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by Katherine June PELLICORE

This thesis explores two aspects of measurements of the global 21 cm signal through

analytical simulations. We first attempt to understand how well the global 21 cm

signal could be extracted from measurements of the sky. We accomplish this by

employing a Fisher matrix analysis to estimate the uncertainties of cosmological pa-

rameters for simple measurement models that assume a perfectly calibrated instru-

ment. We find that the assumed parameters of the signal can be constrained to high

precision under realistic scenarios of noise and foreground contaminants. We also

study the bias in the cosmological parameters due to modeling errors using a Fisher

matrix approach. We find that for all cases studied, which correspond to simple fre-

quency independent and frequency dependent model errors smaller than the global

21 cm signal, the bias is not significant. We then examine the spectral structure an

instrument beam introduces in measurements of the global 21 cm signal. We sim-

ulate realistic beams that vary smoothly over frequency and space, and compute a

beam-sky convolution to show how these beams interact with models of the sky. We

find that beams that evolve linearly over the frequency range, as well as all bifurcat-

ing beams, introduce a spectral structure that is small enough to avoid obstructing

measurements of the global 21 cm signal.
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Chapter 1

Introduction

1.1 The Hydrogen Spectral Line from the Early Universe

About 380,00 years after the Big Bang, photons decoupled from baryons, emitting

the Cosmic Microwave Background. This left a transparent universe full of neutral

hydrogen for millions of years. Slowly, more dense regions in the universe began to

collapse until they started to produce the first generation of stars, supernovae, black

holes, and quasars at about 100 million years after the Big Bang. Gradually, ultravi-

olet radiation from these first generations of compact sources ionized the hydrogen

in the intergalactic medium. This era is of particular interest to cosmologists today

because not much is known about the universe during these epochs of cosmic dawn

and reionization. There is little concrete evidence surrounding the first ionizing ob-

jects, how much radiation they produced, or how reionization progressed.

The redshifted 21 centimeter signal from neutral hydrogen can be used to study the

early universe. A neutral hydrogen atom in the ground state consists of one pro-

ton and one electron, each with their own magnetic dipole moment and spin. There

is a slight increase in energy when the spins are parallel and a decrease in energy

when they are antiparallel. When the electron and proton spins of a hydrogen atom

change from parallel to antiparallel, energy is released and the atom emits a pho-

ton with a wavelength of 21 cm, which corresponds to a frequency of 1420 MHz.

The intergalactic medium in the early universe consisted predominantly of neutral

hydrogen, and thus current theoretical models predict that measuring the 21 cm sig-

nal is the most direct way of probing the large scale evolution of the universe as a
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function of time [Furlanetto et al., 2006]. Features of the cosmological signal would

provide information about properties of the first luminous objects, time line of reion-

ization, and many other important aspects of the early universe that are unknown

to cosmologists today.

The 21 cm cosmological signal has been redshifted, or stretched in wavelength, over

time as a result of the expansion of the universe. Whenever a light source is moved

away from an observer, a redshift occurs and the wavelength of the light increases

while the frequency in turn decreases. Because the redshift, z, is a measurement

of how the properties of light change as it moves with respect to an observer, it is

directly related to frequency, as given by the following equation:

z =
νem − νobs

νobs
(1.1)

where νem is the frequency emitted by a light source and νobs is the frequency ob-

served. As the universe expands over time, light moves away from an observer and

creates a redshift that is related to the time since the Big Bang. The age of the uni-

verse today is defined to be at redshift zero, with redshift increasing as you move

backwards in time. As a reference, Table 1.1 presents both the redshifts and the fre-

quencies of the 21 cm cosmological signal that correspond to the time since the Big

Bang.

Time [Myr] Redshift ν [MHz]
40 56 25
100 30 47
500 10 130
1000 6 200

TABLE 1.1: Time since the Big Bang and the corresponding redshifts
and frequency of the 21 cm signal

The early universe has a high redshift, which corresponds to a lower frequency of

the cosmological signal. Today, we expect most of the cosmological signal to be

constrained within the frequency range of 40-120 MHz, which corresponds to a

redshift range of 35-15. Though theory predicts the existence of the 21 cm signal
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from the early universe, it has never been measured, and experiments over the last

decade have all been unsuccessful in their attempts to extract it from the galactic

foregrounds.

Most modern experiments use one of two instrumental methods to measure the cos-

mological signal in the low-frequency (MHz) radio sky: an interferometer array or

a single antenna with a wide beam [Harker et al., 2012; Mozdzen et al., 2016; van

Haarlem et al., 2013]. An interferometer array uses a collection of telescopes that si-

multaneously measure the sky temperature for higher resolution images. This mea-

surement could show the spatial and redshift dependence of the cosmological signal

and produce statistics and images of the brightness temperature over the whole sky.

A single antenna measures the global, or sky averaged, 21 cm signal as a function

of frequency and, therefore, redshift. This method cannot characterize the spatial

resolution of the 21 cm signal, but it is capable, in principle, of providing an esti-

mate of its monopole component. Using a single antenna is advantageous because

it is both simpler and and less expensive than using an interferometer array. The

broad spectral features of the global signal trace the transitions of the intergalactic

medium in the early universe. Models of the global signal show three main features,

with an absorption trough as the strongest aspect of the signal. There are also two

small features, one before and after the trough, corresponding to events during the

Dark Ages and Epoch of Reionization, respectively. The 21 cm signal would have

evolved with time until approximately redshift six, after which it disappears due

to the reionization of the neutral hydrogen in the intergalactic medium. Figure 1.1

shows the features of the global 21 cm signal as a function of both frequency and

redshift.

Measurements of the global signal produce an antenna temperature spectrum that is

dominated by strong diffuse foregrounds. These foregrounds are about four orders

of magnitude larger than the signal, making accurate measurements of the global

signal very challenging. Although the foregrounds are strong, they are smooth in

frequency, making it possible to extract the global 21 cm signal from measurements

of the sky temperature [Harker et al., 2012].
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FIGURE 1.1: The spectral shape of the global 21 cm signal [Pritchard
and Loeb, 2011]. The main feature is a central absorption trough, with

two smaller features before and after the trough.

1.2 Thesis Overview

Using simulations, this thesis explores two important aspects of the global 21 cm sig-

nal which are relevant for instruments observing either from Earth or space. Chapter

2 explores an analytic method that contributes to the understanding of how well the

global 21 cm signal can be extracted from measurements conducted under ideal con-

ditions. Specifically, it describes the implementation of the Fisher matrix approach

for estimating the uncertainties on parameters for a simple model of the global 21

cm signal under realistic scenarios of noise and foreground contamination. It also

describes the use of a Fisher matrix approach to estimate biases in the parameters

when the assumed model for the global 21 cm signal is incorrect. Chapter 3 stud-

ies an important instrumental aspect of this measurement. For an otherwise per-

fectly calibrated instrument, the frequency dependence of the antenna beam intro-

duces spectral structure in measurements of the global 21 cm signal. We examine the

properties of this structure for simple but realistic simulated beams with smooth fre-

quency and spatial variations. Chapter 4 discusses and summarizes the key findings

of this thesis.



5

Chapter 2

Implementation of Fisher Matrix

Forecasting Code

Fisher matrices are a mathematical modeling tool to estimate uncertainties in model

parameters for Gaussian measurement errors. Biases in the parameters due to incor-

rect models can also be estimated with this formalism. In this chapter, we model sky

temperature spectrum in the range of 40 to 120 MHz, which corresponds to a redshift

range of 35-15. We then explore the use of Fisher matrices to estimate uncertainties

for parameters of simple models of the 21 cm signal.

2.1 Fisher Matrix and Confidence Ellipses

2.1.1 Motivation

Fisher matrices are used widely in astrophysical research to estimate parameter mea-

surement uncertainties from measurement models [Pritchard and Loeb, 2010]. They

are a practical tool for forecasting experimental uncertainties primarily because they

represent a completely analytical method. The Fisher method allows us to use mod-

els for both the noise and the measurement, thus permitting accurate calculation

of future measurement uncertainties without expensive simulations to produce syn-

thetic data. After we compute the Fisher matrices, we can plot the results in the form

of confidence ellipses in order to visually represent the uncertainties.
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2.1.2 Computation Method

The Fisher matrix is computed using the equation:

F = JTλ0Σ−1Jλ0 . (2.1)

First, we compute the Jacobian, J, of the measurement model. This is done by tak-

ing the derivative of the model with respect to each fit parameter. The Jacobian is

then evaluated at the nominal value for each of the parameters, λ0. When the mea-

surement is a frequency spectrum, this will produce an Nν × Nλ matrix, with Nν

representing the number of frequency channels and Nλ representing the number of

parameters.

Eqn. 2.1 requires an equation for the covariance noise, Σ, computed using the noise

models described below in Section 2.2.3. This is an Nν ×Nν matrix.

The Fisher matrix has dimensions of Nλ × Nλ. The uncertainties in the parameters

are obtained by inverting the Fisher matrix, which creates an Nλ×Nλ parameter co-

variance matrix, C. The diagonal terms represent the variance of each parameter, and

the cross terms represent the covariance between pairs of parameter uncertainties.

In this chapter, we compute the Jacobian using the measurement models described

in Section 2.2. Our frequency range is from 40-120 MHz, and thus Nν has 81 terms.

We analyze measurement models with 3 to 8 fit parameters, and therefore the length

ofNλ varies. We implemented these computations in Python using the SymPy mod-

ule, which provides the capability of computing derivatives of analytical models and

then evaluating them at specific values.

We visualize these uncertainties in the form of ellipses that represent constant prob-

ability limits in the uncertainty distribution. The ellipse dimensions are taken from

the parameter covariance matrix. If we have two parameters, j and k, then they will

have a covariance matrix:
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F−1 = C =

 σ2
j σjk

σjk σ2
k

 . (2.2)

The semi-major axis a, semi-minor axis b, and rotation angle θ of the confidence

ellipses are calculated as follows:

a2 =
σ2
j + σ2

k

2
+

√
(σ2
j − σ2

k)
2

4
+ σ2

jk (2.3)

b2 =
σ2
j + σ2

k

2
−

√
(σ2
j − σ2

k)
2

4
+ σ2

jk (2.4)

tan2θ =
2σ2

jk

σ2
j − σ2

k

(2.5)

These equations, as summarized from Coe, 2011, can be used to construct confidence

ellipses for any Nλ ×Nλ parameter covariance matrix. To get a constant probability

limit, the width and the height of each ellipse must be multiplied by a scaling factor,

α. For a 68.3% probability limit, α has a value of 1.52, and for 95.2% α is equal to

2.48.

2.2 Statistical Uncertainty in the Global 21 Cm Signal Model

We model the temperature spectrum over frequency, ν, assuming a perfectly cali-

brated instrument. Our measurement model contains contributions from the cos-

mological signal, diffuse foregrounds, and noise, i.e:

Tsky = TFG + T21 +Noise (2.6)

where Tsky is the sky temperature, TFG is the foreground temperature, and T21 is

the temperature of the global 21 cm signal. Our analysis assumes that we simultane-

ously fit a set of parameters for the global 21 cm and parameters for the foreground.
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2.2.1 Cosmological Signal Model

We model the global 21 cm signal using a Gaussian:

T (A, ν0, FWHM ; ν) = Ae
−4ln(2)(ν−ν0)

2

FWHM2 (2.7)

Given the uncertainties in predictions of the global 21 cm signal, current studies

[Bernardi et al., 2015, 2016; Mozdzen et al., 2016] use expressions of this type as first

order approximations. The fit parameters of this equation are the amplitude A, the

full width at half maximum FWHM, and the center frequency ν0. These parameters

and their nominal values are shown in Table 2.1.

Parameter Description Nominal Value
A Amplitude -100 mK
FWHM Full Width at Half Maximum 20 MHz
ν0 Centering Frequency 80 MHz

TABLE 2.1: Parameters and nominal values of the cosmological signal
model.

Figure 2.1 shows the cosmological signal plotted across the frequency range. The key

feature of the signal is the absorption trough, which is represented by this Gaussian

model.

2.2.2 Foreground Models

The largest contribution to the spectrum in our frequency range is due to the diffuse

emission from our galaxy [Bernardi et al., 2015; Harker et al., 2012]. The radiation

mechanism for this signal is broadband synchrotron radiation, which arises from

relativistic charged particles. When the particles encounter a strong magnetic field,

they are accelerated and emit radio waves that contribute to about 75% of the to-

tal foreground intensity [Zaroubi, 2012], with the remaining fraction produced by

the integrated effect of extragalactic point sources, in addition to other diffuse fore-

grounds such as free-free radiation.
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FIGURE 2.1: Temperature as a function of frequency for the Gaussian
model of the global cosmological signal. The absorption trough of the

signal has an amplitude of only -100 mK.

We consider two models that account for the foreground spectrum in this chapter.

The first, from Bernardi et al., 2015, uses a single power law function , and is given

by the equation:

TFG(T0, β; ν) = T0

( ν
νn

)β
(2.8)

The fit parameters in this model are the reference temperature, T0, at νn = 80 MHz

and the spectral index β. Their nominal values are shown in Table 2.2.

Parameter Description Nominal Value
T0 Brightness Temperature 1000 K
β Spectral Index -2.5

TABLE 2.2: Parameters and nominal values for the first foreground
model.

This model represents a first order approximation to a real foreground spectrum,
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which, although smooth, would require more than a single spectral parameter [Mozdzen

et al., 2017].

The second foreground model consists of a five-term polynomial. The galactic fore-

grounds do not follow an exact power law function, and thus need more than one

term to be represented accurately. We use a model introduced in Mozdzen et al.

2016, which corresponds to a generic five-term polynomial scaled by a power law

with β equal to -2.5:

TFG(ai; ν) =

4∑
i=0

aiν
−2.5+i (2.9)

The nominal values for the polynomial fit parameters are shown in Table 2.3, and

were derived from a fit to a sky spectrum measured by the EDGES experiment in

Western Australia [EDGES collaboration, 2017; in preparation].

Parameter Description Nominal Value
a0 Polynomial 879.03948833 K
a1 Polynomial 2887.92106234 K
a2 Polynomial -4348.12441145 K
a3 Polynomial 2697.33157658 K
a4 Polynomial -564.14138205 K

TABLE 2.3: Parameters and nominal values for the fit amplitude pa-
rameters.

Figure 2.2 shows our second foreground model.
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FIGURE 2.2: Model for the sky-average foreground temperature pro-
duced by fitting a real sky spectrum with the EDGES polynomial of

Eqn. 2.9.

2.2.3 Noise Model

The measured noise in this type of experiment is proportional to the system tem-

perature and dominated by the diffuse galactic foreground intensity, which has tem-

peratures reaching thousands of Kelvin. Noise from the instrument is minor, with

typical values below a few hundred Kelvin. This is represented by Eqn. 2.10:

Tsys = TFG + T21 + Tinst ≈ TFG (2.10)

We assume that integration of hundreds of hours has reduced the noise to levels

below those of global 21 cm signal. Our noise model, as in Harker et al., 2012, cor-

responds to the radiometer equation, which assumes a frequency-dependent noise

standard deviation proportional to the foreground temperature:
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σnoise =
TFG√
∆ν∆t

(2.11)

In order to reduce the noise below the level of the 21 cm signal, we assume both a

frequency channel width, ∆ν, of 1 MHz and that the observation is conducted over

a period of ∆t equal to 500 hours. Clearly, a larger value of either parameter reduces

the measurement noise. Figure 2.3 shows the noise standard deviation derived from

our model, as well as one random noise realization.

FIGURE 2.3: Noise our model for the in sky temperature as a function
of frequency produced by the radiometer equation (Eqn. 2.12). The
smooth lines represent the frequency-dependent standard deviation.

In addition, we show one random noise realization for reference.

2.2.4 Results

From the Fisher matrices, we produced covariance matrices for the fit parameters

in our simulated measurements consisting of the global 21 cm model, a foreground

model, and the noise model.
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We show the results of our uncertainty computations in the form of triangle plots

that depict the covariances between pairs of fit parameters. These plots show el-

lipses for 68.3% and 95.4% confidence levels, represented by a blue and red line,

respectively, on the plots. The black cross in the center of every ellipse represents

the fiducial value of each parameter. Low covariance relationships correspond to

either circular limits or elongated ellipses aligned with either the x or y axis. High

correlation is depicted by an elongated ellipse not aligned with any axis. The width

of an ellipse corresponds to its marginalized uncertainty. We show this marginalized

uncertainty in the black at the top of each panel column.

Though the observing time has a fiducial value of 500 hours, we experimented with

times ranging from 125 to 500 hours. Noise, and thus measurement uncertainty,

increases with a shorter observing time, but the parameter uncertainties do not de-

grade significantly. Because of the square root in the denominator of the radiometer

equation (Eqn. 2.11), doubling the observing time does not necessarily decrease the

noise by a factor of two. For example, when computing the first foreground model

(Eqn. 2.9) the uncertainty in the full width at half maximum increases by only 0.7%

when the observing time is cut from 500 to 125 hours. Unless the observing time

changes dramatically, this parameter has a minor and well-understood effect on

measurement uncertainties, so we neglect any further analysis of this aspect for the

remainder of this thesis.

Figure 2.4 shows the confidence ellipses and one dimensional Gaussian distribu-

tions for the three fit parameters in the cosmological signal model, Figure 2.5 dis-

plays ellipses for the foreground model with a single power law, and Figure 2.6 is

the triangle plot for the five term foreground model. In all cases, the cosmological

parameters (A, FWHM, ν0) are the same.

Case One

The model in this case corresponds to the global 21 cm signal with no foregrounds.

Although not physically realistic, we use this model as a baseline reference for the

measurement uncertainties.
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FIGURE 2.4: Case One: No Foregrounds. Confidence ellipses and
normalized one-dimensional Gaussian distributions for the three pa-
rameters in the cosmological signal model. This case shows the small-

est uncertainties for the three cosmological fit parameters.

We expect to see the smallest cosmological uncertainties in this model because of the

lack of foregrounds and, consequently, the lower number of parameters. From the

one-dimensional Gaussian distributions in black, we can indeed see that the uncer-

tainties in the three cosmological parameters are very small, with 95.4% uncertainty

limits to within 0.6% percent of the nominal values.

By examining the orientation of the ellipses, we can see that the ellipse of the am-

plitude of the signal, A, and the center of the Gaussian, ν0, is almost completely

circular and aligned with the axis. There is therefore no correlation between these

two parameters, which is to be expected because the shifts in ν0 are orthogonal to

the amplitude. We can analyze this quantitatively by computing the correlation co-

efficient between the two parameters, ρ, using the following equation:

ρjk =
σjk
σjσk

(2.12)
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For A and ν0, the correlation coefficient is 0.036, confirming that the two parameters

have a low covariance.

On the contrary, there are clear correlations between the other parameter pairs. For

the case between ν0 and the full width at half maximum, this occurs because small

changes in the Gaussian center due to measurement uncertainties causes confusion

with changes in its width. In other words, ν0 and the full width at half maximum are

not orthogonal to each other, which produces their covariance. Similarly, changes

in the full width at half maximum of the Gaussian easily affect its amplitude, and

because these parameters are not orthogonal they will have non-zero covariances.

These observations are reflected in the correlation coefficient, ρ, between the param-

eter pairs. A and the FWHM have a correlation coefficient with a magnitude of 0.49,

which is almost fourteen times larger than the correlation between A and ν0. The

correlation coefficient for the FWHM and ν0, is similarly large and has a magnitude

of 0.47, which is thirteen times larger than that between A and ν0.

Case Two

The triangle plot for Case Two was constructed using the cosmological signal model

and the power law function (Eqn. 2.8) as the foreground model. Though there are a

number of interesting features in the triangle plot of Case Two, we highlight only a

few in this section.

We expect the incorporation of the foreground in the measurement model to in-

crease the uncertainties in the three cosmological fit parameters. Examination of

Figure 2.5 confirms this expectation. We analyze this quantitatively by examining

the one-dimensional Gaussian distributions for Case Two as compared to Case One.

The 1-σ uncertainty (68.3% confidence level) increased from Case 1 by 8.6% for the

amplitude A, 19.9% for the FWHM, and 5.9% for the center frequency ν0. Although

the uncertainties in all three cosmological parameters have increased, they are still

notably small; at a 95.4% confidence level they are within 0.8% of the nominal values.

The ellipse showing the covariance of the FWHM and T0 depicts one of the highest

ellipticities for Case 2. This is because small parameter variations are not orthogonal
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and have a positive correlation. A positive correlation implies that as T0 increases,

the FWHM tends to be estimated as larger values than its true value, for a given

noise level. The correlation coefficient, ρ, between these two parameters is 0.56,

confirming this observation.

The correlation between the three cosmological parameters (A, ν0, and the FWHM)

have generally increased, with the exception of the correlation between the FWHM

and the amplitude. The addition of the foreground term weakens the effect of a

changing amplitude on the uncertainty of the full width at half maximum, and thus

a decrease in ρ is to be expected for these two parameters.
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FIGURE 2.5: Confidence ellipses and normalized one-dimensional
Gaussian distributions for the five parameters in the model of Case

Two.
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Case Three

Case Three corresponds to a five-term polynomial model of the foreground. By ex-

amining the size of the confidence ellipses in Figure 2.6, we can see that this model

produces the largest uncertainties of the three cases.

To see this quantitatively, we can look at the covariance matrices for each of the three

triangle plots. For example, the uncertainty in A increases by a factor of 4.5 from

Case One to Case Three. The uncertainty in ν0 is the most stable of the three and

only increases by 70% from Case One to Case Three. These increases result from the

higher number of parameters. Although the total uncertainties on each parameter

increased in Case Three, the uncertainties on the cosmological parameters are still

well-constrained, with 95.4% confidence within 2% of the nominal values of A, the

full width at half maximum, and ν0.

The polynomial model also introduces the largest covariance between pairs of pa-

rameters, as evidenced both by how much narrower the confidence ellipses are in

Figure 2.6 than the other plots and by the correlation coefficient, ρ. This is typical

behavior for polynomials, and is to be expected. As an example, the correlation co-

efficient between a0 and a1 is 0.27. The correlation between polynomial terms also

changes direction depending on the degree of the polynomial terms, which is also

typical behavior for polynomials.

The correlation between the three cosmological parameters increased for all cosmo-

logical parameters in Case Three. The correlation coefficient ρ between the ampli-

tude A and the FWHM has a magnitude of 0.89 and almost doubled between Case

One and Case Three. ρ between A and ν0 increased to 0.69 from 0.13 in Case Two

and 0.036 in Case One. The correlation coefficient between the full width at half

maximum and ν0 increased by a factor of 1.6 from Case Two to Case Three.
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FIGURE 2.6: Confidence ellipses and normalized Gaussian distribu-
tions for Case Three, which models the foreground as a five-term

polynomial.
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2.2.5 Discussion

We found that additional parameters in the measurement model increase the un-

certainty as well as the covariance between the cosmological parameters of interest.

This is because by adding extra free parameters we are also assuming the uncer-

tainty in that parameter and its effects on the others. This is particularly relevant in

the case where the model contains several polynomial terms of different order whose

coefficients are mathematically unconstrained. Although the uncertainties grow as

the foreground model becomes more complex, with measurement noise assumed

with the radiometer equation, the uncertainties in the cosmological parameters are

still small in the three cases (no foreground, simple power law, polynomial), and are

constrained within 2% of the nominal value for even the most complex foreground

models.

The results of these simulations have shown that low measurement noise corre-

sponding to up to 500 hours of effective integration can result in low uncertainties

in the cosmological parameters for a simple Gaussian cosmological signal model

when observing low foregrounds that are spectrally smooth, modeled with up to

five terms, and have no priors. This is valid under the assumption that the mod-

els are correct but could be generalized to imperfect but sufficiently accurate mod-

els. This Fisher matrix analysis can be extended to increasingly more complicated

models with additional parameters for both the cosmological signal and the fore-

grounds. As the models become more accurate, the assumption of a perfect model

will be justified, and therefore these predicted statistical uncertainties will become

more representative of reality. We leave this analysis of more realistic models for

future work.

2.3 Bias in the Global 21 Cm Signal Measurements

In the computation of the Fisher matrices and subsequent confidence ellipses, it was

assumed that our measurement model was correct. This assumption may not be

valid, so in this section we use an extension of the Fisher matrix approach to estimate
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the bias in cosmological parameters for certain cases of model inaccuracies. This

approach is still not widely used in experimental astrophysical research due to the

increasing popularity of more mathematically rigorous methods such as Markov

Chain Monte Carlo techniques [Harker et al., 2012]. However, as long as we have

access to an analytical model for the measurement, the Fisher matrix approach is

significantly less expensive computationally and produces results more quickly. We

do not incorporate foregrounds in this analysis to focus on understanding the Fisher

matrix results for a simple mathematical model with closed analytical bias solutions.

We compare our results with analytical predictions for validation.

2.3.1 Bias Equation

Parameter bias corresponds to the difference between the true input parameter value

and the value estimated after assuming an incorrect model. In the Fisher matrix

approach, assuming that the biases are comparable to the statistical uncertainties,

the bias in parameter i in the context of a global sky measurement is computed as in

Bernardi et al., 2015, as:

Biasi =

Npar∑
j=1

F−1
ij

Nchan∑
n=1

1

σ2
noise

dTsky(νn)

dλj
R(νn) (2.13)

The bias in parameter i is calculated by first taking the derivative of the measurement

model with respect to each parameter and dividing by the channel variance. This

is then multiplied by the model error, R. After summing over frequency channels

and multiplying by the ith column of the Fisher matrix, we get a single number

corresponding to the parameter bias.

In general, the bias on a parameter is significant when it is several times larger than

its statistical uncertainty.
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2.3.2 Models

Measurement Models

We computed the bias for the fit parameters in our Gaussian cosmological signal

model (Eqn. 2.7) for two cases of model errors and frequency independent noise

with a standard deviation of 1 mK.

Model Errors

We considered two types of errors in our Gaussian cosmological model. Both types

were chosen because we can easily predict their effects and compare them with

Fisher Matrix results.

The first type of model error is a frequency-independent offset, meaning R is a sin-

gle number. As the model error increases, the bias in the amplitude, A, will corre-

spondingly increase. As the amplitude changes, the position in of the full width at

half maximum also changes, and thus the bias in that parameter increases. For this

model error, we expect no bias in the center frequency because the error is orthog-

onal to the perturbation in ν0. The second model error we considered corresponds

to a scaled version of the Gaussian cosmological model. We chose this error type

because it again allows us to easily anticipate what the parameters should be. In

particular, as the model error increases the bias in A will correspondingly increase

in magnitude. However, because the model error corresponds to a Gaussian offset,

the bias in ν0 and the full width at half maximum will be zero.

The residual models for this section are ”toy” models. Much like the cosmological

signal model, they are not physically motivated. However, knowing how the bias

should change in these two cases represents a reference for verification of the imple-

mentation of this Fisher matrix method for bias computation.
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2.3.3 Results and Discussion

The bias for the frequency independent model error was computed for ten values of

this error spaced linearly between 1 and 10 mK. Figure 2.7 shows how the bias in the

three fit parameters varies as a function of value. As expected, the bias in ν0 is zero

for all model error values.

FIGURE 2.7: Bias in the three cosmological fit parameters for a fre-
quency independent model error.

The correlation between the model error and the amplitude A is positive because the

error makes the Gaussian appear smaller (less negative) relative to its nominal model

with an amplitude of -100 mK. For a model error of 10 mK, the bias in A is 7 mK.

The values for the error and the bias are not the same because, when affected by the

error, the cosmological signal model is not a pure Gaussian anymore. This difference

gets absorbed by more than one parameter. The full width at half maximum and

the model error have a negative correlation because the error makes the Gaussian

appear thinner compared to its nominal model; thus, as the model error increases

the bias becomes more negative. For a model error of 1 mK, the bias in the FWHM

is -0.28, and decreases to -2.8 for a model error of 10 mK.
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Figure 2.8 shows the bias in the three fit parameters of the Gaussian model error

with an amplitude that ranges from 1 to 10 mK. In this case, we only expect a bias

in the amplitude. The results match this expectation. As in the previous case, the

correlation between the bias in the amplitude and the model error is positive. For

a Gaussian model error, the bias is exactly equal to the error. This shows the bias

fully absorbs the model error, which matches the spectral shape of the cosmological

signal. Specifically, when the Gaussian model error in the amplitude is 1 mK, the

bias is 1 mK, and when the model error is 10 mK, the bias increases to 10 mK.

FIGURE 2.8: Bias in the three cosmological parameters for a Gaussian
model error.

We complement the information in these two figures by showing triangle plots in

Figures 2.9 and 2.10. These include the confidence ellipses due to the simulated

statistical uncertainty, i.e. frequency independent noise with a standard deviation of

1 mK. The triangle plots include the location of the biased parameters, represented

by a red circle, after a model error amplitude of 0.01 K, or 10 mK.
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FIGURE 2.9: Confidence ellipses and normalized Gaussian distri-
butions for a frequency-independent model error. The bias in the

FWHM is 4.4 times larger than the 68.3% confidence limits.

FIGURE 2.10: Confidence ellipses and normalized Gaussian distribu-
tions for a frequency-dependent Gaussian model error. As expected,

the bias is nonzero only in the amplitude A.

We observe that the biases computed are comparable to the statistical uncertainty



26 Chapter 2. Implementation of Fisher Matrix Forecasting Code

resulting from our assumed noise level. The largest bias relative to the statistical

uncertainty of the parameter occurs for the FWHM and a frequency independent

model error. The ratio between the bias in the FWHM and its uncertainty from the

covariance matrix has a magnitude of 4.4, which, although larger than in the other

cases where the biases are constrained within the 95.4% confidence limits, is still

in the limits of significance. More context would be required in order to definitively

label the bias in the FWHM as significant for this assumed measurement uncertainty.

Overall, all biases computed were constrained within 15% of the nominal value for

each parameter for even the highest model errors.

The techniques used in this section can be used for further study of how the residuals

affect measurement of the cosmological signal. The bias can be computed using the

methods described in Section 2.4.1 for residuals that are out of the scope of this

project, and future measurement attempts of the 21 cm signal use the results of this

section as a reference point for their bias expectation values.

2.4 Summary

In this chapter we implemented a Fisher matrix method to estimate parameter un-

certainty for a Gaussian model of the 21 cm cosmological signal. We forecasted

measurement uncertainty using frequency dependent noise and two different fore-

ground models. We found that as parameters are added to the foreground model,

the uncertainties in the three fit parameters (A, the full width at half maximum, and

ν0) of the Gaussian grow. The bias, which quantifies parameter errors due to model

error, was also computed using a Fisher matrix formalism. We found that, for the

assumed frequency independent measured noise, the bias for all parameters was

within an acceptable range, with less than a 15% change, of the computed statistical

uncertainties.

Though the measurement models used in this chapter are not physically realistic,

the Fisher matrix analysis for both the parameter uncertainties and the bias in each

parameter can be used for future studies involving increasingly more complex mod-

els.
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Chapter 3

Effects of Smoothly Varying

Antenna Beams on Wideband

Measurements of the

Low-Frequency Sky

In order to precisely determine the global 21 cm signal, it is necessary to know the

properties of the measurement instrument. Currently, the uncertainty of real experi-

ments conducting this measurement is dominated by uncertainties in the instrument

bandpass [Bernardi et al., 2015]. In turn, a significant contribution to this uncertainty

arises from imperfect knowledge of the antenna beam. One of the ways this can be

mitigated is by utilizing beams that do not vary significantly as a function of fre-

quency. Sharp variations of a beam with frequency will result in sharp structure

being introduced to the sky spectrum, which complicates the extraction of the cos-

mological signal [Mozdzen et al., 2016]. In the case of the global 21 cm measurement,

all the cosmological information is contained in the spectrum. Therefore, it is critical

to determine with precision the spectral properties of the antenna beam in order to

remove them from the measurement. It is also important to conduct observations

with beams that have minimal variations by design.

In this chapter, we evaluate the spectral contribution of smoothly varying antenna
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beams produced from analytical models. Our computations described in this chap-

ter can correspond to an instrument located either on Earth or in space. The key

properties of our simulated beams, which include smooth spatial and spectral vari-

ance, are realistic to first order. We compute synthetic sky spectra by modeling obser-

vations of these beams pointing at low-foreground regions of a simulated radio sky.

We analyze the results first by computing the difference between synthetic spectrum

and a nominal spectrum that is generated using a frequency-independent beam. We

then quantify the spectral structure of antenna temperature by fitting and remov-

ing a log-log polynomial to our beam-sky convolutions. An ideal beam would pro-

duce minimal spectral structure, but because realistic beams introduce chromatic, or

frequency-dependent, effects that corrupt the beam [Mozdzen et al., 2016], it is crit-

ical to thoroughly understand the structure that an instrument introduces to mea-

surements of the global 21 cm signal. Insufficient knowledge of the beam could lead

to experimentalists incorrectly claiming a detection of the cosmological signal, be-

cause the spectral structure of the instrument could mimic sky spectrum variations

from the global 21 cm signal [Harker et al., 2012].

3.1 Measurement of the Sky Through an Antenna Beam

An antenna beam describes the amplitude, or gain, of the antenna response to in-

coming radiation from all angles. This definition is valid for both a receiving and

transmitting antenna. As an analogy, the antenna beam is equivalent to the space-

dependent response of a microphone to incoming sound waves from all directions.

Similarly, the signal produced at the terminals of a receiving antenna is the sum of

the incoming radiation weighted by the antenna beam amplitude at each angle.

When an antenna beam points at the sky, the signal produced by the antenna, called

antenna temperature, is given from Mozdzen et al., 2016 by:

TA(ν) =

∑
Ω

B(n̂,Ω, ν)TSky(Ω, ν)∑
Ω

B(n̂,Ω, ν)
(3.1)
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where TA represents antenna temperature, Ω represents spatial coordinates, n̂ repre-

sents the pointing coordinates, B represents the beam, and TSky represents intrinsic

sky temperature. This calculation produces an antenna temperature in the same

units as sky temperature, which has traditional units of Kelvin. From this calcula-

tion, it is clear that the frequency dependence of the beam can introduce structure in

the antenna temperature spectrum that departs from the inherent frequency varia-

tions of the sky.

3.2 Sky Models

In this section, we describe the sky models used to compute the beam-sky convolu-

tion (Eqn. 3.1).

3.2.1 Scaled Haslam Map

The Haslam map is an all-sky map of diffuse emission at 408 MHz [Haslm et al.,

1982]. The strongest contribution to the intensity in the map is Galactic synchrotron

radiation. The Haslam map is widely used for simulations of observations by scal-

ing it to the relevant frequency range using a power law spectral model. We obtain

the map from the LAMBDA data sets accessed through the NASA Goddard Flight

Center in HEALPix coordinates, with an NSide resolution of 512. For faster com-

putation, we reduced this to NSide 64, which decreased the number of pixels by a

factor of 64. Since we are interested in the range of frequencies from 40-120 MHz,

the Haslam map is scaled to these frequencies as in Mozdzen et al., 2016, using the

equation:

Tsky = TCMB + (T408 − TCMB)
( ν

408

)−β
(3.2)

where T408 is the original value of the Haslam map at 408 MHz at a given point,

ν is the frequency range, β is the spectral index, and TCMB is the temperature of

the Cosmic Microwave Background and has a value of 2.725 K. The Haslam map is



30
Chapter 3. Effects of Smoothly Varying Antenna Beams on Wideband

Measurements of the Low-Frequency Sky

originally represented in Galactic coordinates, but for our computations of antenna

temperature with Eqn. 3.1 we must convert it to antenna-centered local coordinates.

Galactic coordinates have their origin at the Galactic Center. Galactic longitude is

analogous to terrestrial longitude, and is defined with its origin through the Galactic

Center. Constant Galactic latitude lines are perpendicular to longitude, and parallel

to the Galactic plane at Galactic latitude zero. Antenna-centered local coordinates

are defined relative to the antenna itself. The azimuth varies between 0◦ and 360◦ on

the plane perpendicular to the pointing direction. The elevation is defined parallel

to the pointing direction, and has coordinate values ranging between -90◦ and 90◦,

with 90◦ being the elevation of the pointing coordinates. This elevation typically

overlaps with the angle of highest antenna gain. Later computations in this chapter

will be in equatorial coordinates, which have the heavens projected onto a sphere

that encircles the Earth. This system is described using declination and right ascen-

sion. Declination is analogous to latitude, and is defined as the distance of an object

from the equator, with values ranging from ± 90◦. Right ascension is analogous

to longitude, and is defined as how eastward an object is from the Vernal Equinox

point. Right ascension is measured in hours, and passes through 360 degrees in 24

hours.

FIGURE 3.1: The log of the Haslam map in galactic coordinates on the
left and equatorial coordinates on the right. The color scale represents
the log of TSky in Kelvin, and the center of both maps represents the
origin of each coordinate system. The area enclosed by each grid on

the map denotes a 30◦ by 30◦ area.
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3.2.2 Guzman-Haslam Interpolation

To model low-frequency observations, traditionally the spectral index β has been

assumed to have a value of 2.5 that is constant across space. We compute a more

realistic, spatially dependent β using two reference maps: the previously introduced

Haslam map at 408 MHz and the Guzman map at 45 MHz [Guzman et al., 2011] .

With these two maps at hand, the spectral index is computed as in Mozdzen et al.,

2017 as:

β(Ω) =
Log

(
T45(Ω)
T408(Ω)

)
Log

(
45
408

) (3.3)

where T45 is the Haslam 45 MHz map from section 3.2.1, and T408 is the Guzman 45

MHz sky map. In Mozdzen et al., 2017, they found that a sky model produced with

this spatially dependent spectral index produces the best match to measurements of

diffuse foregrounds to date. Figure 3.2 shows how the spatial dependence of our β

computed with two maps.

To implement the Guzman-Haslam interpolation sky model, we scale the Haslam

map using Eqn. 3.2 and transform it to local coordinates as in Section 3.2.1. In this

case, though, we use our spatially variant β to compute the sky temperature.

FIGURE 3.2: The spatially dependent spectral index β obtained by
the Guzman-Haslam interpolation. The area enclosed by each grid

represents a 30◦ by 30◦ area.
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Because the Guzman-Haslam interpolation models the diffuse Galactic foregrounds

much more accurately than the Haslam map, we use this sky model exclusively for

our computations of the beam-sky convolution.

3.3 Beam Models

We study the effect of spectral properties in three Gaussian beams that, in terms

of their spatial characteristics, we describe as circular, elliptical and bifurcating. A

bifurcating beam is based on a circular Gaussian, and so also introduces ellipticity.

Thus, it is the most general beam of the three. Moreover, it is also the beam type that

most closely matches real wide antenna beams.

3.3.1 General Beam Equation

We constructed a single beam equation to model the three beam types. It is given

by:

B(AZ,EL, ν) = Ab[cos(2[AZ − φ1]) + 1]Bn(EL) + Ae
(EL−90)2

2α2 (3.4)

where

α =

√
F 2
xF

2
y

16ln(2)[F 2
x sin2(AZ − φ0) + F 2

y cos2(AZ − φ0)]
. (3.5)

The parameters in the beam equation and their significance are denoted in the table

below:
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Parameter Description
EL Elevation
AZ Azimuth
Ab Bifurcation Amplitude
A Gaussian Beam Amplitude
φ0 Elliptical Rotation Angle
φ1 Bifurcating Rotation Angle
Bn Bifurcating Function
Fx FWHM in x
Fy FWHM in y

TABLE 3.1: Table showing the parameters of the beam equation
(Eqns. 3.4 and 3.5).

The bifurcation amplitude (Ab), Gaussian beam amplitude (A), and the two beam

widths (Fx and Fy) can vary over the frequency range between predetermined min-

imum and maximum values. These spectrally dependent parameters can change

either 1) linearly with a positive slope, 2) linearly with a negative slope, 3) quadrat-

ically with a positive slope, or 4) quadratically with a negative slope. A parameter

that changes with a positive slope will be equal to its minimum value at 40 MHz

and increase to its maximum value by the end of the frequency range, at 120 MHz.

The two rotation angles, φ0 and φ1, control the azimuthal offset of the beam and will

have one of two values: 0◦ or 90◦. The two beam full widths at half maximum, Fx

and Fy, are defined perpendicular to each other. Fx is aligned with φ0, and thus,

regardless of the beam’s orientation, Fx will point in the same direction as φ0.

In the simulations, we compute the antenna temperature by varying only one beam

parameter at a time over frequency while other variables in the beam equation are

kept constant. By isolating each parameter, we can see how its frequency evolution

uniquely affects the antenna temperature spectrum.

3.3.2 Circular Beam

A Gaussian circular beam is our simplest model of an antenna beam. It is an az-

imuthally symmetric beam and will therefore have constant gain at a given eleva-

tion. To produce a circular beam, the first term in the beam equation is dropped and
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the two beam widths (Fx and Fy) are set equal to each other, so that α in the expo-

nential of the beam equation is equal to a single value of FWHM. For this beam type,

the full width at half maximum and the amplitude A can independently evolve over

the frequency range as described above.

FIGURE 3.3: Normalized gain of a circular beam. The beam is shown
projected onto equatorial coordinates with color representing gain

and the area enclosed by each grid represents a 30◦ by 30◦ area.

Figures 3.3 and 3.4 show two depictions of the gain for a Gaussian circular beam.

Figure 3.3 shows the normalized gain of a circular beam projected onto the sky in

equatorial coordinates. Figure 3.4 is a scatter plot of the gain across azimuth and

elevation, where the color of the pixels corresponds to the gain. Clearly, at a given

elevation, the gain is constant across azimuth.

3.3.3 Elliptical Beam

For the elliptical beam, we once again drop the first term in the beam equation. This

time, though, the Fx and Fy have different values, which results in α varying as a

function of azimuth, generating ellipticity. Because an elliptical beam is no longer

symmetric, gain is not uniform for a given pointing; the gain will be higher at some

azimuths than others. Fx and Fy are spectrally variant over the frequency range,

and the ratio of the two can either be locked or change over frequency. A locked

ratio signifies that the ellipticity does not change over the frequency band, whereas

an ellipse with an unlocked ratio changes proportions as it evolves in frequency. φ0
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FIGURE 3.4: Normalized gain of a circular beam shown in antenna-
centered local coordinates. At a constant elevation, the gain of a cir-

cular Gaussian beam is constant over azimuth.

controls the orientation of the beam, and has the option to change over angle to have

a value of either 0◦ or 90◦.

Figures 3.5 and 3.6 shows the same type of plots as Figures 3.3 and 3.4, but for an

elliptical Gaussian beam with an azimuth offset of 0◦ and the Fy greater than the

Fx. The projection of the beam in the Figure 3.5 has taken on an elliptical shape, the

effects of which are evident in Figure 3.6, as the gain is no longer constant at a given

elevation.

3.3.4 Bifurcating Beam

A bifurcating beam has equal full widths at half maximum in x and y, so that the

Gaussian component of the beam equation is once again circular. However, the first

term, which produces bifurcation in the beam equation, does not drop out in this

case. This bifurcating term causes the gain to reach its highest value at two spatially

different places, and then descend smoothly around each peak. These two definite
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FIGURE 3.5: Gain of an elliptical beam projected onto equatorial co-
ordinates, with the area enclosed by each grid representing a 30◦ by

30◦ area.

spikes in a bifurcating beam lead to considerable differences in gain at a given ele-

vation.

We introduced the bifurcation through Bn , by defining it as follows:

Bn(EL) =
1

Γθκ
(90− EL)κ−1e

−(90−EL)
θ (3.6)

where Γ is the Gamma distribution parameterized by two numbers: the shape κ and

the scale θ. We assign constant values of 7 for the shape and 3.5 for the scale. After

Bn is computed, we normalize it and then multiply it to the the first term in the

beam equation to obtain the bifurcation profile. For a Gaussian amplitude of A = 1,

we let Ab vary over frequency from 0 to 0.3. We chose this value of Ab so that the

bifurcation term would be large enough to have a significant effect on the beam, but

would not be wholly dominant over the main Gaussian component. The azimuthal

offset angle, φ1, is set to either 0◦ or 90◦ so that we can observe the effects of both

bifurcation orientations as the beam interacts with the sky.

Figure 3.5 shows the bifurcation profile at 40 MHz for a bifurcation amplitude (Ab)

of 0.3. The bifurcation is strongest at 69◦ in elevation, and descends rapidly to zero

on either side.
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FIGURE 3.6: Normalized gain of an elliptical beam shown in antenna-
centered local coordinates with an arbitrarily chosen rotation angle.
The ellipticity of the beam causes nonuniform gain at a given eleva-

tion.

FIGURE 3.7: The bifurcation profile produced with Eqn. 3.6 and a
bifurcation amplitude of 0.3. The gain is maximum at an elevation of

69◦ and descends rapidly to zero.
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Figures 3.8 and 3.9 show an example of the normalized gain for a bifurcating beam

with φ1 set to 0◦. The double peak of the gain is distinctly shown in Figure 3.8, and

the dual nature of a bifurcating beam is reflected in the scatter plot of Figure 3.9.

FIGURE 3.8: Gain of our bifurcated beam for a Gaussian amplitude
of A = 1 and a bifurcating amplitude of Ab = 0.3, projected onto equa-
torial coordinates. The area enclosed by each grid again represents a

30◦ by 30◦ area.

To summarize this section, Table 3.2 shows the different frequency evolution options

for the parameters in each beam type.

A σx σy Ab
Circular X X X 0

Elliptical — X X 0

Bifurcated Gamma Distribution — — — X

TABLE 3.2: Table showing different evolution options for each beam
type, where Xrepresents the option for each variable to change lin-
early or as a quadratic and — signifies that the value is constant over

the frequency band.

3.4 Details of Simulations

In this section we provide specific details about both the simulated beams and the

low-foreground regions of the sky that we pointed to.
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FIGURE 3.9: Normalized gain of our bifurcating beam for a Gaus-
sian amplitude of A = 1, bifurcating amplitude of Ab = 0.3, and an
arbitrarily chosen rotation angle, shown in antenna-centered local co-

ordinates.

We picked three coordinate pairs to do our computations for the beam-sky convo-

lution (Eqn. 3.1). We chose one low-foreground point to be in the Southern Hemi-

sphere and one to be located in the Northern Hemisphere. As a reference, we also

pointed at the Galactic Center, where we expect significantly higher sky tempera-

tures. Table 3.3 provides the coordinates for the three points.

Point Right Ascension [◦][◦][◦] Declination [◦][◦][◦]

1 53 -26.7

2 165 33.9

Galactic Center 266 -29.33

TABLE 3.3: The three points for the beam simulations in equatorial
coordinates.
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We computed spectrally variant circular, elliptical, and bifurcating beams. Table 3.3

summarizes their parameter values.

Beam Types and Parameter Values

Beam Type A FWHMx [◦]FWHMx [◦]FWHMx [◦] FWHMy [◦]FWHMy [◦]FWHMy [◦] Rotation Angle [◦][◦][◦] AbAbAb

Circular 1 ± 0.1 90 ± 9 90 ± 9 — 0

Elliptical
1 63 ± 7 110 ± 11 0, 90 0

1 70 110 ± 11 0, 90 0

Bifurcating 1 90 90 0, 90 0 - 0.3

TABLE 3.4: Parameter values used in the beam-sky convolution for
all three beam types. The parameters evolve with frequency between

the ranges shown.

Because, as modeled, the value of the Gaussian amplitude A is spatially indepen-

dent, it can move outside the sums in the beam-sky convolution, and we therefore

expect the spectral evolution of this parameter to cancel and have no effect on the

convolution. Simulations of the convolution computed with varying A confirm this

expectation, and we therefore neglect any further analysis of variations of this pa-

rameter for the remainder of this thesis.

The following tables show the beams we computed. Table 3.4 shows simulated cir-

cular beams, Table 3.5 shows the elliptical beams, and Table 3.7 shows the bifurcating

beams.

Circular Beam

Case FWHM [◦][◦][◦] FWHM Evolution

0 90 Flat

1 90 ± 9 Linear, Positive Slope

2 90 ± 9 Linear, Negative Slope

3 90 ± 9 Quadratic, Positive Slope
4 90 ±9 Quadratic, Negative Slope

TABLE 3.5: All cases of circular beam simulations. Case 0 is the nom-
inal case, which we compare all other beams to.
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A circular beam with a frequency-independent full width at half maximum (Case

0 in Table 3.4) was the nominal case in the simulations, and we compare the other

results with this nominal case.

Elliptical Beam

Case FWHMx [◦]FWHMx [◦]FWHMx [◦] FWHMy [◦]FWHMy [◦]FWHMy [◦] FWHM Evolution Ratio φ0

1 70 ± 7 110 ± 11 Linear, Positive Slope Locked 0◦

2 70 ± 7 110 ± 11 Linear, Negative Slope Locked 0◦

3 70 ± 7 110 ± 11 Quadratic, Positive Slope Locked 0◦

4 70 ± 7 110 ± 11 Quadratic, Negative Slope Locked 0◦

5 70 ± 7 110 ± 11 Linear, Positive Slope Locked 90◦

6 70 ± 7 110 ± 11 Linear, Negative Slope Locked 90◦

7 70 ± 7 110 ± 11 Quadratic, Positive Slope Locked 90◦

8 70 ± 7 110 ± 11 Quadratic, Negative Slope Locked 90◦

9 70 110 ± 11 Linear, Positive Slope Changes 0◦

TABLE 3.6: List of elliptical beams used in our simulations.

Although we computed all elliptical and bifurcating beams for both rotation angles

(0◦ and 90◦), for brevity, we consider only cases with a rotation angle of 0◦. Like-

wise, though we experimented with beams that had changing ratios of Fx to Fy, we

analyze only the cases with a locked ratio (Cases 1-4 in Table 3.6). We leave analysis

of rotated beams and beams with unlocked ratios for future work.

Bifurcating Beam

Case AbAbAb Evolution φ0

1 Linear, Positive Slope 0◦

2 Linear, Negative Slope 0◦

3 Quadratic, Positive Slope 0◦

4 Quadratic, Negative Slope 0◦

5 Linear, Positive Slope 90◦

6 Linear, Negative Slope 90◦

7 Quadratic, Positive Slope 90◦

8 Quadratic, Negative Slope 90◦

TABLE 3.7: List of bifurcating beams used in our simulations.
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The results of these simulations convolved with our model sky are discussed in the

following section.

3.5 Results and Discussion

We computed beam-sky convolutions (Eqn 3.1) for the beam cases listed in Section

3.4. This section analyzes and discusses the results of these simulated antenna tem-

peratures.

3.5.1 Comparisons of Antenna Temperatures

We first analyzed the results of the antenna temperature for each case computed as

compared to the antenna temperature of the nominal case (Case 0 in Table 3.4). We

accomplish this by subtracting the nominal antenna temperature from the antenna

temperature from beam i:

∆TA = Ti − T0 (3.7)

We computed ∆TA for Points 1 and 2, as well as at the Galactic Center. We started

our analysis by comparing ∆TA for for the three points in Table 3.3 using the nominal

beam. We found that Points 1 and 2 have ∆TA that are very similar (within 160 K of

each other), and thus for clarity we focus primarily on the results of Point 1, which

is the coordinate point located in the Southern Hemisphere. We chose this point

because it is in a low-foreground region, and measurement attempts of the 21 cm

signal point at regions with the smallest diffuse Galactic emission. Moreover, many

experiments that are attempting to measure the 21 cm signal, such as EDGES and

the Murchison Widefield Array, are located in the Southern Hemisphere on Earth,

and thus the computations in this chapter will be more relevant for Point 1. As a

reference, Figures 3.10 and 3.11 show ∆TA between Point 1 and Point 2 and between

Point 1 and the Galactic Center, respectively.
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FIGURE 3.10: The difference between the antenna temperature at
Point 2 and Point 1 for the nominal circular beam. ∆TA is positive
at all times because Point 2 has stronger foregrounds than Point 1,
though the two points are comparable. The temperature difference is

smooth over frequency.

FIGURE 3.11: The antenna temperature difference between the galac-
tic center and Point 1 for the nominal circular beam. As expected,
the difference in temperature is thousands of Kelvin due to the high
intensity at the Galactic Center. Again, the antenna temperature dif-

ference is smooth in frequency
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The following figures show the difference in antenna temperature between the nom-

inal case and each beam type (circular, elliptical, and bifurcating). Figure 3.12 shows

∆TA for the circular beams. We analyze this plot by looking at the cases with a

positive slope (blue and red lines). At the low frequency end, these beams have a

relatively small width, and they increase width with frequency, eventually growing

larger than the nominal case. As the beam increases with frequency, the field of view

increases, and thus ∆TA increases in magnitude. Although ∆TA increases monoton-

ically, it saturates. This suggests that once the beam passes a certain value in width

it continues its frequency evolution at the same rate as the nominal beam.

FIGURE 3.12: The differences in antenna temperature between the
circular beams and the nominal beam. The differences are larger at

low frequencies, presumably due to the higher sky temperature.

Figure 3.13 shows the differences in antenna temperature produced between ellip-

tical beams (Cases 1-4 in Table 3.5). This type of simulated elliptical beam has a

larger gain than the nominal case in one direction and a smaller gain in the other

for the entire frequency range. By analyzing Figure 3.13, we can deduce that our

elliptical beam with zero rotation (aligned parallel to the North-South axis) and a

positively changing slope observes a sky with a much lower average temperature

at low frequencies because its size and ellipticity allows it to avoid sky regions with
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high temperature. The ellipticity of the beam blocks observations of high foreground

regions of the sky, resulting in a large negative value of ∆TA. Thus, in order to re-

duce the impact of foregrounds, for Point 1 it would be preferable to observe the

sky with a beam that is elliptical along the North-South axis than with the nominal

circular beam.

FIGURE 3.13: The differences in antenna temperature for an elliptical
beam with a locked ratio, φ0 equal to 0◦, and Fy larger than Fx. At
low frequencies and for a positive slope, ∆Ta is much lower than for
the circular beams, meaning that this beam observes a region of the

sky with lower average temperatures.

The differences in antenna temperature between the nominal case and a bifurcating

beam are shown in Figure 3.14. Since ∆TA is negative for all cases computed, we can

infer that the gain structure of the bifurcating beam represents a weighting that pro-

duces a lower antenna temperature than the nominal case. Clearly, this difference

is smaller than for the elliptical beams (Figure 3.9), which is to be expected. This

is because in the nominal case and the bifurcating beam, the Gaussian full width at

half maximum is nominally the same and frequency-independent. The small tem-

perature difference is due to the evolving bifurcating component. For a bifurcating

beam, the coordinates of the maximum gain are evolving in frequency, and because
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∆TA is negative for all values in Figure 3.14, we can deduce that the maximum gain

occurs at coordinates with lower sky temperature.

FIGURE 3.14: The differences in antenna temperature between the
nominal beam and a bifurcating beam with a rotational offset of 0◦

aligned with the North-South axis.

3.5.2 Polynomial Fitting of the Antenna Temperature

In order to more quantitatively analyze the spectral content in each beam-sky con-

volution, we next use the Numpy functions Polyfit and Polyval to fit a polynomial

to each simulated antenna temperature. We first fit a six term log-log polynomial

for every case. We chose a log polynomial because it has been shown that it models

realistic antenna temperature adequately [Harker et al., 2012]. If we chose a higher-

order polynomial than one with six terms, the residuals would be too small for us to

effectively differentiate between the effects of each beam type on the antenna tem-

perature. Conversely, a polynomial with too few terms would not model properly

the large spectral properties in the convolution (i.e, the intrinsic sky temperature),



3.5. Results and Discussion 47

making the comparison also very challenging. Our log polynomial has the the fol-

lowing form:

Log(Tsky) =
5∑

ı=0

aiLog

(
ν

νn

)i
(3.8)

We then computed the difference between each antenna temperature and the poly-

nomial model of the antenna temperature:

∆TA = TA − TA,Poly (3.9)

This ∆TA gives the residuals of the polynomial fit. Though we are not correcting for

antenna chromaticity in this thesis, a sufficiently low residual (which we estimate

here at around 5 mK for a 6-term polynomial) represents an antenna that would

not impede detection of the global 21 cm signal without such corrections. We also

compute the Root Mean Square (RMS) of each ∆TA as in Bernardi et al., 2015:

RMS =
√
〈∆T 2

A〉 (3.10)

where 〈...〉 denotes an average over frequency. The RMS allows us to quantify the

residuals and make comparisons between computed antenna temperatures. A larger

RMS signifies an antenna temperature that has sharper spectral structure [Mozdzen

et al., 2016] and so cannot be as effectively modeled by a log-log polynomial.

Table 3.8 shows the RMS for the ∆TA residuals computed for circular beams con-

volved with the sky for the three pointings shown in Table 3.2. Figure 3.12 shows

the residuals plotted over frequency for each case shown in Table 3.8. The nominal

case at each coordinate pair (Case 0 in Table 3.4) is shown in blue in each panel,

and the beam-sky convolution for cases 1-4 are shown for Point 1, Point 2, and the

Galactic Center.
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Beam Case RMS [mK]

Point 1

0 1.24

1 0.77

2 0.74

3 22.0

4 15.11

Point 2

0 1.25

1 1.50

2 4.97

3 50.98

4 10.68

Galactic Center

0 1.04

1 4.72

2 12.19

3 120.0

4 39.59

TABLE 3.8: The root mean square (RMS) of ∆TA for every case shown
in Figure 3.12. We pointed each circular beam (see Table 3.5) at all

three sky pointings (see Table 3.3).

By analyzing Figure 3.15, we can clearly see that Point 1 has the smallest residuals

for both linear and quadratic frequency evolutions, while the Galactic Center has the

largest ∆TA. In this figure, the residuals are below 5 mK over the entire frequency

band only for a beam at Point 1 with a linearly evolving FWHM. Although the other

panels have ∆TA’s that eventually converge to within 5 mK, they are too large at

low frequencies and thus represent obstacles to the measurement of the cosmolog-

ical signal. These observations can be seen quantitatively by referring to Table 3.8.

The nominal RMS for each point is comparable, indicating that this beam case can

be removed with the same accuracy, regardless of pointing. The RMS for beams that

evolve quadratically (Cases 3 and 4) are significantly larger at all three points than

beams that change linearly. In particular, Case 3 has an RMS that is markedly larger

than all other beam cases at all three coordinate pairs. This signifies that beams that
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evolve quadratically over the frequency range introduce spectral structure that can-

not be easily removed by a polynomial fit, and thus would impede measurements

of the global 21 cm signal.
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FIGURE 3.15: The residuals between the polynomial model of an-
tenna temperature and the computed beam-sky convolution for the
circular beams at all three sky pointings. The nominal beam as well as
linear and quadratic spectral variations are shown for Point 1, Point

2, and the Galactic Center
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Though Figure 3.15 is useful as a reference, for clarity, we again narrow our focus

to the antenna temperature differences computed at Point 1. Figure 3.16 shows the

residuals calculated at Point 1 for all three beam types with linear and quadratic

spectral variations and a rotation angle of 0◦ (North-South orientation) for the bifur-

cating and elliptical beams. Each panel shows the nominal case (Case 0 in Table 3.4)

at Point 1 in blue. The top two panels show the same linear and quadratic evolutions

for a circular beam as Figure 3.15. Table 3.9 shows the corresponding RMS for each

antenna temperature difference in Figure 3.16.

Beam Case RMS [mK]

Circular

0 1.24

1 0.77

2 0.74

3 22.0

4 15.11

Elliptical

1 0.16

2 0.49

3 10.81

4 15.79

Bifurcating

1 1.35

2 1.34

3 2.08

4 0.51

TABLE 3.9: The root mean square (RMS) of ∆TA for every case shown
in Figure 3.13, all of which are calculated at Point 1. See Tables 3.5-3.7

for details on each individual beam case.

For an elliptical beam (Cases 1-4 in Table 3.5), the residuals are sufficiently low for ac-

curate measurement of the global signal in the linear case over the entire frequency

band. However, for a quadratically evolving FWHM and constant ellipticity, they

deviate to a maximum of 95 mK at 40 MHz. This is shown in Table 3.9, where

the RMS for a quadratically beam evolving with a positive and negative slope is

10.81 and 15.79, respectively. In this case, though ∆TA is constrained to within 5
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mK at high frequencies, the beam variations would complicate the extraction of the

cosmological signal over the entire frequency range. The RMS for each elliptical

∆TA is substantially lower than that of a circular beam for every case except for a

quadratic beam with a negative slope (Case 4), in which case the values are compa-

rable. Therefore, because an elliptical beam has, on average, lower residuals than a

circular beam, this beam type would be preferable to a circular beam when measur-

ing the global 21 cm signal.

A bifurcating beam with linear evolution has residuals with an almost identical spec-

tral shape as the nominal case. This indicates that these bifurcating beams do not

introduce any structure that was not already present in the nominal beam case. Fur-

thermore, a bifurcating beam with either a linear or quadratic evolution of Ab has

residuals that are within the acceptable limit of 5 mK. In light of both these results

and the antenna temperature shown in Figure 3.14, a bifurcating beam observing the

sky at Point 1 should measure the 21 cm global signal most accurately out of all the

cases analyzed. Since bifurcation is a common feature in real antenna beams, it is

interesting to see that, by itself, bifurcation does not introduce substantial structure

in the antenna temperature. Thus, within the assumptions made in this chapter, a

bifurcating beam does not obstruct measurements of the global 21 cm signal.
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FIGURE 3.16: The residuals between the polynomial model of an-
tenna temperature and the computed beam-sky convolution for all
three beam types with both linear and quadratic spectral variations.

Every case shown in this figure was computed at Point 1.
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3.6 Summary

In Chapter 3 we explored the effect smoothly varying simulated beams had on the

antenna temperature of the measurement instrument of the global 21 cm signal. We

accomplished this by computing the beam-sky convolution of our simulated beams

with a sky model to produce an antenna temperature that is accurate to first order.

We simulated three beam types: circular, elliptical, and bifurcating, and analyzed

how the antenna temperature of each beam compared to that of a nominal beam

which was constant over the frequency range. We found that both elliptical and bi-

furcating beams had lower antenna temperatures than the nominal case, and thus

deduced that these beams observed areas of the sky with lower temperatures. We

also computed a six term log-log polynomial to fit the antenna temperature curve

of each beam case. By subtracting this model of the antenna temperature from the

actual computed temperature, we found the residuals for each beam type. Analysis

of the residuals showed that, even without correcting for antenna beam chromatic-

ity, beams that evolved linearly over the frequency range had residuals that were

sufficiently low to avoid obstructing measurements of the global 21 cm signal. Ellip-

tical beams that evolved linearly had both a lower antenna temperature and smaller

residuals when fit with a polynomial than circular beams, and thus would introduce

less structure into measurements of the cosmological signal. The rotation of an el-

liptical beam can also be chosen to block high temperature regions of the sky and

thus produce a lower antenna temperature. Additionally, we found that the isolated

effect of bifurcation does not introduce substantial structure into the antenna tem-

perature, and therefore beams of this type would not impede measurements of the

global 21 cm signal.
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In this thesis we used analytical simulations to study two aspects of measurements

of the global 21 cm signal. We first implemented a Fisher matrix analysis in Chap-

ter 2 to estimate the uncertainties of cosmological parameters for simple measure-

ment models with perfectly calibrated instruments. We find that, even when more

parameters are incorporated in the measurement model to account for the Galac-

tic foregrounds, the uncertainties of the cosmological parameters are constrained

within 2% of the nominal values for measurement noise corresponding to 500 hours

of observation time. Thus, under realistic models of noise and foreground emission,

the parameters of our global 21 cm signal model can be effectively constrained with

high precision. Simple models for this signal are still relevant because the 21 cm sig-

nal still has not been detected, and thus the cosmological parameter space remains

completely unrestrained.

We also used a Fisher matrix method to explore the bias in the cosmological param-

eters due to measurement modeling errors. We computed the bias for simple fre-

quency independent and frequency dependent model errors smaller than the global

21 cm signal, and found that the bias in our cosmological parameters was compara-

ble to the statistical uncertainty due to measurement noise, thus making it insignif-

icant. Though the model errors used in this thesis are not physically motivated, we

used these computations as a way to verify that we were correctly implementing

this Fisher matrix approach for bias calculations.

Future work using the Fisher matrix method to compute measurement uncertainties

of the global 21 cm signal would incorporate increasingly more complex models of
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the signal itself, the Galactic foregrounds, and the model errors in order to more

accurately predict statistical and systematic uncertainties.

In Chapter 3 we simulated realistic antenna beams that varied smoothly over fre-

quency and space to analyze the spectral structure they could introduce to measure-

ments of the global 21 cm signal. We computed a weighted average of these beams

with a synthetic sky model to find the antenna temperature spectrum, and we an-

alyzed the results of this computation in two ways. First, we found the difference

between the synthetic spectrum and a nominal spectrum that is generated using a

frequency-independent beam, and we then quantified the spectral structure by fit-

ting and removing a log-log polynomial to the antenna temperature. We found that,

for the pointing coordinates used, beams that evolved linearly over the frequency

range introduced the least amount of spectral structure. In addition, our simulations

showed that linearly evolving elliptical beams had smaller residuals, and accord-

ingly less spectral structure, than circular beams. We also found that a bifurcating

beam had not only the smallest relative antenna temperature but also introduced

the least amount of spectral structure, regardless of whether it evolved linearly or

quadratically. Because of this, under the conditions simulated, a bifurcating beam

would be the most ideal beam to use in measurements of the global 21 cm signal.

Future efforts would focus on effects of beam rotation on the antenna temperature.

For the case of an elliptical beam, future work would involve exploring how a fre-

quency dependent ellipticity affects computations of the beam-sky convolution.
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