patches are more discriminable, or when high-yield patches
are more common. While Tarrive is an experimentally observa-
ble quantity, an animal’s internal decision threshold is not;
our model connects these quantities, and thus can be used
to infer the decision rules an animal is using (figure 2). For
example, a similar approach has been very informative to



Table 1. Detailed taxonomy of departure decision strategies. Departure strategies and observable trends depend on the environment and task: habitat selection
or patch exploitation (see also figure 8). Columns describe the important aspects of the optimal decision strategy for each case, along with key model results.

environment decision strategy and dependencies equations figures

habitat selection

objective: minimize time to find highest yielding habitat

known: resource yield rates of each habitat type

N-habitat types — depart habitat when likelihood of being in highest yielding

habitat falls below a threshold

— optimal strategy and arrival time depend on fraction and

discriminability of high-yield habitats

N = 2: equation (3.1);

N≥ 3: equation (3.5)

N = 2: figure 2;

N≥ 3: figure 3

continuum of habitat types — categorize habitats as high or low-yielding and depart habitat

if likelihood of a high-yield falls below a threshold

— time to identify high-yielding habitat is non-monotonic in

departure threshold, and much longer when high-yield patches

are rare

figure 5

patch exploitation

objective: maximize mean resource intake rate R over a long time (several patches)

known: initial yield rates of each patch type

1-patch type — depart when yield rate λ(t) falls to a threshold value λθ
— matches MVT except when there are very few chunks per

patch, in which case the forager should empty the patch

equation (4.3) figure 6a

2-patch types: patch type known

on arrival

— depart when resource yield rate λj(t) reaches a threshold

— represents ‘depletion-dominated’ regime; recovers MVT

equations (4.5)

and (4.6)

figure 6b

2-patch types: empty

low-yield patch

— wait a time Tu, then depart patch if no resources found;

if resources are encountered by t , Tu, use threshold on

inferred yield rate to make leaving decision (similar to

single-patch-type case)

— ‘uncertainty-dominated’ regime deviates from MVT

— optimal wait time and departure threshold λθ increase with

prevalence of high-yielding patch

figure 6c

2-patch types: both high- and

low-yield patches have

resources

— decision via threshold on current estimated yield rate ~l(t);

choose optimal threshold λθ that maximizes long-term

resource intake rate

— optimal return differs from known case given few resources

per patch, converges to known patch case when resource

density is high

— forager stays in low-yield patches too long, leaves high-yield

patches too soon when there are few resources per patch

(uncertainty-dominated regime)

equation (4.7) figure 7
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infer the parameters underlying two-choice decision tasks [66].
We showed that it is optimal to have a lower threshold—and
thus gain a higher certainty before leaving—when travel times
are large, high-yield patches are rare or high-yield patches
are easier to discriminate. Analogous results have been found
in observations of animals seeking habitats, where dispersal
costs affect whether or not animals search for a new habitat
[67]. These results give quantitative predictions that can be
used to interpret experiments, for example to examine whether
the animal is minimizing the time to reach the highest
yield habitat in a heterogeneous environment. Moreover, we
showed how behaviour in the general casewhere many habitat
types exist can be understood bymapping results onto the tract-
able case of only two different patch types (figures 3 and 5). By
varying systematically the percentage of high-yielding habitats
and the discriminability (ratio of high- to low-yield rate), the
model predicts how this affects the minimal time to arrive at
the highest yield habitat, and connects this to a process that
could implement such computations.

For patch exploitation, when the forager depletes patches in
its habitat, in most cases the long-term intake rate is maximized
by departing a patchwhen the in-patch estimated resource yield
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rate matches the average return rate of the environment (i.e. by
implementing the MVT rule). However, this does not apply
when resources within a patch are limited so there is more
uncertainty about the yield of the current patch upon departure
(figure 7). Often in Nature, the environment is volatile and ani-
mals make foraging decisions while uncertain about local
resource availability [68]. Our model predicts that, if there is
high uncertainty about the patch type, this causes even an
ideal Bayesian forager to stay longer in low-yield patches and
shorter in high-yield patches than predicted by the MVT.

Our theoretical treatment of patch-leaving decisions builds
on previous Bayesian models of foraging [31–39,41]. Our
approach goes further than previous work by providing a
step-by-step derivation of the normative strategies associated
with a continuum of different environmental conditions,
systematically identifying the dependence of observable
behaviours (e.g. patch-departure times) on environmental par-
ameters. During habitat choice, the minimal arrival time to the
high-yield habitat scales with the probability of high-yield
patches in the environment. On the other hand, we have
shown that, in the case of depleting patches, the amount of
time a forager overstays or understays in a patch scales with
the density of resources in the patch. We are also able to infer
the optimal threshold an animal should use. While this
cannot be measured directly in experiments, our observations
do reveal environmental parameter regimes under which per-
formance (e.g. foraging yield) is sensitive to changes in
strategy. This not only informs the design of behavioural fora-
ging experiments, so as to determine task parameters that
best reveal an animal’s strategy, but optimal yields can also be
compared with those obtained by animals in the wild to see
how finely tuned their foraging strategies are.

Analysis of experiments shows that animals forage in ways
that suggest they use Bayesian reasoning [40–46], using prior
knowledge of their environment to modulate foraging behav-
iour [64,69,70]. For example, bumblebees [30] and Inca doves
[71] adjust their foraging strategies in response to the predict-
ability of the environment, as a Bayesian forager would, but
this is not a universal trend [72]. Patch-leaving decisions may
deviate from Bayes’ optimality as animals become risk-averse
in variable environments [73]. Other Bayesian models have
considered patch-foraging decisions, even in rich multiple
patch environments [34,47], but this work does not necessarily
systematically vary environmental and strategy parameters to
explore how the sensitivity of performance changes. Our
work is also sufficiently mathematically tractable to suggest a
mechanistic implementation that the forager can use to
implement optimal decision rules. Moreover, our theoretical
approach applies not only to patch exploitation, but also to habi-
tat choice—where the MVT does not apply—and thus enables
connections across these multiple scales of behaviour [13].

Although we used a constant threshold value based on
either the belief or estimated yield rate, other work has exam-
ined cases where optimal decision strategies involve time-
dependent decision thresholds [65,74–76]. Typically, these
results arise in the context of multi-trial experiments in
which the quality of evidence on each trial varies stochasti-
cally and is initially unknown. In the habitat-choice context,
the quality of evidence is fixed across habitat visits, fitting
the assumptions of classic, constant threshold optimal pol-
icies. We would therefore expect an analysis allowing for a
dynamic threshold to yield the same results as we obtained
here. On the other hand, when the animal performed patch
exploitation in uncertain binary environments, we projected a
higher dimensional description of the patch value to a single
scalar estimate of the patch yield rate. In this case, a constant-
threshold implementation may not be purely optimal. Lever-
aging methods from dynamic programming commonly used
to set optimal decision policies [75] would be a fruitful next
step in ensuring the optimality of our patch-leaving decision
strategies. A common theme in previous Bayesian models
that use dynamic programming [41,47] and our approach is
that the forager should use the expected future return, not
the current return, to make departure decisions. However,
note that current and future return should be tightlymonotoni-
cally related, especially in the limit of short times into the
future. An advantage to the constant-threshold treatment is
that it enables simple explicit quantitative relations that can
be used to interpret experimental data (figure 2). For example,
experiments evaluating how animals value the quality of evi-
dence could help us delineate whether the animal is using a
constant threshold or not.

Effective search is integral to survival in Nature [77], and
search behaviour can give information on individual decision
strategies. One can consider searchwithin andbetweenpatches.
Although we assumed random timings of resource encounters,
an extension of our model could take into account different
spatial arrangements. Within patches, an animal may perform
random or systematic searches. For example, a recent study
found that rats can solve the stochastic travelling salesman pro-
blem using a nearest neighbour algorithm [78]. A similar
approach could ask howan animal’s search and navigation pat-
tern interacts with different patch-leaving decisions to create an
effective foraging strategy that also considers memory of
specific patch locations. Indeed, the explicit consideration of
spatial movement may be necessary to understand foraging
decisions. Previouswork found that, when rats must physically
move to perform foraging, the observed behaviour differed
from tasks that ‘simulate’ foraging by presenting sequential
choices or that consider a visual search [79]. It is an open ques-
tion as to how the animal integrates aspects of spatial
movement with economic valuations of future reward.

Our model assumes that animals know the initial yield rate
of each type of patch in the environment. In a real-life context
or in an experimental set-up, the animal would learn the
environmental parameters, which we could model by consi-
dering another level in the inference hierarchy whereby the
patch-type quality and fraction are learned along with the tran-
sit time distribution. Although we considered a single forager
acting alone, another important extension will be to consider
interactions between animals, either through predator–prey
interactions which affect foraging decisions [80], social foraging
of groups [52,81] or even competitive foraging [17,18,82]. In our
model, the forager only receives direct (non-social) information
about resource availability; in collective foraging, an individual
receives both social and non-social information [83,84]. This can
significantly affect foraging decisions, for example in the case
where an individual must balance resource-seeking with
group cohesion. Building on our modelling approach, foragers
could share social information either by cooperating in the
inference of the patch quality or by signalling to each other
when to depart a patch as a threshold is reached.

To conclude, our model establishes a formal framework
for the quantitative analysis of a natural behaviour—
patch foraging (involving both habitat choice and patch exploi-
tation)—that can be studied with the same formal rigor as
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many trained behavioural tasks. Such validated behavioural
algorithms are crucial for the systematic design of future exper-
iments and interpretation of data on animal behaviour [85]. By
comparing with theoretical optimal strategies, experiments
and data can be used to understand the decision strategies an
animal is employing and relate these to recorded animalmove-
ment and neural data. Future work will build on this model
framework to generate testable hypotheses on the role of
social interactions and the neural mechanistic underpinnings
of foraging behaviour.
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