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Thesis directed by Professor Matthew B. McQueen and Matthew C. Keller 

 

The field of human molecular genetics has undergone a substantial technological 

transformation in the past decade, allowing researchers to identify and analyze genetic variation 

across the human genome with unprecedented depth and precision. A central goal in utilizing 

this technological advancement is to discover the genetic variation that underlies complex 

heritable traits and disorders. In recent years, much of the focus has been on large-scale genome-

wide association studies (GWAS) in an attempt to identify effects of common single nucleotide 

polymorphisms (SNPs) on a phenotype. Progress in this arena, however, has been limited, as 

validated findings for most phenotypes represent only a small fraction of the variance attributed 

to genetics known from family and twin studies, leaving a large proportion of heritability to be 

explained. My research is in large part motivated by the issues surrounding GWAS, as additional 

methodological techniques and population genetic theory can help explain phenotypic variance 

unaccounted for by the traditional genetic association design. In my first study, I look at a 

case/control sample of bipolar disorder, examining how prior information from linkage studies 

can inform GWAS signals. The primary aim is to ease the burden of multiple-testing correction 

applied in GWAS using empirically informed weighting to tease out true signals supported by 

prior genetic evidence. In my second study, I determine the best practices to detect signatures of 

distant inbreeding, via runs of homozygosity, in genome-wide SNP data. The motivation for 

studying this phenomenon is due to the extensive evidence of inbreeding depression on fitness 

related traits, where the effects of recessive or partially recessive alleles are expressed. Using an 
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extensive simulation design, I test multiple programs to determine the optimal method to identify 

runs of homozygosity caused by distant inbreeding. In my third and final study, I apply my work 

from the second study to a comprehensive dataset of cognitive measures to understand the extent 

to which distant inbreeding affects variation in general cognitive ability.  
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Chapter 1 

Introduction 

 

 

In the field of human molecular genetics, the past decade has witnessed a rapid 

transformation in terms of technological advancement and feasibility to detect and analyze 

molecular genetic variation at a large scale. Not long after the initial sequencing of the first 

human genomes in 2001 (Lander et al., 2001; Venter et al., 2001), the identification of genetic 

variants at the base pair level became possible. Less than a decade later, genome-wide 

association studies (GWAS) using databases up into the tens of thousands of individuals, each 

one genotyped with up to a million single nucleotide polymorphisms (SNPs) across the genome, 

have been gathered to identify the genetic architecture of complex traits and disorders such as 

Schizophrenia (Purcell et al., 2009), Type 2 Diabetes (Zeggini et al., 2008), and height (Weedon 

et al., 2008), just to name a few. However, despite the technological advances and large-scale 

effort in this arena, there is still much to be discovered in understanding the genetic 

underpinnings of most complex traits and diseases (Hardy & Singleton, 2009; Manolio et al., 

2009). The research I present in this dissertation centers on genome-wide SNP data, and the 

methods I use to analyze the data are closely related to central issues that surround GWAS. On 

that account, my introduction briefly reviews the progress of molecular genetic methods in 

studying human phenotypes, examining both general findings and prominent issues underlying 

genome-wide analysis. This leads to my motivation for using non-traditional approaches to 

analyze genome-wide SNP data, and brief description of the methods I adopt for my dissertation 

research. 
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1.1 Human Molecular Genetic Methods       

 Measurable forms of molecular genetic variation have been around for well over a 

century, as observations of chromosomes through karyotyping were discovered as early as 1842 

(Sturtevant, 2001), marking the start of cytogenetic analysis. For much of the early 20th century, 

genetic linkage analysis used recombinant strains to measure multiple traits and infer the genetic 

distance of trait loci on chromosomes. However, this process of linkage mapping was not able to 

isolate the physical position of trait loci, and it wasn’t until molecular techniques such as 

restriction enzymes and gel electrophoresis that physical mapping of the genome became 

possible. With respect to analyzing human genetic variation, one of the earliest widespread 

applications of identifying physical stretches of DNA sequence was through restriction fragment 

length polymorphisms (RFLPs), where restriction enzymes would cut DNA at homologous sites 

(Southern, 1975). As a result, differing length sequences that remained were treated as alleles in 

that chromosomal stretch. This process was updated with the incorporation of oligonucleotides 

(small stretches of DNA) and polymerase chain reaction, where instead of DNA being cut at only 

at sites that match restriction enzymes, a targeted stretch of DNA could be probed and amplified, 

allowing access to any genetic region were the designed probe matched the DNA sequence 

(Saiki et al., 1985). Soon variable number tandem repeat (VNTR) polymorphisms were preferred 

over RFLPs, as their abundance allowed for finer-scale mapping of genomic regions. Particularly 

for trait and disease mapping, short tandem repeats (often called STRs or microsatellites) where 

only a few base pairs were repeated, often dozens of times, were targeted as allelic markers. 

STRs occurred on average once per 10 kilobases of DNA, and soon genome-wide STR marker 

sets were being used in linkage studies with up to a thousand markers (Altmüller, Palmer, 

Fischer, Scherb, & Wjst, 2001).  



 

 3  
P
A
G
E

Nevertheless, not long after microsatellites became commonplace, the results of the human 

genome sequencing projects around the turn of the 21st century identified single nucleotide 

polymorphisms (SNPs), where a single base pair varied in its nucleotide base between 

individuals. Because SNPs occurred at a much higher density than VNTRs and were abundant in 

and around genes, they soon became the predominant substrate to catalog genetic variation. The 

advance in recent years has been the accelerating pace and number with which SNPs can be 

genotyped, from thousands to over 1 million SNPs in a genome-wide array. The pace of 

technological improvement is only getting faster and cheaper, as other recent advancements have 

included copy number variation (CNV; Sebat et al., 2004; Sharp et al., 2005), SNP imputation 

via patterns of linkage disequilibrium (LD; Gibbs et al., 2003), and most recently whole-genome 

sequencing (Thousand Genomes Consortium, 2010). 

1.2 Human Molecular Genetic Analysis 

 As methods of identifying and mapping genetic variation have evolved, so too have the 

methods to analyze their effects on phenotypic variation. Drawing from the insights of 

Mendelian inheritance and Morgan's work on fruit flies, genetic linkage mapping began as the 

predominant paradigm to infer causative loci for a trait. Linkage follows from the rules of 

meiosis and recombination, where genetic linkage refers to statistical propensity of alleles on a 

given chromosome to occur together because they haven't been broken up by meiotic 

recombination. Because recombination occurs at a low (although stable) rate per chromosome 

during meiosis, the distance between two loci greatly affects how strongly they are linked. Using 

this logic, linkage mapping was developed as a means to infer the chromosomal location of 

causal loci via transmission from parent to offspring. For human genetics, this meant using 

family-based studies and pedigree information, where parent to offspring transmission of alleles 
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could highlight the co-transmission of alleles and phenotype status (Lander & Green, 1987). 

RFLPs and VNTRs, with their numerous alleles (sometimes in the dozens), were good sources of 

genetic variation for family-based linkage analysis as each parent often carried a different set of 

alleles. Linkage work spawned the discovery of many mendelian disorders, as well as 

discovering the genes that predispose individuals to Huntington's disease (Gusella et al., 1983), 

phenylketonuria (DiLella, Marvi, Brayton, & Woo, 1987), cystic fibrosis (Kerem et al., 1989), 

and a handful of other genetic disorders. Despite its successes, linkage designs suffered from low 

power to detect variants of modest effect, as markers had to be strongly linked to the causal 

variant and required a large number of informative families to be detected (Altmüller et al., 

2001). Along with the introduction of SNPs, linkage gave way to association mapping, where the 

allele itself, not its transmission from parent to offspring, became the variable of interest. SNP 

association still incorporated the concepts of genetic linkage, as genotyped SNPs in linkage 

disequilibrium (LD) with a nearby causal SNP would segregate together, allowing the statistical 

signal from the genotyped SNP to be representative of the causal SNP in the population. As 

SNPs offered much denser coverage of genetic variation, association mapping offered the 

additional statistical power and ability to use population-based samples rather than family 

samples (Balding, 2006).  

 Throughout the transformation of genetic methodology, there has been a relative shift 

from studying biologically plausible candidate genes towards genome-wide interrogation. While 

debates over which method was the most effective use of research dollars have waned, mainly 

because costs to run genetic analyses have lowered considerably in recent years, arguments still 

persist on both sides. Further spurring this debate is the slow realization that outside of the 

handful of big findings in human genetics, most genetic effects are very difficult to find 
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regardless of the methodology used (Hardy & Singleton, 2009).  More specifically, during the 

early days of linkage, monogenic disorders of large effect were readily identified, as their genetic 

signals were unmistakable. Once the 'low-hanging fruit' of large genetic effects had been picked, 

the search for causal genes or variants among phenotypes with a complex genetic etiology 

proved much more challenging. While proponents of candidate gene work criticized the large 

costs of genome-wide association studies (GWAS) at the outset, one of its main attractions was 

the ability to vastly speed up the process of susceptibility gene discovery and validation, as high-

density SNP arrays were able to cover the majority of common genetic variation in the genome. 

In addition, GWAS has offered an agnostic criterion for identifying association signals, whereas 

prior candidate gene approaches may have been biased towards false positive results and 

publication bias (Hirschhorn, Lohmueller, Byrne, & Hirschhorn, 2002). From a theoretical 

standpoint, the central model underlying GWAS was the 'common disease/common variant' 

hypothesis, asserting that complex traits and diseases that are heritable but do not follow 

Mendelian patterns of inheritance must be attributable in some respects to common genetic 

variation (> 1-5%) shared in the population (Cargill et al., 1999; Reich & Lander, 2001). While 

disease etiology using the common disease/common variant hypothesis was by no means the 

consensus among geneticists (e.g. Pritchard, 2001), the technological advance of SNP 

genotyping was paramount in shifting the field toward genome-wide analyses. 

1.3 Summary of GWAS Results  

 Since the first GWA studies in the mid 2000's, over 1,200 loci have been associated with 

over 150 traits and diseases (Hindorff et al., 2009; Lander, 2011; and a summary of results can 

be found at http://www.genome.gov/gwastudies/). In the genetic epidemiology literature, GWAS 

has led to the discovery of moderate to large effects in a handful of disorders such as macular 
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degeneration (Maller et al., 2006), Crohn's disease (Barrett et al., 2008), type 2 diabetes (Zeggini 

et al., 2008), and others. The majority of replicable findings in GWAS, however, have found 

relatively small effects at best, with associated SNPs often explaining less than 1% of the 

phenotypic variance of the trait being studied. This has certainly been the case with psychiatric 

disorders, where large scale GWAS on highly heritable disorders such as schizophrenia and 

bipolar disorder have only discovered a handful of associated SNPs, each with very small effect 

sizes (Ferreira et al., 2008; Purcell et al., 2009; Shi et al., 2009b). To confuse matters even more, 

the analysis of a large number of SNPs simultaneously requires a strict correction for multiple 

testing, possibly missing true SNP associations of even smaller effect in order to avoid false 

positives. The relatively small amount of phenotypic variance explained by GWAS for many 

well established heritable traits and diseases has left what some have dubbed the 'missing 

heritability', and has led to debates about the success and future of GWAS studies, as the 

associations found were much smaller than anticipated, and the investment in larger samples to 

detect increasingly smaller effects must compete with the renewed interest in rare genetic 

variation detectable using newer sequencing technologies. Suffice to say, the ‘common 

variant/common disease’ model has not held up strongly for most traits, and alternative models 

are currently being debated to influence the direction of future research. 

1.3.1 Alternative Methods and Future Directions  

Although a fair number of hypotheses have been offered to explain the missing 

heritability, from epigenetic mechanisms (Petronis, 2010) to questioning the merit of classical 

heritability estimates (Zuk, Hechter, Sunyaev, & Lander, 2012), two prominent explanations 

have surfaced: 1) The heritability of the trait is driven primarily not by common SNPs, but rather 

rare variants or copy number variants not tagged by common SNPs, and 2) The full effect of 
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common SNPs are too small to be detected individually but on aggregate explain a substantial 

portion of phenotypic variance. Despite proposing quite different genetic etiologies, these are not 

mutually exclusive hypotheses, as a phenotype can be highly polygenic and still be substantially 

affected by a rare mutation at a single locus. The current move towards whole-genome 

sequencing seeks to address the influence of rare variation on traits, as these variants will not 

effectively be picked up by common SNP arrays. On the other hand, methods aggregating SNP 

signals (Purcell et al., 2009) or estimating phenotypic variance using all SNPs (Yang et al., 

2010a) have shown that traits with otherwise few detected loci show signs of highly polygenic 

inheritance. 

1.4 Summary of Dissertation Methods   

 In my dissertation research, I examine and apply two methods outside of the traditional 

SNP association approach, one being the use of prior linkage information to inform association 

signals of bipolar disorder, and the other examining the best practices to measure genome-wide 

autozygosity and applying this work towards measures of cognitive ability. Both methods have 

implications for addressing the 'missing heritability', as prior information can help tease out the 

real effects of signals not captured by traditional GWAS, whereas autozygosity measurement and 

mapping measures the role of dominance variation in the genetic architecture of a trait. With 

respect to common genetic variation, SNP-based heritability methods have shown that many 

SNPs contribute to trait variance in height not detected by GWA studies (Yang et al., 2010a), 

and the use of prior linkage information can help identify specific association signals that have 

been missed due to strict correction for statistical significance (Manolio et al., 2009; Roeder, 

Bacanu, Wasserman, & Devlin, 2006). With respect to rare genetic variation, measuring 

autozygosity can highlight the contribution of recessive or partially recessive alleles, both 
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common and rare, on a phenotype. Autozygosity is the genetic measurement of inbreeding, 

where an autozygous segment in an individual is identical by descent. By identifying autozygous 

segments in SNP data, one can infer that the DNA within that segment is also identical. Because 

deleterious recessive alleles are not as effectively removed from the population as additive 

alleles, and that inbreeding depression is a widely supported phenomenon in the animal kingdom 

(DeRose & Roff, 1999a), it is reasonable to presume that deleterious recessive alleles, 

particularly those a low frequencies in the population, are contributing to phenotypic variance. 

1.4.1 Chapter Outline 

 In my second chapter, I examine how prior linkage information can be used to inform 

GWA signals in a case/control dataset of Bipolar Disorder, a psychological disorder that has had 

only a few successful replicable GWAS signals. Using prior linkage data combined from eleven 

separate studies (McQueen et al., 2005), I apply a Weighted False Discovery Approach (wFDR; 

Roeder et al., 2006) to a genome-wide scan of bipolar disorder. In my third chapter, I use an 

extensive simulation paradigm to understand the best methods to detect genome-wide 

autozygosity. In particular, I test three separate programs designed to detect autozygosity on 

simulated genetic data, determining the most optimal program and parameters within that 

program for capturing autozygosity. Finally, in my fourth chapter, I apply my work on 

autozygosity to a comprehensive dataset of cognitive ability; testing the prediction that increased 

autozygosity burden leads to lowers scores on measures of intelligence.   
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Chapter 2 

Using Linkage Information to Weight a Genome-Wide Association of Bipolar Disorder 

 

 

2.1 Background 

 Bipolar disorder (BPD) is a debilitating mental disorder that is common in the population 

(1-4% depending on the specific BPD classification (Merikangas et al., 2007)), yet has a 

complex etiology and life course across individuals. Family, twin, and adoption studies on BPD 

have convincingly shown that there is a substantial heritable component (Edvardsen et al., 2008; 

Smoller & Finn, 2003), leading researchers to search for susceptibility genes, both in candidate 

regions and across the genome, that predispose individuals to BPD. To date, despite the high 

heritability of BPD, the discovery of susceptibility genes has been a challenging endeavor.  

 Hypothesis-driven candidate gene approaches, most of which target genes involved in 

neurotransmitter systems, have largely been inconclusive with many initial findings failing to 

replicate. Some genes that have shown replication or significance in meta-analyses are the 

serotonin transporter (Cho et al., 2005; Lasky-Su, Faraone, Glatt, & Tsuang, 2005), brain-

derived neurotrophic factor (Kremeyer et al., 2006; Neves-Pereira et al., 2002; Sklar et al., 

2002), d-amino acid oxidase activator (Detera-Wadleigh & McMahon, 2006), monoamine 

oxidase A (Muller et al., 2007), and a gene that codes for 5,10-methylenetetrahydrofolate 

reductase (Gilbody, Lewis, & Lightfoot, 2007). Unfortunately, none of these replicated findings 

have shown a large genetic effect, leaving much of the genetic variance in BPD to be explained.  

2.2 Genome-Wide Approaches to Bipolar Disorder 

 In contrast to candidate gene approaches, genome-wide linkage and association 
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approaches have taken an agnostic approach to finding susceptibility genes for BPD. Family-

based linkage approaches on the whole have not consistently implicated a single region 

(McGough et al., 2008), but the most comprehensive meta-analysis on BPD has implicated 

regions of chromosome 6q for Bipolar I, and 8q for Bipolar I and II (McQueen et al., 2005). 

More recently, population-based genome-wide association studies (GWAS) on BPD, which are 

able to detect smaller genetic effects, have identified associated SNPs on chromosome 16p12 

(WTCCC, 2007), the diacylglycerol kinase eta (DGKH) gene on chromosome 13 (Baum et al., 

2008), and the myosin 5B (MYO5B) gene on chromosome 18 (Sklar et al., 2008). These three 

large-scale GWAS studies were then pooled together, finding a significant association in the 

ankyrin G (ANK3) gene on chromosome 10 and a replicated suggestive association signal in the 

alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene on 

chromosome 12, although none of the prior top signals were identified in the pooled analysis 

(Ferreira et al., 2008). Finally, a SNP in the zinc-finger protein 804A (ZNF804A) on 

chromosome 2 has shown association in both schizophrenia and BPD datasets, while a common 

polygenic approach compromising large clusters of SNPs has shown concordance in effects on 

schizophrenia and BPD (Williams et al., 2010), implicating shared genetic liability. Despite these 

large-scale efforts, the findings still represent a small proportion of the genetic variance in BPD 

(no top signals with an odds ratio greater than 1.6), suggesting a complex genetic etiology 

compromised of multiple genes with no single genetic risk factor being a sufficient cause of 

BPD.     

2.3 Issues of Multiple-Testing Correction 

 One of the primary issues surrounding genome-wide analysis is the amount of multiple 

testing that arises from analyzing hundreds of thousands of SNPs. Although the use of 
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Bonferroni correction for multiple testing limits the possibility of making type-I errors, by 

definition it also raises the probability of committing type-II errors, possibly diminishing the 

chances of detecting true signals of association. This has prompted statistical methods that utilize 

prior information to guide association scans or assist in prioritizing genetic regions in follow-up 

studies (e.g. Fan et al., 2010). In the current study, we apply a weighted false discovery rate 

procedure (wFDR; Roeder et al., 2006), taking prior linkage information derived from a genome-

wide linkage meta-analysis (McQueen et al., 2005) to variably weight association signals from a 

GWAS drawn from the Systematic Treatment Enhancement Program for Bipolar Disorder 

(STEP-BD; Sklar et al., 2008). By incorporating meta-analytical prior information, the current 

technique lends an increase in detection power through an integrated empirical approach to 

genome-wide analysis. 

 

2.4  Methods 

2.4.1 GWAS Methods 

2.4.1.1 Case-Control GWAS Sample  

 Our case sample consisted of 955 Caucasian bipolar I subjects drawn from the genetic 

repository of the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). 

The STEP-BD sample is a longitudinal cohort drawn from the United States examining the effect 

of treatments in the course of BPD (Sachs et al., 2003). All subjects were diagnosed for bipolar I 

on the Affective Disorders Evaluation and the Mini-International Neuropsychiatric Interview. 

Our control sample consisted of 1,498 US Caucasian subjects drawn from the NIMH genetics 

initiative through the NIMH Center for Collaborative Studies (http://zork.wustl.edu/nimh). Of 

the controls, 454 came from anonymous blood cord donors and were phenotypically unscreened 
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(Mansour et al., 2005). The remaining 1,044 controls completed an online self-administered 

psychiatric screen, and qualified as controls if they reported no history of schizophrenia, 

schizoaffective disorder, auditory hallucinations, delusions, and bipolar disorder (see Sklar et al. 

2008 for further information).       

2.4.1.2 SNP Selection 

 Genotyping for the STEP-BD cases and NIMH controls were all performed on the 

Affymetrix GeneChip Human mapping 500K chipset. Quality control procedures and subsequent 

association analysis on the genotyped SNPs were all performed using PLINK (Purcell et al., 

2007). Our quality control procedures, which involve individual exclusion, SNP exclusion, and 

population stratification, follow that described in Sklar et al. (2008). We include the additional 

step of removing all SNPs with minor allele frequency (MAF) < .05 and all SNPs on the X 

chromosome, as the linkage data only covers the 22 autosomes. After exclusion, 342,191 SNPs 

were retained for further analysis. 

2.4.1.3 GWAS Analysis 

 We initially performed a genome-wide association analysis on the 342,191 SNPs. We 

chose the Cochrane-Armitage trend test to generate the primary nominal, unweighted association 

statistics. Figure 2.1 shows the unweighted, unadjusted p-values across the 22 autosomes. These 

results are consistent with the original publication of these data (Sklar et al., 2008). The p-values 

from this analysis were then weighted according to linkage evidence in that particular region (see 

below). 
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2.4.2 Linkage Analysis Methods 

 For a detailed description of the combined linkage analysis samples, methods, results and 

conclusions, please see McQueen et al. (2005). Briefly, a genome-wide linkage trace was 

conducted on a combined sample consisting of eleven BPD linkage studies amounting to a total 

of 5,179 individuals from 1,067 families (McQueen et al., 2005). The combined sample was 

relatively homogenous with the majority of individuals being of Caucasian descent. Linkage 

statistics were generated using the affected relative pair methodology implemented in MERLIN 

(Abecasis, Cherny, Cookson, & Cardon, 2002) at 1 centimorgan (cM) intervals across the 22 

autosomes. In the original combined analyses, two different affection status models were used - 

bipolar I as well as bipolar I and II. To maintain consistency with the case-control STEP-BD 

samples, only the linkage statistics from the bipolar I analysis (“narrow” definition) were used. 

Using MERLIN’s implementation of the Whittemore and Halpern (Whittemore & Halpern, 

1994) algorithm to test for allele sharing across all affected individuals, we generated 

nonparametric LOD scores via the Kong and Cox (Kong & Cox, 1997) linear model. For the 

purposes of this study, we used the corresponding Z score (“Zmean”) from the MERLIN output 

at each 1 cM position as the linkage “priors” for the weighted association analysis. 

2.4.3 Weighted Association Analysis Methods 

2.4.3.1 Linkage Weights 

 The theoretical basis for using linkage weights in the context of genome-wide association 

analysis comes from the general literature of weighted hypothesis testing (Roeder, Devlin, & 

Wasserman, 2007). Roeder et al. (2006) proposed using weights from a linkage scan to attenuate 

the vast multiple testing pitfalls encountered with GWAS data. Investigators typically favor one 

chromosome region or another based on prior evidence – one primary consideration is linkage 
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data (Roeder et al., 2006). Weighting association statistics using linkage data is a quantitative 

method of incorporating prior information into large-scale association scans. While there are 

numerous approaches to devising weights, there are only two criteria that must be satisfied: (1) 

each weight must be greater than or equal to 0 and (2) the mean of the weights must equal 1. As 

noted by Roeder et al. (2006), a reasonable weighting choice is to use nonparametric linkage 

scores generated from linkage scans. Because what constitutes a linkage region in binary terms is 

often not well defined, it follows that the quantitative linkage signals be used to generate 

continuous weights. In addition, it is recommended that the GWAS and prior linkage information 

come from a similar ethnic background, as genetic heterogeneity between ethnic backgrounds 

will reduce the power gained from using prior information.  

 In the original description of using linkage statistics to weight association p-values, two 

continuous weighting schemes were introduced - exponential and cumulative. Exponential 

weights can be highly sensitive to large linkage signals while cumulative weights tend to be less 

so. Given the large linkage signal in the original combined analysis for the narrow phenotype 

definition (bipolar I) found on chromosome 6q (LOD=4.2) we chose to use the cumulative 

weighting scheme in an attempt to weight the association signals in a more evenly distributed 

manner. Another consideration was the defining the scaling factor, whereby in the context of 

cumulative weights (as used here) constrains the influence of any individual linkage peak such 

that the weights will increase linearly for linkage scores (Z) near B, but reach an asymptote for 

large linkage scores (|Z – B|) (Roeder et al., 2006). We chose a scaling factor (B) of 2 based upon 

recommendations found in Roeder et al. (Roeder et al., 2006). This results in linkage scores 

greater than or equal to 2 units above B (2) to be approximately equally up-weighted. The same 

is true for linkage scores less than or equal to 2 units below B (2) in that they are equally down-
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weighted. 

2.4.3.2 Weighted Association  

 The weighted association approach incorporates the weighting scheme directly into the 

association p-values. In order to match an association p-value with its respective linkage signal, 

we assigned a genetic distance to each SNP location. As a result, p-values for each SNP may be 

up-weighted or down-weighted depending upon the relative linkage signal in that region. The 

nominal p-values from the association test are divided by the respective weights given to the 

genomic region (determined by the linkage signal) to generate the weighted p-values. The 

weighted p-values are then used in the false-discovery rate (FDR) procedure to assess overall 

significance. The weighting procedure (and implementation of the FDR adjustment) was 

conducted in an R (http://www.r-project.org) script entitled, “weighted_FDR.R” 

(http://www.wpic.pitt.edu/wpiccompgen/fdr). For the FDR method, we used the method 

described in Storey  (2002) with a significance level of 0.10. 

 

2.5 Results 

2.5.1 Primary Association Results 

 A histogram of weights across the genome is shown in figure 2.2. Our weighted 

association results for the set of 342,191 SNPs along with their respective weights, is shown in 

figure 2.3 and 2.4. As mentioned in our methods section, we decided to use the cumulative 

weighting procedure as our official results, but include a graph and weight distribution for the 

exponential weighting procedure for the sake of comparison. None of the weighted association 

signals reach genome-wide significance after implementing the FDR method (multiple correction 

threshold 0.1/342,191 = 2.92 x 10-7). Our most significant association signal was at rs4939921 
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on chromosome 18p21.1 (weighted p = 4 x 10-7, weight = 5.2), residing in an intron of myosin 

VB (MYO5B), and is shown in figure 2.5. While this was also the top signal in the unweighted 

association, the signal strength increased by almost an order of magnitude through the weighted 

approach (original p = 1.9 x 10-6). All but one of the neighboring SNPs with weighted p < .001 

were found to be in linkage disequilibrium (LD) with rs4939921. Our second strongest signal 

came from rs4852259 on chromosome 2p13.3 (weighted p = 2.3 x 10-6, weight = 3.5), residing in 

an intron of the gene dysferlin (DYSF), also shown in figure 2.6. This SNP was the third ranked 

signal in the unweighted association. Unlike the top signal, there were no neighboring SNPs with 

p < .001.   
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2.5.2 Up-weighted Regions of Interest  

 Beyond our top SNP signals, we also looked for regions where linkage signals coincided 

with clusters of top SNP signals. Specifically, we focused on SNP signals with weighted p < .001 

that resided in the top 10th percentile of weight values across the genome (figure 2.7). The 

majority of SNPs that fit these criteria occur on Chromosomes 2, 6, 8, 9, 17, 18, and 20. Previous 

work using the STEP-BD has been done on the up-weighted region seen on chromosome 6 (Fan 

et al. 2010), so our focus here is on the remaining chromosomes. In particular, we looked for 

clusters of neighboring SNPs showing a consistent signal. We've highlighted three regions of 

interest (figures 2.8 - 2.10) on chromosome 9p21.2, 17q24.2, and 18q12.2. The strongest signal 

on the chromosome 9p21.2 region, rs17760820, resides in an intron of open reading frame 

C9orf82, with four nearby SNPs at p < .001 residing in introns of the intraflagellar transport 74 

homolog (IFT74). The two genes are 54 kb apart, and the SNPs in IFT74 are in moderate LD 

with the SNPs in C9orf82. On chromosome 17q24.2, the notable cluster of neighboring signals 

all reside in an intergenic region. The top signal, rs16974356, is 220 kb telomeric of the mitogen-

activated protein kinase kinase 6 (MAP2K6) gene, and 312 kb centromeric of the potassium 

inwardly-rectifying channel, subfamily J, member 16 (KCNJ16) gene. All the SNPs in this 

region with weighted p < .001 are in relatively high LD in this intergenic region. The SNP 

cluster on chromosome 18q12.2 also resides outside of a gene, with the nearest transcript being 

hypothetical protein LOC647946 where the 5' end is 199 kb away from the top signal in the 

region, rs2862294. Although most of the nearby SNPs with weighted p < .001 are in LD with 

rs2862294, a few SNPs show no LD despite their close proximity.    
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2.6 Discussion 

 The primary goal of this study was to examine how prior linkage information could 

inform association signals across the genome. Using a linkage-weighted FDR approach, we've 

highlighted particular regions that would not have been addressed by association alone. Although 

no signal reached the conservative criteria of genome-wide significance, we report on a few 

areas where linkage evidence and strong association signals coincide.    

 Our strongest association signal, rs4939921 in MYO5B, was expected, as it was also the 

top SNP prior to the weighted association. In addition, this was the top signal reported in Sklar et 

al. (2008) where the STEP-BD sample was combined with another large BPD sample from the 

University College of London. MYO5B is a brain-expressed gene that is involved in protein 

transport and vesicle trafficking at the plasma membrane (Lapierre & Goldenring, 2005; Lise et 

al., 2006), RNA transcription (Lindsay & McCaffrey, 2009), and has recently been implicated in 

microvillus inclusion disease, a rare genetic disorder of the small intestine (Erickson, Larson-

Thome, Valenzuela, Whitaker, & Shub, 2008; Muller et al., 2008). Although our prior linkage 

information up-weights this signal at MYO5B, a recent meta-analysis combining the STEP-BD 

sample with a number of other case-control BPD samples finds no evidence of association in this 

region (Ferreira et al., 2008). Our second strongest signal, rs4852259 in DYSF, resides in a gene 

that codes for skeletal muscle protein, and non-synonymous mutations in DYSF have resulted in 

limb girdle muscular dystrophy and Miyoshi myopathy (Bashir et al., 1998; Liu et al., 1998). In 

our literature review of DYSF, we did not find any evidence of brain expression or psychiatric 

effects of this gene.  

 We also identified genes in regions where prior linkage information and association 

signals coincide. At chromosome 9p21.1, signals reside in both C9orf82 and IFT74. While there 
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is currently no known information on C9orf82, IFT74 (also known as capillary morphogenesis 

protein 1: CMG1) is a brain-expressed gene, whereby it codes a protein that transports material 

from the cell body along the dendritic and axonal processes of neurons (Momeni et al., 2006). 

IFT74 has been implicated in familial cases of amyotrophic lateral sclerosis (ALS) - 

frontotemporal dementia (FTD), although common SNPs do not seem to be implicated as causal 

variants of ALS-FTD (Xiao et al., 2008). On chromosome 17q24.2, none of the association 

signals occur within or adjacent to genes (all signals with weighted p < .001 are greater than 100 

kb away from the nearest gene). The nearest genes that flank the signal are MAP2K6, part of the 

kinase mediated signal transduction pathway involved in cell cycle arrest, transcription 

activation, and apoptosis; and KCNJ16, coding a membrane protein that regulates potassium 

channel activity. Of note, MAP2K6 has been associated in mediating the onset of Huntington’s 

disease (Arning et al., 2008), and KCNJ16 reflects ion channel activity, which has recently been 

implicated as a possible source of BPD pathogenesis (Ferreira et al., 2008). We can only 

speculate that the association signal may be involved in some sort of regulatory function relative 

to these genes. For the signal on chromosome 18q12.2, the current UCSC genome browser 

contains only a hypothetical gene, location 647946, in the region. Further annotation is necessary 

to determine whether location 647946 is indeed a coding region, and no functional information is 

currently known about it.  

2.6.1 Conclusion 

By incorporating genome-wide linkage and association data on BPD, we hope to identify 

susceptibility alleles and genes that would have otherwise been overlooked by any single method 

of genome-wide interrogation. Due to the conservative nature of genome-wide significance in 

association designs, true signals of small effect are inevitably overlooked. Prior linkage data 
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serves to aid in their detection as it provides independent marker information on BPD across the 

genome. We should note that while our prior linkage information came from a substantial pool of 

linkage studies, this method could certainly be applied with data from a single linkage study. 

Although weighted designs with informative prior information maximize any potential power 

gains, the loss in power is small when using uninformative prior information (Roeder et al., 

2006). Given that linkage signals are better suited to detect rarer alleles of high penetrance, we 

believe this method will be even more helpful as future GWAS increase the coverage of rarer 

SNP and CNV variants (MAF < .05) to their analyses. Furthermore, recent work using 

simulation and known genetic associations postulates that signals found in GWAS could actually 

be “synthetic associations” driven by rare genetic variants (Dickson, Wang, Krantz, Hakonarson, 

& Goldstein, 2010). In this respect, combining linkage and association data can be useful in 

highlighting areas that are most promising for future sequencing studies; studies that would be 

able to putatively identify the effects of rare variants on BPD. 
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Chapter 3 

Detecting Autozygosity through Runs of Homozygosity: A Comparison of Three 
Autozygosity Detection Algorithms 

 

 

3.1 Background 

With the advent of high-density genome-wide SNP arrays, examination of individual 

genetic data has revealed that runs of homozygosity (ROHs) - many homozygous SNPs in a row 

- are a common occurrence in all populations worldwide (Gibson, Morton, & Collins, 2006). 

Consequently, there has been interest in understanding if ROHs serve as risk factors underlying 

complex and simple disorders. There are sound theoretical reasons to suspect that ROHs are 

associated with disorder risk. Long ROHs (e.g., 100+ homozygous SNPs in a row) are unlikely 

to have arisen by chance. Rather, they are likely to denote autozygosity, which occurs when two 

genetic strands in the same individual come from the same ancestor - in other words, when 

(perhaps distant and unintended) inbreeding occurs. Inbreeding has long been known to increase 

the risk of many disorders.  

Much research suggests that such “inbreeding depression” occurs via an increase in 

autozygosity and a corresponding increase in homozygosity at rare, partially recessive, 

deleterious mutations (reviewed in Charlesworth & Willis, 2009)). In order for researchers to 

investigate the effects of autozygosity on disease, it is critical to accurately distinguish truly 

autozygous ROHs from the larger pool of often non-autozygous ROHs in a sample. The goal of 

this study is to investigate how accurately existing ROH detection programs identify 

autozygosity in genome-wide SNP data and which thresholds within these programs maximize 

the ability to detect genomic signatures of inbreeding depression. 
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3.1.1 Review of ROH Literature 

ROH analyses to date have investigated questions relevant to both basic population 

genetic theory and disease risk. Population genetics studies have analyzed the distribution, 

prevalence, and location of ROHs across various sub-populations to infer population structure, 

history, and natural selection (Gibson et al., 2006; Kirin et al., 2010; Li et al., 2006; McQuillan et 

al., 2008; Nothnagel, Lu, Kayser, & Krawczak, 2010; Sabeti et al., 2007; Voight, Kudaravalli, 

Wen, & Pritchard, 2006). Phenotypic studies have used both family-based and population-based 

samples to identify specific associated risk ROHs as well as differences in overall ROH burden. 

There has been recent success in identifying genes underlying simple autosomal recessive 

disorders in families within populations with high consanguinity using homozygosity mapping, 

with dozens of publications in recent years (e.g., Abu Safieh et al., 2010; Borck et al., 2011; 

Collin et al., 2010; Kalay et al., 2011; Walsh et al., 2010; Zelinger et al., 2011). Larger scale 

studies using genome-wide SNP data have also been conducted for complex phenotypes such as 

Schizophrenia (Lencz et al., 2007), Bipolar Disorder (Vine et al., 2009), Parkinson's disease 

(Wang, Haynes, Barany, & Ott, 2009), Alzheimer’s disease (Nalls et al., 2009), Colorectal 

cancer (Spain, Cazier, Houlston, Carvajal-Carmona, & Tomlinson, 2009), Childhood acute 

lymphoblastic leukemia (Hosking et al., 2010), and Breast and Prostate cancer (Enciso-Mora, 

Hosking, & Houlston, 2010). Non-clinical traits such as height (Yang et al., 2010b) have also 

been examined using ROH analyses (for a review of the current ROH research, see Ku, Naidoo, 

Teo, & Pawitan, 2010). However, results from these previous studies on complex phenotypes 

have been mixed. While significant ROH have been identified for height and Alzheimer’s 

disease, little to no evidence exists for the effects of specific ROH on other phenotypes. 

Moreover, the effects of ROH burden on some complex phenotypes (Schizophrenia, Alzheimer’s 
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disease) were significant, whereas no effects of ROH burden were found on other complex 

phenotypes (Bipolar Disorder, Colorectal cancer, Childhood acute lymphoblastic leukemia, 

Breast cancer, and Prostate cancer).  

3.1.2 Limitations of ROH Analysis 

A central limitation to current studies analyzing ROHs is the lack of consensus criteria or 

even guidelines for defining a ROH (Ku et al., 2010). For example, Lencz et al. (2007) only 

examined ROHs shared by ten or more subjects and that spanned at least 100 SNPs, and did not 

allow for any heterozygote calls, whereas Spain et al. (2009) examined overall ROH burden 

across various SNP and kb length thresholds, analyzed both complete and low linkage 

disequilibrium (LD) SNP datasets, and permitted a 2% heterozygote allowance. The discrepancy 

between definitions of ROHs makes comparisons between study results difficult, and the lack of 

consensus criteria for defining ROH increases the probability of false positive results due to the 

potential for choosing the most significant among many ROH thresholds investigated (Ioannidis, 

2005).  

3.1.3 ROH as an Optimal Measure of Autozygosity 

A recent study by Keller, Visscher, & Goddard (2011) found that inbreeding coefficients 

estimated from ROHs are much better at detecting the overall burden of rare, recessive mutations 

(the likely cause of inbreeding depression; Charlesworth & Willis, 2009) than several 

alternatives, including inbreeding coefficients defined on a SNP-by-SNP basis and those defined 

from pedigrees. While SNP-by-SNP homozygosity provides an adequate test for recessive 

effects of common causal alleles (that either exist on the genotyping platform or that are in LD 

with genotyped SNPs), ROHs track autozygosity, and therefore can be used to investigate the 

effects of homozygosity at both rare and common causal variants (Keller et al., 2011). Non-
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autozygous ROHs, stretches of homozygous SNPs that are actually heterozygous at unmeasured 

variants, are less likely to contain rare, partially recessive, deleterious mutations in their 

homozygous form. Therefore, the central criterion for defining ROHs – and the only reason one 

would measure ROHs rather than SNP-by-SNP homozygosity – is to assess autozygosity. In 

practice, this means differentiating ROHs that are not autozygous and are identical-by-state 

(IBS) from ROHs that are autozygous and are identical-by-descent (IBD). However, there has 

been no systematic investigation to date into which ROH detection program is optimal at 

detecting autozygosity and which parameters within those programs maximize statistical power. 

The current study addresses these unanswered questions and offers some consensus criteria to 

capture autozygosity through ROH analysis. 

 

3.2 Methods 

3.2.1 Overview of Approach 

Our analysis simulated sequence data that mimicked LD and polymorphism properties 

found in modern European heritage populations, thus allowing the sequence to resemble 

expected autozygosity in an outbred population as well as provide perfect information about 

truly autozygous segments. SNP data was obtained from the sequence by sampling common 

polymorphisms that mimicked the allele frequency distribution and SNP density found in a 

modern dense SNP chip (e.g., the Affymetrix 6.0 SNP chip), adding error rates and missingness 

patterns that were also empirically derived. Using this SNP data, we evaluated the performance 

of existing ROH detection programs to detect known autozygous segments. There are three 

primary ROH detection programs that have either been used in previously cited ROH studies 

and/or that have been the focus of a recent publication on detection of autozygosity: PLINK 
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(Purcell et al., 2007), GERMLINE (Gusev et al., 2009), and BEAGLE (Browning & Browning, 

2010). To assess how accurately each program identified autozygosity, we estimated the rate at 

which non-autozygous ROHs were called “autozygous” (type 1 errors) and the rate at which 

truly autozygous ROHs were not detected (type 2 errors).  

While low type 1 and type 2 error rates are always preferred, they cannot be minimized 

simultaneously: an inherent trade-off exists such that an increase in the type 1 error rate leads to 

a decrease in the type 2 error rate and vice versa. Determining which ratio of type 1 to type 2 

errors should be preferred is not obvious; here, we used a second, independent simulation to find 

which ratio of type 1 and type 2 error rates would maximize power to detect an association 

between autozygosity burden and a simulated phenotype. We started by simulating a phenotype 

associated with autozygosity, and from this population drew a sample containing autozygous 

segments at the rate found in our simulated sequence data (i.e., the level of autozygosity that 

corresponds to ROH distributions seen in empirical data). We then regressed the simulated 

phenotype on the sum of segments identified as “autozygous,” which included truly autozygous 

segments (influenced by the type 2 error rate) as well as non-autozygous segments (type I 

errors), as indicated by the type 1 and type 2 error rates found for the program/thresholds from 

the previous analysis. Power in this case is defined as the proportion of significant results 

observed in the simulation. By comparing power across programs and across thresholds within 

those programs, we have an empirical, objective foundation for deciding which program and 

which thresholds are most suitable for detecting autozygous ROHs.                         

3.2.2 Generation of Sequence Data 

In order to test the performance of detecting autozygous segments for each program, we 

needed genomic data that identified which segments of some arbitrary length were truly 
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autozygous from a common ancestor within some time frame (e.g., 50 generations). One method 

would be to use real sequence data in existing samples, but detecting autozygosity in sequence 

data given current small samples, low pass coverage, and high error rate estimates (e.g., 1-3% in 

the thousand genomes data;!Durbin et al., 2010) poses a substantial problem in accurately 

estimating autozygosity. Instead, we generated sequence data (genomic data with every base pair 

measured) that tracked every allele, rare or common, in the population, allowing us to identify 

autozygous segments without error by finding genomic areas of some arbitrary length (e.g., 0.5 

Mb or larger) that were perfectly (100%) homozygous at the sequencing level.  

We used the forward-time simulation program FREGENE (Chadeau-Hyam et al., 2008) 

to simulate full sequence data. FREGENE simulates a monoecious diploid population that 

evolves over non-overlapping generations according to a Wright-Fisher model (Fisher, 1930). 

We simulated a 120 Mb chromosome in an effective population (Ne) of constant size 10,000 

(roughly the estimated effective population size of humans; Harpending et al., 1998) for 100,000 

generations, long enough for mutation-drift equilibrium to be assured (Chadeau-Hyam et al., 

2008). Using neutral simulation parameters recommended by FREGENE, we set the mutation 

rate at 2.3e-8, the gene conversion rate at 4.5e-9 with a 500 bp gene conversion length, and no 

variants under selection. The average recombination rate was 1.3e-8, but FREGENE allows for 

realistic differences across the genome in recombination, with most (80%) recombination 

occurring in hotspots of length ~2,000 bp that encompassed 20% of the chromosome (Chadeau-

Hyam et al., 2008; Schaffner et al., 2005). It was critical to simulate patterns of LD that 

mimicked as closely as possible those observed in real human SNP data, as the lengths, 

distributions, and frequencies of truly autozygous ROHs and non-autozygous ROHs are 

influenced by the population size, the degree of real inbreeding in the population, and the LD 
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patterns between SNPs. For example, an isolated population with long haplotypes and long 

distance LD would exhibit a high proportion of long ROH even if few arose from recent 

inbreeding. For both the sequence and resulting SNP data parameters, we used SNP data from 

control subjects in the Molecular Genetics of Schizophrenia nonGAIN sample (Shi et al., 2009) 

as our empirical SNP data set to check the validity of the simulation. The empirical data was 

ascertained on an Affymetrix 6.0 SNP chip and contained ~770,000 SNPs across the ~2,770 Mb 

of the autosomal portion of the human genome that is 'SNP-mappable.'  

LD in data simulated under a neutral mutation-drift model is known to have much lower 

LD than is observed in human data (Reich et al., 2001; Schaffner et al., 2005). Both Reich et al. 

(2001) and Schaffner et al. (2005) found that one or two population bottlenecks between 800 to 

3,000 generations ago led to LD patterns that mimic data from a population of European 

heritage. Older bottlenecks led to less LD and more recent ones to more LD. Starting from the 

population of Ne=10,000 in mutation drift-equilibrium, we varied bottleneck parameters until we 

found those that mimicked real LD patterns when we sampled SNP data from the sequence. We 

found that a population bottleneck reduction from 10,000 to 800 individuals for 200 generations, 

followed by 2,000 generations of evolution back at 10,000 best mimicked the LD patterns seen 

in our empirical SNP data (see Figure 3.1), and similar to the results seen in Reich et al. (2001). 
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Figure 3.1 Observed LD within 50 kb using 5,000 Pairwise SNP Comparisons. LD patterns are 

measured by sampling the r2 of 5,000 SNP pairs up to 50 kb away. The lines represent Lowess 

curves that track changes in mean r2 as physical distance increases between SNPs. Empirical r2 

values are in blue, and simulated r2 values are in green. Because MAF strongly influences the r2 

between SNPs, a floor effect often occurs after short distances due to SNP pairs with large MAF 

differences, making it difficult to compare LD patterns between datasets. Therefore, we included 

both closely matched MAF SNP pairs and SNP pairs with minimum MAF > .05. Darker hues 

represent matched MAF pairs and lighter hues represent SNP pairs with minimum MAF > .05. 
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We then turned our attention to generating simulated data that led to similar lengths and 

frequency of ROHs as seen in our empirical SNP data. We found that reducing population size to 

6,500 (from 10,000) and selective sampling of individuals from that reduced population best 

mimicked the length of ROHs seen in our real data. In particular, we chose 1,000 individuals 

from the sequence data that closely matched the overall proportion of ROH seen in our empirical 

data across various ROH analyses. Thus, we simulated genetic sequence data that mimics as 

closely as possible the two parameters – LD and distribution of ROHs – central to the present 

investigation. Our sample of simulated sequence data contained 669,219 total variants, with 

436,564 having a minor allele frequency (MAF) > 1%, and on average one variant per 179 bp. 

3.2.3 Mapping of Autozygous Segments  

It would be ideal to keep track of autozygous segments through the course of our 

sequence simulation. Unfortunately, no sequence simulation program that we are aware of tracks 

autozygosity. As a substitute that will detect all but the shortest autozygous tracks, we identified 

autozygous segments by finding stretches of sequence data that were perfectly homozygous. To 

do this, we first used the genetic distance map derived from the FREGENE simulation to 

estimate the expected length of autozygous segments. By definition, both genetic strands making 

up an autozygous segment originate from a single common ancestor, however the length of this 

segment decreases on average over time due to recombination. Specifically, the expected length 

of an autozygous segment follows an exponential distribution with mean equal to 1/2g Morgans, 

where g is the number of generations since the common ancestor. Thus, the expected length of an 

autozygous segment caused by sib-sib inbreeding (g = 2, counting from the inbred offspring to 

the siblings who mate, and the mated siblings to their parents) is 1/4 Morgan or 25 cM, while the 

expected length of an autozygous segment originating from a common ancestor 50 generations in 
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the past is 1 cM (see Figure 3.2).



 

 41 

  

 

Figure 3.2 Distribution of Expected Autozygous Segment Lengths since Common Ancestor. The 

probability density of autozygosity lengths from a common ancestor follows an exponential 

distribution that depends on the number of generations since the common ancestor. We chose to 

examine autozygous segments that originate from a common ancestor within the past 20 

generations (in green) and within the last 50 generations (in blue). The dashed lines indicate the 

minimum length threshold that would capture 80% of these segments, with the grey area under 

the curve being the proportion of autozygous segments being captured above this threshold. 
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Because the shortening of autozygous lengths due to recombination occurs gradually 

across generations, any choice of distance threshold to define autozygosity is ultimately 

arbitrary. We chose two thresholds that were consonant with the lengths of homozygous runs 

being reported in the literature and that were realistically detectable using modern SNP 

platforms. The first (long) threshold captured 80% of autozygosity originating in common 

ancestors within the past 20 generations (~600 years in humans), and the second (short) 

threshold captured 80% of autozygosity originating within the past 50 generations (~1500 years ; 

Fenner, 2005). As shown in the areas under the curve in Figure 3.2, these thresholds correspond 

to a minimum genetic distance of 0.55 cM (~423 kb) for 20 generations back and 0.22 cM (~169 

kb) for 50 generations back, where the genetic distance derived from FREGENE recombination 

is 1.3 cM/Mb. By requiring segments in our sequence data to be completely homozygous, new 

mutations arising within the last 20 or 50 generations on either segment would cause regions to 

be missed that were truly autozygous. To ensure that autozygous segments were completely 

homozygous and therefore detectable with 100% fidelity, we allowed no new mutations to arise 

during the final 50 generations of the simulation. Such a ‘mutational freeze’ has a negligible 

impact on the resulting SNP data, as recent neutral mutations very rarely rise in frequency to be 

considered SNPs (MAF > 1%; Hedrick, 2011). On the other hand, the mutational freeze did 

affect sequence data, but given that sequence data was only used for inferring autozygosity, this 

strategy did not affect our conclusions. Within the past 20 generations, the average autozygous 

segment spanned 4,707 variants and 841 kb in length, with total autozygosity covering 0.36% of 

the sequence data. Within the past 50 generations, the average autozygous segment spanned 

1,862 variants and 334 kb in length, with total autozygosity covering 0.91% of the sequence 

data. 
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3.2.4 Extracting SNP Data from Sequence Data 

We extracted a subset of variants from the simulated sequence data to mimic several 

properties found in empirical SNP data measured on a modern, commonly used SNP platform 

(the Affymetrix 6.0 SNP chip). We first sampled a subset of SNPs that matched the MAF 

distribution from our empirical data (see figure 3.3). We then extracted SNPs that matched the 

spatial SNP density found in a 120 Mb portion of chromosome 5 (which was typical of other 

genomic regions) of our empirical SNP data, giving us 33,040 SNPs (See figure 3.4). We then 

added 'genotyping errors' through random sampling of the SNP data at a low (0.2%) and high 

(1%) rate, the low rate corresponding to error rates observed in Rabbee & Speed (2006) and the 

high rate corresponding to the error rate of a small number of duplicate genotyped individuals in 

our empirical data (data not shown). We used error probabilities informed by the discordant 

calling rates observed by Rabbee & Speed (2006), with heterozygous SNPs being called 

homozygous at a roughly threefold higher rate than homozygous SNPs being called 

heterozygous. Missingness was then added through random sampling by converting SNPs to 

missing values based on missingness rates (0.8%) seen in the empirical data. Finally, we applied 

standard GWAS cleaning procedures (dropping individuals with SNP missing rate > 5%, 

dropping SNPs with missingness rate > 2%, dropping SNPs with MAF < 1%, and dropping 

SNPs out of HWE where chi-square p < 0.0001; Sullivan & Purcell, 2008), resulting in a dataset 

of 30,113 SNPs in the low error rate data (2,927 SNPs removed), and 30,110 SNPs in the high 

error rate data (2,930 SNPs removed). PLINK, GERMLINE, and BEAGLE used these two SNP 

datasets for their ROH analyses. 
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Figure 3.3 MAF Distribution of Sequence and SNP Data Simulation  
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Figure 3.4 SNP Density Matching. After MAF pruning of the simulated sequence data, SNPs 

were drawn to closely match SNP base positions observed in empirical SNP data 
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3.2.5 ROH Detection Algorithms 

3.2.5.1 PLINK  

The –homozyg option in PLINK v1.07 (Purcell et al., 2007) makes ROH calls using a 

sliding window that scans along an individual’s SNP data to detect homozygous stretches. 

PLINK first determines whether a given SNP is potentially in a ROH. To call a SNP as part of a 

ROH, PLINK calculates the proportion of completely homozygous windows that encompass that 

SNP. For example, a SNP inside a 100 SNP window has 100 chances to be part of a homozygous 

stretch as the window slides across one SNP at a time. Using the default –homozyg-window-

threshold of 0.05, if 5% of these windows are completely homozygous, then the SNP will be 

included in the ROH. Finally, a ROH is called if the number of such “ROH SNPs” in a row 

surpasses a user-defined threshold in terms of SNPs (default=100) and/or kb distance 

(default=1,000). PLINK provides numerous other user-defined parameters, such as the size of 

the sliding window measured in units of SNP length (default=50), the number of heterozygous 

SNPs (default=1) allowed in the ROH, the number of missing SNPs (default=5) allowed in the 

ROH, and several other parameters detailed on the PLINK website (see 

http://pngu.mgh.harvard.edu/~purcell/plink/ and Table 3.1). Of note, the --homozyg-window-kb 

option in PLINK, which defines windows in terms of distance rather than SNPs, is currently non-

functional. 
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3.2.5.2 LD-Pruning 

PLINK does not account for MAF or LD in its algorithm. Aside from the ROH tuning 

parameters available in PLINK, taking into account MAF and LD in SNP data will also affect 

how ROH are identified. In particular, many low MAF SNPs in a row can increase the 

probability of chance (non-autozygous) ROH segments, and high LD within dense SNP regions 

can also have this effect. To minimize the probabilities of spurious ROH calls, we used LD-

pruned data (as suggested in the PLINK manual), such that we first removed SNPs with MAF < 

0.05, and then used PLINK’s --indep command to prune for LD at two levels, which we term 

“moderate” and “heavy” LD pruning. Moderate LD pruning removed SNPs within a 50 SNP 

window that had r2 > 0.5 (corresponding to a variance inflation factor, VIF, greater than 2) with 

all other SNPs in the window, removing 24,700 SNPs (5,413 SNPs remaining) within the low 

error SNP data, and removing 24,422 SNPs (5,688 SNPs remaining) within the high error SNP 

data. Heavy LD pruning removed SNPs within a 50 SNP window that had r2 > 0.09 with other 

SNPs (correspond to a VIF > 1.1), removing 28,743 SNPs (1,370 SNPs remaining) within the 

low error SNP data, and removing 28,732 SNPs (1,378 SNPs remaining) within the high error 

SNP data. We used VIF LD pruning because we found this procedure led to more consistent 

SNP densities across different SNP platforms than LD pruning based on pairwise comparisons of 

SNPs. Using these two levels of LD-pruned SNP data along with the unpruned SNP data, we ran 

a total of 192 ROH analyses in PLINK (2 autozygosity levels x 2 genotyping error levels x 3 LD-

pruning levels x 2 heterozygote allowances x 8 ROH SNP size thresholds), with specific 

parameters detailed in Table 3.1. We used SNP size ROH thresholds rather than kb length ROH 

thresholds in PLINK because the former outperformed the latter (data not shown), which is 
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likely because SNP size thresholds are more robust to the variance in SNP density across the 

genome.  

3.2.5.3 GERMLINE  

The principal use of GERMLINE (Gusev et al., 2009) is identity by descent (IBD) 

mapping between individuals, where ROH analysis is the special case of IBD within an 

individual. A ROH analysis in GERMLINE is carried out with the -homoz or -homoz-only 

command. For reasons of efficiency, GERMLINE breaks up SNP data into non-overlapping 

windows of a user-specified length in SNPs (default is 128 SNPs). Windows that are completely 

homozygous are tagged. If several tagged windows are in a row and surpass a user-defined 

length threshold in terms of genetic (cM) or physical (kb) distance, the region is called a ROH. 

We used minimum genetic distance rather than minimum kb for our ROH thresholds because 

genetic distance is likely to be more sensitive to variation in recombination rates across the 

genome. To accommodate various genetic distances, we set the window size threshold to be the 

expected number of SNPs for a given genetic distance. For example, given that our simulated 

data encompasses 156 cM, a 1 cM window size would be 193 SNPs in the low error SNP data 

(30,110 SNPs / 156 cM), but only 9 SNPs in the low error SNP data heavily pruned for LD 

(1,370 SNPs / 156 cM).  Because ROHs must be in multiples of the window size threshold, 

GERMLINE’s resolution of ROH start/end points is less fine grained than PLINK’s, and small 

autozygous segments may be missed by GERMLINE. Like PLINK, GERMLINE also allows for 

a user-defined number of heterozygous calls to exist in a window (other user-defined parameters 

are detailed at http://www.cs.columbia.edu/~gusev/germline/). Also like PLINK, GERMLINE 

does not account for SNP MAF or LD. Thus, we included the same MAF and LD pruned data 

subsets used in the PLINK analysis. We ran at total of 192 ROH analyses in GERMLINE (2 
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autozygosity levels x 2 genotyping error levels x 3 LD-pruning levels x 2 heterozygote 

allowances x 8 ROH cM size thresholds), with specific parameters detailed in Table 3.1. 

3.2.5.4 BEAGLE  

BEAGLE's ROH detection algorithm (Browning & Browning, 2010) uses a 

fundamentally different approach than PLINK or GERMLINE. BEAGLE employs a Hidden 

Markov Model (HMM) that incorporates LD between SNPs and haplotype probabilities from the 

entire sample when calling ROH segments (for details, see Browning & Browning, 2010). Two 

user-defined prior probabilities set the baseline expectation of detecting an autozygous segment 

in a single cM stretch of SNP data. The non-HBD to HBD transition rate is the prior probability 

per cM of a non-autozygous SNP becoming autozygous (default = 0.0001) (HBD stands for 

“homozygous by descent,” which is conceptually identical to what we term “autozygosity”). 

Lower values mean that autozygosity is expected to be less common. Conversely, the HBD to 

non-HBD transition rate is the prior probability per cM of an autozygous SNP becoming non-

autozygous (default = 1). Lower values mean that autozygous runs are expected to be shorter. 

BEAGLE outputs an individual x SNP matrix of posterior probabilities that each SNP is part of 

an autozygous segment.  

Because BEAGLE’s HBD program accounts for LD, we did not use pruned SNP data in 

the BEAGLE analysis. For prior parameters, we set the non-HBD to HBD transition rates of 

0.0001, 0.01, and 0.1, and set the HBD to non-HBD transition rates at 1, 0.5, and 0.25. It should 

be noted that this is a large range of priors, and that they include the default priors (Browning & 

Browning, 2010). As suggested in Browning and Browning (2010), to avoid false negatives, we 

also used the maximum posterior probability for each SNP across 10 independent iterations of 

their program to compare with results from a single iteration. In all, we ran at total of 72 
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BEAGLE analyses (2 autozygosity levels x 2 genotyping error levels x 9 prior probabilities x 2 

iteration levels).  

All simulations, statistical programming, and graphing were done using R statistical 

software 2.11.1 (http://r-project.org). 

3.2.6 Comparison of True Autozygosity to Detected ROH 

To get an estimate of the type 1 error rates (detecting a ROH that is not autozygous) and 

type 2 error rates (failing to detect an autozygous ROH) for each program, we compared known 

autozygosity from the sequence data (as described above) to detected ROH from each analysis. 

These two types of errors were called on a per-SNP rather than per-ROH basis, as calls can be 

correct for one part of an autozygous segment and wrong for another. To calculate the type 1 

error rate, we summed the total number of SNPs that were type 1 errors and divided it by the 

total number of non-autozygous SNPs. To calculate the type 2 error rate, we summed the total 

number of SNPs that were type 2 errors and divided it by the total number of autozygous SNPs. 

We then estimated d', an index of measurement sensitivity in signal detection that incorporates 

both type 1 and type 2 error rates (higher d' values mean greater sensitivity). d' is estimated as: 

!(1 - type 2 error rate) - !(type 1 error rate), where ! is the distribution function of a standard 

normal, which converts a proportion to a Z-score value. Our estimated d' values are included in 

the table of our top regression power estimates (see Results). 

3.2.7 Estimation of Regression Power  

While d' measurements are a good estimate of measurement sensitivity, it has limitations. 

First, as the type 1 or type 2 error rate approaches zero, d' approaches infinity. Second, two 

identical d’ estimates can have very different ramifications on the actual number of errors made 

if the prior probabilities of the errors differ, making it difficult to know which ratio of type 1 to 



 

 52 

type 2 error rates is optimal. An alternative and preferable method to d’ is to ask what ratio of 

type 1 to type 2 errors would maximize statistical power to detect a relationship between whole-

genome autozygosity burden and a phenotype (assuming some base rate of autozygosity). This 

approach not only circumvents the limitations surrounding d' estimates, but also addresses a 

commonly tested hypothesis in clinical ROH research. Furthermore, power results derived from 

testing whole-genome ROH burden apply to single ROH association hypotheses (e.g. ROH 

mapping) as well because the error probabilities in detecting autozygosity are equivalent at the 

single ROH level and at the whole-genome level. 

To estimate statistical power of a whole-genome ROH burden analysis informed by the 

type 1 and type 2 error rates, we simulated a sample of 2,000 individuals, with every individual’s 

genome split into 'potential' autozygous segments of equal length (7,565 segments for the 20 

generation autozygosity map (3,200 Mb/423 kb) and 18,935 segments for the 50 generation 

autozygosity map (3,200 Mb/169 kb)). Each segment had a probability of being autozygous at 

the rate observed in our simulated sequence data (0.36% within 20 generations and 0.91% within 

50 generations). While the true level of autozygosity in modern outbred populations is unknown, 

these base rates are likely to be close to the true level because the simulation parameters and 

selective sampling of the sequence data were chosen to mimic the level of LD and distribution of 

ROHs found in modern European populations. A continuous phenotype was created for each 

individual such that the summed autozygous segments within individuals accounted for a small 

percentage (1%) of the variance of their phenotype score. The choice of the variance accounted 

for (1% in this case) is purely arbitrary; other choices would raise or lower the absolute levels of 

detected power but have no effect on the relative differences between various estimates of 

statistical power, and therefore would have no influence on our final conclusions. We then 
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simulated true calls, false calls (type 1 errors), true non-calls, and false non-calls (type 2 errors) 

using the observed error rates from each ROH analysis. We summed the called ROHs for each 

individual (made up of ROHs that are both true positives and type 1 errors) and regressed the 

simulated phenotype on this sum. To derive our power estimates, we repeated our simulated 

regression 1,000 times for each analysis. Regression power was defined as the proportion of 

trials associated with a positive slope and p-value < 0.05, so a power estimate of 0.5 would mean 

that 500 of the 1,000 simulations positively associated the simulated phenotype with overall 

ROH burden.  

 

3.3 Results 

Overall, PLINK consistently generated the highest regression power estimates for 

detecting autozygosity, outperforming GERMLINE and BEAGLE. Figures 3.5 and 3.6 show the 

range of regression power estimates for PLINK, GERMLINE, and BEAGLE (See figures 3.7, 

3.8, 3.9, and 3.10 for type 1 and type 2 error rates). In general, PLINK and GERMLINE power 

estimates were highly sensitive to their tuning parameters, whereas BEAGLE power estimates 

were insensitive to all prior probability parameters. For the PLINK results, power was highest 

when using moderately LD-pruned SNP data, with un-pruned and heavily LD-pruned SNP data 

performing below the top power estimates. Not surprisingly, higher genotyping error rates 

generally led to lower regression power estimates in PLINK and GERMLINE. 
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3.3.1 Legend for Figure 3.5  

Each graph represents power estimates for each program using unpruned, moderate LD-pruned, 

or heavy LD-pruned SNP data across different minimum SNP (PLINK) or cM (GERMLINE) 

lengths. The color of each line represents power estimates with respect to autozygosity within the 

past 20 and 50 generations, and within low and high genotyping error rates, and are as follows: 

Dark red – Autozygosity up to 20 generations and low genotyping error rate 

Light red – Autozygosity up to 20 generations and high genotyping error rate 

Dark green – Autozygosity up to 50 generations and low genotyping error rate 

Light green – Autozygosity up to 50 generations and high genotyping error rate 

Power estimates allowing for no heterozygotes are represented by solid lines, whereas estimates 

allowing for one heterozygote are represented by dotted lines. The horizontal dashed lines 

represent the initial maximum power estimates with respect to autozygosity within the past 20 

and 50 generations, and within low and high genotyping error rates. 
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Figure 3.6 Regression Power Results for BEAGLE. See Legend for Figure 3.6 for details. 
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3.3.2 Legend for Figure 3.6  

Each graph represents power estimates with respect to autozygosity within the past 20 and 50 

generations. The color of each line represents the non-HBD to HBD transition rate within low 

and high genotyping error rates, with varying hues reflecting different rates. Solid lines represent 

power estimates of the maximum posterior probability from 10 BEAGLE iterations, whereas 

dotted lines represent the estimates from a single BEAGLE iteration. The horizontal dashed lines 

represent the initial maximum power estimates with respect to autozygosity within the past 20 

and 50 generations, and within low and high genotyping error rates. 
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3.3.3 Legend for Figures 3.7 and 3.8  

Figure 3.7 represents type 1 and type 2 errors to detect autozygosity within the past 20 

generations. Figure 3.8 represents type 1 and type 2 errors to detect autozygosity within the past 

50 generations. Type 1 and type 2 error rates for each program are shown using unpruned, 

moderately LD-pruned, or heavily LD-pruned SNP data across different minimum SNP (PLINK) 

or cM (GERMLINE) lengths. Green lines represent type 1 error rates and are measured along the 

X-axis, while red lines represent type 2 error rates and are measured along the Z-axis. Color hues 

are as follows: 

Dark green and dark red – low genotyping error rate 

Light green and light red – high genotyping error rate 

Type 1 and type 2 error rates allowing for no heterozygotes are represented by solid lines, 

whereas error rates allowing for one heterozygote are represented by dotted lines. 
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3.3.4 Legend for Figure 3.9  

Type 1 and type 2 error rates for BEAGLE are shown using for autozygosity within 20 and 50 

generations, and within high and low genotyping error rates. Green lines represent type 1 error 

rates and are measured along the X-axis, while red lines represent type 2 error rates and are 

measured along the Z-axis. Color hues are as follows: 

Dark green and dark red – non-HBD to HBD transition rate of 0.1 

Green and red – non-HBD to HBD transition rate of 0.01 

Light green and light red – non-HBD to HBD transition rate of 0.001 

Solid lines represent type 1 and type 2 error rates from the maximum probability of 10 BEAGLE 

iterations, whereas dotted lines represent Type 1 and type 2 error rates of a single BEAGLE 

iteration. 
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Given these initial results, we decided to look in more detail within the PLINK ROH 

analyses for the optimum level of LD-pruning and minimum SNP threshold. In addition to 

moderate LD-pruning, we included “light” LD-pruning, where we removed SNPs that had r2 > 

0.9 with other SNPs in a 50 SNP window (VIF > 10), removing 19,662 SNPs (10,451 SNPs 

remaining) within the low error SNP data, and removing 17,756 SNPs (12,354 SNPs remaining) 

within the high error SNP data. We also included “moderate-heavy” LD-pruning, where we 

removed SNPs that had r2 > 0.25 in a 50 SNP window (VIF > 1.33), removing 26,375 SNPs 

(3,738 SNPs remaining) within the low error SNP data, and removing 26,213 SNPs (3,897 SNPs 

remaining) within the high error SNP data. We also varied the minimum SNP threshold between 

10 and 125 SNPs in increments of 5 SNPs.  

The fine-scale results from PLINK (Figure 3.10) show that power was maximized using 

light to moderate LD-pruning, with the power from moderate-heavy LD-pruning peaking well 

below the maximum power estimates. Comparisons with the results presented in Figure 3.10 

show that both light and moderate LD-pruning are roughly equivalent in terms of regression 

power. The effect of allowing for a heterozygote call often depended on the minimum length of 

called ROH, but with respect to the highest power results, allowing for heterozygote calls never 

performed better than allowing for no heterozygotes. Finally, the optimum SNP threshold for 

calling ROHs depended on how ancient the autozygosity was. When using moderate LD-pruned 

data, a 45 SNP minimum threshold worked best to detect autozygosity within the past 20 

generations, whereas a 35 SNP minimum threshold worked best to detect autozygosity within the 

past 50 generations. In general, higher minimum SNP thresholds (and therefore longer detected 

ROH segments) detect recent autozygosity better, whereas lower thresholds better detect ancient 

autozygosity. This is expected as autozygous segments are broken into shorter lengths due to 
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recombination over generational time.  Table 3.2 lists the top regression power results within the 

past 20 and 50 generations for both high and low genotyping error rates. 
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3.3.5 Legend for Figure 3.10 

Each graph represents power estimates for PLINK using light LD-pruned, moderate LD-pruned, 

or moderate-heavy LD-pruned SNP data across different minimum SNP (PLINK). The top 

graphs represent power estimates with respect to autozygosity within the past 20 generations, and 

the bottom graphs represent autozygosity within the past 50 generations. The color of each line is 

identical to those used in figure 3, and are as follows: 

Dark red – Autozygosity up to 20 generations and low genotyping error rate 

Light red – Autozygosity up to 20 generations and high genotyping error rate 

Dark green – Autozygosity up to 50 generations and low genotyping error rate 

Light green – Autozygosity up to 50 generations and high genotyping error rate 

Power estimates allowing for no heterozygotes are represented by solid lines, whereas estimates 

allowing for one heterozygote are represented by dotted lines. The horizontal dashed lines 

represent maximum power estimates with respect to autozygosity within the past 20 and 50 

generations, and within low and high genotyping error rates, and the large diamond points 

represent the SNP threshold where PLINK reaches the maximum power estimates. 
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Table 3.2 Top Regression Power Results 

Program Power Length Est kb Het ! " d' LD-
pruning 

Autozygosity within 20 generations (low genotyping error) 
PLINK 0.696 50 SNPs 1108 0 0.003 0.33 3.19 Moderate 
PLINK 0.691 80 SNPs 919 0 0.003 0.31 3.2 Light 
PLINK 0.670 55 SNPs 1219 0 0.002 0.45 3.02 Moderate 
PLINK 0.662 80 SNPs 918 1 0.005 0.23 3.28 Light 
Autozygosity within 20 generations (high genotyping error) 
PLINK 0.657 45 SNPs 949 0 0.004 0.29 3.19 Moderate 
PLINK 0.636 55 SNPs 1160 0 0.002 0.47 2.97 Moderate 
PLINK 0.628 50 SNPs 1054 0 0.003 0.37 3.07 Moderate 
PLINK 0.608 60 SNPs 1265 1 0.003 0.41 3.01 Moderate 
Autozygosity within 50 generations (low genotyping error) 
PLINK 0.725 65 SNPs 746 0 0.005 0.40 2.83 Light 
PLINK 0.712 50 SNPs 574 0 0.01 0.23 3.06 Light 
PLINK 0.710 60 SNPs 689 0 0.006 0.36 2.88 Light 
PLINK 0.709 45 SNPs 517 0 0.012 0.18 3.14 Light 
Autozygosity within 50 generations (high genotyping error) 
PLINK 0.671 35 SNPs 738 0 0.007 0.38 2.76 Moderate 
PLINK 0.652 40 SNPs 844 0 0.004 0.47 2.69 Moderate 
PLINK 0.649 45 SNPs 949 0 0.003 0.55 2.64 Moderate 
PLINK 0.649 80 SNPs 777 1 0.006 0.40 2.73 Light 
 

Listed are the top four repression power results for detecting autozygosity within the past 20 and 

50 generations, and within low and high SNP genotyping error. Low genotyping error = 0.2% 

genotyping error rate. High genotyping error = 1% genotyping error rate. Length = Minimum 

SNP or cM length to call a segment. Est kb = Minimum expected kb distance for the given 

length. Het = Number of Heterozygotes allowed in a segment. ! = Type 1 error rate. " = Type 2 

error rate. d' = d-prime estimate. LD-pruning = Level of LD-pruning. Moderate = Removal of 

SNPs within a 50 SNP window that had VIF greater than 2 (i.e. --indep 50 5 2 in PLINK). Light 

= Removal of SNPs within a 50 SNP window that had VIF greater than 10 (i.e. --indep 50 5 10 

in PLINK).  
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Regression power estimates for GERMLINE were similar in pattern but consistently 

lower than power estimates for PLINK, which was likely driven by the lower start/end resolution 

of ROH calling in GERMLINE (see Methods). To ensure that the discrepancy between 

GERMLINE and PLINK results were not due to the different ways that ROH length thresholds 

were defined, we also looked at minimum SNP thresholds in GERMLINE (as opposed to cM 

length), finding virtually identical results to PLINK, but with slightly lower regression power 

estimates at all thresholds (data not shown).  

BEAGLE was very conservative in detecting autozygous segments, with consistently 

high type 2 error rates despite using the maximum posterior probability from 10 iterations and a 

reduced threshold for calling ROH to any posterior probability greater than 10% (a 50% 

posterior probability threshold was used in Browning & Browning (2010). In short, applying 

liberal ROH calling parameters did not significantly improve the conservative estimates for 

BEAGLE.  

3.3.6 Computational Time 

There were major differences in computational time between the three programs. For our 

120 Mb data using 1,000 individuals, a single PLINK and GERMLINE ROH analysis took under 

30 seconds, whereas a single BEAGLE HBD analysis took ~150 minutes (about half this time 

was taken to phase the data - a necessary step in the way their algorithm was written). Both 

PLINK and GERMLINE analysis times scale up linearly with respect to distance, so a whole-

genome analysis for 1,000 individuals should take under 11 minutes. On the other hand, 

BEAGLE analysis run time scales exponentially, so while BEAGLE runs a separate analysis on 

each chromosome, chromosome size and sample size greatly affects the computational time.  
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3.4 Discussion 

By simulating sequence and SNP data to match important population genetic properties 

found in empirical SNP data, we were able to compare the performance of ROH detection 

programs to identify true levels of autozygosity expected in large, outbred populations of 

European heritage. PLINK consistently outperformed both GERMLINE and BEAGLE, 

producing higher regression power estimates for detecting autozygosity within 20 and 50 

generations, regardless of the genotyping error rate. While we found, as expected, that 

GERMLINE performed worse than PLINK due to the lower resolution of start/end points of 

ROHs, we were surprised by the lower performance of BEAGLE. Specifically, we expected that 

the incorporation of MAF and LD information in BEAGLE’s hidden markov model to result in 

higher accuracy to detect autozygosity. However, this did not appear to be the case. Rather, 

BEAGLE was consistently conservative, and changing the tuning parameters did not alter this. 

As currently designed, at least, BEAGLE appears optimized to detect rather long autozygous 

segments arising from a recent common ancestor, but has not been designed to detect the more 

ambiguous autozygous signals from distant common ancestors.  

3.4.1 Recommendations  

Our results suggest that PLINK is the most suitable program for detecting autozygosity 

arising from distant ancestors (see Table 3.3). Our results also demonstrate that removing low 

MAF (< 0.05) SNPs and removing SNPs through light-to-moderate LD-pruning (e.g., VIF 

between 2 and 10) prior to the analysis minimizes the trade-off between the exclusion of non-

autozygous ROHs and the cost of missing shorter autozygous ROHs. In particular, LD-pruning 

improves detection accuracy by removing redundant SNPs within SNP-dense regions, making 

SNP coverage more uniform with respect to recombination distance and allowing ROH calls to 



 

!

70 

be less dependent on the variation in SNP density across platforms. Moreover, our results 

suggest not allowing any heterozygote SNPs to exist in a called ROH. Our recommendations 

regarding the minimum SNP threshold, however, vary slightly depending on what strength of LD 

pruning is used and on the time since the common ancestor of the autozygous segment. For 

example, to detect autozygosity arising from a common ancestor within the past 50 generations, 

a 65 SNP minimum threshold is preferred when using light LD-pruning, while a 35 SNP 

minimum threshold is preferred when using moderate LD-pruning. Both thresholds cover a 

minimum physical distance of ~750 kb, but moderate LD-pruning retains fewer SNPs across that 

distance. Analyses geared towards detecting more recent autozygosity should increase the 

minimum SNP length threshold. When we examined autozygosity arising from common 

ancestors within the past 20 generations, a 45 to 50 SNP minimum threshold performed best 

when using moderate LD-pruning, depending on how much error is expected in the SNP data. 

Because our recommendations include LD-pruning, the increased SNP density of modern 

platforms should have a minimal effect on our recommendations, as the level of LD between 

SNPs remains roughly constant regardless of SNP density.     
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Table 3.3 Top Recommendations for Detecting Autozygosity 

Autozygosity 
Detection 

SNP data Top Program Chosen parameters 

Within the past 
20 generations 
 

Low 
genotyping 
error 

PLINK - Moderate LD-pruning 
- 50 SNP threshold 
- No heterozygote allowed 

Within the past 
20 generations 
 

High 
genotyping 
error 

PLINK - Moderate LD-pruning 
- 45 SNP threshold 
- No heterozygote allowed 

Within the past 
50 generations 
 

Low 
genotyping 
error 

PLINK - Light LD-pruning 
- 65 SNP threshold 
- No heterozygote allowed 

Within the past 
50 generations 
 

High 
genotyping 
error 

PLINK - Moderate LD-pruning 
- 35 SNP threshold 
- No heterozygote allowed 

 

Low genotyping error = 0.2% genotyping error rate. High genotyping error = 1% genotyping 

error rate. Moderate LD-pruning = Removal of SNPs within a 50 SNP window that had VIF 

greater than 2 (i.e. --indep 50 5 2 in PLINK). Light LD-pruning = Removal of SNPs within a 50 

SNP window that had VIF greater than 10 (i.e. --indep 50 5 10 in PLINK).  
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3.4.2 Limitations  

Despite our efforts to simulate realistic sequence and SNP data, additional factors that 

occur in real data, such as genotyping plate effects, autozygous runs caused by positive selection, 

hemizygous deletions, SNP-poor centromeres, and uniparental isodisomy (two copies of the 

same chromosome from a single parent) were not simulated and may affect estimates of ROH in 

real data. We did not investigate several additional questions, such as the effects of our 

recommendations for detecting ROHs in non-European heritage or isolated populations.  We also 

did not investigate optimal thresholds/program for detecting more recent or more ancient 

autozygosity. However, autozygosity arising from more recent ancestors becomes increasingly 

easy to detect, and most programs/thresholds should detect it with very high fidelity. 

Autozygosity arising from more ancient common ancestors is more difficult to detect but may 

nevertheless be detectable as SNP chips become denser. However, the variation between 

individuals in overall burden of such ancient autozygosity becomes very small (Keller et al., 

2011), and thus there are diminishing returns from attempting to detect such ancient 

autozygosity, at least with respect to analyses investigating overall ROH burden.  

3.4.3 Conclusion 

PLINK has been the most commonly used ROH detection program to date. However, 

only one study analyzed data that was pruned for LD (Spain et al., 2009), which we have found 

to be an important step for improving the accuracy of detecting autozygous ROHs. Two studies 

adjusted their minimum ROH SNP threshold upward to account for LD creating ROH by chance 

(Enciso-Mora et al., 2010; Hosking et al., 2010), but our results show that without explicit LD-

pruning, the increase in detection error cannot be overcome by larger ROH size thresholds. 

While thresholds for calling ROHs varied across previous studies due to the lack of consensus 
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criteria, most previous studies adopted more liberal thresholds than our results suggested are 

optimal. Thus, power in previous studies was likely to be lower than optimal due to inclusion of 

many non-autozygous ROHs. 

The current study is the first of its kind to directly assess the ability of current ROH 

detection programs to estimate genome-wide autozygosity. Our results should apply equally well 

to research on autozygosity using whole-genome ROH burden or single ROH association 

mapping. None of the programs tested perfectly detects autozygosity, and new parameters and 

algorithms may further minimize detection error and increase sensitivity to detect autozygous 

segments. Until then, the results in this study represent an important step for developing working 

'consensus criteria' for defining ROH.     
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Chapter 4 

The Effect of Genome-Wide Autozygosity on General Cognitive Ability 

 

 

4.1 Background 

General intelligence, traditionally measured through IQ, is a well-studied quantitative 

trait that correlates strongly with almost all measures of cognitive ability and maintains strong 

consistency across different IQ measurements (Carroll, 1993; Johnson, Bouchard, Krueger, 

McGue, & Gottesman, 2004; Johnson, Nijenhuis, & Bouchard, 2008). From a genetic standpoint, 

decades of behavioral genetic research on IQ have shown moderate to high heritability estimates 

(see Erlenmeyer-Kimling & Jarvik, 1963 and Bouchard & McGue, 1981 for reviews) and 

consistency of heritability across development (Deary et al., 2012; Deary, Johnson, & Houlihan, 

2009), both of which suggest a robust genetic component underlying individual differences in 

IQ. From a practical standpoint, there are salient reasons to elucidate the genetic underpinnings 

of IQ, as it is found to be a strong predictor of many life outcomes, such as health, longevity, 

social mobility, and occupational success (Batty, Deary, & Gottfredson, 2007; Deary, 2012).  

Recent research has found that the genetic variation in general intelligence is highly 

polygenic; that is, no single gene or small set of genes has a significant effect (Butcher, Davis, 

Craig, & Plomin, 2008; Cirulli et al., 2010; Davis et al., 2010; Need et al., 2009), whereas the 

accumulation of small genetic effects across the genome explain a substantial proportion (40-

50%) of the phenotypic variance of IQ (Chabris et al., 2012 ; Davies et al., 2011). Genome-wide 

effects of common SNPs under a polygenic inheritance framework, however, are unable to infer 

the contribution of non-additive recessive genetic variation, as the effects of recessive or partially 
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recessive variants are not fully accounted for. One potential driver of non-additive variation is 

through directional dominance, where selection has purged out additive deleterious variants, 

leaving a higher pool of recessive variants in the population than expected (Morton, 1978). As a 

result, the effects of directional dominance can be revealed through inbreeding depression, where 

the offspring of closely genetic relatives show higher rates or disorder and lower scores on 

fitness-related traits due to the expression of recessive variants. The detrimental effects of 

inbreeding depression have been well documented in non-human literature (DeRose & Roff, 

1999), form the basis of many rare familial disorders, and have been found in some complex 

disorders (Lebel & Gallagher, 1989; Rudan et al., 2003; Rudan et al., 2004). With respect to IQ, 

studies have shown that offspring of consanguineous marriages have lower IQ scores than the 

general population, supporting the role of inbreeding depression in general intelligence (Afzal, 

1988; Afzal, 1993; Agrawal, Sinha, & Jensen, 1984; Morton, 1978; Woodley, 2009). 

4.1.1 Autozygosity and Froh 

At the genetic level, inbreeding depression is a result of autozygosity, where stretches of 

two homologous chromosomes in the same individual are identical by descent. While highly 

inbred individuals will have a substantial proportion of their genome as autozygous (e.g. first 

cousin inbreeding will lead to 6.25% genome-wide autozygosity on average), autozygosity can 

still occur in outbred populations, albeit at lower levels as the common ancestor of an autozygous 

stretch can go back dozens of generations. With the advent of high-density SNP arrays, recent 

research has shown that detecting Runs of Homozygosity (ROH) on genome-wide SNP arrays 

provides the most informative measure of autozygosity, outperforming the inbreeding coefficient 

F (a measure of how overall homozygosity rates compare to Hardy-Weinberg expectations) and 

known pedigrees (Carothers et al., 2006; Keller et al., 2011). Genome-wide autozygosity burden, 
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termed here as Froh, is calculated by determining the percent of the genome made up of 

autozygous ROH. 

To date, a number of studies have examined the effect of Froh burden and individual 

ROH regions on case/control and quantitative phenotypes, finding only a few significant results 

(see Ku, Naidoo, Teo, & Pawitan, 2011 for a review). However, recent simulation work has 

shown that the small amount of variation of autozygous ROH in outbred populations requires 

sample sizes ranging from 20,000 to 60,000 to achieve adequate power when testing the 

relationship of distant inbreeding to phenotypic variation (Keller et al., 2011).  

4.1.2  Overview of Current Study 

With this in mind, the current study has drawn together genotype and IQ data from nine 

separate datasets, combining to a total sample size of 4,360 individuals. Despite being well 

below the suggested sample size, this is the first study to date that assesses the relationship of IQ 

to autozygosity using dense genome-wide SNP data, and at the very least can indicate whether or 

not there is a trend towards increasing autozygosity associating with lower IQ. Briefly, the 

current study assesses the prediction that increased autozygosity burden, or Froh, will associate 

with lower IQ scores across the normal range. In addition, effects of autozygosity frequency and 

length are also assessed to see if more recent and/or rare autozygous segments associate with 

lower IQ scores. Genome-wide ROH mapping is then examined to see if specific regions of the 

genome associate with IQ when autozygous. Finally, a new method is introduced whereby ROH 

mapping regions are rank-ordered by significance and tested for an excess of positive or negative 

effects, with promising subsets of regions examined through cross-validation to see if Froh 

burden restricted to a smaller subset of the genome can improve IQ prediction. 
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4.2 Methods 

Data were ascertained from five separate projects conducted across five geographical 

regions: the GAIN International Multi-Center ADHD Genetics Project (Northern Europe, British 

Islands, Spain), the Brisbane Adolescent Twin Study (Australia), the Lothian Mental Survey 

(Scotland), the Manchester and Newcastle longitudinal studies of cognitive aging (England), and 

the IBG study (Colorado, USA). All subjects in the final samples were of European descent. 

Descriptive statistics for IQ, age, and sex for each sample are presented in Table 4.1. 
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4.2.1 GAIN IMAGE Project 

4.2.1.1 Sample 

  Data from the IMAGE samples consisted of 958 parent-child trios (n=2,803) from the 

from the International Multisite ADHD Genetics project, which has the goal of associating SNP 

markers with ADHD. European Caucasian subjects were recruited from 12 specialist centers in 

Northern Europe (Belgium [n=108], Germany [n=325], Holland [n=926], and Switzerland 

[n=77]), the British Isles (United Kingdom [n=393] and Ireland [n=257]), Spain [n=209], and 

Israel [n=508]. No IQ data was collected in Israel and so it was not analyzed in this study. Entry 

criteria for probands included: (a) clinical diagnosis of DSM-IV combined subtype ADHD; (b) 

IQ over 70; (c) aged 6-17 years; (d) one or more sibling(s) in the same age range; (e) both 

parents available to provide DNA sample or one parent available plus two or more siblings; (f) 

free of single-gene disorders known to be associated with ADHD; (g) free of neurological 

disease and damage; (h) living at home with at least one biological parent and one full sibling; 

and (i) not meeting criteria for autism or Asperger's syndrome. The age range for probands was 5 

to 19 years (mean=11, s.d.=2.7). Ethical approval for the study was obtained from the National 

Institute of Health registered ethical review boards for each center, and informed consent was 

obtained from all parents and most children. From this initial sample, IQ and genotype data were 

available from 626 probands. The sample was split into three separate datasets reflecting data 

collected in Northern Europe, the British Isles, and Spain.  

4.2.1.2 IQ Scales 

Four subtests (Vocabulary, Similarities, Block Design, and Picture Completion) from 

either the WISC-III (Wechsler & Corporation, 1991) or the WAIS-III (Wechsler & Corporation, 

1997) (depending on subject’s ages) were used to estimate full-scale IQ. These subtests correlate 



 

!

80 

between .90 and .95 with Full-scale IQ. All IQ scores were corrected for participants’ age 

(mean=100.7, s.d.=15.7). 

4.2.1.3 Genotyping 

Genomic DNA was isolated from whole blood and genotyped on the Perlegen 600K 

array. All data was downloaded, with permission, from the publicly available database for 

Gentoypes and Phenotypes (dbGaP). 438,492 SNPs were available from the initial SNP filtering 

(QC) implemented on the data. Of note, none of the filters implemented in the initial SNP set 

were stricter than the QC parameters implemented in the current analysis.  

4.2.2 Brisbane Adolescent Twin Study 

4.2.2.1 Sample 

 The Brisbane Adolescent Twin Study sample consists of 3,899 Australian monozygotic 

and dizygotic twins and twin siblings from 1,324 nuclear families (Wright & Martin, 2004). 

Twins were recruited in 1992 and again in 1998 through primary and secondary schools in South 

East Queensland, Australia as well as through the Australian Twin Registry (Hopper, 2002). 

From this initial sample, IQ and genotype data were available for 1,005 individuals. An 

individual was chosen from each family by retaining the sibling with fewest missing genotypes 

was chosen, resulting in 540 unrelated individuals for analysis. Participants were 12-25 years old 

(mean=18.44, s.d.=2.49) when they took the IQ battery. Subjects who had a history of significant 

head injury, neurological or psychiatric illness, substance dependence, or were currently taking 

long-term medications with central nervous system effects were excluded. Informed consent was 

collected from participants and their parents, and all procedures and protocols were reviewed and 

approved by the QIMR Human Research Ethics Committee (for additional details, see Wright & 

Martin, 2004).  
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4.2.2.2 IQ Scales 

Participants came to the lab for in-person assessments four times; full-scale IQ was 

assessed using a shortened version of the Multidimensional Aptitude Battery, which included 

three verbal subtests (Information, Arithmetic, Vocabulary) and two Performance subtests 

(Spatial and Object Assembly). The MAB was patterned after the WAIS-R and, as a result, 

possesses good psychometric properties (Gignac, 2006; Jackson, 1998). 

4.2.2.3 Genotyping 

Genomic DNA was derived from whole blood and genotyped on the Illumina 610-Quadv1 array. 

Genotype calls were made using the BRLMM algorithm, resulting in 559,712 SNPs available for 

analysis.   

4.2.3 Lothian Mental Survey 

4.2.3.1 Sample 

Participants in the Lothian Mental Survey were part of the 1921 Lothian Birth Cohort 

(n=550) and the 1936 Lothian Birth Cohort (n=1091) from the Scottish Mental Surveys and 

follow-up studies (Deary, Whiteman, Starr, Whalley, & Fox, 2004; Harris et al., 2007). The 

following inclusion criteria were applied: (a) cognitive ability scores were available in the late 

age cohort; (b) there was no history of dementia; (c) Mini-Mental State Examination (Crum, 

Anthony, Bassett, & Folstein, 1993) score was 24 or greater; (d) SNP genotyping was successful. 

From this initial sample, IQ and genotype data were available for 526 individuals in the 1921 

Lothian Birth Cohort and 1050 individuals in the 1936 Lothian Birth Cohort. Age ranges are 

detailed below in the description of IQ scales. For both Lothian Birth Cohorts, ethical approval 

was obtained from the Lothian Research Ethics Committee. Additional approval for the 1936 

Lothian Birth Cohort was obtained from Scotland’s Multicenter Research Ethics Committee. 
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4.2.3.2 IQ Scales 

Details of cognitive scales have been described elsewhere (Deary et al., 2004; Harris et 

al., 2007). In both samples, IQ was examined around age 11 as well as around age 79 (1921 

Lothian birth Cohort) and around age 70 (1936 Lothian Birth Cohort). However, because age is 

controlled for as a covariate in all our analyses, only scores from the more extensive IQ 

examination at older ages were used. Participants in the 1921 Lothian Birth Cohort completed a 

battery of cognitive tests: The Moray House Test (no 12), Ravens Standard Progressive Matrices 

(ref 19 in Davies), Verbal Fluency (ref 20) and logical Memory (ref 21), and the National Adult 

Reading Test. Participants in the 1936 Lothian Birth Cohort completed a similar battery of 

cognitive tests: The Moray House Test (no 12), a subset of WAIS-III tests consisting of Digit 

Symbol Coding, Block Design, Matrix Reasoning, Digit Span Backwards, Symbol Search, and 

Letter Numbering, as well as the National Adult Reading Test.  

4.2.3.3 Genotyping 

Genomic DNA was isolated from whole blood and genotyped on the Illumina 610-

Quadv1 array. Genotype calls were made using the BRLMM algorithm, resulting in 599,011 

SNPs available for analysis.   

4.2.4 Longitudinal Cognitive Aging Cohorts  

4.2.4.1 Sample 

From 1983 to 2003, 6,063 participants from Greater Manchester and Newcastle and were 

recruited by the Manchester Age and Cognitive Performance Research Center to study 

longitudinal changes in the cognitive function of older adults. Over this period, participants took 

the same battery of cognitive tests on two separate occasions, which have been averaged for the 

current study. IQ and genotype data were available for 860 unrelated individuals in the Greater 
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Manchester sample, and 840 unrelated individuals in the Newcastle sample. Participant age was 

also averaged for both testing occasions, with an age range of 41-86 years old (mean=65.25, 

s.d.=6.31). Ethical approval was obtained from the University of Manchester. 

4.2.4.2 IQ Scales 

Details of cognitive scales have been described elsewhere (Rabbitt et al., 2004). For the 

current study, scores from the Cattell and Cattell Culture Fair Intelligence tests were used to 

measure IQ, which correspond to the fluid measure on intelligence. While measures of 

crystallized intelligence were not used from the IQ battery, it is worthwhile to note that all IQ 

measures have been standardized within dataset, so the heterogeneity of measurements should be 

unbiased.   

4.2.4.3 Genotyping 

Genomic DNA was isolated from whole blood and genotyped on the Illumina 610-

Quadv1 array. Genotype calls were made using the BRLMM algorithm, resulting in 599,011 

SNPs available for analysis. The values are the same as the Lothian Birth Cohort samples, as 

genotyping and SNP calling metrics were conducted at the same site (Davies et al., 2011). 

4.2.5 CADD Project 

4.2.5.1 Sample 

Participants in this sample are a subset from the Colorado Center on Antisocial Drug 

Dependence (CADD). None of the participants comprised the clinically ascertained cohort of the 

CADD sample, but include participants in subsets of the CADD from the Colorado Twin Study 

(CTS), Longitudinal Twin Study (LTS), and Colorado Adoption Project (CAP). Further details 

on the ascertainment and informed consent of the CADD sample is found in Rhea, Gross, 

Haberstick, & Corley (2006). After ensuring all individuals included were unrelated, IQ and 
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genotype data were available for 301 individuals. Participants were 12-19 years old 

(mean=15.91, s.d.=1.53) when they took the IQ test.  

4.2.5.2 IQ Scales 

For individuals age 16 or older, IQ was assessed using the WAIS-III (Wechsler & 

Corporation, 1997), whereas individuals under of the age of 16 were assessed using the WISC-III 

(Wechsler & Corporation, 1991). IQ scores were derived from a combination of the vocabulary 

and lock design subtests. 

4.2.5.3 Genotyping 

Genomic DNA was isolated from whole blood DNA and buccal call DNA, and 

genotyped on the Affymetrix 6.0 array. Due to low genotyping quality and a mixture of blood 

and buccal cell DNA, genotype calls were made using the Birdseed algorithm, with call 

intensities being normalized within blood and buccal DNA subsamples. These calls were further 

refined using Beaglecall (Browning & Browning, 2010), which uses LD information from the 

entire sample to assisting genotyping QC, resulting in 791,388 SNPs available for analysis. One 

unique characteristic of Beaglecall is the iterative process of validating genotype calls, which at 

the final state leads to no missing genotype data as SNPs are either removed or imputed 

throughout the process. With this information, a genotype by individual SNP missingness 

interaction was added to the regression model to control for the difference properties of 

Beaglecall to BRLMM calling algorithms.   

4.2.6 Genetic and Sample Quality Control Procedures 

Quality control (QC) procedures focused on properties that would be appropriate across 

different genotyping platforms that differed in SNP density. The main goal—analyzing runs of 

homozygosity to infer autozygosity—differed from the usual goal of finding associations 
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between individuals SNPs and a phenotype, and so the procedures adopted were somewhat 

modified. Because so many SNPs (70-75% depending on the sample) were removed due to 

linkage disequilibrium pruning during ROH detection (see below), stringent preliminary SNP-

cleaning procedures were adopted, as a SNP lost due to cleaning was likely to be in linkage 

disequilibrium with a nearby SNP. On the other hand, there are also concerns regarding the 

removal of SNPs or subjects that might be informative with respect to the questions at hand. For 

example, individuals with excess genome-wide homozygosity are quite informative in the 

sample, as autozygous segments significantly contribute to observed homozygosity above and 

beyond Hardy-Weinberg expectations. As a result, participants with excess homozygosity were 

not removed and Hardy-Weinberg p-value thresholds on individual SNPs were relaxed. 

The quality control procedures and numbers of individuals or SNPs lost at each step can be 

found in Table 4.1. Most steps are self-explanatory, so only those needing clarification are 

discussed. Individuals whose self-reported gender was discrepant from their genotypic sex (as 

judged using PLINK’s check-sex command) were dropped, as these individuals might represent 

sample mix-ups rather than single incorrect responses. Because both homozygosity and 

phenotypic measures might differ between ethnicities or across different levels of genetic 

admixture, two procedures were used to ensure ethnic homogeneity within each of the 

geographically distinct samples. First, individuals were dropped who self-identified as non-

Caucasian. Second, individuals who stood out on a measure representing the posterior likelihood 

of being Caucasian were also dropped. Within each sample, ~ 50,000 SNPs in linkage-

equilibrium were selected and merged with HapMap2 reference panels (Frazer et al., 2007). To 

assess population stratification, PLINK’s multi-dimensional scaling command was used to 

distinguishing Caucasian, Asian, and Yoruban ancestry (based on HapMap allele frequencies). 
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The first two principle components were drawn from the muti-dimensional scaling assessment, 

and individuals greater than 10% away from the center of the Caucasian cluster towards the 

Asian or Yoruban sample were removed from further analyses.   
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4.2.7 Runs of Homozygosity (ROHs) Calling Procedures 

ROH were called in PLINK using the --homozyg command (Purcell et al., 2007), which 

has been found to outperform other programs in accurately identifying autozygous segments 

(Howrigan, Simonson, & Keller, 2011). The current analysis incorporated the four ROH tuning 

parameters recommended in (Howrigan et al., 2011), pertaining to distant and recent 

autozygosity as well as predicted high and low genotyping error rate. In general, each dataset 

was pruned for either moderate LD (removing ay SNP with R-square > 0.5 with other SNP in a 

50 SNP window) or strong LD (removing ay SNP with R-square > 0.9 with other SNP in a 50 

SNP window), and the minimum SNP length threshold varied from 35 to 65 SNPs. Additional 

details on ROH calling recommendations are described in Howrigan et al. (2011).  In addition to 

accurately calling autozygous ROH, determining the frequency of ROHs also has important 

implications. PLINK’s --homozyg-group and --homozyg-match commands were used to find 

allelically matching ROH that shared at least 95% of physical distance of the smaller ROH.  

4.2.8 Froh Analysis 

ROH burden, or Froh, represents the proportion of the autosome in ROHs. Froh was 

derived by summing the total length of autosomal ROHs in an individual and dividing this by the 

total SNP-mappable autosomal distance (2.77 x 109). A fixed-effect multiple regression model 

controlling for potential genotypic and phenotypic confounds (see below) was used to examine 

the effect of Froh on IQ. IQ was standardized within each dataset, and dataset included as a 

covariate in the combined data.  

From a genotyping standpoint, Froh can be affected by population stratification (e.g., if 

background levels of homozygosity or autozygosity differ across ethnicities), low quality DNA 

leading to bad SNP calls, and homozygosity levels that differ reliably across plates, DNA 
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sources, or samples. To control for potential effects of stratification, we included the first ten 

principal components generated from an identity-by-state matrix derived from the set of SNPs 

(~50,000) used to determine genotype ethnicity. To account for the independent calculation of 

principal components in each dataset, principle components were derived separately for each 

dataset and regressed on standardized IQ, wherein residual scores were used as the dependent 

variable in the multiple regression model. We also controlled for the percentage of missing calls 

and excess homozygosity, both of which have been shown to approximate the quality of SNP 

calls across samples (Laurie et al., 2010). In particular, we used individual SNP missingness 

determined from raw SNP data, with the exception of the Lothian, Manchester, and Newcastle 

datasets, where individual SNP missingness was determined from QC cleaned data. This 

discrepancy, however, is quite minor as a comparison of missingness rates between raw and 

cleaned SNP data from the six other datasets was highly similar (overall r2=0.8, p=0). With 

respect to excess homozygosity, although it is expected that it will co-vary with Froh, previous 

work has found that Froh estimates of autozygosity are generally independent of excess 

homozygosity when genotyping error is low (Keller et al., 2011). However, when genotyping 

errors do exist, they typically lead to excess heterozygosity (Laurie et al., 2010) and missed 

ROHs, thus reducing the power of Froh effects as opposed to increasing the false positive rate.  

Finally, we also controlled for age and gender, as well as the interaction of age with 

dataset, as any effects from these variables should be independent from the relationship of Froh 

on IQ. The age by dataset interaction was included because we found a significant difference of 

the effect on age on IQ between samples of young individuals (GAIN, Brisbane, and CADD 

samples) and older individuals (Lothian, Manchester, and Newcastle samples; beta=0.14, 

t(4,356)=2.07, p=.04). 
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Froh burden was also partitioned in short and long ROH, as well as common and uncommon 

ROH, as different lengths and frequency reflect the age and population genetic mechanisms 

explaining the existence of an ROH. In both cases, a median split was used to divide ROHs into 

‘short/long’ groupings or ‘common/uncommon’ groupings. Due to the variation in SNP density 

across dataset platforms, median splits for both length and frequency were calculated within each 

dataset. Median splits for each dataset can be found in Table 4.2. Across all datasets, short ROHs 

made up 34% of Froh, while long ROHs made up 66% of Froh. Moreover, common ROHs 

made up 38% of Froh, whereas uncommon ROH made up 62% of Froh. 
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4.2.9 ROH Mapping Analysis 

To see if any particular genomic region predicted IQ, genome-wide ROH mapping 

procedures were tested using three different segment length thresholds. For each procedure, the 

autosome was divided into regions of 1 Mb (2,878 tests), 500 kb (5,747 tests), or 250 kb (11,483 

tests). Within each genomic region, a linear regression model on IQ was performed on whether 

or not individuals had an ROH at any given location in that region. IQ in this model was 

residualized for all covariates in the multiple regression model described above. To derive a 

genome-wide significance threshold corrected for multiple testing, fully residualized IQ scores 

were permuted within the combined dataset and regressions run across every region in the 

genome, preserving the most significant result of each permutation. The permutation process was 

repeated 1,000 times. The 50th most significant p-value was the genome-wide significance 

threshold and the 100th most significant p-value was the “suggestive” genome-wide significance 

threshold. Thus, given the null hypothesis, there was a 5% (10%) chance of observing a single 

genome-wide significant (suggestive) hit.  

4.2.10 Polygenic ROH Mapping 

Polygenic ROH mapping is a rank-order approach to test for an excess of negative or 

positive ROH regions among more significantly predicting regions of the genome. Using regions 

defined from the ROH mapping approach, regions were rank-ordered according to statistical 

significance. Starting from the most significant region, each region is added in a sequential 

manner one-by-one, with the overall count of positive and negative slopes ascertained at each 

interval. To measure significance, a binomial exact test is run to measure the deviation in the 

proportion of positive and negative slopes from the overall proportion observed in the genome. 

For the binomial exact test, both z-scores and corresponding p-values were ascertained. To 
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control for non-independence between ROH regions, IQ scores were permuted 1,000 times and 

empirical p-values were derived. To control for whole-genome Froh on rank-order, ! estimates 

were centered and statistical significance was re-calibrated for each region. All p-values are two-

sided. To test the effect of a reduced genome Froh estimate, ten-fold cross validation on the 

sample used a 90% training sample and 10% test sample. Equal proportions of individuals from 

each dataset were randomly assigned within a given test set, with leftover individuals from each 

sample randomly assigned to a test set after all ten test sets were created. For each round of 

cross-validation, rank-orders of ROH regions were determined by the 90% training set, and Froh 

burden was measured within these regions in the 10% test set. After all ten test sets were trained, 

the test sets were combined and Froh estimates were regressed onto residualized IQ scores (see 

Table 4.4).  

 

4.3 Results 

After quality control procedures within each of the nine datasets, we had genotype and IQ 

data for 4,360 individuals of European ancestry from five geographic regions: Northern Europe 

(n=357), United Kingdom (n=3,097), Spain (n=68), Australia (n=537), and the United States 

(n=301). In particular, the United Kingdom region compromises five separate samples, with one 

sample using a different genotyping platform from the other four. Four recommended parameters 

were used in PLINK to call autozygous ROH (see Methods for details), with genotype data 

lightly pruned for linkage disequilibrium (LD) and a minimum of 65 homozygous SNPs showing 

the strongest relationship to IQ.  Under this ROH calling procedure, the mean percentage of the 

genome in ROHs (Froh) was 0.41% (sd=0.36%) in the full sample, with a mean ROH length 

reaching 1.3 Mb (see Figure 4.1 for full distribution). Within each dataset, the IQ measure was 
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standardized, then residualized on the first ten principle components generated by the multi-

dimensional scaling algorithm in PLINK (Figure 4.2). Tests of genome-wide ROH burden and 

ROH association on IQ controlled for sex, age, dataset, the inbreeding coefficient (F), SNP 

missingness, an SNP missingness by dataset interaction, and an age by dataset interaction as 

covariates.     
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Figure 4.1 Distribution of Froh for Combined Sample. The x-axis measures the histogram, and 

the z-axis measures the boxplot. 
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Figure 4.2 Distribution of IQ for Combined Sample. Prior to inclusion in the combined sample, 

IQ in each dataset is first standardized, then residualized on the first ten principal components 

from the genotype data. 
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4.3.1 Froh Results 

In the combined sample, a fixed effects linear regression model predicting IQ was used, 

with Froh showing a negative, but non-significant relationship to IQ (! = -5.63, t(4,330) = -1.12, 

p = 0.26). The point estimate of Froh predicts IQ to drop by ~0.84 points for every 1% increase 

in Froh, extrapolating to a drop of ~5.28 IQ points expected on average in the offspring of first 

cousin inbreeding. Figure 4.3 shows the ! and 95% confidence intervals within each dataset as 

well as the combined sample. Only the GAIN United Kingdom dataset found a significant 

negative relationship of Froh on IQ, whereas none of the datasets found a significant positive 

relationship. Taken together, eight of the nine slope estimates were negative, which was not 

expected by chance (exact binomial test, p = 0.001).  Despite the non-significant result, the 

relationship of Froh on IQ is quite robust, as it was not affected by individuals at the extremities 

of Froh, and changed little after trimming the 25 highest and 25 lowest subjects on Froh, (! = -

5.16, t(4,280) = -1.03, p = 0.31), as well as after trimming the 50 highest and 50 lowest subjects 

on Froh (! = -5.4, t(4,230) = -1.07, p = 0.28). In addition, results above a 50 SNP minimum 

threshold for calling ROH remained fairly stable, whereas smaller thresholds removed the 

negative trend (Figure 4.4). Additional analyses removing covariates in step-wise fashion, as 

well as splitting the sample by age or sex, were not found to moderate the effect of Froh on IQ. 
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In addition to its inclusion as a covariate the main Froh analysis, the inbreeding 

coefficient (F) was also examined separately as a predictor of both Froh and IQ. As mentioned 

in the introduction, a positive value for F is another signature of inbreeding, albeit at a much 

more distant level ancestrally and less powerful than Froh at measuring inbreeding levels (Keller 

et al., 2011). In addition, expected multicollinearity between Froh and F as predictors of IQ may 

affect the interpretation of the results. As expected, F was strongly related to Froh when 

controlling only for dataset (! = 0.09, t(4,358) = 22.6, p = 0), however it did not significantly 

predict IQ in the full model (! = 1.31, t(4,330)=0.5 , p=0.62), nor did it have much effect when 

removed from the full model of Froh on IQ (! = -4.26, t(4,331) = -1.01, p = 0.31). Another 

possible concern was the chance of hemizygosity due to deletions or partial uniparental disomy 

being included in the Froh estimates. Nevertheless, prior research using information on call 

intensities found that fewer than 0.3% of the total lengths of ROHs in their samples were actually 

hemizygous, suggesting that deletions would have a minimal effect on the present results 

(McQuillan et al., 2008). This finding is not unexpected given the typical size of ROHs in the 

current sample (in the hundreds or thousands of kb) versus the typical sizes of deletions (in the 

tens of kb; McCarroll et al., 2005). 

Along with overall Froh burden on IQ, Froh was partitioned by length (long and short 

ROH) as well as frequency (common and uncommon ROH) using a median split within each 

dataset (see table 4.3 for details). Examining different ROH lengths provides a direct measure of 

the relative effects of inbreeding ancestry, as offspring from parents who share a recent common 

ancestor should carry longer ROHs on average than offspring from parents who share more 

distant common ancestors. Contrary to expectations, Froh arising from long ROH (! = -4.14, 

t(4,330) = -0.82, p = .41) was less predictive of IQ than Froh arising from short ROH (! = -
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38.85, t(4,330) = -1.53, p = .12). Neither estimate was predictive, however, indicating that 

neither recent nor distant inbreeding are differentially affecting the Froh-IQ relationship. With 

respect to ROH frequency, common ROH can often represent homozygous haplotypes shared by 

many unrelated people in each sample—which might indicate positive selection rather than 

recent inbreeding (Voight, Kudaravalli, Wen, & Pritchard, 2006a), whereas uncommon ROH are 

more likely to pair up individually rare recessive or partially recessive mutations thought to be 

scattered throughout the genome (Fay, Wyckoff, & Wu, 2001) within an extended lineage. 

Consistent with expectations, Froh arising from common ROH (beta=-7.44, t(4,330)=-0.72, 

p=.47) was less predictive of IQ than Froh arising from uncommon ROH (beta=-7.59, t(4,330)=-

1.07, p=.28). As with ROH length, neither estimate was predictive, indicating that ROH 

frequency does not substantially impact the Froh-IQ relationship. 

4.3.2 ROH Mapping Results 

In contrast to Froh burden, ROH mapping can identify distinct genomic regions carrying 

highly penetrant recessive alleles that affect IQ. Figure 4.5 shows a Manhattan plot of the 

association p-values from ROH mapping using 1 Mb regions, and figure 4.6 shows the QQ plot 

of the association p-values. Among the three size thresholds, no region surpassed the permuted 

significance threshold (permuted ! > 0.05) or the suggestive significance threshold (permuted ! 

> 0.1). However, among the top 100 regions, those negatively associated with IQ were over-

represented in all three analyses. With a 52% base rate overall of negative slopes in the 1 Mb 

analysis, 64 of the top 100 ROHs were negatively associated to IQ (exact binomial test, p = 

0.01), suggesting that while no ROH are significant after genome-wide correction, there may be 

evidence that ROH are exerting slight deleterious effects on IQ at particular regions across the 

genome. Because it is unlikely that the entire genome is equally contributing to the genetic 
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variance underlying IQ, the finding above prompted further investigation to see if Froh estimates 

restricted to regions harboring an excess of negative effects would reduce some of the statistical 

noise damping down the whole-genome Froh effects.  
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4.3.3 Polygenic ROH Mapping 

The approach, termed here as polygenic ROH mapping, begins by ranking 1 Mb ROH map 

regions by statistical significance. Starting from the most significant region, each region is added 

in a sequential manner one-by-one (e.g. top 10 regions, top 11 regions, etc.), with the overall 

count of positive and negative slopes ascertained at each interval. To measure significance, a 

binomial exact test is run to measure the deviation in the proportion of positive and negative 

slopes from the overall proportion observed in the genome (see Methods for details). Nearby 

regions can be affected by a single long ROH and produce non-independent signals, so empirical 

p-values were derived through permutation of IQ scores. Whole-genome Froh effects can also 

substantially skew the relative proportions of more significant regions, so re-calibrated 

significance of each region controlling for Froh burden are also reported. However, because the 

Froh burden effect in this study is small, the rank-order of regions is very similar between 

original and re-calibrated significance (r = 0.98, p = 0). Figure 4.7 shows the polygenic ROH 

mapping results using 1 Mb regions, with z-scores representing the direction of the effect 

towards an excess of positive or negative slopes. Both rankings show a significant excess of 

ROH regions predicting lower IQ (i.e. negative slopes and negative z-score) among the top 

regions, indicating that the effect of ROH on IQ is restricted to a particular subset of more 

significant regions of the genome. Among the top regions, two significant spikes of ROH regions 

predicting lower IQ emerge; the top 31 regions (permuted p = 0.003) and the top 434 regions 

(permuted p = 0.01). Similar spikes are found with the re-calibrated significance ranking; the top 

24 regions (permuted p = 0.012) and the top 415 regions (permuted p = 0.051).  
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In order to test the how well the recommended regions above predict IQ, ten-fold cross 

validation was implemented to generate an unbiased estimate of variance explained within the 

current sample. The hypothesis is that the recommended subset of ROH regions will predict IQ 

better than whole-genome Froh burden. The 90% training set was used to generate the rank-

order of ROH regions, and Froh burden was calculated in the 10% test set among recommended 

subsets of regions. The top 1,000 and 2,000 ROH regions were also included to compare against 

the recommended subsets. Table 4.4 shows the variance explained by Froh burden at various 

ROH region subsets, with the top 1,000 regions rank-ordered by the original p-values showing 

the highest R2 estimate (R2 = 0.0019, p = 0.004). Overall, the recommended estimates did 

perform better than whole-genome Froh, but did not out-perform the top 1,000-region 

comparison, suggesting that peak significance using an exact binomial test are only a rough 

guide to determining the best practices to reduce the search space for maximizing ROH effects in 

IQ. In general, while the variance explained for IQ using the polygenic ROH mapping approach 

is still quite small at 0.19%, it is a 6.8-fold increase from whole-genome Froh (0.028%), 

providing evidence that whole-genome estimates include a substantial amount of ROH variance 

that has no effect on IQ. The rank-ordered ROH region sets were also examined to see if there 

was an enrichment of genes expressed in the central nervous system (CNS genes). The subset 

used gathered genes using four separate databases that show either differential CNS expression, 

known neuronal activity, and/or roles in learning and synapse function, and compromise roughly 

5% of known genes (Allen et al., 2010; Lee et al., 2012). Chi-squared tests of each region set, 

however, showed no evidence of CNS gene enrichment relative to the full genome (all p > 0.05).  
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Table 4.4 Cross-Validation Results of Froh Restricted to Top Regions  

  

Subset of ROH regions ! p-value R2 
Rank-ordered by original p-values 
Top 31 regions -0.98 0.520 9.50e-5 
Top 434 regions -9.57 0.012 0.0015 
Top 1,000 regions -13.13 0.004 0.0019 
Top 2,000 regions -8.46 0.090 6.58e-4 
Rank-ordered by re-calibrated p-values 
Top 24 regions -1.60 0.247 3.07e-4 
Top 415 regions -10.03 0.007 0.0016 
Top 1,000 regions -12.86 0.005 0.0018 
Top 2,000 regions -7.92 0.112 5.80e-4 
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4.4 Discussion 

The present study tested the relationship of autozygosity to IQ using high-density SNP 

data from nine separate sites compromising 4,360 individuals. After stringent quality control and 

the application of preferred methods for detecting autozygosity, the findings do not support a 

significant role of autozyosity burden (Froh) in explaining the variation in IQ among outbred 

populations of European ancestry, nor point to any specific locus whereby autozygosity 

associates with IQ. However, post-hoc analysis of Froh estimates restricted to genomic regions 

more likely to affect IQ show an increase in prediction (from 0.028% to 0.19% in variance 

explained), as evidenced through cross-validation. The overall direction of Froh estimates - with 

increased Froh correlating with lower IQ - is consistent with the prediction that inbreeding 

depression is likely to have a negative effect cognitive ability. In relation to previous studies of 

inbreeding on IQ, the estimates observed correspond fairly well with estimates of first cousin 

inbreeding. In the current study, inbreeding among first cousins leads to an average Froh of 

6.25%, corresponding to a predicted drop of 5.28 IQ points. With respect to previous research, 

the effect is roughly one half (Afzal, 1988) to two (Morton, 1978) times the magnitude of known 

inbreeding lowering IQ. Despite the non-significant overall findings, the negative direction of 

results does have plausible ramifications for populations where consanguineous marriage is 

commonplace (Bittles & Neel, 1994). 

The findings shed some light on the effect of non-additive genetic variance underlying 

IQ. Autozygosity by definition captures only non-additive sources genetic variance, although it is 

constrained to the proportion of the genome that is autozygous. Nonetheless, relative proportions 

of phenotypic variance explained by autozygosity give a rough measure of non-additive genetic 

underpinnings. For example, another recent large-scale study of autozygosity on Schizophrenia 
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(Keller et al., 2012) found a significant, albeit modest effect of increased Froh burden predicting 

Schizophrenia (Nagelkerke’s R2 = .00068), while the current effect size estimate for Froh burden 

predicting IQ is even lower (R2 = .00028). When set side by side with recent measures of 

additive genetic variance, the findings above correlate to some extent with the reported 

proportions of heritability explained by SNPs for Schizophrenia (23% explained by SNPs; Lee et 

al., 2012) and for IQ (51% explained by SNPs; Davies et al., 2011). While these comparisons by 

no means represent a definitive means of partitioning relative additive and non-additive effects 

on genotypic variance, they reaffirm recent findings that a large extent of genotypic variance in 

IQ is additive, and non-additive measures, such as autozygosity burden, are restricted in part to a 

smaller proportion of the remaining heritability to be explained.   

4.4.1 Limitations 

There are certain limitations in the study that must be addressed. Prior to the acquisition 

of the current dataset, it was known that ostensibly outbred populations required very large 

sample sizes, on the order of 20,000 to 60,000, to obtain adequate power to detect the effects of 

inbreeding depression (Keller et al., 2011). Despite the current sample falling well below these 

numbers, it is still the largest consortium of data to date measuring IQ and autozygosity. 

Nevertheless, individuals from outbred populations generally exhibit low variation in overall 

autozygosity, so larger samples would be required to affirm if the signal in the current dataset is 

a true effect. An alternative to increasing sample size would be to collect data from samples 

targeted towards populations with higher variance in inbreeding, such as regions where 

consanguineous marriage rates are higher, or by ascertaining samples that are on the extreme end 

of IQ, such as individuals with intellectual disability. Statistical noise and possible bias 

represents another limitation of the study, as our operational construct of IQ is stitched together 
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from different cognitive tests and measures standardized across each dataset. While IQ measures 

are well known for their robust convergent validity  (Johnson et al., 2008), there will still be a 

level of uncertainty that can add noise to the data and decrease statistical power. With regards to 

the genotype collection and SNP calling, while strict QC procedures were followed to minimize 

genotyping error, the use of different platforms across datasets nonetheless introduced additional 

noise and possible biases that are unable to be controlled. For example, overall autozygosity 

measurements from the three datasets making up the GAIN IMAGE project are systematically 

lower than the other datasets, as the earlier genotyping platform had roughly one half to quarter 

the SNPs to begin with than the other genotyping chips. 

4.4.2 Conclusion 

Autozygosity is the central measure of inbreeding depression, and can help researchers 

understand the both the genetic architecture and population genetic history underlying well-

known heritable traits such as IQ. The current study represents the first to measure IQ and 

autozygosity using dense genome-wide SNP data, using an extensive consortia panel from 

around the world. In summary, whole-genome autozygosity burden and genome-wide 

autozygosity mapping are not significant predictors of IQ in outbred populations of European 

descent. However, the relationship found is similar to previous estimates of autozygosity on IQ 

among consanguineous families, and there is a nominally significant negative relationship of 

autozygosity burden on IQ when restricted to a subset of the genome rank-ordered by statistical 

significance. These findings shed light on the relative contribution of inbreeding within the 

normal spectrum of variation in IQ, and suggest that future investigations target either 

populations known to have higher inbreeding coefficients or more extreme samples with regards 

to IQ.   
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Chapter 5 

Summary and Conclusion 

 

 

5.1 Background 

 The field of human molecular genetics has undergone a substantial technological 

transformation in the past decade, allowing researchers to identify and analyze genetic variation 

across the human genome with unprecedented depth and precision. A central goal in utilizing 

this technological advancement is to discover the genetic variation that underlies complex 

heritable traits and disorders. In recent years, much of the focus has been on large-scale genome-

wide association studies (GWAS) in an attempt to identify effects of common single nucleotide 

polymorphisms (SNPs) on a phenotype. Progress in this arena, however, has been limited, as 

validated findings for most phenotypes represent only a small fraction of the variance attributed 

to genetics known from family and twin studies, leaving a large proportion of heritability to be 

explained. My research is in large part motivated by the issues surrounding GWAS, as additional 

methodological techniques and population genetic theory can help explain phenotypic variance 

unaccounted for by the traditional genetic association design.  

5.2 Approaches to Interrogating Genome-Wide SNP Data 

In my first study, I look at a case/control sample of bipolar disorder, examining how prior 

information from linkage studies can inform GWAS signals. The primary aim is to ease the 

burden of multiple-testing correction applied in GWAS using empirically informed weighting to 

tease out true signals supported by prior genetic evidence. In my second study, I determine the 

best practices to detect signatures of distant inbreeding, via runs of homozygosity, in genome-
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wide SNP data. The motivation for studying this phenomenon is due to the extensive evidence of 

inbreeding depression on fitness related traits, where the effects of recessive or partially 

recessive alleles are expressed. Using an extensive simulation design, I test multiple programs to 

determine the optimal method to identify runs of homozygosity caused by distant inbreeding. In 

my third and final study, I apply my work from the second study to a comprehensive dataset of 

cognitive measures to understand the extent to which distant inbreeding affects variation in 

cognitive ability. 

5.3 Summary of Results 

In my first study, the incorporation of prior linkage information to weight Bipolar 

Disorder GWAS p-values did not result in any significant SNPs after genome-wide correction 

for multiple testing. However, the top SNP signal from the initial GWAS was further supported 

as it occurred within a suggestive linkage peak on chromosome 18. In addition, I reported SNPs 

in the lowest 99th percentile of p-values also occurring within the top 95th percentile of linkage z-

scores as regions of interest.   

My second study, which investigated the accuracy of autozygosity detection for three 

separate programs, recommended PLINK over GERMLINE and BEAGLE when detecting 

autozygous segments. Furthermore, SNP data pruned for high levels of linkage disequilibrium 

(LD) also increased the accuracy of detection. The results provided both general and specific 

recommendations for maximizing autozygosity detection in genome-wide SNP data, and should 

apply equally well to research on whole-genome autozygosity burden as well as autozygosity in 

targeted regions.  

In my third study, I applied the recommendations from my second study to large-scale 

consortia SNP data to test the relationship of autozygosity to general cognitive ability (IQ). 
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Overall, the findings do not support a significant role of autozyosity burden (Froh) in explaining 

the variation in IQ among outbred populations, nor point to any specific locus whereby 

autozygosity associates with IQ. However, the negative direction and effect size of the 

relationship does fall in line with earlier measures of consanguineous inbreeding lowering IQ. In 

addition, cross-validation of Froh estimates restricted to genomic regions more likely to affect 

IQ show up to a 7-fold increase in prediction, suggesting that the effects of autozygosity on IQ 

are not uniform across the genome.  

5.4 Conclusion 

In general, genome-wide SNP association has been relatively unsuccessful in uncovering 

the genetic etiology of traits such as Bipolar Disorder and IQ, yielding only scant results that fail 

to explain even a moderate proportion of trait variance. In turn, this difficulty has prompted 

alternative approaches to uncovering the missing heritability. Overall, my application of 

alternative methods of SNP interrogation, including the inclusion of prior linkage information 

and effects of autozygosity in outbred populations, did not come away with any substantial 

increase in explaining trait variation. While these results reflect the complexity of psychiatric 

phenotypes and difficulty in teasing out their genetic architecture, recent successes in this arena 

have come from approaches that investigate the degree to which a trait is under highly polygenic 

genetic architecture.  

One approach, which looked at both Schizophrenia and Bipolar disorder, showed that 

predictive ability significantly increased when validating the top percentiles of SNP associations 

in a large case-control Schizophrenia dataset to other datasets in both Schizophrenia and Bipolar 

Disorder (Purcell et al., 2009). More recently, a GWAS on IQ has found that quantifying the 

variance accounted for using all SNPs captures a substantial proportion of heritable variation 
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(Davies et al., 2011), suggesting that IQ has a highly polygenic architecture. While the discovery 

of the genetic variants for Bipolar Disorder and IQ has so far been a daunting task, emerging 

technologies such as whole-genome sequence data along with recent successes of estimating 

polygenic contributions to trait variance show promise in finally uncovering the molecular basis 

underlying heritable variation in these traits. 
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