SEMIRING MODULE POWERDOMAINS

by

Michael G. Main%*

U-CS-286-84 December, 19384

*Department of Computer Science, University of
Boulder, Colorado 80309

Colorado,

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

SEMIRING MODULE POWERDOMAINS*

Michael G. Main
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA

ABSTRACT

One approach to the semantics of nondeterministic computations is to provide a CPO
with an associative binary operation. An element z+y in such a CPO is a nondeterministic
choice between z and y. Different aspects of nondeterminism have been studied by imposing
various axioms on the binary operation (e.g., the "must” semantics requires z+y L z). An
alternative to the axiom systems is proposed here: equipping a CPO with the algebraic struc-
ture of a semiring module. By choosing different underlying semirings we can study different
aspects of nondeterminism, and the algebralc properties of the modules can supplement the
usual order-theoretic techniques. A detailed example is given for discrete probabilistic non-
determinism. The paper also shows how to add the module structure in a universal way, using

a previously known tensor construction.

KEYWORDS: nondeterminism, powerdomains, probabilistic semantics.

*This research has been supported in part by National Science Foundation grant DCR-8402341.

1. INTRODUCTION

In the order-theoretic semantics of programming languages, state spaces of computations are
ordered domains, such as w-complete partial orders (CPOs). One approach to nondeterministic
computations is to equip a CPO with an associative binary operation (written here as +). A
nondeterministic computation can have a result such as z+ y, which indicates that the compu-

tation may produce z under some conditions and produce y at other times.

Different aspects of nondeterminism are studied by imposing different axioms on the
binary operation. For example, Pl‘otkin’s original powerdomain employed a commutative, con-
tinuous and idempotent operation [10]. An alternative powerdomain, originally given by Smyth
[13] uses the additional axiom z+y L z, to capture the intuition that "better information”
corresponds to "less nondeterminism”. The opposite axiom z T z+y arises when we study
what a computation may do (z+y has more possibilities than z alone). These three power-

domains and some variations have attracted considerable recent interest [1,3,4,9,14,15].

This paper further develops the idea of CPOs for nondeterministic computations. In con-

ot

ra

172

t to the "axiom” appreach, different aspects of nondeterminism are examined by equipping
a CPO with the algebraic structure of a semiring module. The classical powerdomains are
treated as special cases, and additional aspects such as probabilistic programs and fairness can
be captured. The prospect of the néw approach is that the algebraic structure of the modules
can supplement the usual order-theoretic techniques in proofs of program properties. The
basic ideas of this approach are given in section 2. Section 3 gives a detailed treatment of
discrete probabilistic noudeterminism. In section 4, a universal (or free) construction of a

CPO semiring-module is given in terms of a previously known tensor product construction.

Throughout the paper, the term CPO refers to an w-complete partial order, which is a
partially ordered set (the order denoted L) with a least element and least upper bounds of all

countably infinite increasing chains (called w-chains). A function f:C=D between two CPOs is

strict if it preserves the least element, and monotonicif z L y in C implies f(z)C f(y)in D. A

continuous function is monotonic and preserves least upper bounds of w-chains.

2. ALGEBRAIC STRUCTURES FOR CPOS

This section introduces three algebraic structures to CPOs in order to study various aspects of
nondeterminism. The starting point is an approach which has commonly been taken in the
past decade: equipping CPOs with an associative binary operator, written +. For example,
Hennessy and Plotkin considered CPOs with an associative, commutative, continuous and
idempotent operation called the "union operation™ [4]. As described in the introduction, an

element z+ y indicates a nondeterministic choice between the states z and y.

Several variations on the union operation have been studied. One option is to drop the
idempotence requirement, so that sometimes z+ z+ z.. This is useful if we are counting the
different ways that a certain output may arise (e.g. Benson [2]). Another alternative is to
require a zero element with the property that z+0=z=0+z, for all z. Iatuitively, zerois an
impossible (or maybe just uninteresting) element of the domain, so that it may be ignored in a
result like z+0. For example, in partial correctness semantics {e.g., Hoare [3]), it is useful to

ignore non-terminating computations, so that zero can be the uninteresting state of nontermi-

nation.

2.1. CPO-MONOIDS. The above ideas motivate this definition:

Definition 1: A CPO-monoid is a CPO D together with an associative, continuous binary
operation (+) and a zero element 0€D such that for all z€D: z+0=0=0+2z. A CPO-monoid

is commutative provided that the binary operation is commutative. []

The problem of constructing a commutative CPO-monoid from a given CPO has been the
subject of several studies initiated by Plotkin [10] and Smyth [13]. The idea is to add the

monoid structure in a universal way, "so that every other solution is obtained from this one by

a unique morphism” [7, page v]. Specifically, if D is a CPO, then the free commutative
CPO-monoid generated by D is a commutative CPO-monoid F together with a strict continu-
ous function n:D~F. The function m must be universal in this sense: if M is any commutative
CPO-monoid and g:D~M is a strict continuous function, then there is a unique monoid mor-

phism ¢:F-M making this diagram commute:

g

D 1 L F
i

1

i

¥

!

i

i

!

Y

M

This sort of universal property is exactly the property possessed by Plotkin’s and Smyth's ori-
ginal powerdomain constructions. Hennessy and Plotkin have observed that this universal con-
struction {and other similar ones) can be obtained from categorical considerations [4]. More

convenient detziled constructions have been given elsewhere [10,13,11], including examples

that include non-strict functions and elimination of the zero element.

2.2. CPO-SEMIRINGS. We want to add some additional structure to CPO-monoids in
order to study aspects of nondeterminism. The motivation is the observation that sometimes
we have additional information about 2 nondeterministic program which can reduce the degree
of nondeterminism. We want to capture this information in an algebraic framework so that

the algebraic properties may supplement the usual crder-theoretic properties.

The sort of information used in this paper is related to ezecution paths. An execution
path is a sequence of "choices” made by a nondeterministic program during a specific execution
of the program, resulting in a specific output. For each possible output z, there is a set of exe-
cution paths which result in z, called the path-set of z. The idea proposed here is this: with
each possible output, we associate some property of its path-set. Here are some questions that

the path-set properties might answer:

P1.

P2.

P3.

P4.

Is the path-set empty? This is the usual property that is used when we are interested only

in determining which outputs are possible.
What is the cardinality of the path-set?
What is the probability that an execution from the path-set will occur?

Which paths in the set are fair? (Choose your favorite definition of "fair".)

With this in mind, we start with a set I of "properties” of path-sets. If we are interested only

in P1, then K can simply be {true,false}. For P2, we might take K as the natural numbers

(possibly extended to infinity).

What algebraic structures does K have? First, we require that K is itself is a CPO, with

the intuitive meaning of r L s being that the property r provides less information than the

property 3. At this point we cannot specify L any more exactly, since the meaning of "less

information” depends on what sort of semantics we are pursuing. Counsiderations from linear

alzebra suzzest that we also provide K with these two associative binary operations:
D oo By v,

Addition{+): If r and s are properties associated with the mutually exclusive path-sets
R and S, then r+ s is the property for the union RUS. If K is {true,false} (for P1), then
addition is logical or. When K is the natural numbers (for P2), then addition is the usual

integer addition. K must have an element 0, which is the identity for +.

Multiplication("): If r and s are properties associated with path-sets R and S, then r-s
is the property for the concatenation RS. If K is {true,false}, then multiplication is logi-
cal and. When K is the natural numbers, then multiplication is the usual integer multi-

plication. K must also have an identity for this operation, denoted 1.

We require that the operations meet the axioms of a CPO-semiring, defined here:

Definition 2: A CPO-semiring is a CPO K together with two distinguished elements 0 and 1

and two binary operations + and - such that:

(1) <K,+,0> is a commutative CPO-monoid.
(2) <K,,0>is a CPO-monoid.

(3) Multiplication distributes over addition, t.e., for any r,s,t € K:

re(s+t)=(rs)t(rt) and (s+¢t)r = (s:r)+(tr)
(4) 0r=r0=0,forall reK. []

In writing expressions, multiplication has priority over addition so that r+s-t is r+(s-¢t).

2.3. CPO-MODULES. Let M be a CPO-monocid intended for use as the domain for non-
deterministic computations. The availability of a CPO-semiring such as K allows us to qualify
outputs of a nondeterministic program. For example, suppose a program produces an element,
z€M with a path-set property of r€K, and it can also produce y €4/ with path-set property
s€K. We can denote this output as rz+ 3y. So, the CPO-mounoid M must contain "qualified”
elements like rz and sy and rz+ sy. This interaction between a CPO-monoid and a CPO-

semiring is formalized as follows:

Definition 3: Let K be a CPO-semiring. A CPO-(K-module)is a commutative CPO-monoid
M, together with a continuous function from KX M to M (the image of (r,z) being written rz).
The operations are subject to these axioms:
(r+s)z = (rz)+(s2)
r(z+y) = (rz)+(ry)
(r-s)z = r(sz)
Oz =0
lz = 2
K is called the semiring of scalars, and the function from X M to M is called scalar multipli-

cation; in expressions, scalar multiplication has precedence over addition so that

re+y = (rz)+y # r(z+y). Note that the symbols + and 0 are each used in two different

ways: the addition and zero for the semiring K and also the monoid operation and identity for

M. []

2.4. TWO SPECIAL CASES. Two aspects of nondeterminism have been previously stu-
died by restricting attention to certain subclasses of CPO-monoids. The must semantics
focuses on the properties which the output of a computation must possess, regardless of the
nondeterministic choices taken by the computation. Since an output z+y has fewer
guaranteed properties than z, the axiom z+y L z is imposed on the CPO-monoids. If the
monoids are also idempotent, then they are called Smyth monoids. The opposite view of non-
determinism, called the may semantics, focuses on the properties which some output of a com-
putation may possess, via some sequence of nondeterministic choices. In this case, an output
z-++y has more possibilities than z alone, so the axiom zL z+y is imposed on the
CPO-monoids. Because of the connection with partial correctness semantics studied by Hoare,
the idempotent monoids with this axiom are called Hoare monoids.

Both of these cases can be studied using CPO-modules, by making an appropriate choice
of the underlying semiring:*

Must Semantics: The axiom z+y L z holds in all modules provided that 1 Z0 in the

semiring of scalars, for then z+y = z+1y L 2+0y = z. The simplest case is the two-

element Boolean semiring, B = {0,1}, with 1+1 = 1 and 1 L 0. The resulting modules are

exactly the Smyth monoids.

May Semantics: The axiom z L z+y holds in all modules provided that 0L 1 in the
semiring of scalars. For the two-element Boolean semiring with 0L 1, the resulting

modules are exactly the Hoare monoids.

The next section gives a more detailed example of CPO-modules in use.

*These correspondences were pointed out by Gordon Plotkin.

3. DISCRETE PROBABILISTIC NONDETERMINISM

This section describes an approach to the semantics of iterative programs, with discrete proba-
bilistic choices. The approach takes its motivation from Dexter Kozen’s handling of proba-
bilistic while programs [6] (although continuous probability distributions are not covered
here). The purpose is to illustrate the use of CPO-modules to study a non-trivial aspect of

nondeterminism.

3.1. SYNTAX. The programs considered have variables z,, - - -,z _, which range over some

n’

fixed set X of values. There are four types of statements:
Assignment: 7, := f{z, - - ,z,).

The function f:Xn—-X may be any function.
Composition: S;T.

S and T may be any statements.

Conditional: if p(z,, -+ -,z) then Selse T fi.

95

and T are any statements, and p:X -[0..1] is a function to the closed interval 0..1].
The function p gives the probability that statement Sis executed, and 7T is executed when
S is not. The usual conditional statement is obtained (with probability 1) by restricting

the range of p to {0,1}.

Iteration: repeat S break_probability p(z,. - ,z,).
Sand p are as above. The statement S is iterated indefinitely. At the conclusion of each

execution of S, the function p gives the probability that the iteration will end.

3.2, The CPO-module. For each statement S, we Will give an interpretation / [S], which
will be a continuous function from a CPO-module M to itself. In fact, the function will be a

module morphism, meaning that it preserves the zero element, addition and scalar multiplica-

tion.

Since we are studying probabilities, the underlying semiring of scalars will be the non-
negative real numbers, including an infinity element ¢, and having the usual operations and
the usual order. This semiring is denoted R,. Recall that the intuitive meaning of a scalar r
is a "property” of a path-set. In this case, the property given by r €R, is the probability that

the execution will be in the given path-set*. The CPO-module M is defined as follows:

Elements of M are functions from the set of values X" to the semiring R,. We restrict
these to countably non-zero functions f:X"-of{—M e, {zeXx" | f(z)# 0} is countable. Intui-
tively, such a function is a probabilistic state, with f(z) giving the probability that the

state is z.

Operations and Order are pointwise. For example, if f,gé€M and ;EXn, then

(f+9)z) = flz)+ g(T).

— -7 . . -— ~ v
Each elemens z€.X has an associated element €_€ M with e {z)=1, and eg(y)= 0 elsewhere.
P4 z
. - . R Sy n .
Sometimes we write €M instead of e_€ /. thus considering X as a subset of M. M is freely
- N - . _— - .
generated by the subset X' 1n the usual way: if Vis any CPO-(R,-module) and a: X =N is a

function, then there is 2 unique module morphism «:3/-N which extends « to all of Af. This

property will be used to give the semantics of iterative programs.

3.3. SEMANTICS. For each program S, we give an interpretation [[S[:M~3, which is a

module morphism:

Assignment:
. . 0 n
Let 5 be the assignment z, := f(z,---,z), and let a:X -X take each tuple
. n .
(zy, - -z, - -2,) to (2, -~ flz, -~ ,2,), - ,z,). Since X CM, we can consider o

to be a function from X" to M. I[S] is the unique extension of & to a module morphism

a:M=M.

* The interval [0..1] might suffice, but including all of f{‘; makes the algebra more straight-forward.

Composition:
I[S;T)is I[T]e1[S].
Conditional:
Let p:X"=[0..1] be any function. We define true,:M-M to be the unique module mor-
phism with true (e_)= [p(z)]e_, and false,:A =M to be the unique module morphism with
falaep(e;)= [l—p(:?)]e_z_. The interpretation I [if p(z,, - - -,z,) then Selse T fi] is
[[S]etrue, + I[T]ofalse,
(where + is the pointwise addition of module morphisms from M to M).
Iteration:
Let p, true, and false, be as above. [[repeat S break_probability p(z, - -,z,)] is
the least fixed-point of the equation & = truepo[ﬂSﬂ + aofaiaspo[{[SB. Equivalently, this
is the pointwise infinite sum of >, trucpo[ﬂSﬂc(falaepo[[[Sﬂ)i.
i=0

Here are some notes about the interpretation: For any f€3, we define MASS(/f) to be

o

> f{z). The elements €_have a mass of 1, and for any program 3, the interpretation [[5]

Tex"
does not increase mass, f.e., MASS(f)=2MASS(/[S](f)). A decrease in mass may occur in a

repeat loop, since nonterminating branches have zero mass.

This gives a way to determine the probability that a program § will terwinate for an
input € X". The probability is MASS(/[S](z)). The probability of meeting more restrictive

post-conditions can be calculated similarly.

3.4. EXAMPLE. Let z be a program variable ranging over the natural numbers
N = {0,1,2,...}, and let p be a function from the natural numbers to the half-open interval
[0..1). Define LOOP(p) to be the program:

LOOP(p) = repeat z := z+1 break_probability p(z),

10

in which p(+) is the probability that the loop will terminate when z is 1. We will show that

o

LOOP(p) terminates (with probability 1) iff 3, p(¢) diverges.

§=0
We have only one program variable, z, so the module M counsists of functions from N to
R,. As usual, €:N-R, denotes the function which is 1 at + and O elsewhere. To define the
interpretation of LOOP(p), we need these functions:
q:N~(0..1] defined by ¢(¢) = 1 - p(s).

succ:M-M is the unique module morphism with succ(e,)

]
m
.
-
—
Q
~
£,

true,:M~M is the unique module morphism with truep(el.) = [p(i)]e,.

fal.sepn\/[-M is the unique module morphism with falsep(ei)

il
ey
|
]
—_
b
m
1l
—
=
=
-
>
m

Now, I[[LOOP(p)]is 2, truepc.su(:(:o(falaeposucc)’, which implies:

P=0

(I[LOOP(p) ey = 2 [p(i)q(i=1)-g(i—2)...-q(0)]¢,.
and

MASS((I[LOOP(p)])(<)) = 2 [p(i)a(i=1)q(i=2)...-q(0)].

1=0

This latter quantity is the probability that LOOP(p) halts with input €

Theorem: If the series p(0)+ p(1)+ p(2)+ - - - converges, then the probability that LOOP(p)

terminates on input €y 15 less than 1.

@

Proof: Let ¢t = 3 [p(¢)-q(+=1)-q(i=2)-....¢(0)] be the probability that LOOP(p) terminates
i=0

on input €. We define a sequence of approximations

m

t, = 2 [p()q(i=1)q(i=2)...-q(0)],

=0

11

and note (by induction on m) that 1—¢t_ = g(m)-....g(0) > 0 for any m. This also implies

t,, <l for any m.

Next, choose an n so that 2, p(i) < 1. Such an n exists, since p(0)+ p(1)+ p(2)+... con-

f=n+1

verges. Define b to be 2, p(¢) and note that ¢t <1, since:
i=n+1

@

t=1t + 2 [p()g(i—1)q(i—2)...-¢(0)]

st + { > p(x’))'(g(n)'...'q(O))
=t + b{l-t))
< 1.

The final inequality follows from ¢ <1 and b<1. []

Theorem: [f the series p(C)+ p(1)+ p(2)+ - - - diverges, then the probability that LOOP(p)

terminates on input €; 15 1.

Proof: Define ¢ and ¢ as in the last proof, and note that ¢ = lim ¢ . We want to show that

m—co

t=1, or equivalently, lim (I1—¢_) = 0. This is shown as follows:

0<1-t_
= g(m)....q(0)
g(m)-....q(0)

(g(m)+p(m))-...-(¢(0)+ p(0))

12

=
[g(m)-...q(O)] - [L + p(m)+ - - - + p(0)]

[1+p(m)+ -+ p(0)]

As m goes to infinity, this last equation goes to zero since the denominator diverges. Hence

lim(1=¢t_) = 0, as required. [].

m o

The theorems of this section guarantee that this program will terminate (with probability

1):

1
repeat z := z+1 break_probability
z+1

On the other hand, this program has a non-zero probability of non-termination:

z = 0;

repeat z := z+1 break_probability
r+1

4., THE UNIVERSAL CONSTRUCTION

This section shows how to build a CPO-(K-module) from a commutative CPO-monoid in a
universal way. The construction makes use of another universal construction: the tensor pro-
duct, similar to the tensor product used by Hennessyband Plotkin [4]. We begin with a descrip-

tion of the properties of this tensor product.

4.1. TENSOR PRODUCTS. Let B, C and D be commutative CPO-monoids, and let
BX C be the Cartesian product of B and C. A continuous function g:BX C-D is called bil-
tnear provided that for all b,6'€ B and ¢,c" € C:

g{b+b",c) = g(b,c)+g(b",c)

glb,c+c’) = g(b,c)+g(b,e)

g(0,c) = 0 = ¢(b,0)

13

This is how a nondeterministic function of two arguments should behave [4,8,12].

The purpose of the tensor product is to turn bilinear functions into linear functions.
Specifically, the tensor product of B and € is a commutative CPO-monoid B® ¢ together with
a bilinear function ®:BX C~B®C, which takes each pair (b,c)€BXC to an element
b&@c € BOC (note the infix notation). The function @ is universal in this sense: suppose D is a
commutative CPO-monoid and g:BX C~D is a continuous bilinear function. Then there is a

unique continuous monoid morphism g:B&® C'~D making this triangle commute:

BX C ® B®C
|

Q|

S P

For commutative CPO-modules B and ', the tensor product B& (¢ always exists. The con-
struction is similar to that referred to by Hennessy and Plotkin [4]. The only property needed

in this paper is the universality of &, so we omit the detailed construction of BQC.

The tensor product also provides a way of combining morphisms. Suppose f:B-B’ and
g:C'=C" are continuous monoid morphisms. They may be combined to form a bilinear function
h:BX C=-B'"QC" defined by h(b,c) = f(6)®g(c). The tensor product of f and g is the unique
morphism f&g making this diagram commute:

BX ¢ © BRC
]
]
|
1
1

Note that for any pair (b,c)€ BX C, (f/®g)(b®c) = f(b)®g(c).

14

4.2. FREE CPO-MODULES. Throughout this section, M is a commutative CPO-monoid
and K is a CPO-semiring. A free CPO-(K-module) over M is a CPO-(K-module), F, together
with a continuous monoid morphism n:A-F which is universal in this sense: Suppose A is any
other CPO-{K-module) and g:M~A is a continuous monoid morphism. Then there is a unique

continuous module morphism ¢:F~A making this diagram commute:

M

/S:
-

/

N
Q,

F#
e e

(Note that ¢ will be strict if g is.)

In order to construct F, note that the CPO-semiring A is also a commutative
CPO-monoid (by forgetting about the multiplication). So, the tensor producs K® I/ (taking &
as a CPO-monoid) is a commutative CPO-monoid. We can make K®VM inte a
CPO-(K-module) by defining scalar multiplication on K@ as follows: for each r€A, define
p K=K to be the "multiply by r" function {p {2)=r-3). From the axioms of a
CPO-semiring, ., is a continuous monoid morphism, so the function RO KSU-KQM is
also a continuous monoid morphism (where 1,, is the identity function). Now we can define

scalar multiplication on K@ M: for any r €K and z€ K@ VM, define define rz = (e, @1,)(2). It
1s straight-forward to verify that this definition meets the requirements of a CPO-{ K-module).
Theorem: Let M be a commutative CPO-module and let K be a CPO-semiring. The free

CPO-(K-module) over M is KQM with scalar multiplication defined ahove, and insertion func-

tion n:M-KQM defined by v(z) = 1Qz.

Proof: First note that m is a continuous monoid morphism, as required. (This follows from
continuity and bilinearity of @.) To show the universality of m, let A be a CPO-(K-module)

and suppose ¢:M-A is a continuous monoid morphism. Define g:A'X M~A to be the bilinear

15

function g{r,z) = rg(z), and let ¢ be the unique continuous monoid morphism making this tri-

angle commute:

KX M ® » QO M

g

2

I
|
I
)
I
'

\l',

A

We claim that ¢ is also the unique continuous module morphism making this commute:

A il ~KQM

>

P it

Note that the latter diagram does commute, since for any z € M:

d{n{z)) = §(1®z) = y{1,2) = 1g(z)=g(z). Toshow
that § is a continuous module morphism, we need only show that it preserves scalar multiplica-
tion (since we already know it’s a continuous monoid morphism). So, let r€K and define

a :A-4 to be @ (z) = rz. We must show that & of = go(p ®1). This latter equality follows

16

from the fact that this diagram commutes:

-

KM g -~ A
k /
KXAM
mr®lM mrle a,
Kx M
\J 4 g ~\
KQM ~ A

The two triangles of the diagram commute from the definition of §, and the left square com-

mutes from the definition of @. The right square commutes since for any (s,z) €K X M:
g—a(p.rx 1,)(3,2) = glr-s,z) = (rs)g(z) = r(sg(z)) = a {s9(z2)) = « ogls,z)
The commuting of these separate pieces immediately implies that a oge® = go(p @1,)e®,
which from the property of ®, impli'es that the perimeter commutes.
Finally, to show that ¢ is unique, suppose that A:K@M-A4 is another continuous module
morphism with g = hen. Then for any pair (r,z)€ K X M we have:

h(r&®z) = r[h(1®z)] = rlhem(z)] = rg(z) = r[don(z)] = ¢(r2),
which implies that & = §. []

17

5. PHILOSOPHY

The algebraic structures of section 2 have been proposed as a method for studying aspects of
nondeterminism. Section 3 gave an illustration of this technique for programs with discrete
probabilistic choices. The final section showed how the algebraic structure can be added in a

universal way.

Semiring modules are not the only -- nor even the "best™ -- algebraic structure for study-
ing nondeterminism. The importance of the above results lies more in the philosophy that
existing algebraic methods can successfully be applied to the study of formal semantics for

nondeterminism.

(11)

(12)

(13)

References

S. Abramsky. Experiments, powerdomains and fully abstract models for applica-
tive multiprogramming, in: Foundations of Computation Theory, LNCS 158,
(Springer-Verlag, 1983), 1-13.

D.B. Benson. Counting paths: nondeterminism as linear algebra, Washington
State University Techruical Report (€S-82-084, Pullman, WA 99164 (1982), to
appear in [EEE Trans. Software Engineering.

M.C.B. Hennessy. Powerdomains and nondeterministic recursive definitions, in:
International Symposium on Programming, LNCS 137, (Springer-Verlag, 1982),
178-193.

M.C.B. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel pro-
gramming language, in: Mathematical Foundations of Computer Science 73, LNCS
74, (Springer-Verlag, 1979), 108-120.

C.A.R. Hoare. An axiomatic basis for computer programming, CACY 12 (1989},
576-583.

D. Kozen. Semantics of probabilistic programs, Journal of Computer and System
Sciences 22 (1981), 328-350.

S. MacLane and G. Birkhoff. Algebra, (MacMillaz Publishing Co., 1979},

r of nondeterministic programs,
in: Foundations of Computation Theory, LNCS 138, (Springer-Verlag, 1933), 250-

301.

R. de Nicola and M.C.B. Hennessy. Testing equivalences for processes, in: Auto-
mata, Languages and Programming, 10th Colloguium, LNCS 154, (Springer-
Verlag, 1983), 548-560. '

G.D. Plotkin. A powerdomain construction, SIAM J. Computing 5 (1978), 452-
487.

G.D. Plotkin. Computer Science Postgraduate Course Notes, University of Edia-
burgh, 1930-81.

A. Poigne. Using least fixed points to characterize formal computations of non-
determinate equations, in: Formalizations of Programming Concepts {J. Diaz and
I. Ramos, Eds.), LNCS 107, (Springer-Verlag, 1981), 447-459.

M. Smyth. Powerdomains, Journal of Computer and System Sciences 16 (1978),
23-36.

18

(14) M. Smyth. Power domains and predicate transformers: a topological view, in:
Automata, Languages and Programming, 10th Colloguium, LNCS 154, (Springer-
Verlag, 1983), 662-675.

(15) G. Winskel. Synchronisation trees, in: Automats, Languages and Programming,
10th Collogurum, LNCS 154, (Springer-Verlag, 1983), 696-711.

19

