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The field of human molecular genetics has undergone a substantial technological
transformation in the past decade, allowing researchers to identify and analyze genetic variation
across the human genome with unprecedented depth and precision. A central goal in utilizing
this technological advancement is to discover the genetic variation that underlies complex
heritable traits and disorders. In recent years, much of the focus has been on large-scale genome-
wide association studies (GWAS) in an attempt to identify effects of common single nucleotide
polymorphisms (SNPs) on a phenotype. Progress in this arena, however, has been limited, as
validated findings for most phenotypes represent only a small fraction of the variance attributed
to genetics known from family and twin studies, leaving a large proportion of heritability to be
explained. My research is in large part motivated by the issues surrounding GWAS, as additional
methodological techniques and population genetic theory can help explain phenotypic variance
unaccounted for by the traditional genetic association design. In my first study, I look at a
case/control sample of bipolar disorder, examining how prior information from linkage studies
can inform GWAS signals. The primary aim is to ease the burden of multiple-testing correction
applied in GWAS using empirically informed weighting to tease out true signals supported by
prior genetic evidence. In my second study, I determine the best practices to detect signatures of
distant inbreeding, via runs of homozygosity, in genome-wide SNP data. The motivation for
studying this phenomenon is due to the extensive evidence of inbreeding depression on fitness

related traits, where the effects of recessive or partially recessive alleles are expressed. Using an

il



extensive simulation design, I test multiple programs to determine the optimal method to identify
runs of homozygosity caused by distant inbreeding. In my third and final study, I apply my work
from the second study to a comprehensive dataset of cognitive measures to understand the extent

to which distant inbreeding affects variation in general cognitive ability.
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Chapter 1

Introduction

In the field of human molecular genetics, the past decade has witnessed a rapid
transformation in terms of technological advancement and feasibility to detect and analyze
molecular genetic variation at a large scale. Not long after the initial sequencing of the first
human genomes in 2001 (Lander et al., 2001; Venter et al., 2001), the identification of genetic
variants at the base pair level became possible. Less than a decade later, genome-wide
association studies (GWAS) using databases up into the tens of thousands of individuals, each
one genotyped with up to a million single nucleotide polymorphisms (SNPs) across the genome,
have been gathered to identify the genetic architecture of complex traits and disorders such as
Schizophrenia (Purcell et al., 2009), Type 2 Diabetes (Zeggini et al., 2008), and height (Weedon
et al., 2008), just to name a few. However, despite the technological advances and large-scale
effort in this arena, there is still much to be discovered in understanding the genetic
underpinnings of most complex traits and diseases (Hardy & Singleton, 2009; Manolio et al.,
2009). The research I present in this dissertation centers on genome-wide SNP data, and the
methods I use to analyze the data are closely related to central issues that surround GWAS. On
that account, my introduction briefly reviews the progress of molecular genetic methods in
studying human phenotypes, examining both general findings and prominent issues underlying
genome-wide analysis. This leads to my motivation for using non-traditional approaches to
analyze genome-wide SNP data, and brief description of the methods I adopt for my dissertation

research.



1.1  Human Molecular Genetic Methods

Measurable forms of molecular genetic variation have been around for well over a
century, as observations of chromosomes through karyotyping were discovered as early as 1842
(Sturtevant, 2001), marking the start of cytogenetic analysis. For much of the early 20" century,
genetic linkage analysis used recombinant strains to measure multiple traits and infer the genetic
distance of trait loci on chromosomes. However, this process of linkage mapping was not able to
isolate the physical position of trait loci, and it wasn’t until molecular techniques such as
restriction enzymes and gel electrophoresis that physical mapping of the genome became
possible. With respect to analyzing human genetic variation, one of the earliest widespread
applications of identifying physical stretches of DNA sequence was through restriction fragment
length polymorphisms (RFLPs), where restriction enzymes would cut DNA at homologous sites
(Southern, 1975). As a result, differing length sequences that remained were treated as alleles in
that chromosomal stretch. This process was updated with the incorporation of oligonucleotides
(small stretches of DNA) and polymerase chain reaction, where instead of DNA being cut at only
at sites that match restriction enzymes, a targeted stretch of DNA could be probed and amplified,
allowing access to any genetic region were the designed probe matched the DNA sequence
(Saiki et al., 1985). Soon variable number tandem repeat (VNTR) polymorphisms were preferred
over RFLPs, as their abundance allowed for finer-scale mapping of genomic regions. Particularly
for trait and disease mapping, short tandem repeats (often called STRs or microsatellites) where
only a few base pairs were repeated, often dozens of times, were targeted as allelic markers.
STRs occurred on average once per 10 kilobases of DNA, and soon genome-wide STR marker
sets were being used in linkage studies with up to a thousand markers (Altmiiller, Palmer,

Fischer, Scherb, & Wjst, 2001).



Nevertheless, not long after microsatellites became commonplace, the results of the human
genome sequencing projects around the turn of the 21* century identified single nucleotide
polymorphisms (SNPs), where a single base pair varied in its nucleotide base between
individuals. Because SNPs occurred at a much higher density than VNTRs and were abundant in
and around genes, they soon became the predominant substrate to catalog genetic variation. The
advance in recent years has been the accelerating pace and number with which SNPs can be
genotyped, from thousands to over 1 million SNPs in a genome-wide array. The pace of
technological improvement is only getting faster and cheaper, as other recent advancements have
included copy number variation (CNV; Sebat et al., 2004; Sharp et al., 2005), SNP imputation
via patterns of linkage disequilibrium (LD; Gibbs et al., 2003), and most recently whole-genome
sequencing (Thousand Genomes Consortium, 2010).
1.2 Human Molecular Genetic Analysis

As methods of identifying and mapping genetic variation have evolved, so too have the
methods to analyze their effects on phenotypic variation. Drawing from the insights of
Mendelian inheritance and Morgan's work on fruit flies, genetic linkage mapping began as the
predominant paradigm to infer causative loci for a trait. Linkage follows from the rules of
meiosis and recombination, where genetic linkage refers to statistical propensity of alleles on a
given chromosome to occur together because they haven't been broken up by meiotic
recombination. Because recombination occurs at a low (although stable) rate per chromosome
during meiosis, the distance between two loci greatly affects how strongly they are linked. Using
this logic, linkage mapping was developed as a means to infer the chromosomal location of
causal loci via transmission from parent to offspring. For human genetics, this meant using

family-based studies and pedigree information, where parent to offspring transmission of alleles



could highlight the co-transmission of alleles and phenotype status (Lander & Green, 1987).
RFLPs and VNTRs, with their numerous alleles (sometimes in the dozens), were good sources of
genetic variation for family-based linkage analysis as each parent often carried a different set of
alleles. Linkage work spawned the discovery of many mendelian disorders, as well as
discovering the genes that predispose individuals to Huntington's disease (Gusella et al., 1983),
phenylketonuria (DiLella, Marvi, Brayton, & Woo, 1987), cystic fibrosis (Kerem et al., 1989),
and a handful of other genetic disorders. Despite its successes, linkage designs suffered from low
power to detect variants of modest effect, as markers had to be strongly linked to the causal
variant and required a large number of informative families to be detected (Altmiiller et al.,
2001). Along with the introduction of SNPs, linkage gave way to association mapping, where the
allele itself, not its transmission from parent to offspring, became the variable of interest. SNP
association still incorporated the concepts of genetic linkage, as genotyped SNPs in linkage
disequilibrium (LD) with a nearby causal SNP would segregate together, allowing the statistical
signal from the genotyped SNP to be representative of the causal SNP in the population. As
SNPs offered much denser coverage of genetic variation, association mapping offered the
additional statistical power and ability to use population-based samples rather than family
samples (Balding, 2006).

Throughout the transformation of genetic methodology, there has been a relative shift
from studying biologically plausible candidate genes towards genome-wide interrogation. While
debates over which method was the most effective use of research dollars have waned, mainly
because costs to run genetic analyses have lowered considerably in recent years, arguments still
persist on both sides. Further spurring this debate is the slow realization that outside of the

handful of big findings in human genetics, most genetic effects are very difficult to find



regardless of the methodology used (Hardy & Singleton, 2009). More specifically, during the
early days of linkage, monogenic disorders of large effect were readily identified, as their genetic
signals were unmistakable. Once the 'low-hanging fruit' of large genetic effects had been picked,
the search for causal genes or variants among phenotypes with a complex genetic etiology
proved much more challenging. While proponents of candidate gene work criticized the large
costs of genome-wide association studies (GWAS) at the outset, one of its main attractions was
the ability to vastly speed up the process of susceptibility gene discovery and validation, as high-
density SNP arrays were able to cover the majority of common genetic variation in the genome.
In addition, GWAS has offered an agnostic criterion for identifying association signals, whereas
prior candidate gene approaches may have been biased towards false positive results and
publication bias (Hirschhorn, Lohmueller, Byrne, & Hirschhorn, 2002). From a theoretical
standpoint, the central model underlying GWAS was the 'common disease/common variant'
hypothesis, asserting that complex traits and diseases that are heritable but do not follow
Mendelian patterns of inheritance must be attributable in some respects to common genetic
variation (> 1-5%) shared in the population (Cargill et al., 1999; Reich & Lander, 2001). While
disease etiology using the common disease/common variant hypothesis was by no means the
consensus among geneticists (e.g. Pritchard, 2001), the technological advance of SNP
genotyping was paramount in shifting the field toward genome-wide analyses.
1.3 Summary of GWAS Results

Since the first GWA studies in the mid 2000's, over 1,200 loci have been associated with
over 150 traits and diseases (Hindorff et al., 2009; Lander, 2011; and a summary of results can
be found at http://www.genome.gov/gwastudies/). In the genetic epidemiology literature, GWAS

has led to the discovery of moderate to large effects in a handful of disorders such as macular



degeneration (Maller et al., 2006), Crohn's disease (Barrett et al., 2008), type 2 diabetes (Zeggini
et al., 2008), and others. The majority of replicable findings in GWAS, however, have found
relatively small effects at best, with associated SNPs often explaining less than 1% of the
phenotypic variance of the trait being studied. This has certainly been the case with psychiatric
disorders, where large scale GWAS on highly heritable disorders such as schizophrenia and
bipolar disorder have only discovered a handful of associated SNPs, each with very small effect
sizes (Ferreira et al., 2008; Purcell et al., 2009; Shi et al., 2009b). To confuse matters even more,
the analysis of a large number of SNPs simultaneously requires a strict correction for multiple
testing, possibly missing true SNP associations of even smaller effect in order to avoid false
positives. The relatively small amount of phenotypic variance explained by GWAS for many
well established heritable traits and diseases has left what some have dubbed the 'missing
heritability', and has led to debates about the success and future of GWAS studies, as the
associations found were much smaller than anticipated, and the investment in larger samples to
detect increasingly smaller effects must compete with the renewed interest in rare genetic
variation detectable using newer sequencing technologies. Suffice to say, the ‘common
variant/common disease’ model has not held up strongly for most traits, and alternative models
are currently being debated to influence the direction of future research.
1.3.1 Alternative Methods and Future Directions

Although a fair number of hypotheses have been offered to explain the missing
heritability, from epigenetic mechanisms (Petronis, 2010) to questioning the merit of classical
heritability estimates (Zuk, Hechter, Sunyaev, & Lander, 2012), two prominent explanations
have surfaced: 1) The heritability of the trait is driven primarily not by common SNPs, but rather

rare variants or copy number variants not tagged by common SNPs, and 2) The full effect of



common SNPs are too small to be detected individually but on aggregate explain a substantial
portion of phenotypic variance. Despite proposing quite different genetic etiologies, these are not
mutually exclusive hypotheses, as a phenotype can be highly polygenic and still be substantially
affected by a rare mutation at a single locus. The current move towards whole-genome
sequencing seeks to address the influence of rare variation on traits, as these variants will not
effectively be picked up by common SNP arrays. On the other hand, methods aggregating SNP
signals (Purcell et al., 2009) or estimating phenotypic variance using all SNPs (Yang et al.,
2010a) have shown that traits with otherwise few detected loci show signs of highly polygenic
inheritance.
1.4 Summary of Dissertation Methods

In my dissertation research, I examine and apply two methods outside of the traditional
SNP association approach, one being the use of prior linkage information to inform association
signals of bipolar disorder, and the other examining the best practices to measure genome-wide
autozygosity and applying this work towards measures of cognitive ability. Both methods have
implications for addressing the 'missing heritability', as prior information can help tease out the
real effects of signals not captured by traditional GWAS, whereas autozygosity measurement and
mapping measures the role of dominance variation in the genetic architecture of a trait. With
respect to common genetic variation, SNP-based heritability methods have shown that many
SNPs contribute to trait variance in height not detected by GWA studies (Yang et al., 2010a),
and the use of prior linkage information can help identify specific association signals that have
been missed due to strict correction for statistical significance (Manolio et al., 2009; Roeder,
Bacanu, Wasserman, & Devlin, 2006). With respect to rare genetic variation, measuring

autozygosity can highlight the contribution of recessive or partially recessive alleles, both



common and rare, on a phenotype. Autozygosity is the genetic measurement of inbreeding,
where an autozygous segment in an individual is identical by descent. By identifying autozygous
segments in SNP data, one can infer that the DNA within that segment is also identical. Because
deleterious recessive alleles are not as effectively removed from the population as additive
alleles, and that inbreeding depression is a widely supported phenomenon in the animal kingdom
(DeRose & Roff, 1999a), it is reasonable to presume that deleterious recessive alleles,
particularly those a low frequencies in the population, are contributing to phenotypic variance.
1.4.1 Chapter Outline

In my second chapter, I examine how prior linkage information can be used to inform
GWA signals in a case/control dataset of Bipolar Disorder, a psychological disorder that has had
only a few successful replicable GWAS signals. Using prior linkage data combined from eleven
separate studies (McQueen et al., 2005), I apply a Weighted False Discovery Approach (WFDR;
Roeder et al., 2006) to a genome-wide scan of bipolar disorder. In my third chapter, I use an
extensive simulation paradigm to understand the best methods to detect genome-wide
autozygosity. In particular, I test three separate programs designed to detect autozygosity on
simulated genetic data, determining the most optimal program and parameters within that
program for capturing autozygosity. Finally, in my fourth chapter, I apply my work on
autozygosity to a comprehensive dataset of cognitive ability; testing the prediction that increased

autozygosity burden leads to lowers scores on measures of intelligence.



Chapter 2

Using Linkage Information to Weight a Genome-Wide Association of Bipolar Disorder

2.1 Background

Bipolar disorder (BPD) is a debilitating mental disorder that is common in the population
(1-4% depending on the specific BPD classification (Merikangas et al., 2007)), yet has a
complex etiology and life course across individuals. Family, twin, and adoption studies on BPD
have convincingly shown that there is a substantial heritable component (Edvardsen et al., 2008;
Smoller & Finn, 2003), leading researchers to search for susceptibility genes, both in candidate
regions and across the genome, that predispose individuals to BPD. To date, despite the high
heritability of BPD, the discovery of susceptibility genes has been a challenging endeavor.

Hypothesis-driven candidate gene approaches, most of which target genes involved in
neurotransmitter systems, have largely been inconclusive with many initial findings failing to
replicate. Some genes that have shown replication or significance in meta-analyses are the
serotonin transporter (Cho et al., 2005; Lasky-Su, Faraone, Glatt, & Tsuang, 2005), brain-
derived neurotrophic factor (Kremeyer et al., 2006; Neves-Pereira et al., 2002; Sklar et al.,
2002), d-amino acid oxidase activator (Detera-Wadleigh & McMahon, 2006), monoamine
oxidase A (Muller et al., 2007), and a gene that codes for 5,10-methylenetetrahydrofolate
reductase (Gilbody, Lewis, & Lightfoot, 2007). Unfortunately, none of these replicated findings
have shown a large genetic effect, leaving much of the genetic variance in BPD to be explained.
2.2 Genome-Wide Approaches to Bipolar Disorder

In contrast to candidate gene approaches, genome-wide linkage and association



approaches have taken an agnostic approach to finding susceptibility genes for BPD. Family-
based linkage approaches on the whole have not consistently implicated a single region
(McGough et al., 2008), but the most comprehensive meta-analysis on BPD has implicated
regions of chromosome 6q for Bipolar I, and 8q for Bipolar I and II (McQueen et al., 2005).
More recently, population-based genome-wide association studies (GWAS) on BPD, which are
able to detect smaller genetic effects, have identified associated SNPs on chromosome 16p12
(WTCCC, 2007), the diacylglycerol kinase eta (DGKH) gene on chromosome 13 (Baum et al.,
2008), and the myosin 5B (MYO5B) gene on chromosome 18 (Sklar et al., 2008). These three
large-scale GWAS studies were then pooled together, finding a significant association in the
ankyrin G (ANK3) gene on chromosome 10 and a replicated suggestive association signal in the
alpha 1C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene on
chromosome 12, although none of the prior top signals were identified in the pooled analysis
(Ferreira et al., 2008). Finally, a SNP in the zinc-finger protein 804A (ZNF804A) on
chromosome 2 has shown association in both schizophrenia and BPD datasets, while a common
polygenic approach compromising large clusters of SNPs has shown concordance in effects on
schizophrenia and BPD (Williams et al., 2010), implicating shared genetic liability. Despite these
large-scale efforts, the findings still represent a small proportion of the genetic variance in BPD
(no top signals with an odds ratio greater than 1.6), suggesting a complex genetic etiology
compromised of multiple genes with no single genetic risk factor being a sufficient cause of
BPD.
2.3 Issues of Multiple-Testing Correction

One of the primary issues surrounding genome-wide analysis is the amount of multiple

testing that arises from analyzing hundreds of thousands of SNPs. Although the use of
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Bonferroni correction for multiple testing limits the possibility of making type-I errors, by
definition it also raises the probability of committing type-II errors, possibly diminishing the
chances of detecting true signals of association. This has prompted statistical methods that utilize
prior information to guide association scans or assist in prioritizing genetic regions in follow-up
studies (e.g. Fan et al., 2010). In the current study, we apply a weighted false discovery rate
procedure (WFDR; Roeder et al., 2006), taking prior linkage information derived from a genome-
wide linkage meta-analysis (McQueen et al., 2005) to variably weight association signals from a
GWAS drawn from the Systematic Treatment Enhancement Program for Bipolar Disorder
(STEP-BD; Sklar et al., 2008). By incorporating meta-analytical prior information, the current
technique lends an increase in detection power through an integrated empirical approach to

genome-wide analysis.

24 Methods
2.4.1 GWAS Methods
2.4.1.1 Case-Control GWAS Sample

Our case sample consisted of 955 Caucasian bipolar I subjects drawn from the genetic
repository of the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD).
The STEP-BD sample is a longitudinal cohort drawn from the United States examining the effect
of treatments in the course of BPD (Sachs et al., 2003). All subjects were diagnosed for bipolar I
on the Affective Disorders Evaluation and the Mini-International Neuropsychiatric Interview.
Our control sample consisted of 1,498 US Caucasian subjects drawn from the NIMH genetics
initiative through the NIMH Center for Collaborative Studies (http://zork.wustl.edu/nimh). Of

the controls, 454 came from anonymous blood cord donors and were phenotypically unscreened
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(Mansour et al., 2005). The remaining 1,044 controls completed an online self-administered
psychiatric screen, and qualified as controls if they reported no history of schizophrenia,
schizoaffective disorder, auditory hallucinations, delusions, and bipolar disorder (see Sklar et al.
2008 for further information).
2.4.1.2 SNP Selection

Genotyping for the STEP-BD cases and NIMH controls were all performed on the
Affymetrix GeneChip Human mapping 500K chipset. Quality control procedures and subsequent
association analysis on the genotyped SNPs were all performed using PLINK (Purcell et al.,
2007). Our quality control procedures, which involve individual exclusion, SNP exclusion, and
population stratification, follow that described in Sklar et al. (2008). We include the additional
step of removing all SNPs with minor allele frequency (MAF) < .05 and all SNPs on the X
chromosome, as the linkage data only covers the 22 autosomes. After exclusion, 342,191 SNPs
were retained for further analysis.
2.4.1.3 GWAS Analysis

We initially performed a genome-wide association analysis on the 342,191 SNPs. We
chose the Cochrane-Armitage trend test to generate the primary nominal, unweighted association
statistics. Figure 2.1 shows the unweighted, unadjusted p-values across the 22 autosomes. These
results are consistent with the original publication of these data (Sklar et al., 2008). The p-values
from this analysis were then weighted according to linkage evidence in that particular region (see

below).
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2.4.2 Linkage Analysis Methods

For a detailed description of the combined linkage analysis samples, methods, results and
conclusions, please see McQueen et al. (2005). Briefly, a genome-wide linkage trace was
conducted on a combined sample consisting of eleven BPD linkage studies amounting to a total
of 5,179 individuals from 1,067 families (McQueen et al., 2005). The combined sample was
relatively homogenous with the majority of individuals being of Caucasian descent. Linkage
statistics were generated using the affected relative pair methodology implemented in MERLIN
(Abecasis, Cherny, Cookson, & Cardon, 2002) at 1 centimorgan (cM) intervals across the 22
autosomes. In the original combined analyses, two different affection status models were used -
bipolar I as well as bipolar I and II. To maintain consistency with the case-control STEP-BD
samples, only the linkage statistics from the bipolar I analysis (“narrow” definition) were used.
Using MERLIN’s implementation of the Whittemore and Halpern (Whittemore & Halpern,
1994) algorithm to test for allele sharing across all affected individuals, we generated
nonparametric LOD scores via the Kong and Cox (Kong & Cox, 1997) linear model. For the
purposes of this study, we used the corresponding Z score (“Zmean”) from the MERLIN output
at each 1 cM position as the linkage “priors” for the weighted association analysis.
2.4.3 Weighted Association Analysis Methods
2.4.3.1 Linkage Weights

The theoretical basis for using linkage weights in the context of genome-wide association
analysis comes from the general literature of weighted hypothesis testing (Roeder, Devlin, &
Wasserman, 2007). Roeder et al. (2006) proposed using weights from a linkage scan to attenuate
the vast multiple testing pitfalls encountered with GWAS data. Investigators typically favor one

chromosome region or another based on prior evidence — one primary consideration is linkage
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data (Roeder et al., 2006). Weighting association statistics using linkage data is a quantitative
method of incorporating prior information into large-scale association scans. While there are
numerous approaches to devising weights, there are only two criteria that must be satisfied: (1)
each weight must be greater than or equal to 0 and (2) the mean of the weights must equal 1. As
noted by Roeder et al. (2006), a reasonable weighting choice is to use nonparametric linkage
scores generated from linkage scans. Because what constitutes a linkage region in binary terms is
often not well defined, it follows that the quantitative linkage signals be used to generate
continuous weights. In addition, it is recommended that the GWAS and prior linkage information
come from a similar ethnic background, as genetic heterogeneity between ethnic backgrounds
will reduce the power gained from using prior information.

In the original description of using linkage statistics to weight association p-values, two
continuous weighting schemes were introduced - exponential and cumulative. Exponential
weights can be highly sensitive to large linkage signals while cumulative weights tend to be less
so. Given the large linkage signal in the original combined analysis for the narrow phenotype
definition (bipolar I) found on chromosome 6q (LOD=4.2) we chose to use the cumulative
weighting scheme in an attempt to weight the association signals in a more evenly distributed
manner. Another consideration was the defining the scaling factor, whereby in the context of
cumulative weights (as used here) constrains the influence of any individual linkage peak such
that the weights will increase linearly for linkage scores (Z) near B, but reach an asymptote for
large linkage scores (|Z — B|) (Roeder et al., 2006). We chose a scaling factor (B) of 2 based upon
recommendations found in Roeder et al. (Roeder et al., 2006). This results in linkage scores
greater than or equal to 2 units above B (2) to be approximately equally up-weighted. The same

is true for linkage scores less than or equal to 2 units below B (2) in that they are equally down-

15



weighted.
2.4.3.2 Weighted Association

The weighted association approach incorporates the weighting scheme directly into the
association p-values. In order to match an association p-value with its respective linkage signal,
we assigned a genetic distance to each SNP location. As a result, p-values for each SNP may be
up-weighted or down-weighted depending upon the relative linkage signal in that region. The
nominal p-values from the association test are divided by the respective weights given to the
genomic region (determined by the linkage signal) to generate the weighted p-values. The
weighted p-values are then used in the false-discovery rate (FDR) procedure to assess overall
significance. The weighting procedure (and implementation of the FDR adjustment) was
conducted in an R (http://www.r-project.org) script entitled, “weighted FDR.R”
(http://www.wpic.pitt.edu/wpiccompgen/fdr). For the FDR method, we used the method

described in Storey (2002) with a significance level of 0.10.

2.5  Results
2.5.1 Primary Association Results

A histogram of weights across the genome is shown in figure 2.2. Our weighted
association results for the set of 342,191 SNPs along with their respective weights, is shown in
figure 2.3 and 2.4. As mentioned in our methods section, we decided to use the cumulative
weighting procedure as our official results, but include a graph and weight distribution for the
exponential weighting procedure for the sake of comparison. None of the weighted association
signals reach genome-wide significance after implementing the FDR method (multiple correction

threshold 0.1/342,191 = 2.92 x 107). Our most significant association signal was at rs4939921
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on chromosome 18p21.1 (weighted p = 4 x 107, weight = 5.2), residing in an intron of myosin
VB (MYOS5B), and is shown in figure 2.5. While this was also the top signal in the unweighted
association, the signal strength increased by almost an order of magnitude through the weighted
approach (original p = 1.9 x 10®). All but one of the neighboring SNPs with weighted p < .001
were found to be in linkage disequilibrium (LD) with rs4939921. Our second strongest signal
came from rs4852259 on chromosome 2p13.3 (weighted p = 2.3 x 10°°, weight = 3.5), residing in
an intron of the gene dysferlin (DYSF), also shown in figure 2.6. This SNP was the third ranked
signal in the unweighted association. Unlike the top signal, there were no neighboring SNPs with

p<.001.
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2.5.2 Up-weighted Regions of Interest

Beyond our top SNP signals, we also looked for regions where linkage signals coincided
with clusters of top SNP signals. Specifically, we focused on SNP signals with weighted p <.001
that resided in the top 10th percentile of weight values across the genome (figure 2.7). The
majority of SNPs that fit these criteria occur on Chromosomes 2, 6, 8, 9, 17, 18, and 20. Previous
work using the STEP-BD has been done on the up-weighted region seen on chromosome 6 (Fan
et al. 2010), so our focus here is on the remaining chromosomes. In particular, we looked for
clusters of neighboring SNPs showing a consistent signal. We've highlighted three regions of
interest (figures 2.8 - 2.10) on chromosome 9p21.2, 17q24.2, and 18q12.2. The strongest signal
on the chromosome 9p21.2 region, rs17760820, resides in an intron of open reading frame
C9orf82, with four nearby SNPs at p <.001 residing in introns of the intraflagellar transport 74
homolog (IFT74). The two genes are 54 kb apart, and the SNPs in [FT74 are in moderate LD
with the SNPs in C9o0rf82. On chromosome 17q24.2, the notable cluster of neighboring signals
all reside in an intergenic region. The top signal, rs16974356, is 220 kb telomeric of the mitogen-
activated protein kinase kinase 6 (MAP2K6) gene, and 312 kb centromeric of the potassium
inwardly-rectifying channel, subfamily J, member 16 (KCNJ16) gene. All the SNPs in this
region with weighted p <.001 are in relatively high LD in this intergenic region. The SNP
cluster on chromosome 18q12.2 also resides outside of a gene, with the nearest transcript being
hypothetical protein LOC647946 where the 5' end is 199 kb away from the top signal in the
region, rs2862294. Although most of the nearby SNPs with weighted p <.001 are in LD with

152862294, a few SNPs show no LD despite their close proximity.
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2.6  Discussion

The primary goal of this study was to examine how prior linkage information could
inform association signals across the genome. Using a linkage-weighted FDR approach, we've
highlighted particular regions that would not have been addressed by association alone. Although
no signal reached the conservative criteria of genome-wide significance, we report on a few
areas where linkage evidence and strong association signals coincide.

Our strongest association signal, rs4939921 in MYOS5B, was expected, as it was also the
top SNP prior to the weighted association. In addition, this was the top signal reported in Sklar et
al. (2008) where the STEP-BD sample was combined with another large BPD sample from the
University College of London. MYOS5B is a brain-expressed gene that is involved in protein
transport and vesicle trafficking at the plasma membrane (Lapierre & Goldenring, 2005; Lise et
al., 2006), RNA transcription (Lindsay & McCaffrey, 2009), and has recently been implicated in
microvillus inclusion disease, a rare genetic disorder of the small intestine (Erickson, Larson-
Thome, Valenzuela, Whitaker, & Shub, 2008; Muller et al., 2008). Although our prior linkage
information up-weights this signal at MYOS5B, a recent meta-analysis combining the STEP-BD
sample with a number of other case-control BPD samples finds no evidence of association in this
region (Ferreira et al., 2008). Our second strongest signal, rs4852259 in DYSF, resides in a gene
that codes for skeletal muscle protein, and non-synonymous mutations in DYSF have resulted in
limb girdle muscular dystrophy and Miyoshi myopathy (Bashir et al., 1998; Liu et al., 1998). In
our literature review of DYSF, we did not find any evidence of brain expression or psychiatric
effects of this gene.

We also identified genes in regions where prior linkage information and association

signals coincide. At chromosome 9p21.1, signals reside in both C9orf82 and IFT74. While there
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is currently no known information on C9orf82, IFT74 (also known as capillary morphogenesis
protein 1: CMG1) is a brain-expressed gene, whereby it codes a protein that transports material
from the cell body along the dendritic and axonal processes of neurons (Momeni et al., 2006).
IFT74 has been implicated in familial cases of amyotrophic lateral sclerosis (ALS) -
frontotemporal dementia (FTD), although common SNPs do not seem to be implicated as causal
variants of ALS-FTD (Xiao et al., 2008). On chromosome 17q24.2, none of the association
signals occur within or adjacent to genes (all signals with weighted p <.001 are greater than 100
kb away from the nearest gene). The nearest genes that flank the signal are MAP2K6, part of the
kinase mediated signal transduction pathway involved in cell cycle arrest, transcription
activation, and apoptosis; and KCNJ16, coding a membrane protein that regulates potassium
channel activity. Of note, MAP2K6 has been associated in mediating the onset of Huntington’s
disease (Arning et al., 2008), and KCNJ16 reflects ion channel activity, which has recently been
implicated as a possible source of BPD pathogenesis (Ferreira et al., 2008). We can only
speculate that the association signal may be involved in some sort of regulatory function relative
to these genes. For the signal on chromosome 18q12.2, the current UCSC genome browser
contains only a hypothetical gene, location 647946, in the region. Further annotation is necessary
to determine whether location 647946 is indeed a coding region, and no functional information is
currently known about it.
2.6.1 Conclusion

By incorporating genome-wide linkage and association data on BPD, we hope to identify
susceptibility alleles and genes that would have otherwise been overlooked by any single method
of genome-wide interrogation. Due to the conservative nature of genome-wide significance in

association designs, true signals of small effect are inevitably overlooked. Prior linkage data
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serves to aid in their detection as it provides independent marker information on BPD across the
genome. We should note that while our prior linkage information came from a substantial pool of
linkage studies, this method could certainly be applied with data from a single linkage study.
Although weighted designs with informative prior information maximize any potential power
gains, the loss in power is small when using uninformative prior information (Roeder et al.,
2006). Given that linkage signals are better suited to detect rarer alleles of high penetrance, we
believe this method will be even more helpful as future GWAS increase the coverage of rarer
SNP and CNV variants (MAF < .05) to their analyses. Furthermore, recent work using
simulation and known genetic associations postulates that signals found in GWAS could actually
be “synthetic associations” driven by rare genetic variants (Dickson, Wang, Krantz, Hakonarson,
& Goldstein, 2010). In this respect, combining linkage and association data can be useful in
highlighting areas that are most promising for future sequencing studies; studies that would be

able to putatively identify the effects of rare variants on BPD.
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Chapter 3

Detecting Autozygosity through Runs of Homozygosity: A Comparison of Three
Autozygosity Detection Algorithms

3.1 Background

With the advent of high-density genome-wide SNP arrays, examination of individual
genetic data has revealed that runs of homozygosity (ROHs) - many homozygous SNPs in a row
- are a common occurrence in all populations worldwide (Gibson, Morton, & Collins, 2006).
Consequently, there has been interest in understanding if ROHs serve as risk factors underlying
complex and simple disorders. There are sound theoretical reasons to suspect that ROHs are
associated with disorder risk. Long ROHs (e.g., 100+ homozygous SNPs in a row) are unlikely
to have arisen by chance. Rather, they are likely to denote autozygosity, which occurs when two
genetic strands in the same individual come from the same ancestor - in other words, when
(perhaps distant and unintended) inbreeding occurs. Inbreeding has long been known to increase
the risk of many disorders.

Much research suggests that such “inbreeding depression” occurs via an increase in
autozygosity and a corresponding increase in homozygosity at rare, partially recessive,
deleterious mutations (reviewed in Charlesworth & Willis, 2009)). In order for researchers to
investigate the effects of autozygosity on disease, it is critical to accurately distinguish truly
autozygous ROHs from the larger pool of often non-autozygous ROHs in a sample. The goal of
this study is to investigate how accurately existing ROH detection programs identify
autozygosity in genome-wide SNP data and which thresholds within these programs maximize

the ability to detect genomic signatures of inbreeding depression.
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3.1.1 Review of ROH Literature

ROH analyses to date have investigated questions relevant to both basic population
genetic theory and disease risk. Population genetics studies have analyzed the distribution,
prevalence, and location of ROHs across various sub-populations to infer population structure,
history, and natural selection (Gibson et al., 2006; Kirin et al., 2010; Li et al., 2006; McQuillan et
al., 2008; Nothnagel, Lu, Kayser, & Krawczak, 2010; Sabeti et al., 2007; Voight, Kudaravalli,
Wen, & Pritchard, 2006). Phenotypic studies have used both family-based and population-based
samples to identify specific associated risk ROHs as well as differences in overall ROH burden.
There has been recent success in identifying genes underlying simple autosomal recessive
disorders in families within populations with high consanguinity using homozygosity mapping,
with dozens of publications in recent years (e.g., Abu Safieh et al., 2010; Borck et al., 2011;
Collin et al., 2010; Kalay et al., 2011; Walsh et al., 2010; Zelinger et al., 2011). Larger scale
studies using genome-wide SNP data have also been conducted for complex phenotypes such as
Schizophrenia (Lencz et al., 2007), Bipolar Disorder (Vine et al., 2009), Parkinson's disease
(Wang, Haynes, Barany, & Ott, 2009), Alzheimer’s disease (Nalls et al., 2009), Colorectal
cancer (Spain, Cazier, Houlston, Carvajal-Carmona, & Tomlinson, 2009), Childhood acute
lymphoblastic leukemia (Hosking et al., 2010), and Breast and Prostate cancer (Enciso-Mora,
Hosking, & Houlston, 2010). Non-clinical traits such as height (Yang et al., 2010b) have also
been examined using ROH analyses (for a review of the current ROH research, see Ku, Naidoo,
Teo, & Pawitan, 2010). However, results from these previous studies on complex phenotypes
have been mixed. While significant ROH have been identified for height and Alzheimer’s
disease, little to no evidence exists for the effects of specific ROH on other phenotypes.

Moreover, the effects of ROH burden on some complex phenotypes (Schizophrenia, Alzheimer’s

32



disease) were significant, whereas no effects of ROH burden were found on other complex
phenotypes (Bipolar Disorder, Colorectal cancer, Childhood acute lymphoblastic leukemia,
Breast cancer, and Prostate cancer).
3.1.2 Limitations of ROH Analysis

A central limitation to current studies analyzing ROHs is the lack of consensus criteria or
even guidelines for defining a ROH (Ku et al., 2010). For example, Lencz et al. (2007) only
examined ROHs shared by ten or more subjects and that spanned at least 100 SNPs, and did not
allow for any heterozygote calls, whereas Spain et al. (2009) examined overall ROH burden
across various SNP and kb length thresholds, analyzed both complete and low linkage
disequilibrium (LD) SNP datasets, and permitted a 2% heterozygote allowance. The discrepancy
between definitions of ROHs makes comparisons between study results difficult, and the lack of
consensus criteria for defining ROH increases the probability of false positive results due to the
potential for choosing the most significant among many ROH thresholds investigated (Ioannidis,
2005).
3.1.3 ROH as an Optimal Measure of Autozygosity

A recent study by Keller, Visscher, & Goddard (2011) found that inbreeding coefficients
estimated from ROHs are much better at detecting the overall burden of rare, recessive mutations
(the likely cause of inbreeding depression; Charlesworth & Willis, 2009) than several
alternatives, including inbreeding coefficients defined on a SNP-by-SNP basis and those defined
from pedigrees. While SNP-by-SNP homozygosity provides an adequate test for recessive
effects of common causal alleles (that either exist on the genotyping platform or that are in LD
with genotyped SNPs), ROHs track autozygosity, and therefore can be used to investigate the

effects of homozygosity at both rare and common causal variants (Keller et al., 2011). Non-
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autozygous ROHs, stretches of homozygous SNPs that are actually heterozygous at unmeasured
variants, are less likely to contain rare, partially recessive, deleterious mutations in their
homozygous form. Therefore, the central criterion for defining ROHs — and the only reason one
would measure ROHs rather than SNP-by-SNP homozygosity — is to assess autozygosity. In
practice, this means differentiating ROHs that are not autozygous and are identical-by-state
(IBS) from ROHs that are autozygous and are identical-by-descent (IBD). However, there has
been no systematic investigation to date into which ROH detection program is optimal at
detecting autozygosity and which parameters within those programs maximize statistical power.
The current study addresses these unanswered questions and offers some consensus criteria to

capture autozygosity through ROH analysis.

3.2  Methods
3.2.1 Overview of Approach

Our analysis simulated sequence data that mimicked LD and polymorphism properties
found in modern European heritage populations, thus allowing the sequence to resemble
expected autozygosity in an outbred population as well as provide perfect information about
truly autozygous segments. SNP data was obtained from the sequence by sampling common
polymorphisms that mimicked the allele frequency distribution and SNP density found in a
modern dense SNP chip (e.g., the Affymetrix 6.0 SNP chip), adding error rates and missingness
patterns that were also empirically derived. Using this SNP data, we evaluated the performance
of existing ROH detection programs to detect known autozygous segments. There are three
primary ROH detection programs that have either been used in previously cited ROH studies

and/or that have been the focus of a recent publication on detection of autozygosity: PLINK
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(Purcell et al., 2007), GERMLINE (Gusev et al., 2009), and BEAGLE (Browning & Browning,
2010). To assess how accurately each program identified autozygosity, we estimated the rate at
which non-autozygous ROHs were called “autozygous” (type 1 errors) and the rate at which
truly autozygous ROHs were not detected (type 2 errors).

While low type 1 and type 2 error rates are always preferred, they cannot be minimized
simultaneously: an inherent trade-off exists such that an increase in the type 1 error rate leads to
a decrease in the type 2 error rate and vice versa. Determining which ratio of type 1 to type 2
errors should be preferred is not obvious; here, we used a second, independent simulation to find
which ratio of type 1 and type 2 error rates would maximize power to detect an association
between autozygosity burden and a simulated phenotype. We started by simulating a phenotype
associated with autozygosity, and from this population drew a sample containing autozygous
segments at the rate found in our simulated sequence data (i.e., the level of autozygosity that
corresponds to ROH distributions seen in empirical data). We then regressed the simulated
phenotype on the sum of segments identified as “autozygous,” which included truly autozygous
segments (influenced by the type 2 error rate) as well as non-autozygous segments (type I
errors), as indicated by the type 1 and type 2 error rates found for the program/thresholds from
the previous analysis. Power in this case is defined as the proportion of significant results
observed in the simulation. By comparing power across programs and across thresholds within
those programs, we have an empirical, objective foundation for deciding which program and
which thresholds are most suitable for detecting autozygous ROHs.

3.2.2 Generation of Sequence Data
In order to test the performance of detecting autozygous segments for each program, we

needed genomic data that identified which segments of some arbitrary length were truly
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autozygous from a common ancestor within some time frame (e.g., 50 generations). One method
would be to use real sequence data in existing samples, but detecting autozygosity in sequence
data given current small samples, low pass coverage, and high error rate estimates (e.g., 1-3% in
the thousand genomes data; Durbin et al., 2010) poses a substantial problem in accurately
estimating autozygosity. Instead, we generated sequence data (genomic data with every base pair
measured) that tracked every allele, rare or common, in the population, allowing us to identify
autozygous segments without error by finding genomic areas of some arbitrary length (e.g., 0.5
Mb or larger) that were perfectly (100%) homozygous at the sequencing level.

We used the forward-time simulation program FREGENE (Chadeau-Hyam et al., 2008)
to simulate full sequence data. FREGENE simulates a monoecious diploid population that
evolves over non-overlapping generations according to a Wright-Fisher model (Fisher, 1930).
We simulated a 120 Mb chromosome in an effective population (Ne) of constant size 10,000
(roughly the estimated effective population size of humans; Harpending et al., 1998) for 100,000
generations, long enough for mutation-drift equilibrium to be assured (Chadeau-Hyam et al.,
2008). Using neutral simulation parameters recommended by FREGENE, we set the mutation
rate at 2.3e-8, the gene conversion rate at 4.5e-9 with a 500 bp gene conversion length, and no
variants under selection. The average recombination rate was 1.3e-8, but FREGENE allows for
realistic differences across the genome in recombination, with most (80%) recombination
occurring in hotspots of length ~2,000 bp that encompassed 20% of the chromosome (Chadeau-
Hyam et al., 2008; Schaffner et al., 2005). It was critical to simulate patterns of LD that
mimicked as closely as possible those observed in real human SNP data, as the lengths,
distributions, and frequencies of truly autozygous ROHs and non-autozygous ROHs are

influenced by the population size, the degree of real inbreeding in the population, and the LD
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patterns between SNPs. For example, an isolated population with long haplotypes and long
distance LD would exhibit a high proportion of long ROH even if few arose from recent
inbreeding. For both the sequence and resulting SNP data parameters, we used SNP data from
control subjects in the Molecular Genetics of Schizophrenia nonGAIN sample (Shi et al., 2009)
as our empirical SNP data set to check the validity of the simulation. The empirical data was
ascertained on an Affymetrix 6.0 SNP chip and contained ~770,000 SNPs across the ~2,770 Mb
of the autosomal portion of the human genome that is 'SNP-mappable.'

LD in data simulated under a neutral mutation-drift model is known to have much lower
LD than is observed in human data (Reich et al., 2001; Schaffner et al., 2005). Both Reich et al.
(2001) and Schaffner et al. (2005) found that one or two population bottlenecks between 800 to
3,000 generations ago led to LD patterns that mimic data from a population of European
heritage. Older bottlenecks led to less LD and more recent ones to more LD. Starting from the
population of Ne=10,000 in mutation drift-equilibrium, we varied bottleneck parameters until we
found those that mimicked real LD patterns when we sampled SNP data from the sequence. We
found that a population bottleneck reduction from 10,000 to 800 individuals for 200 generations,
followed by 2,000 generations of evolution back at 10,000 best mimicked the LD patterns seen

in our empirical SNP data (see Figure 3.1), and similar to the results seen in Reich et al. (2001).
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Figure 3.1 Observed LD within 50 kb using 5,000 Pairwise SNP Comparisons. LD patterns are
measured by sampling the r* of 5,000 SNP pairs up to 50 kb away. The lines represent Lowess
curves that track changes in mean r* as physical distance increases between SNPs. Empirical r*
values are in blue, and simulated r* values are in green. Because MAF strongly influences the r*
between SNPs, a floor effect often occurs after short distances due to SNP pairs with large MAF
differences, making it difficult to compare LD patterns between datasets. Therefore, we included
both closely matched MAF SNP pairs and SNP pairs with minimum MAF > .05. Darker hues

represent matched MAF pairs and lighter hues represent SNP pairs with minimum MAF > .05.
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We then turned our attention to generating simulated data that led to similar lengths and
frequency of ROHs as seen in our empirical SNP data. We found that reducing population size to
6,500 (from 10,000) and selective sampling of individuals from that reduced population best
mimicked the length of ROHs seen in our real data. In particular, we chose 1,000 individuals
from the sequence data that closely matched the overall proportion of ROH seen in our empirical
data across various ROH analyses. Thus, we simulated genetic sequence data that mimics as
closely as possible the two parameters — LD and distribution of ROHs — central to the present
investigation. Our sample of simulated sequence data contained 669,219 total variants, with
436,564 having a minor allele frequency (MAF) > 1%, and on average one variant per 179 bp.
3.2.3 Mapping of Autozygous Segments

It would be ideal to keep track of autozygous segments through the course of our
sequence simulation. Unfortunately, no sequence simulation program that we are aware of tracks
autozygosity. As a substitute that will detect all but the shortest autozygous tracks, we identified
autozygous segments by finding stretches of sequence data that were perfectly homozygous. To
do this, we first used the genetic distance map derived from the FREGENE simulation to
estimate the expected length of autozygous segments. By definition, both genetic strands making
up an autozygous segment originate from a single common ancestor, however the length of this
segment decreases on average over time due to recombination. Specifically, the expected length
of an autozygous segment follows an exponential distribution with mean equal to 1/2g Morgans,
where g is the number of generations since the common ancestor. Thus, the expected length of an
autozygous segment caused by sib-sib inbreeding (g = 2, counting from the inbred offspring to
the siblings who mate, and the mated siblings to their parents) is 1/4 Morgan or 25 cM, while the

expected length of an autozygous segment originating from a common ancestor 50 generations in
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the past is 1 cM (see Figure 3.2).
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Figure 3.2 Distribution of Expected Autozygous Segment Lengths since Common Ancestor. The
probability density of autozygosity lengths from a common ancestor follows an exponential
distribution that depends on the number of generations since the common ancestor. We chose to
examine autozygous segments that originate from a common ancestor within the past 20
generations (in green) and within the last 50 generations (in blue). The dashed lines indicate the
minimum length threshold that would capture 80% of these segments, with the grey area under

the curve being the proportion of autozygous segments being captured above this threshold.
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Because the shortening of autozygous lengths due to recombination occurs gradually
across generations, any choice of distance threshold to define autozygosity is ultimately
arbitrary. We chose two thresholds that were consonant with the lengths of homozygous runs
being reported in the literature and that were realistically detectable using modern SNP
platforms. The first (long) threshold captured 80% of autozygosity originating in common
ancestors within the past 20 generations (~600 years in humans), and the second (short)
threshold captured 80% of autozygosity originating within the past 50 generations (~1500 years ;
Fenner, 2005). As shown in the areas under the curve in Figure 3.2, these thresholds correspond
to a minimum genetic distance of 0.55 cM (~423 kb) for 20 generations back and 0.22 cM (~169
kb) for 50 generations back, where the genetic distance derived from FREGENE recombination
is 1.3 cM/Mb. By requiring segments in our sequence data to be completely homozygous, new
mutations arising within the last 20 or 50 generations on either segment would cause regions to
be missed that were truly autozygous. To ensure that autozygous segments were completely
homozygous and therefore detectable with 100% fidelity, we allowed no new mutations to arise
during the final 50 generations of the simulation. Such a ‘mutational freeze’ has a negligible
impact on the resulting SNP data, as recent neutral mutations very rarely rise in frequency to be
considered SNPs (MAF > 1%; Hedrick, 2011). On the other hand, the mutational freeze did
affect sequence data, but given that sequence data was only used for inferring autozygosity, this
strategy did not affect our conclusions. Within the past 20 generations, the average autozygous
segment spanned 4,707 variants and 841 kb in length, with total autozygosity covering 0.36% of
the sequence data. Within the past 50 generations, the average autozygous segment spanned
1,862 variants and 334 kb in length, with total autozygosity covering 0.91% of the sequence

data.
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3.2.4 Extracting SNP Data from Sequence Data

We extracted a subset of variants from the simulated sequence data to mimic several
properties found in empirical SNP data measured on a modern, commonly used SNP platform
(the Affymetrix 6.0 SNP chip). We first sampled a subset of SNPs that matched the MAF
distribution from our empirical data (see figure 3.3). We then extracted SNPs that matched the
spatial SNP density found in a 120 Mb portion of chromosome 5 (which was typical of other
genomic regions) of our empirical SNP data, giving us 33,040 SNPs (See figure 3.4). We then
added 'genotyping errors' through random sampling of the SNP data at a low (0.2%) and high
(1%) rate, the low rate corresponding to error rates observed in Rabbee & Speed (2006) and the
high rate corresponding to the error rate of a small number of duplicate genotyped individuals in
our empirical data (data not shown). We used error probabilities informed by the discordant
calling rates observed by Rabbee & Speed (2006), with heterozygous SNPs being called
homozygous at a roughly threefold higher rate than homozygous SNPs being called
heterozygous. Missingness was then added through random sampling by converting SNPs to
missing values based on missingness rates (0.8%) seen in the empirical data. Finally, we applied
standard GWAS cleaning procedures (dropping individuals with SNP missing rate > 5%,
dropping SNPs with missingness rate > 2%, dropping SNPs with MAF < 1%, and dropping
SNPs out of HWE where chi-square p < 0.0001; Sullivan & Purcell, 2008), resulting in a dataset
of 30,113 SNPs in the low error rate data (2,927 SNPs removed), and 30,110 SNPs in the high
error rate data (2,930 SNPs removed). PLINK, GERMLINE, and BEAGLE used these two SNP

datasets for their ROH analyses.
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Figure 3.4 SNP Density Matching. After MAF pruning of the simulated sequence data, SNPs

were drawn to closely match SNP base positions observed in empirical SNP data
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3.2.5 ROH Detection Algorithms
3.2.5.1 PLINK

The —-homozyg option in PLINK v1.07 (Purcell et al., 2007) makes ROH calls using a
sliding window that scans along an individual’s SNP data to detect homozygous stretches.
PLINK first determines whether a given SNP is potentially in a ROH. To call a SNP as part of a
ROH, PLINK calculates the proportion of completely homozygous windows that encompass that
SNP. For example, a SNP inside a 100 SNP window has 100 chances to be part of a homozygous
stretch as the window slides across one SNP at a time. Using the default -homozyg-window-
threshold of 0.05, if 5% of these windows are completely homozygous, then the SNP will be
included in the ROH. Finally, a ROH is called if the number of such “ROH SNPs” in a row
surpasses a user-defined threshold in terms of SNPs (default=100) and/or kb distance
(default=1,000). PLINK provides numerous other user-defined parameters, such as the size of
the sliding window measured in units of SNP length (default=50), the number of heterozygous
SNPs (default=1) allowed in the ROH, the number of missing SNPs (default=5) allowed in the
ROH, and several other parameters detailed on the PLINK website (see
http://pngu.mgh.harvard.edu/~purcell/plink/ and Table 3.1). Of note, the --homozyg-window-kb
option in PLINK, which defines windows in terms of distance rather than SNPs, is currently non-

functional.

46



QUON :SI9JoWeIRd POXIL]

1/6°0/ST0 =pquuouzpqy Sjel uonisuen qgH-uou 03 d4H -
1°0/10°0/1000°0 =Pquzpquuou Sjeluonisuen q4H 03 A9H-UON -
:s19j0weIed POLIBA A1ovdd
woy 119- oouemoO[[e 9103AZowoY FUIYOJRWSIA -
0 :sI0joweIRd PIXI]
13u9 JAD USAIS 10J SINS JO Jaquunu pajoadxyg $)1Qq- SANS UI 9ZIS MOPUIA -
S/SE/T/T/SL0/S70/STO0/ST 0 (o ur) W urw- (QIN 10 A0 ut) YiSuS] HOY WNWIUIA -
1/0 Joy 1I9- ooueMO[[e 9103471019y FUIYOIRWSIA -

‘s19)0wWweIed POLIBA

HNI'TINIID o~

(210uB1 01 Y31y 138) 000°S
(210uB1 01 Y31y 138) 000°S
(pasnun) (
(pasnun) (

(proysaIyl dNIS JO %S50°0)
(proysaryy dN'S JO %¢)
ﬁ~0£m®ﬁﬁ mZm Se oamm
00S/0S€/002/001/SL/0S/ST/ST

(qy) de3-3Azowoy--
(qy)) Aisuep-34zowoy--
qQy-34zowoy--
qQ-mopuim-3Lzowoy--

pIoysaiy3-mopuim-3Lzowoy--
urssiw-mopuim-34Lzowoy--
dus-mopurm-gAzowoy--
dus-§Azowoy--

HOY Sumids a1ojoq de3 wnwrxejy -
HOY © ][0 0} A)ISUdp NS WNWIUIA -

HOY € [[29 0 P[oysaIty) gy -
QY ul ozIs mopuim SuIpr|s -
SI9)owRIRd PIXI]

HOY ® [[&5 0} P]OYSaIy) MOPUIM -
ouemo[[e JNS SuIssI -
SAN'S Ul dZIS mopulm SUIpI[S -

HOY ® [[e2 03 P[oysait dNS -

4

1/0 1oy-mopuim-3Lzowoy-- ooueMO[[e 91034Z019)0 -
:sI9joweIRd POLIBA SINI'1d
pas(] sidpRmeIed IpoD REYELCACE | weagorq
pauyap oq

03 130wered Juruny yoed 10§ Surmoyre 1dwoid dur] puewuod € Sursn uni 9q ued werdord yoey ‘sidjoweled uonddd HOY I°€ 21de.L



3.2.5.2 LD-Pruning

PLINK does not account for MAF or LD in its algorithm. Aside from the ROH tuning
parameters available in PLINK, taking into account MAF and LD in SNP data will also affect
how ROH are identified. In particular, many low MAF SNPs in a row can increase the
probability of chance (non-autozygous) ROH segments, and high LD within dense SNP regions
can also have this effect. To minimize the probabilities of spurious ROH calls, we used LD-
pruned data (as suggested in the PLINK manual), such that we first removed SNPs with MAF <
0.05, and then used PLINK’s --indep command to prune for LD at two levels, which we term
“moderate” and “heavy” LD pruning. Moderate LD pruning removed SNPs within a 50 SNP
window that had r* > 0.5 (corresponding to a variance inflation factor, VIF, greater than 2) with
all other SNPs in the window, removing 24,700 SNPs (5,413 SNPs remaining) within the low
error SNP data, and removing 24,422 SNPs (5,688 SNPs remaining) within the high error SNP
data. Heavy LD pruning removed SNPs within a 50 SNP window that had r* > 0.09 with other
SNPs (correspond to a VIF > 1.1), removing 28,743 SNPs (1,370 SNPs remaining) within the
low error SNP data, and removing 28,732 SNPs (1,378 SNPs remaining) within the high error
SNP data. We used VIF LD pruning because we found this procedure led to more consistent
SNP densities across different SNP platforms than LD pruning based on pairwise comparisons of
SNPs. Using these two levels of LD-pruned SNP data along with the unpruned SNP data, we ran
a total of 192 ROH analyses in PLINK (2 autozygosity levels x 2 genotyping error levels x 3 LD-
pruning levels x 2 heterozygote allowances x 8 ROH SNP size thresholds), with specific
parameters detailed in Table 3.1. We used SNP size ROH thresholds rather than kb length ROH

thresholds in PLINK because the former outperformed the latter (data not shown), which is
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likely because SNP size thresholds are more robust to the variance in SNP density across the
genome.
3.2.5.3 GERMLINE

The principal use of GERMLINE (Guseyv et al., 2009) is identity by descent (IBD)
mapping between individuals, where ROH analysis is the special case of IBD within an
individual. A ROH analysis in GERMLINE is carried out with the -homoz or -homoz-only
command. For reasons of efficiency, GERMLINE breaks up SNP data into non-overlapping
windows of a user-specified length in SNPs (default is 128 SNPs). Windows that are completely
homozygous are tagged. If several tagged windows are in a row and surpass a user-defined
length threshold in terms of genetic (cM) or physical (kb) distance, the region is called a ROH.
We used minimum genetic distance rather than minimum kb for our ROH thresholds because
genetic distance is likely to be more sensitive to variation in recombination rates across the
genome. To accommodate various genetic distances, we set the window size threshold to be the
expected number of SNPs for a given genetic distance. For example, given that our simulated
data encompasses 156 cM, a 1 cM window size would be 193 SNPs in the low error SNP data
(30,110 SNPs / 156 cM), but only 9 SNPs in the low error SNP data heavily pruned for LD
(1,370 SNPs / 156 cM). Because ROHs must be in multiples of the window size threshold,
GERMLINE'’s resolution of ROH start/end points is less fine grained than PLINK’s, and small
autozygous segments may be missed by GERMLINE. Like PLINK, GERMLINE also allows for
a user-defined number of heterozygous calls to exist in a window (other user-defined parameters
are detailed at http://www.cs.columbia.edu/~gusev/germline/). Also like PLINK, GERMLINE
does not account for SNP MAF or LD. Thus, we included the same MAF and LD pruned data

subsets used in the PLINK analysis. We ran at total of 192 ROH analyses in GERMLINE (2
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autozygosity levels x 2 genotyping error levels x 3 LD-pruning levels x 2 heterozygote
allowances x 8 ROH cM size thresholds), with specific parameters detailed in Table 3.1.
3.2.5.4 BEAGLE

BEAGLE's ROH detection algorithm (Browning & Browning, 2010) uses a
fundamentally different approach than PLINK or GERMLINE. BEAGLE employs a Hidden
Markov Model (HMM) that incorporates LD between SNPs and haplotype probabilities from the
entire sample when calling ROH segments (for details, see Browning & Browning, 2010). Two
user-defined prior probabilities set the baseline expectation of detecting an autozygous segment
in a single cM stretch of SNP data. The non-HBD to HBD transition rate is the prior probability
per cM of a non-autozygous SNP becoming autozygous (default = 0.0001) (HBD stands for
“homozygous by descent,” which is conceptually identical to what we term “autozygosity”™).
Lower values mean that autozygosity is expected to be less common. Conversely, the HBD to
non-HBD transition rate is the prior probability per cM of an autozygous SNP becoming non-
autozygous (default = 1). Lower values mean that autozygous runs are expected to be shorter.
BEAGLE outputs an individual x SNP matrix of posterior probabilities that each SNP is part of
an autozygous segment.

Because BEAGLE’s HBD program accounts for LD, we did not use pruned SNP data in
the BEAGLE analysis. For prior parameters, we set the non-HBD to HBD transition rates of
0.0001, 0.01, and 0.1, and set the HBD to non-HBD transition rates at 1, 0.5, and 0.25. It should
be noted that this is a large range of priors, and that they include the default priors (Browning &
Browning, 2010). As suggested in Browning and Browning (2010), to avoid false negatives, we
also used the maximum posterior probability for each SNP across 10 independent iterations of

their program to compare with results from a single iteration. In all, we ran at total of 72
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BEAGLE analyses (2 autozygosity levels x 2 genotyping error levels x 9 prior probabilities x 2
iteration levels).

All simulations, statistical programming, and graphing were done using R statistical
software 2.11.1 (http://r-project.org).
3.2.6 Comparison of True Autozygosity to Detected ROH

To get an estimate of the type 1 error rates (detecting a ROH that is not autozygous) and
type 2 error rates (failing to detect an autozygous ROH) for each program, we compared known
autozygosity from the sequence data (as described above) to detected ROH from each analysis.
These two types of errors were called on a per-SNP rather than per-ROH basis, as calls can be
correct for one part of an autozygous segment and wrong for another. To calculate the type 1
error rate, we summed the total number of SNPs that were type 1 errors and divided it by the
total number of non-autozygous SNPs. To calculate the type 2 error rate, we summed the total
number of SNPs that were type 2 errors and divided it by the total number of autozygous SNPs.
We then estimated d’, an index of measurement sensitivity in signal detection that incorporates
both type 1 and type 2 error rates (higher d' values mean greater sensitivity). d’ is estimated as:
o(1 - type 2 error rate) - ¢(type 1 error rate), where ¢ is the distribution function of a standard
normal, which converts a proportion to a Z-score value. Our estimated d’ values are included in
the table of our top regression power estimates (see Results).
3.2.7 Estimation of Regression Power

While d' measurements are a good estimate of measurement sensitivity, it has limitations.
First, as the type 1 or type 2 error rate approaches zero, d' approaches infinity. Second, two
identical d” estimates can have very different ramifications on the actual number of errors made

if the prior probabilities of the errors differ, making it difficult to know which ratio of type 1 to
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type 2 error rates is optimal. An alternative and preferable method to d’ is to ask what ratio of
type 1 to type 2 errors would maximize statistical power to detect a relationship between whole-
genome autozygosity burden and a phenotype (assuming some base rate of autozygosity). This
approach not only circumvents the limitations surrounding d’ estimates, but also addresses a
commonly tested hypothesis in clinical ROH research. Furthermore, power results derived from
testing whole-genome ROH burden apply to single ROH association hypotheses (e.g. ROH
mapping) as well because the error probabilities in detecting autozygosity are equivalent at the
single ROH level and at the whole-genome level.

To estimate statistical power of a whole-genome ROH burden analysis informed by the
type 1 and type 2 error rates, we simulated a sample of 2,000 individuals, with every individual’s
genome split into 'potential’ autozygous segments of equal length (7,565 segments for the 20
generation autozygosity map (3,200 Mb/423 kb) and 18,935 segments for the 50 generation
autozygosity map (3,200 Mb/169 kb)). Each segment had a probability of being autozygous at
the rate observed in our simulated sequence data (0.36% within 20 generations and 0.91% within
50 generations). While the true level of autozygosity in modern outbred populations is unknown,
these base rates are likely to be close to the true level because the simulation parameters and
selective sampling of the sequence data were chosen to mimic the level of LD and distribution of
ROHs found in modern European populations. A continuous phenotype was created for each
individual such that the summed autozygous segments within individuals accounted for a small
percentage (1%) of the variance of their phenotype score. The choice of the variance accounted
for (1% in this case) is purely arbitrary; other choices would raise or lower the absolute levels of
detected power but have no effect on the relative differences between various estimates of

statistical power, and therefore would have no influence on our final conclusions. We then
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simulated true calls, false calls (type 1 errors), true non-calls, and false non-calls (type 2 errors)
using the observed error rates from each ROH analysis. We summed the called ROHs for each
individual (made up of ROHs that are both true positives and type 1 errors) and regressed the
simulated phenotype on this sum. To derive our power estimates, we repeated our simulated
regression 1,000 times for each analysis. Regression power was defined as the proportion of
trials associated with a positive slope and p-value < 0.05, so a power estimate of 0.5 would mean
that 500 of the 1,000 simulations positively associated the simulated phenotype with overall

ROH burden.

3.3  Results

Overall, PLINK consistently generated the highest regression power estimates for
detecting autozygosity, outperforming GERMLINE and BEAGLE. Figures 3.5 and 3.6 show the
range of regression power estimates for PLINK, GERMLINE, and BEAGLE (See figures 3.7,
3.8, 3.9, and 3.10 for type 1 and type 2 error rates). In general, PLINK and GERMLINE power
estimates were highly sensitive to their tuning parameters, whereas BEAGLE power estimates
were insensitive to all prior probability parameters. For the PLINK results, power was highest
when using moderately LD-pruned SNP data, with un-pruned and heavily LD-pruned SNP data
performing below the top power estimates. Not surprisingly, higher genotyping error rates

generally led to lower regression power estimates in PLINK and GERMLINE.
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3.3.1 Legend for Figure 3.5

Each graph represents power estimates for each program using unpruned, moderate LD-pruned,
or heavy LD-pruned SNP data across different minimum SNP (PLINK) or cM (GERMLINE)
lengths. The color of each line represents power estimates with respect to autozygosity within the
past 20 and 50 generations, and within low and high genotyping error rates, and are as follows:
Dark red — Autozygosity up to 20 generations and low genotyping error rate

Light red — Autozygosity up to 20 generations and high genotyping error rate

Dark green — Autozygosity up to 50 generations and low genotyping error rate

Light green — Autozygosity up to 50 generations and high genotyping error rate

Power estimates allowing for no heterozygotes are represented by solid lines, whereas estimates
allowing for one heterozygote are represented by dotted lines. The horizontal dashed lines
represent the initial maximum power estimates with respect to autozygosity within the past 20

and 50 generations, and within low and high genotyping error rates.
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Figure 3.6 Regression Power Results for BEAGLE. See Legend for Figure 3.6 for details.
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3.3.2 Legend for Figure 3.6

Each graph represents power estimates with respect to autozygosity within the past 20 and 50
generations. The color of each line represents the non-HBD to HBD transition rate within low
and high genotyping error rates, with varying hues reflecting different rates. Solid lines represent
power estimates of the maximum posterior probability from 10 BEAGLE iterations, whereas
dotted lines represent the estimates from a single BEAGLE iteration. The horizontal dashed lines
represent the initial maximum power estimates with respect to autozygosity within the past 20

and 50 generations, and within low and high genotyping error rates.
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3.3.3 Legend for Figures 3.7 and 3.8

Figure 3.7 represents type 1 and type 2 errors to detect autozygosity within the past 20
generations. Figure 3.8 represents type 1 and type 2 errors to detect autozygosity within the past
50 generations. Type 1 and type 2 error rates for each program are shown using unpruned,
moderately LD-pruned, or heavily LD-pruned SNP data across different minimum SNP (PLINK)
or cM (GERMLINE) lengths. Green lines represent type 1 error rates and are measured along the
X-axis, while red lines represent type 2 error rates and are measured along the Z-axis. Color hues
are as follows:

Dark green and dark red — low genotyping error rate

Light green and light red — high genotyping error rate

Type 1 and type 2 error rates allowing for no heterozygotes are represented by solid lines,

whereas error rates allowing for one heterozygote are represented by dotted lines.
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3.3.4 Legend for Figure 3.9

Type 1 and type 2 error rates for BEAGLE are shown using for autozygosity within 20 and 50
generations, and within high and low genotyping error rates. Green lines represent type 1 error
rates and are measured along the X-axis, while red lines represent type 2 error rates and are
measured along the Z-axis. Color hues are as follows:

Dark green and dark red — non-HBD to HBD transition rate of 0.1

Green and red — non-HBD to HBD transition rate of 0.01

Light green and light red — non-HBD to HBD transition rate of 0.001

Solid lines represent type 1 and type 2 error rates from the maximum probability of 10 BEAGLE
iterations, whereas dotted lines represent Type 1 and type 2 error rates of a single BEAGLE

iteration.
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Given these initial results, we decided to look in more detail within the PLINK ROH
analyses for the optimum level of LD-pruning and minimum SNP threshold. In addition to
moderate LD-pruning, we included “light” LD-pruning, where we removed SNPs that had 12 >
0.9 with other SNPs in a 50 SNP window (VIF > 10), removing 19,662 SNPs (10,451 SNPs
remaining) within the low error SNP data, and removing 17,756 SNPs (12,354 SNPs remaining)
within the high error SNP data. We also included “moderate-heavy” LD-pruning, where we
removed SNPs that had r2 > 0.25 in a 50 SNP window (VIF > 1.33), removing 26,375 SNPs
(3,738 SNPs remaining) within the low error SNP data, and removing 26,213 SNPs (3,897 SNPs
remaining) within the high error SNP data. We also varied the minimum SNP threshold between
10 and 125 SNPs in increments of 5 SNPs.

The fine-scale results from PLINK (Figure 3.10) show that power was maximized using
light to moderate LD-pruning, with the power from moderate-heavy LD-pruning peaking well
below the maximum power estimates. Comparisons with the results presented in Figure 3.10
show that both light and moderate LD-pruning are roughly equivalent in terms of regression
power. The effect of allowing for a heterozygote call often depended on the minimum length of
called ROH, but with respect to the highest power results, allowing for heterozygote calls never
performed better than allowing for no heterozygotes. Finally, the optimum SNP threshold for
calling ROHs depended on how ancient the autozygosity was. When using moderate LD-pruned
data, a 45 SNP minimum threshold worked best to detect autozygosity within the past 20
generations, whereas a 35 SNP minimum threshold worked best to detect autozygosity within the
past 50 generations. In general, higher minimum SNP thresholds (and therefore longer detected
ROH segments) detect recent autozygosity better, whereas lower thresholds better detect ancient

autozygosity. This is expected as autozygous segments are broken into shorter lengths due to
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recombination over generational time. Table 3.2 lists the top regression power results within the

past 20 and 50 generations for both high and low genotyping error rates.
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3.3.5 Legend for Figure 3.10

Each graph represents power estimates for PLINK using light LD-pruned, moderate LD-pruned,
or moderate-heavy LD-pruned SNP data across different minimum SNP (PLINK). The top
graphs represent power estimates with respect to autozygosity within the past 20 generations, and
the bottom graphs represent autozygosity within the past 50 generations. The color of each line is
identical to those used in figure 3, and are as follows:

Dark red — Autozygosity up to 20 generations and low genotyping error rate

Light red — Autozygosity up to 20 generations and high genotyping error rate

Dark green — Autozygosity up to 50 generations and low genotyping error rate

Light green — Autozygosity up to 50 generations and high genotyping error rate

Power estimates allowing for no heterozygotes are represented by solid lines, whereas estimates
allowing for one heterozygote are represented by dotted lines. The horizontal dashed lines
represent maximum power estimates with respect to autozygosity within the past 20 and 50
generations, and within low and high genotyping error rates, and the large diamond points

represent the SNP threshold where PLINK reaches the maximum power estimates.
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Table 3.2 Top Regression Power Results

Program Power Length Estkb Het a p d’' LD-
pruning

Autozygosity within 20 generations (low genotyping error)

PLINK 0.696 S0SNPs 1108 O 0.003 033 3.19 Moderate
PLINK 0.691 80 SNPs 919 0 0.003 031 32  Light
PLINK 0.670 55SNPs 1219 O 0.002 045 3.02 Moderate
PLINK 0.662 80 SNPs 918 1 0.005 0.23 3.28 Light

Autozygosity within 20 generations (high genotyping error)

PLINK 0.657 45 SNPs 949 0 0.004 0.29 3.19 Moderate
PLINK 0.636 55SNPs 1160 O 0.002 047 297 Moderate
PLINK 0.628 S0SNPs 1054 O 0.003 037 3.07 Moderate
PLINK 0.608 60 SNPs 1265 1 0.003 041 3.01 Moderate

Autozygosity within S0 generations (low genotyping error)

PLINK 0.725 65 SNPs 746 0 0.005 040 2.83 Light
PLINK 0.712 50 SNPs 574 0 0.01 0.23 3.06 Light
PLINK 0.710 60 SNPs 689 0 0.006 036 2.88 Light
PLINK 0.709 45 SNPs 517 0 0.012 0.18 3.14 Light

Autozygosity within 50 generations (high genotyping error)

PLINK 0.671 35SNPs 738 0 0.007 038 2.76 Moderate

PLINK 0.652 40 SNPs 844 0 0.004 047 2.69 Moderate

PLINK 0.649 45 SNPs 949 0 0.003 0.55 2.64 Moderate

PLINK 0.649 80 SNPs 777 1 0.006 040 2.73 Light

Listed are the top four repression power results for detecting autozygosity within the past 20 and
50 generations, and within low and high SNP genotyping error. Low genotyping error = 0.2%
genotyping error rate. High genotyping error = 1% genotyping error rate. Length = Minimum
SNP or cM length to call a segment. Est kb = Minimum expected kb distance for the given
length. Het = Number of Heterozygotes allowed in a segment. a = Type 1 error rate. f = Type 2
error rate. d' = d-prime estimate. LD-pruning = Level of LD-pruning. Moderate = Removal of
SNPs within a 50 SNP window that had VIF greater than 2 (i.e. --indep 50 5 2 in PLINK). Light
= Removal of SNPs within a 50 SNP window that had VIF greater than 10 (i.e. --indep 50 5 10

in PLINK).
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Regression power estimates for GERMLINE were similar in pattern but consistently
lower than power estimates for PLINK, which was likely driven by the lower start/end resolution
of ROH calling in GERMLINE (see Methods). To ensure that the discrepancy between
GERMLINE and PLINK results were not due to the different ways that ROH length thresholds
were defined, we also looked at minimum SNP thresholds in GERMLINE (as opposed to cM
length), finding virtually identical results to PLINK, but with slightly lower regression power
estimates at all thresholds (data not shown).

BEAGLE was very conservative in detecting autozygous segments, with consistently
high type 2 error rates despite using the maximum posterior probability from 10 iterations and a
reduced threshold for calling ROH to any posterior probability greater than 10% (a 50%
posterior probability threshold was used in Browning & Browning (2010). In short, applying
liberal ROH calling parameters did not significantly improve the conservative estimates for
BEAGLE.

3.3.6 Computational Time

There were major differences in computational time between the three programs. For our
120 Mb data using 1,000 individuals, a single PLINK and GERMLINE ROH analysis took under
30 seconds, whereas a single BEAGLE HBD analysis took ~150 minutes (about half this time
was taken to phase the data - a necessary step in the way their algorithm was written). Both
PLINK and GERMLINE analysis times scale up linearly with respect to distance, so a whole-
genome analysis for 1,000 individuals should take under 11 minutes. On the other hand,
BEAGLE analysis run time scales exponentially, so while BEAGLE runs a separate analysis on

each chromosome, chromosome size and sample size greatly affects the computational time.
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3.4  Discussion

By simulating sequence and SNP data to match important population genetic properties
found in empirical SNP data, we were able to compare the performance of ROH detection
programs to identify true levels of autozygosity expected in large, outbred populations of
European heritage. PLINK consistently outperformed both GERMLINE and BEAGLE,
producing higher regression power estimates for detecting autozygosity within 20 and 50
generations, regardless of the genotyping error rate. While we found, as expected, that
GERMLINE performed worse than PLINK due to the lower resolution of start/end points of
ROHs, we were surprised by the lower performance of BEAGLE. Specifically, we expected that
the incorporation of MAF and LD information in BEAGLE’s hidden markov model to result in
higher accuracy to detect autozygosity. However, this did not appear to be the case. Rather,
BEAGLE was consistently conservative, and changing the tuning parameters did not alter this.
As currently designed, at least, BEAGLE appears optimized to detect rather long autozygous
segments arising from a recent common ancestor, but has not been designed to detect the more
ambiguous autozygous signals from distant common ancestors.
3.4.1 Recommendations

Our results suggest that PLINK is the most suitable program for detecting autozygosity
arising from distant ancestors (see Table 3.3). Our results also demonstrate that removing low
MAF (< 0.05) SNPs and removing SNPs through light-to-moderate LD-pruning (e.g., VIF
between 2 and 10) prior to the analysis minimizes the trade-off between the exclusion of non-
autozygous ROHs and the cost of missing shorter autozygous ROHs. In particular, LD-pruning
improves detection accuracy by removing redundant SNPs within SNP-dense regions, making

SNP coverage more uniform with respect to recombination distance and allowing ROH calls to
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be less dependent on the variation in SNP density across platforms. Moreover, our results
suggest not allowing any heterozygote SNPs to exist in a called ROH. Our recommendations
regarding the minimum SNP threshold, however, vary slightly depending on what strength of LD
pruning is used and on the time since the common ancestor of the autozygous segment. For
example, to detect autozygosity arising from a common ancestor within the past 50 generations,
a 65 SNP minimum threshold is preferred when using light LD-pruning, while a 35 SNP
minimum threshold is preferred when using moderate LD-pruning. Both thresholds cover a
minimum physical distance of ~750 kb, but moderate LD-pruning retains fewer SNPs across that
distance. Analyses geared towards detecting more recent autozygosity should increase the
minimum SNP length threshold. When we examined autozygosity arising from common
ancestors within the past 20 generations, a 45 to 50 SNP minimum threshold performed best
when using moderate LD-pruning, depending on how much error is expected in the SNP data.
Because our recommendations include LD-pruning, the increased SNP density of modern
platforms should have a minimal effect on our recommendations, as the level of LD between

SNPs remains roughly constant regardless of SNP density.

70



Table 3.3 Top Recommendations for Detecting Autozygosity

Autozygosity SNP data Top Program Chosen parameters
Detection
Within the past Low PLINK - Moderate LD-pruning
20 generations  genotyping - 50 SNP threshold

error - No heterozygote allowed
Within the past ~ High PLINK - Moderate LD-pruning
20 generations  genotyping - 45 SNP threshold

error - No heterozygote allowed
Within the past  Low PLINK - Light LD-pruning
50 generations ~ genotyping - 65 SNP threshold

error - No heterozygote allowed
Within the past ~ High PLINK - Moderate LD-pruning
50 generations ~ genotyping - 35 SNP threshold

error - No heterozygote allowed

Low genotyping error = 0.2% genotyping error rate. High genotyping error = 1% genotyping
error rate. Moderate LD-pruning = Removal of SNPs within a 50 SNP window that had VIF
greater than 2 (i.e. --indep 50 5 2 in PLINK). Light LD-pruning = Removal of SNPs within a 50

SNP window that had VIF greater than 10 (i.e. --indep 50 5 10 in PLINK).
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3.4.2 Limitations

Despite our efforts to simulate realistic sequence and SNP data, additional factors that
occur in real data, such as genotyping plate effects, autozygous runs caused by positive selection,
hemizygous deletions, SNP-poor centromeres, and uniparental isodisomy (two copies of the
same chromosome from a single parent) were not simulated and may affect estimates of ROH in
real data. We did not investigate several additional questions, such as the effects of our
recommendations for detecting ROHs in non-European heritage or isolated populations. We also
did not investigate optimal thresholds/program for detecting more recent or more ancient
autozygosity. However, autozygosity arising from more recent ancestors becomes increasingly
easy to detect, and most programs/thresholds should detect it with very high fidelity.
Autozygosity arising from more ancient common ancestors is more difficult to detect but may
nevertheless be detectable as SNP chips become denser. However, the variation between
individuals in overall burden of such ancient autozygosity becomes very small (Keller et al.,
2011), and thus there are diminishing returns from attempting to detect such ancient
autozygosity, at least with respect to analyses investigating overall ROH burden.
3.4.3 Conclusion

PLINK has been the most commonly used ROH detection program to date. However,
only one study analyzed data that was pruned for LD (Spain et al., 2009), which we have found
to be an important step for improving the accuracy of detecting autozygous ROHs. Two studies
adjusted their minimum ROH SNP threshold upward to account for LD creating ROH by chance
(Enciso-Mora et al., 2010; Hosking et al., 2010), but our results show that without explicit LD-
pruning, the increase in detection error cannot be overcome by larger ROH size thresholds.

While thresholds for calling ROHs varied across previous studies due to the lack of consensus
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criteria, most previous studies adopted more liberal thresholds than our results suggested are
optimal. Thus, power in previous studies was likely to be lower than optimal due to inclusion of
many non-autozygous ROHs.

The current study is the first of its kind to directly assess the ability of current ROH
detection programs to estimate genome-wide autozygosity. Our results should apply equally well
to research on autozygosity using whole-genome ROH burden or single ROH association
mapping. None of the programs tested perfectly detects autozygosity, and new parameters and
algorithms may further minimize detection error and increase sensitivity to detect autozygous
segments. Until then, the results in this study represent an important step for developing working

'consensus criteria’ for defining ROH.
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Chapter 4

The Effect of Genome-Wide Autozygosity on General Cognitive Ability

4.1 Background

General intelligence, traditionally measured through I1Q, is a well-studied quantitative
trait that correlates strongly with almost all measures of cognitive ability and maintains strong
consistency across different IQ measurements (Carroll, 1993; Johnson, Bouchard, Krueger,
McGue, & Gottesman, 2004; Johnson, Nijenhuis, & Bouchard, 2008). From a genetic standpoint,
decades of behavioral genetic research on IQ have shown moderate to high heritability estimates
(see Erlenmeyer-Kimling & Jarvik, 1963 and Bouchard & McGue, 1981 for reviews) and
consistency of heritability across development (Deary et al., 2012; Deary, Johnson, & Houlihan,
2009), both of which suggest a robust genetic component underlying individual differences in
1Q. From a practical standpoint, there are salient reasons to elucidate the genetic underpinnings
of IQ, as it is found to be a strong predictor of many life outcomes, such as health, longevity,
social mobility, and occupational success (Batty, Deary, & Gottfredson, 2007; Deary, 2012).

Recent research has found that the genetic variation in general intelligence is highly
polygenic; that is, no single gene or small set of genes has a significant effect (Butcher, Davis,
Craig, & Plomin, 2008; Cirulli et al., 2010; Davis et al., 2010; Need et al., 2009), whereas the
accumulation of small genetic effects across the genome explain a substantial proportion (40-
50%) of the phenotypic variance of IQ (Chabris et al., 2012 ; Davies et al., 2011). Genome-wide
effects of common SNPs under a polygenic inheritance framework, however, are unable to infer

the contribution of non-additive recessive genetic variation, as the effects of recessive or partially
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recessive variants are not fully accounted for. One potential driver of non-additive variation is
through directional dominance, where selection has purged out additive deleterious variants,
leaving a higher pool of recessive variants in the population than expected (Morton, 1978). As a
result, the effects of directional dominance can be revealed through inbreeding depression, where
the offspring of closely genetic relatives show higher rates or disorder and lower scores on
fitness-related traits due to the expression of recessive variants. The detrimental effects of
inbreeding depression have been well documented in non-human literature (DeRose & Roff,
1999), form the basis of many rare familial disorders, and have been found in some complex
disorders (Lebel & Gallagher, 1989; Rudan et al., 2003; Rudan et al., 2004). With respect to 1Q,
studies have shown that offspring of consanguineous marriages have lower 1Q scores than the
general population, supporting the role of inbreeding depression in general intelligence (Afzal,
1988; Afzal, 1993; Agrawal, Sinha, & Jensen, 1984; Morton, 1978; Woodley, 2009).
4.1.1 Autozygosity and Froh

At the genetic level, inbreeding depression is a result of autozygosity, where stretches of
two homologous chromosomes in the same individual are identical by descent. While highly
inbred individuals will have a substantial proportion of their genome as autozygous (e.g. first
cousin inbreeding will lead to 6.25% genome-wide autozygosity on average), autozygosity can
still occur in outbred populations, albeit at lower levels as the common ancestor of an autozygous
stretch can go back dozens of generations. With the advent of high-density SNP arrays, recent
research has shown that detecting Runs of Homozygosity (ROH) on genome-wide SNP arrays
provides the most informative measure of autozygosity, outperforming the inbreeding coefficient
F (a measure of how overall homozygosity rates compare to Hardy-Weinberg expectations) and

known pedigrees (Carothers et al., 2006; Keller et al., 2011). Genome-wide autozygosity burden,
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termed here as Froh, is calculated by determining the percent of the genome made up of
autozygous ROH.

To date, a number of studies have examined the effect of Froh burden and individual
ROH regions on case/control and quantitative phenotypes, finding only a few significant results
(see Ku, Naidoo, Teo, & Pawitan, 2011 for a review). However, recent simulation work has
shown that the small amount of variation of autozygous ROH in outbred populations requires
sample sizes ranging from 20,000 to 60,000 to achieve adequate power when testing the
relationship of distant inbreeding to phenotypic variation (Keller et al., 2011).
4.1.2 Overview of Current Study

With this in mind, the current study has drawn together genotype and 1Q data from nine
separate datasets, combining to a total sample size of 4,360 individuals. Despite being well
below the suggested sample size, this is the first study to date that assesses the relationship of 1Q
to autozygosity using dense genome-wide SNP data, and at the very least can indicate whether or
not there is a trend towards increasing autozygosity associating with lower 1Q. Briefly, the
current study assesses the prediction that increased autozygosity burden, or Froh, will associate
with lower IQ scores across the normal range. In addition, effects of autozygosity frequency and
length are also assessed to see if more recent and/or rare autozygous segments associate with
lower IQ scores. Genome-wide ROH mapping is then examined to see if specific regions of the
genome associate with IQ when autozygous. Finally, a new method is introduced whereby ROH
mapping regions are rank-ordered by significance and tested for an excess of positive or negative
effects, with promising subsets of regions examined through cross-validation to see if Froh

burden restricted to a smaller subset of the genome can improve 1Q prediction.
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4.2 Methods

Data were ascertained from five separate projects conducted across five geographical
regions: the GAIN International Multi-Center ADHD Genetics Project (Northern Europe, British
Islands, Spain), the Brisbane Adolescent Twin Study (Australia), the Lothian Mental Survey
(Scotland), the Manchester and Newcastle longitudinal studies of cognitive aging (England), and
the IBG study (Colorado, USA). All subjects in the final samples were of European descent.

Descriptive statistics for IQ, age, and sex for each sample are presented in Table 4.1.
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4.2.1 GAIN IMAGE Project
4.2.1.1 Sample

Data from the IMAGE samples consisted of 958 parent-child trios (n=2,803) from the
from the International Multisite ADHD Genetics project, which has the goal of associating SNP
markers with ADHD. European Caucasian subjects were recruited from 12 specialist centers in
Northern Europe (Belgium [n=108], Germany [n=325], Holland [n=926], and Switzerland
[n=77]), the British Isles (United Kingdom [n=393] and Ireland [n=257]), Spain [n=209], and
Israel [n=508]. No IQ data was collected in Israel and so it was not analyzed in this study. Entry
criteria for probands included: (a) clinical diagnosis of DSM-IV combined subtype ADHD; (b)
IQ over 70; (c) aged 6-17 years; (d) one or more sibling(s) in the same age range; (e) both
parents available to provide DNA sample or one parent available plus two or more siblings; (f)
free of single-gene disorders known to be associated with ADHD; (g) free of neurological
disease and damage; (h) living at home with at least one biological parent and one full sibling;
and (i) not meeting criteria for autism or Asperger's syndrome. The age range for probands was 5
to 19 years (mean=11, s.d.=2.7). Ethical approval for the study was obtained from the National
Institute of Health registered ethical review boards for each center, and informed consent was
obtained from all parents and most children. From this initial sample, IQ and genotype data were
available from 626 probands. The sample was split into three separate datasets reflecting data
collected in Northern Europe, the British Isles, and Spain.
4.2.1.2 1Q Scales

Four subtests (Vocabulary, Similarities, Block Design, and Picture Completion) from
either the WISC-III (Wechsler & Corporation, 1991) or the WAIS-III (Wechsler & Corporation,

1997) (depending on subject’s ages) were used to estimate full-scale IQ. These subtests correlate
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between .90 and .95 with Full-scale 1Q. All IQ scores were corrected for participants’ age
(mean=100.7, s.d.=15.7).
4.2.1.3 Genotyping

Genomic DNA was isolated from whole blood and genotyped on the Perlegen 600K
array. All data was downloaded, with permission, from the publicly available database for
Gentoypes and Phenotypes (dbGaP). 438,492 SNPs were available from the initial SNP filtering
(QC) implemented on the data. Of note, none of the filters implemented in the initial SNP set
were stricter than the QC parameters implemented in the current analysis.
4.2.2 Brisbane Adolescent Twin Study
4.2.2.1 Sample

The Brisbane Adolescent Twin Study sample consists of 3,899 Australian monozygotic

and dizygotic twins and twin siblings from 1,324 nuclear families (Wright & Martin, 2004).
Twins were recruited in 1992 and again in 1998 through primary and secondary schools in South
East Queensland, Australia as well as through the Australian Twin Registry (Hopper, 2002).
From this initial sample, IQ and genotype data were available for 1,005 individuals. An
individual was chosen from each family by retaining the sibling with fewest missing genotypes
was chosen, resulting in 540 unrelated individuals for analysis. Participants were 12-25 years old
(mean=18.44, s.d.=2.49) when they took the IQ battery. Subjects who had a history of significant
head injury, neurological or psychiatric illness, substance dependence, or were currently taking
long-term medications with central nervous system effects were excluded. Informed consent was
collected from participants and their parents, and all procedures and protocols were reviewed and
approved by the QIMR Human Research Ethics Committee (for additional details, see Wright &

Martin, 2004).
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4.2.2.2 1Q Scales

Participants came to the lab for in-person assessments four times; full-scale IQ was
assessed using a shortened version of the Multidimensional Aptitude Battery, which included
three verbal subtests (Information, Arithmetic, Vocabulary) and two Performance subtests
(Spatial and Object Assembly). The MAB was patterned after the WAIS-R and, as a result,
possesses good psychometric properties (Gignac, 2006; Jackson, 1998).
4.2.2.3 Genotyping
Genomic DNA was derived from whole blood and genotyped on the [llumina 610-Quadvl array.
Genotype calls were made using the BRLMM algorithm, resulting in 559,712 SNPs available for
analysis.
4.2.3 Lothian Mental Survey
4.2.3.1 Sample

Participants in the Lothian Mental Survey were part of the 1921 Lothian Birth Cohort
(n=550) and the 1936 Lothian Birth Cohort (n=1091) from the Scottish Mental Surveys and
follow-up studies (Deary, Whiteman, Starr, Whalley, & Fox, 2004; Harris et al., 2007). The
following inclusion criteria were applied: (a) cognitive ability scores were available in the late
age cohort; (b) there was no history of dementia; (c) Mini-Mental State Examination (Crum,
Anthony, Bassett, & Folstein, 1993) score was 24 or greater; (d) SNP genotyping was successful.
From this initial sample, IQ and genotype data were available for 526 individuals in the 1921
Lothian Birth Cohort and 1050 individuals in the 1936 Lothian Birth Cohort. Age ranges are
detailed below in the description of IQ scales. For both Lothian Birth Cohorts, ethical approval
was obtained from the Lothian Research Ethics Committee. Additional approval for the 1936

Lothian Birth Cohort was obtained from Scotland’s Multicenter Research Ethics Committee.
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4.2.3.2 1Q Scales

Details of cognitive scales have been described elsewhere (Deary et al., 2004; Harris et
al., 2007). In both samples, IQ was examined around age 11 as well as around age 79 (1921
Lothian birth Cohort) and around age 70 (1936 Lothian Birth Cohort). However, because age is
controlled for as a covariate in all our analyses, only scores from the more extensive 1Q
examination at older ages were used. Participants in the 1921 Lothian Birth Cohort completed a
battery of cognitive tests: The Moray House Test (no 12), Ravens Standard Progressive Matrices
(ref 19 in Davies), Verbal Fluency (ref 20) and logical Memory (ref 21), and the National Adult
Reading Test. Participants in the 1936 Lothian Birth Cohort completed a similar battery of
cognitive tests: The Moray House Test (no 12), a subset of WAIS-III tests consisting of Digit
Symbol Coding, Block Design, Matrix Reasoning, Digit Span Backwards, Symbol Search, and
Letter Numbering, as well as the National Adult Reading Test.
4.2.3.3 Genotyping

Genomic DNA was isolated from whole blood and genotyped on the [llumina 610-
Quadvl array. Genotype calls were made using the BRLMM algorithm, resulting in 599,011
SNPs available for analysis.
4.2.4 Longitudinal Cognitive Aging Cohorts
4.2.4.1 Sample

From 1983 to 2003, 6,063 participants from Greater Manchester and Newcastle and were
recruited by the Manchester Age and Cognitive Performance Research Center to study
longitudinal changes in the cognitive function of older adults. Over this period, participants took
the same battery of cognitive tests on two separate occasions, which have been averaged for the

current study. IQ and genotype data were available for 860 unrelated individuals in the Greater
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Manchester sample, and 840 unrelated individuals in the Newcastle sample. Participant age was
also averaged for both testing occasions, with an age range of 41-86 years old (mean=65.25,
s.d.=6.31). Ethical approval was obtained from the University of Manchester.
4.2.4.2 1Q Scales

Details of cognitive scales have been described elsewhere (Rabbitt et al., 2004). For the
current study, scores from the Cattell and Cattell Culture Fair Intelligence tests were used to
measure 1Q, which correspond to the fluid measure on intelligence. While measures of
crystallized intelligence were not used from the 1Q battery, it is worthwhile to note that all IQ
measures have been standardized within dataset, so the heterogeneity of measurements should be
unbiased.
4.2.4.3 Genotyping

Genomic DNA was isolated from whole blood and genotyped on the Illumina 610-
Quadvl array. Genotype calls were made using the BRLMM algorithm, resulting in 599,011
SNPs available for analysis. The values are the same as the Lothian Birth Cohort samples, as
genotyping and SNP calling metrics were conducted at the same site (Davies et al., 2011).
4.2.5 CADD Project
4.2.5.1 Sample

Participants in this sample are a subset from the Colorado Center on Antisocial Drug
Dependence (CADD). None of the participants comprised the clinically ascertained cohort of the
CADD sample, but include participants in subsets of the CADD from the Colorado Twin Study
(CTS), Longitudinal Twin Study (LTS), and Colorado Adoption Project (CAP). Further details
on the ascertainment and informed consent of the CADD sample is found in Rhea, Gross,

Haberstick, & Corley (2006). After ensuring all individuals included were unrelated, IQ and
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genotype data were available for 301 individuals. Participants were 12-19 years old
(mean=15.91, s.d.=1.53) when they took the 1Q test.
4.2.5.2 1Q Scales

For individuals age 16 or older, IQ was assessed using the WAIS-III (Wechsler &
Corporation, 1997), whereas individuals under of the age of 16 were assessed using the WISC-III
(Wechsler & Corporation, 1991). 1Q scores were derived from a combination of the vocabulary
and lock design subtests.
4.2.5.3 Genotyping

Genomic DNA was isolated from whole blood DNA and buccal call DNA, and
genotyped on the Affymetrix 6.0 array. Due to low genotyping quality and a mixture of blood
and buccal cell DNA, genotype calls were made using the Birdseed algorithm, with call
intensities being normalized within blood and buccal DNA subsamples. These calls were further
refined using Beaglecall (Browning & Browning, 2010), which uses LD information from the
entire sample to assisting genotyping QC, resulting in 791,388 SNPs available for analysis. One
unique characteristic of Beaglecall is the iterative process of validating genotype calls, which at
the final state leads to no missing genotype data as SNPs are either removed or imputed
throughout the process. With this information, a genotype by individual SNP missingness
interaction was added to the regression model to control for the difference properties of
Beaglecall to BRLMM calling algorithms.
4.2.6 Genetic and Sample Quality Control Procedures

Quality control (QC) procedures focused on properties that would be appropriate across
different genotyping platforms that differed in SNP density. The main goal—analyzing runs of

homozygosity to infer autozygosity—differed from the usual goal of finding associations
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between individuals SNPs and a phenotype, and so the procedures adopted were somewhat
modified. Because so many SNPs (70-75% depending on the sample) were removed due to
linkage disequilibrium pruning during ROH detection (see below), stringent preliminary SNP-
cleaning procedures were adopted, as a SNP lost due to cleaning was likely to be in linkage
disequilibrium with a nearby SNP. On the other hand, there are also concerns regarding the
removal of SNPs or subjects that might be informative with respect to the questions at hand. For
example, individuals with excess genome-wide homozygosity are quite informative in the
sample, as autozygous segments significantly contribute to observed homozygosity above and
beyond Hardy-Weinberg expectations. As a result, participants with excess homozygosity were
not removed and Hardy-Weinberg p-value thresholds on individual SNPs were relaxed.

The quality control procedures and numbers of individuals or SNPs lost at each step can be
found in Table 4.1. Most steps are self-explanatory, so only those needing clarification are
discussed. Individuals whose self-reported gender was discrepant from their genotypic sex (as
judged using PLINK’s check-sex command) were dropped, as these individuals might represent
sample mix-ups rather than single incorrect responses. Because both homozygosity and
phenotypic measures might differ between ethnicities or across different levels of genetic
admixture, two procedures were used to ensure ethnic homogeneity within each of the
geographically distinct samples. First, individuals were dropped who self-identified as non-
Caucasian. Second, individuals who stood out on a measure representing the posterior likelihood
of being Caucasian were also dropped. Within each sample, ~ 50,000 SNPs in linkage-
equilibrium were selected and merged with HapMap2 reference panels (Frazer et al., 2007). To
assess population stratification, PLINK’s multi-dimensional scaling command was used to

distinguishing Caucasian, Asian, and Yoruban ancestry (based on HapMap allele frequencies).
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The first two principle components were drawn from the muti-dimensional scaling assessment,
and individuals greater than 10% away from the center of the Caucasian cluster towards the

Asian or Yoruban sample were removed from further analyses.
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4.2.7 Runs of Homozygosity (ROHs) Calling Procedures

ROH were called in PLINK using the --homozyg command (Purcell et al., 2007), which
has been found to outperform other programs in accurately identifying autozygous segments
(Howrigan, Simonson, & Keller, 2011). The current analysis incorporated the four ROH tuning
parameters recommended in (Howrigan et al., 2011), pertaining to distant and recent
autozygosity as well as predicted high and low genotyping error rate. In general, each dataset
was pruned for either moderate LD (removing ay SNP with R-square > 0.5 with other SNP in a
50 SNP window) or strong LD (removing ay SNP with R-square > 0.9 with other SNP in a 50
SNP window), and the minimum SNP length threshold varied from 35 to 65 SNPs. Additional
details on ROH calling recommendations are described in Howrigan et al. (2011). In addition to
accurately calling autozygous ROH, determining the frequency of ROHs also has important
implications. PLINK’s --homozyg-group and --homozyg-match commands were used to find
allelically matching ROH that shared at least 95% of physical distance of the smaller ROH.
4.2.8 Froh Analysis

ROH burden, or Froh, represents the proportion of the autosome in ROHs. Froh was
derived by summing the total length of autosomal ROHs in an individual and dividing this by the
total SNP-mappable autosomal distance (2.77 x 10%). A fixed-effect multiple regression model
controlling for potential genotypic and phenotypic confounds (see below) was used to examine
the effect of Froh on 1Q. IQ was standardized within each dataset, and dataset included as a
covariate in the combined data.
From a genotyping standpoint, Froh can be affected by population stratification (e.g., if
background levels of homozygosity or autozygosity differ across ethnicities), low quality DNA

leading to bad SNP calls, and homozygosity levels that differ reliably across plates, DNA
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sources, or samples. To control for potential effects of stratification, we included the first ten
principal components generated from an identity-by-state matrix derived from the set of SNPs
(~50,000) used to determine genotype ethnicity. To account for the independent calculation of
principal components in each dataset, principle components were derived separately for each
dataset and regressed on standardized I1Q, wherein residual scores were used as the dependent
variable in the multiple regression model. We also controlled for the percentage of missing calls
and excess homozygosity, both of which have been shown to approximate the quality of SNP
calls across samples (Laurie et al., 2010). In particular, we used individual SNP missingness
determined from raw SNP data, with the exception of the Lothian, Manchester, and Newcastle
datasets, where individual SNP missingness was determined from QC cleaned data. This
discrepancy, however, is quite minor as a comparison of missingness rates between raw and
cleaned SNP data from the six other datasets was highly similar (overall 7=0.8, p=0). With
respect to excess homozygosity, although it is expected that it will co-vary with Froh, previous
work has found that Froh estimates of autozygosity are generally independent of excess
homozygosity when genotyping error is low (Keller et al., 2011). However, when genotyping
errors do exist, they typically lead to excess heterozygosity (Laurie et al., 2010) and missed
ROHs, thus reducing the power of Froh effects as opposed to increasing the false positive rate.
Finally, we also controlled for age and gender, as well as the interaction of age with
dataset, as any effects from these variables should be independent from the relationship of Froh
on IQ. The age by dataset interaction was included because we found a significant difference of
the effect on age on IQ between samples of young individuals (GAIN, Brisbane, and CADD
samples) and older individuals (Lothian, Manchester, and Newcastle samples; beta=0.14,

1(4,356)=2.07, p=.04).
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Froh burden was also partitioned in short and long ROH, as well as common and uncommon
ROH, as different lengths and frequency reflect the age and population genetic mechanisms
explaining the existence of an ROH. In both cases, a median split was used to divide ROHs into
‘short/long’ groupings or ‘common/uncommon’ groupings. Due to the variation in SNP density
across dataset platforms, median splits for both length and frequency were calculated within each
dataset. Median splits for each dataset can be found in Table 4.2. Across all datasets, short ROHs
made up 34% of Froh, while long ROHs made up 66% of Froh. Moreover, common ROHs

made up 38% of Froh, whereas uncommon ROH made up 62% of Froh.
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4.2.9 ROH Mapping Analysis

To see if any particular genomic region predicted IQ, genome-wide ROH mapping
procedures were tested using three different segment length thresholds. For each procedure, the
autosome was divided into regions of 1 Mb (2,878 tests), 500 kb (5,747 tests), or 250 kb (11,483
tests). Within each genomic region, a linear regression model on IQ was performed on whether
or not individuals had an ROH at any given location in that region. IQ in this model was
residualized for all covariates in the multiple regression model described above. To derive a
genome-wide significance threshold corrected for multiple testing, fully residualized IQ scores
were permuted within the combined dataset and regressions run across every region in the
genome, preserving the most significant result of each permutation. The permutation process was
repeated 1,000 times. The 50™ most significant p-value was the genome-wide significance
threshold and the 100" most significant p-value was the “suggestive” genome-wide significance
threshold. Thus, given the null hypothesis, there was a 5% (10%) chance of observing a single
genome-wide significant (suggestive) hit.
4.2.10 Polygenic ROH Mapping

Polygenic ROH mapping is a rank-order approach to test for an excess of negative or
positive ROH regions among more significantly predicting regions of the genome. Using regions
defined from the ROH mapping approach, regions were rank-ordered according to statistical
significance. Starting from the most significant region, each region is added in a sequential
manner one-by-one, with the overall count of positive and negative slopes ascertained at each
interval. To measure significance, a binomial exact test is run to measure the deviation in the
proportion of positive and negative slopes from the overall proportion observed in the genome.

For the binomial exact test, both z-scores and corresponding p-values were ascertained. To
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control for non-independence between ROH regions, 1Q scores were permuted 1,000 times and
empirical p-values were derived. To control for whole-genome Froh on rank-order, 3 estimates
were centered and statistical significance was re-calibrated for each region. All p-values are two-
sided. To test the effect of a reduced genome Froh estimate, ten-fold cross validation on the
sample used a 90% training sample and 10% test sample. Equal proportions of individuals from
each dataset were randomly assigned within a given test set, with leftover individuals from each
sample randomly assigned to a test set after all ten test sets were created. For each round of
cross-validation, rank-orders of ROH regions were determined by the 90% training set, and Froh
burden was measured within these regions in the 10% test set. After all ten test sets were trained,
the test sets were combined and Froh estimates were regressed onto residualized IQ scores (see

Table 4.4).

4.3  Results

After quality control procedures within each of the nine datasets, we had genotype and 1Q
data for 4,360 individuals of European ancestry from five geographic regions: Northern Europe
(n=357), United Kingdom (n=3,097), Spain (n=68), Australia (n=537), and the United States
(n=301). In particular, the United Kingdom region compromises five separate samples, with one
sample using a different genotyping platform from the other four. Four recommended parameters
were used in PLINK to call autozygous ROH (see Methods for details), with genotype data
lightly pruned for linkage disequilibrium (LD) and a minimum of 65 homozygous SNPs showing
the strongest relationship to IQ. Under this ROH calling procedure, the mean percentage of the
genome in ROHs (Froh) was 0.41% (sd=0.36%) in the full sample, with a mean ROH length

reaching 1.3 Mb (see Figure 4.1 for full distribution). Within each dataset, the IQ measure was
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standardized, then residualized on the first ten principle components generated by the multi-
dimensional scaling algorithm in PLINK (Figure 4.2). Tests of genome-wide ROH burden and
ROH association on IQ controlled for sex, age, dataset, the inbreeding coefficient (¥), SNP
missingness, an SNP missingness by dataset interaction, and an age by dataset interaction as

covariates.
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Figure 4.1 Distribution of Froh for Combined Sample. The x-axis measures the histogram, and

the z-axis measures the boxplot.
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from the genotype data.
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4.3.1 Froh Results

In the combined sample, a fixed effects linear regression model predicting IQ was used,
with Froh showing a negative, but non-significant relationship to IQ (B =-5.63, #4,330) = -1.12,
p = 0.26). The point estimate of Froh predicts IQ to drop by ~0.84 points for every 1% increase
in Froh, extrapolating to a drop of ~5.28 I1Q points expected on average in the offspring of first
cousin inbreeding. Figure 4.3 shows the § and 95% confidence intervals within each dataset as
well as the combined sample. Only the GAIN United Kingdom dataset found a significant
negative relationship of Froh on IQ, whereas none of the datasets found a significant positive
relationship. Taken together, eight of the nine slope estimates were negative, which was not
expected by chance (exact binomial test, p = 0.001). Despite the non-significant result, the
relationship of Froh on 1Q is quite robust, as it was not affected by individuals at the extremities
of Froh, and changed little after trimming the 25 highest and 25 lowest subjects on Froh, (B = -
5.16, #(4,280) = -1.03, p = 0.31), as well as after trimming the 50 highest and 50 lowest subjects
on Froh (B =-5.4, ((4,230) =-1.07, p = 0.28). In addition, results above a 50 SNP minimum
threshold for calling ROH remained fairly stable, whereas smaller thresholds removed the
negative trend (Figure 4.4). Additional analyses removing covariates in step-wise fashion, as

well as splitting the sample by age or sex, were not found to moderate the effect of Froh on 1Q.
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In addition to its inclusion as a covariate the main Froh analysis, the inbreeding
coefficient (F) was also examined separately as a predictor of both Froh and 1Q. As mentioned
in the introduction, a positive value for ' is another signature of inbreeding, albeit at a much
more distant level ancestrally and less powerful than Froh at measuring inbreeding levels (Keller
et al., 2011). In addition, expected multicollinearity between Froh and F as predictors of IQ may
affect the interpretation of the results. As expected, F was strongly related to Froh when
controlling only for dataset (B = 0.09, #(4,358) = 22.6, p = 0), however it did not significantly
predict IQ in the full model (B = 1.31, #4,330)=0.5 , p=0.62), nor did it have much effect when
removed from the full model of Froh on 1Q ( =-4.26, #(4,331) =-1.01, p = 0.31). Another
possible concern was the chance of hemizygosity due to deletions or partial uniparental disomy
being included in the Froh estimates. Nevertheless, prior research using information on call
intensities found that fewer than 0.3% of the total lengths of ROHs in their samples were actually
hemizygous, suggesting that deletions would have a minimal effect on the present results
(McQuillan et al., 2008). This finding is not unexpected given the typical size of ROHs in the
current sample (in the hundreds or thousands of kb) versus the typical sizes of deletions (in the
tens of kb; McCarroll et al., 2005).

Along with overall Froh burden on 1Q, Froh was partitioned by length (long and short
ROH) as well as frequency (common and uncommon ROH) using a median split within each
dataset (see table 4.3 for details). Examining different ROH lengths provides a direct measure of
the relative effects of inbreeding ancestry, as offspring from parents who share a recent common
ancestor should carry longer ROHs on average than offspring from parents who share more
distant common ancestors. Contrary to expectations, Froh arising from long ROH (B = -4.14,

#(4,330) = -0.82, p = .41) was less predictive of 1Q than Froh arising from short ROH (p = -
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38.85, 1(4,330) =-1.53, p = .12). Neither estimate was predictive, however, indicating that
neither recent nor distant inbreeding are differentially affecting the Froh-1Q relationship. With
respect to ROH frequency, common ROH can often represent homozygous haplotypes shared by
many unrelated people in each sample—which might indicate positive selection rather than
recent inbreeding (Voight, Kudaravalli, Wen, & Pritchard, 2006a), whereas uncommon ROH are
more likely to pair up individually rare recessive or partially recessive mutations thought to be
scattered throughout the genome (Fay, Wyckoff, & Wu, 2001) within an extended lineage.
Consistent with expectations, Froh arising from common ROH (beta=-7.44, #(4,330)=-0.72,
p=A47) was less predictive of 1Q than Froh arising from uncommon ROH (beta=-7.59, #(4,330)=-
1.07, p=.28). As with ROH length, neither estimate was predictive, indicating that ROH
frequency does not substantially impact the Froh-1Q relationship.
4.3.2 ROH Mapping Results

In contrast to Froh burden, ROH mapping can identify distinct genomic regions carrying
highly penetrant recessive alleles that affect IQ. Figure 4.5 shows a Manhattan plot of the
association p-values from ROH mapping using 1 Mb regions, and figure 4.6 shows the QQ plot
of the association p-values. Among the three size thresholds, no region surpassed the permuted
significance threshold (permuted a > 0.05) or the suggestive significance threshold (permuted o
>(0.1). However, among the top 100 regions, those negatively associated with IQ were over-
represented in all three analyses. With a 52% base rate overall of negative slopes in the 1 Mb
analysis, 64 of the top 100 ROHs were negatively associated to IQ (exact binomial test, p =
0.01), suggesting that while no ROH are significant after genome-wide correction, there may be
evidence that ROH are exerting slight deleterious effects on IQ at particular regions across the

genome. Because it is unlikely that the entire genome is equally contributing to the genetic
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variance underlying IQ, the finding above prompted further investigation to see if Froh estimates
restricted to regions harboring an excess of negative effects would reduce some of the statistical

noise damping down the whole-genome Froh effects.
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4.3.3 Polygenic ROH Mapping

The approach, termed here as polygenic ROH mapping, begins by ranking 1 Mb ROH map
regions by statistical significance. Starting from the most significant region, each region is added
in a sequential manner one-by-one (e.g. top 10 regions, top 11 regions, etc.), with the overall
count of positive and negative slopes ascertained at each interval. To measure significance, a
binomial exact test is run to measure the deviation in the proportion of positive and negative
slopes from the overall proportion observed in the genome (see Methods for details). Nearby
regions can be affected by a single long ROH and produce non-independent signals, so empirical
p-values were derived through permutation of IQ scores. Whole-genome Froh effects can also
substantially skew the relative proportions of more significant regions, so re-calibrated
significance of each region controlling for Froh burden are also reported. However, because the
Froh burden effect in this study is small, the rank-order of regions is very similar between
original and re-calibrated significance (» = 0.98, p = 0). Figure 4.7 shows the polygenic ROH
mapping results using 1 Mb regions, with z-scores representing the direction of the effect
towards an excess of positive or negative slopes. Both rankings show a significant excess of
ROH regions predicting lower IQ (i.e. negative slopes and negative z-score) among the top
regions, indicating that the effect of ROH on IQ is restricted to a particular subset of more
significant regions of the genome. Among the top regions, two significant spikes of ROH regions
predicting lower 1Q emerge; the top 31 regions (permuted p = 0.003) and the top 434 regions
(permuted p = 0.01). Similar spikes are found with the re-calibrated significance ranking; the top

24 regions (permuted p = 0.012) and the top 415 regions (permuted p = 0.051).
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In order to test the how well the recommended regions above predict 1Q, ten-fold cross
validation was implemented to generate an unbiased estimate of variance explained within the
current sample. The hypothesis is that the recommended subset of ROH regions will predict IQ
better than whole-genome Froh burden. The 90% training set was used to generate the rank-
order of ROH regions, and Froh burden was calculated in the 10% test set among recommended
subsets of regions. The top 1,000 and 2,000 ROH regions were also included to compare against
the recommended subsets. Table 4.4 shows the variance explained by Froh burden at various
ROH region subsets, with the top 1,000 regions rank-ordered by the original p-values showing
the highest R’ estimate (R* = 0.0019, p = 0.004). Overall, the reccommended estimates did
perform better than whole-genome Froh, but did not out-perform the top 1,000-region
comparison, suggesting that peak significance using an exact binomial test are only a rough
guide to determining the best practices to reduce the search space for maximizing ROH effects in
IQ. In general, while the variance explained for IQ using the polygenic ROH mapping approach
is still quite small at 0.19%, it is a 6.8-fold increase from whole-genome Froh (0.028%),
providing evidence that whole-genome estimates include a substantial amount of ROH variance
that has no effect on IQ. The rank-ordered ROH region sets were also examined to see if there
was an enrichment of genes expressed in the central nervous system (CNS genes). The subset
used gathered genes using four separate databases that show either differential CNS expression,
known neuronal activity, and/or roles in learning and synapse function, and compromise roughly
5% of known genes (Allen et al., 2010; Lee et al., 2012). Chi-squared tests of each region set,

however, showed no evidence of CNS gene enrichment relative to the full genome (all p > 0.05).
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Table 4.4 Cross-Validation Results of Froh Restricted to Top Regions

Subset of ROH regions B p-value R’
Rank-ordered by original p-values

Top 31 regions -0.98 0.520 9.50e-5
Top 434 regions -9.57 0.012 0.0015
Top 1,000 regions -13.13 0.004 0.0019
Top 2,000 regions -8.46 0.090 6.58¢e-4
Rank-ordered by re-calibrated p-values

Top 24 regions -1.60 0.247 3.07¢e-4
Top 415 regions -10.03 0.007 0.0016
Top 1,000 regions -12.86 0.005 0.0018
Top 2,000 regions -7.92 0.112 5.80e-4
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4.4  Discussion

The present study tested the relationship of autozygosity to IQ using high-density SNP
data from nine separate sites compromising 4,360 individuals. After stringent quality control and
the application of preferred methods for detecting autozygosity, the findings do not support a
significant role of autozyosity burden (Froh) in explaining the variation in IQ among outbred
populations of European ancestry, nor point to any specific locus whereby autozygosity
associates with 1Q. However, post-hoc analysis of Froh estimates restricted to genomic regions
more likely to affect IQ show an increase in prediction (from 0.028% to 0.19% in variance
explained), as evidenced through cross-validation. The overall direction of Froh estimates - with
increased Froh correlating with lower IQ - is consistent with the prediction that inbreeding
depression is likely to have a negative effect cognitive ability. In relation to previous studies of
inbreeding on IQ, the estimates observed correspond fairly well with estimates of first cousin
inbreeding. In the current study, inbreeding among first cousins leads to an average Froh of
6.25%, corresponding to a predicted drop of 5.28 IQ points. With respect to previous research,
the effect is roughly one half (Afzal, 1988) to two (Morton, 1978) times the magnitude of known
inbreeding lowering 1Q. Despite the non-significant overall findings, the negative direction of
results does have plausible ramifications for populations where consanguineous marriage is
commonplace (Bittles & Neel, 1994).

The findings shed some light on the effect of non-additive genetic variance underlying
1Q. Autozygosity by definition captures only non-additive sources genetic variance, although it is
constrained to the proportion of the genome that is autozygous. Nonetheless, relative proportions
of phenotypic variance explained by autozygosity give a rough measure of non-additive genetic

underpinnings. For example, another recent large-scale study of autozygosity on Schizophrenia
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(Keller et al., 2012) found a significant, albeit modest effect of increased Froh burden predicting
Schizophrenia (Nagelkerke’s R’ = .00068), while the current effect size estimate for Froh burden
predicting IQ is even lower (R’ = .00028). When set side by side with recent measures of
additive genetic variance, the findings above correlate to some extent with the reported
proportions of heritability explained by SNPs for Schizophrenia (23% explained by SNPs; Lee et
al., 2012) and for 1Q (51% explained by SNPs; Davies et al., 2011). While these comparisons by
no means represent a definitive means of partitioning relative additive and non-additive effects
on genotypic variance, they reaffirm recent findings that a large extent of genotypic variance in
IQ is additive, and non-additive measures, such as autozygosity burden, are restricted in part to a
smaller proportion of the remaining heritability to be explained.
4.4.1 Limitations

There are certain limitations in the study that must be addressed. Prior to the acquisition
of the current dataset, it was known that ostensibly outbred populations required very large
sample sizes, on the order of 20,000 to 60,000, to obtain adequate power to detect the effects of
inbreeding depression (Keller et al., 2011). Despite the current sample falling well below these
numbers, it is still the largest consortium of data to date measuring IQ and autozygosity.
Nevertheless, individuals from outbred populations generally exhibit low variation in overall
autozygosity, so larger samples would be required to affirm if the signal in the current dataset is
a true effect. An alternative to increasing sample size would be to collect data from samples
targeted towards populations with higher variance in inbreeding, such as regions where
consanguineous marriage rates are higher, or by ascertaining samples that are on the extreme end
of IQ, such as individuals with intellectual disability. Statistical noise and possible bias

represents another limitation of the study, as our operational construct of IQ is stitched together
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from different cognitive tests and measures standardized across each dataset. While IQ measures
are well known for their robust convergent validity (Johnson et al., 2008), there will still be a
level of uncertainty that can add noise to the data and decrease statistical power. With regards to
the genotype collection and SNP calling, while strict QC procedures were followed to minimize
genotyping error, the use of different platforms across datasets nonetheless introduced additional
noise and possible biases that are unable to be controlled. For example, overall autozygosity
measurements from the three datasets making up the GAIN IMAGE project are systematically
lower than the other datasets, as the earlier genotyping platform had roughly one half to quarter
the SNPs to begin with than the other genotyping chips.
4.4.2 Conclusion

Autozygosity is the central measure of inbreeding depression, and can help researchers
understand the both the genetic architecture and population genetic history underlying well-
known heritable traits such as IQ. The current study represents the first to measure IQ and
autozygosity using dense genome-wide SNP data, using an extensive consortia panel from
around the world. In summary, whole-genome autozygosity burden and genome-wide
autozygosity mapping are not significant predictors of 1Q in outbred populations of European
descent. However, the relationship found is similar to previous estimates of autozygosity on 1Q
among consanguineous families, and there is a nominally significant negative relationship of
autozygosity burden on IQ when restricted to a subset of the genome rank-ordered by statistical
significance. These findings shed light on the relative contribution of inbreeding within the
normal spectrum of variation in IQ, and suggest that future investigations target either

populations known to have higher inbreeding coefficients or more extreme samples with regards

to I1Q.
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Chapter 5

Summary and Conclusion

5.1  Background

The field of human molecular genetics has undergone a substantial technological
transformation in the past decade, allowing researchers to identify and analyze genetic variation
across the human genome with unprecedented depth and precision. A central goal in utilizing
this technological advancement is to discover the genetic variation that underlies complex
heritable traits and disorders. In recent years, much of the focus has been on large-scale genome-
wide association studies (GWAS) in an attempt to identify effects of common single nucleotide
polymorphisms (SNPs) on a phenotype. Progress in this arena, however, has been limited, as
validated findings for most phenotypes represent only a small fraction of the variance attributed
to genetics known from family and twin studies, leaving a large proportion of heritability to be
explained. My research is in large part motivated by the issues surrounding GWAS, as additional
methodological techniques and population genetic theory can help explain phenotypic variance
unaccounted for by the traditional genetic association design.
5.2 Approaches to Interrogating Genome-Wide SNP Data

In my first study, I look at a case/control sample of bipolar disorder, examining how prior
information from linkage studies can inform GWAS signals. The primary aim is to ease the
burden of multiple-testing correction applied in GWAS using empirically informed weighting to
tease out true signals supported by prior genetic evidence. In my second study, I determine the

best practices to detect signatures of distant inbreeding, via runs of homozygosity, in genome-
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wide SNP data. The motivation for studying this phenomenon is due to the extensive evidence of
inbreeding depression on fitness related traits, where the effects of recessive or partially
recessive alleles are expressed. Using an extensive simulation design, I test multiple programs to
determine the optimal method to identify runs of homozygosity caused by distant inbreeding. In
my third and final study, I apply my work from the second study to a comprehensive dataset of
cognitive measures to understand the extent to which distant inbreeding affects variation in
cognitive ability.

5.3 Summary of Results

In my first study, the incorporation of prior linkage information to weight Bipolar
Disorder GWAS p-values did not result in any significant SNPs after genome-wide correction
for multiple testing. However, the top SNP signal from the initial GWAS was further supported
as it occurred within a suggestive linkage peak on chromosome 18. In addition, I reported SNPs
in the lowest 99" percentile of p-values also occurring within the top 95™ percentile of linkage z-
scores as regions of interest.

My second study, which investigated the accuracy of autozygosity detection for three
separate programs, recommended PLINK over GERMLINE and BEAGLE when detecting
autozygous segments. Furthermore, SNP data pruned for high levels of linkage disequilibrium
(LD) also increased the accuracy of detection. The results provided both general and specific
recommendations for maximizing autozygosity detection in genome-wide SNP data, and should
apply equally well to research on whole-genome autozygosity burden as well as autozygosity in
targeted regions.

In my third study, I applied the recommendations from my second study to large-scale

consortia SNP data to test the relationship of autozygosity to general cognitive ability (IQ).
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Overall, the findings do not support a significant role of autozyosity burden (Froh) in explaining
the variation in IQ among outbred populations, nor point to any specific locus whereby
autozygosity associates with 1Q. However, the negative direction and effect size of the
relationship does fall in line with earlier measures of consanguineous inbreeding lowering I1Q. In
addition, cross-validation of Froh estimates restricted to genomic regions more likely to affect
IQ show up to a 7-fold increase in prediction, suggesting that the effects of autozygosity on 1Q
are not uniform across the genome.

5.4  Conclusion

In general, genome-wide SNP association has been relatively unsuccessful in uncovering
the genetic etiology of traits such as Bipolar Disorder and 1Q, yielding only scant results that fail
to explain even a moderate proportion of trait variance. In turn, this difficulty has prompted
alternative approaches to uncovering the missing heritability. Overall, my application of
alternative methods of SNP interrogation, including the inclusion of prior linkage information
and effects of autozygosity in outbred populations, did not come away with any substantial
increase in explaining trait variation. While these results reflect the complexity of psychiatric
phenotypes and difficulty in teasing out their genetic architecture, recent successes in this arena
have come from approaches that investigate the degree to which a trait is under highly polygenic
genetic architecture.

One approach, which looked at both Schizophrenia and Bipolar disorder, showed that
predictive ability significantly increased when validating the top percentiles of SNP associations
in a large case-control Schizophrenia dataset to other datasets in both Schizophrenia and Bipolar
Disorder (Purcell et al., 2009). More recently, a GWAS on 1Q has found that quantifying the

variance accounted for using all SNPs captures a substantial proportion of heritable variation
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(Davies et al., 2011), suggesting that IQ has a highly polygenic architecture. While the discovery
of the genetic variants for Bipolar Disorder and 1Q has so far been a daunting task, emerging
technologies such as whole-genome sequence data along with recent successes of estimating
polygenic contributions to trait variance show promise in finally uncovering the molecular basis

underlying heritable variation in these traits.
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