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Abstract. Assessing landslide activity at large scales has his-
torically been a challenging problem. Here, we present a dif-
ferent approach on radar coherence and normalized differ-
ence vegetation index (NDVI) analyses – metrics that are
typically used to map landslides post-failure – and leverage a
time series analysis to characterize the pre-failure activity of
the Mud Creek landslide in California. Our method computes
the ratio of mean interferometric coherence or NDVI on the
unstable slope relative to that of the surrounding hillslope.
This approach has the advantage that it eliminates the neg-
ative impacts of long temporal baselines that can interfere
with the analysis of interferometric synthetic aperture (In-
SAR) data, as well as interferences from atmospheric and
environmental factors. We show that the coherence ratio of
the Mud Creek landslide dropped by 50 % when the slide be-
gan to accelerate 5 months prior to its catastrophic failure
in 2017. Coincidentally, the NDVI ratio began a near-linear
decline. A similar behavior is visible during an earlier ac-
celeration of the landslide in 2016. This suggests that radar
coherence and NDVI ratios may be useful for assessing land-
slide activity. Our study demonstrates that data from the as-
cending track provide the more reliable coherence ratios, de-
spite being poorly suited to measure the slope’s precursory
deformation. Combined, these insights suggest that this type
of analysis may complement traditional InSAR analysis in
useful ways and provide an opportunity to assess landslide
activity at regional scales.

1 Introduction

Landslides are among the most destructive and costly natural
hazards, and their occurrence and impacts remain difficult to
predict. The numerous triggering processes and controls on
landslide size, runout distance or time of failure make it hard
to assess the risks and potential impacts for even just a sin-
gle hillslope. Carrying out such an assessment at the regional
level is a comparatively harder challenge. Yet assessing land-
slide activity over larger regions can be crucial to effective
hazard management (van Westen et al., 2006). Remote sens-
ing techniques using both optical imagery and satellite radar
data have long been recognized as useful tools to carry such
regional-scale assessments (Mantovani et al., 1996; Rosin
and Hervás, 2005). However, while many of these efforts are
focused on mapping landslides after they have occurred, as-
sessing the activity of landslides is a harder problem. The
most reliable and common approaches for assessing land-
slide activity and potential for failure rely on measurements
of slope displacements and derivatives thereof (Intrieri et al.,
2019). For individual, known instabilities, this is most com-
monly achieved through on-site monitoring systems using
GPS, crack meters, image analysis, automated theodolite
measurements, or ground-based radar and lidar measure-
ments (e.g., Gili et al., 2000; Chelli et al., 2006; Kos et al.,
2016; Loew et al., 2016). Monitoring landslide activity has
also been achieved with aerial images and high-resolution
satellite images, though the focus thereof lies more on indi-
vidual instabilities than on entire regions (e.g., Hervás et al.,
2003). Recently, interferometric synthetic aperture radar (In-
SAR) techniques have gained popularity for assessing land-
slide activity because they provided the opportunity to mea-

Published by Copernicus Publications on behalf of the European Geosciences Union.



630 M. Jacquemart and K. Tiampo: Leveraging time series analysis of radar coherence and NDVI ratios

sure slope displacements over large areas. Despite this ad-
vantage, Norway is presently the only country systematically
leveraging radar interferometry for a country-wide monitor-
ing effort (Lauknes et al., 2010; Dehls et al., 2014).

Generating robust displacement time series from InSAR,
despite its all-weather and day-and-night capability, is not
without challenges. Due to its oblique viewing geometry,
radar can be rendered useless in areas of steep topography
due to the effects of shadowing and layover (the compres-
sion of a large area into only few image pixels) (Wasowski
and Bovenga, 2014; Lillesand et al., 2015). In areas not af-
fected by these geometric artifacts, the maximum detectable
deformation gradient is equal to half the wavelength per im-
age pixel (λ2 ; Massonnet and Feigl, 1998). Because radar in-
struments only measure the component of motion in line of
sight, the measurable deformation is strongly controlled by
the viewing geometry (Massonnet and Feigl, 1998). Further
difficulties include the relative nature of radar measurements,
making it necessary to know or assume a stable location
where there is no deformation, as well as the fact that radar
measurements are 2π wrapped (Wasowski and Bovenga,
2014; Massonnet and Feigl, 1998). The wrapped nature of
the data requires that radar measurements are unwrapped to
derive the actual displacement in meters rather than radi-
ans (Massonnet and Feigl, 1998; Chen and Zebker, 2002).
This process is computationally expensive and phase un-
wrapping errors can mask the full displacement (Wasowski
and Bovenga, 2014). Additionally, in order to reliably mea-
sure ground displacements, the wave scattering properties of
ground targets must remain unchanged between two radar
measurements (Massonnet and Feigl, 1998; Zebker and Vil-
lasenor, 1992).

This similarity between two radar images is expressed in
the radar coherence metric, which is the primary indicator
of radar data quality and can be impacted by several differ-
ent factors. Generally speaking, a reduction in radar coher-
ence indicates that either the scattering properties of the tar-
get have changed (temporal decorrelation) or that the imag-
ing geometry has shifted substantially (spatial decorrelation;
Zebker and Villasenor, 1992; Rosen et al., 2000). Instrument
noise (signal-to-noise ratio) can also be a cause of coherence
loss (thermal decorrelation) but is typically small in modern
systems (Zebker and Villasenor, 1992). When radar images
are re-acquired from the same position, spatial decorrelation
is minimized and coherence changes are predominantly tem-
poral in nature. This can be exploited for assessing ground
deformation, soil moisture variations, and ground cover or
land use changes such as those caused by vegetation cycles,
agricultural practices, or damage from natural hazards (e.g.,
Burrows et al., 2019; Fielding et al., 2005; Yun et al., 2015;
Musa et al., 2015).

These variations in coherence can also be efficiently ex-
ploited for landslide mapping. When large numbers of land-
slides are triggered by earthquakes or tropical storms, fast
and precise landslide mapping is key for organizing effective

rescue efforts. The increased availability of synthetic aper-
ture (SAR) data (e.g., freely available Sentinel-1 imagery
from the European Space Agency, ESA) has led to signifi-
cant developments in this regard. Coherence-based landslide
mapping has been achieved using absolute coherence thresh-
olds, differences between pre-event and co-event or co-event
and post-event coherence maps, and coherence time series
analyses (Burrows et al., 2019; Yun et al., 2015; Ohki et al.,
2020; Jung and Yun, 2020).

Optical images have also been used to map landslides but
are significantly limited in their utility due to cloud cover,
shadows and darkness. If high-resolution optical images are
available, landslides are frequently mapped by hand, a pro-
cess that is tedious and time-consuming (e.g., Roback et al.,
2018). To speed up the production of such landslide in-
ventories, automated and semi-automated procedures have
been developed (Guzzetti et al., 2012; Fiorucci et al., 2019;
Behling et al., 2014b, a; Mondini et al., 2011). Many of the
(semi-)automated methods make use of the damage that land-
slides cause to plants, which can be detected in multispectral
optical images using vegetation indices like the normalized
difference vegetation index (NDVI; Tucker, 1979; Rosen-
thal et al., 1985). Either of these techniques can be severely
limited if good ground visibility is not provided, a situation
that is particularly common after rainfall-induced landslide
events.

Both the radar-coherence- and NDVI-based approaches
described above offer the possibility to effectively map land-
slides over large regions, but so far they have been applied
purely after landslide events. Here, for the first time, we used
time series analysis of radar coherence and NDVI to inves-
tigate the behavior of the Mud Creek landslide in California
before its catastrophic failure in May 2017. We generated the
time series by calculating the ratios between the mean coher-
ence (or mean NDVI) on the slide and that of the surrounding
hillslope and then compared these time series to precursory
deformation computed by ourselves and Handwerger et al.
(2019). Finally, we assessed the usefulness of these indica-
tors to assess landslide stability and discuss the possibility of
using them at regional scales with and without prior knowl-
edge of a landslide location.

In the following, we describe the general setting of the
Mud Creek landslide (Sect. 2) and the methodology, data se-
lection and methodological assumptions (Sect. 3). In Sect. 4
we present our findings, and in Sect. 5 we discuss these in
the context of landslide monitoring and lay out the need and
opportunities for future research.

2 Study site

The Santa Lucia Mountains rise abruptly from the Pacific
Ocean on California’s Big Sur coast, a geologically com-
plex region about 150 mi (240 km) south of San Francisco
(Fig. 1). Formed in a transpression zone of the San Gregorio–
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Hosgri fault system known as the Big Sur Bend, the crest
of this rugged, high-relief mountain range rises to over
1700 m a.s.l. and is never more than 18 km from the coast
(Johnson et al., 2018). Geologically, Miocene marine sed-
iments, Mesozoic to Precambrian granitic and metamor-
phic rocks, and Cretaceous–Jurassic marine sedimentary and
metasedimentary rocks make up the Santa Lucia Mountains
(Graham and Dickinson, 1978). The Franciscan mélange that
dominates the geology near Mud Creek consists of Meso-
zoic graywacke sandstones, highly sheared argillite shales,
metamorphosed greenstones, and conglomerates, and it is
well known for its highly variable, but generally low, rock
strength (Medley and Zekkos, 2011; California Geologic
Survey, 2020). The mélange is overlain by unconsolidated,
clay-rich regolith.

Climatically, the Big Sur region experiences a Mediter-
ranean climate. Yearly precipitation averages around
1 m yr−1 and typically falls between November and April.
The total yearly precipitation depends strongly on the storm
and drought cycles controlled by the El Niño–Southern Os-
cillation (ENSO). Following a multi-year drought, the win-
ter of 2016/2017 brought an extraordinary number of intense
atmospheric-river-driven storms to California, resulting in
the state’s wettest year on record (Swain et al., 2018).

The Mud Creek slide occurred on 20 May 2017, after 2
weeks of dry weather. The failure initiated at 337 m a.s.l.,
was 490 m long, and involved roughly 3× 106 m3 of earth
and rock (Warrick et al., 2019). Prior to failure, the mean
slope was 30◦ (SD= 8.7◦), with the steepest areas reach-
ing 58◦. Upon failing, the landslide destroyed almost half
a mile (0.8 km) of Highway 1, a vital transportation corri-
dor for both tourism and local residents and the only direct
connection between Carmel Highlands on the north end of
Big Sur and San Simeon to the south. The landslide potential
of this particular stretch of road had become apparent only in
the months preceding the slide, as accumulating debris on the
road began to require near-daily maintenance (Warrick et al.,
2019). Upon recognizing the threat of an imminent landslide,
the California Department of Transportation (Caltrans) evac-
uated all personnel and construction material from the site.
Following the catastrophic failure, Caltrans commenced a
USD 54 million project to construct a new road over the land-
slide deposit. The impacted highway segment was reopened
on 18 July 2018, more than a year after the slide.

3 Methods and data

For the analyses presented here, we worked with both
radar and optical images: we used data from ESA’s C-band
Sentinel-1A and 1B radar satellites (5.6 cm wavelength) and
processed 51 images from the ascending orbit (track 35) and
63 from the descending orbit (track 42). Single Look Com-
plex (SLC) images were obtained from the Alaska Satellite
Facility (ASF DAAC: https://search.asf.alaska.edu, last ac-

cess: 1 February 2021). Because we focused this study on
pre-failure landslide dynamics, we did not include any post-
landslide radar images in the analysis. To compute the NDVI,
we downloaded 22 cloud-free Sentinel-2 images (10 m reso-
lution) from the US Geological Survey’s (USGS) Earth Ex-
plorer platform (https://earthexplorer.usgs.gov/, last access:
1 February 2021). We used both datasets to compute time
series of ratios that describe the discrepancy between the be-
havior of the landslide and its surrounding slope. The ad-
vantage of the ratio calculation is that it cancels out the ef-
fects of regional-scale environmental factors and processing
artifacts that affect the hillslope and the landslide equally.
Therefore, when using the landslide / hillslope ratio, values
less than 1 indicate decreasing landslide NDVI or coherence
values, while values greater than 1 indicate decreasing hills-
lope values. Table 1 shows an overview of the raw data prod-
ucts and associated derivatives (details are given in the sec-
tions below).

3.1 Radar background

Two SAR images acquired by the same satellite of a given
area at different times can be processed into interferograms:
images that represent the phase difference [0, 2π ] between
the two acquisitions at each point. In the initial interfero-
gram, the phase differences contain contributions from the
varying orbital geometries, topography, atmospheric path de-
lays and surface displacements. After removing the effects
of viewing geometry, topography and atmosphere, and with
knowledge of the radar wavelength, these phase changes can
be converted to surface displacements (e.g., Massonnet and
Feigl, 1998; Rosen et al., 2000; Wasowski and Bovenga,
2014). Because InSAR is sensitive to deformation only in the
instrument’s line of sight (LOS), three independent measure-
ments are required to obtain the true 3-D motion of a target.
In the absence of independent measurements, LOS deforma-
tions can be projected onto the downslope direction by as-
suming that the primary motion of a landslide follows gravity
(see Sect. 3.2.2 and Fig. 4).

Alongside any computed interferogram is a coherence (γ )
image that serves as the primary quality indicator for InSAR
data. It is a measure of how similar the ground properties are
at the time of the radar acquisitions (Scott et al., 2017; Zebker
and Villasenor, 1992) and is computed from the local phase
variance in the interferogram. Given the stable imaging ge-
ometries of Sentinel-1 data, coherence changes are expected
to be almost exclusively due to temporal variability. On a
vegetated, active landslide, coherence is likely controlled by
three factors:

– First, coherence is affected by the surface geometry.
The resulting phase of any pixel is the coherent sum
of all scatterers within that pixel, and when the geome-
try of those scatterers changes substantially, the result-
ing phase changes. Therefore, both changing vegetation
and erosion can lead to a loss of coherence (Masson-
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Figure 1. Big Sur coast with Highway 1 before and after the Mud Creek landslide (left and center, x and y coordinates in UTM zone
10 N; images from © Planet Team, 2017), and landslide and rain gauge locations and Sentinel-1 ascending (T35) and descending (T42)
orbit footprints (right; basemap from ESRI World Imagery; source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,
USGS, AeroGRID, IGN, and the GIS User Community).

Table 1. Overview of data products used in this study and the number of products derived at the different processing steps.

Product SLC Cloud-free Interferograms Ratio Displacement
images NDVI processing processing

images

Sentinel-1 ascending 51 – 172 132 –
Sentinel-1 descending 63 – 208 141 193
Sentinel-2 22 22 – 22 –

net and Feigl, 1998; Rosen et al., 2000; Ruescas et al.,
2009). In the non-landslide context, this is effect is visi-
ble when fields are plowed, crops are harvested or snow
falls between two image acquisitions, to name just a few
examples.

– Second, displacements that surpass the temporal and/or
spatial aliasing thresholds, even if they do not alter the
surface geometry, lead to a loss of coherence (e.g., Mas-
sonnet and Feigl, 1998; Rocca et al., 2000; Zhou et al.,
2009; Wasowski and Bovenga, 2014; Manconi et al.,
2018). This effect can be well visible on fast-moving
glaciers (e.g., Joughin et al., 1996).

– Lastly, soil moisture may be affecting the coherence, be-
cause it can alter radar phase and backscatter. This effect
has been shown in many studies, but the reasons are still
debated. Soil moisture variations may change the phase
response (and backscatter amplitude) by influencing the
penetration depth of radar waves, with drier soils allow-
ing deeper penetration. This influences the number of
scatterers controlling the phase and backscatter ampli-
tude in any given pixel. Therefore, interferograms cre-
ated from images with varying soil moisture contents
may decorrelate due to the altered number of scatter-
ers. In addition, if soils expand or contract with chang-

ing moisture, changing the distance to the radar instru-
ment, the phase response may also be altered, leading to
lower coherence (Scott et al., 2017; Rabus et al., 2010;
Nolan et al., 2003; Ulaby et al., 1996). Recent stud-
ies, however, suggest that coherence loss is better ex-
plained by the filling of pore space with water, which
increases the dielectric constant, which in turn increases
the wavenumber in the soil (Eshqi Molan and Lu, 2020;
Zwieback et al., 2015).

3.2 Radar processing

We processed the InSAR data using JPL’s InSAR Scien-
tific Computing Environment (ISCE; Rosen et al., 2012).
SAR images for our study site were available beginning in
April 2015, with images typically acquired every 12 d (a few
pairs with 6 d spacing were available). We allowed for a max-
imum time difference of 48 d between images and produced
172 interferograms from the ascending orbit and 208 from
the descending orbit (see Table 1). A gap in the ascending
data between late 2015 and early 2016 led us to increase the
permissible time difference between images in that period to
1 year (maximum resulting temporal baseline= 342 d). Be-
cause the study site is relatively small compared to the native
spatial resolution of the SAR imagery, we retained a high
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Figure 2. Coherence filtering: interferograms in the upper row exceed the coherence threshold of 0.5 and were therefore included in the
ratio analysis; the images in the lower row were excluded. We calculated the mean coherence for the area in the red polygon. The images
represent various times during the study period and were chosen purely to show why low-mean-coherence images cannot be used for the ratio
calculation. The 20 May 2017 landslide occurred inside the black outline (corresponding to dashed gray line in Fig. 8). Coherence derived
from Copernicus Sentinel-1 data.

resolution by only downsampling the images to two looks
in range and one look in azimuth. We removed the topo-
graphic phase with the USGS’s 1/3 arcsec digital elevation
model (DEM), the highest-resolution seamless DEM avail-
able for the conterminous United States (downloaded from
https://viewer.nationalmap.gov/basic/, last access: 1 Febru-
ary 2021). Due to the small size of our area of interest, we
did not perform any tropospheric or ionospheric corrections.
We unwrapped the interferograms using the Statistical-cost,
Network-flow Algorithm for Phase Unwrapping (SNAPHU;
Chen and Zebker, 2002) and applied a standard power spec-
tral filter (value 0.5) to reduce the phase noise (Goldstein and
Werner, 1998). We subsequently used the generated coher-
ence images and unwrapped interferograms for this study.

Decisions about the quality of an interferogram and the
reliability of the data for time series analyses are usually
based on radar coherence. For individual interferograms, pix-
els with a coherence of less than 0.2 are typically masked
(e.g., Rosen et al., 2000). Images with low overall coher-
ence are usually omitted from InSAR time series analyses.
This selection is often based on visual inspection and per-
formed manually (e.g., Handwerger et al., 2019). To increase
the reproducibility of our work, we experimented with a set
coherence threshold that we used to filter out poor-quality in-
terferograms. Because our area of interest is small relative to
the size of the interferogram, mean image coherence over the
entire interferogram is a poor indicator for the data quality in
the landslide area. Instead, we calculated the mean coherence
for each interferogram within just our area of interest and
only retained images with a mean coherence above a defined
threshold (0.35 for the displacement analysis and 0.5 for the

coherence ratio analysis; see details in Sect. 3.2.1 and 3.2.2).
Figure 2 illustrates why relatively aggressive filtering is nec-
essary for the ratio calculations. If the entire area of interest
is affected by low coherence, the ratio becomes meaningless.
After filtering, we computed the time series of displacement
and radar coherence ratio from all the retained images.

3.2.1 Coherence ratio

To construct a time series of coherence evolution, we filtered
out all interferograms with mean coherence of less than 0.5
in our area of interest (Fig. 2). This higher threshold was nec-
essary to detect any differences between the unstable part of
the slope and the surrounding area. In cases where the coher-
ence of the entire area is low, the ratio value becomes mean-
ingless. We retained 132 interferograms from the ascending
track and 141 interferograms from the descending track after
applying this filter criterion (Table 1).

ISCE computes coherence using a 5× 5 pixel triangular
weighted window. For signals s1 and s2, coherence is given
by

γ =
| 〈s1s

∗

2 〉 |√
〈s1s
∗

1 〉〈s2s
∗

2 〉
0≤ |γ | ≤ 1, (1)

where ∗ indicates the complex conjugate (Jung et al., 2016).
We created a time series of radar coherence ratio (CR) by

calculating the ratio between the mean coherence over the
slide (the area that ultimately failed) and the mean coher-
ence over the surrounding slope (termed reference slope; see
Fig. 3) as

https://doi.org/10.5194/nhess-21-629-2021 Nat. Hazards Earth Syst. Sci., 21, 629–642, 2021

https://viewer.nationalmap.gov/basic/


634 M. Jacquemart and K. Tiampo: Leveraging time series analysis of radar coherence and NDVI ratios

Figure 3. Interferometric coherence of the Mud Creek landslide and surrounding slope in the fall of 2016 (a, b) and spring of 2017 (c, d).
The landslide outline is marked in red, and the coherence loss in that area is clearly visible in panels (c) and (d). The reference hillslope is
outlined in black. Coherence derived from Copernicus Sentinel-1 data.

CR =
γ Slide

γ RefSlope
. (2)

Figure 3 shows the evolution of the coherence in the area
of interest for four interferograms acquired in fall 2016 and
spring 2017, as well as the polygons used to calculate the
mean coherence on the slide and the surrounding area. For
the slide polygon, we mapped the area that failed in the land-
slide. The reference hillslope was mapped as the area imme-
diately surrounding the landslide with similar slope, aspect
and vegetation cover.

3.2.2 Displacement

To complement the coherence ratio time series we also com-
puted a displacement time series. For this part of the anal-
ysis, we used only the interferograms from the descending
track that had a mean coherence of more than 0.35 in our
area of interest. This produced a fully connected time series
with 193 interferograms (Table 1). The ascending data do not
lend themselves to measuring the displacement because the
local incidence angle is around 90◦, leading to minimal mo-
tion in the satellites’ line of sight. We selected a point west
of the landslide as our stable reference region. This area is
the same geologic unit, its vegetation cover is representa-
tive of the larger area and it did not fail in the landslide. A
preliminary displacement analysis also suggested it had not
experienced any significant deformation. We computed the
displacement time series using the new small baseline sub-
set (NSBAS; Berardino et al., 2002) method implemented
in JPL’s Generic InSAR Analysis Toolbox (GIAnT; Agram
et al., 2013) and applied a coherence threshold of 0.3 to mask
individual low-coherence pixels. We then retrieved surface
displacements by projecting the measured line-of-sight de-
formation at each point onto the fall line. To do this we de-
fined the unit line-of-sight vector a to point from the satellite
to the target and the unit fall line b to point from the target
downslope along the steepest gradient. We describe both vec-
tors in a polar coordinate system, where θ describes a posi-
tive counterclockwise rotation from x (east), and φ describes

Figure 4. Vector geometries used to project measured line-of-sight
displacements (LOS) onto the fall line (b). For a and b, θ describes
the azimuth from x (east), and φ describes the angle from positive
up. The angle δ between a and b controls how much of the true
deformation is visible in the satellites LOS.

the angle from positive up (Fig. 4). The full slope parallel
deformation Dt could then be retrieved as

Dt =
LOS

cos(δ)
, (3)

where LOS is the measured line-of-sight deformation, and
δ is the angle between a and b, which is defined as

cos(δ)=
a · b

|a||b|
. (4)

3.3 Optical data

To investigate the extent to which coherence variability may
have been driven by changes in vegetation cover, we com-
puted a time series of the normalized difference vegetation
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index (NDVI) from 22 ESA Sentinel-2 optical images (Ta-
ble 1) acquired between 4 December 2015 and 27 May 2017.
NDVI is a measure of vegetation productivity that can be de-
rived from the red and near-infrared (NIR) channels in opti-
cal imagery (bands 4 and 8 in Sentinel-2):

NDVI=
NIR− red
NIR+ red

. (5)

NDVI makes use of the fact that photosynthetically ac-
tive vegetation is bright in the near-infrared spectrum (λ∼
800 nm) and dark in the red wavelengths (λ∼ 600 nm;
Tucker, 1979; Carlson and Ripley, 1997). The index values
vary between−1 and 1, where denser and/or more productive
vegetation results in more positive values, and sparse vege-
tation or bare ground results in low or negative values. Typ-
ical values for dense, healthy vegetation are around 0.6 and
values for bare ground or minimal vegetation are typically
below 0.2 (Jensen, 2009). We calculated the NDVI for all
available cloud-free images back to December 2015 and then
computed our time series in the same manner that we did for
coherence ratios:

NDVIR =
NDVISlide

NDVIRefSlope
. (6)

In addition to the time series of the NDVI ratio, we thresh-
olded all NDVI images at a value of 0.25 and investigated the
spatial changes through time.

3.4 Precipitation data

Precipitation data were obtained from the National Oceanic
and Atmospheric Administration’s (NOAA) Global Histor-
ical Climate Network Daily (GHCND) platform. GHCND
data provide daily total cumulative precipitation and mini-
mum and maximum air temperature. The Big Sur station is
located 53 km northwest of Mud Creek at 61 m a.s.l. Data
are available from https://www.ncdc.noaa.gov/cdo-web/
datasets/GHCND/stations/GHCND:USC00040790/detail
(last access: 1 February 2021) and were used without any
additional processing.

4 Results

4.1 Coherence ratio

The results of coherence ratio analysis are shown in Fig. 5,
alongside the NDVI time series and the precipitation record.
The 132 good-quality interferograms from the ascending
orbit form a mostly continuous time series, though there
was a gap in data acquisition in late 2015 and early 2016.
The descending track offers a more continuous time se-
ries between 2015 and early 2017 (longest temporal base-
line= 48 d), but few interferograms from 2017 passed the
coherence threshold. The coherence ratio hovers around 1

throughout the dry seasons in both datasets. In spring 2016,
following a short period of intense rainfalls, the coherence
ratio calculated from ascending data drops to around 0.8 and
only recovers slowly. This drop is less distinct in the descend-
ing data. Then, coincident with a large increase in cumula-
tive precipitation in early 2017, the coherence ratio drops
markedly to around 0.6 and remains at this level until the
catastrophic failure of the landslide.

4.2 NDVI

The NDVI, NDVI ratio and the changes in the spatial pat-
tern also show that processes ongoing on the landslide dif-
fered substantially from the surrounding slope. The NDVI
ratio of 0.8 prior to 2017 indicates that the Mud Creek slope
is generally less densely vegetated than the surrounding hill-
slope (Fig. 5). This observation is also supported by the raw
NDVI time series which indicates that NDVI values on the
landslide vary seasonally between around 0.2 and 0.4 while
ranging from about 0.25 to 0.5 on the surrounding hillslope
(Fig. 6). These individual time series reveal that the evolu-
tion of the vegetation cover on the slide closely paralleled
that of the surrounding slope throughout 2016, with produc-
tivity peaking in April. In early 2017, we observe a clear di-
vergence of the two time series, as vegetation productivity in
the slide area began to decline, before plummeting post-slide.
These time series demonstrate that the evolution of the NDVI
ratio is in fact controlled by a decrease in vegetation produc-
tivity or coverage on the slide and not an unusual increase in
productivity on the reference slope (Fig. 6). The gradual de-
cline of the NDVI ratio starting in early 2017 therefore sug-
gests that vegetation cover on the landslide was degrading.
When comparing this to the spatial evolution of NDVI val-
ues, it is evident that low-NDVI regions on the slide were ex-
panding throughout the spring of 2017, driving the decrease
in mean NDVI. A low-NDVI area, which can be attributed
to a steep gully, is consistently present in the center of the
slide (see panel with the typical pattern in Fig. 7). The panel
from 8 March in Fig. 7 shows that the drop in NDVI ratio
observed in spring 2016 can also be linked to a large expan-
sion of the low-NDVI area (Fig. 5). This drop also corre-
sponded to one of the largest rainfall events witnessed that
year. The low NDVI ratio in September 2016 is, on the other
hand, caused by a cloud bank obscuring the toe of the slide
and is therefore not associated with an actual change of veg-
etation. Then, throughout the spring of 2017, the low-NDVI
area expanded, driving the decreasing mean NDVI until all
vegetation was removed due to the failure of the slope (see
post-slide image from 27 May 2017 in Fig. 7).

4.3 Deformation

On the descending orbit, the line-of-sight intersects the fall
line at a favorable angle that allows us to retrieve about 50 %
of the total displacement. To retrieve a more accurate record
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Figure 5. Radar coherence ratio plotted against NDVI ratio and cumulative precipitation (at Big Sur station). The dashed line indicates the
timing of the landslide. The coherence ratio hovers around 1 for most of the time prior to the failure, before dropping starkly in January 2017.
At the same time, the NDVI ratio begins a gradual decline. A similar behavior for both indices is visible in March 2016.

Figure 6. NDVI on the Mud Creek slide body and the surrounding slope. Note that the last data point in May 2017 is from an image acquired
after the landslide.

of true deformation we projected the measured line-of-sight
displacements onto the downslope direction as described in
Eqs. (3) and (4).

Figure 8 shows the slope parallel displacement obtained
from the descending track. The total cumulative displace-
ment on the Mud Creek landslide since April 2015 (begin-
ning of Sentinel-1 measurements) ranges from ∼ 0.15 to ∼
0.55 m. The displacement time series at three different points
show the large acceleration that took place in spring 2017.
The time series from the reference region (solid line in
Fig. 8) confirms that the area around the landslide was sta-
ble throughout the entire time period. At several points in
time, the cumulative displacement reverses direction, indi-
cating that unwrapping errors hamper the retrieval of the true
displacement. This behavior is particularly obvious during
the 2017 speedup but also during the spring of 2016 (line
with stars in Fig. 8). The area showing measurable displace-
ments is somewhat larger than the area that failed on 20 May
but smaller than the area that consistently showed low coher-

ence in the months preceding the landslide (dashed lines in
Fig. 8).

5 Discussion

Five months before its final failure, in conjunction with
some of the largest rainfall events measured during Califor-
nia’s 2016/2017 winter season, the coherence ratio over the
Mud Creek landslide dropped suddenly. At the same time,
the NDVI ratio began a near-linear decline (see Fig. 5). These
data raise the question of how and if they can be useful indi-
cators of landslide activity, what challenges this new analysis
poses, and what its limitations are.

The fact that fewer interferograms from the descending
track passed the coherence threshold can likely be explained
by the differences in viewing geometries: the ascending
track is right looking, causing the radar waves to intersect
the hillslope at a near right angle. Conversely, on the de-
scending track (also right looking), the radar waves inter-
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Figure 7. NDVI on the Mud Creek landslide. The first panel shows the pattern that is typical (example from 26 March 2016). The
8 March 2016 panel corresponds to the dip in NDVI ratio visible in early 2016. The area of low NDVI grows ever larger during the spring
of 2017, before much of the vegetation is removed during the landslide (post-slide image from 27 May 2017).

Figure 8. (a) Cumulative line-of-sight displacements from April 2015 to May 2017 projected onto the fall line. The solid black line indicates
the extent of the slope that failed, the dashed black line the area showing significant displacement and the dashed gray line the area of low
coherence. (b) Time series of displacement at three different points within the slide (indicated by the », × and + signs) as well as in the
region used as stable reference (solid line).

sect the hillslope at an oblique, near-surface-parallel angle.
This oblique viewing geometry makes the radar waves more
susceptible to volume scattering on vegetation (Massonnet
and Feigl, 1998). Indeed, we see widespread areas of low
coherence during the growing season in the data from the de-
scending track. Unfortunately, the period leading up to the
landslide is most impacted by this effect, while data from

the ascending track are much less affected. Despite this dis-
crepancy, the pre-failure coherence drop is visible in the data
from both orbits. The coherence loss therefore cannot be at-
tributed to geometric differences but must represent a change
on the ground.

The power of the ratio calculation lies in its capability to
cancel out negative effects of long temporal baselines, as well
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as regional atmospheric and environmental changes. If the
slope and surrounding hillslope have similar scattering prop-
erties, then environmental and atmospheric changes that af-
fect InSAR coherence (e.g., vegetation cycles, precipitation
events, ionospheric disturbances) will not differ between a
landslide and its surrounding slopes. At Mud Creek, this sim-
ilarity is given because neither of the slopes are used for agri-
culture, nor is there any form of human development. Fur-
thermore, both slopes cover a similar altitude range, slope
and aspect; optical images suggest they have a very similar
vegetation cover (Fig. 1); and the geologic map of the area in-
dicates that the entire area is part of the Franciscan mélange
(California Geologic Survey, 2020). In this manner, as long
as coherence is maintained in some part of the area of inter-
est, interferograms with varying temporal baselines can be
compared to gain insight into governing processes.

The drop of the coherence ratio in the time series is a clear
indicator of ongoing changes by itself, but it is useful to con-
sider what factors might be driving these changes in order
to understand the value of the coherence ratio with regard to
assessing landslide activity. The coherence images (Fig. 3)
show clearly that the coherence on the slide dropped dras-
tically; therefore we attribute the effect of the dropping ra-
tio entirely to changing conditions on the slide. However, the
change in coherence could be caused by changes to soil mois-
ture, vegetation changes, erosion or active deformation – all
of which are processes that may be ongoing on an actively
deforming slope that ultimately failed due to increasing pore
water pressure (Handwerger et al., 2019). As we try to parse
out the different influences on coherence ratio, it is important
to note that more than one factor may be the leading cause at
any given time, and their relationship may vary through time.
Disentangling the causes of the coherence drop is therefore
by no means straightforward.

The NDVI ratio began its near-linear decline in the spring
of 2017, concurrent with peak precipitation and the observed
drop in the coherence ratio. Figure 6 clearly shows that the
drop in the NDVI ratio can be attributed to changes that are
occurring on the slide and not on the surrounding slope. In-
deed, during the spring of 2017, more and more pixels in
the slide area showed an NDVI of less than 0.25, indicating
that the removal or degradation of healthy vegetation was im-
pacting a larger and larger area. However, the pattern seen
on 17 May 2017, just 3 d before the failure, hardly differs
from that on 8 March 2016, suggesting that the Mud Creek
landslide had experienced this type of vegetation degrada-
tion before. Given this similarity, it is likely that the same
process led to the low NDVI in 2016 and in 2017. The fact
that in 2016 the NDVI ratio recovered within just 18 d (8 to
26 March) suggests that vegetation was not completely re-
moved. If vegetation was not, or only partly, physically re-
moved, covering of plants with mud from ongoing erosion
could explain the low NDVI. Whether the vegetation cover
was destroyed or just coated in mud, both processes point to
an increased activity of the landslide.

The deformation analysis of the Mud Creek landslide
shows a significant acceleration prior to failure. However,
the displacement time series presented here fails to pick up
the period of acceleration in 2016 reported by Handwerger
et al. (2019). This is not surprising given that unwrapping
errors, the effect of which we see throughout the time se-
ries, can make measuring the true surface velocities partic-
ularly difficult for fast-moving and accelerating landslides
(e.g., Handwerger et al., 2019; Dai et al., 2020; Manconi
et al., 2018). Unwrapping errors can be reduced by subtract-
ing the mean landslide velocity prior to the phase unwrap-
ping, which can reveal the missing phase cycles and help
recover more of the true deformation (Handwerger et al.,
2015, 2019). However, this approach requires assessing each
landslide individually and does not lend itself to automatic
processing at large scales. We did not apply this correction
and are therefore not able to recover the full deformation.
Nevertheless, our ∼ 0.6 m cumulative surface displacement
measurements are in good agreement with the ∼ 0.8 m re-
ported by Handwerger et al. (2019), and the temporal dis-
placement patterns beyond 2016 are nearly identical.

Several factors likely contributed to the changes of the co-
herence ratio, but we can draw on NDVI and displacement
data to discuss what the most likely drivers are and how they
relate to landslide activity. In 2016, the NDVI ratio showed a
notable drop following the largest rain events that year. This
was subsequently followed by a visible drop in the coherence
ratio, at least in the data from the ascending track. In 2016,
however, the NDVI ratio quickly bounced back, and the co-
herence also improved again. In 2017, the NDVI continued
to decline and the coherence ratio never rebounded. Both the
period in 2016 and the one in 2017 were associated with in-
creased displacement. The primary difference between the
two periods is that in 2016 the high-precipitation events were
limited to a short period, while a series of large magnitude
rainfall events occurred throughout the spring of 2017. This
suggests that rainfall is inherently linked to the evolution
of the NDVI ratio and the coherence ratio. The NDVI pat-
terns show that vegetation cover degraded near-linearly, but
we only have a few snapshots in time and cannot reconstruct
the immediate responses to increased precipitation. However,
both burying vegetation or removing it will alter the surface
geometry in such a way that radar coherence is likely re-
duced. The removal of vegetation decreases root cohesion
(e.g., Schmidt et al., 2001), which may have promoted addi-
tional surface erosion and also contributed to a change in the
slope’s scattering processes. The high displacement rates ob-
served in early 2017 can also have contributed to the loss of
coherence by overcoming the temporal and spatial aliasing
thresholds for displacement measurements.

There is a noteworthy discrepancy between the low-
coherence area, the area that exhibits measurable surface dis-
placements and the area that ultimately failed. The area af-
fected by low coherence is by far the largest, suggesting that,
since neither vegetation loss nor large displacements were
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observed in these peripheral areas of the low-coherence re-
gion (Fig. 8), soil dielectric property variations are the only
remaining factor that may have driven the drop in coher-
ence ratio. This change could be expected to affect the land-
slide and the stable hillslope similarly, but ultimately the area
that failed lay entirely within the low-coherence area. It is
not possible to fully disentangle the causes of the coherence
drop, but in the landslide context it seems possible that soil
moisture changes were more pronounced on this particular
part of the hillside, changing the scattering properties of the
ground and possibly driving increased surface erosion, veg-
etation degradation and active slope deformation, which in
turn also altered the scattering properties. Combined these
changes indicated increased landslide activity and announced
the impending failure.

This is, to our knowledge, the first time that coherence ra-
tios and NDVI ratios were used to assess the activity of a
landslide prior to its failure. The main advantage of the co-
herence ratio is that it does not require the computationally
expensive unwrapping step in InSAR processing and that it
reduces some of the difficulties presented by long tempo-
ral baselines. Coupling the coherence ratio analysis with the
NDVI ratio links the coherence changes to potential phys-
ical changes contributing to the instability. Had the Mud
Creek landslide been monitored using these indices, both the
2016 and 2017 drops of the coherence and NDVI ratios could
have indicated the increasing landslide activity and prompted
the deployment of more precise, possibly ground based, mea-
surements. Given that this study presented the first analysis
of this kind, many open questions remain and deserve further
investigation.

1. Additional (case) studies are needed to determine which
types of landslides may exhibit this kind of behavior and
how much deviation from the stable ratios indicates in-
stability. While coherence changes may affect any hill-
slope, regardless of ground cover, NDVI ratios are not
useful in areas that are completely devoid of vegetation
(e.g., high-alpine or arctic areas). Since NDVI has a ten-
dency to saturate over very dense vegetation (Lillesand
et al., 2015), the limits of this indicator should also be
investigated for highly vegetated slopes. Different veg-
etation indices might be more suitable depending on the
situation.

2. Future analyses should determine optimal thresholds
for coherence-based filtering thresholds. In order to se-
lect the interferograms that contained enough informa-
tion for the ratio calculation we applied a coherence
threshold of 0.5. For simplicity, we chose to apply the
same threshold for both the ascending and descending
datasets but recognize that this threshold was selected
somewhat ambiguously and based purely on visual in-
spection of the interferograms.

3. A major disadvantage of relying on surface displace-
ments for assessing landslide activity remains the view-
ing geometry. As in the case of the ascending track at
Mud Creek, unsuitable viewing geometries can signifi-
cantly impede displacement measurements. In contrast,
the coherence data from the ascending track – the track
that is not well suited to measure surface displacements
– provided the more continuous time series of coher-
ence ratio during the spring 2017 acceleration. We stress
this fact because radar data affected by layover are fre-
quently deemed unworthy of use in these applications
(e.g., Lauknes et al., 2010; Wasowski and Bovenga,
2014; Ohki et al., 2020). The ascending data over Mud
Creek are not excessively impacted by this, but the ef-
fects are nevertheless visible in the data. Yet the ascend-
ing track provides the more useful coherence ratios for
this study. Therefore, a systematic analysis of radar co-
herence may complement traditional InSAR measure-
ments in valuable ways.

4. The separation of the different factors controlling the
coherence drop remains somewhat unsatisfactory. Fu-
ture studies should be aimed at improving this under-
standing, potentially with the help of polarimetric SAR
data that can separate the different scattering mecha-
nisms (Ferro-Famil et al., 2016).

5. We focused solely on the temporal evolution of the ratio
between areal mean values, but more insight can likely
be gained if investigations are carried out at the pixel or
cluster-of-pixels level. This insight could also help iden-
tifying what is driving the changes in the mean values.

6. Lastly, in order to perform the ratio calculation, the lo-
cation and extent of the landslide need to be known
beforehand. For now, this limits the current applicabil-
ity of this indicator to previously identified landslides.
However, we believe that intelligent tracking of the be-
havior of clusters of pixels through time, relative to their
surroundings, could be useful for delineating unstable
slopes and is worthy of further investigation.

6 Conclusions

Radar coherence has long been used to assess areas of dam-
age after natural catastrophes, but the value of radar coher-
ence or NDVI as possible indicators for impending landslides
has not yet been studied. In this study we showed that time
series of radar coherence ratio and NDVI ratio may be able
to serve as a proxy for landslide activity. Comparatively easy
to compute, radar coherence ratios have the potential to be
generated at large spatial scales to monitor unstable slopes.
In particular, if a few criteria are met, the ratio calculation be-
tween the surrounding slope and the landslide eliminates in-
terference due to temporal coherence loss, atmospheric dis-
turbances or vegetation cycles. Our analysis also indicates
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that this type of analysis can fill data gaps in places where
data from only one orbit are suitable for deformation mea-
surements. Nevertheless, questions around whether it is pos-
sible to fully disentangle the different factors leading to the
pre-failure coherence loss and how common this kind of sig-
nal is for different kinds of landslides remain to be resolved.
Similarly, it is worth investigating how the presence of more
or less vegetation and use of different radar wavelengths in-
fluence the results. We also believe that it could be possible to
automatically identify drastic drops in radar coherence ratios
and NDVI ratio decreases, suggesting that this tool could be
used to identify impending failures. All things considered,
we strongly believe that the encouraging initial results pre-
sented here motivate further investigations of these parame-
ters.
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