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Abstract

The hadronic decay modes of the light chargino, χ̃±1 , are examined
at several parameter points. With the 500 GeV International Linear
Collider, the signal is reconstructed and analyzed in the presence of
Standard Model background with 100 fb−1 and 250 fb−1 of data. Once
the signal has been analyzed and the Standard Model background re-
moved, three mass measurement techniques are investigated. Finally,
the masses of the χ̃±1 and χ̃0

1 are measured to within 2% of the known
value.
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1 Introduction and Background

1.1 The Standard Model and Supersymmetry

The Standard Model of particle physics, proposed in the 1970’s, is the
most complete and well-tested physical theory of elementary particle physics.
It makes many experimental claims which have been confirmed to better than
1%. Threrefore, the Standard Model is quite successful in almost all areas.

Despite this success, there is a major failing of the Standard Model, out-
side of the lack of gravitational interactions in the theory. The Standard
Model predicts that the mass of the Higgs boson, the boson that gives mass
to all particles, diverges quadratically with energy. This divergence is also
known as the hierarchy problem.

One possible theory for physics beyond the Standard Model that solves
the hierarchy problem is supersymmetry (SUSY) [1]. SUSY postulates the
existence of a superpartner for every known particle. These heavy, unstable
superpartners are called sparticles. Sparticles have a profound influence on
the hierarchy problem the Standard Model is currently grappling with. With
the inclusion of the sparticles, the mass of the Higgs boson no longer diverges
quadratically, due to cancellations in the loop diagrams. There are several
other arguments in favor of SUSY. Without the additions of supersymmetry,
the convergence of the strong, weak, and electromagnetic coupling constants
is close, but not exact near the energy of the Big Bang. By including the
sparticles introduced by supersymmetry, the coupling constants converge to
a single value at high energies. Secondly, SUSY provides a natural candidate
for dark matter: the lightest supersymmetric particle (LSP). The LSP cannot
decay to a lighter Standard Model particle due to the conservation of a
quantum number called R-parity which is 1 for all Standard Model particles
and -1 for sparticles. Consequently, the LSP is stable and fulfills all the
requirements for dark matter.

1.2 The International Linear Collider and the Silicon
Based Detector

Currently, the search for SUSY is centered on the Large Hadron Collider
(LHC) in Geneva, Switzerland. However, the focus of this study will be on the
proposed successor to the LHC: the International Linear Collider (ILC). The
ILC’s design specifications [2] detail a linear geometry with a center of mass
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collision energy of 500 GeV for the e+e− beams. A linear collider geometry
is necessary for e+e− initial states because circular accelerator geometries
lose too much energy due to synchrotron radiation. In addition, e+e− initial
states provide a cleaner signal than hadronic states due to a more precise
determination of the initial energies and momenta. Hence, a more precise
determination of the sparticle properties can be obtained with the ILC than
with the LHC.

Within the collider itself, the detector records decays produced from the
interaction. Currently, two detector concepts have been approved by the
International Detector Advisory Group (IDAG): Silicon Detector (SiD) [3]
and International Linear Detector (ILD) [4]. SiD is a collaboration that sup-
ports a silicon based detector that will determine the energies and momenta
of the particles produced in the collisions. The research group led by Pro-
fessor Uriel Nauenberg is part of the SiD collaboration and focuses on the
BeamCal, which is in the far forward region. The BeamCal occupies the re-
gion directly around the beampipe out to the endcaps. Its goal is to provide
greater detection capabilities at small polar angles and the ability to make
crucial benchmarking measurements feasible.

1.3 mSUGRA Parameter Points

There are several competing theories that are subsets of supersymme-
try. One of particular interest is minimal supergravity (mSUGRA) [1]. This
model is not completely general, as it assumes a particular symmetry break-
ing mechanism. However, it reduces a very large parameter space to only
five parameters. These are: m0, m1/2, A0, tan(β), and sign(µ), which are the
scalar mass, spin-1/2 mass, trilinear coupling, ratio of the higgs doublets,
and the sign of the quadratic term in the superpotential, respectively.

There are a series of benchmarks detailed in [5], and updated in [6] to
include the WMAP (Wilkinson Microwave Anisotropy Probe) constraints,
for the many possible scenarios at the ILC. Since this study is focused on
reconstructing the mass of the light chargino (χ̃±1 ), only the parameter points
where the χ̃±1 is kinematically accessible will be studied. In particular, there
are only two such points at 500 GeV, E’ and B’, detailed in those papers.

Additionally, there is a set of benchmarks designed specifically for the ILC
[5]. Within these benchmarks there is another parameter point of interest, α.
Consequently, the χ̃±1 will be analyzed at all three of these parameter points.
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Parameter Point E’

The mSUGRA parameters for the point E’ are:

m0 1530
m1/2 300

tan(β) 10
sgn(µ) 1

A0 0

Table 1: mSUGRA Parameters at Point E’

Additionally, the masses associated with this point, calculated by SPheno
[7] are given by:
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Particle Mass(GeV) Particle Mass (GeV)
W+ 8.040x101 ẽ−L 1.538x103

h0 1.156x102 ẽ−R 1.533x103

H0 1.592x103 ν̃e 1.535x103

A0 1.592x103 µ̃−L 1.538x103

H+ 1.594x103 µ̃−R 1.533x103

d̃L 1.635x103 ν̃µ 1.535x103

d̃R 1.629x103 τ̃−1 1.519x103

ũL 1.633x103 τ̃−2 1.532x103

ũR 1.628x103 ν̃τ 1.529x103

s̃L 1.635x103 g̃ 7.801x102

s̃R 1.629x103 χ̃0
1 1.233x102

c̃L 1.633x103 χ̃0
2 2.364x102

c̃R 1.628x103 χ̃0
3 −4.934x102

b̃1 1.342x103 χ̃0
4 5.065x102

b̃2 1.616x103 χ̃+
1 2.364x102

t̃1 9.856x102 χ̃+
2 5.072x102

t̃2 1.352x103

Table 2: SUSY Particle Masses at Point E’. The mass of the χ̃0
3 is negative

in the table. This results from the spectrum calculation and is partly a sign
convention. However, the actual mass of the physical particle is positive.
Additionally, natural units are used throughout this analysis. This means
that c = 1 and so energy, mass, and momentum all have units of GeV. It
should be clear from the context which variable is being considered.

As can be seen above, the mass difference between the χ̃0
1 and χ̃±1 is

approximately 113 GeV. Additionally, the very large value of m0 causes the
slepton masses to be very large; many of which are greater than 1 TeV.
Since this mass difference is greater than the mass of the W boson and the
sleptons are so heavy, the χ̃±1 will decay exclusively through the following
decay channel:

χ̃±1 → χ̃0
1W

± (1)

The cross section, in units of femtobarns (fb), governs how often the event
of interest is produced. The total number of events for a given luminosity,
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with units of fb−1, is simply the product of the cross section and the lumi-
nosity. The cross sections for this parameter point are displayed below.

SUSY Process Cross Section (fb)
e+e− → χ̃0

1χ̃
0
1 2.34x100

e+e− → χ̃0
1χ̃

0
2 1.06x10−1

e+e− → χ̃0
2χ̃

0
2 7.03x10−3

e+e− → χ̃+
1 χ̃−1 6.10x101

e+e− → h0Z0 6.44x101

Table 3: Cross Sections at Point E’

Parameter Point B’

The mSUGRA parameters for the point B’ are:

m0 60
m1/2 250

tan(β) 10
sgn(µ) 1

A0 0

Table 4: mSUGRA Parameters at Point B’

Once again, the masses associated with this point, calculated by SPheno
[7] are given by:
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Particle Mass (GeV) Particle Mass (GeV)
W+ 8.040x101 ẽ−L 1.862x102

h0 1.101x102 ẽ−R 1.200x102

H0 3.777x102 ν̃e 1.684x102

A0 3.773x102 µ̃−L 1.862x102

H+ 3.861x102 µ̃−R 1.199x102

d̃L 5.650x102 ν̃µ 1.684x102

d̃R 5.420x102 τ̃−1 1.106x102

ũL 5.595x102 τ̃−2 1.903x102

ũR 5.422x102 ν̃τ 1.678x102

s̃L 5.650x102 g̃ 6.034x102

s̃R 5.420x102 χ̃0
1 9.651x101

c̃L 5.595x102 χ̃0
2 1.786x102

c̃R 5.422x102 χ̃0
3 −3.483x102

b̃1 5.142x102 χ̃0
4 3.675x102

b̃2 5.424x102 χ̃+
1 1.781x102

t̃1 4.101x102 χ̃+
2 3.685x102

t̃2 5.833x102

Table 5: SUSY Particle Masses at Point B’. The mass of the χ̃0
3 is negative

in the table. This results from the spectrum calculation and is partly a sign
convention. However, the actual mass of the physical particle is positive.
Additionally, natural units are used throughout this analysis. This means
that c = 1 and so energy, mass, and momentum all have units of GeV. It
should be clear from the context which variable is being considered.

In this instance, the mass difference between the χ̃0
1 and the χ̃±1 is ap-

proximately 81.5 GeV. Consequently, the decay considered for E’ (1) is highly
suppressed due to a lack of available phase space. This follows from the fact
that the mass of the W boson is very close to the mass difference between
the χ̃0

1 and the χ̃±1 . Instead, the primary modes of χ̃±1 decay are to τ̃±1 and
ν̃τ . In fact, the following two decays comprise almost 70 % of χ̃±1 decays.

χ̃±1 → τ̃±1 ντ (2)

χ̃±1 → ν̃ττ
± (3)
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The cross sections for this parameter point are:

SUSY Process Cross Section (fb)
e+e− → ẽ−Rẽ+

R 8.27x102

e+e− → ẽ−Rẽ+
L 2.58x101

e+e− → ẽ−L ẽ+
R 1.25x102

e+e− → ẽ−L ẽ+
L 2.60x101

e+e− → µ̃−Rµ̃+
R 2.97x102

e+e− → µ̃−Rµ̃+
L 2.00x10−2

e+e− → µ̃−L µ̃+
R 2.00x10−2

e+e− → µ̃−L µ̃+
L 4.03x101

e+e− → τ̃−1 τ̃+
1 2.95x102

e+e− → τ̃−1 τ̃+
2 4.13x100

e+e− → τ̃−2 τ̃+
1 4.13x100

e+e− → τ̃−2 τ̃+
2 4.08x101

e+e− → ν̃eν̃e 1.24x102

e+e− → ν̃µν̃µ 5.04x101

e+e− → ν̃τ ν̃τ 5.08x101

e+e− → χ̃0
1χ̃

0
1 7.00x102

e+e− → χ̃0
1χ̃

0
2 2.97x101

e+e− → χ̃0
1χ̃

0
3 2.96x101

e+e− → χ̃0
1χ̃

0
4 6.47x100

e+e− → χ̃0
2χ̃

0
2 1.26x101

e+e− → χ̃+
1 χ̃−1 2.96x101

e+e− → h0Z0 6.53x101

e+e− → H0Z0 2.02x10−3

Table 6: Cross Sections at Point B’

Parameter Point α

The mSUGRA parameters for the point α are:
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m0 206
m1/2 293

tan(β) 10
sgn(µ) 1

A0 0

Table 7: mSUGRA Parameters at Point α

The masses associated with the point α, calculated by SPheno [7] are
given by:
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Particle Mass (GeV) Particle Mass (GeV)
W+ 8.040x101 ẽ−L 2.892x102

h0 1.117x102 ẽ−R 2.374x102

H0 4.806x102 ν̃e 2.779x102

A0 4.803x102 µ̃−L 2.892x102

H+ 4.873x102 µ̃−R 2.373x102

d̃L 6.790x102 ν̃µ 2.779x102

d̃R 6.538x102 τ̃−1 2.310x102

ũL 6.745x102 τ̃−2 2.912x102

ũR 6.546x102 ν̃τ 2.768x102

s̃L 6.790x102 g̃ 7.029x102

s̃R 6.538x102 χ̃0
1 1.156x102

c̃L 6.745x102 χ̃0
2 2.158x102

c̃R 6.546x102 χ̃0
3 −4.027x102

b̃1 6.139x102 χ̃0
4 4.203x102

b̃2 6.523x102 χ̃+
1 2.155x102

t̃1 4.942x102 χ̃+
2 4.211x102

t̃2 6.731x102

Table 8: SUSY Particle Masses at Point α. The mass of the χ̃0
3 is negative

in the table. This results from the spectrum calculation and is partly a sign
convention. However, the actual mass of the physical particle is positive.
Additionally, natural units are used throughout this analysis. This means
that c = 1 and so energy, mass, and momentum all have units of GeV. It
should be clear from the context which variable is being considered.

For this point, the mass difference between the χ̃0
1 and the χ̃±1 is suffi-

ciently large (100 GeV) that the primary decay will be the same as for E’
(1). However, due to the larger number of kinematically accessible processes,
the same channel has a lower cross section. The cross section are listed below.
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SUSY Process Cross Section (fb)
e+e− → ẽ−Rẽ+

R 3.18x101

e+e− → µ̃−Rµ̃+
R 1.36x101

e+e− → τ̃−1 τ̃+
1 2.33x101

e+e− → χ̃0
1χ̃

0
1 3.70x102

e+e− → χ̃0
1χ̃

0
2 9.84x100

e+e− → χ̃0
2χ̃

0
2 2.82x100

e+e− → χ̃+
1 χ̃−1 1.19x101

e+e− → h0Z0 6.51x101

Table 9: Cross Sections at Point α

2 Data Generation and Detector Simulation

Now that several parameter points have been identified, Monte Carlo sim-
ulation [8] will be used to study them. Using pseudorandom numbers, events
are generated that are representative of the Standard Model background pro-
cesses as well as the SUSY signal itself. Once this has been accomplished, the
ability to disentangle the SUSY signal from the Standard Model background
will be examined. For this study, the e− polarization will be 0.8 (80% right-
handed) and the e+ polarization will be -0.3 (30% left-handed). These po-
larizations were chosen because they maximize the SUSY cross section while
still being within the mechanical constraint of the collider. Additionally, for
the initial analysis 100 fb−1 of data was generated which was expanded to
250 fb−1.

2.1 Standard Model Background

Event Generation

The Standard Model background is composed of the Standard Model
processes thought to be significant at a center of mass energy of 500 GeV
at the ILC. The following table contains cross sections for the processes.
The number of events generated for each process can then be calculated
by multiplying the cross section by the luminosity in units of fb−1. For
all processes, except e−γ*, e+γ*, and two photon, the cross sections were
calculated using PYTHIA 6.4 [9]. This was done by generating a small
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number of events (typically 10,000) and then extracting the cross section from
the output. For the virtual photon processes, e−γ*, e+γ*, and two photon,
BDK [10] was used instead of PYTHIA because PYTHIA misestimated the
cross section in these cases.

Name Process Cross Section (fb)
Z0 Pair Production e+e− → Z0Z0 5.60x102

Z0 Production e+e− → Z0γ* 1.75x104

W Pair Production e+e− → W+W− 1.93x104

e−γ* Production e+e− → γ*e− 1.94x106

e+γ* Production e+e− → e+γ* 1.94x106

Two Photon Events e+e− → γ*γ* 5.47x106

Bhabha Scattering† e+e− → ff̄ 2.73x108

Table 10: Standard Model Background Process List with Cross Sections.
Final state fermions (e, µ, τ, u, d, s, c, b, t) are specified by f and their an-
tiparticles by f̄ .
† Not all events in the Bhabha cross section were generated due to the ex-
treme size of the requisite data set and the ease of removal through basic
kinematic cuts.

Detector Simulation

Once the events have been generated, the interactions of each event with
the detector must be incorporated. For this study, fast reconstruction has
been performed with a modified version of MCFast from the org.lcsim analy-
sis framework [11]. Originally, MCFast does not account for any efficiency in
the region of the BeamCal, which resides in the far-forward region. However,
efficiency tables have been constructed by members of the Nauenberg group
[12] that detail the ability of the BeamCal to see an electron with a given
energy and momentum vector. This increased visibility is key to the removal
of many Standard Model background processes. As a result, MCFast has
been extended to include this additional capability. Additionally, a driver
that reconstructs jets has been added so that each data file has a list of jets
in addition to the list of reconstructed particles. This jet-finding driver uses
the JADE jet finding algorithm as in [13] with ycut = 0.05. This parameter
determines how the jet-finding algorithm rejects potential jets by setting a
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cutoff mass from ycut. Once the data has been run through MCFast, it is
ready to be analyzed in a signal analysis.

2.2 SUSY Signal

Data generation for the SUSY signal is quite similar to the Standard
Model generation process. However, there is one significant difference for the
SUSY signal, which is the calculation of the spectrum.

Spectrum Calculation, Event Generation, and Detector Simulation

The spectrum is the relevant masses, cross sections and branching ratios
for a SUSY parameter point. This is crucial for the event generation process
because PYTHIA does not have the requisite information to generate SUSY
data without the spectrum. As such, the program SPheno 2.2.3 (Supersym-
metric Phenomenology) [7] is used. Once the spectrum has been calculated,
this information is passed to PYTHIA. Then event generation and detector
simulation proceed as detailed above.

3 Analysis

To begin the analysis, the Monte Carlo signal is analyzed. It provides
verification that the cuts are not distorting the signal too heavily and will be
used later in calibrating the mass measurement techniques presented in the
Appendices. Then, the signal will be examined using reconstructed particles
with the cuts to demonstrate the value in expanding the dataset from 100
fb−1 to 250 fb−1. Finally, the Standard Model background will be included
to simulate the actual signal of supersymmetry and the Standard Model
combined.

3.1 Monte Carlo Particles

With Monte Carlo data, the exact signal that is to be reconstructed can
be found. This follows because with Monte Carlo particles, all information
about the event is present, which is not the case with reconstructed particles.
Therefore, for each parameter point, the χ̃±1 signal will be extracted. To
do this, only W bosons whose parent was a χ̃±1 are selected. Additionally,
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both the 100 fb−1 and 250 fb−1 Monte Carlo particles are presented as a
comparison tool.

Parameter Point E’

Figure 1: These plots show the Monte Carlo signal after restricting our at-
tention to W bosons from χ̃±1 pair production. The 100 fb−1 plot is on the
left and the 250 fb−1 one is on the right. As expected, there is an increase
of approximately 2.5 in the number of events.
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Parameter Point B’

Figure 2: These plots show the Monte Carlo signal after restricting our at-
tention to W bosons from χ̃±1 pair production. The 100 fb−1 plot is on the
left and the 250 fb−1 one is on the right. As expected, there is an increase
of approximately 2.5 in the number of events. As mentioned previously, this
decay is highly suppressed due to lack of available phase space. Therefore, no
purely hadronic analysis is possible for this channel at this parameter point.
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Parameter Point α

Figure 3: These plots show the Monte Carlo signal after restricting our at-
tention to W bosons from χ̃±1 pair production. The 100 fb−1 plot is on the
left and the 250 fb−1 one is on the right. As expected, there is an increase
of approximately 2.5 in the number of events.

3.2 Signal Reconstructed Particles

Now that the ideal Monte Carlo signal has been identified, it is possible
to determine the reconstructed signal without any background. This will be
the signal that is the most realistic view of how the detector would view the
SUSY process without the obscuring Standard Model processes. The ideal
cuts would remove all the Standard Model background while retaining all
the SUSY signal. While this is clearly not feasible, the cuts will be selected
so as to remove as many Standard Model events as possible while removing
as few SUSY events as possible. The main feature of SUSY signals that will
be exploited here is the fact that there is a large amount of missing energy
in any SUSY event. Because the χ̃0

1 does not interact with the detector, any
SUSY process will have a significant amount of missing energy.

The cuts that have been applied to both the signal and background are
listed below. They have been applied to both parameter points E’ and α
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because the exact nature of supersymmetry is not known beforehand. Point
B’ does not have enough signal events to proceed with a hadronic analysis.
Both scenarios will be investigated to verify that the cuts have not been
tuned to detect the χ̃±1 at a single parameter point. For each event to be
considered a signal event, it must conform to the following:

• Exactly 4 jets as reconstructed with the JADE Jet finding algorithm
[11] with the parameter ycut = 0.05. These 4 jets must be able to be
combined into 2 W bosons with a mass of 75 GeV < mW < 85 GeV.

• The total visible energy in the event must be less than 350 GeV.

• Each W boson must have less than 175 GeV of energy.

• The angle between the momentum of the two W bosons must be greater
than 30 degrees and less than 150 degrees.

• The acoplanarity between the two W bosons must be greater than 10
degrees and less than 170 degrees. Acoplanarity is defined as the angle
between the particles when their momentum is projected into the plane
perpendicular to the beam axis.
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Parameter Point E’

Figure 4: These plots show the just the reconstructed signal after impos-
ing the above cuts. For this plot, no Standard Model processes have been
included. The 100 fb−1 plot is on the left and the 250 fb−1 one is on the
right.
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Parameter Point α

Figure 5: These plots show the just the reconstructed signal after imposing
the above cuts. For this plot, no Standard Model processes have been in-
cluded. The 100 fb−1 plot is on the left and the 250 fb−1 one is on the right.
Event though point α has more signal events than point B’, after the cuts
necessary to remove the Standard Model background there are not enough
signal events to reliably extract a mass.

While each plot at both parameter points has the same general shape as
the respective Monte Carlo histograms, the number of events is drastically
reduced. While this is partly due to the cuts, the majority of the decrease
stems from the jet reconstruction process. Even with the standard jet finding
algorithm, it does not produce the expected number of jets for hadronic
W boson decays very frequently. This causes the signal to have very low
statistics and necessitates the increase to 250 fb−1 of data. This also requires
a very efficient veto of the Standard Model background. Even with this
increase in the amount of available data, the only parameter point where a
mass can be extracted is E’.
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3.3 Standard Model Background

Parameter Point E’

Now these same cuts will be applied to the Standard Model background
data. The major background in this instance is from W boson pair production
because it has the same general structure as the SUSY signal. However,
most of the background can be removed due to the fact that it does not
have enough missing energy. Since only hadronic decays are considered, the
missing energy from neutrinos does not mimic the missing energy from χ̃0

1.
The cuts will be applied in the same order that they were presented above.

Four Jets with Two W Bosons Cut

The first cut is the most important one from a conceptual perspective.
There are many possible decay products for the W bosons produced from
the χ̃±1 . For this analysis, only hadronic final states are being considered. If
a W boson decays hadronically, then it will produce two jets. A jet is a set
of hadrons which are produced from the hadronization of a quark or gluon.
Typically, these particles will be produced in a fairly small cone. Therefore,
if there are two W bosons in the event, and they both decayed hadronically,
there must be four visible jets. This has advantages over leptonic final states
because there are less possible sources of missing energy and momentum from
the Standard Model background.

Additionally, these four jets can be recombined to form W bosons, if they
were produced from W bosons initially and there is not too much missing
energy. As a result, the different possible combinations of pairing jets are
investigated until both W bosons have a mass between 75 GeV and 85 GeV.
With this restriction in place, the signal and background have the following
energy distribution.
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Figure 6: Reconstructed W Boson Energy at Point E’ after W Mass Cut.
The plot on the left is for 100 fb−1 of data and the one on the right is 250
fb−1 of data. This plot shows that considering hadronic final states reduces a
significant portion of the Standard Model background. To produce this plot,
the jets were reconstructed into W bosons with a mass between 75 GeV and
85 GeV.

Total Visible Energy Cut

The next cut that will be applied to this signal is that the total visible
energy in the event must be less than 350 GeV. This is an assumption that
the mass of the χ̃0

1 is at least 75 GeV so that the total missing energy in
any SUSY event is at least 150 GeV. However, this assumption is reasonable
as all parameter points considered have χ̃0

1 masses greater than this. For
Standard Model events that decay hadronically, the energy losses should be
relatively minor.
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Figure 7: Reconstructed W Boson Energy at Point E’ after Total Visible
Energy Cut. The plot on the left is for 100 fb−1 of data and the one on
the right is 250 fb−1 of data. This cut primarily has an effect at the higher
energies and begins to remove the other peak.

W Boson Energy Cut

In a similar vein to the previous cut, the total energy of each W boson
must be less than 175 GeV. It is slightly less restrictive in its assumption
about the mass of the χ̃0

1 than the previous cut because it only assumes that
the χ̃0

1 mass is greater than 75 GeV. However, the overall cut is more effective
because if either W has more than 175 GeV of energy, the event is rejected.
Additionally, this does not remove any of the SUSY signal.
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Figure 8: Reconstructed W Boson Energy at Point E’ after W Boson Energy
Cut. The plot on the left is for 100 fb−1 of data and the one on the right is
250 fb−1 of data. By removing the high energy particles, by conservation of
energy they had to be paired with some lower energy particles. Therefore,
this cut was quite important for decreasing the background at lower energies.

Angle Cut

The next cut that is applied to the data is a restriction on the angle of
between the momentum of the two W bosons. The angle between W bosons
in Standard Model events should be large if the event was reconstructed
properly.
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Figure 9: Reconstructed W Boson Energy at Point E’ after Angle Cut. The
plot on the left is for 100 fb−1 of data and the one on the right is 250 fb−1

of data. This cut did not remove many events, due to the fact that many of
the events it would have removed have already been vetoed.

With these cuts final few cuts, the number of events removed is very
small. This is partly due to the relatively small number of events.

Acoplanarity Cut

The final cut that will be applied is an acoplanarity cut. As detailed
above, acoplanarity is the angle between the projection of the W boson mo-
mentum into the plane perpendicular to the beam axis. However, this cut is
quite similar to the angle cut because both should be large for a Standard
Model event.
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Figure 10: Reconstructed W Boson Energy at Point E’ after Acoplanarity
Cut. The plot on the left is for 100 fb−1 of data and the one on the right is
250 fb−1 of data. After all the cuts, the signal makes up a significant portion
of the total number of events.

Applying all the cuts yields the following energy distributions which are
reproduced for clarity. They have the same energy distribution as the plots
for after the acoplanarity cut.
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Figure 11: This plot shows the energy of the reconstructed W bosons with
100 fb−1 of data. The reconstructed signal by itself is superimposed in red
onto both the background and signal combined.

The signal is visible over the constant Standard Model background, but
the statistics are very low. As a result, a mass measurement is possible, but
will not be very precise. To mitigate the problem with low statistics, the
amount of data was increased to 250 fb−1. This should increase the already
visible features so that they can be measured. The increased data produces
the following plot for the parameter point E’.
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Figure 12: This plot shows the energy of the reconstructed W bosons with
250 fb−1 of data. The reconstructed signal by itself is superimposed in red
onto both the background and signal combined. With the increased amount
of data, the signal is quite visible. This will be analyzed to reconstruct the
mass of the χ̃±1 .

4 Mass Measurement

4.1 Endpoint Method

The first mass measurement technique used to extract the mass of the χ̃±1
is the endpoint method. First detailed in [14], a full derivation is provided
in Appendix A. It relies on the relativistic kinematics of two-body decays
to extract mass differences. From these mass differences, the mass of the χ̃±1
and the χ̃0

1 can be extracted.
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Calibration

The first step in making a mass measurement is to calibrate the mea-
surement technique with the signal of interest. To do this, the Monte Carlo
particles will be analyzed. The signal at 100 fb−1 and 250 fb−1 will be ana-
lyzed separately to find errors on each.

Figure 13: These plots show the fit of the Monte Carlo data. On the left is
the 100 fb−1 plot while the 250 fb−1 plot is on the right. Both fits match the
edges very closely. The mass from the left fit gives a mass of 237.0 GeV for
the mass of the χ̃±1 and 124.0 GeV for the mass of the χ̃0

1. For the right fit,
the χ̃±1 mass is 237.0 GeV and the χ̃0

1 mass is 123.7 GeV.

The actual mass of the χ̃±1 at the point E’ is given above, and is 236.4 GeV.
Similarly, the mass of the χ̃0

1 is 123.3 GeV. The 100 fb−1 fit produces values
of 237.0 GeV and 124.0 GeV for the mass of the χ̃±1 and χ̃0

1, respectively. As
a result, there is an error of 1 GeV on both of these measurements. For the
250 fb−1 fit, the results are similar. The measured masses are 237.0 GeV and
123.7 GeV. This implies that there is a discrepancy of 1 GeV for the χ̃±1 and
a discrepancy of 0.5 GeV for the mass of the χ̃0

1. Therefore, the increase in
data does provide a slight improvement on the value of the masses.
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Point E’

The Standard Model tail in both of the reconstructed plots for point E’
presents a problem for this measurement technique. Because the fit function
only has parameters for two edges, the fit will grab the wrong edge at 175
GeV, as seen below.

Figure 14: These plots show the fit of the reconstructed data. On the left is
the 100 fb−1 plot while the 250 fb−1 plot is on the right. Due to the presence
of the extra Standard Model background, the fit does not match the signal
and fits to the wrong edge of the histogram.

To remedy this problem, the Standard Model background is examined.
Since the Standard Model distribution is well known, a dataset can be sim-
ulated and then subjected to the cuts. Since the number of events is fairly
small after applying all the cuts, the statistical errors that would have ob-
scured the signal originally are reduced. Since the major background is from
W boson pair production, this energy distribution will be subtracted from
the full signal. This should isolate the low energy peak that clearly does not
stem from a Standard Model process.
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Figure 15: W Boson Pair Production Background after All Cuts. The Stan-
dard Model background has an exponentially decaying tail in this region,
which demonstrates the prominence of the SUSY signal at the lower ener-
gies.

After removal of these background distributions, the signal distributions
will be fitted once again. With the removal of the higher energy background
processes, the SUSY signal is much more visible.
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Figure 16: These plots show the fit of the reconstructed data. On the left is
the 100 fb−1 plot while the 250 fb−1 plot is on the right. With the removal
of the expected Standard Model background distribution, the SUSY signal
is visible and able to fitted well. The 100 fb−1 fit on the left gives a χ̃±1 mass
of 239.2 GeV and a χ̃0

1 mass of 121.5 GeV. The 250 fb−1 fit gives masses of
237.4 GeV and 123.3 GeV for the χ̃±1 and χ̃0

1, respectively.

The known mass of the χ̃±1 at point E’ is 236.4 GeV and the known mass
of the χ̃0

1 is 123.3 GeV. The 100 fb−1 fit has a value of 239.2 GeV for the
mass of the χ̃±1 , so there is a discrepancy of 3 GeV to the known mass.
Additionally, the mass of the χ̃0

1 was measured to be 121.5 GeV, so this
measurement has a discrepancy of 2 GeV. However, when the 250 fb−1 fit is
considered, the measured masses improve considerably. The χ̃±1 mass is 237.4
GeV and the χ̃0

1 mass is 123.3 GeV. Since there is a discrepancy of 1 GeV on
the χ̃±1 mass and a discrepancy of 0.5 GeV on the χ̃0

1 mass in the ideal case,
as derived in the Calibration section, this is the uncertainty on these values.
Consequently, both of the 250 fb−1 masses are consistent with the known
masses. To verify that the cuts and removal of the expected Standard Model
background did not disrupt the mass measurement, different techniques will
also be investigated.
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4.2 χ2 Method

The next mass measurement technique that could be used is the χ2

method. It is based upon the spectrum of the SUSY signal. A derivation is
given in Appendix B, and is based upon the work of [15]. Additionally, [6]
details the parameter point E’ and shows the WMAP constraints on the pa-
rameter space. Due to the large nature of the m0 parameter, the constraints
are not plotted. Therefore, the valid regions over which the parameters could
be varied are not known.

4.3 Threshold Scan

The final technique applied to this signal does not rely on the edges of
the distribution. Instead, it seeks to find the center of mass energy where
the process becomes kinematically accessible. By finding this point, the
mass of the χ̃±1 can be calculated by dividing by two. This method has
the advantage of not requiring a specific distribution or two-body decay.
However, it relies on the assumption that the Standard Model background
is constant over the range of the scan. The full derivation of the technique
is provided in Appendix C. The particular implementation used here is a
quartic polynomial.

Calibration

The calibration for this technique is somewhat different than for the end-
point method. For this method, the error is driven by the amount of data
that is available to take. Since the SUSY cross sections are quite small, each
energy in a given range will need to generate a large amount of data. Thus,
the resolution is limited by the total amount of data that can be generated.
To calibrate it, the assumption will be made that as much data as is neces-
sary can be found. While this is not realistic, it provides a baseline, ideal
case that can be compared to the others. For this run, the step size will be
1 GeV, with 100 fb−1 generated at each point from 450 GeV to 500 GeV.
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Figure 17: This plot shows the number of reconstructed events that pass
the cuts detailed above. Since this is under the assumption of 100 fb−1 at
at every step. The zero of this fit corresponds to a χ̃±1 mass of 236 GeV.
Since the actual mass is 236.4 GeV, the minimum error on this method is
determined by the step size. Therefore, the error on this measurement is 1
GeV.

Point E’

Even though the calibration was performed with as much data as needed,
this is not a realistic assumption. Instead, the total amount of data will be
limited to either 100 fb−1 or 250 fb−1. With 100 fb−1 of data, the scan will
be every 5 GeV with 10 fb−1 of data generated at each step. For 250 fb−1,
the step size will still be 5 GeV, but the amount of data will be increased to
25 fb−1 at each point.
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Figure 18: These plots show the fit of the reconstructed data using more
realistic assumptions about the total amount of data available. On the left
is the 100 fb−1 plot while the 250 fb−1 plot is on the right. The fit on the
left produced a mass measurement of 236 GeV. The 250 fb−1 plot has a mass
of 236 GeV. The error in both cases is at most 5 GeV since that is the step
size.

Both mass measurements are consistent with the known χ̃±1 mass of 236.4
GeV. Additionally, the added statistics from increasing the dataset provides
a much better measurement.

5 Conclusions

The hadronic χ̃±1 signal has been evaluated at all three kinematically
accessible parameter points with a center of mass collision energy of 500 GeV.
At points α and B’ the number of hadronic events is too small to analyze
the hadronic signal. However, at point E’, it is possible to analyze the signal
and extract a mass measurement. While it is not possible to find masses
using the χ2 method, both the threshold scan technique and the endpoint
method are able to provide mass measurements. With the endpoint method,
the measured mass of the χ̃±1 was 239 ± 1 GeV and 237 ± 1 GeV at 100 fb−1

and 250 fb−1, respectively. Similarly, the χ̃0
1 mass was measured to be 122

33



± 1 GeV and 123.3 ± 0.5 GeV at 100 fb−1 and 250 fb−1, respectively. The
250 fb−1 masses are consistent with the known values at point E’ of 236.4
GeV for the χ̃±1 mass and 123.3 GeV for the χ̃0

1 mass. Using the threshold
scan technique, with 100 fb−1 of data, the measured mass of the χ̃±1 is 236 ±
5 GeV. With 250 fb−1 of data, the mass is 234 ± 5 GeV with much better
statistics. Both of these are consistent with the true value of the χ̃±1 mass
at point E’: 236.4 GeV. One possible avenue for further study for the χ̃±1 is
leptonic final states which have a larger cross section. However, under the
proper conditions, it is possible to measure the mass of the χ̃±1 hadronically
at the ILC.
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Appendices
There are three primary techniques that can reconstruct the mass of a su-
persymmetric particle: the endpoint method [16] [14] [17], threshold scan
method [18], and χ2 method [15].

A Endpoint Method

The endpoint method is the conceptually simplest measurement technique
and also the easiest to implement. However, this method can only be applied
to two-body decays of the form:

A → B + C

In this case the energy spectrum of either B or C is examined and should
exhibit a shelf-like behavior as in the following plot. From this plot, the edges
of the histogram can be extracted. This information leads to mass differences
which allow for the determination of the other masses. If the edges of the
energy spectrum of C are extracted from the fit and the mass of C is known,
then the mass of both A and B can be found.
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Figure 19: This plot shows the energy spectrum of the muons produced
from the process µ̃±R → µ±χ̃0

1. This plot was created using MC particles to
demonstrate the shelf-like behavior of a two-body decay.

A.1 Derivation

The following derivation is based on similar ones present in [14] and [17]. To
begin with, a two-body decay of the form

A → B + C

is assumed. For this derivation, the energy spectrum and mass of C will be
known and the masses of A and B are to be determined. Now, let pA, pB,
and pC be the energy-momentum four vectors of A, B, and C, respectively.
Then, due to conservation of energy and momentum,

pA = pB + pC

pB = pA − pC

This equation can be squared to yield

M2
B = M2

C + M2
A − 2pApC (4)
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where the following identity has been used, in natural units, with the energy,
E, and momentum vector, P :

p2 = E2 − P 2 = M2 (5)

In the center of mass frame of A, it has no momentum, so

pA = MA (6)

Now, (6) can be substituted into (4) which can then be solved for pC :

pC =
M2

A + M2
C −M2

B

2MA

(7)

Now since this analysis was conducted in the center of mass frame of A,
this corresponds to a range in energies in the lab frame. Taking a Lorentz
transformation yields:

EC, lab = γ(EC, cm − βPC, cm cos θ)

This equation leads to both a maximum and minimum possible energy which
will be used to solve for the center of mass energy. Thus,

Emax = γ(EC, cm + βPC, cm) (8)

Emin = γ(EC, cm − βPC, cm) (9)

We can solve for EC, cm by adding these equations together and simplifying.

EC, cm =
Emax + Emin

2γ
(10)

Additionally, instead of adding (8) and (9), they can be multiplied to find

EmaxEmin = γ2(E2
C, cm − β2P 2

C, cm)

Now this can be simplified by using (5)

EmaxEmin = γ2(E2
C, cm − β2(E2

C, cm −M2
C))

EmaxEmin = γ2(1− β2)E2
C, cm + γ2β2M2

C (11)
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Which can be simplified again because of the relationship between γ and β,

γ =
1√

1− β2
(12)

This implies that
EmaxEmin = E2

C, cm + γ2β2M2
C

Now, (10) will be substituted so that

EmaxEmin =
(Emax + Emin)

2

4γ2
+ γ2β2M2

C (13)

The final step is to solve for β and γ in terms of the desired quantities and
then substitute. Therefore, from the definition,

β =
PA, lab

MA

(14)

Now, in the center of mass frame for A, MA = EA, cm since PA, cm = 0 from
(5). Using this relation again gives

β =

√
E2

A, cm −M2
A

EA, cm

(15)

From this point, the denominator can be absorbed into the square root.
Additionally, in the center of mass frame of the A pair, the particles being
pair produced, each will have half the center of mass energy of the detector.
This implies that:

EA, cm =

√
s

2

Therefore, (15) becomes

β =

√
1− 4M2

A

s
(16)

Since β and γ are connected, this result can be applied to (12) to yield:

γ =

√
s

2MA

(17)
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Now, all relevant equations are in terms of the unknown mass, MA, and
known quantities. Therefore, (13), (16), and (17) are combined to find that

EmaxEmin =
(Emax + Emin)

2

4(s/4M2
A)

+
s

4M2
A

(
1− 4M2

A

s

)
M2

C

If both sides of this equation are multiplied by M2
A, then it becomes a

quadratic equation in M2
A which can be solved straightforwardly with the

quadratic equation. Thus,

EmaxEminM
2
A =

(Emax + Emin)
2

s
M4

A +
s

4

(
1− 4M2

A

s

)
M2

C

which can be reduced to the familiar ax2 + bx + c = 0 form:

(Emax + Emin)
2

s
M4

A − (EmaxEmin + M2
C)M2

A +
sM2

C

4
= 0

Now, this implies that

M2
A =

−b±√b2 − 4ac

2a
(18)

where

a =
(Emax + Emin)

2

s

b = −(EmaxEmin + M2
C)

c =
sM2

C

4

Consequently, the discriminant in (18) can be simplified.

b2 − 4ac = (EmaxEmin)
2 + 2EmaxEminM

2
C + M4

C − (Emax + Emin)
2M2

C

b2 − 4ac = M4
C − (E2

max + E2
min)M

2
C + (EmaxEmin)

2

b2 − 4ac = (M2
C − E2

max)(M
2
C − E2

min) (19)

Additionally, (19) can be substituted above to simplify (18)

M2
A =

EmaxEmin + M2
C ±

√
(M2

C − E2
max)(M

2
C − E2

min)

2(Emax + Emin)2/s
(20)
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From here it is straightforward to solve for MA with the exception of the
± sign in front of the discriminant. When MC is small and can be neglected,
as in the case when plotting the energy spectrum of e± or µ±, the plus sign is
appropriate. This follows from the fact that if we take the limit as MC → 0,
(20) becomes

M2
A =

EmaxEmin ± EmaxEmin

2(Emax + Emin)2/s
(21)

Since the particle that is being reconstructed clearly does not have zero mass,
the minus sign is disregarded to yield:

MA =
√

s

√
EmaxEmin

(Emax + Emin)
(22)

which is the precise result derived in [14]. However, in the case where MC is
not negligible, such as reconstructing the χ̃±1 with W± bosons, the situation
becomes more involved. In this case, the sign must be determined experi-
mentally by looking for an energy, Ecrit, where C is produced at rest in the
lab. Then, for center of mass energies below this value, the particles are
produced back to back and it is necessary to use the minus sign. However,
if the energy is above the critical value, B and C will not be back to back,
but instead travel in the same direction. In this case, the plus sign should be
used. The easiest way to determine the critical value is through a threshold
scan and will be discussed in the next appendix.

Once MA has been determined, with the proper sign, MB can be deter-
mined as well. Returning to (4), the known quantities can now be substituted
so that, in the center of mass frame of A, the equation becomes

M2
B = M2

C + M2
A − 2MAEC,cm

Using (10) and (17) to substitute for EC,cm,

M2
B = M2

C + M2
A − 2MA

(
Emax + Emin

2
√

s/2MA

)

M2
B = M2

C + M2
A − 2M2

A

(
Emax + Emin√

s

)
(23)

This result agrees with the one derived in [17].
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A.2 Error Analysis

Statistical Error

For both MA and MB, errors on the measured masses must be calculated.
Returning to (20), and using the formula from [19],

δq =

√(
∂q

∂x
δx

)2

+ · · ·+
(

∂q

∂z
δz

)2

(24)

Each partial derivative shall be calculated in turn using Mathematica. Along
with the values from the fitted energy spectrum and their errors, this is
enough to calculate the error on MA and MB. The derivation begins with a
restatement of (20):

MA =
√

s

√
EmaxEmin + M2

C ±
√

(M2
C − E2

max)(M
2
C − E2

min)

2(Emax + Emin)2

In this instance, there are three independent variables, Emax, Emin, and MC .

∂MA

∂Emax

=

√
s

(
Emin

Emin+Emax
± Emax

Emin+Emax

√
M2

C−E2
min

M2
C−E2

max
− 2

“
EminEmax+M2

C±
q

(M2
C−E2

min)(M2
C−E2

max)
”

(Emin+Emax)2

)

2
√

2
√

EminEmax + M2
C ±

√
(M2

C − E2
min) (M2

C − E2
max)

∂MA

∂Emin

=

√
s

(
Emax

Emax+Emin
± Emin

Emax+Emin

√
M2

C−E2
max

M2
C−E2

min
− 2

“
EmaxEmin+M2

C±
q

(M2
C−E2

max)(M2
C−E2

min)
”

(Emax+Emin)2

)

2
√

2
√

EmaxEmin + M2
C ±

√
(M2

C − E2
max) (M2

C − E2
min)

∂MA

∂MC

=

√
s

(
2MC ± MC(M2

C−E2
max)+MC(M2

C−E2
min)q

(M2
C−E2

max)(M2
C−E2

min)

)

2
√

2(Emax + Emin)
√

EmaxEmin + M2
C ±

√
(M2

C − E2
max) (M2

C − E2
min)

Therefore, the statistical error on MA is, with the above definitions:

δMA =

√(
∂MA

∂Emax

δEmax

)2

+

(
∂MA

∂Emin

δEmin

)2

+

(
∂MA

∂MC

δMC

)2

(25)
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Additionally, MB is related to MA through (23), which is restated:

MB =

√
M2

C + M2
A − 2M2

A

(
Emax + Emin√

s

)

Consequently, there are 4 variables in this equation so the error becomes

δMB =

√(
∂MB

∂Emax

δEmax

)2

+

(
∂MB

∂Emin

δEmin

)2

+

(
∂MB

∂MC

δMC

)2

+

(
∂MB

∂MA

δMA

)2

with the following definitions.

∂MB

∂Emax

= − M2
A√

−2
√

sM2
A(Emax + Emin) + sM2

A + sM2
C

∂MB

∂Emin

= − M2
A√

−2
√

sM2
A(Emax + Emin) + sM2

A + sM2
C

∂MB

∂MC

=
4
√

sMC√
−2M2

A(Emax + Emin) +
√

sM2
A +

√
sM2

C

∂MB

∂MA

=

√
sMA − 2MA(Emax + Emin)√

−2
√

sM2
A(Emax + Emin) + M2

A + M2
C

Systematic Error

There is also systematic error introduced into this measurement as a result
of the event generation process. These could be from initial state radiation,
final state radiation, beamstrahlung, or detector simulation. However, with
this measurement technique, it is possible to estimate the systematic error
through the use of Monte Carlo data. Since this represents the best possible
reconstruction, reconstructing the mass from this data and observing the
discrepancy is the most realistic way to find the systematic error. However,
this analysis should be repeated with the particular signal of interest and
cannot be done in complete generality.
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B χ2 Method

B.1 Derivation

As detailed in [15], the χ2 method is another technique for measuring the
mass of supersymmetric particles. In this case, the spectrum of the decays
products are examined. Then, for a given set of SUSY parameters, the spec-
trum is again calculated. These two spectrum histograms are compared bin
by bin and the difference squared between them is tallied. When these are
summed, it is the χ2 value for that point. Then given a sufficient number
of points, a minimum can be found which corresponds to the most likely
SUSY parameter point. From this knowledge, the mass at the most likely
parameter point is also the most likely value of the mass. Due to its depen-
dence only on the spectrum of the decay products, and not the edges of the
distribution, this method is particularly well suited for measuring the mass
of many supersymmetric which do not decay through two-body decays. As
such, it provides a natural complement to the endpoint method and is also
useful for studying productions modes other than pair production.

B.2 Error Analysis

The error associated with this method can be extracted by finding the error
on the minimum of the parabola associated with the χ2 fit. Then, this error
corresponds to a range of parameter values which give different masses. By
examining the largest and smallest values this range can take, the error on the
mass can be calculated. However, this error is dependent on the particular
implementation of the fitting process.

Assumptions

The most problematic assumption about the χ2 method is that it is quite
heavily model dependent. For example, the spectrum differs greatly between
the different formulations of SUSY, such as minimal super gravity, anomaly
mediated supersymmetry breaking (AMSB), or gauge mediated supersym-
metry breaking (GMSB). Consequently, if none of the currently researched
theories accurately describe the underlying physics, this method will not
provide significant or accurate results.
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C Threshold Scan Method

The basis for this method is drawn from [18], where it is applied to W+W−

studies. However, in this instance the method has been expanded to study
supersymmetric particles. Additionally, it can be used to find Ecrit as men-
tioned above in conjunction with the endpoint method.

The basic premise for this technique is that each process possesses a
unique “turn-on point”, or threshold point, below which production is not
kinematically accessible. However, after this point, the cross section steadily
increases. Therefore, as the center of mass energy is varied, the number of
events should increase. Then, these results can be plotted and the zero fit-
ted. This zero should correspond to when the process becomes kinematically
accessible and is equal to the sum of the rest masses of the particles in the
process.

C.1 Derivation

Known Mass in Pair Production

Typically, the threshold scan method will be applied to pair production be-
cause once the threshold point is determined, the mass of the particle can be
determined easily by simply dividing the threshold energy by two. This can
be accomplished in generality and is very useful for processes that do not
undergo two-body decays, such as τ̃±1 production. However, if the particle
decays through a two-body decay, then in a similar manner to the end-
point method, the mass of the other product can be determined as well. In
particular, at Ecrit, the measurable product is produced at rest in the lab.
Consequently, the following decay will be considered:

e+e− → A + A where A → B + C

Under the assumption that MA and MB are known from the threshold point
and Ecrit is known, MC will be found. Using the same convention for four-
vectors as above in the endpoint method, in the lab frame this translates
to

pA = pB + pC

Now, this equation is squared and simplified using (5) and the fact that
PB = 0 in the lab frame since the energy is Ecrit. This implies

M2
A = M2

B + M2
C + 2MBEC (26)
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Now, EC is also equal to

EC =
√

M2
C + P 2

C (27)

But PC is equal to PA in the lab frame since momentum must be conserved
and PB = 0. Additionally, PA is equal to

PC = PA =
√

E2
A −M2

A (28)

But, as before, EA = Ecrit/2 since only pair production is currently being
considered. Combining (27) and (28) into (26), it follows that

M2
A −M2

B −M2
C = 2MB

√
M2

C −M2
A +

E2
crit

4

The only unknown in this equation is MC , so it can be solved to yield the
desired mass. Squaring both sides,

(M2
A −M2

B −M2
C)(M2

A −M2
B −M2

C) = 4M2
B

(
M2

C −M2
A +

E2
crit

4

)

Expanding both sides and arranging like terms yields

M4
C + (−2M2

B − 2M2
A)M2

C + (M2
A + M2

B)2 −M2
BE2

crit = 0

This quartic can be solved by for M2
C using the quadratic equation. Thus,

M2
C =

2M2
B + 2M2

A ±
√

(−2M2
B − 2M2

A)2 − 4(1)((M2
A + M2

B)2 −M2
BE2

crit)

2

But the first two terms in the discriminant cancel and so this becomes

M2
C =

2M2
B + 2M2

A ± 2MBEcrit

2

MC =
√

M2
B + M2

A ±MBEcrit

Now, the sign must be taken to be minus because otherwise MC > MA where
C is a daughter particle of A. Since this would violate the conservation of
energy, this is clearly not feasible. Therefore,

MC =
√

M2
B + M2

A −MBEcrit (29)

Consequently, given MA, MB, and Ecrit in a two-body decay, MC can be
found.
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Unknown Mass in Pair Production

Additional information can be gleaned if MB, Ecrit, Emin and Emax are known.
Ecrit is defined as the place where the observable product of a two-body
decay is produced at rest in the lab. This translates into a requirement that
Emin = MB, where M is the mass of the particle and Emin is the lower edge of
the energy spectrum. If instead Emax is considered, then C will be produced
at rest in the lab since this just corresponds to an inversion of the situation
considered above. Now, consider EA.

EA = EB + EC

In this instance, EA = Ecrit/2 for pair production, EB = Emax, and EC = MC

since it was produced at rest in the lab frame. Ergo,

Ecrit

2
= Emax + MC

This implies that

MC =
Ecrit

2
− Emax (30)

Now, MA can be calculated as well. Using (5) in the lab frame,

EA =
√

M2
A + P 2

A

But PA = PB and the mass and energy of B are known. Therefore,

Ecrit

2
=

√
M2

A + (E2
max −M2

B)

Solving this for MA yields

MA =

√
E2

crit

4
− E2

max + M2
B (31)

Other Applications

While typically used for pair production, a threshold scan can be used when
considering general decays of the form

e+e− → A + B
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and a mass difference can be extracted from the turn-on point. In generality
only the trivial mass difference

Ecrit = MA + MB

can be extracted. However, when paired with another mass difference or an
already known mass, this technique can provide valuable information.

C.2 Error Analysis

Known Mass in Pair Production

As was derived above in (32), MC is found to be:

MC =
√

M2
B + M2

A −MBEcrit (32)

Consequently, the error on this result can be propagated using (24). There-
fore, the partial derivatives of MC with respect to MA, MB, and Ecrit will be
calculated to yield:

∂MC

∂MA

=
MA√

M2
B + M2

A −MBEcrit

∂MC

∂MB

=
−MB

2
√

M2
B + M2

A −MBEcrit

∂MC

∂Ecrit

=
2MB − Ecrit

2
√

M2
B + M2

A −MBEcrit

which can be combined in the following equation:

δMC =

√(
∂MC

∂MA

δMA

)2

+

(
∂MC

∂MB

δMB

)2

+

(
∂MC

∂Ecrit

δEcrit

)2

(33)

Unknown Mass in Pair Production

In the case that the mass of the particle being pair produced is unknown,
then the analysis follows as above. Recalling from above (30), that MC is
given by:

MC =
Ecrit

2
− Emax
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Consequently, the error on this measurement is given by:

δMC =

√
1

4
δE2

crit + δE2
max (34)

Additionally, from (31),

MA =

√
E2

crit

4
− E2

max + M2
B

Therefore, the error on this mass is given by:

δMA =

√(
∂MA

∂Ecrit

δEcrit

)2

+

(
∂MA

∂Emax

δEmax

)2

+

(
∂MA

∂MB

δMB

)2

(35)

where each partial derivative is given by the following.

∂MA

∂Ecrit

=
Ecrit

4
√

1
4
E2

crit − E2
max + M2

B

∂MA

∂Emax

=
−Emax√

1
4
E2

crit − E2
max + M2

B

∂MA

∂MB

=
MB√

1
4
E2

crit − E2
max + M2

B

Assumptions

While this method is more robust than the endpoint method in that it doesn’t
depend critically upon edges of a distribution, there is one major assumption
that must be accounted for to successfully apply this method. In particular,
since the entire background cannot be generated at each discrete energy due
to computational limitations, the background is assumed to be constant over
the range of energies considered. Consequently, the range for the threshold
scan cannot be too large or this assumption is bound to fail. However, the
assumption of constant background will be investigated more closely through
examination of Standard Model cross sections.
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Standard Model Cross Sections

To more thoroughly evaluate the assumption of relatively constant Standard
Model background, plots of cross section versus energy will be constructed
for many Standard Model processes.

Figure 20: This plot shows how several important Standard Model back-
ground process cross sections vary with the center of mass energy of the
detector. As can be seen above, over a small range, the assumptions made
for the threshold scan method do hold. However, over large ranges this
method should be used very carefully. Additionally, the eγ* and γ*e have
the same cross section and so only one line is visible.
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