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Wills, Peter E. (Ph.D., Applied Mathematics)

Studies in the Analysis of Stochastic Processes

Thesis directed by Prof. François Meyer

As the quantity of recorded data grows exponentially, the development of techniques for

analysis of such data have become a popular topic throughout industrial and academic research.

However, the practical application of modern analytical methods must eventually confront the

challenge of noisy data. The successful application of such methods is predicated on the ability to

understand, quantiy, and anticipate the effects of random fluctuations in the inputs. This thesis

is a compilation of three distinct projects, which are connected by the theme of understanding

stochastic processes and extracting their essential information.

In the first project, we analyze the efficacy of an approach for hypothesis testing and con-

fidence interval construction, which can be seen as an application of test supermartingales [130].

This approach is flexible, and in particular can be applied in tandem with arbitrary stopping rules,

so that the number of trials to be performed need not be fixed in advance of the experiment. The

method was originally developed for application in tests of local realism, which is a foundational

concept in quantum mechanics [162, 163].

The present work examines the efficacy of the method when applied to parameter estima-

tion based on repeated samples of a Bernoulli random variable. The relative simplicity of this

scenario allows for benchmarking against an optimal technique (based on exact calculation of tail

probabilities) and for rigorous analysis of the inversion problem necessary to generate confidence

intervals based on our hypothesis tests. We show that our test supermartingale method attains an

asymptotically optimal gain rate, which is the exponential rate of decay of the resulting p-value

as the number of trials increases. We also show that the separation between the endpoint of a

one-sided confidence interval and the true probability of success is O(
√

log(n)/n), while the op-

timal endpoint separation is O(1/
√
n). This O(

√
log n) difference can be viewed as the cost of
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the robustness against stopping rules. We propose an adaptive modification to our method which

yields an O(1/
√
n) endpoint separation when the number of trials is known in advance. This work

resulted in the publication [156].

The second project examines the effect of thermal perturbations on standing wave structures

that arise in thin-film magnetics. These structures, known as magnetic droplet solitons, or simply

droplets, have been observed experimentally [9, 106] and thoroughly studied through the lens of

partial differential equations [24, 36, 98]. Our analysis extends the analysis begun in [24], using the

machinery of stochastic partial differential equations to quantify the effects of physical sources of

randomness on the linewidth of the observed droplet. We obtain an analytical expression for the

linewidth based on the linearized equations of motion, and use numerical simulations to compare this

to the linewidth generated by the full nonlinear model. Along the way, we uncover a deterministic

regime of drift instability missed by previous analyses [23, 24]. This work resulted in the publication

[155]

The third project examines methods for pairwise comparison of graphs, focusing in particular

on a method based on the effective graph resistance [48], referred to as the resistance-perturbation

distance, or simply the resistance distance. Previous work [107] has established basic properties

of the resistance distance; we continue that program by extending the method to be applicable

to graphs of different sizes, and examining the efficacy of the method in detecting transitions

in the community structure of a dynamic random graph model. We show that in order for the

resistance distance to effective discern these transitions in community structure, the number of

cross-community edges must be asymptotically dominated by the mean degree of the graph. In

order to do this, we establish an asymptotic expression for the graph resistance between vertices in

the stochastic blockmodel. This work resulted in the publication [158].

Finally, we perform a thorough study of the performance of various common graph comparison

tools when used to detect common global and local structural discrepancies in graphs. These

structures are typified by various random graph models, such as the stochatic blockmodel [2],

preferential attachment [8], and Watts-Strogatz [153] models. Our results indicate that spectral
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tools offer the most performant option when comparing graphs over multiple structural scales.

Other graph distances are either too myopic (the graph edit distance, the resistance perturbation

distance) or miss essential structure at the local level (comparison of principal eigenvalues). Overall,

full comparison of the adjacency spectrum proves to be the most robust and universally applicable

graph comparison tool across these experiments.

We also look at the performance of these graph comparison tools on two empirical datasets;

a social contact network generated by students at a French primary school [138], and the functional

connectome of the human brain, measured in subjects with and without autism spectrum disorder.

We find that while spectral tools such as the adjacency spectral distance shows the best performance

in population comparison experiments, vertex-comparison methods such as the resistance distance

and DeltaCon [82] show superior performance when applied to anomaly detection in dynamic

graphs.
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Chapter 1

Introduction

The proliferation of cost-efficient data storage has fueled growing interest in analytical tech-

niques applicable to large data sets. However, the effects of randomness within these techniques is

often ignored [101]. In this thesis, we examine three distinct application areas, which are connected

via the theme of understanding the behavior of stochastic processes.

Chapter 2 is focused on furthering the analytical understanding of a statistical tool originally

developed to analyze the output of Bell tests, which are experimental tests of local realism, a funda-

mental theoretical aspect of quantum mechanics. One example of a recent Bell test experiment can

be found in [132]. The foundational nature of the property being tested means that the experiments

require extremely low p-values in order to unambiguously exclude alternative explanations [43].

Bell tests consist of repeated samples of some physical quantity B which will be negative

under the null hypothesis that local realism holds, and positive if local realism is violated, as

quantum theory predicts. The usual analytical method is to look at the sample mean B̂ and

sample deviation σ̂, with B̂ � σ̂ constituting strong evidence against the null hypothesis that

B < 0 [89, 162]. However, this method suffers from problems. First, the trials are observably not

independent and identically distributed. Second, the convergence in distribution of the central limit

theorem, which justifies Gaussian approximations in general, does not hold in this case, as the set

whose measure we are estimating is not fixed; in the case where the null hypothesis is false, as we

gather more data, we move further and further into the extreme tail of the distribution proposed

by the null hypothesis.



2

In [162], a method was developed that rigorously establishes p-values for Bell tests. These

p-values make no assumptions that the trials are i.i.d., and do not rely on Gaussian approximations

of the null distribution. The method can be seen as an application of the test supermartingales

introduced in [130]. In short, if we construct a supermartingale Vn based on the first n trials, it’s

expectation is bounded above by 1, and so its inverse p = 1/Vn is a p-value bound via Markov’s

inequality. We construct a particular test supermartingale, for which the resulting p-values can

achieve an asymptotically optimal gain rate, which is to the rate of exponential decay of pn as n

increases. Recently, this technique was used in a Bell test scenario in which other methods proved

unsuccessful [33].

Our work is an attempt to understand the behavior of this test-supermartingale method

in a scenario that is analytically tractable. We focus on parameter estimation with repeated

sampling of a Bernoulli random variable. In such a simplified situation, we are able to compare

test supermartingale-based p-value bounds against the standard large-deviation bound [31, 69]

and the exact p-value generated from the cumulative distribution. Furthermore, we can apply an

approximate inversion technique in order to understand the confidence intervals generated by each

method. This work led to [156].

In Chapter 3 we examine the influence of thermal noise on a particular localized struc-

ture arising in thin magnetic films. Magnetic nanostructures have potential applications in logic

and storage [112] and in communications [165]. We focus on magnetic droplet silitons, or simply

droplets. These structures exist in magnetic thin films for which the easy axis lies perpendicular to

the plane of the film, which balances the exchange energy and allows for the development of stable

localized structures [81].

Droplets have been observed experimentally in various scenarios [105, 9, 92, 36] and predicted

theoretically using both full and asymptotically reduced models [100, 24, 67, 68]. The nucleation

of droplets is driven by a nanocontact spin-torque oscillator, and theoretical analysis predicts that

the magnetic field sharply transitions at the boundary of the oscillator. However, direct imaging

of droplets has failed to produce the sharp transitions that are predicted theoretically [105].
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We continue the theoretical analysis of droplets by introducing thermal noise into the dy-

namical equations governing droplet evoluion. In doing so, we hope to address the influence of

thermal noise on both linewidth and droplet center variance, thus addressing the diffuse structural

observations of [105]. The application of soliton perturbation theory to this system of stochastic

partial differential equations allows for the analytical derivation of both the center variance and the

generation linewidth [134]. We pair this analysis with numerical simulation of both the reduced

and the full models. We also analyze the deterministic stability of the droplet, uncovering further

potential sources of imaging noise. This work let to the publication of [155].

In Chapter 4 we analyze the performance of the effective graph resistance [48] in detecting

topological changes in the dynamic stochastic blockmodel. The study of time-varying graphs is

fundamental to myriad disciplines, including computer network security [70], social network analysis

[5], neuroscience [126], and biology [15], with the detection of anomalous changes in the evolution of

dynamic graphs bearing particular importance. We study a model which is meant to simulate the

community structure frequently observed in empirical networks [141], which we term the dynamic

stochastic blockmodel. This model is a dynamic variant of a typical community model which has

been the focus of several recent works [144, 10, 32, 2].

Many previous approaches to understanding the evolution of community structure focus on

first decomposing the graph into communities. In order to circumvent the cost of such a decom-

position, we utilize a distance function that performs pairwise comparison of graphs at timesteps t

and t+ ∆t without needing any direct mapping of the community structure. In particular, we use

the resistance perturbation distance, originally proposed in [107]. The RP-distance is a true metric,

which allows for rigorous analysis not typically possible with similarity measures (for an example

of a similarity measure for pairwise graph comparison, see [84]).

We perform a detailed analysis of the ability of the RP-distance to detect anomalous evolution

in the dynamic stochastic blockmodel. The model is formed by sequentially adding vertices to the

graph, and randomly connecting them within and across their assigned community In particular,

we determine in which asymptotic regimes of in-community and cross-community density the RP-
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distance can detect the creation of cross-community edges. The stochastic nature of this model

suggests that our challenge is to detect the addition of a cross-community edge within the normal

fluctuations present in the model. This work led to [157].

This analysis of the resistance perturbation distance motivates a more general study of the

performance of various graph distance functions in detecting various structural differences. Such

distance functions are applicable not only in detecting anomalous evolution of a dynamic graph,

but also in determining whether a graph belongs to a given population, for example in problems of

medical diagnosis in neuroscience [139]. Although many graph distance tools perform comparisons

to other methods as part of their development [107, 84], these comparisons are often limited in their

scope, and not sufficiently general to inform decisions on a variety of application areas. Surveys

such as [6] address the academic understanding of a variety of methods present in the literature,

but also fail to provide the empirical testing necessary to properly understand the applicability of

various methods.

In Chapter 5, we perform a large study of graph distances, in application to both synthetic

and empirical data. We expand our scope to allow both true metrics and pseudo-distances, which

may not be injective. The study focuses on metrics which can be calculated efficiently, as we

anticipate applications on graphs of the size of 105 and above. The use of random graph models

allows us to understand how each distance responds to each structural signature and scale present

in the models. We are particularly interested in the typical structural scale at which each distance

is most responsive; for example, the graph edit distance is naturally myopic in scale, whereas the

first few eigenvalues of the adjacency matrix naturally describe global community structure [91].

We apply the insights gleaned in this way to the analysis of empirical graph data. In par-

ticular, we analyze a social contact graph [138] to detect the topological changes encountered

in transitions between activities (lunch, class, recess) and also examine neurological connectivity

graphs in order to attempt to classify subject with and without autism spectrum disorder [1].
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The structure of this thesis is an acknowledgement of the compartmentalized nature of the

subject matter. In each chapter we provide an introduction, conclusion, and appendices as appro-

priate. These chapters are largely self-contained, and can be read without reference to one another,

although the material in Chapter 5 is strongly connected to that in Chapter 4. Finally, we provide

a conclusion which summarizes the important results of each work, and suggest directions in which

each research program could evolve.



Chapter 2

Performance of Test Supermartingale Confidence Intervals for the Success

Probability of Bernoulli Trials

This chapter written in collaboration with Emanuel Knill, 1 2 Kevin Coakley, 3 and Yanbao

Zhang. 4 5

2.1 Introduction

Experiments in physics require very high confidence to justify claims of discovery or to unam-

biguously exclude alternative explanations [43]. Particularly striking examples in the foundations

of physics are experiments to demonstrate that theories based on local hidden variables, called

local realist (LR) theories, cannot explain the statistics observed in quantum experiments called

Bell tests. See Ref. [54] for a review and Refs. [65, 131, 57, 125] for the most definitive experiments

to date. Successful Bell tests imply the presence of some randomness in the observed statistics.

As a result, one of the most notable applications of Bell tests is to randomness generation [4].

In this application, it is necessary to certify the randomness generated, and these certificates are

equivalent to extremely small significance levels in an appropriately formulated hypothesis test. In

general, such extreme significance levels are frequently required in protocols for communication or

computation to ensure performance.

1 National Institute of Standards and Technology, Boulder, Colorado 80305, USA
2 Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
3 National Institute of Standards and Technology, Boulder, Colorado 80305, USA
4 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo,

Ontario N2L 3G1, Canada
5 NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198,

Japan
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Bell tests consist of a sequence of “trials”, each of which gives a result Mi. LR models

restrict the statistics of the Mi and therefore constitute a composite null hypothesis to be rejected.

Traditionally, data has been analyzed by estimating the value of a Bell function B̂ and its standard

error σ̂ from the collective result statistics (see [162, 89]). Under the null hypothesis, B̂ is expected

to be negative, so a large value of B̂ compared to σ̂ is considered strong evidence against the

null hypothesis. This method suffers from several problems, including the failure of the Gaussian

approximation in the extreme tails and the fact that the trials are observably not independent and

identically distributed (i.i.d.) [162].

In Ref. [162] a method was introduced that can give rigorous p-value bounds against LR.

These p-value bounds are memory-robust, that is, without any assumptions on dependence of trial

statistics on earlier trials. The method can be seen as an application of test supermartingales

as defined in Ref. [130]. Test supermartingales were first considered, and many of their basic

properties were proved, by Ville [148] in the same work that introduced the notion of martingales.

The method involves constructing a non-negative stochastic process Vi determined by (Mj)j≤i such

that the initial value is V0 = 1 and, under LR models, the expectations conditional on all past

events are non-increasing. As explained further below, the final value of Vi in a sequence of n trials

has expectation bounded by 1, so its inverse p = 1/Vn is a p-value bound according to Markov’s

inequality. A large observed value of such a test supermartingale thus provides evidence against

LR models. Refs. [162, 163] give methods to construct Vi that achieve asymptotically optimal gain

rate E(− log(p)/n) for i.i.d. trials, where E(. . .) is the expectation functional. This is typically an

improvement over other valid memory-robust Bell tests. Additional benefits are that Vi can be

constructed adaptively based on the observed statistics, and the p-value bounds remain valid even

if the experiment is stopped based on the current value of Vi. These techniques were successfully

applied to experimental data from a Bell test with photons where other methods fail [33].

Although the terminology is apparently relatively recent, test supermartingales have tradi-

tionally played a major theoretical role. Carefully constructed test supermartingales contribute to

the asymptotic analysis of distributions and proofs of large deviation bounds. They can be con-
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structed for any convex-closed null hypothesis viewed as a set of distributions, so they can be used

for memory- and stopping-robust adaptive hypothesis tests in some generality. The application to

Bell tests shows that at least in a regime where high significance results are required, test super-

martingales can perform well or better than other methods. Here we compare the performance of

test supermartingales directly to (1) the standard large deviation bounds based on the Chernoff-

Hoeffding inequality [31, 69], and (2) “exact” p-value calculations. Our comparison is for a case

where all calculations can be performed efficiently, namely for testing the success probability in

Bernoulli trials. The three p-value bounds thus obtained have asymptotically optimal gain rates.

Not surprisingly, for any given experiment, test supermartingales yield systematically worse p-value

bounds, but the difference is much smaller than the experiment-to-experiment variation. This effect

can be viewed as the cost of robustness against arbitrary stopping rules. For ease of calculation, we

do not use an optimal test supermartingale construction, but we expect similar results no matter

which test supermartingale is used.

Any hypothesis test parametrized by φ can be used to construct confidence regions for φ by

acceptance region inversion (see Ref. [133], Sect. 7.1.2). Motivated by this observation, we consider

the use of test supermartingales for determining confidence regions. We expect that they perform

well in the high-confidence regime, with an increase in region size associated with robustness against

stopping rules. We therefore compared the methods mentioned above for determining confidence

intervals for the success probability in Bernoulli trials. After normalizing the difference between the

interval endpoints and the success probability by the standard deviation, which is O(1/
√
n), we find

that while large deviation bounds and exact regions differ by a constant at fixed confidence levels,

the test supermartingale’s normalized endpoint deviation is Ω(
√

log(n)) instead of O(1). This effect

was noted in Ref. [130] and partially reflects a suboptimal choice of supermartingale. To maintain

robustness against stopping rule, one expects Ω(
√

log log(n)) according to the law of the iterated

logarithm. However, we note that if the number of trials n is fixed in advance, the normalized

endpoint deviation can be reduced to O(1) with an adaptive test supermartingale. So although the

increase in confidence region necessitated by stopping rule robustness is not so large for reasonably
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sized n, when n is known ahead of time it can, in principle, be avoided without losing the ability

to adapt the test supermartingale on the fly during the experiment in non-i.i.d. situations.

The remainder of the chapter is structured as follows. We establish the notation to be used

and define the basic concepts in Sect. 2.2. Here we also explain how adaptivity can help reject

hypotheses for stochastic processes. We introduce the three methods to be applied to Bernoulli

trials in Sect. 2.3. Here we also establish the basic monotonicity properties and relationships of

the three p-value bounds obtained. In Sect. 2.4 we determine the behavior of the p-value bounds

in detail, including their asymptotic behavior. In Sect. 2.5 we introduce the confidence intervals

obtained by acceptance region inversion. We focus on one-sided intervals determined by lower

bounds but note that the results apply to two-sided intervals. The observations in Sects. 2.4

and 2.5 are based on theorems whose proofs can be found in the Appendix. While many of the

observations in these sections can ignore asymptotically small terms, the results in the Appendix

uncompromisingly determine interval bounds for all relevant expressions, with explicit constants.

Concluding remarks can be found in Sect. 2.6.

2.2 Basic Concepts

We use the usual conventions for random variables (RVs) and their values. RVs are denoted

by capital letters such as X,Y, . . . and their values by the corresponding lower case letters x, y, . . ..

All our RVs are finite valued. Probabilities and expectations are denoted by P(. . .) and E(. . .),

respectively. For a formula φ, the expression {φ} refers to the event where the formula is true.

The notation µ(X) refers to the distribution of X induced on its space of values. We use the usual

conventions for conditional probabilities and expectations. Also, µ(X|φ) denotes the probability

distribution induced by X conditional on the event {φ}.

We consider stochastic sequences of RVs such as X = (Xi)
n
i=1 and X≤k = (Xi)

k
i=1. We think

of the Xi as the outcomes from a sequence of trials. For our study, we consider B = (Bi)
n
i=1, where

the Bi are {0, 1}-valued RVs. The standard {0, 1}-valued RV with parameter θ is the Bernoulli

RV B satisfying E(B) = θ. The parameter θ is also referred to as the success probability. We
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denote the distribution of B by νθ. We define Sk =
∑k

i=1Bi and Θ̂k = Sk/k. We extend the RV

conventions to the Greek letter Θ̂k. That is, θ̂k = sk/k =
∑k

i=1 bi/k is the value of the RV Θ̂k

determined by the values bi of Bi. We may omit subscripts on statistics such as Sn and Θ̂n when

they are based on the full set of n samples. Some expressions involving Θ̂n require that nΘ̂n is an

integer, which is assured by the definition.

A null hypothesis for X is equivalent to a set H0 of distributions of X, which we refer to as

the “null”. For our study of Bernoulli RVs, we consider the nulls

Bϕ = {νθ|θ ≤ ϕ} (2.1)

parametrized by 0 ≤ ϕ ≤ 1. the set of distributions of Bernoulli RVs with P(B = 1) ≤ ϕ. One can

test the null hypothesis determined by a null by means of special statistics called p-value bounds. A

statistic P = P (X) ≥ 0 is a p-value bound for H0 if for all µ ∈ H0 and p ≥ 0, Pµ(P ≤ p) ≤ p. Here,

the subscript µ on Pµ(. . .) indicates the distribution with respect to which the probabilities are to

be calculated. We usually just write “p-value” instead of “p-value bound”, even when the bounds

are not achieved by a member of H0. Small p-values are strong evidence against the null. Since we

are interested in very small p-values, we preferentially use their negative logarithm − log(P ) and

call this the log(p)-value. In this work, logarithms are base e by default.

A general method for constructing p-values is to start with an arbitrary real-valued RV Q

jointly distributed with X. Usually Q is a function of X. Define the worst-case tail probability

of Q as P (q) = supµ∈H0
Pµ(Q ≥ q). Then P (Q) is a p-value for H0. The argument is standard.

Define Fµ(q) = Pµ(Q ≥ q). The function Fµ is non-increasing. We need to show that for all

µ ∈ H0, Pµ(P (Q) ≤ p) ≤ p. Since Fµ(q) ≤ P (q), we have Pµ(P (Q) ≤ p) ≤ Pµ(Fµ(Q) ≤

p). The set {q : Fµ(q) ≤ p} is either of the form [qmin,∞) or (qmin,∞) for some qmin. In the

first case, Pµ(Fµ(Q) ≤ p) = Pµ(Q ≥ qmin) = Fµ(qmin) ≤ p. In the second, Pµ(Fµ(Q) ≤ p) =

Pµ (
⋃
n{q : q ≥ qmin + 1/n}) = limn Pµ({q : q ≥ qmin + 1/n}) = limn Pµ(Fµ(Q) ≤ qmin + 1/n) ≤ p,

with σ-additivity applied to the countable monotone union.

When referring to H0 as a null for X, we mean that H0 consists of the distributions where
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the Xi are i.i.d., with Xi distributed according to µ for some fixed µ independent of i. To go

beyond i.i.d., we extend H0 to the set of distributions of X that have the property that for all

x≤i−1, µ(Xi|X≤i−1 = x≤i−1) = µi for some µi ∈ H0, where µi depends on i and x≤i−1. We denote

the extended null by H0. In particular,

Bϕ = {µ : for all i and b≤i−1, µ(Bi|B≤i−1 = b≤i−1) = νθ for some θ ≤ ϕ}. (2.2)

The LR models mentioned in the introduction constitute a particular null HLR for sequences

of trials called Bell tests. In Ref. [162], a technique called the probability-based ratio (PBR) method

was introduced to construct p-values Pn that achieve asymptotically optimal gain rates defined as

E(log(1/Pn))/n. The method is best understood as a way of constructing a test supermartingale for

HLR. A test supermartingale of X for H0 is a stochastic sequence T = (Ti)
n
i=0 where Ti is a function

of X≤i, T0 = 1, Ti ≥ 0 and for all µ ∈ H0, Eµ(Ti+1|X≤i) ≤ Ti. In this work, to avoid unwanted

boundary cases, we further require Ti to be positive. The definition of test supermartingale used

here is not the most general one because we consider only discrete time and avoid the customary

increasing sequence of σ-algebra by making it dependent on an explicit stochastic sequence X.

Every test supermartingale defines a p-value by Pn = 1/Tn. This follows from E(Tn) ≤ T0 = 1

(one of the characteristic properties of supermartingales) and Markov’s inequality for non-negative

statistics, according to which P(Tn ≥ κ) ≤ E(Tn)/κ ≤ 1/κ. From martingale theory, the stopped

process Tτ for any stopping rule τ with respect to X also defines a p-value by P = 1/Tτ . Further,

P ∗n = 1/maxni=1 Ti also defines a p-value. See Ref. [130] for a discussion and examples.

A test supermartingale T can be viewed as the running product of the Fi = Ti/Ti−1, which

we call the test factors of T. The defining properties of T are equivalent to having Fi > 0 and

E(Fi|X≤i−1) ≤ 1 for all distributions in the null, for all i. The PBR method adaptively constructs

Fi as a function of the next trial outcome Xi from the earlier trial outcomes X≤i−1. The method is

designed for testing H0 for a closed convex null H0, where asymptotically optimally gain rates are

achieved when the trials are i.i.d. with a trial distribution ν not in H0. If ν were known, the optimal

test factor would be given by x 7→ ν(x)/µ(x), where µ ∈ H0 is the distribution in H0 closest to ν
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in Kullback-Leibler (KL) divergence KL(ν|µ) =
∑

x ν(x) log(ν(x)/µ(x)) [87]. Since ν is not known,

the PBR method obtains an empirical estimate ν̂ of ν from x≤i−1 and other information available

before the i’th trial. It then determines the KL-closest µ ∈ H0 to ν̂. The test factor Fi is then

given by Fi(x) = ν̂(x)/µ(x). The test factors satisfy Eµ′(Fi) ≤ 1 for all µ′ ∈ H0, see Ref. [162] for

a proof and applications to the problem of testing LR.

The ability to choose test factors adaptively helps reject extended nulls when the distribu-

tions vary as the experiment progresses, both when the distributions are still independent (so only

the parameters vary) and when the parameters depend on past outcomes. Suppose that the distri-

butions are sufficiently stable so that the empirical frequencies over the past k trials are statistically

close to the next trial’s probability distribution. Then we can adaptively compute the test factor

to be used for the next trial from the past k trials’ empirical frequencies, for example by following

the strategy outlined in the previous paragraph. The procedure now has an opportunity to reject

an extended null provided only that there is a sufficiently long period where the original null does

not hold. For example, consider the extended null Bϕ. The true success probabilities θi at the

i’th trial may vary, maybe as a result of changes in experimental parameters that need to be cali-

brated. Suppose that the goal is to calibrate for θi > ϕ. If we use adaptive test factors and find at

some point that we cannot reject Bϕ according to the running product of the test factors, we can

recalibrate during the experiment. If the the recalibration succeeds at pushing θi above ϕ for the

remaining trials, we may still reject the extended null by the end of the experiment. In many cases,

the analysis is performed after the experiment, or it may not be possible to stop the experiment

for recalibration. For this situation, if the frequencies for a run of k trials clearly show that θi < ϕ,

the adaptive test factors chosen would tend to be trivial (equal to 1), in which case the next trials

do not contribute to the final test factor product. This is in contrast to a hypothesis test based on

the final sum of the outcomes for which all trials contribute equally.

Let ϕ be a parameter of distributions of X. Here, ϕ need not determine the distributions.

There is a close relationship between methods for determining confidence sets for ϕ and hypothesis

tests. Let Hϕ be a null such that for all distributions µ with parameter ϕ, µ ∈ Hϕ. Given a family
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of hypothesis tests with p-values Pϕ for Hϕ, we can construct confidence sets for ϕ by inverting the

acceptance region of Pϕ, see Ref. [133], Sect. 7.1.2. According to this construction, the confidence

set Ca at level a is given by {ϕ|Pϕ(X) ≥ a} and is a random quantity. The defining property of a

level a confidence set is that its coverage probability satisfies Pµ(ϕ ∈ Ca) ≥ 1−a for all distributions

µ ∈ Hϕ. When we use this construction for sequences B of i.i.d. Bernoulli RVs with the null Bϕ,

we obtain one-sided confidence intervals of the form [ϕ0, 1] for θ = E(Bi). When the confidence set

is a one-sided interval of this type, we refer to ϕ0 as the confidence lower bound or endpoint. If

B has a distribution µ that is not necessarily i.i.d., we can define Θmax = maxi≤n Eµ(Bi|B≤i−1).

If we use acceptance region inversion with the extended null Bϕ, we obtain a confidence region for

Θmax. Note that Θmax is an RV whose value is covered by the confidence set with probability at

least 1−a. The confidence set need not be an interval in general, but including everything between

its infimum and its supremum increases the coverage probability, so the set can be converted into

an interval if desired.

While our focus is on one-sided confidence intervals, our observations immediately apply to

two-sided intervals ones with a standard method of obtaining a two-sided confidence interval from

two one-sided intervals. For our example, we can obtain confidence upper bounds at level a by

symmetry, for example by relabeling the Bernoulli outcomes 0 7→ 1 and 1 7→ 0. To obtain a two-

sided interval at level a, we compute lower and upper bounds at level a/2. The two-sided interval

is the interval between the bounds. The coverage probability of the two-sided interval is valid

according to the union bound applied to maximum non-coverage probabilities of the two one-sided

intervals.

2.3 Bernoulli Hypothesis Tests

We compare three hypothesis tests for the nulls Bϕ or the extended nulls Bϕ: The “exact” test

with p-value PX, the Chernoff-Hoeffding test with p-value PCH and a PBR test with p-value PPBR.

In discussing properties of these tests with respect to the hypothesis parameter ϕ, the true success

probability θ and the empirical success probability Θ̂, we generally assume that these parameters
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are in the interior of their range. In particular, 0 < ϕ < 1, 0 < θ < 1, and 0 < Θ̂ < 1. When

discussing purely functional properties with respect to values θ̂ of Θ̂, we use the variable t instead

of θ̂. By default nt is a positive integer.

The p-value for the exact test is obtained from the tail for i.i.d. Bernoulli RVs:

PX,n(Θ̂|ϕ) =
∑
k≥Θ̂n

(
n

k

)
ϕk(1− ϕ)n−k, (2.3)

where Θ̂ = Sn/n =
∑n

i=1Bi/n as defined in Sect. 2.2. Note that unlike the other p-values we

consider, PX,n is not just a p-value bound. It is achieved by a member of the null. The quantity

PX,n(t|ϕ) is decreasing as a function of t, given 0 < ϕ < 1. It is smooth and monotonically

increasing as a function of ϕ, given t > 0. To see this, compute

d

dϕ
PX,n(t|ϕ) =

n∑
i=nt

ϕi(1− ϕ)n−i
(
n

i

)(
i

ϕ
− n− i

1− ϕ

)

= n
n∑

i=nt

ϕi−1(1− ϕ)n−i
(
n− 1

i− 1

)
− n

n−1∑
i=nt

ϕi(1− ϕ)n−i−1

(
n− 1

i

)

= n

(
n−1∑

i=nt−1

ϕi(1− ϕ)n−1−i
(
n− 1

i

)
−

n−1∑
i=nt

ϕi(1− ϕ)n−1−i
(
n− 1

i

))

= nϕnt−1(1− ϕ)n(1−t)
(
n− 1

nt− 1

)
. (2.4)

This is positive for ϕ ∈ (0, 1). The probability that Sn ≥ tn, given that all Bi are distributed as νθ

with θ ≤ ϕ, is bounded by PX,n(t|θ) ≤ PX,n(t|ϕ). That PX is a p-value for the case where the null is

restricted to i.i.d. distributions now follows from the standard construction of p-values from worst-

case (over the null) tails of statistics (here Sn) as explained in the previous section. That PX is a

p-value for the extended null Bϕ follows from the observations that the tail probabilities of Sn are

linear functions of the distribution parameters θ1, θ2, ..., θn where θi ≤ ϕ, i = 1, 2, ..., n, the extremal

distributions in Bϕ have Bi independent with P(Bi = 1) = θi ≤ ϕ, and the tail probabilities of Sn

are monotonically increasing in P(Bi = 1) for each i separately. See also Ref. [22], App. C.

Define Θ̂max = max(Θ̂, ϕ). The p-value for the Chernoff-Hoeffding test is the optimal
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Chernoff-Hoeffding bound [31, 69] for a binary random variable given by

PCH,n(Θ̂|ϕ) =

(
ϕ

Θmax

)nΘmax
(

1− ϕ
1−Θmax

)n(1−Θmax)

=


(
ϕ

Θ̂

)nΘ̂ (
1−ϕ
1−Θ̂

)n(1−Θ̂)
if Θ̂ ≥ ϕ,

1 otherwise.

(2.5)

This is a p-value for our setting because PCH,n(t|ϕ) ≥ PX,n(t|ϕ), see Ref. [69]. For ϕ ≤ t, we have

− log(PCH,n(t|ϕ)) = nKL(νt|νϕ). We abbreviate KL(νt|νϕ) by KL(t|ϕ). For ϕ ≤ t < 1, PCH,n(t|ϕ)

is monotonically increasing in ϕ, and decreasing in t. For 0 ≤ t ≤ ϕ, it is constant.

The p-value for the PBR test that we use for comparison is constructed from a p-value for

the point null {νϕ} defined as

P 0
PBR,n(Θ̂|ϕ) = ϕnΘ̂(1− ϕ)n(1−Θ̂)(n+ 1)

(
n

nΘ̂

)
. (2.6)

The PBR test’s p-value for Bϕ is

PPBR,n(Θ̂|ϕ) = max
0≤ϕ′≤ϕ

P 0
PBR,n(Θ̂|ϕ′). (2.7)

That PPBR is a p-value for Bϕ is shown below. As a function of ϕ, P 0
PBR,n(t|ϕ) has an isolated

maximum at ϕ = t. This can be seen by differentiating log
(
ϕt(1− ϕ)1−t) = t log(ϕ)+(1−t) log(1−

ϕ). Thus in Eq. 2.7 when ϕ ≥ Θ̂, the maximum is achieved by ϕ′ = Θ̂. We can therefore write

Eq. 2.7 as

PPBR,n(Θ̂|ϕ) =

 P 0
PBR,n(Θ̂|ϕ) if Θ̂ ≥ ϕ,

P 0
PBR,n(Θ̂|Θ̂) otherwise.

(2.8)

By definition, PPBR,n(t|ϕ) is non-decreasing in ϕ and strictly increasing for ϕ ≤ t. As a function

of t, it is strictly decreasing for t ≥ ϕ (integer-valued nt). To see this, consider k = nt ≥ nϕ and



16

compute the ratio of successive values as follows:

P 0
PBR,n((k + 1)/n|ϕ)/P 0

PBR,n(k/n|ϕ) =
ϕ

1− ϕ
n− k
k + 1

=
ϕ

1− ϕ
1− t
t+ 1/n

≤ ϕ

1− ϕ
1− t
t

≤ 1. (2.9)

The expression for P 0
PBR,n is the final value of a test supermartingale obtained by constructing

test factors Fk+1 from Sk. Define

Θ̃k =
1

k + 2
(Sk + 1) . (2.10)

Thus, Θ̃k would be an empirical estimate of θ if there were two initial trials B−1 and B0 with values

0 and 1, respectively. The test factors are given by

Fk+1(Bk+1) =

(
Θ̃k

ϕ

)Bk+1
(

1− Θ̃k

1− ϕ

)1−Bk+1

. (2.11)

One can verify that Eνθ(Fk+1) = 1 for θ = ϕ. More generally, set δ = θ − ϕ and compute

Eνθ(Fk+1|Θ̃k = t) = θ
t

ϕ
+ (1− θ) 1− t

1− ϕ

= 1 + δ

(
t

ϕ
− 1− t

1− ϕ

)
= 1 + δ

t− ϕ
ϕ(1− ϕ)

. (2.12)

As designed, Tn =
∏n
k=1 Fk is a test supermartingale for the point null {νϕ}. Thm. 5 in App. 2.7.2,

establishes that Tn = 1/P 0
PBR,n(Θ̂|ϕ). The definition of PPBR,n(Θ̂|ϕ) as a maximum of p-values for

νϕ′ with ϕ′ ≤ ϕ in Eq. 2.7 ensures that PPBR,n(Θ̂|ϕ) is a p-value for Bϕ.

To show that PPBR is a p-value for Bϕ, we establish that for all t (integer-valued nt),

PPBR,n(t|ϕ) ≥ PCH,n(t|ϕ). By direct calculation for both ϕ ≤ t and t ≤ ϕ, we have

PPBR,n(t|ϕ)/PCH,n(t|ϕ) = tnt(1− t)n(1−t)(n+ 1)

(
n

nt

)
. (2.13)
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The expression tk(1 − t)k
(
n
k

)
is maximized at k = nt as can be seen by considering ratios for

successive values of k and the calculation in Eq. 2.9, now applied also for k < nt. Therefore,

tnt(1− t)n(1−t)(n+ 1)

(
n

nt

)
=

n∑
k=0

tnt(1− t)n(1−t)
(
n

nt

)
≥

n∑
k=0

tk(1− t)k
(
n

k

)
= 1. (2.14)

A better choice for test factors to construct a test supermartingale to test Bϕ would be

T ′k+1 =

 Tk+1 if Θ̃k ≥ ϕ,

1 otherwise.

(2.15)

This choice ensures that Eνθ(Fk+1|B≤k) ≤ 1 for all θ ≤ ϕ but the final value of the test supermartin-

gale obtained by multiplying these test factors is not determined by Sn, which would complicate

our study.

We summarize the observations about the three tests in the following theorem.

Theorem 1. We have

PX ≤ PCH ≤ PPBR. (2.16)

The three tests satisfy the following monotonicity properties for 0 < ϕ < 1 and 0 < t < 1 with nt

integer-valued:

PX(t|ϕ) is strictly increasing in ϕ and strictly decreasing as a function of t.

PCH(t|ϕ) is strictly increasing in ϕ for ϕ ≤ t, constant in ϕ for ϕ ≥ t, strictly decreasing

in t for t ≥ ϕ and constant in t for t ≤ ϕ.

PPBR(t|ϕ) is strictly increasing in ϕ for ϕ ≤ t, constant in ϕ for ϕ ≥ t and strictly

decreasing in t for t ≥ ϕ.

2.4 Comparison of p-Values

We begin by determining the relationships between PX, PCH and PPBR more precisely. Since

we are interested in small p-values, it is convenient to focus on the log(p)-values instead and

determine their differences to O(1/
√
n). Because of the identity − log(PCH,n(t, ϕ)) = nKL(t|ϕ), we
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reference all log(p)-values to − log(PCH,n). Here we examine the differences for t ≥ ϕ determined

by the following theorem:

Theorem 2. For 0 < ϕ < t < 1,

− log(PPBR,n(t|ϕ)) = − log(PCH,n(t|ϕ))− 1

2
log(n+ 1) +

1

2
log(2πt(1− t)) +O

(
1

n

)
, (2.17)

− log(PX,n(t|ϕ)) = − log(PCH,n(t|ϕ)) +
1

2
log(n)− log

(√
t

2π(1− t)
1− ϕ
t− ϕ

)
+O

(
1

n

)
. (2.18)

The theorem follows from Thms. 6, 7 and Cor. 8 proven in the Appendix, where explicit

interval expressions are obtained for these log(p)-value differences. The order notation assumes

fixed t > ϕ. The bounds are not uniform, see the expressions in the appendix for details.

The most notable observation is that there are systematic gaps of log(n)/2+O(1) between the

log(p)-values. As we already knew, there is no question that the exact test is the best of the three

for this simple application. While these gaps may seem large on an absolute scale, representing

factors close to
√
n, they are in fact much smaller than the experiment-to-experiment variation of

the p-values. To determine this variation, we consider the asymptotic distributions. We can readily

determine that the log(p)-values are asymptotically normal with standard deviations proportional

to
√
n, which is transferred from the variance of Θ̂. Compared to these standard deviations the

gaps are negligible. The next theorem determines the specific way in which asymptotic normality

holds. Let N(µ, σ2) denote the normal distribution with mean µ and variance σ2. The notation

Xn
D−→ N(µ, σ2) means that Xn converges in distribution to the normal distribution with mean µ

and variance σ2.

Theorem 3. Assume 0 < ϕ < θ < 1. For P = PCH,n, P = PPBR,n or P = PX,n, the log(p)-value

− log(P ) converges in distribution according to

√
n(− log(P )/n−KL(θ|ϕ))

D−→ N(0, σ2
G), (2.19)

with

σ2
G = θ(1− θ)

(
log

(
θ

1− θ
1− ϕ
ϕ

))2

.
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The theorem is proven in the Appendix, see Thm. 10. For the rest of the chapter, we write

P or Pn for the p-values of any one of the tests when it does not matter which one.

We display the behavior described in the above theorems for n = 100 and θ = 0.5 in Fig. 2.1.

We conclude that the phenomena discussed above are already apparent for small numbers of trials.

For Fig. 2.1, we computed the quantiles of the log(p)-values numerically using the formulas provided

in the previous section, substituting for t the corresponding quantile of Θ̂ given that P(B = 1) = θ.

To be explicit, let tr,n(θ) be the r-quantile of Θ̂ defined as the minimum value θ̂ of Θ̂ satisfying

P(Θ̂ ≤ θ̂) ≥ r. (For simplicity we do not place the quantile in the middle of the relevant gap in the

distribution.) For example, t0.5,n(θ) is the median. Then, by the monotonicity properties of the

tests, the r-quantile of − log(Pn(Θ̂|ϕ)) is given by − log(Pn(tr,n(θ)|ϕ)).

As noted above, the gaps between the log(p)-values are of the form log(n)/2 +O(1). In fact,

it is possible to determine the asymptotic behavior of these gaps. After accounting for the explicitly

given O(1) terms in Thm. 2, they are asymptotically normal with variances of order O(1/n). The

standard deviations of the gaps are therefore small compared to their size. The precise statement

of their asymptotic normality is Thm. 11 in the Appendix. Fig. 2.2 shows how these gaps depend

on the value θ̂ of Θ̂ given ϕ. The gaps are scaled by log(n) so that they can be compared to

log(n)/2 visually for different values of n. The deviation from log(n)/2 is most notable near the

boundaries, where convergence is also slower, particularly for PX. This behavior is consistent with

the divergences as t approaches ϕ in the explicit interval bounds in Thm. 7 and Cor. 8.

2.5 Comparison of Confidence Intervals

Let P be one of PCH,n, PPBR,n or PX,n. Given a value θ̂ of Θ̂, the level-a confidence set

determined by the test with p-value P is I = {ϕ|P (θ̂|ϕ) ≥ a}. By the monotonicity properties of

P , the closure of I is an interval [ϕa(θ̂;P ), 1]. We can compute the endpoint ϕa by numerically

inverting the exact expressions for P . An example is shown in Fig. 2.3, where we show the endpoints

according to each test for a = 0.01 and θ̂ = 0.5 as a function of n. All tests’ endpoints converge

to 0.5 as the number of trials grows. Notably, the relative separation between the endpoints is not
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Figure 2.1: Comparison of log(p)-values at n = 100 and θ = 0.5. The top half of the figure shows
the median, the 0.16 and the 0.84 quantile of − log(PCH,n(Θ̂|ϕ))/n. For θ = 0.5, the median

agrees with KL(θ|ϕ) by symmetry. The lower half shows the median differences − log(P (Θ̂|ϕ))/n+
log(PCH,n(Θ̂|ϕ))/n for P = PPBR,n and P = PX,n. The difference between the 0.16 and 0.84

quantiles and the median for − log(PCH,n(Θ̂|ϕ))/n are also shown where they are within the range
of the plot; even for n as small as 100, they dominate the median differences, except where ϕ
approaches θ = 0.5, where the absolute p-values are no longer extremely small.
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Figure 2.2: Gaps between the log(p)-values depending on θ̂ at ϕ = 0.5. We show the nor-

malized differences
(
− log(Pn(θ̂|ϕ)) + log(PCH,n(θ̂|ϕ))

)
/ log(n) for P = PCH and P = PX at

n = 100, 1000, 10000. For large n, at constant θ̂ with 0.5 < θ̂ < 1, the PBR test’s normalized
difference converges to −0.5, and the exact test’s converges to 0.5. The horizontal lines at ±0.5
indicate this limit. The lowest order normalized asymptotic differences from ±0.5 are O(1/ log(n))
and diverge at θ̂ = 0.5 and θ̂ = 1.
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large at level a = 0.01.

To quantify the behavior of the endpoints for the different tests, we normalize by the empirical

standard deviation σ̂ =

√
θ̂(1− θ̂)/n. The empirical endpoint deviation is then defined as

γa(θ̂;P ) =
θ̂ − ϕa(θ̂;P )

σ̂
. (2.20)

For the exact test and for large n, we expect this quantity to be determined by the tail probabilities

of a standard normal distribution. That is, if the significance a is the probability that a normal

RV of variance 1 exceeds κ, we expect γa(θ̂;PX) ≈ κ.

We take the point of view that the performance of a test is characterized by the size of the

endpoint deviation. If the relative size of the deviations for two tests is close to 1 then they perform

similarly for the purpose of characterizing the parameter θ. Another way of comparing the intervals

obtained is to consider their coverage probabilities. For our situation, the coverage probability for

test P at a can be approximated by determining a′ such that γa′(θ;PX) = γa(θ;P ). From Thm. 4

below, one can infer that the coverage probability is then approximately 1−a′ ≥ 1−a. The coverage

probabilities can be very conservative (larger than 1− a), particularly for small a and P = PPBR.

We determined interval bounds for the empirical endpoint deviation for all three tests. The

details are in App. 2.7.5. The next theorem summarizes the results asymptotically.

Theorem 4. Let q(x) = − log(PN(0,1)(N ≥ x)) be the negative logarithm of the tail of the standard

normal. Fix θ̂ ∈ (0, 1). Write α = | log(a)|. There is a constant c (depending on θ̂) such that for

α ∈ (1, cn], γa satisfies

γa(θ̂;PCH) =
√

2α+O(α/
√
n), (2.21)

γa(θ̂;PPBR) =

√
2α+ log(n)/2− log(2πθ̂(1− θ̂))/2 +O(α/

√
n), (2.22)

γa(θ̂;PX) = q−1(α) +O(α/
√
n). (2.23)

The last expression has the following approximation relevant for sufficiently large α:

γa(θ̂;PX) =
√

2α− log(2π)− log(2α− log(2π)) +O(log(α)/α3/2) +O(α/
√
n). (2.24)
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For α = o(
√
n), the relative error of the approximation in the first two identities goes to

zero as n grows. This is not the case for the last identity, where the relative error for large n is

dominated by the term O(log(α)/α3/2), and large α is required for a small relative error.

Proof. The expression for γa(θ̂;PCH) is obtained from Thm. 12 in the Appendix by changing the

relative approximation errors into absolute errors.

To obtain the expression for γa(θ̂;PPBR), note that the term ∆ in Thm. 13 satisfies ∆ =

log(n)/2− log(2πθ̂(1− θ̂))/2 +O(1/n), see Thm. 6. The O(1/n) under the square root pulls out to

an O(1/(
√

max(α, log(n))n)) term that is dominated by O(α/
√
n) because α ≥ 1 by assumption.

To obtain the expressions for γa(θ̂;PX), we refer to Thm. 14, where the lower bound on α

implies α ≥ 1 > log(2). The intervals in Thm. 14 give relative errors that need to be converted

to absolute quantities. By positivity and monotonicity of q−1, for sufficiently large n and for some

positive constants u and v, we have

γa(θ̂;PX) ∈
[
q−1(α(1− u

√
α/
√
n))(1− v

√
α/
√
n), q−1(α(1 + u

√
α/
√
n))(1 + v

√
α/
√
n)
]
. (2.25)

Explicit values for u and v can be obtained from Thm. 14. We simplified the argument of q−1 by

absorbing the additive terms in the theorem into the term uα
√
α/
√
n with the constant u chosen to

be sufficiently large. Consider Eq. 2.94 with δ = u
√
α/
√
n. For sufficiently large n, the expression

in the denominator of the approximation error on the right-hand side exceeds a constant multiple

of α. From this, with some new constant u′,

γa(θ̂;PX) ∈
[
q−1(α)(1− u′

√
α/
√
n)(1− v

√
α/
√
n), q−1(α)(1 + u′

√
α/
√
n)(1 + v

√
α/
√
n)
]
, (2.26)

which, with order notation simplifies further to

γa(θ̂;PX) = q−1(α)(1 +O(
√
α/
√
n)). (2.27)

It now suffices to apply q−1(α) = O(
√
α) (see the proof of Eq. 2.24 below) and Eq. 2.23 is obtained.

For Eq. 2.24, we bound x = q−1(α), which we can do via bounds for α = q(x). From the

expression q(x) = x2/2 + log(2π)/2 − log(Y (x)) = x2/2 + log(2π)/2 + log(x) − log(xY (x)) in the
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statement of Thm. 14 and the bounds in Eq. 2.58, we have the two inequalities

q(x) = x2/2 + log(2π)/2 + log(x)− log(xY (x)) ≥ x2/2 + log(2π)/2 + log(x), (2.28)

q(x) ≤ x2/2 + log(2π)/2 + log(x) + 1/x2. (2.29)

Let l(x) = x2/2+log(2π)/2+log(x), which is monotonically increasing, as is q. The first inequality

implies that q−1 ≤ l−1. We need a bound of the form q(x) ≤ dx2, from which we can conclude that

x2 ≥ α/d. A bound of this type can be obtained from Eq. 2.91 in the Appendix. For definiteness,

we restrict to α ≥ 6 and show that the bound holds with d = 1. By Eq. 2.29, it suffices to establish

that for x ≥
√

6, l(x) + 1/x2 ≤ x2. Since log(2π)/2 ≤ 1, we have log(2π)/2 + log(x) + 1/x2 ≤

1 + log(1 + (x − 1)) + 1/x2 ≤ x + 1/x2. For x ≥ 9/4, x + 1/x2 ≤ x2/2. To finish the argument,

apply the inequality
√

6 ≥ 9/4.

Given the bound x2 ≥ α, Eq. 2.29 becomes q(x) = α ≤ l(x) + 1/α. With Eq. 2.28 we get

α = q(x) ∈ l(x) + [0, 1]/α. Equivalently,

l(x) ∈ α+
1

α
[−1, 0]. (2.30)

Applying the monotone l−1 on both sides gives

x = l−1(l(x)) ∈ l−1

(
α+

1

α
[−1, 0]

)
. (2.31)

Let α′ satisfy x = l−1(α′) with α′ = α + δ and δ ∈ [−1, 0]/α. Write z = x2 and c = log(2π). We

have l(z1/2) = z/2 + c/2 + log(z)/2 = α′, which we can write as a fixed point equation z = f(z)

for z with f(z) = 2α′ − c − log(z). We can accomplish our goal by determining lower and upper

bounds on the fixed point. Since d
dyf(y) = −1/y < 0 for y > 0, the iteration z0 = 2α′ − c and

zk = f(zk−1) is alternating around the fixed point z, provided zk > 0 for all k. Provided z0 > 1,

z1 = f(z0) < z0, from which we conclude that z1 ≤ z < z0. Since we are assuming that α ≥ 6 and

from above z0 ≥ 2(α− 1/α)− c, the condition z0 > 1 is satisfied. If z1 ≥ 1, then 0 > d
dyf(y) > −1

between z1 and z0, which implies that z0 and z1 are in the region where the iteration converges to

z. For our bounds, we only require z1 > 0, so that we can bound z according to z1 ≤ z ≤ z2. That
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z1 > 0 follows from log(y) < y for y > 0. We have

z2 − z1 = z0 − log(z1)− (z0 − log(z0))

= log(z0/z1)

= log(z0/(z0 − log(z0)))

= − log(1− log(z0)/z0)

= O(log(z0)/z0) = O(log(α′)/α′) = O(log(α)/α), (2.32)

where z0 = 2α′ − c ∈ 2α − c + 2[−1, 0]/α, and so − log(z0) = − log(2α − c) + O(1/α2). For z1 we

get z1 = z0− log(z0) = 2α− c− log(2α− c) +O(1/α). Applying Eq. 2.32 and from the definitions,

q−1(α) = x =
√

2α− c− log(2α− c) +O(log(α)/α). (2.33)

The approximation error in Eq. 2.24 is obtained by expanding the square root. We could have used

Newton’s method starting from z0 to obtain better approximations in one step, but the resulting

expression is more involved.

The expression for γa(θ̂;PX) confirms our expectation that it approaches the expected value

for a standard normal distribution and may be compared to the Berry-Esseen theorem [111]. The

empirical endpoint deviation of the CH test approaches that of the exact test for small a (large α).

Their squares differ by a term of order log(α) = log | log(a)|. Notably, the ratio of the PBR and

CH tests’ empirical endpoint deviation grows as Θ(
√

log(n)/α). The relationships are visualized

in Figs. 2.4, 2.5 and 2.6 for different values of a. The figures show that the relative sizes of the

empirical endpoint deviations tend toward 1 with smaller a. The Θ(
√

log(n)/α) relative growth of

the PBR test’s endpoint deviations leads to less than a doubling of the deviations relative to the

exact test’s at a = 0.01 and a = 0.001 even for n = 106. So while the test’s coverage probabilities

are much closer to 1 than the nominal value of 1−a, we believe that it does not lead to unreasonably

conservative results in many applications.

Next we consider the behavior of the true endpoint deviations given by the normalized dif-

ference of the true success probability θ and the endpoint obtained from one of the tests. Let
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Figure 2.5: Empirical confidence set endpoint deviations at level a = 0.01 for θ̂ = 0.5 as a function
of n. See the caption of Fig. 2.4.
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Figure 2.6: Empirical confidence set endpoint deviations at level a = 0.001 for θ̂ = 0.5 as a function
of n. See the caption of Fig. 2.4.
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σ =
√
θ(1− θ)/n be the true standard deviation and define the true endpoint deviation deter-

mined by test P as

γ̃a(Θ̂|P ) = (θ − ϕa(Θ̂|P ))/σ

= (θ − Θ̂)/σ + γa(Θ̂|P )σ̂/σ. (2.34)

The true endpoint deviations show how the inferred endpoint compares to θ and therefore directly

exhibits the statistical fluctuations of Θ̂. In contrast, the empirical endpoint deviations are to

lowest order independent of θ̂ − θ.

We take the view that two tests’ endpoints perform similarly if their true endpoint deviations

differ by an amount that is small compared to the width of the distribution of the true endpoint

deviations. To compare the three tests on this basis, we consider the quantiles for Θ̂ corresponding

to ±κ Gaussian standard deviations from θ with κ constant. The quantiles satisfy θ±κ = θ±κσ(1+

O(1/
√
n)), by the Berry-Esseen theorem or from Thm. 14. Since σ̂ = σ(1 +O(1/

√
n)), we can also

see that γa(θ±κ|P ) = γa(θ̂|P ) +O(1/
√
n), and so by substituting into the definition,

γ̃a(θ±κ|P ) = γa(θ|P )± κ+O(1/
√
n), (2.35)

where the implicit constants depend on κ. For large α, the CH and exact tests’ endpoints are close

and are dominated by κ, so they perform similarly. But this does not hold for the comparison of

the CH or the exact test’s endpoints to those of the PBR test, since the latter’s endpoint deviation

grows as
√

log(n)/2.

The PBR test’s robustness to stopping rules requires that endpoint deviations must grow.

Qualitatively, we expect a growth of at least Ω(
√

log log(n)) due to the law of the iterated logarithm.

This growth is slower than the
√

log(n)/2 growth found above, suggesting that improvements are

possible, as observed in Ref. [130]. In many applications, the number of trials to be acquired can

be determined ahead of time, so full robustness to stopping rules is not necessary. However, the

ability to adapt to changing experimental conditions may still be helpful, as the example in Sect. 2.2

shows. If we know the number of trials ahead of time, we can retain the ability to adapt while

avoiding the asymptotic growth of the endpoint deviations of the PBR test.
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A strategy for avoiding the asymptotic growth of the PBR test’s endpoint deviations is to

set aside the first m = λn of the trials for training to infer the probability of success, and then

use this to determine the test factor to be used on the remaining (1− λ)n of the trials. With this

strategy, the endpoint deviations are bounded on average and typically. We formalize the training

strategy as follows: Modify Eq. 2.11 by setting Fk=1 = 1 for k < m and for k ≥ m,

Fk+1(Bk+1) = F (Bk+1) =

(
Θ̂m

ϕ

)Bk+1
(

1− Θ̂m

1− ϕ

)1−Bk+1

. (2.36)

Let G = F if ϕ ≤ Θ̂m and G = 1 otherwise. The Gk+1 are valid test factors for the null Bϕ. A

p-value for testing Bϕ is given by

Pλ(B|ϕ) = G(1)−(n−m)Θ̂′mG(0)−(n−m)(1−Θ̂′m) (2.37)

where Θ̂′m is defined by (n−m)Θ̂′m +mΘ̂m = nΘ̂n. We call this the Pλ test.

Define

Qλ(B|ϕ) =

(
ϕ

Θ̂m

)(n−m)Θ̂′m
(

1− ϕ
1− Θ̂m

)(n−m)(1−Θ̂′m)

. (2.38)

Then for ϕ ≤ Θ̂m, Qλ(B|ϕ) = Pλ(B|ϕ). To investigate the behavior of these quantities, we consider

values b, θ̂, θ̂m and θ̂′m of the corresponding RVs. As a function of ϕ, Qλ(b|ϕ) is maximized at

ϕ = θ̂′m and monotone on either side of θ̂′m. If θ̂m ≤ ϕ ≤ θ̂′m, then Qλ(b|ϕ) ≥ 1 = Pλ(b|ϕ), So for

ϕ ≤ max(θ̂m, θ̂
′
m), we can use Qλ instead of Pλ without changing endpoint calculations.

For determining the endpoint of a level-a one-sided confidence interval from Pλ, we seek the

maximum ϕ such that for all ϕ′ ≤ ϕ, Pλ(b|ϕ′) ≤ a. This maximum value of ϕ satisfies that

ϕ ≤ min(θ̂′m, θ̂m): For θ̂m ≤ θ̂′m, this follows from Pλ(b|θ̂m) = 1. For θ̂m ≥ θ̂′m, the location of the

maximum of Qλ implies that Pλ(b|θ̂′m) ≥ Pλ(b|θ̂m) = 1.

We show that endpoint deviations from the Pλ test are typically a constant factor larger than

those of the CH test. For large α, the factor approaches 1/
√

1− λ, approximating the endpoint

deviations for a CH test with (1 − λ)n trials. We begin by comparing Pλ to PCH,(1−λ)n with the

latter applied to the last (1− λ)n trials and ϕ ≤ θ̂′m, where we can use Qλ in place of Pλ.

Qλ(b|ϕ)/PCH,(1−λ)n(θ̂′m|ϕ) =

(
θ̂′m

θ̂m

)(1−λ)nθ̂′m
(

1− θ̂′m
1− θ̂m

)(1−λ)n(1−θ̂′m)

. (2.39)
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Or, for the log(p)-value difference lp,

lp = − log(Qλ(b|ϕ)) + log(PCH,(1−λ)n(θ̂′m|ϕ)) = −(1− λ)nKL(θ̂′m|θ̂m), (2.40)

which is non-positive. By expanding to second order,

KL(t+ x|t+ y) = (t+ x) (log(1 + x/t)− log(1 + y/t))

+ (1− t− x) (log(1− x/(1− t))− log(1− y/(1− t)))

=
(x− y)2

2t(1− t)
+O(max(|x|, |y|)3). (2.41)

Let ∆ = Θ̂m− θ and ∆′ = Θ̂′m− θ. From the above expansion with t = θ, x = δ′ and y = δ (where

δ and δ′ are values of ∆ and ∆′)

lp = −(1− λ)n

(
(δ − δ′)2

2θ(1− θ)
+O(max(|δ|, |δ′|3))

)
. (2.42)

The RVs ∆ and ∆′ are independent with means 0 and variances σ2/λ and σ2/(1 − λ). Further-

more,
√
n∆ and

√
n∆′ are asymptotically normal with variances θ(1− θ)/λ and θ(1− θ)/(1− λ).

Consequently, the RV
√
n(∆−∆′) is asymptotically normal with variance v = θ(1− θ)/(λ(1−λ)).

Accordingly, the probability that n(∆−∆′)2 ≥ κ2θ(1−θ)/(λ(1−λ)) is asymptotically given by the

two-sided tail for κ standard deviations of the standard normal. For determining typical behavior,

we consider (δ−δ′)2 = κ2θ(1−θ)/(nλ(1−λ)) with κ ≥ 0 constant for asymptotic purposes. Observe

that n∆3 and n∆′3 are Õ(1/
√
n) with probability 1, where the “soft-O” notation Õ subsumes the

polylogarithmic factor from the law of the iterated logarithm. We can now write

lp = −κ
2

2λ
+ Õ(1/

√
n). (2.43)

Fix the level a and thereby also α = | log(a)|. Define σ̂′ =

√
θ̂′m(1− θ̂′m)/(1− λ)n, and let ϕ′ =

θ̂′m − γ′σ̂′ be the smallest solution of − log(Qλ(b|ϕ′)) = α. Because

− log(Qλ(b|ϕ′)) = − log(PCH,(1−λ)n(θ̂′m|ϕ′)) + lp, (2.44)

we can estimate γ′ as γ′ = γa′,(1−λ)n(θ̂′m;PCH) =
√

2(α− lp) +O(α/
√
n) with a′ = e−(α−lp). Here,

the subscript (1− λ)n of γa′ makes the previously implicit number of trials explicit.
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To finish our comparison, we express the endpoint ϕ′ relative to θ̂. For this, we write

ϕ′ = θ̂′m − γ′σ̂′

= θ̂ + (θ̂′m − θ̂)− γ′σ̂

√
θ̂′m(1− θ̂′m)

(1− λ)θ̂(1− θ̂)

= θ̂ + (θ̂′m − θ̂)−
γ′√

1− λ
σ̂
(

1 +O(|θ̂ − θ̂′m|)
)
. (2.45)

We have θ̂′m−θ̂ = λ(θ̂′m−θ̂m) = λ(δ′−δ), and we are considering the case λ|δ′−δ| = κ
√
λθ(1− θ)/(n(1− λ)),

so

ϕ′ = θ̂ − γ′√
1− λ

σ̂
(
1 +O(1/

√
n)
)
. (2.46)

We can therefore identify

γa(θ̂|Pλ) =
γ′√

1− λ
(1 +O(1/

√
n))

=

√
2(α+ κ2/(2λ) + Õ(1/

√
n)) +O(α/

√
n)

√
1− λ

(1 +O(1/
√
n))

=

√
2(α+ κ2/(2λ))√

1− λ
+ Õ(α/

√
n), (2.47)

which compares as promised to γa(θ̂;PCH) =
√

2α+O(α/
√
n).

2.6 Conclusion

It is clear that for the specific problem of one-sided hypothesis testing and confidence intervals

for Bernoulli RVs, it is always preferable to use the exact test in the ideal case, where the trials

are i.i.d. For general nulls, exact tests are typically not available, so approximations are used. The

approximations often do not take into account failure of underlying distributional assumptions.

The approximation errors can be large at high significance. Thus trustworthy alternatives such as

those based on large deviation bounds or test supermartingales are desirable. Our goal here is not

to suggest that these alternatives are better for the example of Bernoulli RVs, but to determine the

gap between them and an exact test, in a case where an exact test is known and all tests are readily

calculable. The suggestion is that for high significance applications, the gaps are relatively small
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on the relevant logarithmic scale. For p-values, they are within what is expected from experiment-

to-experiment variation, even for moderate significances. For confidence intervals, the increase in

size is bounded by a constant if the number of trials is known ahead of time, but there is a slowly

growing cost with number of trials if we allow for arbitrary stopping-rules.

2.7 Appendix

2.7.1 Preliminaries

Notation and definitions are as introduced in the text. The p-value bounds obtained by the

three tests investigated are denoted by PX for the exact, PCH for the Chernoff-Hoeffding, and PPBR

for the PBR test. They depend on n, ϕ and Θ̂. For reference, here are the definitions again.

PX(Θ̂|ϕ, n) =
n∑

i=nΘ̂

ϕi(1− ϕ)n−i
(
n

i

)
,

PCH(Θ̂|ϕ) =


(
ϕ

Θ̂

)nΘ̂ (
1−ϕ
1−Θ̂

)n(1−Θ̂)
if Θ̂ ≥ ϕ,

1 otherwise.

PPBR(Θ̂|ϕ) =

 ϕnΘ̂(1− ϕ)n(1−Θ̂)(n+ 1)
( n
nΘ̂

)
if Θ̂ ≥ ϕ,

Θ̂nΘ̂(1− Θ̂)n(1−Θ̂)(n+ 1)
( n
nΘ̂

)
otherwise.

(2.48)

The gain per trial for a p-value bound Pn is Gn(Pn) = − log(Pn)/n. The values of ϕ, θ̂ and θ are

usually constrained. Unless otherwise stated, we assume that 0 < ϕ, θ̂, θ < 1 and n ≥ 1.

Most of this appendix is dedicated to obtaining upper and lower bounds on log(p)-values and

lower bounds on endpoints of confidence intervals. We make sure that the upper and lower bounds

differ by quantities that converge to zero as n grows. Their differences are O(1/n) for log(p)-values

and O(1/
√
n) for confidence lower bounds. We generally aim for simplicity when expressing these

bounds, so we do not obtain tight constants.
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2.7.2 Closed-Form Expression for PPBR

Theorem 5. Define

Θ̃k =
1

k + 2
(Sk + 1) ,

Fk+1 =

(
Θ̃k

ϕ

)Bk+1
(

1− Θ̃k

1− ϕ

)1−Bk+1

. (2.49)

Then

1∏n
k=1 Fk

= ϕnΘ̂(1− ϕ)n(1−Θ̂)(n+ 1)

(
n

nΘ̂

)
. (2.50)

Proof. The proof proceeds by induction. Write Pk for the right-hand side of Eq. 2.50. For n = 0,

P0 = 1, and the left-hand side of Eq. 2.50 evaluates to 1 as required, with the usual convention

that the empty product evaluates to 1.

Now suppose that Eq. 2.50 holds at trial n = k. For n = k + 1 we can use (k + 1)Θ̂k+1 =

Sk+1 = Sk +Bk+1. We expand the binomial expression to rewrite the right-hand side as

Pk+1 = ϕkΘ̂k+Bk+1(1− ϕ)k(1−Θ̂k)+(1−Bk+1)(k + 2)

(
k + 1

kΘ̂k +Bk+1

)
= ϕkΘ̂k(1− ϕ)k(1−Θ̂k)(k + 1)

(
k

kΘ̂k

)
· ϕBk+1(1− ϕ)1−Bk+1(k + 2)(k − kΘ̂k + 1)−(1−Bk+1)(kΘ̂k + 1)−Bk+1 . (2.51)

Since Θ̃k = (Sk + 1)/(k + 2) = (kΘ̂k + 1)/(k + 2) and 1− Θ̃k = (k − Sk + 1)/(k + 2) = (k − kΘ̂k +

1)/(k + 2), the identity simplifies to

Pk+1 = Pk ·
1

Fk+1
, (2.52)

thus establishing the induction step.

The expression in Eq. 2.50 can be seen as the inverse of a positive martingale for H0 = {νϕ}

determined by Sn. The complete family of such martingales was obtained by Ville [148], Chapter

5, Sect. 3, Eq. 21. Ours is obtained from Ville’s with dF (t) = dt as the probability measure.
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2.7.3 Log-p-Value Approximations

We use − log(PCH,n(t|ϕ)) = nKL(t|ϕ) as our reference value. According to Thm. 1, the

log(p)-values are ordered according to − log(PPBR) ≤ − log(PCH) ≤ − log(PX). To express the

asymptotic differences between the log(p)-values, we use auxiliary functions. The first is

Hn(t) = − log

(
tnt(1− t)n(1−t)

(
n

nt

)√
n+ 1

)
= −nt log(t)− n(1− t) log(1− t)− log

(
n

nt

)
− 1

2
log(n+ 1). (2.53)

The first two terms of this expression can be recognized as the Shannon entropy of n independent

random bits, each with probability t for bit value 1. For t ∈ [1/n, 1− 1/n] and with Stirling’s ap-

proximation
√

2πn(n/e)ne1/(12n+1) ≤ n! ≤
√

2πn(n/e)ne1/(12n) applied to the binomial coefficient,

we get

log

(
n

nt

)
= log

(
n!

(tn)!((1− t)n)!

)
∈ log

( √
2πn√

2πtn
√

2π(1− t)n

)
+ log

(
(n/e)n

(tn/e)tn((1− t)n/e)(1−t)n

)
+

[
1

12n+ 1
,

1

12n

]
+

[
− 1

12tn
− 1

12(1− t)n
,− 1

12tn+ 1
− 1

12(1− t)n+ 1

]
= −1

2
log(2πt(1− t))− 1

2
log(n)− tn log(t)− (1− t)n log(1− t)

+

[
1

12n+ 1
− 1

12t(1− t)n
,

1

12n
− 12n+ 2

(12tn+ 1)(12(1− t)n+ 1)

]
. (2.54)

We can increase the interval to simplify the bounds while preserving convergence for large n. For

the lower bound, we use −1/(12t(1−t)n). For the upper bound, note that (12tn+1)(12(1−t)n+1)

is maximized at t = 1/2. We can therefore increase the upper bound according to

1

12n
− 12n+ 2

(12tn+ 1)(12(1− t)n+ 1)
≤ 1

12n
− 2

6n+ 1
≤ 0 (2.55)

for n ≥ 1. From this we obtain the interval expression

Hn(t) ∈ 1

2
log(2πt(1− t))− 1

2
log(1 + 1/n) +

[
0,

1

12nt(1− t)

]
, (2.56)

valid for t ∈ [1/n, 1− 1/n]. The boundary values of Hn at t = 0 and t = 1 are − log(n+ 1)/2.
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The next auxiliary function is

Y (t) =
1

e−t2/2

∫ ∞
t

e−s
2/2ds ∈

(
t

1 + t2
,
1

t

)
for t > 0, (2.57)

where the bounds are from Ref. [102]. See this reference for a summary of all properties of Y

mentioned here, or Ref. [116] for more details. The function Y is related to the tail of the standard

normal distribution, the Q-function, by Q(t) = e−t
2/2Y (t)/

√
2π. The function Y is monotonically

decreasing, convex, Y (0) =
√
π/2, and it satisfies the differential equation d

dtY (t) = tY (t)− 1. We

make use of the following bounds involving Y :

− log tY (t) ∈
[
0,

1

t2

]
. (2.58)

The lower bound comes from the upper bound 1/t for Y (t). The upper bound is from the lower

bound t/(1 + t2) for Y (t). Specifically, we compute − log(Y (t)) ≤ − log(t/(1 + t2)) = log(t) +

log(1 + 1/t2) ≤ log(t) + 1/t2.

With these definitions, we can express the log(p)-values in terms of their difference from

− log(PCH).

Theorem 6. For 0 < ϕ ≤ t < 1,

− log(PPBR,n(t|ϕ)) = − log(PCH,n(t|ϕ))− 1

2
log(n+ 1) +Hn(t) (2.59)

∈ − log(PCH,n(t|ϕ))− 1

2
log(n+ 1) +

1

2
log(2πt(1− t))− 1

2
log(1 + 1/n)

+

[
0,

1

12nt(1− t)
,

]
(2.60)

Proof. The theorem is obtained by substituting definitions and then applying the bounds of Eq. 2.56
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on Hn(t). Here are the details.

− log(PPBR,n(t|ϕ)) = − log

(
ϕnt(1− ϕ)n(1−t)(n+ 1)

(
n

nt

))
= − log

((ϕ
t

)nt(1− ϕ
1− t

)n(1−t)
)

− log

(
tnt(1− t)n(1−t))(n+ 1)

(
n

nt

))
= − log(PCH,n(t|ϕ))− 1

2
log(n+ 1)

− log

(
tnt(1− t)n(1−t))√n+ 1

(
n

nt

))
= − log(PCH,n(t|ϕ))− 1

2
log(n+ 1) +Hn(t). (2.61)

It remains to substitute the interval expression for Hn(t).

Theorem 7. Define

lEn(t|ϕ) = min

(
(t− ϕ)

√
πn

8ϕ(1− ϕ)
, 1

)
. (2.62)

Then for 0 < ϕ < t < 1,

− log(PX,n(t|ϕ)) ∈ − log(PPBR,n(t|ϕ)) + log(n+ 1)− log

(
t

√
(1− ϕ)

ϕ

)

− log

(√
nY

(√
n

ϕ(1− ϕ)
(t− ϕ)

))
+

[
− lEn(t|ϕ)

n(t− ϕ)
, 0

]
, (2.63)

− log(PX,n(t|ϕ)) ∈ − log(PCH,n(t|ϕ)) +
1

2
log(n)− log

(√
t(1− ϕ)

2π(1− t)ϕ

)

− log

(√
nY

(√
n

ϕ(1− ϕ)
(t− ϕ)

))
+

[
− lEn(t|ϕ)

n(t− ϕ)
,

1

12nt(1− t)

]
. (2.64)

Observe that lEn(t|ϕ) is O(1) with respect to n for t > ϕ constant. The first term in the

defining minimum is smaller than 1 only for ϕ within less than one standard deviation (which is

O(1/
√
n)) of t. It is defined so that the primary dependence on the parameters is visible in the

interval bounds.

Proof. For approximating PX, we apply Thm. 2 of Ref. [102] with the following sequence of sub-
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stitutions, the first four of which expand the definitions in the reference:

B(k;n, p)←
n∑
j=k

b(j;n, p),

b(k − 1;n− 1, p)←
(
n− 1

k − 1

)
pk−1(1− p)n−k,

x← (k − pn)/σ,

σ ←
√
np(1− p),

p← ϕ,

k ← nt. (2.65)

With the given substitutions and Y (t) as defined by Eq. 2.57, we obtain for t ≥ ϕ,

− log(PX) ∈ − log

(√
nϕ(1− ϕ)ϕnt−1(1− ϕ)n(1−t)

(
n− 1

nt− 1

))
− log

(
Y

( √
n(t− ϕ)√
ϕ(1− ϕ)

))
+

[
− lEn(t|ϕ)

n(t− ϕ)
, 0

]

= − log

(
ϕnt(1− ϕ)n(1−t)(n+ 1)

(
n

nt

))
− log

(
nt
√
nϕ(1− ϕ)

ϕn(n+ 1)

)

− log

(
Y

( √
n(t− ϕ)√
ϕ(1− ϕ)

))
+

[
− lEn(t|ϕ)

n(t− ϕ)
, 0

]

= − log(PPBR) + log(n+ 1)− log

(
t

√
(1− ϕ)

ϕ

)

− log

(
√
nY

( √
n(t− ϕ)√
ϕ(1− ϕ)

))
+

[
− lEn(t|ϕ)

n(t− ϕ)
, 0

]
. (2.66)

The second identity of the theorem follows by substituting the expression from Thm. 6.

We can eliminate the function Y from the expressions by applying the bounds from Eq. 2.58.

Corollary 8. With the assumptions of Thm. 7,

− log(PX,n(t|ϕ)) ∈ − log(PCH,n(t|ϕ)) +
1

2
log(n)− log

(
1− ϕ
t− ϕ

√
t

2π(1− t)

)

+

[
− lEn(t|ϕ)

n(t− ϕ)
,
ϕ(1− ϕ)

(t− ϕ)2n
+

1

12nt(1− t)

]
. (2.67)
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Proof. Define c = (t− ϕ)/
√
ϕ(1− ϕ). In view of Eq. 2.58, we have

− log

(√
nY

(√
n

ϕ(1− ϕ)
(t− ϕ)

))
= − log(

√
nY (c

√
n))

= log(c)− log(c
√
nY (c

√
n))

∈ log(c) +

[
0,

1

c2n

]
. (2.68)

Substituting in Eq. 2.64 and simplifying the expression gives the desired result.

2.7.4 Asymptotic Normality of the log(p)-Values and Their Differences

The main tool for establishing the asymptotic distribution of the log(p)-values is the “delta

method”. A version sufficient for our purposes is Thm. 1.12 and Cor. 1.1 of Ref. [133]. The notation

Xn
D−→ N(µ, σ2) means that Xn converges in distribution to the normal distribution with mean µ

and variance σ2. By the central limit theorem, Θ̂n = Sn/n satisfies
√
n(Θ̂n − θ)

D−→ N(0, θ(1− θ)).

An application of the delta method therefore yields the next lemma.

Lemma 9. Let F : R→ R be differentiable at θ, with F ′(θ) 6= 0. Then

√
n(F (Θ̂n)− F (θ))

D−→ N
(
0, F ′(θ)2θ(1− θ)

)
Theorem 10. For P = PCH, P = PPBR or P = PX, and 0 < ϕ < θ < 1 constant, the gain per

trial Gn(P ) converges in distribution according to

√
n(Gn(P )−KL(θ|ϕ))

D−→ N(0, σ2
G), (2.69)

with

σ2
G = θ(1− θ)

(
log

(
θ

1− θ
1− ϕ
ϕ

))2

.

Proof. Consider P = PCH first. In Lem. 9, define F (x) = KL(x|ϕ) = x log(x/ϕ) + (1− x) log((1−

x)/(1− ϕ)) so that F (Θ̂n) = Gn(PCH). For the derivative of F at x = θ, we get

F ′(θ) = log

(
θ

1− θ
1− ϕ
ϕ

)
. (2.70)

The theorem now follows for PCH by applying Lem. 9.
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Thm. 6 and the law of large numbers imply that (− log(PPBR)/
√
n) − (− log(PCH)/

√
n)

converges in probability to 0. Cor. 8 implies the same for PX, namely that (− log(PX)/
√
n) −

(− log(PCH)/
√
n) converges in probability to 0. In general, if Xn − Yn converges in probability to

0 and Yn
D−→ µ, then Xn

D−→ µ, see Ref. [25], Prop. 6.3.3. The statement of the theorem to be

proven now follows for P = PPBR and P = PX by comparison of
√
nGn(PPBR) and

√
nGn(PX) to

√
nGn(PCH).

The differences of the log(p)-values have much tighter distributions. They are also asymptot-

ically normal with scaling and variances given in the next theorem. The differences are Ω(log(n))

with standard deviations O(1/
√
n).

Theorem 11. Let 0 < ϕ < θ < 1 be constant. If θ 6= 1/2, then PPBR/(
√
nPCH) satisfies

−
√
n log

(√
2πθ(1− θ)PPBR√

nPCH

)
D−→ N

(
0,

(1− 2θ)2

4θ(1− θ)

)
. (2.71)

If ϕ 6= θ(2θ − 1), then
√
nPX/PCH satisfies

−
√
n log

(
θ − ϕ
1− ϕ

√
2π(1− θ)

θ

√
nPX

PCH

)
D−→ N

(
0,

(θ(1− 2θ) + ϕ)2

4(θ − ϕ)2θ(1− θ)

)
, (2.72)

Proof. From Thm. 6, Eq. 2.60 and the law of large numbers, we see that

√
n

(
− log

(
PPBR√
nPCH

)
− log

(√
2πΘ̂(1− Θ̂)

))
(2.73)

converges in probability to zero. From Lem. 9 and

d

dx
log(x(1− x))/2 =

1

2x
− 1

2(1− x)
=

1− 2x

2x(1− x)
, (2.74)

we conclude

√
n

(
log

(√
2πΘ̂(1− Θ̂)

)
− log

(√
2πθ(1− θ)

))
D−→ N

(
0,

(
1− 2θ

2θ(1− θ)

)2

θ(1− θ)

)
. (2.75)

Combining the above observations gives Eq. 2.71.

Similarly, from Cor. 8 and taking note of the definition of lEn(t|ϕ),

√
n

− log

(√
nPX

PCH

)
− log

Θ̂− ϕ
1− ϕ

√
2π(1− Θ̂)

Θ̂

 (2.76)
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converges in probability to zero. The relevant derivative is

d

dx
(log(x− ϕ) + log((1− x)/x)/2) =

1

x− ϕ
− 1

2(1− x)
− 1

2x
=

x(1− 2x) + ϕ

2(x− ϕ)x(1− x)
, (2.77)

from which

√
n

log

Θ̂− ϕ
1− ϕ

√
2π(1− Θ̂)

Θ̂

− log

θ − ϕ
1− ϕ

√
2π(1− θ̂)

θ̂


D−→ N

(
0,

(
θ(1− 2θ) + ϕ

2(θ − ϕ)θ(1− θ)

)2

θ(1− θ)

)
, (2.78)

and combining the two observations gives Eq. 2.72.

2.7.5 Confidence Interval Endpoints

For the one-sided confidence intervals, we need to determine the lower boundaries of accep-

tance regions, that is the confidence lower bounds. By monotonicity of the p-values in ϕ, it suffices

to solve equations of the form − log(P (θ̂, ϕ)) = α, where a = e−α is the desired significance level.

Here we obtain lower and upper bounds on the solutions ϕ.

To illuminate the asymptotic behavior of solutions ϕ of − log(P (θ̂, ϕ)) = α, we reparametrize

the log-p-values so that our scale is set by an empirical standard deviation, namely σ̂ =

√
θ̂(1− θ̂)/n.

Thus we express the solution as

ϕ(γ, θ̂) = θ̂ − σ̂γ, (2.79)

in terms of a scaled deviation down from θ̂. Inverting for γ we get

γ = γ(ϕ, θ̂) =
θ̂ − ϕ
σ̂

. (2.80)

Theorem 12. Let 0 < θ̂ < 1 and α > 0. Suppose that α ≤ nθ̂2(1− θ̂)2/8. Then there is a solution

γα > 0 of the identity − log(PCH(θ̂, ϕ(γα, θ̂))) = α satisfying

γα ∈
√

2α

1 +
5

2

√
α√

nθ̂(1− θ̂)
[−1, 1]

−1/2

. (2.81)

The constants in this theorem and elsewhere are chosen for convenience, not for optimality;

better constants can be extracted from the proofs. Note that the upper bound on α ensures that
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the reciprocal square root is bounded away from zero. However, for the relative error to go to zero

as n grows requires α = o(n).

Proof. Consider the parametrized bound α ≤ 2nθ̂2(1− θ̂)2(1− a1)2, where later we set a1 = 3/4 to

match the theorem statement. Let F (γ) = − log(PCH(θ̂, ϕ(γ, θ̂))). F is continuous and monotone

increasing. A standard simplification of the Chernoff-Hoeffding bound noted in Ref. [69] is

PCH ≤ e−2n(θ̂−ϕ)2 = e−2θ̂(1−θ̂)γ2 . (2.82)

For ϕ = ϕ(γα, θ̂) solving the desired equation, we have (θ̂−ϕ) ≤
√
α/(2n) (by monotonicity), which

in turn is bounded above according to
√
α/2n ≤ θ̂(1 − θ̂)(1 − a1) ≤ θ̂(1 − a1), according to our

assumed bound. We conclude that ϕ ≥ a1θ̂. For the solution γα, we get γα ≤
√
α/(2θ̂(1− θ̂)) ≤√

nθ̂(1− θ̂)(1− a1).

We now Taylor expand KL(θ̂|ϕ) with remainder at third order around ϕ = θ̂. Write f(x) =

KL(θ̂|θ̂ − x), where we can restrict x according to θ̂ ≥ θ̂ − x = ϕ ≥ a1θ̂. The derivatives of f can

be written explicitly as follows:

f (k)(x) = (k − 1)!
θ̂

(θ̂ − x)k
− (−1)k−1(k − 1)!

1− θ̂
(1− θ̂ + x)k

. (2.83)

We have

f (1)(0) = 0,

f (2)(0) =
1

θ̂
+

1

1− θ̂
=

1

θ̂(1− θ̂)
,

f (3)(x) = 2
θ̂

(θ̂ − x)3
− 2

1− θ̂
(1− θ̂ + x)3

,

f (3)(x) ≤ 2
θ̂

(θ̂ − x)3
≤ 2

θ̂

a3
1θ̂

3
= 2

1

a3
1θ̂

2
,

f (3)(x) ≥ −2
1− θ̂

(1− θ̂ + x)3
≥ −2

1− θ̂
(1− θ̂)3

= −2
1

(1− θ̂)2
, (2.84)

since 0 < a1 < 1. We use the bounds on f (3)(x) to bound the remainder in the Taylor expansion,

where, to get cleaner expressions, we can decrease θ̂ and 1− θ̂ to θ̂(1− θ̂) in the denominators.

KL(θ̂|θ̂ − x) ∈ x2

2θ̂(1− θ̂)
+

x3

3(θ̂(1− θ̂))2

[
−1,

1

a3
1

]
. (2.85)
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Substituting x = γα

√
θ̂(1− θ̂)/n gives

α = − log(PCH(θ̂, ϕ(γα, θ̂))) = nKL(θ̂|θ̂ − x) ∈ γ
2
α

2

1 +
2γα

3

√
nθ̂(1− θ̂)

[
−1,

1

a3
1

] . (2.86)

For θ̂ ≤ 1/2, f (4)(x) and f (3)(0) are non-negative, so we could have taken the lower bound in the

interval to be zero for θ ≤ 1/2. For the theorem, we prefer not to separate the cases.

We substitute the bound γ ≤
√
nθ̂(1− θ̂)(1−a1) for the γ multiplying the interval in Eq. 2.86

and use the lower bound in the interval for the inequality

α ≥ γ2

2

(
1− 2(1− a1)

3

)
. (2.87)

For the theorem, we have a1 = 3/4, so 1− 2(1− a1)/3 = 5/6. Inverting the inequality for γ gives

γ ≤ 2
√

3/5
√
α. Now substituting this bound on γ for the γ multiplying the interval in Eq. 2.86

gives

α ∈ γ
2

2

1 +
4√
15

√
α√

nθ̂(1− θ̂)

[
−1,

43

33

] . (2.88)

By monotonicity of the appropriate operations,

γ ∈
√

2α

1 +
4√
15

√
α√

nθ̂(1− θ̂)

[
−1,

43

33

]−1/2

. (2.89)

For the theorem statement, we simplify the bounds with 1 ≤ 43/33 and 44/(33
√

15) ≤ 5/2.

Theorem 13. Let 0 < θ̂ < 1 and α > 0. Define ∆ = log(n + 1)/2 − Hn(θ̂). Suppose that

α+∆ ≤ nθ̂2(1− θ̂)2/8. Then there is a solution γα > 0 of the identity − log(PPBR(θ̂, ϕ(γα, θ̂))) = α

satisfying

γα ∈
√

2(α+ ∆)

1 +
5

2

√
α+ ∆√
nθ̂(1− θ̂)

[−1, 1]

−1/2

.

Proof. By Thm. 6, − log(PCH) − (− log(PPBR)) = ∆. If we define α̃ = α + ∆, then solving

− log(PPBR) = α is equivalent to solving − log(PCH) = α̃. Since ∆ depends only on n and θ̂, α̃

does not depend on γ. We can therefore apply Thm. 12 to get the desired bounds.
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Theorem 14. For x ≥ 0, let q(x) = − log(e−x
2/2Y (x)/

√
2π) = x2/2 + log(2π)/2 − log(Y (x)).

Suppose that 0 < θ̂ < 1, and log(2) < α ≤ nθ̂2(1− θ̂)2/8. Then there is a solution γα of the identity

− log(PX(θ̂, ϕ(γα, θ̂)) = α satisfying

γα ∈ max

0, q−1

α
1 +

64
√
α/(15

√
15)√

nθ̂(1− θ̂)
[−1, 1]

+

√
π/6 + 8

√
α/
√

15√
nθ̂(1− θ̂)

[−1, 1]


×

1 +
2
√
α/
√

5√
nθ̂(1− θ̂)

[−1, 1]

 , (2.90)

where we extend q−1 to negative values by q−1(y) = −∞ for y ≤ 0 (if necessary) when evaluating

this interval expression.

The function q(x) is the negative logarithm of the Q-function, which is the tail of the standard

normal distribution. The lower bound on α in Thm. 14 ensures that there is a solution with

γα > 0, because q(0) = log(2). For reference, the constants multiplying the interval expressions

are 64/(15
√

15) ≈ 1.102, 8/
√

15 ≈ 2.066,
√
π/6 ≈ 0.724, 2/

√
5 ≈ 0.894. Note that in the large

n limit, where the O(1/
√
n) terms are negligible, the value of γα in Thm. 14 corresponds to the

(1− e−α)-quantile of the standard normal.

By monotonicity of q−1, the explicit bounds in Eq. 2.90 are obtained by combining the lower

or the upper bounds in intervals in the expression. We remark that q−1 behaves well with respect

to relative error for α large enough because of the inequalities

q−1(y)/(1 + q−1(y)2) ≤ d

dy
q−1(y) ≤ 1/q−1(y),

q−1(y)2 ≥ y − q(1) + 1, for y ≥ q(1) ≈ 1.841,

q−1(y)2 ≤ 2(y − log(2)), for y ≥ q(0) = log(2), (2.91)

which we now establish. By implicit differentiation and from the properties of Y noted after

Eq. 2.57, d
dy q
−1(y)|y=q(x) = Y (x) ∈ [x/(1 +x2), 1/x]. Therefore q−1(y)/(1 + q−1(y)2) ≤ d

dy q
−1(y) ≤

1/q−1(y). For y ≥ log(2), we can integrate d
dz q
−1(z)2 = 2q−1(z) ddz q

−1(z) ≤ 2 from z = log(2)

to y to show that q−1(y)2 = q−1(y)2 − q−1(log(2))2 ≤ 2(y − log(2)), making use of the identity
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q−1(log(2)) = 0. Consider y, z ≥ q(1). Since q−1(z) and 0 ≤ x 7→ x2/(1 + x2) are monotone

increasing, q−1(z)2/(1 + q−1(z)2) ≥ q−1(q(1))2/(1 + q−1(q(1))2) = 1/2, so the integral of d
dz q
−1(z)2

from z = q(1) to y with the lower bound on d
dz q
−1(z) gives q−1(y)2 − q−1(q(1))2 = q−1(y)2 − 1 ≥

y − q(1).

From the inequality d
dy q
−1(y) ≤ 1/q−1(y) in Eq. 2.91, integration and monotonicity, for

0 ≤ z ≤ δ,

q−1(α− z) ≥ q−1(α)− z

q−1(α− δ)
≤ q−1(α)

(
1− z

q−1(α− δ)2

)
,

q−1(α+ z) ≤ q−1(α) +
z

q−1(α− δ)
≥ q−1(α)

(
1 +

z

q−1(α− δ)2

)
. (2.92)

To determine the relative error, write δ′ = δ/α to obtain the interval inclusion

q−1(α(1 + δ′[−1, 1])) ⊆ q−1(α)

(
1 +

αδ′

q−1(α(1− δ′))2
[−1, 1]

)
. (2.93)

For α(1− δ′) > q(1), the interval relationship can be weakened to

q−1(α(1 + δ′[−1, 1])) ⊆ q−1(α)

(
1 +

αδ′

α(1− δ′)− q(1) + 1
[−1, 1]

)
. (2.94)

The relative error on the right-hand side is given by the term multiplying the interval, and can be

written as αδ′/(α− (αδ′+ q(1)− 1)). If αδ′+ q(1)− 1 ≤ α/2, then the relative error is bounded by

2δ′ which is twice the relative error of α. Of course, for the interval bounds to converge, we need

α = o(n).

Proof. As in the proof of Thm. 12, consider the parametrized bound α ≤ 2nθ̂2(1 − θ̂)2(1 − a1)2,

where later we set a1 = 3/4 to match the statement of Thm. 14. From the Chernoff-Hoeffding

bound, we get ϕ ≥ a1θ̂ and γα ≤
√
α/(2θ̂(1− θ̂)) ≤

√
nθ̂(1− θ̂)(1− a1).

Define γ̃ = (θ̂ − ϕ)/
√
ϕ(1− ϕ)/n. We start from Eq. 2.64, rewritten as follows:

− log(PX) ∈ nKL(θ̂|ϕ) +
1

2
log(2π)− log Y (γ̃)− 1

2
log

(
θ̂(1− ϕ)

(1− θ̂)ϕ

)

+

[
− lEn(θ̂|ϕ)

n(θ̂ − ϕ)
,

1

12nθ̂(1− θ̂)

]
. (2.95)
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If γ̃ ≥
√

8/π ≈ 1.6, lEn(θ̂|ϕ) = 1. For better bounds at small values of γ̃, we use the other

alternative in the definition of lEn, according to which the lower bound in the last interval of

Eq. 2.95 is

− lEn(θ̂|ϕ)

n(θ̂ − ϕ)
≥ −

√
π/8√

nϕ(1− ϕ)
≥ −

√
π/8√

na1θ̂(1− ϕ)
≥ −

√
π/8√

na1θ̂(1− θ̂)
. (2.96)

Next we approximate nKL(θ̂|ϕ) in terms of γ̃ instead of γ. We still write the interval bounds

in terms of γ. Let f(x) = KL(ϕ + x|ϕ). We are concerned with the range 0 ≤ x ≤ θ̂ − ϕ, with

ϕ ≥ a1θ̂. We have

f (1)(x) = log((ϕ+ x)/ϕ)− log((1− ϕ− x)/(1− ϕ))

f (2)(x) =
1

ϕ+ x
+

1

1− ϕ− x

=
1

(ϕ+ x)(1− ϕ− x)

f (3)(x) = − 1

(ϕ+ x)2
+

1

(1− ϕ− x)2

= − 1− 2(ϕ+ x)

(ϕ+ x)2(1− ϕ− x)2

|f (3)(x)| ≤ 1

a2
1θ̂

2(1− θ̂)2
, (2.97)

yielding

KL(ϕ+ x|ϕ) ∈ x2

2ϕ(1− ϕ)
+

x3

6a2
1θ̂

2(1− θ̂)2
[−1, 1], (2.98)

and with x = γ̃
√
ϕ(1− ϕ)/n = γ

√
θ̂(1− θ̂)/n,

nKL(θ̂|ϕ) ∈ γ̃
2

2
+

γ3

6a2
1

√
nθ̂(1− θ̂)

[−1, 1]. (2.99)

For the fourth term on the right-hand side of Eq. 2.95,

d

dx
log

(
θ̂(1− θ̂ + x)

(1− θ̂)(θ̂ − x)

)
=

1

1− θ̂ + x
+

1

θ̂ − x
=

1

(1− θ̂ + x)(θ̂ − x)
, (2.100)

whose absolute value is bounded by 1/(a1θ̂(1− θ̂)) for x in the given range. Thus

log

(
θ̂(1− ϕ)

(1− θ̂)ϕ

)
∈ γ

a1

√
nθ̂(1− θ̂)

[−1, 1]. (2.101)
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Since PX ≤ PCH, we can also use the bound γ ≤ 2
√

3/5
√
α obtained in the proof of Thm. 12.

Substituting a1 = 3/4 as needed, the equation to solve is now

α ∈ γ̃
2

2
+

1

2
log(2π)− log Y (γ̃)

+
8√
15

√
α√

nθ̂(1− θ̂)
[−1, 1] +

64

15
√

15

√
α

3√
nθ̂(1− θ̂)

[−1, 1]

+

− √
π/6√

nθ̂(1− θ̂)
,

1

12nθ̂(1− θ̂)

 . (2.102)

The sum of the first three terms evaluates to q(γ̃). The remaining terms are now independent of

γ and are of order 1/
√
n. They can be merged by means of common bounds using 2nθ̂(1 − θ̂) ≥√

nθ̂(1− θ̂), since nθ̂(1 − θ̂) ≥ 1/2 for our standing assumptions that n ≥ 1 and θ̂n is an integer

different from 0 and n. Consequently, 12nθ̂(1 − θ̂) ≥ 6

√
nθ̂(1− θ̂) ≥

√
6/π

√
nθ̂(1− θ̂). The

interval bounds then combine conservatively to√
π/6 + 8

√
α/
√

15 + 64
√
α

3
/(15
√

15)√
nθ̂(1− θ̂)

. (2.103)

We can now write

α ∈ q(γ̃) +

√
π/6 + 8

√
α/
√

15 + 64
√
α

3
/(15
√

15)√
nθ̂(1− θ̂)

[−1, 1], (2.104)

which holds iff

q(γ̃) ∈ α

1 +
64
√
α/(15

√
15)√

nθ̂(1− θ̂)
[−1, 1]

+

√
π/6 + 8

√
α/
√

15√
nθ̂(1− θ̂)

[−1, 1]. (2.105)

By monotonicity of q and extending q−1 to negative arguments as mentioned in the statement of

Thm. 14 if necessary, the constraint is equivalent to

γ̃ ∈ q−1

α
1 +

64
√
α/(15

√
15)√

nθ̂(1− θ̂)
[−1, 1]

+

√
π/6 + 8

√
α/
√

15√
nθ̂(1− θ̂)

[−1, 1]

 . (2.106)

For α > log(2), we know that γ̃ > 0, so we can add max(0, . . .) as in the theorem statement.

To determine the interval equation for γ, we have γ = γ̃

√
ϕ(1− ϕ)/(θ̂(1− θ̂)). We use the

first-order remainder to bound the factor on the right-hand side. For this consider the numerator,
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and write g(x) =

√
(θ̂ − x)(1− θ̂ + x) with 0 ≤ x ≤ θ̂ − ϕ. We have

g(1)(x) =
2(θ̂ − x)− 1

2

√
(θ̂ − x)(1− θ̂ + x)

, (2.107)

|g(1)(x)| ≤ 1

2

√
a1θ̂(1− θ̂)

=
1√

3θ̂(1− θ̂)
, (2.108)

g(x) ∈
√
θ̂(1− θ̂) +

x√
3θ̂(1− θ̂)

[−1, 1]. (2.109)

With x = γ

√
θ̂(1− θ̂)/n and the bound of γ ≤ 2

√
3/5
√
α, we get

γ ∈ γ̃

1 +
2
√
α/
√

5√
nθ̂(1− θ̂)

[−1, 1]

 . (2.110)

The theorem follows by composing this constraint with Eq. 2.106.



Chapter 3

Deterministic drift instability and stochastic thermal perturbations of magnetic

dissipative droplet solitons

This chapter written in collaboration with Mark Hoefer, 1 and Ezio Iacocca. 2 3

3.1 Introduction

Localized magnetic textures have recently attracted significant research interest due to their

potential application in logic, storage, and communication technologies. From the perspective

of logic and storage, static skyrmions [112] are very interesting textures due to their topological

protection against perturbations, small sizes, and controllable motion [124, 128]. On the other hand,

communication applications could benefit from dynamical textures, notably topological, dynamical

kyrmions [165] and nontopological, magnetic dissipative droplets [66, 68, 100, 23, 73].

Magnetic dissipative droplets (“droplets” hereafter) have been widely observed in experiments

both at cryogenic [98] and room temperatures [105, 9, 92, 36]. Droplets exist in magnetic thin films

composed of materials with perpendicular magnetic anisotropy (PMA) [28], i.e., in which the

easy axis lies normal to the plane, so that it balances the exchange energy in favor of a localized

structure [81, 66], Fig. 3.1(a). Furthermore, magnetic damping must also be balanced in order to

sustain the droplet in time due to its lack of topology. To date, this has been achieved by using

spin transfer torque (STT) [19, 135] in devices known as nanocontact spin torque oscillators, NC-

1 Department of Applied Mathematics, University of Colorado, Boulder, CO, 80309
2 Department of Applied Mathematics, University of Colorado, Boulder, CO, 80309
3 Department of Applied Physics, Division for condensed matter theory, Chalmers University of Technology, 412

96, Gothenburg, Sweden
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STOs [46]. NC-STOs are composed of a pseudo spin valve where two magnetic layers are decoupled

by a nonmagnetic spacer, as shown in the schematic of Fig. 3.1(b). The topmost magnetic layer m

is where the droplet nucleates and it is usually referred to as the free layer. The bottom magnetic

layer mp serves as a spin-polarizer and it is known as the polarizer or fixed layer. In order to achieve

sufficient current density to oppose magnetic damping, a nanocontact (NC) of radius R∗ is placed

on top of the free layer, confining the current to flow in an approximately cylindrical path [117] and

therefore defining a region of effectively zero damping in the free layer. An external, perpendicular

applied field H0 is generally used in NC-STOs both to tilt the polarizer (useful for increasing STT

and magnetoresistance), to provide an external source for the Larmor frequency, and to stabilize

the droplet [23].

Since the first experimental observation of droplets [105], recent results have investigated

theoretical predictions [66, 68, 67, 23, 24], shown the existence of hysteresis both at room and cryo-

genic temperatures [98, 92], identified a well-defined nucleation boundary [36], and even imaged the

droplet via x-ray magnetic circular dichroism (XMCD) [9]. The same studies have demonstrated

the existence of characteristics consistent with random droplet dynamics, notably low-frequency

spectral features. These have been associated with the droplet exiting the NC region and succumb-

ing to damping, a drift instability, originating from the spatial energy landscape created by the

current-induced Oersted field [66, 117, 45, 99] and externally applied fields [23, 105, 24] or fluctua-

tions in the material anisotropy spatial distribution [92]. However, the relationships between drift

instabilities and physical sources of randomness have not been established. To provide an analytical

understanding of drift instabilities, we study the effect of thermal noise on droplet dynamics.

In this chapter, we develop the stochastic evolution of droplet dynamics based on soliton

perturbation theory [24] and obtain statistical observables such as the droplet center variance

and the generation linewidth [134]. These results are analytically obtained by linearizing the

equations of motion. From the linearization, we uncover a deterministic regime of drift instability,

missed by previous analytical works [23, 24], where high bias currents induce growth of the droplet

velocity on a long timescale. Randomness can also cause an otherwise deterministically stable
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droplet to be expelled from the NC region when thermal fluctuations are taken into account.

We determine that such events are extremely rare relative to the precessional timescale (10-100

picoseconds) but become quite relevant for the typical time scales of experiments (seconds or

more). Observation, let alone quantification, of both the deterministic drift instability and the

stochastic rare events is practically unfeasible utilizing standard deterministic [66] or stochastic [92]

micromagnetic simulations alone. For a stable droplet, the generation linewidth is found to be

dominated by the phase noise induced by a Wiener process or random walk, linearly proportional

to temperature and inversely proportional to the NC radius. The droplet’s center can be described

by an Ornstein-Uhlenbeck (O-U) process with STT acting as an attractive mechanism that draws

the droplet to the center of the NC. The determination of both stochastic processes requires subtle

higher order effects from soliton perturbation theory [23, 24]. Full-scale micromagnetic simulations

qualitatively agree with the analytical results, even when the current-induced Oersted field is taken

into account.

The chapter is organized as follows. Section II describes the formalism used to obtain the

stochastic equations for droplet dynamics. Section III explores the deterministic linearization where

we obtain the fundamental droplet dynamical state and linear stability conditions. Stochastic terms

are incorporated into the analysis in Sec. IV, leading to analytical solutions for the droplet center

variance and generation linewidth at low temperatures. Numerical simulations of the nonlinear

stochastic system are presented in Sec. V, demonstrating excellent agreement with the linearized

analytical results. Full-scale micromagnetic simulations are used to explore regimes of small NC

radii, nonlocal dipole fields, and Oersted field, beyond the scope of the asymptotic theory, neverthe-

less demonstrating qualitative agreement. Finally, we provide a discussion and concluding remarks

in Sec. VI.

3.2 Droplet perturbation theory

The analytical study of droplet dynamics can be approached using perturbation theory with

the magnetic damping and STT coefficients assumed small. This assumption alone yields droplet
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Figure 3.1: (a) Typical dissipative droplet obtained from micromagnetic simulations at a finite
temperature. The ẑ component of the magnetization is quantified by the color scale. (b) Schematic
of a NC-STO based on a pseudo spin valve trilayer. The free, m, and polarizer, mp, magnetic
layers are decoupled by a nonmagnetic spacer. A NC of radius R∗ is placed on top of the free layer
to achieve high current densities. An external field H0 is applied perpendicularly to the plane.

nucleation conditions and the resultant droplet’s frequency tunability via current and field [66, 36].

A semi-analytical generalization can be used to describe coarse droplet motion and control [67].

The additional assumption of a sufficiently large NC diameter implies a slowly precessing, circular

domain wall description for the droplet [23], which enables a detailed analytical description of

droplet dynamics in the presence of physical perturbation [23, 24]. This latter regime is the one

considered here.

The equation of motion for the free layer magnetization m is the Landau-Lifshitz equation

for a thin, two-dimensional magnetic film

∂m

∂t
= −m× heff + p, m : R2 × R→ S2, (3.1)

expressed here in nondimensional form. The effective field,

heff = h0z +∇2m +mzz, (3.2)

includes contributions from a perpendicular external field h0, the exchange field ∇2m, and a per-

pendicular magnetic anisotropy (PMA) field sufficient to overcome the thin-film limit of the de-

magnetizing field. Hence the mzz term in the effective field has a positive coefficient, here scaled to

unity. This form of the LL equation, with |m| = 1, uses the time scale τ = (|γ|µ0η)−1, where γ is

the gyromagnetic ratio, µ0 is the vacuum permeability, η = Ms(Q−1) is the field scaling, Ms is the

free layer’s saturation magnetization, Q = Hk/Ms is the nondimensionalized form of the PMA field



54

Hk, and the length scale L = λex/
√
Q− 1 where λex is the exchange length. The NC radius R∗ is

nondimensionalized to ρ∗ = R∗/L. We consider a small perturbation |p| � 1 satisfying p ·m = 0

in order to preserve constant magnetization magnitude. The perturbation term considered here

includes damping, STT as imposed by a NC-STO, and a thermal random field [27]

p = −αm× (m× heff)︸ ︷︷ ︸
damping

+σH(x)m×m×mp︸ ︷︷ ︸
NC-STO

−m× h︸ ︷︷ ︸
thermal

, (3.3)

where 0 < α� 1 is the damping parameter,

H(x) =


1 |x| ≤ ρ∗

0 else

is a shifted Heaviside function describing the current path below the NC, mp is the normalized

polarizer orientation, and σ = I/I0 is the nondimensionalized form of the current I, scaled by

I0 =
4µ0M

2
s (Q− 1)eπR2

∗δ

~ε
. (3.4)

Here, e is the charge of the electron, δ is the thickness of the free layer, ε is the spin torque efficiency,

and ~ is Planck’s constant. Example scalings for recent experiments are listed in Table 3.1 for

reference.

The thermal field h(x, t) induces random fluctuations in the magnetization of a small material

volume V and is assumed to be delta-correlated in space and time i.e., white noise [27]. The variance

Parameters Refs. [98] and [9] Ref. [105]

τ (time, ns) 0.13 0.083
L (length, nm) 13.2 9.25
η (field, kA/m) 198.9 318.1
I0(current, mA) 152.75 139.7
T0(temperature, kK) 156.0 337.2

σ/α (scaled current to damping) 1.96 6.44
h0 (scaled applied field) 0.5 2.5
ρ∗ (scaled nanocontact radius) 5.96 5.95

Table 3.1: Time, length, field, current, and temperature scalings and typical nondimensionalized
experimental parameters for recent experiments.
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of the nondimensional field is Var[h(x, t)] = β2 with

β2 =
T

T0
, T0 =

µ0M
2
s V

2αkB
, (3.5)

where kB is the Boltzmann constant, V = λ2
exδ is the characteristic micromagnetic volume, and T0

is the nondimensional scaling of the absolute temperature T . Table 3.1 includes typical tempera-

ture scalings for recent experiments and our micromagnetic simulations. The perturbative theory

utilized here is valid in the low temperature regime where β � 1. The variance in Eq. (3.5) can be

dimensionalized by multiplying (3.5) by τM2
s (Q− 1)2.

The droplet is characterized by its center position ξ, velocity v, collective phase φ, and

precessional frequency ω. In the regime 0 ≤ v � ω � 1, where v = |v| is the droplet speed, the

droplet takes on the approximate form of a slowly precessing circular domain wall with a spatial

phase proportional to the droplet’s speed[24]

cos Θ = tanh

(
ρ− 1

ω

)
, (3.6a)

Φ = h0t−
v · ρ̂
ω2

+ φ, φ = ωt+ φ0. (3.6b)

Equation (3.6) describes the magnetization orientation of the droplet in spherical coordinates

(Θ,Φ) with polar angle from vertical 0 ≤ Θ < π and azimuthal angle Φ. In Eq. (3.6), we employ

droplet-centered polar coordinates in the plane, so that the radial unit vector ρ̂ points from the

droplet center ξ to a point in space x = (ρ cosϕ, ρ sinϕ) and the angular unit vector ϕ̂ is orthogonal

ϕ̂ · ρ̂ = 0 and satisfies the right hand rule ρ̂ × ϕ̂ = z. The structure of the v = 0 approximate

droplet in Eq. (3.6) has been known for some time in the absence of STT (see, e.g., Ref. [81]) and

the singular ω → 0 behavior for v 6= 0 was identified in Ref. [75].

Following the procedure described in Ref. [24], the slow evolution of the perturbed droplet’s

parameters for large NC radii ρ∗ � 1, weak damping/STT σ = O(α) � 1, and low temperature
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β � 1 is governed by the set of coupled, stochastic differential equations

dφ = ω dt− σ

4π

∫
|x|≤ρ∗

(v · ρ̂) sech2

(
ρ− 1

ω

)
dxdt+ dWφ, (3.7a)

dξ = vdt+
σω

2π

∫
|x|≤ρ∗

sech2

(
ρ− 1

ω

)
ρ̂ dxdt+ dWξ, (3.7b)

dω = αω2(ω + h0)dt− σω3

4π

∫
|x|≤ρ∗

sech2

(
ρ− 1

ω

)
dxdt+ dWω, (3.7c)

dv = αωv(ω + 2h0)dt− σω2

2π

∫
|x|≤ρ∗

(
3

2
v − (v · ϕ̂)

ρω
ϕ̂

)
sech2

(
ρ− 1

ω

)
dxdt+ dWv, (3.7d)

which are to be interpreted in the Stratonovich sense [39]. The dynamical system describing

modulations of a droplet’s parameters subject to a general class of perturbations was derived

in Ref. [24]. The particular form of the stochastic terms in (3.7) result from the thermal field

perturbation −m×h in eq. (3.3). The damping (proportional to α) and spin torque (proportional

to σ) terms in (3.7) were also specifically derived in Ref. [24].

There is a symmetry in these equations between the droplet’s collective precessional dynamics

and motion. The phase φ and position ξ dynamics have a leading order linear coupling to the

frequency ω and velocity v equations, respectively. The second, additional terms in the phase and

position equations proportional to current σ correspond to higher order corrections from soliton

perturbation theory, which prove to be essential for describing perturbed droplet dynamics [23, 24],

in particular, the finite temperature effects explored here.

The terms Wi, with i = φ, ξ, ω, and v, are scaled Weiner processes, with nontrivial

covariance structure. Each noise term is a spatial integral of the thermal field perturbation

against an appropriate kernel (see Ref. [24], Eqs. 4.1–4.4). If we arrange them into a vector

W =
(
Wφ Wξx Wξy Wω Wvx Wvy

)T
, then the covariance between the processes is given by

E[WWT ] =
β2t

2π



σ2
φ vT /2

v/2 ωI

0

0
ω5/2 ω4vT

ω4v σ2
v


, (3.8)
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where we have, for the sake of compactness, denoted

σ2
φ =

v2

4ω
+
ω

2
, (3.9a)

σ2
v =

 ω5 + ω3

4

(
9v2
x + v2

y

)
2ω3vxvy

2ω3vxvy ω5 + ω3

4

(
v2
x + 9v2

y

)
 (3.9b)

and I is the 2× 2 identity matrix and 0 is the 3× 3 zero matrix.

3.3 Deterministic Linearization and Stability

We will first examine the dynamics of Eqs. (3.7) at zero temperature β2 = 0. These deter-

ministic dynamics have been studied in detail [23, 24]. When the current σ exceeds the minimal

sustaining current σmin, the system undergoes a saddle-node bifurcation resulting in a stable fixed

point denoted (ξ∗, ω∗,v∗) that encapsulates the balance between damping and STT to sustain the

droplet. The stable fixed point is stationary at the center of the NC, ξ∗ = v∗ = 0, with precessional

frequency ω∗ determined as a root of the transcendental equation

σ

α
=

2(h0 + ω∗)

1 + ω∗

[
log
(

1
2sech

(
ρ∗ − 1

ω∗

))
+ ρ∗ tanh

(
ρ∗ − 1

ω∗

)] . (3.10)

We observe that the phase φ in Eqs. (3.7) decouples from the system, so its dynamics can be

determined from the remaining three parameters. If we linearize Eqs. (3.7) around this fixed point,

we arrive at the system

φ̇ = ω, (3.11a)

ξ̇ = v + λξξ, (3.11b)

ω̇ = λω(ω − ω∗), (3.11c)

v̇ = λvv, (3.11d)
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where

λξ = −1

2
σρ∗ω∗sech2

(
ρ∗ −

1

ω∗

)
, (3.12a)

λω = −h0αω∗ + λξ +
1

2
σω∗

(
tanh

(
ρ∗ −

1

ω∗

)
+ 1

)
, (3.12b)

λv = −2αω2
∗ + λω − λξ. (3.12c)

It is necessary to carefully choose parameters so that this fixed point is stable, i.e., so that all

eigenvalues in Eq. (3.12) are negative. The condition σ > αh0 is sufficient for λξ, λω < 0, but in

order to ensure that λv < 0, we require additionally that

αω∗(2ω∗ + h0) >
1

2
σω∗

(
tanh

(
ρ∗ −

1

ω∗

)
+ 1

)
. (3.13)

Note that the inequality requirement for stability in (3.13) was not identified previously [24], and

is essential to understanding the dynamics of the droplet. It is possible to visualize the region of

linear stability in the (h0,σ/α) plane as in Fig. 3.2. The left (red) area corresponds to the condition

σ < σmin, where the droplet cannot exist. This approximately linear relation for the existence

boundary has been corroborated by experiment [98]. The inequality requirement Eq. (3.13) adds

an unstable, right region (blue area) where the velocity of the droplet increases until it drifts away

from the NC area and damping destroys it. The remaining white area represents the parameter

space where the droplet exists and is stable. We observe that such a region shifts to lower applied

fields and increased current for smaller NC radii (dashed lines).

It is helpful to express these eigenvalues in a more tractable form, so that we can observe how

they approximately scale with experimental parameters. For this, we define a parameter-dependent

constant that we will denote by ζ

ζ =
2αh0

σ
− 1. (3.14)

Previous work [24] assumed that the current was near the critical value σ ≈ 2αh0, so that ζ =

O(ρ−1
∗ ). This work relaxes that assumption and allows for any current that is sufficiently above

the minimum sustaining current so that Eq. (3.10) can be approximately inverted to obtain the
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frequency tunability

ω∗ = ρ−1
∗ + arctanh (ζ)ρ−2

∗ +O(ρ−3
∗ ). (3.15)

Then the leading-order approximations of each eigenvalue are

λξ = −σ
2

(1− ζ2) +O(ρ−1
∗ ), (3.16a)

λω = −σ
2

(1− ζ2) +O(ρ−1
∗ ), (3.16b)

λv = O(σρ−2
∗ ). (3.16c)

The approximate expression for λv is prohibitively complex, so we omit it here in favor of the exact

expression in eq. (3.12).

Inequality (3.13) is a fundamental result identifying a deterministic mechanism that can drive

droplet drift instability. Any nonzero v (recall that v 6= 0 corresponds to a spatial phase gradient

across the droplet in Eq. (5.4)) will slowly increase when Eq. (3.13) does not hold. Large applied

current destabilizes the droplet.

Previous work [23] that analyzed the dynamics of this system with v ≡ 0, found that the

dissipative droplet is linearly stable for physically relevant parameters. The sole effect of damping on

a stationary droplet’s frequency dω/dt = αω3 has been known for some time [14]. While this result

demonstrates that the droplet is unstable in the presence of damping alone, it does not describe

the instability investigated here with STT included. Similarly, Ref. [67] observed instability in the

case v 6= 0 without taking into account STT. Our contribution here is to extend the dynamics

to incorporate STT, thereby uncovering current dependent regimes of deterministic instability. In

Ref. [24], the dynamics are analyzed, but the linear instability condition (3.13) was not recognized.

The recognition of this linear instability, occurring at physically relevant parameters, is essential

to the understanding of droplet dynamics. When v 6= 0, the dynamics are much more sensitive to

the choice of parameters, as is seen both above in the linear case, and below in the full nonlinear

case. A key observation is that while λξ, λω are small O(σ), λv is much smaller O(σρ−2
∗ ). These

eigenvalues dictate the relaxation rate of the system towards the fixed point.
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When compared to the v = 0 dynamics, the relaxation rate of the droplet center ξ decreases

by a factor proportional to ρ−2
∗ � 1 when the v dynamics are included. Furthermore, we see

that λv can change sign, while λξ and λω are negative for σ > αh0. This suggests that there is a

shallow basin of attraction for the fixed point, allowing for the possibility of linear drift instabilities

mediated by thermal noise. Indeed, all experiments [105, 98, 9] have been performed outside the

region of linear stability, suggesting droplet drift instability and the concomitant observation of

low-frequency spectral features. We note that the theory presented here is nominally applicable to

the case ρ∗ � 1, whereas the experiments in Refs. [105, 98, 9] with ρ∗ ∈ (5, 8) are at the borderline

of applicability.

� < �min �v > 0

�/↵

h0

Figure 3.2: Droplet existence and linearly stable parameter space for a droplet nucleated in a
NC of normalized radius ρ∗ = 15. The droplet cannot exist in the left region (filled red) where
σ < σmin, whereas the droplet is linearly unstable in the right region (filled blue) where λv > 0.
Therefore, the droplet is stable in the remaining white region. The numerical simulations in Sec. 3.5
and Figs. 3.3, 3.4, 3.5(a) with h0 = 1.5, α = 0.03, and σ = 2α (black circle) exhibit linear stability.
The dashed lines are boundaries for droplet existence and linear stability with reduced NC radius
ρ∗ = 5.

3.4 Stochastic linearization

One method of approximating the dynamics of the stochastic system Eqs. (3.7) is to em-

ploy the previously calculated linearization of the deterministic system and approximate the noise,

now denoted W∗, by evaluating the covariance matrix, Eq. (3.8), at the fixed point. This low
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temperature theory yields the linear stochastic system

dφ = ωdt+ dW∗φ, (3.17a)

dξ = vdt+ λξξdt+ dW∗
ξ, (3.17b)

dω = λω(ω − ω∗)dt+ dW∗ω, (3.17c)

dv = λvvdt+ dW∗
v. (3.17d)

When evaluated at the fixed point, the covariance matrix becomes diagonal

E[W∗W∗T ] = β2t ·Diag

(
ω∗
4π
,
ω∗
2π
,
ω∗
2π
,
ω5
∗

4π
,
ω5
∗

2π
,
ω5
∗

2π

)
,

≡ t ·Diag
(
β2
φ, β

2
ξ , β

2
ξ , β

2
ω, β

2
v , β

2
v

)
, (3.18)

where we denote the variance of each parameter by β2
i for i = φ, ξ, ω, and v. The linear system

Eqs. (3.17) can be solved explicitly. For (ξ, ω,v), we obtain a set of coupled O-U processes that

describe the stochastic properties of the linear system.

Of particular interest is the behavior of the decoupled oscillator phase, φ(t), as it allows us to

relate our analytical description with the generation linewidth, ∆f , which can be measured from

the electrical characterization of NC-STOs [46]. Solving the system in Eqs. (3.17), we find that the

frequency is an O-U process with mean ω∗ and variance

Var[ω(t)] = − β2
ω

2λω
(1− exp 2λωt)

→ − β2
ω

2λω
, as t→∞. (3.19)

We can then write down the solution for the phase φ(t) as the sum of an integrated O-U process

and a Wiener process (random walk)

φ(t) =

∫ t

0
ω(s)ds+W∗φ, (3.20)

from which we find that the variance of φ quickly approaches linear growth

Var[φ(t)]→
(
β2
ω

λ2
ω

+ β2
φ

)
t as t→∞, (3.21)
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so that the spectral lineshape is Lorentzian and the generation linewidth is given by

∆f =

(
β2
ω

λ2
ω

+ β2
φ

)
= β2

(
ω5
∗

4πλ2
ω

+
ω∗
2π

)
. (3.22)

By virtue of Eq. (3.5), the generation linewidth is linearly proportional to temperature.

Because ω∗ � 1, the generation linewidth is dominated by the Wiener process, phase noise con-

tribution [second term in Eq. (3.22)] resulting from the higher order contribution to the phase

dynamics of Eq. (5.2). This expression for generation linewidth is also consistent with the notion

of a reduced impact of thermal fluctuations on a larger magnetic mode volume. Indeed, recalling

Eq. (5.7), it is clear that larger NC radii minimize the generation linewidth.

We are also interested in the dynamics of the center ξ as it describes the droplet’s random

motion with respect to the NC region. The velocity and position form a coupled pair of O-U

processes, which we can solve using standard methods. We then find the variance of the droplet

center

s2
ξ(t) = −

β2
ξ

2λξ

(
1− e2λξt

)
− β2

v

2 (λξ − λv) 2

×

1− e2λξt

λξ
+

4
(

1− e(λξ+λv)t
)

λξ + λv
+

1− e2λvt

λv


→ −1

2

β2
v

λ2
ξλv
−
β2
ξ

λξ
as t→∞. (3.23)

We might expect that the position noise term in Eq. (3.23) would dominate, analogous to the

phase noise in Eq. (3.22). However, the balance of the two terms in Eq. (3.23) is highly sensitive

to experimental parameters. In fact, for the parameters used in this study, the velocity noise term

is the dominant contribution.

Equations (3.22) and (3.23) are central results of this chapter. The former relates our stochas-

tic theory to an experimental observable, namely, the Lorentzian generation linewidth. The latter

quantifies the amount of droplet drift with respect to the NC center and thus provides a means to

quantify the drift instability from random fluctuations in the magnetic system.
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3.5 Numerical Simulations

To examine the behavior of the full nonlinear system, Eqs. (3.7), we numerically simulate an

ensemble of sample paths. Details of our numerical implementation can be found in the Appendix.

We choose the parameters ρ∗ = 15, h0 = 1.5, α = 0.03, and σ = 2α in order to ensure that we

are within the asymptotic validity of our analysis and the region of linear stability, depicted by the

black dot in Fig. 3.2. Typical sample paths of the droplet’s phase and center position generated by

this method are shown in Fig. 3.3.
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Figure 3.3: Numerically computed nonlinear sample path from Eqs. (3.7) for (a) the droplet phase
φ and (b) the x-component of the center position ξx. The phase is measured in radians, and position
and time are nondimensional as per Table 3.1.

We first examine the statistics of the droplet center. Figure 3.4 shows the standard deviation

of the droplet center for an ensemble of numerical simulations of the linear (blue) and nonlinear

(red) systems. The analytical prediction of Eq. (3.23) (black) agrees well with the linear simulation.

For the chosen set of parameters, nonlinearity is not observed to significantly enhance the droplet

drift and, in fact, the standard deviation of the droplet center from the NC center is never more

than 1% of the NC radius. For slightly modified parameters, we observe qualitatively different

behavior when nonlinearity is introduced. For example, reducing the NC radius to ρ∗ = 10, we

approach the stability boundary of Fig. 3.2, although linear stability in Eq. (3.13) is still satisfied.
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However, the numerical simulation of the nonlinear system leads to approximately 15% of the

simulated paths leaving the NC before t = 4 · 104. This indicates that the basin of attraction of the

system is relatively small. We can also infer from the simulations at larger NC radii that the size of

the basin of attraction decreases with NC radius. This suggests that the small NC devices used in

experiments at room temperature sustain droplets that exhibit deterministic or thermally induced

drift instabilities during measurements. In fact, typical spectral measurements [105, 92] acquire

data in time spans on the order of seconds, which translate to ≈ 1 · 1010 in our normalized units.

The characterization of the multi-dimensional boundary in phase space of the basin of attraction

and ejection statistics are, however, outside the scope of this chapter. Note that in the ensemble

used to generate Fig. 3.4, no sample paths ejected from the NC.
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Figure 3.4: Standard deviation sξ of the droplet center from linear theory (solid black line), linear
simulation (solid blue), and nonlinear simulation (solid red).

In the regime where the droplet does not drift away from the NC over the timescale simulated,

it is possible to compare the linear generation linewidth to numerical simulations of Eqs. (3.7). From

a sample path of the stochastic phase φ(t), we calculate the linewidth via the power spectral density

of φ, as discussed in Ref. [134]. It is worth noting that the linewidth calculated via this method is

strictly valid for white noise [47] and can vary between sample paths due to the fluctuations between

each path. For the linewidths reported here, we take the mean value of the calculated linewidths
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from 500 different sample paths. Figure 3.5(a) shows the linewidth’s dependence on temperature

for the nonlinear system (red asterisks) and Eq. (3.22) (solid black line). Finite sampling and

the asymmetric, heavy-tailed distribution of linewidths across sample paths causes the mean to

converge slowly to the linear theory at low temperature. Although the median gives results more

clearly convergent to the linear theory, the mean corresponds to experimentally observed linewidths,

which are averaged over long timescales. Nonlinear simulations yield a mean linewidth of 1.77 ·10−5

at temperature β2 = 2.8 · 10−3, which, for comparative purposes, corresponds to 214 kHz at

temperature T = 314 K under the temporal and temperature scalings of Ref. [105] with damping

enhanced to α = 0.03. Note, however, that the material parameters (ρ∗, σ, and h0) for the nonlinear

simulations do not correspond to those from Ref. [105].

The linear theory is a very good predictor of the nonlinear system’s behavior at low tempera-

tures and we numerically observe that the discrepancy between the linear and nonlinear linewidths

decreases quadratically in T as T → 0, as one would expect from this perturbative approach. How-

ever, as room temperature is approached, the nonlinear linewidth exceeds the linear linewidth by

an order of magnitude. This originates from the increased impact of thermal fluctuations when

the linearization is not strictly applicable. We stress that current experiments have not directly

detected ejection events, and in the event of ejection, the bias current can re-nucleate a droplet

and the resulting linewidth in aggregate will be considerably broader due to the ensuing transient

dynamics. Our simulations end upon ejection, and do not allow for re-nucleation.

The above simulations are strictly valid for the regime ρ∗ � 1 with negligible long-range

dipole and Oersted fields. Experiments to date, however, have been performed when ρ∗ ∈ (5, 8).

Moreover, it is important to characterize the impact of dipolar and Oersted fields on the droplet’s

collective motion and precession. To further explore droplet behavior, we perform full-scale micro-

magnetic simulations with nonlocal dipole fields using the GPU-based package Mumax3 [147]. We

first compare micromagnetic results by choosing the same set of dimensionless parameters speci-

fied above and scalings consistent with Co/Ni multilayers [105] (See Table 3.1). The fixed layer is

assumed to be perpendicularly polarized. The NC is placed at the geometrical center of an active
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Figure 3.5: (a) Droplet linewidth as a function of temperature from linear theory (solid black
line), nonlinear simulation (red asterisks), and micromagnetic simulations (blue triangles) when
ρ∗ = 15, h0 = 1.5, α = 0.03, σ = 2α. (b) Droplet linewidth as a function of temperature from
micromagnetic simulations where only the NC radius is reduced to ρ∗ = 5 from (a) (blue triangles)
and the effect of a current-induced Oersted field (blue squares). Linewidth is expressed in rad/τ
as per Table 3.1. Inset shows droplet profile with Oersted field included. Error bars are O(10−9)
and are not shown.
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area of size 89.9× 89.9× 0.39 discretized in cells with size 0.35× 0.35× 0.39, below the exchange

length. An ensemble of sample paths is not feasible to compute micromagnetically due to time

constraints, so we determine the linewidth from a single path spanning t = 1.8× 104 and sampled

at 0.015 intervals. First, we do not observe droplet motion, which is consistent with the results

shown in Fig. 3.4 where the droplet center variance is expected to be below our cell resolution.

The results for the temperature dependent linewidth are shown in Fig. 3.5(a) as blue triangles.

We note that the micromagnetic simulations overestimate the linewidth obtained from nonlinear

simulations but are on the same order of magnitude at room temperatures. At low temperatures,

the micromagnetic simulations do not approach the linear theory as one would expect. This is a

consequence of the limited simulation time and the spatial resolution of our micromagnetic scheme

that precludes an accurate estimation of the phase noise statistics and thus its convergence to the

linear linewidth.

Despite this limitation, micromagnetic simulations can be used to explore the dynamics

of droplets sustained in devices with smaller NC radii, where micromagnetics have shown to be

more accurate [105, 92] and where, conversely, the theory is not strictly applicable. We perform

micromagnetic simulations with the same nondimensional parameters specified above but reduce

the NC radius to ρ∗ = 5, in the range of experiments performed to date, and increase the current

to σ = 0.1. The resulting linewidths are shown in Fig. 3.5(b) by blue triangles. A qualitative

agreement with theory is observed, namely, a linear dependence of the linewidth on temperature

and a linewidth increase for smaller NC radii. Additionally, micromagnetic simulations allow us to

include the current-generated Oersted field [117, 45, 99]. This further enhances the linewidth by

a factor ∼ 5 (blue squares) originating from the distortion of the droplet boundary, as observed

from a snapshot of the ẑ magnetization component shown in the inset of Fig. 3.5(b). These results

suggests that the unavoidable nonlocal and Oersted fields in a real device will enhance the generation

linewidth compared to theory, but the temperature-dependent features remain mostly unchanged.
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3.6 Discussion and Conclusion

We have developed a stochastic perturbation theory for magnetic dissipative droplets de-

scribing the random motion of the droplet’s position, velocity, frequency, and phase. Higher-order

perturbative effects in the phase and position are shown to be essential for understanding the dy-

namics of the droplet. Inclusion of velocity dynamics causes a qualitative shift in the behavior of

the droplet position, and gives rise to a previously uncovered deterministic drift instability. Such

an instability occurs at high driving currents, leading to an exponential increase in the droplet

velocity. This effect also implies a small basin of attraction for the stable fixed point, providing

a simple explanation for the origin of drift instabilities from randomness in the system, such as

thermal fluctuations.

We find that in parameter regimes where the deterministic droplet is linearly stable, the

stochastically induced drift instabilities are rare events compared with the typical precessional

timescales. A notable implication is that the observation of drift instabilities due to thermal fluctu-

ations using micromagnetic simulations is prohibitive. In contrast, our finite dimensional reduction

of the governing partial differential equation makes such effects computationally feasible. The study

of rare events is beyond the scope of this chapter, but motivates an application of large deviation

theory, as previously studied, for example, in the context of fiber optic soliton communication

systems [110]. Likewise, micromagnetic simulations tailored to study rare events [149] might be

used to resolve the time and computational limitations. Even in the deterministic case, the pre-

dicted linear instability may be difficult to recover from micromagnetic simulations due to its slow

rate of exponential growth. From an experimental point of view, typical measurement timescales

suggest that drift instability and droplet renucleation can occur many times. For example, the

long timescale required in the direct imaging of localized excitations, 500 ms, indicates that drift

instabilities could occur ∼ 106 times, leading to the small droplet amplitude and spatial smearing

observed in the XMCD images of Ref. [9].

In contrast, previous works have interpreted the droplet drift mechanism through spatial
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inhomogeneities in field [24] or anisotropy [92]. Here, we have identified two additional drift mech-

anisms, a deterministic linear instability inherent to the NC-STO system and rare drift events

caused by thermal fluctuations.

Our model also allows us to obtain an analytical expression for the linearly stable droplet

generation linewidth. At low temperature, we find that the phase noise is characterized by a Wiener

process (random walk) and the droplet center is an O-U process, analogous to the stochastic phase

and amplitude dynamics, respectively, of spatially uniform STOs [134]. For the linearized system,

the resulting generation linewidth is linearly dependent on temperature, whereas the nonlinear

system exhibits a linewidth enhancement when approaching room temperature, reflecting the cou-

pling between the droplet’s constituent variables. Full-scale micromagnetic simulation, including

the fully nonlinear spatial variation of the system, qualitatively agree with the numerical results.

However, we do not observe convergence toward the linear theory at low temperatures using a

standard micromagnetic package [147]. This suggests the study of droplet generation linewidth as

a test problem for stochastic micromagnetic codes [119].

The analytical and numerical linewidths obtained are two orders of magnitude below the

typical linewidths observed in experiments. This disagreement may be caused by the small NC radii

used experimentally, the existence of nonlocal dipolar and current-induced Oersted fields, and the

aforementioned drift instabilities for data-acquisition timescales. In fact, micromagnetic simulations

performed with a radius similar to those experimentally fabricated to date return linewidths in the

same order of magnitude when both nonlocal and current-induced Oersted fields are included. The

relevance of such fields in the generation linewidth motivates their inclusion in the analytical theory.

For thin films, the effect of nonlocal dipole fields on deterministic droplet dynamics has been shown

to be a frequency downshift when v = 0 [23]. It remains to incorporate these effects into the

stochastic theory when v 6= 0. Because the Oersted field is not a singular perturbation [24], its

inclusion in this collective theory would necessitate the incorporation of droplet coupling to spin

waves. Such coupling is in principle possible, see, e.g., Ref. [77].

In [93], the authors perform an experimental examination of the effect of temperature on
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droplet nucleation and stability. They find that droplet nucleation can occur at lower external field

strength when the temperature is lower, as one would expect. In the current work, we consider the

regimes of droplet stability with respect to zero temperature; this experimental understanding of

the influence of temperature on the stable paramter regime is valuable, as it will help us further

analyze the sources of observed droplet instability.

In conclusion, this work provides the means to seek optimized experimental parameters for

a given application. To wit, we find that an environment with a large NC radius, low field,

modest current, and large anisotropy are less susceptible to drift and thus lead to a much narrower

generation linewidth. Our results motivate a more detailed experimental study on the current and

temperature-dependent generation linewidth and ejection statistics of droplets.

3.7 Appendix

3.7.1 Numerical Methods

We simulate the nonlinear system Eq. (3.7) via the Euler-Maruyama method, with drift

correction to account for the Stratonovich interpretation of the stochastic integrals [80]. Results of

the higher-order Milstein scheme[80] yield negligibly different results. For example, the linewidth

at room temperature differed by < 1% between the Euler and Milstein simulations. We use a

timestep of dt = 4, and our total integration time is t = 4 · 104. We integrate 500 sample paths,

and then use the standard sample variance to produce Figure 3.4.

We must ensure that our nonlinear and linear systems coincide when T → 0. To that end,

we calculate the pathwise difference between the droplet center ξL calculated by discretizing the

linear system Eq. (3.17) and the droplet center ξNL calculated via discretizing the nonlinear system

Eq. (3.7). Note that both paths are calculated using the same stochastic terms, scaled appropriately.

The results are shown in Figure 3.6. The standard deviation of the droplet center from the fixed

point is O(
√
T ), and the separation between the nonlinear and linear paths is O(T ), so we have

‖ξNL(t)− ξL(t)‖ = O(s2
ξ). (3.24)
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Figure 3.6: Convergence plot indicating that |ξNL − ξL| = O(β2) = O(T ). Best-fit line has slope
of 0.9793.

This linear convergence in T is a positive consistency check on the linearization Eq. (3.17) and

stochastic timestepping of the nonlinear system Eq. (3.7).



Chapter 4

Detecting Topological Changes in Dynamic Community Networks

This chapter written in collaboration with François Meyer. 1 2

4.1 Introduction

The study of time-varying (dynamic) networks (or graphs) is of fundamental importance

for computer network analytics and the detection of anomalies associated with cyber crime [70,

74, 78]. Dynamic graphs also provide models for social networks [5, 56], and are used to decode

the functional connectivity in neuroscience [60, 72, 137] and biology [15]. The significance of this

research topic has triggered much recent work [6, 88, 121]. Several methods have been proposed to

detect the effect of significant structural changes (e.g., changes in topology, connectivity, or relative

size of the communities in a community graph) in a time series of graphs. We focus on networks

that change over time, allowing both edges and nodes to be added or removed. We refer to these

as dynamic networks.

A fundamental goal of the study of dynamic graphs is the identification of universal patterns

that uniquely couple the dynamical processes that drive the evolution of the connectivity with

the specific topology of the network; in essence the discovery of universal spatio-temporal patterns

[86, 76]. In this context, the goal of the present work is to detect anomalous time steps in the

evolution of dynamic graphs. We propose a novel statistical method, which captures the coherence

of the dynamics under baseline (normal) evolution of the graph, and can detect switching and

1 Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO, 80309
2 Department of Applied Mathematics, University of Colorado, Boulder, CO, 80309
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regime transitions triggered by anomalies. Specifically, we study a mathematical model of normal

and abnormal growth of a community network. We are motivated to study this model because

many real-world networks are of this type [113]. Members join and leave social networks; new

neurons develop in the brain and form connections with existing structures.

In order to circumvent the problem of decomposing each graph into simpler structures (e.g.,

communities), we use a metric to quantify changes in the graph topology as a function of time.

The detection of anomalies becomes one of testing the hypothesis that the graph is undergoing

a significant structural change. Several notions of similarity have been proposed to quantify the

structural similitude without resorting to the computation of a true distance (e.g., [16, 84] and

references therein). Unlike a true metric, a similarity is typically not injective (two graphs can

be perfectly similar without being the same), and rarely satisfies the triangular inequality. This

approach relies on the construction of a feature vector that extracts a signature of the graph

characteristics; the respective feature vectors of the two graphs are then compared using a distance,

or a kernel. In the extensive review of Koutra et al. [84], the authors studied several graph

similarities and distances. They concluded that existing similarities and distances either fail to

conform to a small number of well-founded axioms, or suffer from a prohibitive computational cost.

In response to these shortcomings, Koutra et al. proposed a novel notion of similarity [84].

Inspired by the work of [84], in [107] the authors propose a true metric that address some of the

limitations of the DeltaCon similarity introduced in [84]. We emphasize that it is highly preferable

to have a proper metric, rather than an informal distance, when comparing graphs; this allows one

to employ proof techniques not available in the absence of the triangle inequality. Our distance,

coined the resistance-perturbation distance, can quantify structural changes occurring on a

graph at different scales: from the local scale formed by the neighbors of each vertex, to the

largest scale that quantifies the connections between clusters, or communities. Furthermore, we

proposed fast (linear in the number of edges) randomized algorithms that can quickly compute an

approximation to the graph metric, for which error bounds are proven (in contrast to the DeltaCon

algorithm given in [84], which has a linear time approximate algorithm but for which no error
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bounds are given).

The main contribution of this work is a detailed analysis of a dynamic community graph

model, which we call the dynamic stochastic blockmodel. This model is formed by adding new

vertices, and randomly attaching them to the existing nodes. The goal of the work is to detect

the time at which the graph dynamics switches from a normal evolution – where two balanced

communities grow at the same rate – to an abnormal behavior – where the two communities are

merging. Because the evolution of the graph is stochastic, one expects random fluctuations of the

graph geometry. The challenge is to detect an anomalous event under normal random variation. We

propose an hypothesis test to detect the abnormal growth of the balanced stochastic blockmodel. In

addition to the theoretical analysis of the test statistic, we conduct several experiments on synthetic

and real dynamic networks, and we demonstrate that our test can detect changes in graph topology.

The remainder of this chapter is organized as follows. In the next section we introduce the

main mathematical concepts and corresponding nomenclature. In section 4.3 we recall the definition

of the resistance perturbation distance. We provide a straightforward extension of the metric to

graphs of different sizes and disconnected graphs. In section 4.4 we formally define the problem,

we introduce the dynamic balanced two-community stochastic blockmodel, and we describe

the main contributions and the line of attack. Finally, in Section 4.6 we use our methodology to

detect significant changes in synthetic and real dynamic networks.

4.2 Preliminaries and Notation

We denote by G = (V,E) an undirected, unweighted graph. We will often use u, v, or w

to denote vertices in V . We use the standard asymptotic notation; see Appendix 4.8.1 for details.

Given a family of probability spaces Ω = (Ωn,Probn), and a sequence of events E = (En), we write

that Ω has the property with high probability (“w.h.p.”), if limn→∞ Prob (En) = 1. Finally, we

use an abbreviated summation notation, where

∑
u≤n

is short for
n∑
u=1

and
∑

u<v≤n
is short for

n∑
u=1

n∑
v=u+1

.
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Table 5.5 in Appendix 4.8.2 provides a list of the main notations used in the chapter.

4.2.1 Effective Resistance

We briefly review the notion of effective resistance [79, 44, 55, 48] on a connected graph. The

reader familiar with the concept can jump to the next section. There are many different ways to

present the concept of effective resistance. We use the electrical analogy, which is very standard

(e.g., [44]). Given a graph G = (V,E), we transform G into a resistor network by replacing each

edge e by a resistor with conductance we (i.e., with resistance 1/we).

Definition 1 (Effective resistance [79]). The effective resistance R̂uv between two vertices u and v

in V is defined as the voltage applied between u and v that is required to maintain a unit current

through the terminals formed by u and v.

The relevance of the effective resistance in graph theory stems from the fact that it provides

a distance on a graph [79] that quantifies the connectivity between any two vertices, not simply

the length of the shortest path. Changes in effective resistance reveal structural changes occurring

on a graph at different scales: from the local scale formed by the neighbors of each vertex, to the

largest scale that quantifies the connections between clusters, or communities.

4.3 Resistance Metrics

4.3.1 The Resistance Perturbation Metric

The effective resistance can be used to track structural changes in a graph, and we use it

to define a distance between two graphs on the same vertex set [107]. Formally, we define the

Resistance Perturbation Distance as follows.

Definition 2 (Resistance Perturbation Distance). Let G(1) = (V,E(1), w(1)) and G(2) = (V,E(2), w(2))

be two connected, weighted, undirected graphs on the same vertex set, with respective effective re-

sistance matrices, R̂(1) and R̂(2), respectively. The RP-p distance between G(1) and G(2) is
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defined as the element-wise p-norm of the difference between their effective resistance matrices.

For 1 ≤ p <∞,

RPp(G
(1), G(2)) =

∥∥∥R̂(1) − R̂(2)
∥∥∥
p

=

∑
i,j∈V

∣∣∣R̂(1)
ij − R̂

(2)
ij

∣∣∣p
1/p

. (4.1)

In this chapter, we will restrict our attention to the RP1 distance (we will omit the subscript

p = 1), because it is directly analogous to the Kirchhoff index.

4.3.2 Extending the Metric to Disconnected Graphs

As defined, the resistance metric is not properly defined when the vertices are not within

the same connected component. To remedy this, we use a standard approach. Letting R̂uv denote

the effective resistance between two vertices u and v in a graph, then the conductivity Cuv = R̂−1
uv

can be defined to be zero for vertices in disconnected components. Considering the conductivity

as a similarity measure on vertices, a distance is given by the quantity (1 + Cuv)
−1. Note that

(1 + Cuv)
−1 = R̂uv/(R̂uv + 1), and so we can define this new quantity relative to the effective

resistance without any reference to the conductance. We refer to the resulting quantity as the

renormalized effective resistance.

Definition 3 (Renormalized Effective Resistance). Let G = (V,E) be a graph (possibly discon-

nected).

We define the renormalized effective resistance between any two vertices u and v to be

Ruv =


R̂uv/(R̂uv + β) if u and v are connected,

1 otherwise,

(4.2)

where R̂uv is the effective resistance between u and v, and β > 0 is an arbitrary constant.

We now proceed to extend the notion of resistance perturbation distance.

Definition 4 (Renormalized Resistance Distance). Let G1 = (V1, E1) and G2 = (V2, E2) be two

graphs (with possibly different vertex sets). We consider V = V1 ∪ V2, and relabel the union of
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Figure 4.1: In order to compare Gn and Gn+1, we include node n+1 into Gn (see left), and evaluate
the renormalized effective resistance on the augmented graph, with vertex set {1, . . . , n}∪ {n+ 1}.
Using definition 4, the two graphs Gn and Gn+1 can then be compared.

vertices using [n], where n = |V |. Let R(1) and R(2) denote the renormalized effective resistances

in G̃1 = (V,E1) and G̃2 = (V,E2), respectively.

We define the renormalized resistance distance to be

RDβ(G1, G2) =
∑

u<v≤n

∣∣∣R(1)
uv −R(2)

uv

∣∣∣ . (4.3)

where the parameter β (see (4.2)) is implicitly defined. In the rest of the chapter we work with

β = 1, and dispense of the subscript β in (4.3). In other words,

RD
def
= RD1 . (4.4)

Remark. The metric given in Definition 4 can be used to compare graphs of two different sizes,

by adding isolated vertices to both graphs until they have the same vertex set (this is why we must

form the union V = V1 ∪ V2 and compare the graphs over this vertex set). This method will give

reasonable results when the overlap between V1 and V2 is large. In particular, if we are comparing

graphs of size n and n+ 1, then we only need add one isolated vertex to the former so that we can

compare it to the latter. This situation is illustrated in Figure 4.1.

Remark. An additional parameter β has been added to the definition. Changing β is equivalent

to scaling the effective resistance before applying the function x → x/(1 + x). Note that when

R̂� β, then R ≈ R̂/β, i.e. the renormalized resistance is approximately a rescaling of the effective
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resistance. Note that in this metric, two graphs are equal if they differ only in addition or removal

of isolated vertices.

4.4 Graph Models

In our analysis, we will discuss two common random graph models, the classic model of Erdős

and Rényi and the stochastic blockmodel which is a two-community extension of the same.

Definition 5 (Erdős-Rényi Random Graph). Let n ∈ N and let p ∈ [0, 1]. We recall that the

Erdős-Rényi random graph, G(n, p), is the probability space formed by the graphs defined on the set

of vertices [n], where edges are drawn randomly from
(
n
2

)
independent Bernoulli random variables

with probability p. In effect, the graph G ∈ G(n, p), with m edges, occurs with probability

Prob (G) = pm(1− p)(
n
2)−m. (4.5)

We now introduce a model of a dynamic community network: the balanced, two-community stochas-

tic blockmodel.

Definition 6 (Dynamic Stochastic Blockmodel). Let n ∈ N, and let p, q ∈ [0, 1]. We denote by

G(n, p, q) the probability space formed by the graphs defined on the set of vertices [n], constructed

as follows.

We split the vertices [n] into two communities C1 and C2, formed by the odd and the even

integers in [n], respectively. We denote by n1 and n2 the size of C1 and C2, respectively. Edges

within each community are drawn randomly from independent Bernoulli random variables with

probability p. Edges between communities are drawn randomly from independent Bernoulli random

variables with probability q. For G ∈ G(n, p, q), with m1 and m2 edges in communities C1 and C2,

respectively, we have

Prob (G) = pm1(1− p)(
n1
2 )−m1qm2(1− q)(

n2
2 )−m2 . (4.6)
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Remark. In this work, we study nested sequences of random graphs, and will sometimes use the

subscript n to denote the index of the corresponding element Gn in the graph process.

Remark. While our model assumes that the two communities have equal size, or differ at most by

one vertex, the model can be extended to multiple communities of various sizes.

We now introduce the notions of in-community, and cross-community degrees.

Definition 7. For any vertex u, we denote by du the degree of u.

Furthermore, we denote by d
(in)
u the number of in-community edges (u, v), where v is in the

same community as u. Similarly, d
(out)
u is the number of cross-community edges (u, v), where v

is not in the same community as u.

We denote by dn, the expected degree of the graph Gn. In the case where Gn ∈ G(n, p, q),

then dn refers to the expected in-community degree.

Finally, we denote by kn the random number of cross-community edges between C1 and C2.

Remark. In the case where Gn ∈ G(n, p, q), we have n1 = b(n + 1)/2c, and n2 = bn/2c. Also,

dn = pn1 is the expected degree within community C1, and dn = pn2 is the expected degree within

community C2. Because asymptotically, n1 ∼ n2, we ignore the dependency of dn on the community

when computing asymptotic behavior for large n. More precisely, we have the following results.

Lemma 15. Let Gn ∈ G(n, p, q), and let dn1 = pn1 be the expected degree within community C1,

and dn2 = pn2 be the expected degree within community C2. We have

(1) dn1 = dn2 + εp, where ε = 0 if n is even, or ε = 1 otherwise.

(2) dn
2
1 = dn

2
2(1 + o (1)).

(3)
1

dn
2
1

=
1

dn
2
2

(1 + o (1)).

(4)
1

dn1

=
1

dn2

+O

(
1

dn
2

)
where dn = dn1, or dn = dn2.
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In the remainder of the text we write 1/dn when either 1/dn1 or 1/dn2 could be used, and

the error between the two terms is no larger than O
(

1/dn
2
)

.

Remark. Although we use G for both random graph models, the presence of two or three parameters

prevents ambiguity in our definitions. Note that dn has different meanings when used in the setting

of an Erdős-Rényi graph (where it denotes the expected degree) and a stochastic blockmodel (where

it denotes the expected in-community degree). Also note that dn is fixed for given n and p whereas

kn is a binomial random variable.

4.5 Main Results

4.5.1 Informal Presentation of our Results

Before carefully stating the main result in the next subsection, we provide a back of the

envelope analysis to help understand under what circumstances the resistance metric can detect

an anomalous event in the dynamic growth of a stochastic blockmodel. In particular, we aim to

detect whether cross-community edges are formed at a given timestep. In graphs with few cross-

community edges, the addition of such an edge changes the geometry of the graph significantly. We

will show that the creation of such edges can be detected with high probability when the average

in-community degree dominates the number of cross-community edges.

Figure 4.2 illustrates the statement of the problem. As a new vertex (shown in magenta) is

added to the graph Gn, the connectivity between the communities can increase, if edges are added

between C1 and C2, or the communities can remain separated. If the addition of the new vertex

promotes the merging of C1 and C2, then we consider the new graph Gn+1 to be structurally

different from Gn, otherwise Gn+1 remains structurally the same as Gn (see Fig. 4.2).

The goal of the present work is to detect the fusion of the communities without identifying

the communities. We show that the effective resistance yields a metric that is sensitive to changes

in pattern of connections and connectivity structure between C1 and C2. Therefore it can be used

to detect structural changes between Gn and Gn+1 without detecting the structure present in Gn.
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The informal derivation of our main result relies on the following three ingredients:

(1) each community in G(n, p, q) is approximately a “random graph” (Erdős-Rényi ), G(n/2, p);

(2) the effective resistance between two vertices u, v within G(n/2, p) is concentrated around

2/dn = 2/(p(n/2− 1);

(3) the effective resistance between u ∈ C1 and v ∈ C2 depends only on the bottleneck formed

by the kn cross-community edges, R̂uv ≈ 1/kn.

We now proceed with an informal analysis of the changes in effective resistance distance when the

new vertex, n+ 1, is added to the stochastic blockmodel Gn.

We first consider the “null hypothesis” where no cross-community edges is formed when

vertex n + 1 is added to the graph. All edges are thus created in the community of n + 1, say

C1 (without any loss of generality). Roughly pn/2 new edges are created, and thus about O (n)

vertices are affected by the addition of these new edges to C1.

Because the effective resistance between any two vertices u, v in C1 is now concentrated

around 2/[p(n1 − 1 + 1)] ≥ 2/(dn + 1), the changes in resistance after the addition of vertex n+ 1

is bounded by

∆R̂uv ≤
2

dn
− 2

dn + 1
= O

(
1

dn
2

)
. (4.7)

Although, one would expect that only vertices in community C1 (wherein n+ 1 has been added)

be affected by this change in effective resistance, a more detailed analysis shows that vertices in C2

slightly benefit of the increase in connectivity within C1.

We now consider the alternate hypothesis, where at least one cross-community edge is formed

after adding n+ 1 (see Fig. 4.2-bottom right). This additional cross-community edge has an effect

on all pairwise effective resistances. Nevertheless, the most significant perturbation in R̂uv occurs

for the n/2× n/2 pair of vertices in C1 ×C2. Indeed, if u ∈ C1 and v ∈ C2, the change in effective
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U

n

Gn+1

Gn+1 is structurally different

n+1V =  V

is structurally the same

n
{  }

G

Figure 4.2: The dynamic stochastic blockmodel Gn is comprised of two communities (C1: red and
C2: blue). As a new (magenta) vertex is added, the new graph Gn+1 can remain structurally the
same – if no new edges are created between C1 and C2 – or can become structurally different if the
communities start to merge with the addition of new edges between C1 and C2.
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resistance becomes

∆R̂uv ≈
1

kn
− 1

kn + 1
= O

(
1

k2
n

)
. (4.8)

In summary, we observe asymptotic separation of the two regimes precisely when kn/dn → 0.

We should therefore be able to use the renormalized resistance distance to test the null hypothesis

that no edge is added between C1 and C2, and that Gn and Gn+1 are structurally the same.

We will now introduce the main character of this work: the dynamic stochastic block model.

We will then provide a precise statement of our result. In particular, we hope to elucidate our

model of a dynamic community graph, in which at each time step a new vertex joins the graph and

forms connections with previous vertices. The idea of graph growth as a generative mechanism is

commonplace for models such as preferential attachment, but is less often seen for models such as

Erdős-Rényi and the stochastic blockmodel.

4.5.2 The Dynamic Stochastic Blockmodel

Our growth mechanism adds a vertex to a stochastic blockmodel of size n − 1, assigns it to

a community according to the parity of n, and then connects it to each member of its community

with probability p and each member of the opposite community with probability q. Continuing in

this way generates a sequence of graphs {Gn}∞n=1. If n < N for some N > 0, then each Gn is the

subgraph of GN induced by {1, 2, . . . , n}. It is not hard to see that any element of this sequence

will, independent of the others, be distributed as in Definition 6. Note that here, the parameters

{p, q} are fixed. We interpret this sequence as a time-sampled growing graph.

If we are only interested in this infinite sequence up to a time N , then we could just as well

form the graph G ∼ G(N, p, q) and generate induced subgraphs from this graph. In practice, this is

what we do. Since we look at the time step n to n+ 1, our result is phrased in terms of subgraphs

of Gn+1.

In the above paragraph, the parameters p and q are fixed. However, our asymptotic result

contains an index pn. This can be understood as follows. We fix an n > 0, and corresponding
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Graph Sequence Parameters

G1 G2︸ ︷︷ ︸
D1

G3 G4 ... {p1, q1}

G1 G2 G3︸ ︷︷ ︸
D2

G4 ... {p2, q2}

G1 G2 G3 G4︸ ︷︷ ︸
D3

... {p3, q3}

...
...

Figure 4.3: Diagram showing that we generate a sequence of graphs for each set of parameters
{pn, qn}. We then measure the renormalized resistance distance RD(Gn, Gn+1) between time steps
n and n+ 1.

pn and qn. We then generate a stochastic blockmodel G ∼ G(N, p
(in)
n , p

(out)
n ) for some N ≥ n + 1.

We look at the renormalized resistance distance RD(Gn, Gn+1) between the dynamic graph at two

adjacent time steps n and n+13 . Said another way, we look at the distance between the subgraphs

Gn and Gn+1. Figure 4.3 gives a diagrammatic explanation. S

Such a model may seem strange, but is in fact quite realistic. Consider a large social network.

We are interested in examining small fluctuations (a single member joining the network) over fast

timescales (days or hours). We would expect that the connectivity patterns of members of the

network will change over much longer timescales (years), and thus can treat the parameters of the

model as fixed when analyzing the network and performing anomaly detection.

In the stochastic blockmodel, each vertex u belongs to a community within the graph. If

vertex u forms no cross-community edges, then the geometry of the graph is structurally the same.

However, if u forms at least one cross-community edge, then (depending on the geometry of the

preceding graphs in the sequence) the geometry may change significantly. We examine in what

regimes of pn and qn we can differentiate between the two situations with high probability.

We phrase the result in terms of a hypothesis test, with the null hypothesis being that no

cross-community edges have been formed in step n+ 1.

3 We might be more careful, and assign each sequence two indices, n corresponding to the parameter and m
corresponding to the subgraph. However, we find this notation to be unnecessarily cumbersome, so we omit it.
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Figure 4.4: A typical time series of Dn for a dynamic stochastic blockmodel. The red curve is the
distance between time steps Dn and the blue vertical lines mark the formation of cross-community
connections. Two different regimes are compared. On the left, the formation of cross-community
edges is easily discernible, while on the right, such an event is quickly lost in the noise.

Figure 4.4 shows an example of such a time series for a dynamic stochastic blockmodel. We see

that when the in-community connectivity is much greater than the cross community connectivity,

the formation of cross-community edges is easily discernible (left figure). However, when the level

of connectivity is insufficiently separated, then the formation of cross-community edges is quickly

lost in the noise. Our result clarifies exactly what is meant when we say that the parameters pn

and qn are “well separated.” Our main result is given by the following theorem.

Theorem 1. Let Gn+1 ∼ G(n + 1, pn, qn) be a stochastic blockmodel with pn = ω (log n/n) ,

qn = ω
(
1/n2

)
, qn = o (pn/n), and pn = O (1/

√
n). Let Gn be the subgraph induced by the vertex

set [n], with mn edges. Let Dn = RD (Gn, Gn+1) be the normalized effective resistance distance,

RD, defined in (4.3).

To test the hypothesis

H0 : kn = kn+1 (4.9)

versus

H1 : kn < kn+1 (4.10)
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we use the test based on the statistic Zn defined by

Zn
def
=

16m2
n

n4
(Dn − n) , (4.11)

where we accept H0 if Zn < zα and accept H1 otherwise. Then, for every 0 < α ≤ 1, there exists a

threshold zα for the rejection region satisfies

ProbH0 (Zn ≥ zα) ≤ α as n→∞, (4.12)

and

ProbH1 (Zn ≥ zα)→ 1 as n→∞. (4.13)

The test has therefore asymptotic level α and asymptotic power 1.

In practice, it would be desirable to have an analytical expression for the constant C(ε) such

that we can compute a level ε test,

Prob (Zn ≥ C(ε)) ≤ ε under the null hypothesis.

Unfortunately, our technique of proof, which is based on the asymptotic behavior of D̃n does not

yield such a constant. A more involved analysis, based on finite sample estimates of the distance,

would be needed, and would yield an important extension of the present work. The results shown

in Figure 4.5 suggest that one could numerically estimate a 1− ε point wise confidence interval for

D̃n with a bootstrapping technique; the details of such a construction are the subject of ongoing

investigation.

4.6 Experimental Analysis of Dynamic Community Networks

Figure 4.5 shows numerical evidence supporting Theorem 1. The empirical distribution of

Zn is computed under the null hypothesis (solid line) and the alternate hypothesis (dashed line).

The data are scaled so that the empirical distribution in the case where the null hypothesis is true

has zero mean and unit variance. In the left and right figures, the density of edges remains the

same within each community, pn = log2 n/n.
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Figure 4.5: Empirical distribution of distance Zn as defined in (4.11) showing separation of distri-
butions when qn/pn = o (1/n) (left) and overlap when qn/pn = ω(1/n) (right). The box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the full range of the data. Note that the y-axis is logarithmic in the left
figure and linear in the right.
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The plot on the left of Fig. 4.5 illustrates a case where the density of cross-community edges

remains sufficiently low – qn = log n/n2 – and the test statistic can detect the creation of novel

cross-community edges (alternate hypothesis) without the knowledge of kn, or the identification of

the communities.

On the right, the density of cross-community edges is too large (qn = log2 n/n3/2) for the

statistic to be able to detect the creation of novel cross-community edges. In that case the hy-

potheses of Theorem 1 are no longer satisfied.

In addition to the separation of distributions guaranteed by Theorem 1 when qn/pn = o (1/n),

we observe a separation between the two distributions when qn/pn = Θ (1/n) (not shown), sug-

gesting that the hypotheses of Theorem 1 are optimal. In the regime where qn = ω (pn/n), shown

in Fig. 4.5-right, the two distributions overlap.

4.7 Discussion

At first glance, our result may seem restrictive compared to existing results regarding com-

munity detection in the stochastic blockmodel. However, such a comparison is ill-advised, as we

do not propose this scheme as a method for community detection. For example, Abbe et al. have

shown that communities can be recovered asymptotically almost surely when pn = α log(n)/n and

qn = β log(n)/n, given that (α + β)/2 −
√
αβ > 1 [2]. Their method uses an algorithm that is

designed specifically for the purpose of community detection, whereas our work provides a very gen-

eral tool, which can be applied on a broad range of dynamic graphs, albeit without the theoretical

guarantees that we derive for the dynamic stochastic block model.

Furthermore, the “efficient” algorithm proposed by Abbe et al. is only proven to be poly-

nomial time, whereas resistance matrices can be computed in near-linear or quadratic time, for

the approximate [136] and exact effective resistance respectively. This allows our tool to be of

immediate practical use, whereas results such as those found in [2] are of a more theoretical flavor.

Some argue against the use of the effective resistance to analyze connectivity properties of a
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graph. In [151] it is shown that∣∣∣∣R̂uv − 1

2

(
1

du
+

1

dv

)∣∣∣∣ ≤ ( 1

1− λ2
+ 2

)
wmax
δ2
n

, (4.14)

where λ2 is the second largest eigenvalue of the normalized graph Laplacian, dv is the degree of

vertex v, δn is the minimum degree, and wmax is the maximum edge weight. If the right-hand side

of (4.14) converges to 0, then the effective resistance will converge to the average inverse degree of

u and v.

Luxburg et al. argue that the result (4.14) implies that when the bound converges to zero,

the resistance will be uninformative, since it depends on local properties of the vertices and not

global properties of the graph. Fortunately, this convergence can coexist peacefully alongside our

result. In particular, if both expected degree and minimum degree approach infinity with high

probability, as they will when both qn and pn are ω
(
1/n2

)
, then such convergence will itself occur

with high probability (see (4.28) for the relevant spectral gap bound). Since we only care about

relative changes in resistance between Gn and Gn+1 in cases where cross-community edges are and

are not formed, this is no problem for us. That said, the warning put forth by Luxburg et al. is well

taken; we must be careful to make sure that we understand the expected behavior of the distance

RD(Gn, Gn+1) and compare the observed behavior to this expected behavior rather than evaluate

it on an absolute scale, since in many situations of interest this distance will converge to zero as

the graph grows.

Luxburg et al. have pointed out that the resistance can be fickle when used on graphs with

high connectivity, which is to say a small spectral bound (1 − λ2)−1. We now know in which

circumstances this will become an issue when looking at simple community structure. Further

investigation is needed to know when other random graph models such as the small-world or

preferential attachment model will be susceptible to analysis via the renormalized resistance metric.

We are also curious to apply this analysis to a variety of real-world data sets to examine the efficacy

of our approach in such complicated contexts.
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4.8 Appendix

4.8.1 Asymptotic Notations

If {an}∞n=1 and {bn}∞n=1 are infinite sequences. The notations on the left have the interpreta-

tion on the right,

an = O (bn) ∃n0 > 0, ∃c > 0,∀n ≥ n0, 0 ≤ |an| ≤ c|bn|,

an = o (bn) ∀c > 0,∃n0 ≥ 0,∀n ≥ n0, 0 ≤ |an| ≤ c|bn|,

an = ω (bn) ∀c > 0,∃n0 ≥ 0,∀n ≥ n0, 0 ≤ c|bn| < |an|,

an = Θ (bn) ∃c1, c2 > 0,∃n0 ≥ 0,∀n ≥ n0, 0 ≤ c1|bn| ≤ |an| ≤ c2|bn|.

We can adapt any of the above statements to doubly-indexed sequences an,k and bn,k by requiring

that there exist an n0 ≥ 0 such that the conditions on the right hold for all n, k ≥ n0.

4.8.2 Notations Used in the Chapter

4.8.3 Proof of Main Result

We begin by proving a lemma that allows us to transfer bounds on changes in effective

resistance into bounds on changes in renormalized resistances.

Lemma 16. Suppose that R̂1 and R̂2 are two effective resistances. If

C1 ≤
∣∣∣R̂1 − R̂2

∣∣∣ ≤ C2,

then the corresponding renormalized resistances obey

C1

(R̂1 + 1)(R̂2 + 1)
≤ |R1 −R2| ≤ C2 (4.15)

Proof. Recall that the renormalized resistance corresponding to R̂ is given by R = f(R̂) where

f(x) = x/(x+ 1). The mean value theorem thus implies that

|R1 −R1| ≤ sup
x∈R
|f ′(x)|

∣∣∣R̂1 − R̂2

∣∣∣ ≤ ∣∣∣R̂1 − R̂2

∣∣∣ ≤ C2.
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[n] The set of natural numbers {1, . . . , n}.
G(n, p) Erdős-Rényi random graph with parameters n and p
G(n, p, q) stochastic blockmodel with parameters n, p, and q
Gn Subgraph of a graph G induced by vertex set [n]

R̂uv Effective resistance between u and v
Ruv Renormalized effective resistance between u and v

R
(n)
uv Renormalized effective resistance between u and v in Gn

du Degree of vertex u (random variable)

d
(out)
u cross-community degree of vertex u (random variable)

dn Mean degree (Erdős-Rényi) or expected in-community degree (stochastic blockmodel)
kn Number of cross-community edges (random variable)

kn Mean number of cross-community edges
mn Total number of edges (random variable)
mn Mean number of edges
RP(·, ·) Resistance-perturbation distance
RD(·, ·) Renormalized resistance distance (with β = 1)
an = O (bn) an is asymptotically bounded by bn
an = ω (bn) an asymptotically dominates bn
an = o (bn) an is asymptotically dominated by bn

Table 4.1: Table of commonly used notation.
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To obtain the lower bound, we compute:

|R1 −R1| =

∣∣∣∣∣ R̂1

R̂1 + 1
− R̂2

R̂2 + 1

∣∣∣∣∣ =
|R̂1 − R̂2|

(R̂1 + 1)(R̂2 + 1)
≥ C1

(R̂1 + 1)(R̂2 + 1)
. (4.16)

We have used the positivity of R̂1 and R̂2 in our calculation above.

4.8.3.1 Resistance Deviations in Erdős-Rényi

We begin by analyzing the perturbations of the distance RD(Gn, Gn+1), defined by (4.4),

when G ∼ G(n + 1, pn) is an Erdős-Rényi random graph. Our ultimate goal is to understand

a stochastic blockmodel, and we will leverage our subsequent understanding of the Erdős-Rényi

model to help us in achieving this goal.

Lemma 17. Let G ∼ G(n, pn) be fully connected, with pn = ω (log n/n). For any two vertices u,v

in G, we have ∣∣∣∣R̂uv − ( 1

du
+

1

dv

)∣∣∣∣ = O

(
1

dn
2

)
with high probability. (4.17)

Remark. The authors in [151] derive a slightly weaker bound,∣∣∣∣R̂uv − ( 1

du
+

1

dv

)∣∣∣∣ = o

(
1

δn

)
. (4.18)

We need the tighter factor O
(

1/dn
2
)

; and thus we derive the bound (4.17) using one of the key

results (Proposition 5) in [151].

Proof. Define D to be the diagonal matrix with entries d1, . . . , dn. Since all degrees are positive,

we denote by D−1/2 the diagonal matrix with entries 1/
√
d1, . . . , 1/

√
dn. Let A be the adjacency

matrix of G. Define B = D−1/2AD−1/2, with eigenvalues 1 = λ1 ≥ λ2 ≥ ... ≥ λn. As explained

above, we use Proposition 5 in [151] to bound the deviation of R̂uv away from 1/du + 1/dv,∣∣∣∣R̂uv − ( 1

du
+

1

dv

)∣∣∣∣ ≤ 2

δ2
n

(
2 +

1

1− λ2

)
, (4.19)

where δn is the minimum degree. Define

εn =

√
6 log(n)dn. (4.20)
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We apply Chernoff’s bound on the degree distribution,

Prob
(∣∣dv − dn∣∣ ≥ εn) ≤ 2 exp

(
− ε2

n

3dn

)
.

Now,

ε2
n

3dn
=

6dn log n

3dn
= log n2, (4.21)

and thus

Prob
(∣∣dv − dn∣∣ ≥ εn) ≤ 2

n2
.

In the end, applying a union bound on all n vertices yields

Prob
(
∀v ∈ [n],

∣∣dv − dn∣∣ ≥ εn) ≤ 2

n
. (4.22)

We consider dv in the interval [dn− εn, dn + εn]. The mean value theorem implies that there exists

d̃ ∈ (dn, dv), or d̃ ∈ (dv, dn), such that∣∣∣∣∣ 1

d2
v

− 1

dn
2

∣∣∣∣∣ =
2

d̃3

∣∣dn − dv∣∣ . (4.23)

Now,

2

d̃3

∣∣dn − d∣∣ ≤ 2εn

(dn − εn)3
=

2εn

dn
3

1(
1− εn/dn

)3 . (4.24)

At last, we use the following elementary fact

0 ≤ 1

(1− x)3
≤ 1 + 12x, if x < 1/4, (4.25)

to conclude that

∀v ∈ [n],

∣∣∣∣∣ 1

d2
v

− 1

dn
2

∣∣∣∣∣ ≤ 2εn

dn
3

(
1 + 12

εn

dn

)
with probability greater than 2/n. (4.26)

This eventually yields an upper bound on the inverse of the minimum degree squared,

1

δ2
n

≤ 1

dn
2 +

2εn

dn
3

(
1 + 12

εn

dn

)
with probability greater than 2/n. (4.27)

To complete the proof of the lemma, we use a lower bound on the spectral gap 1−λ2. Because

the density of edges is only growing faster than log n/n, we use the optimal bounds given by [37].

Applied to the eigenvalue λ2 of B, Theorem 1.2 of [37] implies that
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Theorem 2 ([37]). If dn > c log n/n, then with high probability,

1− c√
dn
≤ 1− λ2 ≤ 1 +

c√
dn
. (4.28)

The lower bound in (4.28) yields the following upper bound, with high probability,

1

1− λ2
≤ 1 +

c√
dn
. (4.29)

Using the bounds given by (4.27) with (4.29), which happen both with high probability, in (5.4)

yields the advertised result.

An important corollary of lemma 17 is the concentration of R̂uv around 2/dn (see also [151]

for similar results),

Corollary 18. Let G ∼ G(n, pn) be fully connected, with pn = ω (log n/n). With high probability,∣∣∣∣R̂uv − 2

dn

∣∣∣∣ =
16

dn
2 + o

(
1

dn
2

)
. (4.30)

The lemma provides a confidence interval for the effective resistance R̂uv centered at d−1
u +d−1

v ,

for pairs of vertices present in the graph G at time n. We now use this result to bound the change

in (renormalized) resistance between a pair of vertices u and v present in Gn, when the graph grows

from Gn to Gn+1.

Theorem 3. Let Gn+1 ∼ G(n + 1, pn) be an Erdős-Rényi random graph with pn = ω (log n/n).

Let Gn be the subgraph induced by the vertices [n] in Gn+1, and let dn = (n− 1)pn be the expected

degree in Gn.

The change in renormalized effective resistance, when the graph Gn becomes Gn+1, is given by

max
u<v≤n

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ = O

(
1

dn
2

)
with high probability. (4.31)
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Remark. It is important to note that the bound on changes in Ru,v from time n to n+1 only holds

for the nodes u, v ∈ [n] that are already present in G(n, pn). Indeed, for the new node n+ 1 that is

added at time n+ 1, we have R̂
(n)
u,n+1 =∞, and thus R

(n)
u,n+1 = 1. In this case, the bound in (4.31)

is replaced by

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ = R
(n)
u,n+1 −R

(n+1)
u,n+1 = 1−R(n+1)

u,n+1 ≤ 1 for any vertex u ∈ [n]. (4.32)

Proof. By Lemma 16, it suffices to prove the inequality with respect to the effective resistance,

rather than the renormalized resistance.

Let d
(n)
u denote the degree of vertex u in Gn, and similarly define d

(n+1)
u . Using the triangle

inequality,

∣∣∣R̂(n+1)
u,v − R̂(n)

u,v

∣∣∣ ≤ ∣∣∣∣∣R̂(n)
u,v −

(
1

d
(n)
u

+
1

d
(n)
v

)∣∣∣∣∣+

∣∣∣∣∣
(

1

d
(n)
u

+
1

d
(n)
v

)
−

(
1

d
(n+1)
u

+
1

d
(n+1)
v

)∣∣∣∣∣ (4.33)

+

∣∣∣∣∣R̂(n+1)
u,v −

(
1

d
(n+1)
u

+
1

d
(n+1)
v

)∣∣∣∣∣ .
From lemma 17, we obtain bounds on the first and third terms, of order O

(
1/δ2

n

)
. Since |d(n+1)

u −

d
(n)
u | ≤ 1, the middle term is of order O

(
1/δ2

n

)
, which can in turn be bounded by a term of order

O
(

1/dn
2
)

with high probability using 4.27. Putting everything together, we get

∣∣∣R̂(n+1)
u,v − R̂(n)

u,v

∣∣∣ = O

(
1

dn
2

)
.

The inequality is proven for the effective resistance, and using lemma 16 it also holds for the

renormalized resistance.

4.8.3.2 Effective resistances in the stochastic blockmodel

We now translate our understanding of the Erdős-Rényi random graph to the analysis of the

stochastic blockmodel. As explained in lemma 15, in the following we write 1/dn when either 1/dn1

or 1/dn2 could be used, and the error between the two terms is no larger than O
(

1/dn
2
)

.

We first recall that the number of cross-community edges, kn, is a binomial distribution, and

thus concentrates around its expectation E [kn] for large n.



96

Lemma 19. Let Gn ∼ G(n, pn, qn) be a (balanced two-community) stochastic blockmodel with pn =

ω (log n/n) and qn = ω
(
1/n2

)
. There exists n0, such that

∀n ≥ n0,
3

4
<
E [kn]

kn
<

3

2
, with probability ¿ 0.9. (4.34)

Proof. The random variable kn is binomial B(n1n2, qn), where n1 = b(n+ 1)/2c, and n2 = bn/2c.

We have E [kn] = n1n2qn. We apply a Chernoff’s bound on kn to get

Prob (|kn − E [kn] | > ε) < 2e−ε
2/(3E[kn]). (4.35)

Using ε = 3
√
E [kn], we get

Prob
(
|kn − E [kn] | > 3

√
E [kn]

)
< 2e−3 < 0.1 (4.36)

or

1− 3
1√
E [kn]

<
kn
E [kn]

< 1 + 3
1√
E [kn]

with probability ¿ 0.9. (4.37)

Now, E [kn] = qnn1n2 = qnO
(
n2
)

= ω (1), and thus limn→∞ E [kn] = ∞. Consequently ∃n0 such

that

∀n ≥ n0, E [kn] > 81, (4.38)

and thus

∀n ≥ n0,
3

4
<
E [kn]

kn
<

3

2
, with probability ¿ 0.9. (4.39)

Lemma 20 (Cross-community resistance bounds). Let Gn ∼ G(n, pn, qn) be a (balanced two-

community) stochastic blockmodel with pn = ω (log n/n) and qn = ω
(
1/n2

)
. Let u and v be

vertices in the communities C1 and C2, respectively. Let dn be the expected in-community degree of

C1. Let kn be the (random) number of cross-community edges. With high probability, the effective

resistance R̂uv is bounded according to

1

kn
≤ R̂u,v ≤

1

kn
+

4

dn
+O

(
1

dn
2

)
. (4.40)
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Remark. We recall (see lemma 15) that when we write dn, in 4.46, it either means the expected

degree of C1 or C2.

Remark. The requirement that pn = ω(log(n)/n) guarantees that we are in a regime where resis-

tances in the Erdős-Rényi graph converge to 2/dn. The requirement that qn = ω(1/n2) guarantees

that E [kn] → ∞, and because of lemma 19, kn → ∞ with high probability. Finally, qn = o(pn/n)

guarantees that E [kn] = o
(
dn
)
, and using lemma 19 we have kn = o

(
dn
)

with high probability.

Proof of the lemma 20. Without loss of generality, we assume that u ∈ C1, and v ∈ C2. To obtain

the lower bound on R̂uv we use the Nash-Williams inequality [96], which we briefly recall here. Let

u and v be two distinct vertices. A set of edges Ec is an edge-cutset separating u and u if every

path from u to v includes an edge in Ec.

Lemma 21 (Nash-Williams, [96]). If u and v are separated by K disjoint edge-cutsets Ek, k =

1, . . . ,K, then

K∑
k=1

 ∑
(vn,vm)∈Ek

R−1
n,m

−1

≤ R̂uv, where (vn, vm) is an edge in the cutset Ek. (4.41)

Since the set of cross-community edges is a cutset for all pairs of vertices u and v in separate

communities, and the size of this set is precisely kn, we immediately obtain the desired lower

bound.

The upper bound is obtained using the characterization of the effective resistance based on

Thomson principle [94], which we recall briefly in the following. Let f be a flow along the edges E

from u to v, and let

E(f) =
∑
e∈E

f2(e)Re, (4.42)

be the energy of the flow f , where each undirected edge e in the sum is only counted once. A unit

flow has strength one,

div(f)(u) = −div(f)(v) = 1. (4.43)

Thomson’s principle provides the following characterization of the effective resistance R̂uw,

R̂uv = min {E(f), f is a unit flow from u to v} . (4.44)
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We use Thomson’s principle in the following way: we construct a unit flow f from u to v. For this

flow, the energy E(f) yields an upper bound on R̂uw.

First, consider the case where neither u nor v are incident with any of the kn cross-community

edges, ei = (ui, vi), i = 1, . . . , kn; where ui ∈ C1 and vi ∈ C2. Denote by fui the unit flow associated

with the effective resistance between u and ui when only the edges in C1 are considered. Similarly

define fvi to be the unit flow associated with the effective resistance between v and vi when when

only the edges in C2 are considered. Using the corollary 18, given by (4.30), we have with high

probability,

E(fui ) =
2

dn
+O

(
1

dn
2

)
, and E(fvi ) =

2

dn
+O

(
1

dn
2

)
. (4.45)

We note that the expression of E(fvi ) should involve the expected degree in C2. As explained in

lemma 15, we can use dn since the difference between the two terms is absorbed in the O
(

1

dn
2

)
term. Finally, let fei be the flow that is 1 on edge ei and 0 elsewhere. To conclude, we assemble

the three flows and define

f(e) =
1

kn

k∑
i=1

{fui (e) + fei (e) + fvi (e)} ,

which is a unit flow from u to v. Since E is a convex function, we can bound the energy of f via

E(f) = E

(
1

kn

k∑
i=1

{fui (e) + fei (e) + fvi (e)}

)
≤ E

(
1

kn

k∑
i=1

fui (e)

)
+ E

(
1

kn

k∑
i=1

fei (e)

)
+ E

(
1

kn

k∑
i=1

fvi (e)

)

≤ 1

kn

k∑
i=1

E(fui ) +
1

kn
+

1

kn

k∑
i=1

E(fvi ) =
4

dn
+

1

kn
+O

(
1

dn
2

)
.

The final line holds with high probability. Note that we calculate the energy of the flow in the

center term directly, whereas convexity is used to estimate the energy in the first and third term.

This upper bound also holds when the cross-community degree of u or v is nonzero. In this

case, u = ui for some i. For this i, we can formally define the flow fui between u and ui to be the

zero flow, which minimizes the energy trivially and has energy equal to the resistance between u

and ui (which is zero). Then the above calculation yields a smaller upper bound for the first and

third terms.
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Remark. Lemma 20 provides a first attempt at analysing the perturbation of the effective resistance

under the addition of edges in the stochastic blockmodel. The upper bound provided by (4.40) is

too loose to be useful, and we therefore resort to a different technique to get a tighter bound. The

idea is to observe that the effective resistance is controlled by the bottleneck formed by the cross-

community edges. We can get very tight estimate of the fluctuations in the effective resistance

using a detailed analysis of the addition of a single cross-community edge. We use the Sherman–

Morrison–Woodburry theorem [59] to compute a rank-one perturbation of the pseudo-inverse of the

normalized graph Laplacian, L†. The authors in [120] provide us with the exact expression that is

needed for our work, see (4.50). The proof proceeds by induction on the number of cross-community

edges, kn.

Theorem 4. Let Gn ∼ G(n, pn, qn) be a balanced, two community stochastic blockmodel with pn =

ω(log n/n), qn = ω(1/n2), and qn = o(pn/n). We assume that Gn is connected. The effective

resistance between two vertices u and v is given by

R̂u,v =
2

dn
+


O

(
1

dn
2

)
, if u and v are in the same community,

1

kn
+
α(kn, u, v)

dnkn
+O

(
1

dn
2

)
, otherwise.

(4.46)

Also, conditioned on kn = k the random variable α(kn, u, v) is a deterministic function of k, and

we have α(kn, u, v) = O (kn).

Proof. First, observe that Lemma 20 immediately implies that

−2kn ≤ α(kn, u, v) ≤ 2kn, ∀u, v, (4.47)

with high probability, so α = O(kn).

Next, let us show that the in-community resistances follow the prescribed form. The proof

proceeds as follows: we derive the expression (4.46) conditioned on the random variable kn = k,

and we prove that α(k, u, v) is indeed a deterministic function in this case; the derivation of (4.46)

is obtained by induction on k.
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The engine of our induction is the update formula proven in [120]. This provides an exact

formula (equation (4.50) below) for the change in resistance between any pair of vertices in a graph

when a single edge is added or removed. The particular motivation of the authors in [120] is to

calculate rank-1 updates to the pseudoinverse of the combinatorial graph Laplacian; however, it

conspires that their formula is also very useful to inductively calculate resistances in the stochastic

blockmodel.

We first consider the base case, where Gn is a balanced, two community stochastic blockmodel

of size n with kn = 1 cross-community edge. Denote this edge e1 = (u1, v1), where u1 ∈ C1 and

v1 ∈ C2. We will refer to this graph as G
(1)
n .

The addition of a single edge connecting otherwise disconnected components does not change

the resistance within those components, as it does not introduce any new paths between two

vertices within the same component. We know that each community is an Erdős-Rényi graph

with parameters pn and bn/2c (or dn/2e), so corollary 18 provides the expression for the effective

resistance between two vertices within each community. A simple circuit argument allows us to

obtain the resistance between u and v in separate communities via

R̂u,v = R̂u,u1 + R̂u1,v1 + R̂v1,v. (4.48)

If u 6= u1 and v 6= v1, then we combine Nash-Williams and corollary 18 yields to get

R̂u,v =
1

k
+

4

dn
+O

(
1

dn
2

)
.

If u = u1 and/or v = v1 then the appropriate resistances are set to zero in (4.48).

In summary, for arbitrary pairs (u, v) in G
(1)
n , we have

R̂u,v =
1

k
+

2

dn
+
α(u, v)

kdn
+O

(
1

dn
2

)
,

where

α(u, v) = 2(2− d(out)
u − d(out)

v ). (4.49)
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Figure 4.6: Balanced, two community stochastic blockmodel G
(k+1)
n of size n with kn = k + 1

cross-community edges. Vertices u and v are in the same community C1

This establishes the base case for (4.46). We now assume that (4.46) holds for any balanced, two

community stochastic blockmodel of size n with kn = k cross-community edges. We consider a

balanced, two community stochastic blockmodel G
(k+1)
n of size n with kn = k+ 1 cross-community

edges. We denote the cross-community edges by ei = (ui, vi), i = 1, . . . , k + 1, where ui ∈ C1 and

vi ∈ C2.

Finally, we denote by G
(k)
n the balanced, two community stochastic blockmodel with k cross-

community edges obtained by removing the edge ek+1 = (uk+1, vk+1) from G
(k+1)
n .

Let R̂ denote the effective resistances in G
(k)
n and R̂′ denote the effective resistances in G

(k+1)
n .

Since G
(k)
n is obtained by removing an edge from G

(k+1)
n , we can apply equation (11) in [120]

to express R̂′ from R̂,

R̂′u,v = R̂u,v −

[
(R̂u,vk+1

− R̂u,uk+1
)− (R̂v,vk+1

− R̂v,uk+1
)
]2

4(1 + R̂uk+1,vk+1
)

. (4.50)

In the following we use the induction hypothesis to compute R̂′ using (4.50). We first consider the

case where the vertices u and v belong to the same community, say C1 without loss of generality

(see Fig. 4.6).

We need to consider the following three possible scenarios:

(1) u 6= uk+1 and v 6= vk+1,

(2) u = uk+1 and v 6= vk+1,

(3) u 6= uk+1 and v = vk+1.
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We will treat the first case; the last two cases are in fact equivalent, and are straightforward

consequences of the first case. From the induction hypothesis we have

R̂u,vk+1
=

1

k
+

2

dn
+
α(k, u, vk+1)

kdn
+O

(
1/dn

2
)
, (4.51)

R̂u,uk+1
=

2

dn
+O

(
1/dn

2
)
, (4.52)

R̂v,vk+1
=

1

k
+

2

dn
+
α(k, v, vk+1)

kdn
+O

(
1/dn

2
)
, (4.53)

R̂v,uk+1
=

2

dn
+O

(
1/dn

2
)
, (4.54)

R̂uk+1,vk+1
=

1

k
+

2

dn
+
α(k, uk+1, vk+1)

kdn
+O

(
1/dn

2
)
. (4.55)

Substituting these expression into (4.50), we get

R̂′u,v = R̂u,v −

[(
1

k
+
α(k, u, vk+1)

kdn

)
−
(

1

k
+
α(k, v, vk+1)

kdn

)
+O

(
1/dn

2
)]2

4(1 + 1
k + 2

dn
+

α(k,uk+1,vk+1)

kdn
+O

(
1/dn

2
)

)
(4.56)

= R̂u,v −O

(
1

dn
2

) [
α(k, u, vk+1)− α(k, v, vk+1)

k +O
(
1/dn

)]2

4
(

1 + 1
k + 2

dn
+

α(k,uk+1,vk+1)

kdn
+O

(
1/dn

2
)) (4.57)

Because α is bounded with high probability (see (4.47)), we have

α(k, u, vk+1)− α(k, v, vk+1)

k
+O

(
1/dn

)
= O (1) with high probability, (4.58)

and also

1 +
1

k
+

2

dn
+
α(k, uk+1, vk+1)

kdn
+O

(
1/dn

2
)

= 1 +
1

k
+O

(
1/dn

)
with high probability, (4.59)

which implies[
α(k, u, vk+1)− α(k, v, vk+1)

k +O
(
1/dn

)]2

4
(

1 + 1
k + 2

dn
+

α(k,uk+1,vk+1)

kdn
+O

(
1/dn

2
)) = O (1) with high probability. (4.60)

We conclude that

R̂′u,v = R̂u,v +O
(

1/dn
2
)

with high probability. (4.61)
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Figure 4.7: Balanced, two community stochastic blockmodel G
(k+1)
n of size n with kn = k + 1

cross-community edges. The vertices u and v are in different communities, u ∈ C1 and v ∈ C2.

This completes the induction, and the proof of (4.46) in the case where u and v belong to the same

community.

We now consider the case where u ∈ C1 and v ∈ C2 (see Fig. 4.7). As above, we need to consider

the following three possible scenarios:

(1) u 6= uk+1 and v 6= vk+1,

(2) u = uk+1 and v 6= vk+1,

(3) u 6= uk+1 and v = vk+1.

Again, we only prove the first case; the last two equivalent cases are straightforward consequences

of the first case. From the induction hypothesis we now have

R̂u,uk+1
=

2

dn
+O

(
1/dn

2
)
, (4.62)

R̂v,vk+1
=

2

dn
+O

(
1/dn

2
)
, (4.63)

R̂u,vk+1
=

1

k
+

2

dn
+
α(k, u, vk+1)

kdn
+O

(
1/dn

2
)
, (4.64)

R̂v,uk+1
=

1

k
+

2

dn
+
α(k, v, vk+1)

kdn
+O

(
1/dn

2
)
, (4.65)

R̂uk+1,vk+1
=

1

k
+

2

dn
+
α(k, uk+1, vk+1)

kdn
+O

(
1/dn

2
)
. (4.66)

To reduce notation clutter, we use some abbreviated notation to denote various α terms

associated with the vertices of interest (see Fig. 4.8),
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Figure 4.8: Coefficients α0, . . . , α3 in (4.46) for several pairs of vertices in G
(k+1)
n .

α0
def
= α(k(k)

n , u, v),

α1
def
= α(k(k)

n , uk+1, v),

α2
def
= α(k(k)

n , u, vk+1),

α3
def
= α(k(k)

n , uk+1, vk+1).

Let us denote the decrease in effective resistance by ∆R̂,

∆R̂
def
= R̂u,v − R̂′u,v. (4.67)

From (4.50), we have

∆R̂ =

[(
1

k
+

α2

kdn

)
−
(
−1

k
− α1

kdn

)
+O

(
1/dn

2
)]2

4

(
1 +

1

k
+

2

dn
+

α3

kdn
+O

(
1/dn

2
)) =

[
2

k

(
1 +

α1 + α2

2dn

)
+O

(
1/dn

2
)]2

4

(
1 +

1

k
+

2

dn
+

α3

kdn
+O

(
1/dn

2
))

=
1

k2

[
1 +

α1 + α2

2dn
+O

(
1/dn

2
)]2 1

1 +
1

k
+

2

dn
+

α3

kdn
+O

(
1/dn

2
)

=

(
1

k2 +
α1 + α2

dnk2
+

(α1 + α2)2

4(dnk)2
+O

(
1/dn

2
)) 1

1 +
1

k
+

2

dn
+

α3

kdn
+O

(
1/dn

2
)

=

(
1

k2 +
α1 + α2

dnk2
+O

(
1/dn

2
)) 1

1 +
1

k
+

2

dn
+

α3

kdn
+O

(
1/dn

2
) .

(4.68)

At this juncture, we need to expand
(

1 + 1/k + 2/dn + α3/(kdn) +O
(

1/dn
2
))−1

using a

Taylor series, which is possible when 1/k + 2/dn + α3/(kdn) < 1. Since we are interested in the
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large n asymptotic, we can assume that for n sufficiently large 2/dn + α3/(kdn) < 1/2, and thus

we need to guarantee that k ≥ 2.

The case k = 1 needs to be handled separately. Setting k = 1 into (4.68) yields

∆R̂ =
1 + α1 + α2

dn
+O

(
1/dn

2
)

2 +
2 + α3

dn
+O

(
1/dn

2
) =

1

2

1 + α1 + α2
dn

+O
(

1/dn
2
)

1 +
2 + α3

2dn
+O

(
1/dn

2
) , (4.69)

for n sufficiently large (2 + α3)/dn < 1, thus

∆R̂ =
1

2

(
1 +

α1 + α2

dn
+O

(
1/dn

2
))(

1− 2 + α3

2dn
+O

(
1/dn

2
))

=
1

2

(
1 +

2α1 + 2α2 − 2− α3

2dn
+O

(
1/dn

2
))

=
1

2
+
α1 + α2 − 1− α3/2

2dn
+O

(
1/dn

2
)
,

(4.70)

which leads to

R̂′uv = R̂uv −∆R̂ = 1 +
2

dn
+
α0

dn
− 1

2
− α1 + α2 − 1− α3/2

2dn
+O

(
1/dn

2
)
,

=
1

2
+

2

dn
+

2α0 − α1 − α2 + 1 + α3/2

2dn
+O

(
1/dn

2
)
.

(4.71)

Let

α′0
def
= 2α0 − α1 − α2 + 1 + α3/2, (4.72)

then we have

R̂′uv =
1

2
+

2

dn
+

α′0
2dn

+O
(

1/dn
2
)
, (4.73)

which matches the expression given in (4.46) for k = 2. This completes the induction for k = 1.

We now proceed to the general case where k ≥ 2. In that case, we use a Taylor series expansion of(
1 + 1/k + 2/dn + α3/(kdn) +O

(
1/dn

2
))−1

, and we get

(
1 + 1/k + 2/dn + α3/(kdn) +O

(
1/dn

2
))−1

=

∞∑
m=0

(−1)m
(

1

k
+

2

dn
+

α3

kdn

)m
+O

(
1/dn

2
)
.

(4.74)
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Now, most of the term in
(

1
k + 2

dn
+ α3

kdn

)m
are of order O

(
1/dn

2
)

, and we need to carefully extract

the few significant terms. In the expansion of
(

1
k + 2

dn
+ α3

kdn

)m
the only terms that do not contain

a 1/dn
2

are obtained by choosing systematically 1/k in each of the m factors, or choosing 1/k in

all but one factors and either 2
dn

or α3

kdn
in the last factor. There are m ways to construct these last

two terms. In summary, we have for m ≥ 1,(
1

k
+

2

dn
+

α3

kdn

)m
=

1

km
+m

α3

km−1dn
+m

2

km−1dn
+O

(
1/dn

2
)
. (4.75)

We can substitute (4.75)into (4.74) to get

(
1 + 1/k + 2/dn + α3/(kdn) +O

(
1/dn

2
))−1

=

∞∑
m=0

(−1)m
1

km
+

∞∑
m=1

m
α3

km−1dn
+m

2

km−1dn
+O

(
1/dn

2
)

=
1

1 + 1/k
− α3

dn

k

(k + 1)2
− 2

k2

(k + 1)2
+O

(
1/dn

2
)

=
k

k + 1
− (α3 + 2k)k

dn(k + 1)2
+O

(
1/dn

2
)
.

(4.76)

We can insert (4.76) into (4.68) to get

∆R̂ =

(
1

k2 +
α1 + α2

dnk2
+O

(
1/dn

2
))( k

k + 1
− (α3 + 2k)k

dn(k + 1)2
+O

(
1/dn

2
))

=
1

k(k + 1)
+

α1 + α2

dnk(k + 1)
− (α3 + 2k)

dnk(k + 1)2
+O

(
1/dn

2
)
,

(4.77)

which leads to

R̂′uv = R̂uv −∆R̂

=
1

k
+

2

dn
+

α0

dnk
− 1

k(k + 1)
− α1 + α2

dnk(k + 1)
+

(α3 + 2k)

dnk(k + 1)2
+O

(
1/dn

2
)

=
1

k + 1
+

2

dn
+

{
α0
k + 1

k
− α1 + α2

k
+
α3 + 2k

k(k + 1)

}
1

dn(k + 1)
+O

(
1/dn

2
)
.

(4.78)

Let

α′0
def
= α0 +

α0 − α1 − α2

k
+

2

k + 1
+

α3

k(k + 1)
, (4.79)

then we have

R̂′uv =
1

k + 1
+

2

dn
+

α′0
dn(k + 1)

+O
(

1/dn
2
)
, (4.80)
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which matches the expression given in (4.46) for k+ 1. This completes the induction and the proof

of (4.46). We note that α′0 = α(k + 1, u, v) given by (4.79) is a deterministic function of k, since

α0, α2, α2 and α3 all are deterministic functions of k, by the inductive hypothesis.

The cases where u = uk+1 or v = vk+1 are treated similarly; since they present no new

difficulties they are omitted. This completes the proof of the theorem.

Remark. As expected (4.79) agrees with the update formula in the case k = 1, given by (4.72).

The update formula (4.79) implies that the random variables α(kn, u, v) and α(kn, u, v)/kn, both

have bounded variation.

Corollary 22. Let Gn+1 ∼ G(n + 1, pn, qn) be a stochastic blockmodel with pn = ω (log n/n). As-

sume that qn = o (pn/n). Let Gn be the subgraph of Gn+1 induced by the vertex set [n]. Let kn and

kn+1 be the number of cross-community edges in Gn and Gn+1, respectively.

Let u and v be two vertices, and let R̂
(n)
uv and R̂

(n+1)
uv be the effective resistances measured in

Gn and Gn+1 respectively.

Let α(kn, u, v) and α(kn+1, u, v) be the coefficients in the expansion of R̂
(n)
uv and R̂

(n+1)
uv in

(4.46) respectively. We have,

|α(kn+1, u, v)− α(kn, u, v)| = O (1) with high probability, (4.81)

(4.82)∣∣∣∣α(kn+1, u, v)

kn+1
− α(kn, u, v)

kn

∣∣∣∣ = O
(

1

kn

)
with high probability. (4.83)

We start by proving that, conditioned on kn = k, the functions α(k, u, v) and α(k, u, v)/k,

defined for k ≥ 1, have bounded variation.

Proposition 1. Let Gn ∼ G(n, pn, qn) be a balanced, two community stochastic blockmodel with

pn = ω(log n/n), qn = ω(1/n2), and qn = o(pn/n). We assume that Gn is connected. Let u and
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v be two vertices. Given kn = k, let α(k, u, v) be the coefficient in the expansion of R̂uv in (4.46).

Similarly, let α(k + 1, u, v) be the corresponding quantity when kn = k + 1. We have

|α(k + 1, u, v)− α(k, u, v)| ≤ 8, (4.84)

(4.85)∣∣∣∣α(k + 1, u, v)

k + 1
− α(k, u, v)

k

∣∣∣∣ ≤ 6

k
. (4.86)

Proof. The proof is a direct consequence of (4.79), and the fact that |α(k, u, v)| ≤ 2k.

Let us start with the first inequality. From (4.79) we have

α(k + 1, u, v)− α(k, u, v) =
α(k, u, v)− α1 − α2

k
+

2

k + 1
+

α3

k(k + 1)
, (4.87)

and thus

|α(k + 1, u, v)− α(k, u, v)| ≤ 6k

k
+

2

k + 1
+

2k

k(k + 1)
= 6 +

4

k + 1
≤ 8. (4.88)

We now show the second inequality. Again, from (4.79) we have

α(k + 1, u, v)

k + 1
− α(k, u, v)

k
=
α(k, u, v)

k + 1
− α(k, u, v)

k
+
α(k, u, v)− α1 − α2

k(k + 1)
+

2

(k + 1)2
+

α3

k(k + 1)2

= −α(k, u, v)

k(k + 1)
+
α(k, u, v)− α1 − α2

k(k + 1)
+

2

(k + 1)2
+

α3

k(k + 1)2

= − α1 + α2

k(k + 1)
+

2

(k + 1)2
+

α3

k(k + 1)2
,

(4.89)

and thus∣∣∣∣α(k + 1, u, v)

k + 1
− α(k, u, v)

k

∣∣∣∣ ≤ 4k

k(k + 1)
+

2

(k + 1)2
+

2k

k(k + 1)2
=

4

k + 1
+

2

(k + 1)2
+

2

(k + 1)2

≤ 4

k + 1

{
1 +

1

k + 1

}
≤ 6

k + 1
≤ 6

k
.

(4.90)

Proof of corollary 22. We first verify that with high probability kn+1 − kn is bounded. We then

apply proposition 1.
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Let ∆kn
def
= kn+1 − kn be the number of adjacent cross-community edges that have vertex

n + 1 as one of their endpoint. ∆kn is a binomial random variable B(n1, qn), where we assume

without loss of generality that vertex n + 1 ∈ C2. Because E [∆kn] = nqn/2 = pno (1), E [∆kn] is

bounded, and there exists κ such that ∀n,E [∆kn] < κ. Using a Chernoff bound we have

Prob
(
|E [∆kn]−∆kn| > 3

√
κ
)
≤ 2 exp

(
−1

3

)
< 0.01, (4.91)

and thus

|kn+1 − kn| = |kn+1 − E [∆kn] + E [∆kn]− kn| < 6
√
κ with probability ¿ 0.99 (4.92)

In other words, with high probability kn+1 − kn is bounded by C = d6
√
κe, independently of n.

Finally, we have∣∣∣∣α(kn+1, u, v)

kn+1
− α(kn, u, v)

kn

∣∣∣∣ =

∣∣∣∣∣∣
kn+1−1∑
k=kn

α(k + 1, u, v)

k + 1
− α(k, u, v)

k

∣∣∣∣∣∣
≤

kn+1−1∑
k=kn

∣∣∣∣α(k + 1, u, v)

k + 1
− α(k, u, v)

k

∣∣∣∣
(4.93)

Because of corollary 1, each term in the sum is bounded by 6/k; the largest upper bound being

6/kn. Also, with high probability there are at most C terms, and thus∣∣∣∣α(kn+1, u, v)

kn+1
− α(kn, u, v)

kn

∣∣∣∣ ≤ C 6

kn
(4.94)

We now combine lemma 15 with theorem 4 to estimate the perturbation created by the

addition of an n+ 1th vertex to Gn. The following lemma shows that adding an additional vertex,

with corresponding edges to either one of the communities does not change the effective resistance,

as long as no new cross-community edges are created.

Lemma 23. Let Gn+1 ∼ G(n+ 1, pn, qn) be a stochastic blockmodel with pn = ω (log n/n). Assume

that qn = o (pn/n). Let Gn be the subgraph of Gn+1 induced by the vertex set [n]. Let kn and kn+1

be the number of cross-community edges in Gn and Gn+1, respectively.
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Let u and v be two vertices in Gn+1, for which the effective resistance R̂
(n)
uv , measured in Gn, is

properly defined. The corresponding effective resistance measured in Gn+1 is then given by

R̂(n)
u,v − R̂(n+1)

uv = O

(
1

dn
2

)
≥ 0, if u and v belong to the same community. (4.95)

If u and v are in different communities, we have the following inequalities,

R̂
(n)
u,v − R̂(n+1)

uv = O

(
1

dn
2

)
≥ 0, if kn = kn+1,

R̂
(n)
u,v − R̂(n+1)

uv ≥ 2

k2
n

+
1

dn
O
(

1

kn

)
≥ 0, if kn+1 > kn.

(4.96)

Proof. Because of lemma 15, we have

1

dn+1

=
1

dn
+O

(
1

dn+1
2

)
, (4.97)

and

1

dn+1
2 =

1

dn
2 +O

(
1

dn+1
3

)
. (4.98)

If u and v are in the same community, the expression for R̂
(n+1)
u,v and R̂

(n)
u,v , given by (4.46) coincide,

up to order O
(

1/dn
2
)

.

When u and v are in different communities, we need to consider the values of kn and kn+1. If

kn = kn+1 then α(kn, u, v) = α(kn+1, u, v), and thus R̂
(n+1)
u,v = R̂

(n)
u,v , up to order O

(
1/dn

2
)

.

If kn+1 > kn, we will show that the decrease in effective resistance is of order Θ
(
1/k2

n+1

)
.

We first recall that R̂
(n)
u,v ≥ R̂(n+1)

uv , since Gn+1 has more edges than Gn, and thus

|R̂(n)
u,v − R̂(n+1)

uv | = R̂(n)
u,v − R̂(n+1)

uv . (4.99)
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Using the expression for R̂
(n+1)
u,v and R̂

(n)
u,v , given by (4.46) we have∣∣∣R̂(n)

u,v − R̂(n+1)
uv

∣∣∣ = R̂(n)
u,v − R̂(n+1)

uv

=
1

kn
− 1

kn+1
+
α(kn, u, v)

dnkn
− α(kn+1, u, v)

dn+1kn+1

+O

(
1

dn
2

)

≥ 1

kn
− 1

kn + 1
+
α(kn, u, v)

dnkn
− α(kn+1, u, v)

dn(kn + 1)
+O

(
1

dn
2

)

≥ 1

kn(kn + 1)
+

1

dn

(
α(kn, u, v)

kn
− α(kn+1, u, v)

kn + 1

)
+O

(
1

dn
2

)
.

≥ 1

2k2
n

+
1

dn

(
α(kn, u, v)

kn
− α(kn+1, u, v)

kn + 1

)
+O

(
1

dn
2

)
.

(4.100)

We recall that corollary 22 implies that∣∣∣∣α(kn + 1, u, v)

kn + 1
− α(kn, u, v)

kn

∣∣∣∣ = O
(

1

k2
n

)
(4.101)

and thus ∣∣∣R̂(n)
u,v − R̂(n+1)

uv

∣∣∣ ≥ 1

2k2
n

+
1

dn
O
(

1

kn

)
, (4.102)

which completes the proof.

4.8.3.3 The Distance Dn Under the Null Hypothesis

Theorem 5. Let Gn+1 ∼ G(n + 1, pn, qn) be a stochastic blockmodel with pn = ω (log n/n) ,

qn = ω
(
1/n2

)
, and qn = o (pn/n). Let Gn be the subgraph induced by the vertex set [n], and let

Dn = RD (Gn, Gn+1) be the normalized effective resistance distance, RD, defined in (4.3).

Suppose that the introduction of n + 1 does not create additional cross-community edges, that is

kn = kn+1, then

Dn − h(n, kn) = O

(
n2

dn
2

)
≥ 0, (4.103)

where

h(n, kn) =
⌊n

2

⌋
+
⌈n

2

⌉ kn
1 + kn

. (4.104)
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Proof. Since vertex n+1 is isolated in Gn, the change in resistance at vertex n+1 between Gn and

Gn+1 will behave quite differently than as described in Theorem 3. For this reason, we separate the

renormalized resistance distance into two portions: the pair of nodes that do and do not contain

vertex n+ 1,

Dn =
∑

u<v≤n+1

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ =
∑

u<v≤n

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣+
∑
u≤n

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ . (4.105)

Let us first study the second sum. Because vertex n+ 1 is isolated at time n, R
(n)
u,n+1 = 1. If u and

n+ 1 are in the same community, then R
(n+1)
u,n+1 ≤ R̂

(n)
uv = O

(
1/dn

2
)

, and is therefore negligible. We

can use the trivial bound R
(n+1)
u,n+1 ≥ 0 that yields∣∣∣R(n+1)

u,n+1 −R
(n)
u,n+1

∣∣∣ ≤ 1.

If u and n+ 1 are in different communities, then a tighter bound can be derived by considering the

bottleneck formed by the cross-community edges. Indeed, a coarse application of Nash-Williams –

using only the cross-community cut-set – tells us that the effective resistance between vertices in

different communities is bounded by 1/kn, and so the renormalized resistance is bounded by

R
(n+1)
u,n+1 ≥

1

1 + kn
,

which implies ∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ ≤ kn
1 + kn

.

Observing that there are
⌊
n
2

⌋
possible in-community connections and

⌈
n
2

⌉
possible cross-community

connections, we have ∑
u≤n

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ ≤ ⌊n
2

⌋
+
⌈n

2

⌉ kn
1 + kn

. (4.106)

We now consider the first sum in (4.105). Corollary 23 combined with lemma 16 yield∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ ≤ ∣∣∣R̂(n+1)
u,v − R̂(n)

u,v

∣∣∣ = O

(
1

dn
2

)
, (4.107)

which leads to the following bound on the first sum,

∑
u<v≤n

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ = O

(
n2

dn
2

)
. (4.108)
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Combining (4.106) and (4.108) yields

0 ≤ Dn =
∑

u<v≤n+1

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ ≤ ⌊n
2

⌋
+
⌈n

2

⌉ kn
1 + kn

+O

(
n2

dn
2

)
= h(n, kn)+O

(
n2

dn
2

)
, (4.109)

which implies the advertised result.

The following corollary, which is an immediate consequence of the previous theorem provides

the appropriate renormalization of Dn − h(n, kn) under the null hypothesis H0.

Corollary 24. Let Gn+1 ∼ G(n+ 1, pn, qn) be a stochastic blockmodel with the same conditions on

pn and qn as in Theorem 5, and let Gn be the subgraph induced by the vertex set [n].

Suppose that the introduction of n + 1 does not create additional cross-community edges, that is

kn = kn+1, then

0 ≤ p2
n (Dn − h(n, kn)) = O (1) (4.110)

Proof. As explained in lemma 15, we assume without loss of generality that n is even. We have

then

dn
2

=
(n/2− 1)2

p2
n

(4.111)

and thus

n2

dn
2 =

n2

p2
n(n/2− 1)2

=
4

p2
n

(
1 +O

(
1

n

))
, (4.112)

which leads to

n2p2
n

dn
2 = 4

(
1 +O

(
1

n

))
. (4.113)

We recall that theorem 5 gives us the following bound on (Dn − h(n, kn)) under the null hypothesis,

(Dn − h(n, kn)) = O

(
n2

dn
2

)
, (4.114)

we conclude that

p2
n (Dn − h(n, kn)) = O (1) . (4.115)
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4.8.3.4 The Distance Dn Under the Alternate Hypothesis

We now consider the case where the addition of node n + 1 leads to an increase in the

number of cross-community edges. Loosening the bottleneck between the two communities creates

a significant change in the normalized effective resistance distance between Gn and Gn+1.

Theorem 6. Let Gn+1 ∼ G(n + 1, pn, qn) be a stochastic blockmodel with pn = ω (log n/n) ,

qn = ω
(
1/n2

)
, and qn = o (pn/n). Let Gn be the subgraph induced by the vertex set [n].

Suppose that the introduction of n+ 1 creates additional cross-community edges, that is kn+1 > kn,

then

0 ≤ 1

16

{
n2

k2
n

+
n2

dn
O
(

1

kn

)}
≤ Dn − h(n, kn) ≤ n2

k2
n

+O

(
n2

dn
2

)
, (4.116)

where h(n, kn) is defined in (4.104).

Proof. As before, we split the distance Dn into two terms,

Dn =
∑

u<v≤n+1

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ =
∑

u<v≤n

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣+
∑

1≤i≤n

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ . (4.117)

Again, we analyze the second sum, which will generate the same linear contribution,

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ = 1−R(n+1)
u,n+1 =

1

1 + R̂
(n+1)
u,n+1

.

Because we seek an upper bound onR
(n+1)
u,n+1 to obtain an lower bound on the change

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣
we have a more refined analysis of R

(n+1)
u,n+1.

In the case where u and n+ 1 are in the same community, Theorem 4 tells us that

R̂
(n+1)
u,n+1 =

2

dn+1

+O

(
1

dn
2

)
,

We use the inequality 1
1+x ≥ 1− x, which is valid for all x > −1, to get a lower bound,

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ =
1

1 + R̂
(n+1)
u,n+1

≥ 1− 2

dn+1

+O

(
1

dn
2

)
= 1 +O

(
1

dn

)
. (4.118)
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We also use the inequality 1
1+x ≤ 1− x/2, which is valid for all x ∈ [0, 1], to get an upper bound,∣∣∣R(n+1)

u,n+1 −R
(n)
u,n+1

∣∣∣ =
1

1 + R̂
(n+1)
u,n+1

≤ 1− 1

dn+1

+O

(
1

dn
2

)
= 1 +O

(
1

dn

)
. (4.119)

If u and n+ 1 are in separate communities, Lemma 20 tells us that

1

kn+1
≤ R̂(n+1)

u,n+1 ≤
1

kn+1
+

4

dn+1

+O

(
1

dn+1
2

)
≤ 1

1 + kn
+

4

dn+1

+O

(
1

dn
2

)
. (4.120)

Using again the inequality 1
1+x ≥ 1− x, we get a lower bound,∣∣∣R(n+1)

u,n+1 −R
(n)
u,n+1

∣∣∣ ≥ 1− 1

1 + kn
− 4

dn+1

+O

(
1

dn
2

)
=

kn
1 + kn

+O
(

1

dn

)
, (4.121)

and using the inequality 1
1+x ≤ 1− x/2 we get an upper bound,∣∣∣R(n+1)

u,n+1 −R
(n)
u,n+1

∣∣∣ ≤ 1− 1

2kn+1
≤ 1. (4.122)

Combining (4.118), (4.119),(4.121), and (4.122), we get⌊n
2

⌋
+
⌈n

2

⌉ kn
1 + kn

+O
(
n

dn

)
≤
∑
u≤n

∣∣∣R(n+1)
u,n+1 −R

(n)
u,n+1

∣∣∣ ≤ n+O
(
n

dn

)
. (4.123)

We now consider the first sum in (4.117). To get lower and upper bounds on
∣∣∣R̂(n+1)

u,v − R̂(n)
u,v

∣∣∣ we

use lemma 16.

We first observe that for n sufficiently large, we have R̂
(n)
u,v ≤ 1, and thus R̂

(n+1)
u,v ≤ 1.

Combining this upper bound on the effective resistance with lemma 16 we get

if C(u, v) ≤
∣∣∣R̂(n+1)

u,v − R̂(n)
u,v

∣∣∣ then
C(u, v)

4
≤ C(u, v)

(1 + R̂
(n)
u,v)(1 + R̂

(n+1)
u,v )

≤
∣∣∣R̂(n+1)

u,v − R̂(n)
u,v

∣∣∣ .
(4.124)

From corollary 23 we have
C(u, v) = O

(
1

dn
2

)
if u and v are in the same community,

C(u, v) ≥ 1

k2
n

+
1

dn
O
(

1

kn

)
otherwise,

(4.125)

and therefore

4
∑

u<v≤n

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ ≥ ∑
u,v∈different
communities

C(u, v) +
∑

u,v∈same
community

C(u, v) ≥ n2

4k2
n

+
n2

4dn
O
(

1

kn

)
+
n2

4
O

(
1

dn
2

)
,

(4.126)
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where the differences between n/2 and the exact size of C1 or C2 are absorbed in the error terms.

Also, we have

1

dn
2 =

1

dn
O
(

1

kn

)
, (4.127)

and thus ∑
u<v≤n

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ ≥ 1

16

{
n2

k2
n

+
n2

dn
O
(

1

kn

)}
. (4.128)

Finally, we note that

n

dn
=

n2

dnkn

kn
n

=
n2

dnkn

kn
n

(4.129)

Because of lemma 19, we have asymptotically with high probability,

n

dn
=

n2

dnkn
O
(
E [kn]

n

)
=

n2

dnkn
O (nq) =

n2

dn
O
(

1

kn

)
, (4.130)

and thus we conclude that

O
(
n

dn

)
=
n2

dn
O
(

1

kn

)
. (4.131)

Lastly, we add the two sums (4.123) and (4.128) to get⌊n
2

⌋
+
⌈n

2

⌉ kn
1 + kn

+
1

16

{
n2

k2
n

+
n2

dn
O
(

1

kn

)}
≤

∑
u<v≤n+1

∣∣∣R(n+1)
u,v −R(n)

u,v

∣∣∣ . (4.132)

The leading term linear term, h(n, kn), in (4.132) can be subtracted to arrive at the advertised

result.

Using the same normalization described in corollary 24 we obtain a very different growth for

p2
n(Dn − h(n, kn)) in the case of the alternate hypothesis.

Corollary 25. Let Gn+1 ∼ G(n+ 1, pn, qn) be a stochastic blockmodel with the same conditions on

pn and qn as in Theorem 5, and let Gn be the subgraph induced by the vertex set [n].

Suppose that the introduction of n+ 1 creates additional cross-community edges, that is kn+1 > kn,

then

0 ≤ pn (Dn − h(n, kn))→∞ with high probability. (4.133)
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Proof. As explained in lemma 15, we assume without loss of generality that n is even. From (4.116)

we have

pn (Dn − h(n, kn)) ≥ 1

16

{
(npn)2

k2
n

+
(npn)2

dn
O
(

1

kn

)}
(4.134)

Without loss of generality we assume n even, and we have

(npn)2

dn
O
(

1

kn

)
=

(npn)2

pn(n/2− 1)qn(n2/4)
O (1) =

pn
nqn
O (1) = ω (1)O (1) . (4.135)

Therefore the second term cannot go to −∞. We will prove that the first term goes to infinity. We

have

npn
kn

=
npn
E [kn]

E [kn]

kn
=

npn
qn(n/2)2

E [kn]

kn
=

4pn
nqn

E [kn]

kn
. (4.136)

From lemma 19 we know that asymptotically E [kn] /kn = Θ (1) with high probability. Also, we

have pn/(nqn) = ω (1). This concludes the proof.

The quantity p2
n(Dn−h(n, kn)) could provide a statistic to test the null hypothesis kn = kn+1

against the alternate hypothesis kn < kn+1. Unfortunately, computing p2
n(Dn − h(n, kn)) requires

the knowledge of the unknown parameter pn, and unknown variable h(n, kn). We therefore propose

two estimates that converge to these unknowns. A simple estimate of h(n, kn) is provided by

n. Since we assume that there are much fewer cross-community edges than edges within each

community, we can estimate pn from the total number of edges.

We start with two technical lemmas. The first lemma shows that can replace h(n, kn) with

n.

Lemma 26. Let Gn ∼ G(n, pn, qn) be a stochastic blockmodel with the same conditions on pn and

qn as in Theorem 5. If pn = O (1/
√
n), then we have

lim
n→∞

p2
n (n− h(n, kn)) = 0 with high probability. (4.137)

Proof. We have

n− h(n, kn) =
⌈n

2

⌉ 1

kn + 1
. (4.138)
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Because dn/2e = (n/2)Θ (1), we have

p2
n(n− h(n, kn)) = Θ (1)

np2
n

2(kn + 1)
=

np2
n

2E [kn]

E [kn]

kn

kn
kn + 1

Θ (1) . (4.139)

Now, we have kn/(kn + 1) < 1, np2
n = O (1), and E [kn] = ω (1), therefore

lim
n→∞

np2
n

2E [kn]

kn
kn + 1

Θ (1) = 0. (4.140)

Finally, we recall that E [kn] /kn = Θ (1) with high probability, which concludes the proof.

We now consider the estimation of pn.

Lemma 27. Let Gn ∼ G(n, pn, qn) be a stochastic blockmodel with the same conditions on pn and

qn as in Theorem 5. Let mn be the total number of edges in Gn. Then the probability pn can be

estimated asymptotically from mn and n,

4mn

n2
= pn (1 +O (1/n)) , with high probability. (4.141)

Proof. The proof proceeds in two steps. We first show that kn concentrates around its expectation

E [kn], and then we argue that limn→∞ 4E [mn] /n2 = pn.

The total number of edges, mn, in the graph Gn, can be decomposed as

mn = mn1 +mn2 + kn, (4.142)

where mn1 (mn2) is the number of edges in community C1 (C2). The three random variables

are binomial (with different parameters), and they concentrate around their respective expecta-

tions. Because the sum of these binomials is finite, mn also concentrates around its expectation.

Consequently, we can combine three Chernoff inequalities using a union bound, and show that

mn

E [mn]
= Θ (1) , with high probability. (4.143)

A quick computation of E [mn] shows that

E [mn] = pn
n2

4

(
1− 2

n
+
qn
pn

+ o

(
1

n2

))
. (4.144)
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Also, qn/pn = o (1/n), and thus

E [mn] = pn
n2

4

(
1 +O

(
1

n

))
. (4.145)

To conclude, we combine (4.143) and (4.145), to get

4mn

n2
=

mn

E [mn]

4E [mn]

n2
= pn

(
1−O

(
1

n

))
, (4.146)

which concludes the proof.

We define the following statistic that asymptotically converges toward p2
n(Dn−h(n.kn)) with

high probability, as explained in the next theorem.

Definition 8. Let Gn+1 ∼ G(n, pn, qn) be a stochastic blockmodel with the same conditions on

pn and qn as in Theorem 5. Let Gn be the subgraph induced by the vertex set [n]. Let Dn =

RD (Gn, Gn+1) be the normalized effective resistance distance, RD, defined in (4.3).

We define the statistic

Zn
def
=

16m2
n

n4
(Dn − n) . (4.147)

Theorem 7. Let Gn ∼ G(n, pn, qn) be a stochastic blockmodel with the same conditions on pn and

qn as in Theorem 5. If pn = O (1/
√
n), then we have

Zn = p2
n (Dn − h(n, kn)) (1 + o (1)) , with high probability. (4.148)

Proof. The proof is an elementary consequence of the two lemmas 26 and 27. We have

16m2
n

n2
(Dn − n) =

16m2
n

n4
(Dn − h(n, kn)) +

16m2
n

n4
(h(n, kn)− n) (4.149)

Using lemma 27, we have

16m2
n

n2
(Dn − n) = p2

n (1 +O (1/n))2 (Dn − h(n, kn)) + (1 +O (1/n))2 p2
n (h(n, kn)− n) (4.150)
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Lemma 26 shows that the second term can be neglected,

16m2
n

n2
(Dn − n) = p2

n (1 +O (1/n)) (Dn − h(n, kn)) + (1 +O (1/n)) o (1)

= p2
n (Dn − h(n, kn)) (1 +O (1/n)) + o (1) .

(4.151)

Because p2
n (Dn − h(n, kn)) is either bounded, or goes to infinity, we have

(16m2
n/n

2)(Dn − n)

p2
n (Dn − h(n, kn))

= 1 + o (1) , (4.152)

which concludes the proof.

We finally arrive at the main theorem.

Theorem 8. Let Gn+1 ∼ G(n, pn, qn) be a stochastic blockmodel with the same conditions on pn

and qn as in Theorem 5. Let Gn be the subgraph induced by the vertex set [n].

To test the hypothesis

H0 : kn = kn+1 (4.153)

versus

H1 : kn < kn+1 (4.154)

we use the test based on the statistic Zn defined in (4.147) where we accept H0 if Zn < zα and

accept H1 otherwise. The threshold zα for the rejection region satisfies

ProbH0 (Zn ≥ zα) ≤ α as n→∞, (4.155)

and

ProbH1 (Zn ≥ zα)→ 1 as n→∞. (4.156)

The test has therefore asymptotic level α and asymptotic power 1.

Proof. Assume H0 to be true. Because of corollary 24 and Theorem 7,

Zn = O (1) , with high probability. (4.157)
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In other words, for every 0 < α < 1 there exists zα such that

Prob (Zn < zα) = 1− α, as n→∞, (4.158)

or

Prob (Zn ≥ zα) = α, as n→∞. (4.159)

Assume that H1 is true. Because of corollary 25 and Theorem 7,

Zn = ω (1) , with high probability (4.160)

Therefore, for every 0 < γ < 1, there exists n0 such that

∀n ≥ n0,Prob (Zn > zα) = 1− γ, as n→∞. (4.161)

In other words,

ProbH1 (Zn ≥ zα)→ 1 as n→∞, (4.162)

which concludes the proof.



Chapter 5

Distances for Efficient Graph Comparison: a Practitioner’s Guide

This chapter written in collaboration with François Meyer. 1 2

5.1 Introduction

In the era of big data, comparison and matching are ubiquitous tasks. A graph is a particular

type of data structure which records the interactions between some collection of agents.3 This type

of data structure relates connections between objects, rather than directly relating the properties

of those objects. The interconnectedness of the object in graph data disallows many common

statistical techniques used to analyze tabular datasets. The need for new analytical techniques for

visualizing, comparing, and understanding graph data has given rise to a rich field of study [41].

In this work, we focus on tools for pairwise comparison of graphs. Such comparison often

takes place within the contest of anomaly detection and graph matching. In the former, one has

a sequence of graphs (often a time series) and hopes to establish at what time steps the graphs

change “significantly” at any given timestep. In the latter, one has a collection of graphs, and wants

to establish whether a sample is likely to have been drawn from that collection. Both problems

require the ability to effectively compare two graphs. However, the utility of any given comparison

method varies with the type of information the user is looking for; one may care primarily about

large scale graph features such as community structure or the existence of highly connected “hubs”;

1 Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO, 80309
2 Department of Applied Mathematics, University of Colorado, Boulder, CO, 80309
3 These objects are sometimes referred to as “complex networks;” we will use the mathematician’s term “graph”

throughout the chapter.
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or, one may be focused on smaller scale structure such as local connectivity (i.e. the degree of a

vertes) or the ubiquity of substructures such as triangles.

Existing surveys of graph distances are limited to observational datasets [42]. While authors

try to choose datasets that are exemplars of certain classes of networks (e.g. social, biological, or

computer networks), it is difficult to generalize these studies to other datasets.

In this chapter, we take a different approach. We consider existing ensembles of random

graphs as prototypical examples of certain graph structures, which are the building blocks of

existing empirical network datasets. We propose therefore to study the ability of various distances

to compare two samples randomly drawn from distinct ensembles of graphs. Our investigation

is concerned with the relationship between the families of graph ensembles, the structural fea-

tures characteristic of these ensembles, and the sensitivity of the distances to these characteristic

structural features.

The myriad proposed techniques for graph comparison [7] are severely reduced in number

when one requires the practical restriction that the algorithm run in a reasonable amount of time

on large graphs. Graph data frequently consists of 104 to 108 vertices, and so algorithms whose

complexity scales quadratically with the size of the graph quickly become unfeasible. In this work,

we restrict our attention to approaches where the calculation time scaled linearly or near-linearly

with the number of vertices in the graph for sparse graphs.4

In the past 40 years, many random graph models have been developed which emulate certain

features found in real-world graphs [12, 153]. A rigorous probabilistic study of the application of

graph distances to these random models is difficult because the models are often defined in terms

of a generative process rather than a distribution over the space of possible graphs. As such,

researchers often restrict their attention to very small, deterministic graphs (see e.g. [108]) or to

very simple random models, such as that proposed by Erdős and Rényi [49]. Even in these simple

cases, rigorous probabilistic analysis can be prohibitively difficult. We adopt a numerical approach,

4 Sparsity is, roughly, the requirement that the number of edges in a graph of size n be much lower than the
maximum possible number n2/2; a techincal definition is provided below.
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in which we sample from random graph distributions and observe the empirical performance of

various distance measures.

Throughout the work, we understand the observed results through a lens of global versus local

graph structure. Examples of global structure include community structure and the existence of

well-connected vertices (often referred to as “hubs”). Examples of local structure include the median

degree in the graph, or the density of substructures such as triangles. Our results demonstrate that

some distances are particularly tuned towards observing global structure, while some naturally

observe both scales. In both our empirical and numerical experiments, we use this multi-scale

interpretation to understand why the distances perform the way they do on a given model, or on

given empirical graph data.

The chapter is structured as follows: in Section 5.2, we introduce the distances used, and

establish the state of knowledge regarding each. In Section 5.3, we similarly introduce the random

graph models of study and discuss their important features. In Section 5.4 we numerically examine

the ability of the distances to distinguish between the various random graph models. The reader

who is already familiar with the graph models and distances discussed can skip to Section 5.4.3 for

a discussion of the results of our evaluation of the distances on the various random graph models,

referencing the results in Section 5.4.2 as necessary. In Section 5.5, we apply the distances to empir-

ical graph data and discuss the results. Finally, Section 5.6 summarizes the work and summarizes

our recommendations. In the appendix, we introduce and discuss NetComp, the Python package

written by the authors which implements the distances used to compare the graphs throughout the

chapter.

5.2 Graph Distance Measures

Let us begin by introducing the distances we will use in this study, and discussing the state

of the knowledge for each. We have chosen both standard and cutting-edge distances, with the

requirement that the algorithms be computable in a reasonable amount of time on large, sparse

graphs. In practice, this means that the distances must scale linearly or near-linearly in the size in
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the graph.

We refer to these tools as “distance measures,” as many of them do not satisfy the technical

requirements of a metric. Although all are symmetric, they may fail one or more of the other

requirements of a mathematical metric. This can be very problematic if one hopes to perform

rigorous analysis on these distances, but in practice it is generally not significant. Consider the

requirement of identity of indiscernibles, in which d(G,G′) = 0 if and only if G = G′. we rarely

encounter two graphs where d(G,G′) = 0; we are more frequently concerned with an approximate

form of this statement, in which we wish to deduce that G is similar to G′ from the fact that

d(G,G′) is small. Similarly, although the triangle inequality is foundational in approximation and

proof methods in analysis, it is rarely employed in our process in applying these distances for

anomaly detection.

5.2.1 Notation

We must first introduce the notation used throughout the chapter. It is standard wherever

possible.

We denote by G = (V,E,W ) a graph with vertex set V = {1, . . . , n} and edge set E ⊆ V ×V .

The function W : E → R+ assigns each edge (i, j) in E a positive number, which we denote wi,j .

We call n = |V | the size of the graph, and denote by m
def
= |E| the number of edges. For i ∈ V and

j ∈ V , we say i ∼ j if (i, j) ∈ E. The matrix A is called the adjacency matrix, and is defined as

Ai,j
def
=

 wi,j if i ∼ j

0 else

The degree di of a vertex is defined as di
def
=
∑

j∼iwi,j . The degree matrixD is the diagonal

matrix of degrees, so Di,i = di and Di,j = 0 for i 6= j. The Laplacian matrix (or just Laplacian)

of G is given by L
def
= D−A. The normalized Laplacian is defined as L def

= D−1/2LD−1/2, where

the diagonal matrix D−1/2 is given by

D
−1/2
i,i

def
=

 1/
√
di if di 6= 0

0 else



126

We refer to A, L, and L as matrix representations of G. These are not the only useful

matrix representation of a graph, although they are some of the most common. For a more di-

verse catalog of representations, see [159]. Note that other normalizations of the Laplacian matrix

are possible; a popular choice is normalizing the rows so that they sum to one, which results in

the transition matrix for a random walk on the graph. Our choice maintains symmetry, and thus

strictly real eigenvalues and eigenvectors, a property which the row-normalized Laplacian lacks.

A real spectrum simplifies computations, for example, when one wishes to form a basis of eigen-

vectors in order to decompose real-valued functions on the graph. However, the interpretability

of the spectrum comes at the cost of interpretability of the matrix itself; while the row-stochastic

normalization has an easy-to-understand function in terms of random walks, the interpretation of

our normalized Laplacian L is not so straightforward.

The spectrum of a matrix is the sorted sequence of eigenvalues. Whether the sequence is

ascending or descending depends on the matrix in question. We denote the ith eigenvalue of the

adjacency matrix by λAi , where λA1 ≥ λA2 ≥ . . . ≥ λAn . The ith eigenvalue of the Laplacian matrix are

denotes by λLi , with the eigenvalues sorted in ascending order, so that 0 = λL1 ≤ λL2 ≤ . . . ≤ λLn .

We similarly denote the ith eigenvalue of the normalized Laplacian by λLi , with λL1 ≤ λL2 ≤ . . . λLn .

Two graphs are isomorphic if and only if there exists a map between their vertex sets under

which the two edge sets are equal. Since our vertex sets are integers, we can simplify this definition.

In particular, let us say that G ∼= G′ if and only if there exists a permutation matrix P such that

A′ = P TAP .

We say that a distance d requires node correspondence when there exist graphs G, G′,

and H such that G ∼= G′ but d(G,H) 6= d(G′, H). Intuitively, a distance requires node correspon-

dence when one must know some meaningful mapping between the vertex sets of the graphs under

comparison.
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5.2.2 Graph Distance Taxonomy

The distance functions we study divide naturally into two categories, which we will now

describe. These categories are not exhaustive; many distance functions (including one we employ

in our experiments) do not fit neatly into either category. Akoglu et al. [7] provide an alternative

taxonomy; our taxonomy refines a particular group of methods they refer to as “feature-based”.5

5.2.2.1 Spectral Distances

Let us first discuss spectral distances, also known as λ distances. We will briefly review the

necessary background; for a good introduction to spectral methods of graph comparison, see [159].

We will first define the adjacency spectral distance; the Laplacian and normalized Laplacian

spectral distances are defines similarly. Let G and G′ be graphs of size n, with adjacency spectra

λA and λA
′
, respectively. The adjacency spectral distance between the two graphs is defined

as

dA(G,G′)
def
=

√√√√ n∑
i=1

(
λAi − λA

′
i

)2
,

which is just the distance between the two spectra in the `2 metric. We could use any `p metric

here, for p ∈ [0,∞]. The choice of p is informed by how much one wishes to emphasize outliers;

in the limiting case of p = 0, the metric returns the measure of the set over which the two vectors

are different, and when p = ∞ only the largest element-wise difference between the two vectors is

returned. Note that for p < 1 the `p distances are not true metrics (in paritcular, they fail the

triangle inequality) but they still may provide valuable information. For a more detailed discussion

on `p norms, see [127].

The Laplacian and normalized Laplacian spectral distances dL and dL are defined in the

exact same way. In general, one can define a spectral distance for any matrix representation of a

graph; for results on more than just the three we analyze here, see [159]. Spectral distances are

invariant under permutations of the vertex labels; that is to say, if P is a permutation matrix, then

5 Note that the authors in [7] are classifying anomaly detection methods in particular, rather than graph compar-
ison methods in general.
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the spectrum of A is equal to the spectrum of P TAP . This allows us to directly compare the

topological similarity of two graphs without having to discover any mapping between the vertex

sets.

In practice, it is often the case that only the first k eigenvalues are compared, where k � n.

We refer to such truncated λ distances as λk distances. When using λk distances, it is important

to keep in mind that the adjacency spectral distance compares the largest k eigenvalues, whereas

the Laplacian spectral distances compare the smallest k eigenvalues. Comparison using the first k

eigenvalues for small k allows one to focus on the community structure of the graph, while ignoring

the local structure of the graph [90]. Inclusion of the higher-k eigenvalues allows one to discern local

features as well as global. As we will see, this flexibility allows the user to target the particular scale

at which they wish to examine the graph, and is a significant advantage of the spectral distances.

The three spectral distances used here are not true metrics. This is because there exist

graphs G and G′ that are cospectral but not isomorphic. That is to say, adjacency cospectrality

occurs when λAi = λA
′

i for all i = 1, . . . , n, so dA(G,G′) = 0, but G � G′. Similar notions of

cospectrality exist for all matrix representations; graphs that are cospectral with respect to one

matrix representation are not necessarily cospectral with respect to other representations.

Little is known about cospectrality, save for some computational results on small graphs

[61] and trees [159]. Schwenk proved that a sufficiently large tree nearly always has a cospectral

counterpart [129]. This result was extended recently to include a wide variety of random trees [21].

However, results such as these are not of great import to us; the graphs examined are large enough

that we do not enounter cospectrality in our numerical experiments. A more troubling failure mode

of the spectral distances would be when the distance between two graphs is very small, but the two

graphs have important topological distinctions. In Section 5.4.3, we will provide further insight

into the effect of topological changes on the spectra of some of the random graph models we study.

The consideration above addresses the question of how local changes effect the overall spectral

properties of a graph. Some limited computational studies have been done in this direction. For

example, Farkas et al. [50] study the transition of the adjacency spectrum of a small world graph as
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the disorder parameter increases. As one might expect, they observe the spectral density transition

from a highly discontinuous density (which occurs when the disorder is zero, and so the graph is a

ring-like lattice) to Wigner’s famous semi-circular shape [154] (which occurs when the disorder is

maximized, so that the graph is roughly equivalent to an uncorrelated random graph.)

From an analytical standpoint, certain results in random matrix theory inform our under-

standing of fluctuations of eigenvalues of the uncorrelated random graph (see Section 5.3 for a

definition). These results hold asymptotically as we consider the kth eigenvalue of a graph of size

n, where k = αn for α ∈ (0, 1]. In this case, O’Rourke [114] has shown that the the eigenvalue

λk is asymptotically normal with asymptotic variance σ2(λk) = C(α) log n/n. An expression for

the constant C(α) is provided; see Remark 8 in [114] for the detailed statement of the theorem.

This result can provide a heuristic for spectral fluctuations in some random graphs, but when the

structure of these graphs diverges significantly from that of the uncorrelated random graph, then

results such as these become less informative.

Another common question is that of interpretation of the spectrum of a given matrix rep-

resentation of a graph.6 How are we to understand the shape of the empirical distribution of

eigenvalues? Can we interpret the eigenvalues which separate from this bulk in a meaningful way?

The answer to this question depends, of course, on the matrix representation in question. Let us

focus first on the Laplacian matrix L, the interpretation of which is the clearest.

The first eigenvalue of L is always λL1 = 0, with the eigenvector being the vector of all ones,

1 ∈ Rn. It is a well-known result that the multiplicity of the zero eigenvalue is the number of

connected components of the graph, i.e. if 0 = λLk < λLk+1, then there are precisely k connected

components of the graph [35]. Furthermore, in such a case, the first k eigenvectors will indicate

the components. In [90], an approximate version of this statement is made rigorous, in which the

first k eigenvalues being small is an indicator of a graph being strongly partitioned into k clusters.

This result justifies the use of the Laplacian in spectral clustering algorithms.

6 “Spectral structure” might refer to the overall shape of the spectral density, or the value of individual eigenvalues
separated from the bulk.
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The eigenvalues of the Laplacian also have an interpretation analogous to the vibrational

frequencies that arise as the eigenvalues of the continuous Laplacian operator ∇2. To understand

this analogy, consider the graph as embedded in a plane, with each vertex representing an oscillator

of mass one and each edge a spring with elasticity one. Then, for small oscillations perpendicular

to the plane, the Laplacian matrix is precisely the coupling matrix for this system, and so the

eigenvalues give the square of the normal mode frequencies, ωi =
√
λLi . For a more thorough

exposition of this interpretation of the Laplacian, see [53].

Maas [97] suggests a similar interpretation of the spectrum of the adjacency matrix A. Con-

sider the graph as a network of oscillators, embedded in a plane as previous. Additionally suppose

that each vertex is connected to so many external non-moving points (by edges with elasticity one)

so that the graph becomes regular with degree r. The frequencies of the normal modes of this

structure then connect to the eigenvalues of A via ωi =
√
r − λAi .7

5.2.2.2 Matrix Distances

The second class of distances we will discuss are called matrix distances, and consist of

direct comparison of the structure of pairwise affinities between vertices in a graph. These affinities

are frequently organized into matrices, and the matrices can then be compared, often via an entry-

wise `p norm.

We have discussed spectral methods for measuring distances between two graphs; to introduce

the matrix distances, we will begin by focusing on methods for measuring distances on graphs;

that is to say, the distance δ(v, w) between two vertices v, w ∈ V . Just a few examples of such

distances include the shortest path distance [109], the effective graph resistance [48], and variations

on random-walk distances [64]. Of those listed above, the shortest path distance is the oldest and

the most thoroughly studied; in fact, it is so ubiquitous that “graph distance” is frequently used

synonymously with shortest path distance [58].

7 If the graph is already regular with degree d, then this interpretation is consistent with the previous, since the
eigenvalues of L = dI −A are just λL

i = d− λA
i .
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There are important differeces between the distances δ that we might choose. The shortest

path distance considers only a single path between two vertices. In comparison, the effective graph

resistance takes into account all possible paths between the vertices, and so measures not only

the length, but the robustness of the communication between the vertices. This distinction is

important when, for example, considering travel between two locations on a road network subject

to high traffic.

How do these distances on a graph help us compute distances between graphs? Let us denote

by δ : V × V → R a generic distance on a graph. We need assume very little about this function,

besides it being real-valued; in particular, it need not be symmetric, and we can even allow δ(v, v) 6=

0.8 Recalling that our vertices v ∈ V = {1, . . . , n} are labelled with natural numbers, we can then

construct a matrix of pairwise distances M via Mi,j
def
= δ(i, j).

The idea behind what we refer to as matrix distances is that this matrix M carries im-

portant structural information about the graph. Suppose that, for our given distance δ(·, ·) graphs

G and G′ have corresponding matrices M and M ′. We can then compare G and G′ via

d(G,G′) = ‖M −M ′‖ (5.1)

where ‖ · ‖ is a norm we are free to choose.9

Let us elucidate a specific example of such a distance; in particular, we will show how the

edit distance conforms to this description. Let δ(v, w) be defined as

δ(v, w) =

 1 if v ∼ w

0 else.

(5.2)

Then the matrix M is just the adjacency matrix A. If we use the norm

‖M‖ =

n∑
i,j=1

|Mi,j | (5.3)

then we call the resulting distance d(G,G′)
def
= ‖A−A′‖ the edit distance.

8 When we say “distance” we implicitly assume that smaller values imply greater similarity; however, we can also
carry out this approach with a similarity score, in which larger values imply greater similarity.

9 We could use metrics, or even similarity functions here, although that may cause the function d to lose some
desirable properties.
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Of course, the usefulness of such a distance is directly dependent on how well the matrix

M reflects the toplogical structure of the graph. The edit distance focuses by definition on local

structure; it can only see changes at the level of edge perturbations. If significant volume changes

are happening in the graph, then the edit distance will detect this, as do our other matrix distances.

However, in our numerical experiments, we match the expected volume of the models under com-

parison, and so the edit distance is generally unable to discern between the models seen in Section

5.4.

We also implement the resistance-perturbation distance, first discussed in [108]. This distance

takes the effective graph resistance R(u, v), defined in [48], as the measure of vertex affinity. This

results in a (symmetric) matrix of pairwise resistanced R. The resistance-perturbation distance (or

just resistance distance) is based on comparing these two matrices in the entry-wise `1 norm given

in Equation (5.3).

The nice theoretical properties of the effective graph resistance [48] motivate our computa-

tional exploration of how well it reflects structure in realistic scenarios. Unlike the edit distance,

the resistance distance is designed to detect global structural differences between graphs. A recent

work [158] discusses the efficacy of the resistance distance in detecting community changes.

Finally, we look at DeltaCon, a distance based on the fast belief-propagation method of

measuring node affinities [85]. To compare graphs, this method uses the fast belief-propagation

matrix

S
def
= [I + ε2D − εA]−1 (5.4)

and compares the two representations S and S′ via the Matusita difference:

d(G,G′) =

√∑
i,j

(√
Si,j −

√
S′i,j

)2
. (5.5)

Note that the matrix S can be rewritten in a matrix power series as

S ≈ I + εA+ ε2(A2 −D) + . . . (5.6)

and so takes into account the influence of neighboring vertices in a weighted manner, where neigh-

bors separated by paths of length k have weight εk. Fast belief-propagation is designed to model the
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diffusion of information throughout a graph [83], and so should in theory be able to perceive both

global and local structures. Although empirical tests are performed in [85], no direct comparison

to other modern methods are presented.

5.2.2.3 Other Graph Distances

These two categories do not cover all possible methods of graph comparison. The com-

puter science literature explores various other methods (see [7], Section 3.2 for a nice review), and

other disciplines that apply graph-based techniques often have their own idiosyncratic methods for

comparing graphs extracted from data.

One possible method for comparing graphs is to look at specific “features” of the graph,

such as the degree distribution, betweenness centrality distribution, diameter, number of triangles,

number of k-cliques, etc. For graph features that are vector-valued (such as degree distribution) one

might also consider the vector as an empirical distribution and take as graph features the sample

moments (or quantiles, or statistical properties). A feature-based distance is a distance that

uses comparison of such features to compare graphs.

Of course, in a general sense, all methods discussed so far are feature based; however, in the

special case that the features occur as values over the space V × V of possible node pairings, we

choose to refer to them more specifically as matrix distances. Similarly, if the feature in question

is the spectrum of a particular matrix realization of the graph, we will call the method a spectral

distance.

In [20], a feature-based distance called NetSimile is proposed, which focuses on local and

egonet-based features (e.g. degree, volume of egonet as fraction of maximum possible volume, etc).

If we are using k features, the method aggregates a feature-vertex matrix of size k×n. This feature

matrix is then reduced to a “signature vector” (a process they call “aggregation”) which consists

of the mean, median, standard deviation, skewness, and kurtosis of each feature. These signature

vectors are then compared in order to obtain a measure of distance between graphs.

In the neuroscience literature in particular, feature-based methods for comparing graphs
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are popular. In [146], the authors use graph features such as modularity, shortest path distance,

clustering coefficient, and global efficiency to comopare functionaly connectivity networks of patiens

with and without schizophrenia. Statistics of these features for the control and experiment groups

are aggregated and compared using standard statistical techniques.

We implement NetSimile in our numerical tests as a prototypical feature-based method. It

is worth noting that the general approach could be extended in almost any direction; any number

of features could be used (which could take on scalar, vector, or matrix values) and the aggregation

step can include or omit any number of summary statistics on the features, or can be ommited

entirely. We implement the method as it is originally proposed, with the caveat that calculation

of many of these features is not appropriate for large graphs, as they cannot be computed in

linear or near-linear time. A scalable modification of NetSimile would utilize features that can

be calculated (at least approximately) in linear or near-linear time.

5.2.3 Scaling and Complexity of Algorithms

In many interesting graph analysis scenarios, the sizes of the graphs to be analyzed are on the

order of millions or even billions of vertices. For example, the social network defined by Facebook

users has over 2 billion vertices as of 2017. In scenarios such as these, any algorithm of complexity

O
(
n2
)

will become unfeasible; although in principle it is possible that the constant M would be

so small it would make up for the n2 term in the complexity, in practice this is not the case. This

motivates our requirement that our algorithms be of near-linear complexity. Indeed, even for graphs

on the scale of 105, quadratic algorithms quickly become unfeasible.

This challenge motivates the previously stated requirement that all algorithms be of linear

or near-linear complexity. We say an algorithm is linear if it is O (n); it is near-linear if it is

O (n log an) where an is asymptotically bounded by a polynomial. We use the notation an = O (bn)

in the standard way; for a more thorough discussion of algorithmic complexity, including definitions

of the O notation, see [115].

We focus our attention on sparse graphs. We define sparsity as an asymptotic property, and
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so it is only defined on a sequence of graphs. However, one can reasonably apply this to empirical

graph data which changes over time and thus generates a natural time series which can be tested

(roughly, since we are always at finite time) against this definition. In particular, let {Gi}∞i=1 be a

sequence of graphs, where the size of Gi is i and the number of edges in Gi denoted by mi. We say

a graph is sparse when the sequence {mi}∞i=1 is near-linear, in the sense given above.

Table 5.1 indicates the algorithmic complexity of each distance measure we compare. For

DeltaCon and the resistance distance, there are approximate algorithms as well as exact algo-

rithms; we list the complexity of both. Although we use the exact versions in our experiments, in

practice the approximate version would likely be used if the graphs to be compared are large.

Of particular interest are the highly parallelizable randomized algorithms which can allow

for extremely efficient matrix decomposition. In [63], the authors review many such algorithms,

and discuss in particular their applicability to determining principal eigenvalues. The computation

complexity in Table 5.1 for the spectral distances is based on their simplified analysis of the Krylov

subspace methods, which states that the approach is O
(
kTmult + (m+ n)k2

)
, where Tmult is the

cost of matrix-vector multiplication for the input matrix. Since our input matrices are sparse,

Tmult = O (n), and m + n = O (n). Although we use the implicitly restarted Arnoldi method in

our eigenvalue calculations, if implementing such a decomposition on large matrices the use of a

randomized algorithm could lead to a significant increase in efficiency.

5.3 Random Graph Models

Random graph models have long been used as a method for understanding topological prop-

erties of graph data that occurs in the world. The uncorrelated random graph model of Erdős and

Rényi [49] is the simplest model, and provides a null model akin to white noise. The tractabil-

ity of this model has led to some beautiful probabilistic analysis [11] but the uniform topology

of the model does not accurately model empirical graph data. The stochastic blockmodel is an

extension of the uncorrelated random graph, but with explicit community structure reflected in the

distribution over edges.
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Distance Measure Complexity Ref.

Edit Distance O (m) 10

Resistance Distance (Exact) O
(
n2
)

[108]
Resistance Distance (Approximate) O (m) [108]
DeltaCon (Exact) O

(
n2
)

[85]
DeltaCon (Approximate) O (m) [85]
NetSimile O (n log n) [20]
Spectral Distance O

(
nk2

)
[63]

Table 5.1: Distance measures and complexity. n indicates the maximum of size of the two graphs
being compares, and m indicates the maximum number of edges. For the spectral decomposition,
k denotes the number of principal eigenvalues we wish to find. We assume that factors such as
graph weights and quality of approximation are held constant, leading to simpler expressions here
than appear in cited references. Spectral distances have equivalent complexity, since they all all
amount to performing an eigendecomposition on a symmetric real matrix.
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Models such as preferential attachment [12] and the Watts-Strogatz model [153] have been

designed to mimic properties of observed graphs. Very little can be said about these models ana-

lytically, and thus much of what is understood about them is computational. The two-dimensional

square lattice is a quintessential example of a highly structured and regular graph.

We will now introduce the models that are used. We study only undirected graphs, with no

self-loops. Although directed graphs of are of great practical importance [164], tools such as the

graph resistance only apply to undirected graphs. In particular, the electrical analogy needed to

render the effective graph resistance menaingful is lost in a directed graps. Random-walk concepts

are still perfectly meaningful on directed graphs, and motivate many popular algorithms used on

such graphs (see e.g. [34]).

Most of the models in this work are sampled via the Python package NetworkX [62]; details

of implementation can be found in the source code of the same. Some of the models we use are

most clearly defined via their associated probability distribution, while others are best described

by a generative mechanism. We will introduce the models roughly in order of complexity.

5.3.1 The Uncorrelated Random Graph

The uncorrelated random graph (also known as the Erdős-Rényi random graph) is a

random graph in which each edge exists with probability p, independent of the existence of all

others. We denote this distribution of graphs by G(n, p) (recall that n denotes the size of the graph).

As previously mentioned, this is by far the most thoroughly studied of random graph models; the

simplicity of its definition allows for analytic tractability not found in many other models of interest.

For example, the spectrum of the uncorrelated random graph is well understood. In particular, the

spectral density forms a semi-circular shape, first described by Wigner [154], of radius
√
np, albeit

with a single eigenvalue λA1 ≈ np separate from the semicircular bulk [50].

We will employ the uncorrelated random graph as our null model in many of our experiments.

It is, in some sense, a “structureless” model; more specifically, the statistical properties of each

edge and vertex in the graph are exactly the same. This model fails to produce many of properties
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observed in empirical networks, which motivates the use of alternative graph models. For a more

detailed definition of the model, and a thorough study of the properties of the uncorrelated random

graph, see [11].

5.3.2 The Stochastic Blockmodel

One important property of empirical graphs is community structure. Vertices often form

(relatively) densely connected communities, with the connection between communities being (rel-

atively) sparse, or non-existent. This motivates the use of the stochastic blockmodel. In this

model, each of the n vertices are in one two non-overlapping sets C1 and C2, referred to as “com-

munities”. Each edge e = (i, j) exists (independently) with probability p if i and j are in the same

community, and q if i and j are in separate communities. In this work, we will use “balanced”

communities, so that the difference in size |C1| − |C2| is less than 1 in magnitude.

The stochastic blockmodel is a prime example of a model which exhibits global structure

without any meaningful local structure. In this case, the global structure is the partitioned nature

of the graph as a whole. On a file scale, the graph looks like an uncorrelated random graph. We

will use the model to determine which distances are most effective at discerning global (and in

particular, community) structure.

The stochastic blockmodel is at the cutting edge of rigorous probabilistic analysis of random

graphs. In particular, Abbe et al. [3] have recently proven a strict bound on community recovery,

showing in exactly what regimes of p and q it is possible to discern the communities.

Generalizations of this model exist in which there are K communities of arbitrary size. Fur-

thermore, each community need not have the same parameter p, and each community pair need

not have the same parameter q. One can, in general, construct a (symmetric) matrix of parameters

with the pi on the diagonal, and the qi,j elsewhere, for 1 ≤ i, j ≤ K. However, since our model has

only two communities of nearly equal size, we only need a pair of parameters (p, q).
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5.3.3 Preferential Attachment Models

Another often-studied feature of empirical graphs are their degree distribution. This is gen-

erally visualized as a histograph of degree frequencies, and studied under the assumption that it

reflect some underlying distribution that informs us about the generative mechanism of the graph.

The degree distribution of an uncorrelated random graph is binomial, and so it has tails that

exponentially decrease; for large d, the probability P(d) that a randomly chosen vertex has degree

d decays exponentially, P(d) ∝ exp(−d2). However, in observed graphs such as computer networks,

human neural nets, and social networks, the observed degree distribution has a power-law tail [12].

In particular, one observed P(d) ∝ d−γ where generally γ ∈ [2, 3]. Such distributions are often also

referred to as “scale-free”.

The preferential attachment model is a scale-free random graph model. It is best de-

scribed via the generative process rather than by a particular distribution over edges or possible

graphs.11 Although first described by Yule in 1925 [160], the model did not achieve its current

popularity until the work of Barabási and Albert in 1999 [12].

The model has two parameters, l and n. The latter is the size of the graph, and the former

controls the density of the graph. We require that 1 ≤ l < n. The generative procedure for sampling

from this distribution proceeds as follows. Begin by initializing a star graph with l + 1 vertices,

with vertex l+ 1 having degree l and all others having degree 1. Then, for each l+ 1 < i ≤ n, add

a vertex, and randomly attach it to l vertices already present in the graph, where the probability

of i attaching to v is proportional to to the degree of v. Stop once the graph contains n vertices.

The constructive description of the algorithm does not yield itself to simpl analysis, and so

less is known analytically about the preferential attachment model than the uncorrelated random

graph or the stochastic blockmodel. In [51], the authors prove that the kth eigenvalue of the

Laplacian λLk scales like λLk ∼ d
1/2
k , where dk is the kth largest degree in the graph.12 In [50],

the authors demonstrate numerically that the adjacency spectrum exhibits a triangular peak with

11 This feature of the preferential attachment model is what makes it particularly difficult to work with analytically.
12 These results are proven on a model with a slightly different generative procedure; we do not find that they yield

a particularly good approximation for our experiments, which are conducted at the quite low n = 100.
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power-law tails.

Having a high degree makes a vertex more likely to attract more connections, so the graph

quickly develops strongly connected “hubs,” or vertices of high degree. This impacts both the

global and local structure of the graph. Hubs are by definition global structures, as they touch a

significant portion of the rest of the graph, making path lengths shorter and increasing connectivity

throughout the graph. On the local scale, vertices in the graph tend to connect exclusively to the

highest-degree vertices in the graph, rather than to one another, generating a tree-like topology.

This particular topology yields a signature in the tail of the spectrum, the importance of which

will be discussed below.

5.3.4 The Watts-Strogatz Model

Many real-world graphs exhibit the so-called “small world pheomenon,” where the expected

shortest path length between two vertices chosen uniformly at random grows logarithmically with

the size of the graph. Watts and Strogatz [153] constructed a random graph model that exhibits

this behavior, along with a high clustering coefficient not seen in an uncorrelated random graph.

The clustering coefficient is defined as the ratio of number of triangles to the number of connected

triplets of vertices in the graph. The Watts-Strogatz model [153] is designed to be the simplest

random graph that has high local clustering and small average (shortest path) distance between

vertices.

Like preferential attachment, this graph is most easily described via a generative mechanism.

The algorithm proceeds as follows. Let n be the size of the desired graph, let 0 ≤ p ≤ 1, and let k

be an even integer, with k < n. We begin with a ring lattice, which is a graph where each vertex is

attached to its k nearest neighbors, k/2 on each side. Then, for each edge in the graph (i, j) with

i < j, with probability p rewire the edge to a random vertex l, so that (i, j) is replaced with (i, l).

The target l is chosen so that i 6= l and i 6∼ l at the time of rewiring. Stop once all edges have been

iterated through. In our implementations, we add an additional stipulation that the graph must be

connected. If the algorithm terminates with a disconnected graph, then we restart the algorithm
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and generate a new graph. This process is repeated until the resulting graph is connected.

As mentioned before, the toplogical features that are significant in this graph are the high

local clustering and short expected distance between vertices. Of course, these quantities are

dependent on the parameter p; as p → 1, the Watts-Strogatz model approaches an uncorrelated

random graph. Similarly, as p → 0 the adjacency spectral density transitions from the tangle of

sharp maxima typical of a ring-lattice graph to the smooth semi-circle of the uncorrelated random

graph [50]. Unlike the models above, this model exhibits primarily local structure. Indeed, we will

see that the most significant differences lie in the tail of the adjacency spectrum, which can be

directly linked to the number of triangles in the graph [50]. On the large scale, however, this graph

looks much like the uncorrelated random graph, in that it exhibits no communities or high-degree

vertices.

This model fails to produce the scale-free behavior observed in many empirical graph data

sets. Although the preferential attachment model reproduces this scale-free behavior, it fails to

reproduce the high local clustering that is frequently observed, and so we should think of neither

model as fully reaplicating the properties of observed graphs.

5.3.5 Random Degree-Distribution Graphs

The above three models are designed to mimic certain properties of empirical graphs. In some

cases, however, we may wish to fully replicate a given degree sequence, while allowing other aspects

of the graph to remain random. That is to say, we seek a distribution that assigns equal probability

to each graph, conditioned upon the graph having a given degree sequence. The simplest model

that attains this result is the configuration model [18]. Recently, Zhang et al. [161] have derived

an asymptotic expression for the adjacency spectrum of a configuration model, which is exact in

the limit of large graph size and large mean degree.

Inconveniently, this model is not guaranteed to generate a simple graph; the resulting graph

can have self-edges, or multiple edges between two vertices. In 2010, Bayati et al. [17] described an

algorithm which uniformly samples from the space of simple graphs with a given degree distribution.
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We will refer to graphs sampled in this way as random degree-sequence graphs. Their utility

lies in the fact that we can use them to control for the degree sequence when comparing graphs;

they are used as a null model, similar to the uncorrelated random graph, but they can be tuned to

share some structure (notably, the power-law degree distribution of preferential attachment) with

the graphs to which they are compared.

The generative algorithm for this model is designed to sample from a uniform distribution

over all possible graphs of a given size, conditioned upon the provided degree distribution. Their

algorithm is fast, but not perfectly uniform; in [17] the authors prove that the distribution is

asymptotically uniform, but do not prove results for finite graph size. We use this algorithm

despite the fact that it does not sample the desired distribution in a truly uniform manner; the fact

that the resulting graph is simple overcomes this drawback.

5.3.6 Lattice Graphs

In some of our experiments, we utilize lattice graphs. In particular we use a 2-dimensional

n by m rectangular lattice. Using such a predictable structure allows us to test our understanding

of our distances; in particular, we can see if our distances respond as we expect to structural

features that are present in the lattice. Empirical realizations of planar graphs, such as road

networks, often exhibit lattice-like structure. The planar structure of the lattice allows for an

intuitive understanding of the spectral features of the graph, as they approximate the normal

vibrational frequencies of a two-dimensional surface.

Lattice graphs are highly regular, in the sense that the connectivity pattern of each (interior)

vertex is identical. This regularity is reflected by the discrete nature of the lattice’s spectrum,

which can be seen in Figure 5.10. This is a particularly strong flavor of local structure, as it is not

subject to the nose present in random graph models. This aspect allows us to probe the functioning

of our distances when they are exposed to graphs with a high amount of inherent structure and

very low noise.
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5.3.7 Exponential Random Graph Models

A popular random graph model is the exponential random graph model, or ERGM for

short. Although they are popular and enjoy simple interpretability, we do not use ERGMs in our

experiments. Unlike some of our other models which are described by their generative mechanisms,

these are described directly via the probability of observing a given graph G.

In particular, let gi(G) be some scalar graph properties (e.g. size, volume, or number of

triangles) and let θi be corresponding coefficients, for i = 1, . . . ,K. Then, the ERGM assigns to

each graph a probability [95]

PG ∝ exp

(
K∑
i=1

θigi(G)

)
.

This distribution can be sampled via a Gibbs sampling technique, a process which is outlined

in detail in [95]. ERGMs show great promise in terms of flexibility and interpretability; one can

seemingly tune the distribution towards or away from any given graph metric, including mean

clustering, average path length, or even decay of the degree distribution.

However, our experience attempting to utilize ERGMs led us away from this approach. When

sampling from ERGMs, we were unable to control properties individually to our satisfaction. In

particular, we found that attempts to increase the number of triangles in a graph increased the

graph volume; when we subsequently used the ERGM parameters to de-emphasize graph volume,

the sampled graphs had an empirical distribution very similar to an uncorrelated random graph.

5.4 Evaluation of Distances on Random Graph Ensembles

We will now present the results of our numerical tests, which compare the effectiveness of

the various distances in discerning between pairs of random graph ensembles. The discussion in

this section will be brief; we reserve our interpretation of the results until the next section. The

experimens are organized via the models being compared, and with the performance of each distance

shown in plots in each section. When appropriate, we also show the performance of the λk distances
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for various k. Table 5.2 summarizes each comparison performed.

5.4.1 Description of Experiments

The experiments are designed to mimic a scenario in which a practicioner is attempting to

determine whether a given graph belongs to a population or is an outlier relative to that popu-

lation. In this vein, we perform experiments that determine how well each distance distinguishes

populations drawn from a random graph model. In particular, let us define by G0 and G1 our two

graph populations, which we will refer to as the null and alternative populations, respectively.

For each distance measure, let D0 be the distribution of distances d(G0, G
′
0) where G0 and G′0 are

independently drawn from the distribution G0. Similarly, let D1 be the distribution of distances

d(G0, G1), where G0 is drawn from G0 and G1 is drawn from G1.13

The distances D0 are a characteristic distance between members of the population G0. The

intuition here is that if the distribution of D1 is well separated from that of D0, then that distance

is effective at separating the null population from the alternative population; if member of G1 are

much further from members of G0 than this characteristic in-population distance, we can easily

distinguish the two.

To that end, we normalize the statistics of D1 by those of D0 in order to compare. In

particular, let µi be the sample mean of Di, and let σi be the sample standard deviation, for

i ∈ {0, 1}. Then, we examine the statistics of D̂1, whose samples D̂1 are calculated via

D̂1
def
=
D1 − µ0

σ0
. (5.7)

If our empirical distribution of D̂1 is well separated from zero (i.e. the mean is significantly

greater than the standard deviation), then the distance is effectively separating the null and alter-

native population.

We generate 500 samples of D0 and D1, where each sample compares two graphs of size

13 We use cursive to denote distributions, where as roman lettering denotes samples from those distributions,
which are themselves random variables.
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n = 100, unless otherwise specified. The graphs are always connected; our sampler will discard a

draw from a random graph distribution if the resulting graph is disconnected. Said another way,

we draw from the graph population conditioned upon the fact that the graph is connected. It is

worth noting that, undercertain circumstances, this could significantly change the resulting graph

population.

The small size of our graphs allows us to use larger sample sizes; although all of the matrix

distances used have fast approximate algorithms available, we use the slower, often O
(
n2
)
, exact

algorithms for our experiments, and so larger graphs would be prohibitivately slow to work with.

In all the below experiments, we choose our parameters so that the expected volume |E| of the two

models under comparison is equal.

Sections 5.4.2.1 through 5.4.2.5 are separated by the models being compared. A very brief

discussion of the results occurs alongside the presentation of the results, while a more thorough

discussion is reserved for Section 5.4.3. The reader who wishes to primarly understand our ob-

servations and interpretation of the results can skip to 5.4.3 and reference the above sections as

necessary.

5.4.2 Experimental Results

5.4.2.1 Stochastic Blockmodel

In Figure 5.1, we see the results of comparison between an uncorrelated random graph model

and a stochastic block model. For the uncorrelated random graph, the probability of an edge

existing is p = 0.12, which is a value of p for which the graph was almost always connected.14

For the stochastic blockmodel, we have two communities, each of size n/2 = 50, with param-

eters (p, q) = (0.228, 0.012). Thus, the in-community connectivity is more dense than the cross-

community connectivity by a factor of p/q = 19.

Since we have volume matched the graphs, the edit distance fails to distinguish the two

14 In particular, with these parameters, we observe that the empirical probability of generating a disconnected
uncorrelated random graph with these parameters is ∼ 0.02%. The preferential attachment section describes in more
detail why this exact value is chosen.
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models. Among the matrix distances, DeltaCon separates the two models most reliably. The

adjacency and normalized Laplacian distances perform well, but the non-normalized Laplacian

distance fails to distinguish the two models. The performance of the adjacency distance is primarily

in the second eigenvalue λA2 , and including further eigenvalues adds no benefit; the normalized

Laplacian also shows most of its benefit in the second eigenvalue λL2 , but unlike the adjacency

distance, including more eigenvalues decreases the performance of the metric.
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Figure 5.1: Comparison of distance performance, with uncorrelated random graph as null model
and stochastic blockmodel as alternative. Boxes extend from lower to upper quartile, with center
line at median. Whiskers extend from 5th to 95th percentile.

5.4.2.2 Preferential Attachment vs Uncorrelated

Figure 5.2 shows the results of comparing a preferential attachment graph to an uncorrelated

random graph. The preferential attachment graph is quite dense, with l = 6. Since the number

of edges in this model is always |E| = l(n − l), we calculate the parameter p for the uncorrelated

graph via

p(l) = l(n− l)
(
n

2

)−1

.

We use p(6) = 0.12 in these experiments.
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Again, due to matching the volumes of the graph, the edit distance fails to distinguish the

two models. The resistance distance shows mediocre performance, although 0 is outside the 95%

confidence interval. DeltaCon exhibits extremely high variability, although it has the highest

median of the matrix distances.

The Laplacian distance outperforms all others, while the normalized Laplacian does not

separate the two models at all. Figure 5.4 shows that most of the spectral information for the

Laplacian is contained in the last few eigenvalues, counter to what one often expects from λk

distances. For the adjacency distance, most of the information is held in the first eigenvalue, as the

scaled distance stays more or less constant as one increases k (plot not shown).
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Figure 5.2: Comparison of distance perfor-
mance, with uncorrelated random graph as null
model and preferential attachment as alterna-
tive. See Figure 5.1 for boxplot details.
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Figure 5.3: Comparison of distance perfor-
mance, with degree-sequence random graph as
null model and preferential attachment as al-
ternative. The degree sequence for each null
matches that of the alternative. See Figure 5.1
for boxplot details.

5.4.2.3 Preferential Attachment vs Random Degree Distribution Graph

In addition to the comparison of preferential attachment and uncorrelated random graphs

in Section 5.4.2.2, we now compare preferential attachment to random degree-distribution graphs.
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and preferential attachment as alternative. See Figure 5.1 for boxplot details.
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Recall that for a given degree distribution, the random degree-distribution graph probability density

is the uniform density over all simple graphs with the given degree distribution. We employ the

algorithm of Bayati et al. [17] to sample from this distribution.

This experiment allows us to search for structure in the preferential attachment model that

is not perscribed by the degree distribution. The discrepancy in effectiveness of the normalized

versus non-normalized Laplacian distances in Section 5.4.2.2 suggests that much of the structural

information that the Laplacian distance is using to discern the two models is contained in the degree

distribution. None of the metrics have scaled distances well-separated from zero, which suggests

that all significant structural features of the preferential attachment model are perscribed by the

degree distribution.
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Figure 5.5: Comparison of distance perfor-
mance, with uncorrelated random graph as the
null model, and a small-world graph as the al-
ternative. See Figure 5.1 for boxplot details.
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5.4.2.4 Watts-Strogatz

In this section, we compare a Watts-Strogatz random graph and an uncorrelated random

graph. The Wattz-Strogatz model is interesting in that it contains primarily local structure, in the

form of a high local clustering coefficient (i.e. density of triangles).

The Watts-Strogatz model is sparse, and so our volume-matched null model has a low value of

p and thus is very likely disconnected. This is only a significant problem for the resistance distance,

which is undefined for disconnected graphs. To remedy this, we use an extension of the resistance

distance called the renormalized resistance distance, which is developed and analyzed in [158].

This is the only experiment in which the use of this particular variant of the resistance distance is

required.

In Figure 5.5 we see that the adjacency and normalized Laplacian spectral distances are

the strongest performers. Amongst the matrix distanced, DeltaCon strongly outperforms the

resistance distance. The resistance distance here shows a negative median, which indicates smaller

distances between populations than within the null population. This is likely due to the existence

of many (randomly partitioned) disconnected components within this particular null model, which

inflates the distances generated by the renormalized resistance distance. It is notable that, contrary

to the comparison in Section 5.4.2.2, the normalized Laplacian outperforms the non-normalized

version of the same.

In Figure 5.7 we see the results for λk distances, for a wide variety of k. These results indicate

that much of the information that the λ distances are using to discern between the two models

is contained in the higher eigenvalues, particularly for the adjacency and normalized Laplacian

distances.

5.4.2.5 Lattice Graph

For our final experiment we compare a lattice graph to a random degree-distribution graph

with the same degree distribution. The lattice here is highly structured, while the random degree-
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Figure 5.7: Comparison of λk distance performance, with uncorrelated random graph as the null
model, and a small-world graph as the alternative. See Figure 5.1 for boxplot details.
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distribution graph is quite similar to an uncorrelated random graph; both the deterministic degree

distribution of the lattice and the binomial distribution of the uncorrelated random graph are highly

concentrated around their mean.

We see that the scaled distances in this experiment are about an order of magnitude higher

than they are in other experiments for some of the distances; because the lattice is such an extreme

example of regularity, it is quite easy for many of the distances to discern between these two models.

The resistance distance has the highest performance, while spectral distances all perform equally

well. Note that for a regular graph, the eigenvalues of A, L, and L are all equivalent, up to an

overall scaling and shift, so we would expect near-identical performance for graphs that are nearly

regular.

Similarly to the Watts-Strogatz comparison in Section 5.4.2.4, much of the information that

the λ distances use to discern between the models is contained in the higher eigenvalues. This

points to the importance of local structure in the lattice.
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Figure 5.8: Comparison of λk distance performance, with a 10 by 10 2-dimensional lattice graph as
the alternative model, and a random degree-distribution graph (with the same degree distribution
as the lattice) as the null. See Figure 5.1 for boxplot details.
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Section Null Alternative Primary Structural Difference

5.4.2.1 G(n, p) SBM Community structure
5.4.2.2 G(n, p) PA High-degree vertices
5.4.2.3 RDDG PA Structure not in degree distr.
5.4.2.4 G(n, p) WS Local structure
5.4.2.5 G(n, p) Lattice Extreme local structure

Table 5.2: Table of comparisons performed, and the important structural features therein. G(n, p)
indicates the uncorrelated random graph, SBM is the stochastic blockmodel, PA is the preferential
attachment model, RDDG is the random degree distribution graph, and WS is the Watts-Strogatz
model.

5.4.3 Discussion

In this discussion, as we have done throughout the chapter, we will emphasize a distinction

between local and global graph structure. Global structures include community separation as seen

in the stochastic blockmodel, while local structures include the high density of triangles in the

Watts-Strogatz model.

In general, we find that when examining global structure, the adjacency spectral distance

and DeltaCon distance both provide good performance. When examining community structure

in particular, one need not employ the full spectrum when using a spectral distance. The fact that

the spectra of the graph provide a natural partitioning [90] aligns with our result that the first few

eigenvalues will provide sufficient differentiation if the number of communities is low.

When one is interested in both global and local structure, we recommend use of the adjacency

spectral distance. When the full spectrum is employed, the adjacency spectral distance is effective

at differentiating between models even if the primary structural differences occur on the local level

(e.g. the Watts-Strogatz graph). The use of the entire spectrum here is essential; much of the most

important information is contained in the tail of the distribution, and the utility of the adjacency

spectral distance decreases significantly when only the dominant eigenvalues are compared.

It is important to remember that these experiments represent only one way that pairwise

graph comparison might be used. In particular, we are here comparing a sample to a known

population. Alternatively, one might also be interested in comparing a dynamic graph at adjacent
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timesteps; this scenario is treated empirically in Section 5.5.1.

5.4.3.1 Discerning Global Structure

Across our models, we see two significant and quite distinct types of global structure, which

can be seen in Figure 5.9. The first of these is the grouping of the graph into distinct communities.

The stochastic blockmodel is of course the model which most clearly possesses this type of global

structure. At the local level, the stochastic blockmodel is nearly identical to the uncorrelated

random graph, and so we can use the results of Section 5.4.2.1 to understand how distances respond

to this specific feature.

Figure 5.9: Two significant global structures observed in our experiments. On the left is the
community structure typical of the stochastic blockmodel. On the right is the heavy-tailed degree
distribution typical of the preferential attachment model.

The particular configuration of the stochastic blockmodel that we use has two partitions

of equal size. We would thus expect the second eigenvalue λ2 to be the primary distinguishing

spectral feature of the graph (in any of the three matrix representations used). Indeed we see

in Figure 5.1 that this is the case, and that the use of additional eigenvalues beyond k = 2 only

serves to decrease performance by including noise in the comparison. In Figure 5.10 we can directly

observe the similarity in spectra between the two models, as well as the presence in the stochastic

blockmodel of a second eigenvalue which separates from the bulk of the spectrum.

The separation of the first k eigenvalues from the semi-circular bulk spectrum of the stochastic

blockmodel is studied analytically in [161]. The authors show that a graph spectrum can be though

of as two distinct components; a continuous bulk, and discrete outliers, with the latter indicating

community structure. This separation is what allows our λk distances to function effectively in
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detecting community structure. In general, the use of the spectrum for community partitioning in

graphs has a long history [150]. Recent, Lee et al. [90] have proven a performance bound on the

effectiveness of using the first k eigenvectors to partition the graph into k clusters.

In [158], the authors study the performance of the resistance perturbation metric in the

setting of a dynamic variant of the stochastic blockmodel. Although not the same scenario as ours,

their result is closely connected, and conforms well with the currently observed data. In particular,

their result indicates that for the resistance metric to be effective in detecting topological changes in

a stochastic blockmodel, the number of cross-community edges must be asymptotically dominated

by the mean degree.

This is a highly restrictive condition. In the results shown in Section 5.4.2.1, we see that

the resistance metrics performs poorly; auxilliary results (not shown) indicate that its performance

increases significantly when the graph has high in-community degree p = 0.495 and very low

cross-community connection q = 0.005. This unrealistic density requirement puts severe practical

restrictions on the applicability of using the resistance metric to detect topological changes in

community graphs. Furthermore, in these extreme cases, other measures (such as the spectral

distances) can also easily distinguish between the two models.

The link between graph resistance and degree has been established in [152], where the authors

show that the resistance Ruv between vertices u and v can be well approximated by

Ruv ≈
1

du
+

1

dv
,

an approximation which suggests that fluctuations in degree distribution would result in significant

fluctuations in the graph resistance. This is corrobrated by the poor performance of the resistance

distance in Section 5.4.2.1. These results indicate that the resistance distance cannot “see” changes

in global structure over local noise, unless the global structure is unrealistically stark (as in the

asymptotic condition given in [158]).

The second signifcant global structure seen in our models is the particular topology in which

there are a small number of highly connected vertices which dominate the connectivity patterns
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of the graph. A small graph exhibiting this structure can be seen in Figure 5.9. This results in a

heavy-tailed degree distribution. The random graph model which features this type of structure

is the preferential attachment model, whose degree distribution exhibits polynomial decay in the

tails [12].

The best tool for detecting this structure is the Laplacian spectral distance. The presence

of the degree matrix D in the Laplacian L = D − A means that comparison of Laplacians is very

effective for discerning between models with radically different degree distributions. Since signifcant

differences between the degree distributions of the preferential and attachment graphs occur in the

tail (i.e. high-degree vertices), the inclusion of the final few eigenvalues is essential if one wishes to

use the Laplacian spectrum to perform this comparison.

Figure 5.10 exhibits the influence of the degree distribution on the Laplacian spectrum. We

observe qualitatively, as demonstrated in [50], that the tails of the Laplacian spectrum of a pref-

erential attachmend graph exhibits polynomial decay similar to the tail of the degree distribution.

This is a prime example of the way in which the spectrum of the Laplacian can be heavily influenced

by the degree distribution.

The particular topology of the preferential attachment differentiates itself from that of the

uncorrelated random graph at both a global and local level. Even though the Laplacian spectral

distance is best at observing the signifcant effect of high-degree vertices on the model, it is not,

all in all, the most efficient tool for differentiating the two. To understand this, let us now turn

to further discussion of the local structure present in the preferential attachment model, as well as

the other models studied.

5.4.3.2 Impact of Local Structure

Local structure consists of structures existing at the level of a single vertex or subgraphs

consisting of a small number of vertices. These local structures can provide important information

about the topology of the graph, or they can amount to noise which obfuscates our ability to

examine global structures of interest. Our experiments provide examples of both of these cases,
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Figure 5.10: Spectral densities for various graph comparisons. Parameters used match those in
Sections 5.4.2.1 through 5.4.2.5. Densities are built from an ensemble of 1000 graphs. The Laplacian
spectrum λL is shown for preferential attachment, while adjacency spectrum λA is shown for all
others. The uncorrelated random graph model in the lower left has a lower p than those on the
upper row, resulting in a sharp peak at λA = 0.
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which we will now examine.

Consider first the results of Section 5.4.2.2. In Figure 5.4, we see that the adjacency spectral

distance differentiates between the two models based primarily on the first dominant eigenvalue.

Recalling the interpretation of the adjacency spectrum provided by Maas [97] and reiterated in

Section 5.2.2.1, we realize that this is due to the high density of low-degree vertices in the preferential

attachment model, compared to the uncorrelated random graph. This local structure is in some

sense necessitated by the presence of a few very high degree vertices, since we demand that the

graphs being compared are equal in expected volume. Indeed, the degree distribution of this model

is so structurally significant that it almost entirely determines the structure of the resulting graph.

We see in Figure 5.3 that no distances can effective discern between a preferential attachment graph

and a randomized graph with the same degree distribution.

The Watts-Strogatz graph is another example of a model whose signature lies primarily

in local structure. Farkas et al. [50] argue that the presence of a high number of triangles is

the distinguishing feature of a Watts-Strogatz graph, and persists at values of β in which other

structural aspects of the ring lattice (e.g. regularity and periodicity). The third moment of the

spectral density of A tells us the expected number of triangles in a graph,15 and so one would

expect inclusion of the full spectrum important in detecting the toplogical signature of this model.

On a global scale, the model does not signifcantly differ from the uncorrelated random graph; highly

connected vertices are extremely unlikely, and the generative rewiring mechanism does not result

in the presence of communities in the graph.

We see in Figure 5.7 that inclusion of the large-k (high frequency) eigenvalues is essential to

differentiating between the models. In Figure 5.10 we see that the spectral density of the Watts-

Strogatz model exhibits high skewness, which indicates the high expected number of triangles in

the graph, and is only captured by inclusion of the full spectral bulk.

The lattice graph is an extreme example of this kind of local structure. Similarly to the

15 This is not hard to show; see e.g. [50], Sec III A 1. Furthermore, the jth moment of the density gives the
expected number of paths of length j in the graph.
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Watts-Strogatz model, there is a ubiquity of a certain type of local structure in the graph, namely

the presence of four-edge loops. We see in Figure 5.8 that including a large number of eigenvalues

in spectral comparison greatly increases the efficacy of the spectral distances. However, since the

lattice is so remarkably regular (unlike the Watts-Strogatz model, which is a perturbed ring lattice)

even comparing only a few principal eigenvalue is sufficient to differentiate it from a randomized

graph with the same degree distribution. The spectra of the two models are shown in Figure 5.10.

Local structure is sometimes important when understanding graph structure, but can also

frequently serve as a source of uninformative noise when comparing graphs. The results of Section

5.4.2.1 illustrate this fact. Looking to Figure 5.1, we see that the Laplacian spectrum is unable

to distinguish between the stochastic blockmodel and the uncorrelated random graph, while the

normalied Laplacian distinguishes them well. The difference between these two matrix representa-

tions is that normalization removes degree information, which is not informative in this particular

model.

We see a similar problem arise when we apply the resistance distance to the stochastic block-

model; as discussed in the previous section, the resistance distance is disproportionately influenced

by local structure, and is unable to discern the global structure of the graph over local fluctuations.

Interestingly, DeltaCon does not appear to suffer from local fluctuations as much as the resistance

distance. This could be due to the structure of the matrix S that DeltaCon uses to represent the

graph, or due to the use of the Matusita distance rather than the `1 or `2 norm to compare the

resulting matrices (for more discussion of this, see Sections 2.2 and 3.1 in [85]).

It is essential to determine whether local toplogical features are of interest in the comparison

problem at hand; inclusion of locally targeted distance measures can hinder the performance of

graph distances in cases where local structure is noisy and uninformative. However, if local structure

is ignored, one can often omit essential structural information about the graphs under comparison.
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5.4.3.3 Recommendations

Throughout our experiments, the most consistent observation is that the adjacency spectral

distance shows high effectiveness in discerning between a variety of models. We see in Section

5.4.2.1 that it is able to perceive global community structure and not be overwhelmed by local

fluctuations in degree, but Sections 5.4.2.2 and 5.4.2.4 show that it is by no means ignorant of

local structure present in a graph. That is to say, the adjacency spectral distance is multiscale;

the scale of interest can be chosen by tuning the number of principal eigenvalues included in the

comparison.

Spectral distances exhibits practical advantages over matrix distances, as they can inherently

compare graphs of different sizes and can compare graphs without known vertex correspondence.

The adjacency spectrum in particular is well-understood, and is perhaps the most frequently studied

graph spectrum; see e.g. [50, 51]. Finally, fast, stable eigensolvers for symmetric matrices are

ubiquitous in modern computing packages such as ARPACK, NumPy, and Matlab, allowing for

rapid deployment of models based on spectral graph comparison.16 Furthermore, randomized

algorithms for matrix decomposition allow for highly parallelizable calculation of the spectra of

large graphs [63].

However, the utility of the adjacency spectral distance is not general enough to simply apply

it to any given graph matching or anomaly detection problem in a naive manner. A prudent prac-

titioner would combine exploratory structural analysis of the graphs in question with an ensemble

approach in which multiple distance measures are considered simultaneously, and the resulting

information is combined to form a consensus. Such systems are commonplace in problems of clas-

sification in machine learning, where they are sometimes known as “voting classifiers” (see e.g.

[123]).

As we have said before, we have been comparing graphs of equal volume (in expectation).

In situations where the graph volume varies drastically, the process of chosing a graph comparison

16 The Python library NetComp further simplifies the application of these tools to practical problems; see the
appendix for more details.
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tool may differ significantly. We will address this in Section 5.5.1, where we deal with graphs that

exhibit significant volume fluctuations.

5.5 Applications to Empirical Data

Random graph models are often designed to simulate a single important feature of empir-

ical networks, such as clustering in the Watts-Strogatz model or the high-degree vertices of the

preferential attachment model. In empirical graphs, these factors coexist in an often unpredictable

configuration, along with significant amounts of noise. Although the above analysis of the efficacy

of various distances on random graph scenarios can help inform and guide our intuition, to truly

understand their utility we must also look at how they perform when applied to empirical graph

data.

In this section, we will examine the performance of our distance in two scenarios. First, we

will look at an anomaly detection scenario for a dynamic social-contact graph, collected via RFID

tags in an French primary school [138]. Secondly, we will look at a graph matching problem in

neuroscience, comparing correlation graphs of brain activity in subjects with and without autism

spectrum disorder [40].

The first experiment suggests that the tools that perform the most consistently in the graph

matching applications (the spectral distances) are unreliable in our anomaly detection experiment.

It is also interesting insofar as the graphs exhibit significant volume fluctuations, which was a factor

not present in our numerical studies.

In the second experiment, we see that none of our graph distances fully distinguish between

the two populations. Signal-to-noise is a ubiquitous problem in analyzing actual graph data, and

is particularly notable in building a connectivity networks of human brain activity (see e.g. [30]).

Accordingly, the results of our data experiments show that in the presence of real-world noise

levels, many of these distances fail to distinguish subtle structural differences. In the face of this,

we examine more targeted analysis techniques which may be applied in such a situation.
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5.5.1 Primary School Social Contact Data

Some of the most well-known empirical network datasets reflect social connective structure

between individuals, often in online social network platforms such as Facebook and Twitter. These

networks exhibit structural features such as communities and highly connected vertices, and can

undergo significant structural changes as they evolve in time. Examples of such structural changes

include the merginf of communities, or the emergence of a single user as a connective hub between

disparate regions of the graph.

In this section, we investigate a social contact network, which is based on measurements of

face-to-face contact using RFID tags. We use our distances to compare the graph at subsequent

timesteps. This is a quite different scenario than that presented in Section 5.4; the most important

difference is that there is a natural sense of vertex correspondence, because the students’ labels

persist over time. This change has significant implications for the performance of our various

distances, which we will explore in the discussion below.

5.5.1.1 Description of Experiment

The data are part of a study of face to face contact between primary school students [138].

Briefly, RFID tags were used to record face-to-face contact between students in a primary school

in Lyon, France in October, 2009. Events punctuate the school day of the children (see Table 5.3),

and lead to fundamental topological changes in the contact network (see Fig. 5.11). The school is

composed of ten classes: each of the five grades (1 to 5) is divided into two classes (see Fig. 5.11).

Time Event

10:30 a.m. – 11:00 a.m. Morning Recess

12:00 p.m. – 1:00 p.m. First Lunch Period

1:00 p.m. – 2:00 p.m. Second Lunch Period

3:30 p.m. – 4:00 p.m. Afternoon Recess

Table 5.3: Events that punctuate the school day.
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The construction of a dynamic graph proceeds as follows: time series of edges that correspond

to face to face contact describe the dynamics of the pairwise interactions between students. We

divide the school day into N = 150 time intervals of ∆t ≈ 200 s. We denote by ti = 0,∆t, . . . , (N −

1)∆t, the corresponding temporal grid. For each ti we construct an undirected unweighted graph

Gti , where the n = 232 nodes correspond to the 232 students in the 10 classes, and an edge is

present between two students u and v if they were in contact (according to the RFID tags) during

the time interval [ti−1, ti).

Changes in the graph topology during the school day are quantified using the various distance

measures,

DR(ti)
def
= d(Gti−1 , Gti).

To help compare these distances with one another, we normalize each by their sample mean D =

N−1
∑

iD(ti), and we define

D̂(t) = D(t)/D.

For the purpose of this work, we think of each class as a community of connected students;

classes are weakly connected (e.g., see Fig. 5.11 at times 9:00 a.m., and 2:03 p.m.). During the

school day, events such as lunchtime and recess, trigger significant increases in the the number of

links between the communities, and disrupt the community structure; see Fig. 5.11 at times 11:57

a.m., and 1:46 p.m..

5.5.1.2 Discussion

In Figure 5.12, we see the normalized time series D̂t for each of the distance measures studied.

Interestingly, the matrix distances all achieve passable performance, while NetSimile and the

spectral distances are far too noisy to be of any practical use. As we see in Figure 5.11, the main

structural changes that the graph undergoes are transitions into and out of a strong ten-community

structure that reflects the classrooms of the school. For example, the adjacency matrix begins as

(mostly) block-diagonal at 9 AM, but has signifcant off-diagonal elements by morning recess at
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9:00 a.m. 10:20 a.m. 10:50 a.m. 10:57 a.m.

11:57 a.m. 12:13 p.m. 12:54 p.m. 1:46 p.m.

2:00 p.m. 2:03 p.m.

Figure 5.11: Top to bottom, left to right: snapshots of the face-to-face contact network at times
(shown below each graph) surrounding significant topological changes.
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10:20 AM, and is no longer (block) diagonally dominant come the lunch period at 12 PM.

These structural changes are of a global nature. In Section 5.4.2.1 we saw that the spectral

distances were more effective than the matrix distances at detecting differences in community

structure between graphs. Why is this not the case here? The graphs are persistent, in the sense

that the vertices show a natural correspondence, which the matrix distances exploit. For example,

we know that certain edges (those between classes) are “cross-community,” and so the presence of

these edges suggests some anomalous topology. This is why even the edit distance is quite effective

at detecting topological changes in the graph.

Now let us highlight certain interesting features of the comparison shown in the top plot

in Figure 5.12. Amongst the matrix distances, the resistance distance shows the largest distance

at 10:20 AM, followed by the smallest distance at the subsequent timestep. During recess, local

changes are occuring in the graph, but the global structure is remaining mostly constant - the graph

consists of strongly connected communities, with some connection between them. The fact that

the resistance distance shows the lowest distance between timesteps within recess suggests that, of

the matrix distances, it is least effected by this local variation in the graph.

The lunch periods are marked by a stark change in graph topology. The graph undergoes

significant global structural transformation, becoming almost entirely unordered with respect to

class communities. Again the resistance distance shows a more signifcant signal at the beginning

of this change, and a smaller signal as the anomalous topology persists.

The next significant transformation the graph undergoes is the transition out of lunch periods.

The resistance distance stands out as marking this transition most pronouncedly, although all

distances show significantly smaller distances between the time steps during the afternoon class

period compared to during the lunch period.

Unlike our numerical experiments above, the graphs being compared here show significant

fluctuations in volume. However, these fluctuations do not align with our event markers to the

extent that our matrix distances do. This indicates that our matrix distances are picking up more

than simply changes in volume.
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The most remarkable conclusion of this particular experiment is that although the spec-

tral distances are very efficient and stable for the purposes of graph matching, they show very

poor performance in anomaly detection on dynamic graphs. This is due to the inherent vertex

correspondence that is automatically provided when comparing a dynamic graph at subsequent

timesteps. Although we reflect on the subtle distinctions in performance between the three matrix

distances, they all show very similar overall performance, and any one of them would be sufficient

for application in this scenario.

5.5.2 Brain Connectomics of Autism Spectrum Disorder

Graph theoretical analysis of the connective structure of the human brain is a popular research

topic, and has benefitted from our growing ability to analyze network topology [29]. In these graph

representations of the brain, the vertices are physical regions of the brain, and the edges indicate

the connectivity between two regions. The connective structure of the brain is examined either

at the “scructural” level, in which edges represent anatomical connection between two regions, or

at the “functional” level, in which an edge connects regions whose activation patterns are in some

sense similar.

Psychological conditions such as Alzheimer’s disease [142], autism spectrum disorder [140],

and schizophrenia [52] have been shown to have structural correlates in the graph representations of

the brains of those affected. In this section, we will focus on autism spectrum disorder, or ASD. The

availability of high-quality, open-access preprocessed data [38] makes ASD a particularly attractive

choice for researchers with little experience implementing the nuanced preprocessing pipelines seen

in neuroimaging. We examine which, if any, of our graph distances are able to effectively discern

between subjects with ASD and subjects which are typically developing (TD). This is a problem in

graph matching, very similar in structure to the experiments done on random graph models above.

We will see that our distances are ineffective at discerning between the graphs arising from

ASD subjects and TD subjects. This result agrees with the conclusion of a recent review, which

finds that classification methods do not generalize well to novel data [71]. The negative outcome of
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this experiment both informs an understanding of the limitations of generalized tools such as our

graph distances, and points to possible refinements of these tools.

5.5.2.1 Description of the Data

The Autism Brain Imagine Data Exachange, or ABIDE, is an aggregation of brain-imaging

data sets from laboratories around the world which study the neurophisiology of ASD [40]. The data

that we focus on are measurements of the activity level in various regions of the brain, measured

via functional magnetic resonance imaging (fMRI). The fMRI method is actually measuring blood

oxygen levels in the brain, which are then used as a proxy for activation levels. Measurements are

taken over myriad small volumes within the brain, preprocessed, and then aggregated into a much

smaller collection of timeseries, each representing a distinct region of the brain.

These timeseries then pass through an extensive preprocessing pipeline, which includes myr-

iad steps such as nuisance signal (e.g. heartbeat) removal, detrending, smoothing via band-pass

filtration, and so on. A detailed assessment of the preprocessing steps can be found in [38]. After

preprocessing, the data is analyzed for quality. Of the original 1114 subjects (521 ASD and 593

TD), only 871 pass this quality-assurance step. These subjects are then spatially aggregated via

the Automated Anatomical Labelling (AAL) atlas, which aggregates the spatial data into 116 time

series.

To construct a graph from these time series, the pairwise Pearson correlation is calculated to

measure similarity. If we let u and v denote two regions in the AAL atlas and let P (u, v) denote

the Pearson correlation between the corersponding time series, the simplest way to build a graph is

to assign weights w(u, v) = |P (u, v)|, so the weight between vertices u and v is the modulus of the

correlation. One may wish to exclude particularly low correlations, as these are often spurious and

not informative as to the structure of the underlying network. In this case, one chooses a threshold

T and assigns weights via

w(u, v) =

 |P (u, v)| |P (u, v)| ≥ T

0 |P (u, v)| < T.
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Finally, one may wish to binarize the graph, so that w ∈ {0, 1}, and thus uses the formula

w(u, v) =

 1 |P (u, v)| ≥ T

0 |P (u, v)| < T.

We will compare both binary and weighted connectomes, generated at multiple thresholding levels.

This will allow us to be confident that our results are not artifacts of poorly chosen parameters in

our definition of the connectome graph.

5.5.2.2 Discussion

Figure 5.13 shows the results of our experiment comparing connectomes of TD and ASD

subjects. The TD subjects play the role of the null population G1 and the ASD subjects constitute

the alternative population G2, and the scaled distances shown in the plot are calculated in the

manner outlined in Section 5.4.

We observe that no distances effectively separate the two communities, regardless of level of

thresholding, or the presence or absence of binarization. Indeed, the negative median of the scaled

distance indicates that distances from ASD to TD connectomes is lower than distances between

two TD connectomes, indicating a higher structural variability in TD connectomes. As we will see

below, the structural differences between the two communities are localized within subgraphs, and

do not persist throughout the full graph. Furthermore, the signal produced by these differences is

not easily differentiated from the local variations (i.e. noise) present in the communities. For these

two reasons, global comparison using graph metrics is ineffective for this problem.

Figure 5.14 shows a region-by-region comparison of connectomes of ASD and TD subjects.

Similarly to our previous scalings, we take the mean and variance (region-wise) of the correlations

in TD subject, and then use these to normalize the correlations of ASD subject. Thus, a value

of 0.25 in Figure 5.14 indicates that ASD subject show, on average, correlations 0.25 standard

deviations above the mean, relative to TD subjects.

We see that certain regions show significant differences. A closer examination shows that

ASD subjects are generally underconnected in regions 73 through 77, and are overconnected in
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Figure 5.13: Distance comparison for ABIDE autism data set, for various thresholding configura-
tions.
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regions 79 and 84 through 89. A table below shows the specific anatomical regions that these labels

correspond to.

Label Region Connection

73 L. Putamen Underconnected
74 R. Putamen Underconnected
75 L. Globus Pallidus Underconnected
76 R. Globus Pallidus Underconnected
77 L. Thalamus Underconnected
79 R. Transverse Temporal Gyrus Overconnected
84 R. Superior Temporal Lobe Overconnected
85 L. Middle Temporal Gyrus Overconnected
86 R. Middle Temporal Gyrus Overconnected
87 L. Middle Temporal Pole Overconnected
88 R. Middle Temporal Pole Overconnected
89 L. Inferior Temporal Gyrus Overconnected

Table 5.4: Regions that show notably anomalous connectivity patterns. Correspondence between
labels and regions is established via the Automated Anatomical Labelling atlas [145].

Figure 5.14 indicates that there are in fact significant structural differences between the

connectomes of TD and ASD subjects. However, the differences barely stand out above the noise

in the graph; all the edge differences in Figure 5.14 are less than half a standard deviation away from

the mean. Furthermore, the differences occur in isolated regions of the graph, and the majority of

the edge weights do not show statistically significant differences between the two populations. Both

the low amplitude and small extent of the signal contribute to the difficulty we see graph distances

have in discerning between TD and ASD subjects.

In [122], the authors find very little that distinguishes the connectomes of ASD subjects

from TD subjects, save for lower betweenness centrality in right later parietal region. Similarly,

the authors of [71] assert that although classification algorithms show “modest to conservatively

good” accuracy rates, they perform poorly when tested on novel data sets. Looking in particular

to [118], we see that the authors are able to achieve just over 75% accuracy in their classification,

but they do so by both preprocessing the connectomes via particular regions of interest, and by

testing a smorgasbord of classifiers (9 different models are used) to find the one which shows

highest performance. Such a process exhibits that reasonable accuracy can be achieved via careful
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algorithmic tuning; inversely, our result shows that a näıve application of a graph-theoretic method

does not provide us with accurate classification.

A complete explanation of the failure of connectomes to unambiguously characterize ASD is

well beyond the scope of this work; however, we will highlight a few interesting possibilities. In

[118], the authors suggest that poor performance of many classifiers may be due to inclusion of

uninformative features. Said another way, regions of the brain that have no bearing on the presence

or absence of ASD are included in the connectome, which then reduces the signal to noise ratio of the

data. In [71], the authors raise the issue of mental state in which the scans are performed. This state

is often referred to as a “resting state,” but variations in instructions (i.e. eyes open vs. closed) can

have strong effects on the resulting data [143]. In [13], the authors find that when ASD connectomes

show lower connectivity than TD connectomes when the subject exteroceptive activity, but show

higher connectivity during introspective attentional tasks. This contrast highlights the need for

careful control of the subjects’ mental state if meaningful comparisons between connectomes are to

be made.

It should also be noted that the choice of Pearson correlation to compare the fMRI time series

is not obviously the correct one. It has been recently shown that the time series of brain activity

exhibit nontrivial lag structure [104], indicating the need for a more general method of time series

comparison. Myriad popular methods such as granger causality and mutual information can be

applied to this problem; indeed, mutual information analysis has already shown promise as a tool

in the pre-processing and feature selection stage of connectome analysis [103].

5.6 Conclusion

We have studied the efficacy of various graph distance measures when they are used to

differentiate between popular random graph models, as well as in empirical anomaly detection and

graph classification scenarios. These measures are understood through a multi-scale lens, in which

the impact of global and local structures are considered separately. Although recent work [26]

has called into question the previously assumed ubiquity of some of these models, studying their
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properties builds qualitative and guide intuition when examining empirical network datasets.

Throughout our graph matching experiments in Section 5.4, we find that the adjacency

spectral distance is the most stable, in the sense that it exhibits good performance across a variety of

scenarios. It exhibits an ability to perceive both global and local structure, while avoiding becoming

overwhelmed by local fluctuations in graph topology. Although the various matrix distances we

examine allow for elegant analysis [85, 108], we find their performance on random graph model

comparison underwhelming.

The situation reverses when we look at dynamic anomaly detection in Section 5.5.1. In this

secario, the matrix distances proved most effective, and showed clear indications of the ground-

truth anomalies present in the data. The spectral distances, on the other hand, were so noisy as

to be useless. When doing anomaly detection on a dynamic graph, the two graphs in comparison

tend to share more edges than in graph matching scenarios, which may contribute to the good

performance of our matrix distances. Although the graphs in this section fluctuate in volume, we

do not find that these fluctuations are helpful in detecting anomalous time steps.

Finally, we explore a collection of human connectomes of subjects with and without autism

spectrum disorder. We observe that although differences are observable within the two popula-

tions via statistical comparison of edge weights, no graph distance effectively separates the two

populations. This experiment helps us understand the limitations of using such generalized tools.

We conclude that either more targeted tools are necessary, or more careful data collection and

preprocessing is needed to establish a dataset that is separable via classification algorithms.

Based on the results of our numerical and empirical data experiments, we provide a suggested

decision process in Figure 5.15. If the graphs to be compared exhibit differences in volume or

size, then these should be examined to see if they hold predictive power, as they are so simple

and efficient to compute. If they prove ineffective, then one must consider the setting. In a

dynamic setting, in which a dynamic graph is being compared at subsequent timesteps, then we

recommend using matrix distances based on the results of Section 5.5.1. If one is comparing graphs

to determine whether a sample belongs to a given population, then the adjacency spectral distance
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is the most reliable, as Section 5.4 demonstrates. Finally, if none of these approaches give adequate

performance, then a more targeted analysis must be performed, such as the edge-wise statistical

comparison of weights in Figure 5.14. The particular design of this analysis is domain specific and

highly dependent upon the nature of the data.

5.7 Notation

For reference, in Table 5.5 we provide a table of notation used throughout the chapter.

5.8 NetComp: Network Comparison in Python

NetComp is a Python library which implements the graph distances studied in this work.

Although many useful tools for network construction and analysis are available in the well-known

NetworkX [62], advanced algorithms such as spectral comparisons and DeltaCon are not present.

NetComp is designed to bridge this gap.

5.8.1 Design Consideration

The guiding principles behind the library are

(1) Speed. The library implements algorithms that run in linear or near-linear time, and are

thus applicable to large graph data problems.17

(2) Flexibility. The library uses as its fundamental object the adjacency matrix. This matrix

can be represented in either a dense (NumPy matrix) or sparse (SciPy sparse matrix) format.

Using such a ubiquitous format as fundamental allows easy input of graph data from a wide

variety of sources.

(3) Extensibility. The library is written so as to be easily extended by anyone wishing to do

so. The included graph distances will hopefully be only the beginning of a full library of

efficient modern graph comparison tools that will be implemented within NetComp.

17 See below regarding the implementation of exact and approximate forms of DeltaCon and the resistance
distance.
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Does the graph exhibit 
significant volume or 

size fluctuations?

Use volume or size differences 
to compare graphs.

Dynamic or population 
comparison?

Use resistance distance or 
DeltaCon.

Use adjacency spectral 
distance.

Perform custom targeted statistical analysis.

Yes

Inadequate performance

Inadequate performance

No 

Dynamic Population

Figure 5.15: Flow chart summarizing the suggested decision process for applying distance measures
in empirical data.
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NetComp is available via the Python Package Index, which is most frequently accessed via the

command-line tool pip. The user can install it locally via the shell command

pip install netcomp.

As of writing, the library is in alpha. The approximate (near-linear) forms of DeltaCon and the

resistance distance are not yet included in the package. Both algorithms have an quadratic-time

exact form which is implemeneted. Those interested can view the source code and contribute at

https://www.github.com/peterewills/netcomp.

https://www.github.com/peterewills/netcomp
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G Graph
V Vertex set, taken to be {1, 2, . . . , n}
E Edge set, subset of V × V
W Weight function, W : E → R+

n Size of the graph, n = |V |
m Number of edges, m = |E|
di Degree of vertex i
D Degree matrix (diagonal)
d(·, ·) Distance function
A Adjacency matrix
L Laplacian matrix
L normalized Laplacian matrix (symmetric)
λAi ith eigenvalue of the adjacency matrix
λLi ith eigenvalue of the Laplacian matrix
λLi ith eigenvalue of the normalized Laplacian matrix
G{0,1} The {null,alternative} population of graphs

G{0,1} Sample graph from G{0,1}
D0 Distribution of distances between graphs in null population
D0 Sample from D0

D1 Distribution of distances d(G0, G1)
D1 Sample from D1

D̂1 Distribution D1 normalized via (5.7)

D̂1 Sample from D̂1

G(n, p) Uncorrelated random graph with parameters n and p
(n, p, q) Parameters for stochastic blockmodel
(n, l) Parameters for preferential attachment model, with 1 < l ≤ n
(n, k) Parameters for Watts-Strogatz graph, with k < n even

Table 5.5: Table of commonly used notation.



Chapter 6

Conclusion

In Chapter 2, we have analyzed an approach based on test supermartingales [130] for per-

forming hypothesis testing and constructing confidence intervals, and tested its performance in the

scenario of estimating the success probability of Bernoulli trials. We showed that our test super-

martingale method attains Bahadur efficiency, which is to say the resulting p-value has the highest

possible exponential rate of decay. We also showed that the separation between the endpoint of a

one-sided confidence interval and the true probability is O(
√

log n/n), while the optimal confidence

interval endpoint has a separation of O(1/
√
n). This separation can be though of as the cost of our

method’s robustness to stopping rules; we have proposed an adaptive modification which yields an

optimal O(1/
√
n) endpoint separation, provided that the number of trials is known in advance.

The law of the iterated logarithm suggests that our robustness to arbitrary stopping rules

would incur a cost in endpoint separation of O (log log n), but our analysis shows a cost that is of

order O (log n) (under proper normalization). A natural extension of this work would be exploring

efficient test supermartingales which, when inverted, generate confidence intervals with this optimal

log logn endpoint behavior. Furthermore, we might with to examine the effectiveness of the method

when applied to trials which have more complicated distribution; for example, we might hope to

study trials where the true mean or variance drifts over time, or in which subsequent trials show

nontrivial dependence structure.

In Chapter 3, we studied the effects of thermal noise on a particular nanostructure arising in

thin-film magnetics, called a magnetic droplet soliton, or simply a droplet. Through linearization of
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this system around the droplet solution, we developed an analytical expression for the linewidth of

the droplet, and the expected deviation of the droplet center. We find that the theoretical linewidth

of the droplet agrees with micromagnetic simulations of the full (stochastic) partial differential

system, particularly at large temperature. The center variability introduced by thermal noise is

found to be orders of magnitude lower than that which is necessary to explain the imaging results

found in [105], which suggests an alternative mechanism for droplet smearing during the imaging

process. Our analysis has uncovered a previously unobserved regime of (deterministic) droplet

instability, and has suggested drift instability as one possible mechanism for droplet smearing.

The timescales typical of droplet oscillation are deparated from the experimental timescaled

in which droplets are observed by many orders of magnitude. Therefore, even if droplet ejection

via thermal displacement is a very rare event, it may well occur ∼ 106 times over the course of an

experiment. A study of the statistics of rare events in our system would be necessary to provide

a thorough understanding of the effect of thermal droplet ejection over experimental timescales.

Furthermore, our approach has provided conclusions which are valid within certain experimental

regimes, namely large nanocontact radii ρ∗. It remains to be seen how the effects of thermal noise

impact systems in which the nanocontact is small, but one would expect reduced stability and thus

an increase in the impact of thermal noise.

In Chapter 4, we studied the applicability of the effective graph resistance [48] to the detection

of transitions in community structure in the dynamic stochastic blockmodel. We proved that, with

high probability, the effective resistance will discern such transitions when the number of cross-

community connections in the model is dominated by the average in-community degree. The crux

of the proof of this result lies in the development of an expression for the effective resistance between

arbitrary vertices in the stochastic blockmodel. This result analytically establishes the domain of

applicability of the effective resistance when applied to graphs undergoing changes in community

structure.

Most graphs with community structure posess more than two communities, and also have

vertices which are not discernibly members of any of the communities present in the graph. A
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natural extension of the work in Chapter 4 is to a stochastic blockmodel with more than two

communities, communities of varying sizes, and with various configurations of intra-community

connectivity. Furthermore, our work prove that a hypothesis test constructed from the resistance-

perturbation distance has asymptotic power of 1, it does not explicitly establish the significance

level of this hypothesis test. An explicit expression for the significance for finite graph size would

inform the applicability of this approach to empirical data.

Chapter 5 has extended this study to a thorough analysis of distance measures for pairwise

graph comparison, with a focus on distances which can be computed efficiently, and so can be

applied to large graph datasets. Through both numerical studies of random graph models and

analysis of empirical graph data, we have shown that the choice of the distance depends crucially

on both the scale of structure one wishes to study as well as the scenario in which the analysis

is being performed. In particular, the methods that are effective for discerning distinct graphs

belonging to a given population are quite different from those which are effective for studying a

graph evolving in time. We have provided a decision protocol for determining the most useful graph

distance tool for a given application.

This work has highlighted the ability of various distances to capture various typical structural

features of a graph, such as community structure or clustering. However, the form in which these

structures appear in empirical graph data is highly varied, and they are far from the only important

aspects. To truly understand the performances of these distances “in the wild,” a thorough study

of tens or hundreds of empirical graph data sets is necessary.

An additional challenge is that many graphs do not conform to our general prescription

of simplicity. Recall that a simple graph is undirected, has no self-loops, and has no multi-edges.

Furthermore, this study focuses on unweighted graphs; many empirical graph data sets are weighted.

Although we have analyzed one empirical data set which includes weighted graphs in Section 5.5.2,

we still lack a structural understanding of weighted graphs akin to the perspective that Section

5.4.3 offers on simple graphs.

It is worth noting that the extension of some of these methods to the directed graph setting is
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not trivial; for example, the nature of the graph spectrum changes fundamentally when the matrix

representations are asymmetric, and the effective graph resistance is not well-defined for directed

graphs. Proposing and analyzing extensions of these distances that can apply to asymmetric graphs

would also have great value.

Finally, although we have focused on graph distances which can be computed efficiently, the

literature lacks a thorough study of the computational speed of these algorithms for finite graph

size. One would hope to see the speed of computation compared for graphs of different scales and

sparsities. Most results on the computational efficiency of algorithms is focused on asymptotic

statements of complexity, which can obfuscate the actual finite-time computational cost, and do

not take into account issues such as parallelizability (see [63]).
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