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Abstract

Strong superlinear speedup has been discovered in large scale simulations
of parallel 3D DEM for complex-shaped particles, which is based on an al-
gorithm of spatial domain decomposition, and exhibits the “high-CPU-low-
memory” characteristics. The interpretation of this phenomenon requires a
careful examination of the speedup theory and practice in the field of parallel
computing. The superlinear speedup is investigated from three perspectives:
(i) memory footprint per process, (ii) cache miss rates of L1, L2 and L3 level
caches, and (iii) uniprocessor performance, using a wide range of problem
size (across five orders of magnitude of simulation scale regarding number of
particles) and number of compute nodes (1 to 2,048 nodes) on DoD super-
computers. The Performance-API (PAPI) is employed in the source code to
measure cache miss rate and FLOPS. The strong scaling measurements show
that cache miss rate is sensitive to the memory consumption shrinkage per
processor, and the last level cache (LLC) contributes most significantly to
the strong superlinear speedup among all of the three cache levels, and this is
also revealed in the weak scaling measurements. The findings are associated
with the inherently perfect scalability of 3D DEM: its memory scalability
function is a nonlinearly decreasing function of the number of processors. In
addition, a constant (non-increasing) uniprocessor FLOPS performance w.r.t
problem size can also contribute to the superlinear speedup.

The superlinear speedup is a common phenomenon for large scale 3D
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DEM simulations of complex-shaped particles, and the larger the scale, the
stronger is the superlinear speedup. DEM researchers should take advantage
of this effect to speedup their parallel simulations.

Keywords: superlinear speedup, parallel discrete element method, granular
materials, complex-shaped, cache miss rate, FLOPS

1. INTRODUCTION TO SUPERLINEAR SPEEDUP

1.1. What s superlinear speedup?

In parallel computing, speedup is defined as the ratio between sequential
execution time and parallel execution time, as shown in Eq. (1), and effi-
ciency, a measure of processor utilization, is defined as speedup divided by
the number of processors used, according to Eq. (2).

_ sequential execution time a(n) + ¢(n) [
speedup ¥ (n,p) = parallel execution time < o(n) +¢(n)/p+ /<a(n,p\)1>
. _ sequential execution time Y(n,p)
efficiency e(n,p) = pxparallel execution time D (2)

where n is the problem size (number of particles), p is the number of pro-
cessors, o(n) is the inherently serial portion of computation, ¢(n) is the
parallelizable portion of computation, and x(n,p) is the overhead of paral-
lelization (communication operations and redundant computation).

The term “superlinear speedup” has been used to describe a computa-
tion using p processors which is more than p times faster than the same
computation performed on a uniprocessor (Wilkinson and Allen, M‘) It is
equivalent to the notion of “greater than 100% or 1 efficiency”.

It should be noted that the term p in Egs. (1) and (2) could have differ-
ent meaning although it was originally referred to the number of processors.
The microprocessor architecture has entered the multicore era, and a pro-
cessor/CPU (a socket on a computer motherboard) contains multiple cores,
so p can refer to the number of cores; contemporary supercomputers may
have thousands or ten thousands of compute nodes, each of which integrates
one or more multicore microprocessors, then p can refer to the number of
compute nodes for those large scale computational tasks. We distinguish the
node speedup/efficiency from the core speedup/efficiency in this paper.




1.2. History of parallel speedup research

To better understand the superlinear speedup phenomenon, it is necessary
to review the history of how researchers have recognized the parallel speedup,
which unavoidably involves the superlinear speedup.

In 1967 the Amdahl’s law was put forward based on a general observation
about the performance improvement limitation dAmdah]J, ‘196ﬂ). The law
states that the maximum speedup v achievable by a parallel computer with
P Processors is
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where f = a(n)/(c(n) + ¢(n)) denotes the fraction of operations in a com-
putation that must be performed sequentially. Amdahl’s law indicates that
the serial portion, which cannot be improved by parallelization, will quickly
dominate the performance, and further improvement of the improvable or
parallelizable portion will have little effect. It was used as an argument
against massively parallel processing.
In 1988, Gustafson-Barsis’s Law was used to justify massively parallel pro-
cessing (MPP), which states that the maximum speedup (also called scaled
speedup) 1 achievable by a parallel program is

v <p+(1-ps, (4)

where s = o(n)/(c(n) + ¢(n)/p) denotes the fraction of time spent in the
parallel computation performing inherently sequential operations. Gustafson
M) pointed out that: (1) when serial fraction is very low, speedup could
be very high and forms an unforgivingly steep function of s near s = 0.
He achieved a speedup of 1021, 1020 and 1016 for different applications,
respectively, on a 1024-processor hypercube (Gustafson et al., ‘1988‘); (2) as
an approximation, only the parallel part of a program scales with the problem
size; (3) it is important for the research community to overcome “mental
block” against massive parallelism.

Sun and Ni 41990‘,‘1993‘) studied the fixed-size speedup, fixed-time speedup,
and memory-bounded speedup, and derived corresponding speedup formu-
lations. The memory-bounded speedup is also known as Sun and Ni’s Law.
They pointed out that the simplified fixed-size speedup is Amdahl’s law, and
the simplified fixed-time speedup is Gustafson’s scaled speedup.

Sun and Gustafson 41991‘) proposed two new performance metrics: (1)
sizeup, which provides a “fair” performance measurements; and (2) the gen-
eralized speedup, which emphasizes that speedup is the ratio of speeds, not
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times.

sizeun — parallel work (5)
b= sequential work’
sencralized speedup — parallel execution speed (6)

sequential execution speed”

The authors also studied their relations and pointed out that: speedup is the
restriction of generalized speedup to fixed work, and sizeup is the restriction
of generalized speedup to fixed time. It is worth noting that performance
metric by generalized speedup avoids running large problem size on a single
node, i.e., the sequential speed is measured with a small problem size (ap-
propriate for one node processing), and parallel speedups are measured with
large problem sizes (appropriate for large number of nodes).

i @ revealed that Amdahl’s Law and Gustafson’s Law are in fact
identical by establishing the mathematical equivalence between them. The
author rigorously distinguished scaled percentage s and non-scaled percent-
age f of the serial fraction of a program, and derived that
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He gave an impressive example of translating a scaled serial fraction of 0.4
to 0.8 percent in Gustafson d1988) to a non-scaled serial fraction of 0.0004
to 0.0008 percent, respectively. The author also pointed out that using Am-
dahl’s Law as an argument against massively parallel processing is not valid,
and it is because f can be very close to zero for many practical applications,
thus very high speedups are possible using massively many processors.

In 2008, when the microprocessor architecture entered multicore era,
Hill and Marty 42008‘ ) presented a pessimistic view of multicore scalability
based on their analysis using Amdahl’s law and challenged readers to develop
better models.

Sun and Chen (‘2010‘) studied multicore scalability under fixed-time and
memory-bound conditions from the data access perspective, and concluded
that multicore architectures are fundamentally scalable and not limited by
Amdahl’s law, and that multicore architectures are capable of extensive scala-
bility. The authors also pointed out that the need for technical improvements
is primarily in memory performance.




1.3. Lack of superlinear speedup study

The study of superlinear speedup in parallel computing is limited accord-
ing to the literature. Faber et al. 41986‘) stated that superlinear speedup of
an efficient sequential algorithm is not possible, based on an assumption of
hardware limitation and context switching time, etc.

‘Karp and Flatt ( 1990‘) found a decreasing experimentally determined se-
rial fraction (EDSF) on a 4-processor Convex C-240 and associated it with
a possible “superlinear” speedup. When he studied the winners of the Gor-
den Bell Awards in 1987 (http://www.sc2000.org/bell/pastawrd.htm),
he found that all of the three problems (Beam Stress Analysis, Surface Wave
Simulation, and Unstable Fluid Flow Model) reveal a significant reduction
of the EDSF using 4 to 1,024 processors, and he attributed the significantly
decreasing EDSF to “superlinear” speedup.

Helmbold and McDowell 41990) mentioned several apparent sources of su-
perlinear speedup: hidden memory latency, subdivision of system overhead,
and randomized algorithms.

Gustafson ( 1990‘) pointed out: “Superlinear speedup can result whenever
problem size per processor is reduced, whether from fixed sized or fixed time
performance evaluation, such that U(n) crosses regimes and appears decreas-
ing instead of increasing. The decrease must be enough that the usual sources
of parallel inefficiency (load imbalance, serial algorithm steps, interprocessor
communication) are compensated.”, whereby U(n) denotes the uniprocessor
performance (MFLOPS) as a function of problem size n.

The author also pointed out two new sources of superlinear speedup: the
different speeds of memory inherent in distributed memory ensembles, and
the shift in time fraction spent on different-speed tasks.

The author stated with great foresight that “ tiered memory can make
performance increase instead of decrease as problem size per processor shrinks,
and workload can shift to routines with higher speed as the problem is scaled.
Superlinear speedup results in such cases. Superlinear speedup, far from be-
ing an anomaly, becomes commonplace when the performance model makes
realistic assumptions about memory speed and problem scaling.”

Sienicki et al. 41994) divided superlinear speedup problems into two types:
(1) search problems, whereby some paths leading to wrong results in paral-
lel processing may be eliminated earlier than that in sequential processing
dMoldovanj, ‘2014); and (2) computing problems. The authors thought that
“the superlinear speedup is somewhat limited to small number of processors
and may not be scalable”.



http://www.sc2000.org/bell/pastawrd.htm

) stated that the theoretically linear and superlinear speedups
are not possible because the serial percentage in Amdahl’s Law is never
zero in practice. Nevertheless, there are two factors that can be used to
produce linear or superlinear speedups in practice,: (1) use of a resource-
constrained serial execution as the base for speedup calculation; (2) and use
of a parallel implementation that can bypass large number of calculation
steps while yielding the same output of the corresponding serial algorithm.

The author defined two different types of sequential algorithms: struc-
ture persistent (SP) and non-structure persistent (NSP), and stated that
superlinear speedup is only possible for NSP algorithms.

Nagashima et al. M) observed superlinear speedup when the number
of processors is appropriate to the size of problem on a distributed memory
parallel processing system with cache architecture, during the calculation
of density of states (DOS) of cyclic polyacenes using a proper numerical
method and message passing library. The authors considered the reason for
the superlinear speedup to be avoiding the neck of memory architecture such
as cache miss rate.

Wilkinson and Allen 41999) thought the superlinear speedup is usually
due to using a suboptimal sequential algorithm, a unique feature of the
system architecture that favors the parallel formation, or an indeterminate
nature of the algorithm. However, they admitted that a common reason
for superlinear speedup is that a multiprocessor system has extra memory,
which can hold more of the problem data at any instant and lead to less disk
memory traffic.

Ristov and Gusev (2012) obtained a superlinear speedup with efficient
cache exploitation on a shared memory multiprocessor for matrix multiplica-
tion algorithm, which is SP according to ) The experiments were
carried out on a workstation of one AMD 4-core Phenom processor and a
workstation of four 4-core AMD Opteron processors. Both processors have
three levels of cache. The author found that there is a superlinear region
(defined as when memory requirement fits in a cache) of the problem size
where the normalized performance per core for parallel execution is better
than in sequential execution, and he obtained a superlinear speedup beyond
the limits specified in Gustafson’s law.

On the SCinet Wiki page (https://wiki.scinet.utoronto.ca/wiki/
index.php/Introduction_To_Performance), it states that “It isn’t uncom-
mon to achieve greater than 100% parallel efficiencies for small numbers of
processors for some types of problems; as you go to more processors, you also
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have more processor cache, and thus more of the problems data can fit into
fast cache. This is called super-linear speedup and sadly seldom extends out
to very many processors.”

1.4. Outline of this paper

This paper presents performance measurement and analysis, particularly
the superlinear speedup phenomenon, in simulating granular/geotechnical
materials using complex-shaped 3D DEM across five orders of magnitude of
simulation scale (number of particles). The paper contains eleven sections.
Section [1 has reviewed the research history of parallel computing speedup
and the study in superlinear speedup phenomenon; section 2/is an introduc-
tion to the DEM method, its computational features and recent efforts in
its parallelism; section 3| covers several important concepts and techniques in
the design of parallelism of 3D DEM; section |4 derives the iso-efficiency rela-
tion for 3D DEM computation and serves as an theoretical tool to interpret
the speedup phenomenon; section [5 introduces three targeted supercomput-
ers used in this work and particularly the microprocessor architecture on
these systems; section 6| populates the performance data measured from the
three supercomputers and describes the difference between node and core
speedup/efficiency; section 7] analyzes the potential causes of the superlinear
speedup of 3D DEM; section [8 implements and performs cache miss (per
second) measurements using Performance-API (PAPI), and tries to explain
the relationship between cache miss (per second) and superlinear speedup;
section |9 evaluates the weak scaling measurements of 3D DEM; section [10
cites the conclusion (Yan and Refzueu“O‘ ‘20183J on the influence of different
neighbor search algorithms on the computational performance; and the last
section gives conclusion and outlook.

2. THE DEM AND ITS PARALLELISM

The Discrete Element Method (DEM) has been applied to study the
mechanical and micro-mechanical behavior of particle assemblages for more
than 40 years since its introduction in the late 1970s by Cundall and Strack
(@) However, application of 3D DEM to simulating practical problems
involving granular and geomechanical materials is still limited in terms of
problem size (namely, number of particles). For example, most applications
involving co mlex—shaped particles such as axi-symmetric/revolution ellip-
soids @ or true ellipsoids (Yan et al. ‘2010 constrain their




number of particles to a few thousand. This is mainly due to the fact that
the DEM poses high computational demands characterized by CPU-intensive
interparticle contact detection and explicit time integration schemes.

Under many situations, the length scale and problem size of practical
engineering problems cannot be circumvented even if a multi-scale model is
employed. For instance, to study the impact of blast waves on gravitation-
ally deposited coarse-grained soils in which an explosive charge is ignited,
a 40 cm x 40 cm x 40 cm specimen composed of ellipsoidal sand particles
contains approximately 500 million 0.1~1 mm diameter particles depending
on the particle shapes and size distribution. The limitation of problem size
poses a barrier to simulating many science phenomena, engineering prob-
lems and laboratory tests involving complex-shaped particles that are the
same size as physical particles, such as sand dune movement or sediment
transport in geomorphology, quick sand phenomenon and soil liquefaction
in earthquake engineering, soil-tire interaction in Mars Exploration Rover
Mission, landslide and its expansion in geotechnical engineering, precast pile
installation/penetration mechanisms and static/dynamic testing in civil en-

ineering, internal shear band evolution in soil mechanics dFu and Dafaliai
2011a,b), etc.

2.1. The DEM framework

A complete DEM system is composed of multiple essential components:
particle geometry representation, interparticle mechanical models (such as
Hertz nonlinear normal contact model (Hertz., @) and Mindlin’s history-
dependent shear model dMindlin, ‘1949; Mindlin and Deresiewicz,‘1953)), con-
tact search and resolution algorithm, time integration scheme, damping mech-
anism, boundary control methods for modeling various loading conditions,
etc. A typical procedure of DEM analysis dYan et al.‘, ‘2010) consists of three
major computational steps in sequence, which are integrated in time using
central difference method until a simulation is completed:

e contact detection between particles, including two phases:

1. neighbor search (neighbor estimate)
2. geometric contact resolution

e contact force computation for each pair of particles in contact.
e particle motion update (translations and rotations) using Newton’s sec-
ond law.



The contact detection process is usually the major computational bottle-
neck, especially for a large number of complex-shaped particles. It is divided
into two phases: 1. the neighbor search (or spatial reasoning) phase, and 2.
the geometric contact resolution phase. Neighbor search identifies/estimates
objects near the target object. It often uses an approximate geometry for the
objects, such as bounding box or bounding sphere. The geometric contact
resolution phase then uses a specific geometric representation of each body
to resolve the contact geometry. For complex shapes such as ellipsoidal par-
ticles (three different semi-axis lengths) dYan et al. ‘2010) or non-symmetric
poly-ellipsoidal particles (Peters et al‘ ‘2009‘ the contact resolution between
two particles is much more expensive than spheres, increasing the floating
point operations by several orders of magnitude due to the requirement of
numerical accuracy and robustness. This is the most computationally chal-
lenging part of 3D DEM in addition to the non-linear and history-dependent
mechanical models that describe interparticle interactions.

2.2. Neighbor search

In DEM simulations, there are three typical neighbor search algorithms
with different time complexities: O(n?), coming from n-by-n simple search;
O(nlogn), resulting from tree-based algorithms @gadlsh et al., 2005; Muja and Lowe,
2009); and O(n), rooted from binning method (Munjiza and Andrews, ‘1998‘
Wllhams et al. \MJ ) or link-cell (LC) method (Grest et al.‘, ‘1989 ), where n
denotes the number of particles.

The binning method and the LC method are essentially the same, and
they are just different names used in geomechanics and molecular dynamics
(MD), respectively. For example, the idea of binning algorithm is to place
each particle into a bin using a hash on the particle’s coordinates. Once
the particles are sorted into bins, one can reason about the spatial closeness
based solely on the fixed relationships of the bins. ‘Munjlza and Andrews
M) implemented the no binary search (NBS), a binning algorithm which
scales linearly to large numbers of particles but is limited to particles of
approximately the same size. Williams et al. dm extended the traditional
binning algorithm so that objects of arbitrary shape and size in two and three
dimensions can be handled by introducing an abstraction. The algorithm
achieves the partitioning of n particles of arbitrary shape and size into n lists
in O(n) operations, where each list consists of particles spatially near to the
target object. The LC method divides a computational spatial domain into
equal cubical cells of size not smaller than the cutoff distance (in MD) or
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diameter of the largest particle (in DEM). Each particle is referenced to the
cell according to the position of the particle centroid. The neighbor estimate
comprises referencing of individual particles to the cells and constructing of
the neighbors list of particles using surrounding cells.

2.3. Geometric contact resolution

(a) Ellipsoids with various (b) Spherical particles. (c) Disk-like particles.

aspect ratios.

©0®eo
\ O

(d) Needle-like particles. (e) Poly-ellipsoids with (f) Poly-ellipsoids.
various aspect ratios.

Figure 1: Ellipsoids and poly-ellipsoids represent a wide variety of shapes in DEM.

Yan et al. 42010) developed a robust contact resolution algorithm for
three-axis ellipsoidal particles by constructing an extreme value problem of
finding the deepest penetration of one particle into the other. Such an ex-
treme value problem results in a sixth order polynomial equation. Conven-
tional polynomial root finders cannot satisfy the high-precision numerical
requirement in the 3D DEM computation. For example, the elastic over-
lap between two particles of typical quartz sand may vary between 1078
to 107° meters depending on particle size, shape and external force, and a
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low-precision solver can lead to numerical instability or spurious explosion
of particles. Therefore, an iterative eigenvalue method, which performs QR-
decomposition of real Hessenberg matrices, is selected to find roots of the
polynomial and determine the contact geometry. The algorithm and its im-
plementation has been shown to be robust such that it is applicable to not
only regularly bulky ellipsoidal shapes but also extreme-shaped ellipsoidal
particles such as disks and needles, as shown in Figure [T[a~d).

Peters et al. 42009‘ ) proposed a non-symmetric poly-ellipsoid shape which
joins eight component ellipsoids in eight different octants respectively to pro-
duce continuous surface coordinates, normal directions and intersections. It
is more computationally expensive than a symmetric ellipsoid but it acts
as a useful extension, as shown in Figure [I(e~f). It is worth emphasiz-
ing that the simulations of 3D DEM discussed in the paper are mainly fo-
cused on complex-shaped particles such as true ellipsoids dYan et al‘ ‘2010)
poly-ellipsoids (Peters et al. ‘2009 ), superellipsoids (Wellmann et al‘ ‘2008‘
Delaney et al‘ ‘2010 superquadrlcs (Williams and Pentland, 1 @ ) or asym-
metrical particles Constructed by non-uniform rational Basis-Splines (NURBS)
dle and Andrade, ‘2014 rather than the simplistic spheres. In many natu-
ral phenomena and engineering problems, the shapes (and sizes, gradations,
etc) of the discrete particles play an insurmountably important role such as
for capturing particle interlocking and particle fracture.

2.4. Weight of neighbor search

It is worth noting that the three neighbor search algorithms, O(n?),
O(nlogn) and O(n), only affect the performance of neighbor search. They
have no bearing on contact resolution. It can be imagined that the overall
performance improvement resulting from these algorithms might be highly
limited for complex-shaped particles, because neighbor search only takes up
a small fraction of floating point operations in the whole computation. For
instance, contact resolution between a pair of three-axis ellipsoids is approx-
imately 35 times as expensive as that of a pair of spheres, and contact res-
olution between a pair of poly-ellipsoids is nearly 260 times as expensive as
that of a pair of spheres dYan and Regueiro, ‘20183J).

Both O(n?) and O(n) algorithms are implemented and tested in the pa-
per. Figure|2|plots pie charts on time percentage of DEM components using
2,000 particles with different shapes, and it confirms that the more complex
the particle shapes are, the smaller the neighbor search fraction (NSF) is,
whereby NSF is defined as the ratio of neighbor search time to the total
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SPHERICAL PARTICLES ELLIPSOIDAL PARTICLES POLY-ELLIPSOIDAL PARTICLES
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computation search computation
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(a) Sphere by O(n?). (b) Ellipsoid by O(n?). () Poly-ellipsoid by O(n?).

SPHERICAL PARTICLES ELLIPSOIDAL PARTICLES POLY-ELLIPSOIDAL PARTICLES
other other
neighbor computation
search 3.7%
2.9%

neighbor
search
0.7%

neighbor
search
20.8%

computation
5.9%

contact
resolution
13.9% contact
resolution

91.2%

other
computation
65.3%

contact
resolution
95.5%

(d) Sphere by O(n). (e) Ellipsoid by O(n). (f) Poly-ellipsoid by O(n).

Figure 2: Wall time percentage of DEM components by O(n?) and O(n) algorithms using
different particle shapes.

contact detection time. With poly-ellipsoid computing by O(n) algorithm,
the NSF is as low as 0.7% whereas contact resolution takes up to 95.5%.
Furthermore, the lower the computational granularity (CG), i.e., number of
particle per process, the smaller the NSF.

Yan and Regueiro d2018a) pointed out: in both serial and parallel com-
puting of complex-shaped 3D DEM, the O(n?) neighbor search algorithm is
inefficient at coarse CG, however it executes faster than the O(n) algorithm
at fine CGs that are mostly employed in computational practice.

2.5. Efforts in developing parallel DEM

There has been considerable efforts in developing parallel DEM codes in
recent years. Baugh Jr and Konduri 42001) presented a distributed comput-
ing system for DEM that is designed for loosely-coupled networks of work-
stations using low-level BSD (Berkeley Software Distribution) sockets. The
implementation is used to simulate as many as 200,000 spherical particles
using eight processors. As an example, the speedup is close to 6 using 8
processors for the computation of 120k spherical particles.
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Washington and Meegoda (2003) simulated a triaxial test using an algo-

rithm titled “TRUBAL for Parallel Machines (TPM)” and showed its bene-
fits over the serial version DEM code, TRUBAL. Two simulation scales are
tested and compared, one with 403 spheres and the other with 1,672 spheres,
on Connection Machine (CM-5) with 512 nodes at the Pittsburgh Super-
computing Center. The speedup is as low as 7.9 using 512 nodes for 403
spheres.

Maknickas et al. 42006‘) described the DEMMAT _PAR code for simula-
tion of visco-elastic frictional granular media, which has been created in the
Parallel Computing Laboratory of Vilnius Gediminas Technical University.
The parallel performance tests were carried out on their PC cluster VILKAS
for systems consisting of 5k, 20k and 100k particles whose parameters are ar-
tificially assumed, for example, the Young’s modulus is as low as 1 MPa. The
speedup is approximately 11 on 16 processors for 100k spherical particles.

Henty dM) chose to investigate the performance of a much smaller test
code that implements precisely the same algorithm but has limited function-
ality rather than tackle a complete physics DEM application with all of its
functionality and complexity. He implemented a hybrid parallelization of the
message-passing and shared-memory models simultaneously.

Vedachalam and Virdee 42011‘) used LAMMPS (large-scale atomic and
molecular massively parallel simulator) and LIGGGHTS (LAMMPS improved
for general granular and granular heat transfer simulations) to study the mo-
tion of snow particles, wherein the snow grains are assumed to be spherical
particles of 5 mm diameter. An empirical coefficient of restitution (ratio of
rebound velocity to impact velocity) is adopted rather than the strict Hertz
nonlinear contact model, while Mindlin’s history-dependent shear model is
not considered. As for the performance gain of parallelism, the authors wrote
“on 480 processors for 75K particles, the speedup was 1.99, while on 960 pro-
cessors for same number of particles speedup achieved was 2.52” with regard
to 120 processors, which is a relatively low performance gain.

Some of these works have achieved fairly good speedup, nevertheless, none
of them has been able to capture superlinear speedup phenomenon. This is
probably owing to the following reasons:

e simulating at relatively small order of magnitude of simulation scale.

e focusing on simplistic spherical particles rather than complex-shaped
particles which pose much higher CPU demand.

e lack of computational resources to measure performance of large scale
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simulations.

3. PARALLELISM DESIGN OF 3D DEM

This section covers the most important concepts and techniques used in
the design of 3D DEM parallelism.

3.1. Link-block and four-step MPI design

The concept of link-block (LB) is put forward for design of the parallel
algorithm, illustrated in Figure 3. With introduction of LB, the Foster’s
four-step methodology (Foster, 1995) can be readily applied:
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virtual cell block

Figure 3: Schematic of link-blocks, virtual cells and border layers.

Partitioning: The computational domain is divided into blocks; each
block may consist of many virtual cells. The size of the virtual cells may be
chosen to be the maximum diameter of the discrete particles.

Communication: Each cell, as a primitive task unit, can communicate
with 26 possible surrounding ones to determine contact detection. However,
the communication manner may be changed after the process of agglomera-
tion.
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Agglomeration: By combining virtual cells into a block, communication
overhead is lowered in that each block only needs to communicate with neigh-
boring blocks through border/ghost layers, which are virtual cells marked by
blue dots shown in Figure (3.

Mapping: Assignment of agglomerated tasks to processors, which could
be to a core, multicores, a CPU, multiCPUs within a node, or even a whole
node.

3.2. Flowchart of the parallel algorithm

The flowchart of the parallel code is designed as in Figure [4. It con-
tains twelve flow processes or steps, among which one is sequential, two are
partially parallel, and nine fully parallel. Ten of the twelve processes are
repeated in the iteration loop until the computation is completed.

In comparison to the serial algorithm, the parallel one ends up with six
more steps as follows:

1. step 2: 2-Root process divides and broadcasts info. This step only runs
once so it does not cost much CPU time.

2. step 3: 3-All processes communicate with neighbors. This interprocess
communication is the most important part in the parallel algorithm.

3. step 9: 9-All processes update compute grids. This step arises from
consideration of computational load balance.

4. step 10: 10-All processes merge and output info. This step serves the
goal of snapshotting simulation states. Beware it does not execute in
each iteration loop, otherwise it could cause unacceptable cost.

5. step 11: 11-All processes release memory of receiving particle info. This
step arises from MPI transmission mechanism and must be carefully
taken care of.

6. step 12: 12-All processes migrate particles. This step handles the sit-
uation when particles move across block borders.

Among the twelve steps, most of them only involve local communication
while three of them are associated with global communication.

3.3. Interblock communication

The interblock communication is illustrated by a particle assemblage com-
posed of two layers of 81 randomly-sized particles, which are gravitationally
deposited into a rigid container. The top view is shown in Figure 5, wherein
the container is partitioned into four blocks separated by blue dash lines.
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Figure 4: Flowchart of the parallel algorithm of 3D DEM.
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Each block is mapped to and computed by an individual process, so there
are four processes, p0 to p3. Each process needs to communicate with each
other to determine its own boundary conditions. For example, process p3
needs to know those particles from process pl that are enclosed by the pink
rectangular box, those from process p2 enclosed by the red rectangular box,
and those from process p0 enclosed by the green square box. A detailed movie
records how those particles move across the borders and collide with particles
from other blocks, and it reveals that each process is able to determine its
boundary conditions accurately. The overall motion of the 162 particles
through parallel computing is observed to be the same as that observed in
serial computing.

Y

!
X

&

V2

0%

virtual cell

Al

Figure 5: Illustration of interblock communication.

3.4. Other aspects in the parallelism

Many other aspects of the 3D DEM parallelism are detailed in the paper
(Yan and Regueiro, ‘2018%@), such as across-border migration, load balance
and adaptive compute grids, minimizing global communication, OOP /C++,
STL, Boost C++ libraries, avoiding large memory consumption with MPI,
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etc. These details may have material influence on optimizing and improving
the performance of the parallel 3D DEM code.

4. Theoretical iso-efficiency relation analysis of 3D DEM

In this section the general iso-efficiency relation for 3D DEM computation
is derived and serves as a theoretical tool to analyze the memory usage feature
in parallel computing. Note it is not used to study code structure and CPU
usage features that are associated with complex particle shapes and geometric
contact resolution process, which require much more computational cost than
other components, as described in Section 2.4l

According to Eq. (1), the execution time of a parallel program executing
OnN P processors is

T(n,p) = o(n) + ¢(n)/p + £(n, p). (8)

The serial program does not have interprocessor communication or synchro-
nization, so the execution time is

T(n,1) = o(n) + ¢(n). (9)

In order to sustain the same level of efficiency as the number of processors
p increases, problem size n must increase to satisfy inequality (10]),

T(n,1) > CT,(n,p), (10)

where T,(n,p) = (p — 1)o(n) + pr(n,p), and C' = /(1 — ¢) is a constant
related to efficiency e. This is called the iso-efficiency metric, which is used
to determine the scalability of a parallel system.

For 3D DEM, supposing n is the number of particles and p the number of
processors used, we are able to derive the iso-efficiency metric following the
analysis by Michael 42003‘). As mentioned in Section 2.4, in both serial and
parallel computing of complex-shaped 3D DEM, the O(n?) neighbor search
algorithm is inefficient at coarse CG, however it executes faster than the O(n)
algorithm at fine CGs that are mostly employed in computational practice.
The practical time complexity of 3D DEM falls between O(n?) and O(n).
Firstly we let

T(n,1) = O(n?),
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and the time needed to perform communications which are mostly through
2D surface layers is

Now Eq. (10) gives

In

3

2
nZZC’p( ) :>n20p%. (11)

The amount of memory needed to represent a problem of size n is M (n) = n,
then the scalability function, which indicates how the amount of memory used
per processor must increase as a function of p in order to maintain the same
level of efficiency, is calculated as follows,

(12)

From Eq. (11), when the number of processors p increases from 1 to
10,000, the number of particles n only needs to increase 10 times for main-
taining the same efficiency; this is easily satisfied in practical computations.
Equation (12) states that when the number of processors increases, the mem-
ory requirement per processor decreases.

Secondly we let

T(n,1) = O(n),

and obtain

’ » C. (13)
Equation states that when the number of processors increases, the mem-
ory requirement per processor remains constant. In both cases, a parallel
system of 3D DEM is perfectly scalable, according to Michael 42003‘): “A
parallel system is perfectly scalable if the same level of efficiency can be sus-
tained as the number of processors are increased by increasing the size of the
problem being solved.” Overall, the memory scalability function is a nonlin-
early decreasing function of the number of processors, which is an intrinsic
feature of 3D DEM.
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5. DOD SUPERCOMPUTERS

The target architectures in this work are three of the DoD supercomput-
ers: Spirit, Excalibur and Thunder. Spirit is an SGI ICE X System located
at the AFRL DSRC. Spirit has 4,590 compute nodes each with 16 cores
(73,440 total compute cores), 146.88 TBytes of memory, and is rated at 1.5
peak PFLOPS. Each compute node has two Sandy Bridge-based Intel Xeon
CPU E5-2670 2.60 GHz and 32 GB memory. The cluster of compute nodes
are interconnected through 4x FDR InfiniBand network with enhanced LX
hypercube topology.

Excalibur is a Cray XC40 System located at the ARL DSRC. It has 3,098
compute nodes each with 32 cores (99,136 total compute cores), 399 TBytes
of memory, and is rated at 3.7 peak PFLOPS. Each compute node has two
Haswell-based Intel Xeon CPU E5-2697 v3 2.60 GHz and 128 GB memory.
The interconnect is Cray Aries with Dragonfly topology.

Thunder is an SGI ICE X System located at the AFRL DSRC. It has
3,216 standard compute nodes each with 36 cores (115,776 standard compute
cores), 442.37 TBytes of memory, and is rated at 5.62 peak PFLOPS. Each
compute node has two Haswell-based Intel Xeon CPU E5-2697 v3 2.60 GHz
and 128 GB memory. The interconnect is 4x FDR InfiniBand with enhanced
LX hypercube.

The Intel Xeon CPU E5-2670 was unveiled in 2012 as the fourth-generation
eight-core architecture (“Sandy Bridge” ), and some of the new and extended
features in connection with performance improvement are:

e Four memory channels, and memory speed increases to 1600 MHz.

e Ring to connect on-chip L3 cache with cores, system agent, memory
controller, and QPI agent and I/O controller to increase the scalability.

e L3 cache per core has been increased from 2 MB to 2.5 MB, and the
total L3 cache size is 20 MB.

e INTEL Quickpath Interconnect (QPI) link rate increases to 8 GT/s
and two QPI links to second socket.

e New AVX unit with wider vector registers of 256 bit.

The Sandy Bridge-based node of Spirit has two Xeon E5-2670 processors,
each having eight cores. Each core has 64 KB of L1 cache (32 KB data and
32 KB instruction) and 256 KB of L2 cache. All eight cores share 20 MB
of last level cache (LLC), which is also called L3 cache. Sandy Bridge has
a bi-directional 32-byte ring interconnect that connects the 8 cores, the L3
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Figure 6: Schematic diagram of a Sandy Bridge processor (permission to use the figure
granted by Saini) (Saini et al., 2013).

cache, the QPI agent and the integrated memory controller, as illustrated by
Figure 6l The L3 cache is divided into eight slices/blocks, which are con-
nected to the eight cores, and the system agent through a ring interconnect.
Each core can address the entire cache, and each slice/block has a full cache
pipeline.

6. PERFORMANCE ON THREE DOD SUPERCOMPUTERS

6.1. Types of DEM simulations

Overall, the problems that are modeled by 3D DEM fall into two main
categories:

e static or quasi-static problems: laboratory tests such as oedometer com-
pression, isotropic compression, conventional or true triaxial compres-
sion, in-situ Cone Penetration Test (CPT), static load test of cast-in-
place piles, etc.
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e dynamic problems: sand pluviation or deposition with gravity, collapse
of particle assemblage, landslide under gravity, explosion beneath soil,
installation of precast piles by means of hammers, sand dune movement,
etc.

These two types of problems exhibit different features of particle interaction
in 3D DEM simulations. The most pronounced difference is that particles
come in and out of contact frequently in dynamic simulations, while there is
less contact rearrangement in static or quasi-static modeling. In this work,
static/quasi-static simulations of 500 iterations are carefully selected as our
representative tests in evaluating parallel performance. There are three rea-
sons for this selection:

1. static/quasi-static simulations allow an accurate control of constant
time steps used in the explicit integration scheme.

2. our tests go across five orders of magnitude of simulation scale in terms
of number of particles, namely, 2.5k, 12k, 150k, 1 million and 10 million;

3. for each simulation scale we attempt to obtain the run time performance
employing from 1 core to 32,768 cores (2,048 nodes), thus both the
problem size and the number of processors are investigated across a
wide range.

6.2. Performance measurement on the three supercomputers

Speedup and efficiency data from Spirit, Excalibur and Thunder are pop-
ulated in the following tables. Note that the node speedup/efficiency data
are measured as well as the core speedup/efficiency for all of the simulation
scales, except the 10 million particle simulation which cannot be accom-
plished using one core due to limit access to the supercomputers.

Firstly, it is observed that the core speedup is much higher than the node
speedup across all of the simulation scales. For example, for 2.5k particles
using 4 nodes the node speedup is 1.9 and core speedup is 19.5, for 150k
particles using 16 nodes the node speedup is 29.9 and core speedup is 3,766.6,
and for 1 million particles using 128 nodes the node speedup is 1,464.3 and
core speedup is 167,882.4.

Secondly, for the smaller scale of 2.5k and 12k, as shown in Table [1,
nearly all of the node efficiency and core efficiency are smaller than 1 (100%);
however, for the larger scale of 150k, 1M and 10M, as shown in Table 2| both
the node efficiency and core efficiency are greater than 1 (100%), and the
core efficiency is much higher than the node efficiency.
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Table 1: Speedup and efficiency of small scale simulations on Spirit

nodes cores time (s) speedup efficiency speedup efficiency
2.5k particles node core

1 129.41 1.00 1.00

1 16 12.82 1.00 1.00 10.10 0.63

2 32 9.53 1.35 0.67 13.58 0.42

3 48 7.70 1.66 0.55 16.80 0.35

4 64 6.63 1.93 0.48 19.51 0.30

6 96 5.50 2.33 0.39 23.52 0.25

8 128 4.92 2.60 0.33 26.30 0.21

16 256 3.69 3.47 0.22 35.03 0.14

32 512 3.35 3.82 0.12 38.57 0.08

64 1024 2.38 5.40 0.08 54.47 0.05

12k particles

1 1265.97 1.00 1.00

1 16 58.51 1.00 1.00 21.64 1.35

2 32 34.09 1.72 0.86 37.13 1.16

4 64 19.72 2.97 0.74 64.20 1.00

6 96 14.68 3.99 0.66 86.26 0.90

8 128 12.29 4.76 0.60 103.03 0.80

16 256 8.73 6.70 0.42 144.94 0.57

32 512 6.11 9.58 0.30 207.37 0.41

64 1024 5.31 11.01 0.17 238.30 0.23

Table 2: Speedup and efficiency of large scale simulations on Spirit

nodes cores time (s) speedup efficiency speedup efficiency
150k particles node core
1 210316.10 1.00 1.00
1 16 1671.39 1.00 1.00 125.83 7.86
2 32 541.27 3.09 1.54 388.56 12.14
4 64 221.77 7.54 1.88 948.33 14.82
8 128 105.84 15.79 1.97 1987.19 15.52
16 256 55.84 29.93 1.87 3766.59 14.71
32 512 33.40 50.04 1.56 6296.40 12.30
64 1024 22.39 74.63 1.17 9391.48 9.17
128 2048 18.12 92.25 0.72 11607.72 5.67
1M particles
1 13860166.45 1.00 1.00
1 16 120887.41 1.00 1.00 114.65 7.17
2 32 28095.91 4.30 2.15 493.32 15.42
4 64 5747.83 21.03 5.26 2411.37 37.68
8 128 1516.96 79.69 9.96 9136.83 71.38
16 256 462.91 261.15 16.32 29941.42 116.96
32 512 212.85 567.96 17.75 65118.53 127.18
64 1024 121.83 992.22 15.50 113762.03 111.10
128 2048 82.56 1464.26 11.44 167882.44 81.97
256 4096 61.70 1959.16 7.65 224624.96 54.84
512 8192 56.00 2158.71 4.22 247503.99 30.21
10M particles
1 16 20269795.77 1.00 1.00
2 32 300396.78 67.48 33.74
4 64 76511.85 264.92 66.23
8 128 28266.40 717.10 89.64
16 256 10568.23 1917.99 119.87
32 512 7288.38 2781.11 86.91
64 1024 6640.23 3052.57 47.70
128 2048 6548.81 3095.19 24.18
256 4096 6552.20 3093.59 12.08
512 8192 6604.70 3069.00 5.99
768 12288 7136.70 2840.22 3.70
1024 16384 8382.69 2418.05 2.36
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Table 3: Speedup and efficiency of small scale simulations on Excalibur

nodes cores time (s) speedup efficiency speedup efficiency
2.5k particles node core

1 122.83 1.00 1.00

1 32 6.82 1.00 1.00 18.01 0.56

2 64 4.87 1.40 0.70 25.21 0.39

3 96 4.04 1.69 0.56 30.43 0.32

4 128 3.55 1.92 0.48 34.61 0.27

6 192 2.90 2.35 0.39 42.40 0.22

8 256 2.83 2.41 0.30 43.40 0.17

16 512 2.08 3.27 0.20 58.93 0.12

32 1024 1.92 3.55 0.11 63.90 0.06

64 2048 3.08 2.21 0.03 39.87 0.02

12k particles

1 1660.74 1.00 1.00

1 32 28.75 1.00 1.00 57.77 1.81

2 64 16.35 1.76 0.88 101.59 1.59

4 128 9.53 3.02 0.75 174.26 1.36

6 192 7.42 3.88 0.65 223.96 1.17

8 256 7.53 3.82 0.48 220.65 0.86

16 512 4.45 6.46 0.40 373.27 0.73

32 1024 8.10 3.55 0.11 204.91 0.20

64 2048 4.68 6.15 0.10 355.04 0.17

Table 4: Speedup and efficiency of large scale simulations on Excalibur

nodes cores time (s) speedup efficiency speedup efficiency
150k particles node core
1 199818.73 1.00 1.00
1 32 673.98 1.00 1.00 296.48 9.26
2 64 254.91 2.64 1.32 783.89 12.25
4 128 108.30 6.22 1.56 1845.09 14.41
8 256 51.78 13.02 1.63 3858.80 15.07
16 512 28.74 23.45 1.47 6952.35 13.58
32 1024 21.05 32.02 1.00 9492.57 9.27
64 2048 15.16 44.45 0.69 13178.78 6.43
128 4096 19.25 35.01 0.27 10378.49 2.53
1M particles
1 15182678.83 1.00 1.00
1 32 32652.50 1.00 1.00 464.98 14.53
2 64 6357.97 5.14 2.57 2387.98 37.31
4 128 1678.76 19.45 4.86 9044.01 70.66
8 256 561.95 58.11 7.26 27017.74 105.54
16 512 217.47 150.15 9.38 69815.96 136.36
32 1024 117.18 278.65 8.71 129567.39 126.53
64 2048 74.29 439.53 6.87 204373.15 99.79
128 4096 78.35 416.76 3.26 193785.30 47.31
256 8192 110.93 294.34 1.15 136863.02 16.71
512 16384 155.88 209.48 0.41 97401.82 5.94
10M particles
1 32 5912563.15 1.00 1.00
2 64 93400.65 63.30 31.65
4 128 19859.66 297.72 74.43
8 256 118101.16 50.06 6.26
16 512 5562.87 1062.86 66.43
32 1024 21245.00 278.30 8.70
64 2048 19058.43 310.23 4.85
128 4096 19684.92 300.36 2.35
256 8192 22038.31 268.29 1.05
512 16384 26321.64 224.63 0.44
768 24576 32998.37 179.18 0.23
1024 32768 43745.79 135.16 0.13
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Table 5: Speedup and efficiency of small scale simulations on Thunder

nodes cores time (s) speedup efficiency speedup efficiency
2.5k particles node core

1 105.25 1.00 1.00

1 36 7.44 1.00 1.00 14.15 0.39

2 72 4.79 1.55 0.78 21.99 0.31

3 108 3.78 1.97 0.66 27.86 0.26

4 144 3.47 2.14 0.54 30.30 0.21

6 216 3.00 2.48 0.41 35.14 0.16

8 288 2.82 2.63 0.33 37.28 0.13

16 576 2.27 3.28 0.20 46.39 0.08

32 1152 2.34 3.17 0.10 44.88 0.04

64 2304 3.50 2.13 0.03 30.08 0.01

12k particles

1 1146.04 1.00 1.00

1 36 23.86 1.00 1.00 48.04 1.33

2 72 13.60 1.75 0.88 84.24 1.17

4 144 9.28 2.57 0.64 123.52 0.86

6 216 6.95 3.43 0.57 164.88 0.76

8 288 7.97 2.99 0.37 143.76 0.50

16 576 4.50 5.31 0.33 254.92 0.44

32 1152 8.04 2.97 0.09 142.55 0.12

64 2304 7.02 3.40 0.05 163.19 0.07

The phenomenon that core efficiency goes appreciably higher than node
efficiency is interpreted as follows: extending from 1 core to 16 cores (1
node) delivers an intra-node MPI performance gain, but increasing from 1
node to multi-nodes acquires an inter-node (more accurately, a mixture of
inter-node and intra-node) MPI performance gain. The inter-node mode
gains less performance improvement than the pure intra-node mode because
of its higher MPI transmission overhead, thus leading to lower speedup and
efficiency.

Hereby the node speedup/efficiency is chosen for performance study for
two reasons: (1) to be conservative on the measurement of speedup and
efficiency, (2) in light of the large computational resources (compute nodes)
used in the simulations.

6.3. Strong scaling view of the speedup and efficiency

Figure |7/ plots the speedup and efficiency for static simulations at the five
different scales of number of particles. The speedup exhibits a monotonically
increasing relationship with respect to the number of compute nodes at all
scales. The efficiency exhibits a monotonically decreasing trend related to
the number of compute nodes for 2.5k and 12k, and the values of efficiency
are below 1, but it captures a peak value on the scale of 150k, 1M and 10M
particles and reveals values higher than 1, namely, superlinear speedup. The
superlinear speedup is particularly pronounced; for example, the efficiency

goes as high as 1.97 (197%) at 8 nodes in the 150k test; and 17.75 (1,775%)
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Table 6: Speedup and efficiency of large scale simulations on Thunder

nodes cores time (s) speedup efficiency speedup efficiency
150k particles node core
1 210316.10 1.00 1.00
1 36 1671.39 1.00 1.00 439.28 12.20
2 72 541.27 2.40 1.20 1056.40 14.67
4 144 221.77 5.05 1.26 2216.88 15.39
8 288 105.84 9.87 1.23 4335.82 15.05
16 576 55.84 15.64 0.98 6868.96 11.93
32 1152 33.40 20.80 0.65 9134.83 7.93
64 2304 22.39 25.01 0.39 10987.98 4.77
128 4608 18.12 22.58 0.18 9920.53 2.15
1M particles
1 13860166.45 1.00 1.00
1 36 120887.41 1.00 1.00 400.83 11.13
2 72 28095.91 4.31 2.15 1727.14 23.99
4 144 5747.83 22.48 5.62 9009.22 62.56
8 288 1516.96 72.99 9.12 29256.06 101.58
16 576 462.91 153.67 9.60 61594.81 106.94
32 1152 212.85 267.41 8.36 107185.75 93.04
64 2304 121.83 371.52 5.81 148916.20 64.63
128 4608 82.56 465.16 3.63 186447.45 40.46
256 9216 61.70 438.07 1.71 175590.66 19.05
512 18432 56.00 311.99 0.61 125053.99 6.78
10M particles
1 36 20269795.77 1.00 1.00
2 72 300396.78 59.33 29.66
4 144 76511.85 206.16 51.54
8 288 28266.40 563.05 70.38
16 576 10568.23 807.73 50.48
32 1152 7288.38 856.69 26.77
64 2304 6640.23 858.00 13.41
128 4608 6548.81 864.82 6.76
256 9216 6552.20 859.53 3.36
512 18432 6604.70 832.83 1.63
768 27648 7136.70 512.89 0.67
1024 36864 8382.69 374.96 0.37

at 32 nodes, and 7.65 (765%) at 256 nodes in the 1 million particle test.

It should be noted that for all of the 1-node tests across the five scales, the
memory size is sufficiently adequate to satisfy the computation and does not
cause swap-out to hard drive. For example, the 1 million particle test requires
approximately 3GB memory on the 1-node test, which is significantly below
the 32GB node memory provided by the DoD Spirit supercomputer.

6.4. Integrated view of the speedup and efficiency

Figurel8 compiles all of the speedup and efficiency data from static simu-
lations on Spirit at the five different scales. A loglog graph is plotted due to
the wide range of problem size and number of processors. It is observed that
speedup is an increasing function of the problem size for any fixed number
of processors.

It is clearly seen from Figure 8(b) that the efficiencies of 150k, 1 million
and 10 million particle simulations go beyond 1 (100%), and the larger the
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Figure 7: Speedup and efficiency across orders of magnitude of simulation scale in terms
of number of particles.

scale, the stronger is the superlinear speedup. The same phenomenon is repli-
cated on the Excalibur and Thunder supercomputers, as shown in Figure (9,
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Figure 8: Speedup and efficiency across orders of magnitude simulation scale on Spirit.

whereby only the 10 million test on Excalibur exhibits a bit fluctuation using
8 nodes (this replicable fluctuation on Excalibur is most perplexing and we

cannot explain it).
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Figure 9: Efficiency on Excalibur and Thunder.

Although strong superlinear speedups are observed for larger scale sim-
ulation of 150k, 1M and 10M particles on all of the three supercomputers,
the efficiencies are not monotonically increasing: increase first but decrease
later. This is worth further investigation.

7. CAUSES OF SUPERLINEAR SPEEDUP IN 3D DEM

There are quite a few sources that contribute to the superlinear speedup
in parallel computing as summarized in section|1.3: hidden memory latency,



subdivision of system overhead, randomized algorithms, tiered memory archi-
tecture, shift in time fraction spent on different-speed tasks, load imbalance,
serial algorithm steps, interprocessor communication, etc.

Gustafson 41990) also stated that the decrease in uniprocessor perfor-
mance appears as another source of parallel inefficiency as a problem is
“spread out” among processors, and Sandia experiments dGustafsonJ, ‘1990‘)
showed the uniprocessor performance is an increasing but asymptotic func-
tion of problem size.

In studying the tiered memory and superlinear speedup, Gustafson 41990‘)
mentioned the subtle effect when a processor has a data cache, and the
regime is entered in a manner transparent to the programmer. He believed
that the reasoning on superlinear speedup is applicable to both shared mem-
ory computers and distributed memory machines. He made the following
statement: “It is not anomalous. It is as inescapable as the laws of physics
that processor-memory speeds increase as a problem is spread out over many
processors.” and “Superlinear parallel speedup, far from being the result
of ‘inefficient’ serial execution, becomes inescapable when the performance
model makes realistic assumptions about the speed of memory and the way
problems scale.”

Among all of these possible sources, we will focus on four of them: (1)
memory consumption; (2) interprocess MPI communication; (3) tiered mem-
ory hierarchy; (4) uniprocessor performance, because other sources such as
load imbalance has been minimized in our 3D DEM, referring to Yan and Regueiro‘
(2018b,c).

Yan and Regueiro 42018c‘) pointed out that the interprocess MPI com-
munication time is a decreasing function of the number of compute nodes,
O((log p)/p), whereas the parallel overhead percentage (ratio of MPI commu-
nication time to total execution time) is an increasing function, O(log p), and
is around 10% with granularity-optimized p for complex-shaped 3D DEM,
where p denotes the number of compute nodes. That means the 2D MPI
communication decreases slower than the 3D computation with respect to
increasing number of compute nodes, therefore MPI communication change
with p hinders rather than facilitates the parallel speedup. Furthermore, it
is impractical to differentiate the MPI-associated memory usage from the
computation-associated memory usage in an OS process, so we leave the
process-consumed memory as a whole.

The DEM features high demand on CPU clock rate (frequency) but ex-
erts low demand on memory usage (so called high-CPU-low-memory). In

29



Yan and Regueiro 42018CJ), it has been theoretically proved that memory re-
quirement per processor decreases when number of processors and problem
size increase to maintain the same efficiency (iso-efficiency) for 3D DEM.
Therefore it is not surprising that the larger the simulation scale in terms of
number of particles, the more pronounced superlinear speedup may occur,
because it becomes more likely that the process-partitioned data fit into CPU
caches.We will use replicable experiment data measured through advanced
performance monitor tools to justify this conjecture.

8. MEASUREMENTS ON THREE SUPERCOMPUTERS

8.1. Cache latency and bandwidth

Saini et al. 42013‘) measured the memory latency and bandwidth of Sandy
Bridge processors, as shown in Figure[10. The latency exhibits a step function
pattern: L1 cache latency is 1.2 ns; L2 cache latency is 3.5 ns; L3 cache
latency is 6.5 ns; and main memory latency is 28 ns, which is approximately
4.3 times as high as the L3 cache latency.
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Figure 10: Memory latency and bandwidth of Sandy Bridge processors (permission to use
the figure granted by Saini) dSaini et al., \2013‘).

8.2. Memory footprint

To measure the memory consumption, the system function getrusage is
called in the code to acquire the resident memory per process. Each process
prints out its own memory footprint and an average value is then calculated.

Figure/11 plots the memory consumption per process across five orders of
magnitude of simulation scale on Spirit, Excalibur and Thunder, respectively.
Overall, the memory footprints of 150k, 1M and 10M particles decrease with
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Figure 11: Memory consumption per process/core on the three DoD supercomputers.

the number of nodes, whereas for 2.5k and 12k particles, they either increase
slightly on Spirit or stay nearly constant (actually decrease very slightly)
on Excalibur and Thunder. Figure[11(d) depicts memory in linear scale on
Thunder so that we can see clearly that the overall memory consumption is
below 150 MB per process/core except the case of 10 million particles using
1 compute node. The memory consumption per core is low in the sense of
scientific computing. However, recalling that the L3 cache per core is 2.5 MB
on Sandy bridge-based CPU, the memory consumption per core is still one
to two orders of magnitude larger than the L3 cache size.

It is particularly important to observe that: for 2.5k and 12k particles the
memory consumption per process does not decrease, and it corresponds to no
superlinear speedup; whereas for 150k, 1M and 10M particles the memory
footprint per process does decrease, and it corresponds to the superlinear
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speedup. The change of memory footprint per process plays a critical role in
determining speedup characteristics.

That the memory consumption per process decreases with an increasing
number of nodes in large-scale simulations but does not in small-scale ones,
depends on the inherent code design and underlying data structures: the
memory allocation for particles and interparticle contacts dominates other
components such as eigenvalue solvers only when there are adequately large
number of particles.

Referring to Eq. (12) in Section[4, which states that the memory scalabil-
ity function is a nonlinearly decreasing function of the number of processors,
an intrinsic feature of 3D DEM, it is clear that the memory footprint mea-
surements agree well with the theoretical analysis.

8.8. PAPI Implementation

In order to measure cache misses or other performance data, the Perfor-
mance Application Programming Interface (PAPI) is used for programming
the performance measurement part in the parallel code. Referring to http://
icl.cs.utk.edu/papi/, PAPI provides programmers with a consistent in-
terface and methodology for use of the performance counter hardware and
processor events found in most major microprocessors, and a few example

are listed in Table

preset events description

PAPI_L1.TCM L1 cache misses

PAPI_L2_.TCM L2 cache misses

PAPI_L3_.TCM L3 cache misses

PAPI_L3_ICR L3 instruction cache reads

PAPI_L3_ICW L3 instruction cache writes

PAPI_FP_INS Floating point instructions

PAPI_FP_OPS Floating point operations
PAPI_MEM_SCY | Cycles Stalled Waiting for memory accesses

Table 7: Example of PAPI preset events.

According to https://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:
SandyFlops, PAPI only guarantees 3 programmable counters at a given time.
That means we will have to re-run the same simulation if we intend to mea-
sure more than 3 events. In addition, Intel has disabled the floating point
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counters in the Haswell-based CPU architecture as of today, however Sandy
Bridge and Ivy Bridge products are allows to measure FLOPS.

8.4. Cache miss per second

Note that PAPI.LLX_TCM (X=1, 2, 3) gives the total cache misses (TCM),
not the TCM rate. In order to study and compare performance using a
consistent standard across different simulation scales, TCM rate is employed
by dividing TCM by execution time. Tables |8 and |9 list the L1, L2 and L3
cache misses and execution time for simulations of 2.5k, 12k particles, and
simulations of 150k, 1M, 10M particles measured on Thunder, respectively.
Figure [12 plots the total cache miss (TCM) per second of L1, 1.2 and L3
caches across all of the five orders: 2.5k, 12k, 150k, 1M and 10M particles
on Thunder.

Now it can be seen that for 2.5k and 12k particles, even though the mem-
ory usage per process decreases nearly unnoticeably as shown in Figure[11(c),
the TCM per second tends to give a clearly decreasing trend, revealed in Fig-
ure [12(a) and (b). This indicates the sensitivity of TCM to the change of
memory consumption.

The situations for 150k, 1M and 10M particles deliver different details
from that of 2.5k and 12k particles, even though they also exhibit a decreasing
trend of TCM rate. In the latter, the TCM rates of L1, L2 and L3 caches
decrease by nearly the same order of magnitude. However, in the former the
three cache level TCM rates decrease differently: L3_TCM rate > L.2. TCM
rate > L1_TCM rate. For example, L3_TCM rate decreases from 1.8E+7
to 6.5E+4 (nearly three orders of magnitude), L2.TCM rate decreases from
8.1E+7 to 1.4E+6 (one order of magnitude), and L1 TCM rate decreases
from 7.1E+6 to 3.0E+6 (by 50%) for 1 million particles.

In connection with the speedup shown in Figure |8 and [9, wherein 2.5k
and 12k particles show no superlinear speedup whereas 150k, 1M and 10M
particles exhibit strong superlinear speedup, we can conclude that the L3
cache contributes most significantly to the strong superlinear speedup among
all of the three cache levels.

Figure [13 compiles various simulation scales for L3, L2 and L1 cache,
respectively. It is seen that for each cache level, the 150k, 1M and 10M
particle simulations have greater decrease of TCM rate than that of 2.5k and
12k particles.
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Table 8: Cache misses of small scale simulations on Thunder

nodes cores PAPI_L3.TCM PAPI_L2.TCM PAPI_L1.TCM time (s)
2.5k particles
1 1.7E404 6.4E409 1.9E410 1.1E402
1 36 4.3E405 1.2E4-07 5.4E408 7.4E+00
2 72 3.4E405 1.3E4-07 3.2E408 4.8E400
3 108 3.3E4-05 1.1E407 2.4E+408 3.8E4+00
4 144 3.4E405 1.1E4-07 2.0E4+08 3.5E+00
6 216 3.2E405 1.0E407 1.5E408 3.0E+00
8 288 3.3E405 1.0E4-07 1.3E408 2.8E4+00
16 576 3.2E405 8.2E4-06 9.0E4-07 2.3E400
32 1152 2.6E4+05 4.9E4-06 6.8E4-07 2.3E4+00
64 2304 2.2E405 1.4E4-07 6.9E4-07 3.5E4-00
12k particles
1 2.9E+407 2.0E+11 2.0E+11 1.1E4-03
1 36 2.0E+06 1.2E408 2.5E4+09 2.4E+401
2 72 1.0E4-06 4.2E4-07 1.3E4-09 1.4E401
4 144 6.6E405 2.3E+07 7.2E408 9.3E4-00
6 216 5.2E+05 1.9E4-07 5.1E408 7.0E+00
8 288 5.2E+05 1.7E4-07 4.1E4-08 8.0E4-00
16 576 4.7E405 1.4E407 2.4E408 4.5E4-00
32 1152 4.5E405 1.2E4-07 1.7E408 8.0E400
64 2304 3.9E405 1.5E407 1.2E408 7.0E4+00
Table 9: Cache misses of large scale simulations on Thunder
nodes cores PAPI_L3_.TCM PAPI_L2_.TCM PAPI_L1.TCM time (s)
150k particles
1 9.0E+412 3.2E+413 2.2E+13 1.9E4-05
1 36 4.9E408 3.6E410 4.8E410 4.2E402
2 72 4.6E407 9.6E4-09 2.0E+10 1.8E+4+02
4 144 1.9E4-07 2.4E409 8.9E409 8.3E401
8 288 8.8E4-06 5.8E408 4.2E4-09 4.3E401
16 576 3.5E406 9.0E4-07 2.1E409 2.7E+4+01
32 1152 1.6E4-06 4.0E4-07 1.1E4-09 2.0E+401
64 2304 8.9E405 3.7TE4-07 6.5E408 1.7E401
128 4608 7.4E405 4.9E407 3.9E408 1.9E401
1M particles
1 9.5E+412 1.3E+413 7.5E4+12 1.1E4-07
1 36 5.0E+11 1.4E+412 9.9E+11 2.8E+04
2 72 8.1E410 3.7TE411 3.0E+411 6.5E403
4 144 6.8E409 1.0E+411 1.0E+411 1.2E403
8 288 3.8E408 2.7TE+10 3.9E+410 3.8E4+02
16 576 4.0E4-07 6.9E409 1.6E410 1.8E402
32 1152 1.8E4-07 1.9E409 7.4E409 1.0E402
64 2304 8.5E406 4.3E408 3.5E409 7.5E4+01
128 4608 3.9E4-06 8.2E407 1.8E409 6.0E+401
256 9216 1.7E4-06 5.56E407 1.1E4-09 6.4E401
512 18432 1.4E4-07 1.5E4-08 7.6E4+08 9.0E401
10M particles
1 36 1.1E412 1.5E+12 8.9E+11 5.4E406
2 72 1.6E410 2.7TE+10 1.8E410 9.0E4-04
4 144 3.3E409 7.8E+09 5.5E4+09 2.6E+04
8 288 3.6E408 2.0E+09 1.8E409 9.5E403
16 576 2.8E4+07 5.7TE+08 6.6E4-08 6.6E4-03
32 1152 2.3E+06 1.7E408 4.7E408 6.3E4-03
64 2304 4.4E405 9.6E+407 2.7TE+08 6.3E4-03
128 4608 2.5E4+05 1.3E408 1.8E408 6.2E403
256 9216 2.4E405 1.2E408 1.5E408 6.2E403
512 18432 8.7TE406 1.0E408 1.2E408 6.4E4-03
768 27648 2.7TE4+07 1.5E408 1.6E408 1.0E4-04
1024 36864 7. 7TE407 2.2E408 1.1E408 1.4E404
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Figure 12: L1, L2 and L3 cache miss (per second) comparison across simulation scales on
Thunder.
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Figure 13: Cache miss (per second) measurement across orders of magnitude of simulation
scale on Thunder.
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8.5. CPU stall time

It is of great interest to investigate the CPU stall time (also called mem-
ory stall time) for all of the simulation scales and computational granulari-
ties. However, it turns out that the PAPL.MEM_SCY event (Cycles Stalled
Waiting for memory accesses) does not support the latest Intel Sandybrige,
Ivybridge or Haswell-based Xeon processors on DoD supercomputers, nor
can the PAPI-based tools such TAU, PerfSuite, PCTookkit, etc, make such
measurement. The Intel Performance Counter Monitor (PCM), which has
been discontinued but leaves a fork at github.com, is used together with the
Linux Perf tool for measurements. Because its installation and use require
root privilege to modify OS system files (not allowed on DoD supercomput-
ers), the Intel PCM can only be employed in a Dell T7500 Precision Linux
workstation of dual hexa-core Intel Xeon X5690 Westmere-EP processors.

Table 10: CPU stall time measurement

Intel PCM Perf
Particles IPC L3MISS (M) L2MISS (M) L3HIT L2HIT stallled cycles cache miss
2.5k 1.46 ) 151 0.96 0.80 21.06% 3.69%
12k 1.37 10 684 0.98 0.76 21.41% 1.65%
150k  0.80 367 9382 0.96 0.03 28.13% 15.41%
1M 0.38 1165 1180 0.01 0.01 55.65% 98.51%
10M 0.31 1208 1216 0.01 0 58.96% 99.19%
Table 10/lists the 1-node measurements from Intel PCM and Linux Perf
across five orders of magnitude of simulation scale. As the simulation scale
grows, the Instructions Per Cycle (IPC) decreases, the L3 cache misses
(L3MISS) increases, the L3 cache hit rate (L3HIT) decreases, CPU stall
cycles ratio increases, and the overall cache miss rate increases. In particu-
lar; the IPC drops from 1.46 to 0.38, and the CPU stall cycles ratio increases
from 21% to 56%, when the number of particles grows from 2.5k to 1M.
From the following equations,
CPU time = (CPU exec clock cycles + memory stall cycles) x cycle time,
stall cycles ratio memory stall cycles (14)

— CPU exec clock cycles’

we gain insight into the CPU stall level. The computational granularity (CG)
of 2.5k particles on 12-cores is approximately the optimal CG in parallel
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computation of complex-shaped 3D DEM (Yan and Refzueir&, ‘20180‘). At
this CG level, the CPU stall ratio is as low as approximately 21%, and
the cache miss is as low as 3.7%, therefore the complex-shaped 3D DEM is
characterized by CPU-bound rather than memory-bound, in addition to its
“high-CPU-low-memory” feature.

Beware the CPU stall ratio is not the CPU usage (percentage of CPU
used by a process) shown by “top” command, which is always 100% for each
process in parallel computing of complex-shaped 3D DEM.

8.6. Uniprocessor performance and generalized speedup

As floating point counters have been disabled in the Haswell-based CPU
architecture as of today, we are unable to measure the FLOPS on Thunder
or Excalibur. Figure 14/ compiles the FLOPS performance across five orders
of magnitude of simulation scale (number of particles) on Spirit. Overall,
the FLOPS performance increases when the number of compute nodes in-
creases, whereas the FLOPS per core (uniprocessor performance) decreases
with regard to increasing number of compute nodes.
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Figure 14: Floating-point operation performance w.r.t number of compute nodes on Spirit
(strong scaling).

Figure[15(a) presents the generalized speedups in terms of PAPI-measured
overall FLOPS according to Eq. (6). Note the generalized speedups are calcu-
lated relative to the sequential measurement of 2.5k particles on a single node,
which is a typical computational granularity (CG). Actually the TFLOPS’s
on a single node are 0.249, 0.251, 0.249, 0.243, 0.243 for 2.5k, 12k, 150k, 1M,
10M particles, respectively. They are so close that it makes little difference
to select which one in evaluating the generalized speedup.
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The generalized speedup curves (each corresponding to a fixed-size prob-
lem) with regard to number of compute nodes, as shown in Figure [15, ex-
hibit an overall increasing trend, yet do not vary as smoothly as the speedup
in terms of Eq. (1), as shown in Figure[8. As stated in Sun and Gustafson
@), speedup is the restriction of generalized speedup to fixed work, there-
fore the gap between the generalized speedup and “conventional” speedup
indicates other factors such as memory hierarchy have influence. Figure[15(b)
plots the generalized speedup curves with regard to problem size, whereby
it is observed the generalized speedup increases with an increasing problem
size (number of particles).
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Figure 15: Generalized speedup measured in terms of FLOPS.

To use Eq. (6), it is suggested that the sequential speed is measured with a
small problem size appropriate for one node processing, and parallel speedups
are measured with large problem sizes appropriate for large number of nodes,
thus a typical computational granularity (CG), i.e., 2.5k particles on a single
node, is selected for the sequential speedup measurement. Table[11]presents
the generalized speedup measurements across four orders of magnitude of
simulation scale. Overall, the generalized speedup increases with increasing
problem size.

Figure/16 plots the total and per core FLOPS performance with regard to
problem size. The total FLOPS performance exhibits arched curves and indi-
cates peak values at the problem size of 1.0E+45. Regarding the uniprocessor
FLOPS performance, there is no clear trend. Yan and Regueiro 420180) re-
veals the fact that different optimal computational granularity (CG), i.e.,
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Table 11: Generalized speedup across various scales

Scale 2.5k 12k 150k 1M

TFLOPS 0.249 2.558 7.448 11.843
Speedup 1.0 103 299 47.5

number of particles per node, exists for different simulation scales to achieve
minimum computational run time. When they are extracted at optimal or
close-to-optimal computational granularity (CG), the FLOPS data reveal a
clear trend, as well as the generalized speedup, as shown in Table[11.
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Figure 16: Floating-point operation performance w.r.t problem size on Spirit (strong scal-
ing).

Then we measure the FLOPS performance based on weak scaling tests,
where the problem size (workload) assigned to each processor stays constant,
namely, a constant computational granularity is employed across different
orders of magnitude of simulation scale. In this test, 2,500 particles are
assigned to each compute node (approximately 150 particles per core). Fig-
ure 17(a) and (b) plots the total and per core FLOPS performance with
regard to problem size (in direct proportion to number of compute nodes),
respectively. It can be seen clearly that the total FLOPS exhibits a linear
relationship with regard to the problem size, and the uniprocessor FLOPS
performance nearly stays constant in spite of the problem size change.
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Sandia experiments showed the uniprocessor performance is an increas-
ing and asymptotic function of problem size for three practical and full-scale
scientific problems: wave mechanics, fluid dynamics, and structural analysis
dGustafson, ‘1990‘; Gustafson et al., ‘1988). Unfortunately it is not observed
in the 3D DEM problems of complex-shaped particles, whereby the unipro-
cessor performance is nearly a constant. Nevertheless, it does not hinder
complex-shaped 3D DEM from delivering strong superlinear speedup. That
means, both increasing uniprocessor performance or constant uniprocessor
performance can contribute to superlinear speedup effect.

Overall floating-point operation performance Floating-point operation performance per core
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Figure 17: Floating-point operation performance on Spirit (weak scaling).

9. WEAK SCALING MEASUREMENT

Weak scaling measurements are also performed on the three DoD super-
computers. Figure [18(a) plots the memory usage per process at different
simulation scales on the three supercomputers. Across all of the simulation
scales it varies between 10~50 MB, which is indeed a very low memory con-
sumption, agreeing with the “high-CPU-low-memory” feature of 3D DEM
for complex-shaped particles.

Figure [18(b) plots the L1, L2 and L3 cache miss rates of weak scaling
measurement on Thunder. It is observed that PAPI L1 TCM decreases and
PAPI L2 TCM nearly remains constant with respect to the workload that is
in direct proportion to the number of compute nodes, and PAPI_L3_TCM in-
creases at node number 512 and 1,024, in response to the memory consump-
tion pattern shown in Figure[18(a). Figure[18(c) combines the PAPI_L3_TCM
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Memory footprint per process

Cache miss rate measurement on Thunder
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Figure 18: Weak scalability measurement

and memory footprint per process such that the matching pattern is demon-
strated clearly. Again, it is seen that L3 cache has the most significant
bearing among all of the three cache levels.

10. INFLUENCE OF NEIGHBOR SEARCH ALGORITHMS

As described in section 2.4, the O(n?) neighbor search algorithm ex-
ecutes faster than the O(n) algorithm at fine CGs that are mostly em-
ployed in complex-shaped 3D DEM computational practice. Furthermore,
Yan and Regueiro 420183,) studied the influence of the two algorithms on
the superlinear speedup in complex-shaped 3D DEM: both O(n?) and O(n)
neighbor search algorithms exhibit a strong superlinear speedup on large
scale simulations of complex-shaped 3D DEM, although the O(n) algorithm
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exhibits a lower speedup than the O(n?) algorithm across all computational
scales and granularities.

11. CONCLUSION AND OUTLOOK

Strong superlinear speedup has been discovered in large scale simulations
of parallel 3D DEM for complex-shaped particles, which features “high-CPU-
low-memory” demand and CPU-bound rather than memory-bound, and the
larger the scale, the stronger is the superlinear speedup. The phenomenon
is reproduced on multiple DoD supercomputers. The strong scaling and
weak scaling measurements show that cache miss rate is sensitive to the
memory consumption shrinkage per processor, and the last level cache (LLC)
contributes most significantly to the strong superlinear speedup among all
of the three cache levels of modern microprocessors. The measurements are
mostly attributed to the inherently perfect scalability of 3D DEM because
its memory scalability function is a nonlinearly decreasing function of the
number of processors.

It is worth pointing out that superlinear speedup exists in the low-memory-
demand 3D DEM, aside from those high-memory-demand scientific compu-
tations that have been discovered. A constant uniprocessor FLOPS perfor-
mance with regard to problem size can also contribute to the superlinear
speedup, in addition to those cases with increasing uniprocessor FLOPS per-
formance.

We emphasize that the superlinear speedup is commonplace for large scale
complex-shaped 3D DEM, and DEM researchers should not hesitate to take
advantage of this effect to speedup their simulations.

We expect to extend our analysis to and see similar superlinear speedup
in other discrete methods widely used in engineering mechanics and material
science, such as smoothed-particle hydrodynamics (SPH), Reproducing ker-
nel particle methods (RKPM), PeriDynamics (PD), material point method
(MPM), lattice Boltzmann methods (LBM), etc, across different computa-
tional length scales. As these methods do not require complex geometric
contact resolution, their degree of superlinearity should vary depending on
the computation ratio between neighbor search and core solver.
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