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This thesis is a collection of studies concerning an asymptotically reduced equation set derived

from the Boussinesq approximation describing rotationally constrained geophysical flow.

The first investigation is concerned with a statistical identification of coherent and long-lived

structures in rotationally constrained Rayleigh-Bénard convection. Presently, physical laboratory

limitations challenge experimentalists while spatio-temporal resolution requirements challenges nu-

mericists performing direct numerical simulations of the Boussinesq equations. These challenges

prevent an exhaustive analysis of the flow morphology in the rapid rotating limit. In this study the

flow morphologies obtained from simulations of the reduced equations are investigated from a sta-

tistical perspective. Auto- and cross-correlations are computed from temporal and spatial signals

that synthesize experimental data that may be obtained in laboratory experiments via thermistor

measurements or particle image velocimetry. The statistics used can be employed in laboratory

experiments to identify regime transitions in flow morphology, capture radial profiles of coherent

structures, and extract transport properties belonging to these structures. These results provide

a foundation for comparison and a measure for understanding the extent to which rotationally

constrained regime has been accessed by laboratory experiments and direct numerical simulations.

A related study comparing the influence of fixed temperature and fixed heat flux thermal

boundary conditions on rapidly rotating convection in the plane layer geometry is also investigated

and briefly summarized for the case of stress-free mechanical boundary conditions. It is shown that

the difference between these thermal boundary conditions on the interior geostrophically balanced

convection is asymptotically weak. Through a simple rescaling of thermal variables, the leading

order reduced system is shown to be equivalent for both thermal boundary conditions. These

results imply that any horizontal thermal variation along the boundaries that varies on the scale
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of the convection has no leading order influence on the interior convection, thus providing insight

into geophysical and astrophysical flows where stress-free mechanical boundary conditions are often

assumed.

The final study presented here contrasts the previous investigations. It presents an investiga-

tion of rapidly rotating and stably stratified turbulence where the stratification strength is varied

from weak (large Froude number) to strong (small Froude number). The investigation is set in the

context of the asymptotically reduced model which efficiently retains anisotropic inertia-gravity

waves with order-one frequencies and highlights a regime of wave-eddy interactions. Numerical

simulations of the reduced model are performed where energy is injected by a stochastic forcing

of vertical velocity. The simulations reveal two regimes: one characterized by the presence of

well-formed, persistent and thin turbulent layers of locally-weakened stratification: the other char-

acterized by the absence of layers at large Froude numbers. Both regimes are characterized by a

large-scale barotropic dipole in a sea of small-scale turbulence. When the Reynolds number is not

too large a direct cascade of barotropic kinetic energy is observed and leads to an equilibration of

total energy. We examine net energy exchanges that occur through vortex stretching and vertical

buoyancy flux and diagnose the horizontal scales active in these exchanges. We find that baroclinic

motions inject energy directly to the largest scales of the barotropic mode governed by the two-

dimensional vorticity equation, and implies that the large-scale barotropic dipole is not the end

result of an inverse cascade within the two-dimensional barotropic mode. An additional yet brief

look into the linear vortical and wave modes is considered.
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Chapter 1

Introduction

The dynamical processes characterizing atmospheric and oceanic flow span an enormous

range of scales: from the smallest scales at which kinematic viscosity dissipates fluid motion,

to intermediate scales (or mesoscale) on which weather systems exist, and finally to the largest

scales (or synoptic scales) over which slowly evolving geostrophically balanced flow endure. This

picture of geophysical flows, as just described, is not entirely distinguishable from two or three

dimensional turbulence where fluid motions also inhabit a vast range of temporal and spatial scales.

While homogeneous two- and three-dimensional flows are dominated by nonlinear effects and are

observed to vary unpredictably, the same may also be said of geophysical flows. However, it is

the additional dynamical constraints imposed by the introduction planetary rotation and density

stratification that characterize the nature of geophysical flows. The presence of such constraining

effects provides a degree of simplification in the sense that flows tend to organize into coherent and

oftentimes long-lived structures; embedding physical features not present in homogeneous three-

dimensional turbulence. Therefore, the effects of rotation and stratification may be exploited for

the purposes of gaining insight into the fundamental features of geophysical fluid dynamics.

Beyond the scope of planetary atmospheres and oceans, system rotation and density strat-

ification are ubiquitous features in our universe. In fact, these effects are suspected to play a

significant role in remote objects within our galaxy (and others) called protoplanetary accretion

disks. These are rotating sheet-like structures comprised of cold gas that typically surround young

stars. Within these disks fluid turbulence is suspected to contribute significantly to the evolution of
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accretion disks. While not well-understood, it is believed that planet formation is due to the com-

bined effects of turbulent motions and gravitational forces that result in accretion of disk material

to form planetismals. Indeed, our solar system is believed to evolved from such beginnings.

Additionally, effects of system rotation and density stratification play a role in stellar and

planetary interiors. For example, Earth’s iron-rich liquid outer core is constrained by effects of

rotation and is likely convectively driven by thermo-chemical buoyancy forces resulting in interior

dynamics responsible for Earth’s geomagnetic field and self-sustaining dynamo (see figure 1.1(a)).

Observational data of the radial component Earth’s magnetic field serves as a proxy to visual-

izing the core’s convecting flow. At present, in addition to these observations another method

by which core convection is studied occurs through the numerical simulation of the equations for

convectively-driven magnetohydrodynamic induction. The ensuing flow that develops in numerical

simulations is axially-aligned and columnar, bearing resemblance to non-magnetic rapidly rotating

Rayleigh-Bénard convection (see figure 1.1(b)). This qualitative similarity to core convection is one

inspiration for a detailed study of rapidly rotating convection. However, a major challenge resides

in attaining realistic parameters defining planetary interior core convection. For example, if one

wishes to simulate Earth’s core then the appropriate parameters are orders of magnitude above and

beyond what can be reasonably accomplished using physical experimentation and direct numerical

simulation of the governing equations. To illustrate, approximate values for the Ekman number,

Rayleigh number, and the Reynolds number for Earth’s core are ∼ 10−15, ∼ 1025, and ∼ 108,

respectively. While the values for the Ekman number, Rayleigh number, and the Reynolds number

that can be obtained in laboratory experiments are merely & 10−8, . 1013, and . 105 (presently,

direct numerical simulations struggle to attain these experimental values). This elucidates the se-

vere deficiencies in our ability to realistically study core convection by artificial methods. However,

within the class of methods used to study core convection (.e.g. laboratory experimentation and

numerical simulation) reduced asymptotic models have distinguished advantages both numerically

and theoretically. For the reduced model studied here, attainable values for the Ekman number,

Rayleigh number, and the Reynolds number are . 10−5, . 20Rac, and . 20E−1/3, where E is the
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(a) (b)

Figure 1.1: Figure (a) gives a schematic of Earth’s interior (left) and a laboratory experiment of
rotating convection (right). The outer core is shaded with regions of red and blue to illustrate the
thermal gradient responsible for driving convective motions. Figure (b) shows isosurfaces of vertical
vorticity ζ = ẑ · ∇ × u in the outer core taken from numerical simulations by Soderlund et al.
(2012) where the thermal forcing is twice the critical value required for the onset of convection
(Ra = 1.9Rac) and the rotation rate is parameterized by the nondimensional Ekman number
(E = 10−4).
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Ekman number and Rac represents a critical value at which convective motions begin. Clearly if E

is a small parameter then the system that may be represented by the reduced model more closely

resembles realistic core-convection parameters for Earth’s interior.

Examples of geophysical fluid constrained by rotation and influenced by thermal forcing are

also present in Earth’s oceans. Normally the ocean surface (depths down to 1km) is strongly strat-

ified, that is, a sharp vertical density gradient exists (called the thermocline) inhibiting vertical

mixing with and insulating the ocean abyss (see figure 1.2). However, observations of regions in

the Atlantic ocean (Labrador and Greenland Seas, in particular) have found the strongly density

stratified thermocline to lose surface buoyancy to cold atmospheric conditions in the winter, re-

sulting in an ocean surface that is prone to mixing with deep ocean waters. When ocean surface

temperatures cool the process of mixing occurs as convection and extends to great depths, plac-

ing an emphasis on locally (or small horizontal scale) non-hydrostatic effects. Characteristics of

this deep-convection include buoyancy timescales that are long compared to planetary rotation

and horizontal scales that are near a state of geostrophic balance. We may further question the

resulting dynamics of the ocean abyss (forced by convective mixing with surface waters) once the

insulting effects of surface stratification recovers and the the ocean layer restratifies. Observations

by the World Ocean Circulation Experiment show abyssal oceans to be only weakly stratified and

bring into question the dynamics of such a layer (see figure 1.2). This differs from from what is

observed in the atmosphere and ocean surface where stratification effects dominate over effects due

to planetary rotation. However, the extent to which scientific inquiry has probed abyssal ocean

dynamics does not compare to the somewhat mature understanding of the ocean surface. If deep

oceans, like waters at the ocean surface, retain dynamics with timescales long enough to be affected

by Earth’s rotation then interesting interactions occur between slow internal waves and eddies (the

topic of investigation in §3).

These physically relevant examples in which system rotation plays a significant role in con-

straining the motions of geophysical fluids is the focus of this thesis. Geophysical phenomena,

as we have seen, are also influenced by the effects of density stratification, and may come in two
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Figure 1.2: A map of the ratio of N/f conveying the relative importance of density stratification to
planetary rotation as given by Nikurashin and Vallis (2011). The map illustrates the significance
of stratification over rotation near the ocean surface and, in contrast, the dominance of system
rotation over stratification in the ocean abyss.
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forms: (i) stable stratification and (ii) unstable stratification. The former is suitable in modeling

the behavior of, for example, synoptic-scale atmospheric and oceanic motions which are on average

near a state of hydrostatic balance. The hydrostatic approximation is taken in the classical quasi-

geostrophic (QG) equations, however, we have seen that small horizontal scale ocean dynamics

are inherently non-hydrostatic, however near a state geostrophic balance, therefore with increas-

ing interest in smaller scale ocean dynamics non-hydrostatic effects must also play an increased

role. The scenario of an unstably stratified plane-layer fluid is useful in describing thermally-driven

convective phenomena, and therefore clearly non-hydrostatic. A classical and canonical framework

used to study such convective phenomena is referred to as the Rayleigh-Bénard convection prob-

lem, named in recognition of Henri Bénard for his experiments illuminating thermal instability and

the theoretical foundations provided by Lord Rayleigh (for which the nondimensional number is

named). Therefore, in addition to the dominant role of rotation the focus here is on these two very

different stratification frameworks: (i) rapidly rotating and stably stratified flows and (ii) rapidly

rotating Rayleigh-Bénard convection. In both frameworks a priority is given to non-hydrostatic

motions which, admittedly, seems at odds with a model that is simultaneously as labeled quasi-

geostrophic. This point of conflict is a non-issue and stems from the association of the classical

quasi-geostrophic equations with an assumed state of hydrostatic balance. This point is discussed

(and hopefully clarified) again in §3.2.1 where we consider the consequences of rapid rotation for

non-hydrostatic flow.

1.1 Preliminaries

Before presenting the investigations of each particular framework (stable layer or convective

layer) the general mathematical equations governing the fluid motions are presented. No attempt

is made to detail specifics regarding stratification stability. The main purpose here is to introduce

definitions for nondimensional flow parameters. In the chapters discussing investigations of either

framework the appropriate definitions (or amendments to definitions) will be given and will largely

pertain to the choice of scales characteristic to the working fluid. Additionally, the obvious choice
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regarding stratification stability is made clear for each of the investigations presented. Upon de-

scribing the Boussinesq equations a summary of the reduced equations is given and their detailed

asymptotic derivation is provided in the appendix. This will be the starting point for chapters on

rapidly rotating Rayleigh-Bénard convection and stably stratified and rapidly rotating turbulence.

1.1.1 Equations of motion

We consider an incompressible fluid subject to an imposed constant gravitational field g =

−gẑ and system rotation with constant angular velocity Ω = Ωẑ. Here, there is no attempt

to generalize the problem to one in which the axis of system rotation is not aligned with the

gravitational force, however, such a generalization would result in a modified vertical momentum,

tilted dynamics aligned with the rotation axis, and a modification to the linear dispersion relation

(Gerkema et al., 2008; Julien et al., 2006). The fluid is stratified in the vertical with an ambient

density profile ρ̂∗(z∗) = ρ∗0 + δρ̂∗(z∗) consisting of a constant reference density ρ∗0 and a vertical

density variation profile δρ̂∗(z∗) occurring over characteristic scale heightH∗ (where asterisks denote

dimensional quantities). The total buoyancy of a fluid parcel is given by

b∗ = − g

ρ∗0
(ρ∗0 + δρ̂∗(z∗)) + b∗′(x∗, t∗), (1.1)

and is decomposed as the sum of the imposed ambient buoyancy field and a fluctuating component

b∗′ associated with fluid motions. In the convective setting the buoyancy perturbations are related

to temperature perturbations through a thermal expansion coefficient, (see §2.2.1). Pressure is

decomposed in a fashion similar to buoyancy where in the absence of fluid motions, i.e. b∗′ = 0,

the layer satisfies hydrostatic balance

∂z∗δp̂
∗(z∗) = −g(ρ∗0 + δρ̂∗(z∗)). (1.2)
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The dimensional Boussinesq equations governing fluid motions for a fluid with constant kinematic

viscosity ν and buoyancy diffusivity κ are given by

D∗tu
∗ + 2Ωẑ × u∗ = −∇p∗′ + b∗′ẑ + ν∇∗2u∗, (1.3a)

D∗t b
∗′ +N2[z∗]w∗ = κ∇∗2b∗′, (1.3b)

∇∗ · u∗ = 0, (1.3c)

where D∗t ≡ ∂∗t + u∗ · ∇∗ is the total (Eulerian) derivative, and u∗ = (u∗, v∗, w∗) is the space- and

time-dependent velocity field. The ambient stratification is now characterized by the buoyancy

(Brunt-Väisälä) frequency N2[z∗] = −g∂z∗(δρ̂∗(z∗)/ρ∗0). When the layer is stably stratified then

N2[z∗] > 0, whereas when the layer is unstable N2[z∗] < 0. In the absence of external forcing the

stably stratified system lacks a natural source of instability for exciting fluid motions. In contrast,

the Rayleigh-Bénard problem, once supplied with a sufficiently adverse temperature gradient to

overcome stabilizing viscous effects, gives way to convective instability that supplies a natural

source for exciting fluid motions. As will be discussed in §3, investigations of the stable layer

problem will introduce mechanical forcing to induce fluid motions in a fashion similar to previous

studies (Whitehead and Wingate, 2014; Marino et al., 2013).

1.1.2 Non-dimensionalization

Moving forward the aim is to work with a nondimensional form of the Boussinesq equations.

The means by which a nondimensional form of the governing equations is acquired depends on

the particular problem of interest. If we wish to study either rapidly rotating convection or stably

stratified dynamics then, for example, a particular choice of length and velocity scales appropriate

to one problem are not necessarily appropriate for the study of the other. The choice of scales used

must be motivated by the physics relevant to the problem of interest. Non-dimensionalization of

the governing equations aims to simplify the mathematical description of the fluid by scaling fluid

variables by relevant reference values characteristic of the flow under investigation. Here, a generic

non-dimensionalization is given and we pose generic characteristic length, velocity, fluctuation
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buoyancy and pressure scales U∗, L∗, B∗, and P ∗ respectively. Using these scales we express the

dimensional variables as

x∗ = L∗x, u∗ = U∗u, b∗′ = B∗b, p∗′ = P ∗p, (1.4)

and the dimensionless gradient

∇∗ =
1

L∗
∇, (1.5)

where x, u, b, and p are the nondimensional variables. The nondimensional variables are nominally

of order-one we note that here the length scales are treated isotropically. Note that primes are

no longer present and it is understood that hydrostatic balance has been subtracted from the

equations of motion. Therefore, the pressure and buoyancy fields we are concerned with are the

dynamic fluctuations about the hydrostatic state. Making these substitutions into the governing

equations (1.3) we arrive at the dimensionless equations

Dtu+
1

Ro
ẑ × u = −Eu∇p+ Γbẑ +

1

Re
∇2u, (1.6a)

Dtb+
S(z)

ΓFr2
w =

1

Pe
∇2b, (1.6b)

∇ · u = 0. (1.6c)

where the buoyancy frequency is now expressed asN∗2 = N∗20 S(z) whereN∗20 = gρ∗−1
0 max|∂z∗δρ̂∗(z∗)|

is the maximal buoyancy frequency and S(z) = −∂zδρ̂(z) is the vertical and nondimensional strat-

ification profile. Additionally, characteristic time scales are assumed to scale advectively, hence

T ∗ = L∗/U∗. Here, the characteristic scales are collected into useful nondimensional parameters

which are the Rossby number Ro, Euler number Eu, buoyancy number Γ , Froude number Fr,

Péclet number Pe, and Reynolds number Re, defined as

Ro =
U∗

2ΩL∗
, Eu =

P ∗

ρ∗0U
∗2 , Γ =

B∗L∗

U∗2
, F r =

U∗

N∗0L
∗ , P e =

U∗L∗

κ
, Re =

U∗L∗

ν
. (1.7)

The Rossby number is the ratio of the planetary rotation period, T ∗Ω = 1/2Ω, to the advective

time scale, T ∗U = L∗/U∗. The Euler number measures the significance of the pressure gradient force

relative to inertial accelerations. The buoyancy number is the ratio of accelerations due to buoyancy
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to inertial accelerations. The Froude number is the ratio of the buoyancy period, T ∗N = 1/N∗0 , to

T ∗U and measures the ratio of the smallest linear wave period to the nonlinear advective time scale.

The Reynolds and Péclet numbers measure the importance of viscous and buoyancy dissipation,

respectively.

We note that the non-dimensional set (Ro,Eu, Γ, Fr,Re, Pe) is not minimal and may be

reduced by rescaling the pressure and buoyancy fields by letting p→ p/Eu and b→ b/Γ , resulting

in the set (Ro, Fr,Re, Pe). However, all parameters are retained for a careful consideration of

possible equation balances.

The content presented in §2 consist of two studies concerning rapidly rotating Rayleigh-

Bénard convection. The first of these works takes a statistical approach to identifying regimes of

flow morphology and the coherent structures that define them. This work was a collaborative effort

with Antonio Rubio and Keith Julien. A subsequent study summarized in §2.5 addresses the effects

of thermal boundary conditions on rapidly rotating Rayleigh-Bénard convection. As is discussed,

two boundary conditions are considered (they are the fixed flux and fixed temperature conditions),

and it is shown that the governing equations become identical upon a mapping thermal variables.

Therefore the statistical identification of flow regimes and their coherent structures identified in

the former study using fixed temperature thermal boundary conditions remains valid for fixed flux

boundary conditions. This work was a collaborative effort with Mike Calkins, Kevin Hale, Keith

Julien, Derek Driggs, and Philippe Marti.

The study presented in §3 considers rapidly rotating flow under an ambient stable strati-

fication profile. At a glimpse this problem may seem altogether distinct from that presented in

§2. However, such problems are in fact related. For example, and as mentioned above, regions of

the Earth’s oceans undergo temporary periods of convective dynamics during cool winter months

due to cool surface temperatures. With changing surface temperatures due to changing seasons

the ambient density profile of ocean layer undergoes a restratification and resembles the problem

of interest in §3. This study is the first to use the reduced equations in numerical simulations

of a stable fluid layer. In this preliminary investigation two regimes are identified: one display-
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ing columnar fluid structures with distinct and sustained layering and the second displaying only

columnar fluid structures. A main focus for investigations of rotating stratified flows is the manner

in which energy transferred, in particular, the manner in which energy may flow upscale and/or

downscale. These are commonly referred to as inverse and forward/direct cascades and much effort

has been placed on understanding the physical mechanisms responsible for such behavior in a fully

three-dimensional Boussinesq fluid. A particular distinction for flows studied in this chapter is the

presence of slow waves, or equivalently, the absence of a clear time scale separation between wave

dynamics and order-one eddy dynamics. For this reason current and future work with the reduced

equations is focused on the decomposition of periodic solutions into wave modes and vortical eddy

modes. This work is an ongoing collaborative effort with Ian Grooms, Keith Julien, and Jeffrey

Weiss.



Chapter 2

Statistical Classification of Flow Morphology in Rotating Rayleigh-Bénard

Convection

2.1 Introduction

The main focus for the study of rapidly rotating Rayleigh-Bénard convection is the iden-

tification of coherent structures found in numerical solutions of the NH-QG equations by means

which experimentalists may find useful. Specifically, in rapidly rotating convection four distinct

flow regimes with uniquely identifying characteristics have been found using the NH-QG equations

by varying the reduced Rayleigh number RaE4/3 and Prandtl number σ (the origin of these non-

dimensional parameters will be discussed below) and outlined by Julien et al. (2012a). In each

regime the flow organizes, with varying intensity, into coherent vertical structures. The identified

structures, in order of increasing RaE4/3, consist of the cellular regime, the convective Taylor col-

umn (CTC) regime, the plume regime, and a regime characterized by geostrophic turbulence. Phys-

ical limitations in the laboratory make exhaustive experimentation of rapidly rotating convection

difficult while spatio-temporal resolution challenges direct numerical simulations of the incompress-

ible Navier-Stokes equations. These difficulties inhibit a thorough analysis of the flow morphology

in the rapid rotating limit. In this chapter the flow morphologies obtained from simulations of the

reduced equations are investigated from a statistical perspective. Auto- and cross-correlations of

temporal and spatial signals are utilized to synthesize experimental data obtained from thermistor

measurements or particle image velocimetry (PIV). Such statistics can be employed in laboratory

experiments to identify transitions in flow morphology, capture the radial profiles of coherent struc-
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tures, and extract transport properties of these structures. These results provide a foundation for

comparison and a measure for understanding the extent to which rotationally constrained regime

has been accessed by laboratory experiments and direct numerical simulations.

Rotating Rayleigh-Bénard convection is a canonical framework used to study many fluid

phenomena characterized by rotation and thermal forcing. Physical systems whose dynamics are

strongly influenced by these forces include the interiors of giant planets and rapidly rotating stars,

the Earth’s outer liquid core, and open ocean deep convection (Hubbard et al., 2002; Proctor,

1994; Marshall and Schott, 1999). In many situations the dominant influence of rotation results in

geostrophy and the Proudman-Taylor constraint (Proudman, 1916; Taylor, 1923), restricting fluid

motions to be invariant in the direction of the rotation axis (see §3.2.1). Due in large part to the

Proudman-Taylor effect, coherent columnar structures are common to these flows and have been

observed and studied experimentally (Boubnov and Golitsyn, 1986; Vorobieff and Ecke, 2002; King

and Aurnou, 2012) and simulated numerically (Sprague et al., 2006; Julien et al., 2012a).

The classical Rayleigh-Bénard convection problem describes thermal convection in a fluid

layer confined between two rigid, infinitely conductive, horizontal plates separated by a vertical

distance H∗. The two boundaries maintain a fixed destabilizing temperature difference ∆T > 0

where the lower boundary temperature is higher than that of the upper boundary. In rotating

Rayleigh-Bénard convection the fluid layer rotates at a fixed rate about an axis parallel to gravity.

The lower and upper nondimensional boundary temperatures are taken to be T = 1 and T = 0,

respectively, resulting in the pure conduction state, T = 1− z, when the destabilizing temperature

drop is unable to overcome viscous effects in the fluid layer. The nondimensional parameters

defining the state of the system are the Rayleigh number Ra, the Ekman number E, and the

Prandtl number σ:

Ra =
gα∆TH∗3

νκ
, E =

ν

2ΩH∗2
, σ =

ν

κ
. (2.1)

Ra measures the intensity of thermal forcing, E measures the importance of the rotation rate

relative to viscous effects, and σ is the ratio of the thermal time scale L∗2/κ to the viscous time
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scale L∗2/ν (why these time scales are relevant is explained in §2.2.1). Here g is gravity, α is the

thermal expansion coefficient, ∆T is the temperature drop across the fluid layer, ν is kinematic

viscosity, κ is thermal diffusivity, and Ω is the rotation rate of the system. An additional parameter

of importance is the convective Rossby number Ro = E
√
Ra/σ which is the ratio of the rotation

period to the buoyancy free-fall time and measures the relative significance of rotation compared

to buoyancy.

The flows of interest here are those that develop from the onset of stationary convection

which occurs for Ra > Rac(E) and σ > σ∗, where Rac(E) ≈ 8.6956E−4/3 is the Ekman dependent

critical Rayleigh number and σ∗ ≈ 0.6766 is the critical value above which stationary convection

is preferred (Chandrasekhar, 1961; Julien and Knobloch, 1999). A major challenge in studying

rotationally constrained convection is avoiding the conflicting constraints imposed by the extreme

values of the nondimensional parameters, i.e., maintaining E,Ro � 1 while Ra � 1. These

parameter extremities are associated with thin Ekman boundary layers occurring on O(E1/2H∗)

vertical scales and fast inertial waves with O(E−1ν/H∗2) frequencies occurring on O(E1/3H∗)

length scales. Numerically, this imposes prohibitive spatiotemporal resolution requirements on

simulations. The range of Ekman and Rayleigh numbers accessible to recent numerical simulations

of Navier-Stokes equations are 103 . Ra . 109 and 10−7 ≤ E ≤ ∞, respectively (King et al.,

2012). For the largest rotation rates accessible to these numerical simulations, the range of reduced

Rayleigh numbers becomes RaE4/3 . 10. In the laboratory, one typically selects sufficiently large

rotation rates in meeting the requirement E � 1 while limiting the effects of centrifugal acceleration.

The latter is measured by the rotational Froude number FrΩ = Ω2L∗/g � 1 which imposes an upper

bound on Ω for a given lateral length scale L∗ characterizing the laboratory system (typically a

cylindrical tank). Additionally, the range of permissible Ra is constrained by the convective Rossby

numbers Roc = E1/3
√

8.6956/σ ≤ Ro < 1. By definition, given that Ro ∝ ∆T 1/2H∗3/2 < 1, a

particular challenge then resides in the disparate temperature range required across the layer at

E � 1, i.e., ∆TRo=Roc/∆TRo=1 ∝ Ro2
c . Specifically, ∆TRo=Roc is typically below the attainable

resolution of experiments. For instance, for current experimental values of E ∼ 10−7, ∆TRo=1 ∼
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10◦C, and σ = 7, one finds ∆TRo=Roc ∼ 10−5◦C. Therefore the laminar convective state just above

critical onset is prohibitively hard to acquire as evident in King and Aurnou (2012) and Ecke and

Niemela (2013).

Presently, for the reasons stated above, laboratory experiments and direct numerical sim-

ulations are unable to completely explore, qualitatively or quantitatively, the flow morphology of

rotationally constrained fluid motions from the onset of convection to geostrophic turbulence. Given

the resurgent interest and that a full exploration of this regime still remains elusive, an investi-

gation into its dynamics by alternative means is pertinent. Moreover, it is important to identify

quantifiable statistical measures that are of utility to experimentalists and simulators alike. The

aim here is to provide such measures that aid in understanding the rotationally constrained limit.

Since the approach taken to solve these issues utilizes the NH-QG equations the flow which auto-

matically satisfies the requirement that Ro, E � 1 while Ra is increased (Sprague et al., 2006).

The resulting equations accent the prominent influence of rotation, i.e., geostrophy, and describe

the consequential dynamics of convective motion. A brief overview of the flow morphology from

the onset of convection, through the cellular, columnar, plume, and geostrophic turbulence regimes

is now outlined from the investigations of Julien et al. (2012a) and Sprague et al. (2006). The

flow morphology evolves from a steady conduction state with no fluid motion just before the onset

of convection to unsteady cellular structures having strong vertical coherence. With increasing

Ra, thermal boundary layers develop and the flow organizes into a more dilute population of con-

vective Taylor columns (CTCs) (defined by the existence of oppositely signed shields surrounding

convective cores). At higher Ra, CTCs eventually break-up into short-lived plumes that display

intermittent vertical coherence across the fluid layer. An ultimate state of geostrophic turbulence is

finally obtained where a turbulent interior separates two decoupled plume-emitting thermal bound-

ary layers.

The vertical coherence of the flow structure from the cellular regime to geostrophic turbulence

has been a topic of interest among theorists and experimentalists alike. For instance, determining

how the heat transport (as measured by the non-dimensional Nusselt Number Nu) and its scaling
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laws depend upon the flow regime. Moreover, the degradation of heat transport efficiency has been

seen to coincide with diminishing vertical coherence (Julien et al., 2012b), making the study of

coherent structures pertinent to understanding such global processes. Therefore, this study tracks

regime transitions of the flow from the perspective of vertical coherence across the fluid layer. This is

quantified by collecting horizontal slices of scalar field variables (e.g., temperature, although vertical

velocity or vertical vorticity can be used) at different vertical locations in time and computing

spatial and temporal cross-correlations between these slices. By pursuing this statistical avenue

of analysis the following are recovered: (i) temporal scales, horizontal length scales, and velocity

scales of the coherent vertical structures, (ii) the radial structure and (iii) transport properties

of the flow. The novelty of this numerical study is that this statistical analysis can be readily

performed experimentally. For instance, data acquired through thermistor measurements (King

and Aurnou, 2012) or PIV measurements on a laser sheet(Bordes et al., 2012) give the necessary

data needed for an experimental duplication of this numerical study. Given the aforementioned

experimental challenges, the approach taken here using the NH-QG equations can provide a more

precise means of discerning flow regimes in the rotationally constrained limit.

In the following, connection to the NH-QG equations for the purposes of studying rapidly ro-

tating Rayleigh-Bénard convection is given by introducing physically relevant characteristic scales

yielding the appropriate equations for use in numerical simulations of rotating convection. An

explanation of the statistical techniques used to study the flow morphology is then provided. In

§2.3, a presentation of the results of the statistical analysis is given. In §2.4.1, a comparisons

between azimuthally averaged radial profiles (similar to those studied by Grooms et al. (2010))

and ensemble averaged spatial auto-correlations are considered. Since strong agreement is found

between radial profiles and spatial auto-correlations, spatial auto-correlation functions are used in

computing net circulation and mass flux in §2.4.2. Using temporal and spatial auto-correlations

characteristic scales describing the flow in §2.4.3 are presented. Finally, in §2.4.4, estimates describ-

ing how experimental ensemble averaged correlation functions with increasing samples converge to

the numerical ensemble-averaged correlation functions are discussed.
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2.2 Governing equations and methodology

2.2.1 Governing equations and characteristic scales

Before giving the reduced equations used for studying rotating convection it is important

to make a physically sensible choice for the characteristic scales used. The onset of convection

occurs when the destabilizing temperature drop across the layer is severe enough to overcome

viscous effects that initially act to inhibit fluid motions. For this reason, the dissipation term in

the vorticity equation

Dtω =

(
ω +

1

Ro
ẑ

)
· ∇u+∇× bẑ +

1

Re
∇2ω. (2.2)

must be involved in the dominant balance with vortex stretching by planetary rotation. When

Ro� 1, Taylor-Proudman constraints restrict vertical variations on small scales, therefore vertical

modulations due to convective motions must occur on large scales, i.e., H∗ � L∗ in such a way that

brings a leading-order balance between dissipation and vortex stretching due to planetary rotation

in equation (3.15). Requiring such a balance demands that

L∗

RoH∗
=

1

Re
=⇒ L∗ = E1/3H∗, (2.3)

informing us of how horizontal scales L∗ relate to the large vertical scale H∗. How this leads to a

sensible choice for the velocity scale U∗ may be understood as follows. With the above relation (2.3)

for H∗ and L∗ and the understanding that viscous effects are important, the balance in the vorticity

equation (3.15) between the dissipation and stretching by system rotation implies

E1/3

Ro
=

1

Re
=⇒ U∗ ≡ ν

L∗
=

(fL∗)L∗

H∗
. (2.4)

The last relation here relates the viscous velocity scale ν/L∗ to the rescaled rotational velocity fL∗.

The obvious choice for a velocity scale is U∗ ≡ ν/L∗ since f makes no appearance in the NH-QG

equations (valid in for Ro � 1). Moreover, this gives us the relation L∗ = RoH∗ by substituting

fL∗2/H∗ into the expression for Ro, therefore in this context of rapidly rotating Rayleigh-Bénard

convection Ro = E1/3. We may now deduce the relationship between the Froude number as defined
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in equation (1.7) with the Rayleigh number defined in (2.1). Specifically, if we take U∗ = ν/L∗,

L∗ = E1/3H∗, and relate the scale for density fluctuations to temperature fluctuations by the use

of the thermal expansion coefficient α (dimensionless relative change in density per unit change in

temperature) by

α∆T

H∗
=

max|∂z∗δρ̂∗(z∗)|
ρ∗0

, (2.5)

then from the definition of Fr in (1.7) it follows that

Fr−2 =
N∗20 L∗4

ν2
=
gmax|∂z∗δρ̂∗(z∗)|L∗4

ρ∗0ν
2

=
RaE4/3

σ
, (2.6)

valid when the nondimensional stratification profile S(Z) = −∂Z ρ̂(Z) < 0, necessary for the layer

to be in an unstable configuration and for the validity of relation (2.3). Upon rescaling buoyancy

variables ((b, b)→ RaE4/3(b, b)/σ) such that the mean buoyancy profile in a pure conduction state

is linear we arrive at the reduced equations given below.

In the limits E � 1 and Ro � 1, the NH-QG equation set that results from the rigorous

multiple scales asymptotic reduction of the incompressible Navier-Stokes equations (given in ap-

pendix B) for a convecting plane-layer fluid (Julien et al., 1998; Sprague et al., 2006) take the

form

∂tζ + J [ψ, ζ]− ∂Zw = ∇2
⊥ζ, (2.7a)

∂tw + J [ψ,w] + ∂Zψ =
RaE4/3

σ
θ +∇2

⊥w, (2.7b)

∂tθ + J [ψ, θ] + w∂ZT =
1

σ
∇2
⊥θ, (2.7c)

∂τT + ∂Z(wθ) =
1

σ
∂2
ZT . (2.7d)

With viscous scalings used for non-dimensionalization with L∗2/ν and ν/L∗ giving the time and ve-

locity scales, respectively, these reduced equations capture balanced geostrophic convective motions

and slow inertial waves while filtering the computationally prohibitive fast inertial waves (Julien

et al., 2012a) and the thin Ekman layers at the upper and lower boundaries (Niiler and Bisshopp,

1965; Julien et al., 2012a). Motion is driven by a destabilizing temperature drop as measured by the

reduced Rayleigh number R̃a = E4/3Ra. Just as before, ψ is the first-order pressure, or equivalently,
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the geostrophic streamfunction. The streamfunction ψ is related to the vertical vorticity through

the relation ζ = ∇2
⊥ψ. The Jacobian remains as before J [ψ, f ] = ∂xψ∂yf−∂yψ∂xf = u⊥ ·∇⊥f , giv-

ing the horizontal advection of the fluid variable f . The temperature field is decomposed into mean

and fluctuating components, T (x, y, Z, t, τ) = T (Z, τ) +Ro θ(x, y, Z, t, τ), where ε ≡ Ro = E1/3 is

the small asymptotic expansion parameter used in the derivation given in appendix B. Impenetrable

fixed-temperature boundary conditions are used, specifically

w = 0, T = 1, ⇒ ∂Zψ = 0, θ = 0, at Z = 0, (2.8)

w = 0, T = 0, ⇒ ∂Zψ = 0, θ = 0, at Z = 1. (2.9)

Note that a stress-free surface is such that ∂Zζ = 0, however, in this framework ∂Zζ = ∇2
⊥∂Zψ =

0. Therefore the above boundary conditions imply stress-free horizontal velocity at the top and

bottom boundaries. The aforementioned passive Ekman layers corresponding to no-slip boundary

conditions can be recovered at a higher asymptotic order.

It is reassuring to note that the above length, velocity, and time scales (L∗ = E1/3H∗,

νE−1/3/H, and E2/3H2/ν, respectively) of the asymptotic model are identical to those observed

in linear theory and laboratory experiments for both plane-parallel (Chandrasekhar, 1961; Kun-

nen, 2008; Sakai, 1997) and spherical geometries (Jones et al., 2000; Olson, 2011; Garcia et al.,

2008). However, the later has additional complexities due to spherical boundaries. Furthermore,

despite many numerical and experimental investigations on the topic of rotating Rayleigh-Bénard

convection there remains a insufficiency of quantitative data in the rotationally constrained regime

detailing nonlinear flow morphology and any associated scaling laws.

2.2.2 Numerical solver

The reduced equations are simulated in a horizontally periodic domain where all fields are

represented by a Fourier expansion in the horizontal directions and a Chebyshev expansion in the

vertical. The use of Chebyshev discretization in the vertical is in contrast to the use of Fourier

expansions in all three coordinate directions for the simulation of triply-periodic rotating and
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stably stratified flows (for details on this, see in §3). The physical reason for this difference is

due to the presence of thin thermal boundary layers that form in regions immediately adjacent to

top and bottom boudaries in the convection setting. Near these boundaries the flow must quickly

change and adjust to satisfy the stress-free conditions (2.9). The spectral expansions are dealiased

according to the standard 2/3’s rule and time discretization is handled via a mixed implicit/explicit

third-order Runge-Kutta scheme (Spalart et al., 1991b). Buoyancy, diffusion, and rotation terms

are treated implicitly while the advection terms and w∂ZT are treated explicitly. For numerical

simulations performed for this investigation of thermal convection the size of the domain is set to

20LcE
1/3H∗ × 20LcE

1/3H∗ ×H∗ where Lc = 2π/kc ≈ 4.8154 is the nondimensional critical length

scale for the onset of convection in the E, Ro � 1 limit (Chandrasekhar, 1961). The numerical

resolution used is Ra-dependent and is identical to the resolutions used in previous studies utilizing

the NH-QG equations (Julien et al., 2012a); the maximum resolution used at RaE4/3 = 140 and

σ = 1 is Nx × Ny × Nz = 512 × 512 × 385. Finally, acknowledging that a horizontal domain

containing a large number of fluctuations suffices for time and horizontal averaging to become

statistically equivalent, we set ∂τT ≡ 0 and replace averaging over x, y and t by spatial averaging

over x and y only, as earlier studies have shown their equivalence in a sufficiently large domain as

t→∞ (Julien et al., 1998).

2.2.3 Computation of auto- and cross-correlations

To identify coherent structures and discern morphological transitions in rotating convective

flow the aim here is to quantify the vertical coherence in the fluid. This is achieved by computing

cross-correlations between a pair of signals obtained at two different vertical locations: temporal

signals are extracted at the same horizontal spatial locations whilst spatial signals are extracted

at a fixed time and fixed y (or fixed x). The temporal cross-correlation between two signals of

finite-length T is defined (Proakis and Manolakis, 2007) as

(f ? g) (l) =

∫ T
0 f(t)g(t+ l)dt√∫ T

0 |f(t)|2dt
∫ T

0 |g(t)|2dt
, (2.10)
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where l is the lag or temporal shift between the signals and the overbar denotes complex-conjugation.

The Fourier convolution theorem is utilized to compute the cross-correlation

(f ? g)(l) =
F−1

(
F(f)F(g)

)
(l)√∑

|F(f)|2
∑
|F(g)|2

, (2.11)

where F denotes the Fourier transform. The cross-correlations computed are normalized such that

auto-correlations satisfy (f ? f) (0) = 1 and are bounded in the usual way, i.e., −1 ≤ (f ? g)(l) ≤ 1.

This normalization treats small and large amplitude signals similarly and extracts the collinearity

of the signals for varies values of the lag variable l. By definition the auto-correlation of a real-

valued finite-duration function is even and thus only positive lag values need be considered. An

identical definition for the spatial cross-correlation is used where t is replaced by a variable in a

spatial direction.

Flows studied here are statistically isotropic in horizontal directions and statistically station-

ary in time. Temporal auto- and cross-correlations are computed for signals sampled at Nx × Ny

independent horizontal numerical grid points from which an ensemble average (or mean) is calcu-

lated. The result of ensemble averaging is a one-dimensional function of the lag variable l with

reduced noise to signal errors. Similarly, spatial auto- and cross-correlations are computed for

signals sampled at Ny (or Nx) independent locations for roughly 5% to 10% of the Nt time-steps

performed (i.e. Ny × Nt × 0.05 or Nx × Nt × 0.05 samples) from which an ensemble average is

calculated.

Since finite duration signals are used, cross-correlations in equation (2.10) are biased due to

diminishing signal overlap (0 < t < T − l) with increasing lag l. This diminishing overlap implies

that the integral in equation (2.10) becomes dominated by the trivial product f(t)g(t+ l) = 0 for

values of t 6∈ [0, T − l] and for large values of l, thus biasing the integral towards 0. Corrected

(unbiased) cross-correlations take the form N
N−|l| (f ? g) (l), where N is the length of the signal.

The relative error between the biased and unbiased signal is |l|/N . We find that the information

pertaining to vertical coherence are contained in lag values l � N , such that unbiased corrections

are negligible. For spatial half-width cross-correlation values discussed below the average relative
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error ratio is |l|/N ∈ [0.0063, 0.0072]. For temporal half-width cross-correlation values the average

relative error ratio is |l|/N ∈ [0.0020, 0.0486], the largest of these ratios occurs at the lowest reduced

Rayleigh number RaE4/3 = 9.

2.3 Results

In the following, we describe the spatial and temporal structure of the four flow regimes

found in rapidly rotating Rayleigh-Bénard convection via the correlation measures outlined above.

The flow regimes have been identified in (RaE4/3, σ) parameter space and laid out in a previous

investigation (Julien et al., 2012a). Here we restrict our investigations to RacE
4/3 < RaE4/3 ≤ 80

for fixed Prandtl number, σ = 7, (an experimentally relevant value similar to that of water (King

and Aurnou, 2012)) focusing on flow transitions from near stationary convective onset through

convective Taylor columns and plumes. The case for geostrophic turbulence at σ = 7 is numerically

expensive, so this case is considered separately for σ = 1 and RaE4/3 = 140. Two sets of vertically

separated locations are used in constructing the cross-correlation functions of thermal perturba-

tions, i.e., of simulated thermistor data that emulates experimental thermal readings. The first is a

set of interior points at fixed (x, y) and with vertical coordinates Z = 0.2, 0.4, 0.6, 0.8 (labeled with

subscripts 0.2, 0.4, 0.6, 0.8). This setup is easily implemented in a laboratory and results are robust

provided that thermistor locations are uniformly distributed over the layer depth. The second set

of Z-locations used are associated with the thermal boundary layers. Specifically, these locations

are where conduction and convection contribute equally to heat transport (these are labeled with

subscripts + and -, respectively) (Julien et al., 2012a). The thermal boundary layer (TBL) loca-

tions, found at max(|∇⊥θ|2) and well approximated by max(θ2), vary with RaE4/3 and σ and are

difficult to attain a priori in a laboratory setting. However, TBL locations are only considered

here to investigate the extent of vertical coherence across the fluid layer (King and Aurnou, 2012).

We find that results obtained at interior and TBL locations yield similar measures of vertical co-

herence and, hence, similar measures for the classification of flow morphology in rapidly rotating

Rayleigh-Bénard convection.
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The configuration of thermistor locations described here and the calculation of ensemble

averaged correlations described in section 2.2.3 amount to very modest memory requirements of

roughly 400 GB. However, this amount of memory consists of superfluous data not needed to

provide the essential results.

2.3.1 Spatial structure of thermal fluctuations

Figure 2.1 shows 3D volume renders of thermal fluctuations θ at fixed times for parameters

in the four different flow regimes along with planar slices for each case at Z = 0.2 and Z = 0.8.

The cellular solution at RaE4/3 = 10, σ = 7 shown in figure 2.1(a) closely resembles single-mode

(or single-wavenumber) solutions (Julien and Knobloch, 1999; Sprague et al., 2006) in that they

share the same vertical structure for (θ, w, ζ) along with a vertical coherence that spans the layer

depth. The associated auto- and cross-correlations are shown in figure 2.2. Near onset, linear

stability sets the length scales of the flow and accordingly the first maximum in the correlation

signals occur at the critical length scale (dx/Lc ≈ 1), indicating the ability of ensemble averaged

spatial cross-correlations to capture horizontal structure of the flow. In fact, and as we shall see in

§2.4.1, these spatial correlation functions have the ability to recover radial structure. The vertical

coherence can be seen directly by inspecting the two planes of data at Z = 0.2 and Z = 0.8

in figure 2.1(a) and is reflected in the spatial cross-correlation (θ0.8 ? θ0.2)(dx/Lc) in figure 2.2(b)

giving the spatial auto- and cross-correlation across the fluid layer, comparing fluid at height Z =

0.2 to fluid at height Z = 0.8. The correlation coefficients for these cross-correlations at zero

horizontal displacement dx/Lc = 0 is 0.9874. The trend of strong vertical coherence continues for

larger horizontal displacements in both the auto-correlation (figure 2.2(a)) and the cross-correlation

(figure 2.2(b)). Notably, the correlations have slowly decaying oscillatory tails indicative of a

spatially modulated cellular pattern. Very similar correlations are found in the vertical vorticity

and the vertical velocity fields. Additionally, the auto-correlation functions in figure 2.2(a) give a

measure of the characteristic width of the central core of these vertically coherent structures, is

illustrated in figure 2.4 and will be discussed further below.
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Figure 2.2: Ensemble averaged spatial auto-correlations (a) at z = 0.8 and cross-correlations (b)
between signals at Z = 0.2 and Z = 0.8 for θ and for the parameters shown in figure 2.1. By
definition auto-correlations are even functions and thus only positive displacement are shown for
(a). Similar correlation functions are found for vertical velocity and vorticity fields.
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The regime of shielded convective Taylor columns (CTC’s) is illustrated in the volume ren-

dering figure 2.1(b) for RaE4/3 = 50, σ = 7. In addition to CTCs the rendering also illustrates the

presence of some weaker thermal plumes near the top and bottom boundaries. Again, the ensemble

averaged spatial auto-correlation (figure 2.2(a)) captures the radial structure of the flow, i.e., the

strong thermal cores and oppositely signed shield seen in figure 2.1(b) are associated with a central

peak at zero displacement and a minimum occurring within the displacement interval dx/Lc ∈ [0, 1],

respectively, in figure 2.2(a). The spatial correlations also identify an additional shield (i.e., a local

maximum) occurring within the displacement interval dx/Lc ∈ [1, 1.5]. This indicates the presence

of an additional secondary shield whose signal is of the same magnitude as the ambient fluctuations

outside the region of coherence identified as CTCs, as such, these secondary shields are less coherent

and not discernible in the volume rendering but captured in the ensemble averaged correlations.

The two thermal planes in figure 2.1(b) show a strong vertical (top-to-bottom) visual similarity for

the CTC cores and a weaker similarity for the shields. Correspondingly, the cross-correlation in

figure 2.2(b) shows a strong correlation (≈ 0.86) at zero displacement and a weaker anti-correlation

(≈ −0.2) for the minimum within the displacement interval dx/Lc ∈ [0, 1]. The overall similarity

between the auto- and cross-correlation shows evidence of rigid vertically coherent structures.

The plume state, illustrated for RaE4/3 = 80 and σ = 7 in figure 2.1(c), has thermal structure

that stretches throughout the layer but lacks the rigid vertical structure of the cellular and CTC

solutions. The characteristic width of the central core remains almost unchanged as is evident

from auto-correlations in figure 2.2(a) while the oppositely signed shielding (i.e., the minimum

correlation value) is much less pronounced and the secondary shielding (i.e., the local maximum

correlation value) of the CTC’s has now disappeared. This is a reflection that the shields that were

quite strong for the CTC case are now much weaker. A look at the cross-correlation in figure 2.2(b)

shows a decreased vertical coherence at all displacements with increased E4/3Ra.

Finally, the volume render of the geostrophic turbulence state at RaE4/3 = 140 and σ = 1

shows no top-to-bottom organization on the Lc scale, however, the planes in figure 2.1(d) of θ at

z = 0.2 and 0.8 show evidence of smaller scale plumes and of a large-scale circulation (Julien et al.,
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2012a; Rubio et al., 2014) (LSC) in the form of a dipole vortex that is a characteristic of geostrophic

turbulence. The corresponding spatial auto-correlation in figure 2.2(a) shows a sharper drop off

at displacements from dx/Lc = 0 to 0.4 but a continuing positive correlation throughout (i.e., no

extrema other than the maximum at zero displacement).

We find that results for spatial-correlations of the vertical vorticity and velocity are qualita-

tively similar in all four regimes to those of the thermal perturbation with the exception of a sign

change for vertical vorticity correlation functions (easily understood from equation (2.7) and from

the tendency of a fluid parcel with positive temperature to spin-up while accelerating away from

the bottom plate and spin-down whilst decelerating towards the upper plate).

In figure 2.3 we illustrate spatial auto- and cross-correlations as a continuous function of

RaE4/3. The transition from cells to CTC is evident at RaE4/3 ≈ 22 and the transition from

CTCs to the plume regime is clearly identified at RaE4/3 ≈ 55. Up to this point we have only

discussed results from the interior (Z = 0.2, 0.8) auto- and cross-correlations and have so far avoided

discussing results associated with the TBL that are extremely challenging to obtain experimentally.

However, both approaches yield strikingly similar results although the TBL correlations give a

slightly clearer picture of the regime transitions from cells to CTCs, and from CTCs to plumes.

The transition between these regimes can be seen as a sharp transition in the correlation gradient

in the RaE4/3-direction of both panels in figure 2.3 which show color scaled maps of the auto-

correlation data (left panel) and cross-correlation data (right panel). Additionally, indications of

half-widths for the primary peak, zeros, and extrema are also given. While a number of these

measures can be used to identify regime transitions we focus on that with the highest signal to

noise ratio: the maximum of the spatial cross-correlation at zero displacement (note the strong

gradient in the RaE4/3-direction at zero displacement in the color scale in the right panel).

From figure 2.3(a) and 2.3(b) we see that auto-correlations and cross-correlations in the

interior share qualitatively similar features. Similar results are found for auto- and cross-correlations

for data taken from TBL locations. At onset the linear stability problem sets the length scales of the

flow and accordingly the first zero (denoted by the first dashed line where (θ0.8 ? θ0.2)(dx/Lc) = 0))
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Figure 2.3: (a) Spatial auto- and (b) cross-correlations displayed over a continuous range for
RaE4/3 ∈ [10, 80] which illuminates the radial flow structure. Correlation function half-widths
(circles), extrema (solid lines), and zeros (dashed lines) are indicated. The transition from the
cellular regime to the CTC regime is evident at RaE4/3 ≈ 22 while the transition from the CTC
to the plume regime is clearly evident at RaE4/3 ≈ 55; each transition is denoted by a horizontal
line where the color gradient drops sharply in the RaE4/3-direction.
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and plume regimes (at RaE4/3 ≈ 55) are identified. TBL data is denoted by + and − to indicate
signals taken from top and bottom TBLs, respectively. Data here is taken from simulations with
σ = 7.
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occurs at dx/Lc ≈ 0.4. This length scale increases with RaE4/3 and smoothly joins the CTC scaling

at RaE4/3 ≈ 22 of roughly dx/Lc ≈ 0.5. While it is difficult to identify the regime change using

half-widths from either the spatial auto-correlation or cross-correlation, the transition is clear by

comparing the two methods as shown in figure 2.4. For the cellular regime the half-widths of the

correlation functions are almost identical while they diverge for the CTC regime. This divergence

is quite small when measured at interior heights Z = 0.2 and Z = 0.8 but quite pronounced when

measurements are made in the TBL. For both interior and TBL cases the cross-correlation half-

widths (figure 2.4(a)) increase throughout the plume regime. This behavior can be understood by

inspecting the volume render in figure 2.1(c) where the centroids of columnar structures are seen

to meander with depth (thus, lacking the rigid vertical structure seen in the cellular and CTC

regimes). As a result, top-to-bottom cross-correlation half-widths convey strong correlations at

larger displacements due to structures meandering in the horizontal directions.

Another method for discerning the transitions between regimes is to consider the spatial

cross-correlation functions at zero displacement shown in figure 2.4(b), where both TBL and inte-

rior cross-correlations are the focus. At RacE
4/3 we see that the correlation coefficient at zero

displacement for measurements in the interior or TBL is one, that is, (θ+ ? θ−)(0) = 1 and

(θ0.8 ? θ0.2)(0) = 1, showing perfect vertical coherence. As RaE4/3 increases the correlation co-

efficient at zero displacement decreases, achieving a local minima at the smooth transition from

cellular solutions to CTC-dominated solutions. After this transition away from cellular structures

towards CTCs a steady increase in vertical coherence is observed, indicating a strengthening of

coherence of CTCs with increased thermal forcing. However, this steady increases gives way to

a steep dive at the transition to plume solutions where the loss of the CTC shields leads to a

steep drop in vertical coherence. The cause for the breakdown or instability of CTC structures is

not known, however any analytic theory can giving a critical value of RaE4/3 for this transition

can certainly utilize figure 2.4(b) as a bases for comparison. Similar results for identifying regime

transitions from temporal cross-correlations are considered below in §2.3.2.

Thus far spatial correlation functions have been computed using one-dimensional signals sam-
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Figure 2.5: Correlation contours of the correlation surface Π corresponding to two-dimensional
inner-products defined by equation (2.12) between all pairs of horizontal planes from the numerical
simulation of the NH-QG equations. Diagrams (a) − (d) indicate lowest and highest correlation
contour values (excluding correlation values of 1 along the diagonal) and show decreasing vertical
length scales corresponding to overall decreased vertical coherence with increasing RaE4/3. Note
that the indicated diagonal corresponds to Π = 1, which results from the inner-product of pi(x)
with itself.
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pled with a single horizontal plane at fixed Z. In the following we consider the correlation between

each horizontal plane with all other horizontal planes which provides a continuous interpretation

of the vertical coherence length scale. This approach takes a horizontal plane of fluid data (call

this plane of data pi(x), where i denotes the vertical grid point and where x = (x, y)) in physical

space and finds the correlation with all other horizontal planes pj(x). Since the domain is two-

dimensional we employ the following two-dimensional inner-product in determining the degree of

collinearity between horizontal planar flows

Π ≡ 1

‖pi‖‖pj‖

∫
T2

pi(x)pj(x)dx, (2.12)

where i, j = 1, 2, . . . , NZ , where NZ is total the number of grid points in the vertical, and T2 denotes

the periodic horizontal domain. As with the cross-correlation functions, we normalize by the L2-

norm of the functions under consideration. Performing these calculations yields a correlation surface

comprised of N2
z values describing the collinearity between all horizontal planar solutions. Given

the symmetry of equation (2.12) the correlation surface Π becomes symmetric about the vertical

plane i = j where Π = 1. The resulting symmetric contour plots of Π are given in figure 2.5 where

values for the highest and lowest correlation-contour values are provided.

The vertical coherence identified in figure 2.2 for the four regimes is now apparent in figure 2.5.

Given the strong spatial cross-correlations for the cellular and CTC regimes (see figure 2.4(b)) it

is unsurprising that Π is near unitary between all pairs of z-locations in figure 2.5(a, b). This

indicates that the structures are coherent across the entire layer. Also evident in figure 2.5(a, b) is

the variability in the vertical coherence length scale measured by the distance between two contours.

It is evident that the vertical coherence of a plane with any other plane depends on their vertical

locations in the fluid layer. For RaE4/3 = 10 and σ = 7 the largest coherent intervals reside

near the boundaries at z = 0 and z = 1, while for RaE4/3 = 50 these regions reside both away

from the boundaries and away from the mid-plane at z = 1/2. The vertical coherence deteriorates

significantly with increasing RaE4/3 (figures 2.5(c, d)). To measure the extent of vertical coherence

we use the threshold value of Π = 0.5, therefore classifying two planes separated by some distance
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Table 2.1: Summary of characteristic length, time, and velocity scales for coherent structures.
The lateral length scales Lhw, time scales Thw (based on spatial and temporal half-widths of auto-
correlations, respectively), and resulting advective Lagrangian structure-velocities Ucoh = Lhw/Thw
are outlined. For comparison, lateral Eulerian RMS fluid velocities Urms are provided. Time and
velocity scales are in terms of buoyancy times Tb. Note that, roughly, Ucoh → Urms as RaE4/3

increases and the flow approaches the geostrophic turbulence regime.

Lhw Thw Ucoh Urms Ucoh/Urms
RaE4/3 = 10, σ = 7 (cells) 1.1963 72.4697 0.0165 0.2302 0.0717

RaE4/3 = 50, σ = 7 (columns) 1.3731 11.3918 0.1205 0.7475 0.1612

RaE4/3 = 80, σ = 7 (plumes) 1.3067 3.0203 0.4326 1.0150 0.4262

RaE4/3 = 140, σ = 1 (turbulence) 1.0459 0.1665 6.2802 7.1708 0.8758

to be vertically coherent if their corresponding inner-product is such that Π > 0.5. Moreover, the

distance at which Π transitions from being larger than 1/2 to less than this critical value is deemed

the vertical correlation length scale. In the plume regime (figure 2.5(c)) we find vertical correlation

length scales of ≈ 0.6H for Π > 0.5. In the geostrophic turbulence regime (figure 2.5(d)) where

RaE4/3 = 140 and σ = 1 we find vertical coherence length scales of ≈ 0.06H for Π > 0.5. Therefore,

the vertical correlation length scale suffers an order of magnitude decline when moving from the

plume regime to geostrophic turbulence.

2.3.2 Temporal structure of thermal fluctuations

While the previous section detailed the spatial structure of the different flow regimes and

provided clear measures for the determination of transitions in the flow, however as of this writing

horizontal planes of data can be difficult to obtain in laboratory experiments. For most convection

experiments the primary observables are the global heat flux through the layer and pointwise tem-

perature measurements at a limited number of locations. Due to the experimental challenges in cap-

turing the rotationally constrained branch of convection at E,Ro� 1 while Ra� 1, heat flux mea-

surements remain inconclusive as a proxy measure for regime transitions (Ecke and Niemela, 2013;

King and Aurnou, 2012). We therefore look to determine the temporal structure of the four regimes

using auto- and cross-correlations between two vertically separated thermal time signals (thermis-

tor signals). The temporal auto-correlation describes how long a coherent structure takes to cross a
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Figure 2.6: Space-time volume rendering of θ(x, y, z = 0.8, t) evolving in time from left to right for
approximately 25 buoyancy times along with sample thermistor data for fixed horizontal positions
(x0, y0) at z = 0.2, 0.8 shown as red and black lines, respectively. Dashed blue lines show the ±
RMS. We note that the time series data for θ (shown on the right) corresponds to the O(E1/3)
fluctuating quantity, i.e., experimental fluctuating values should resemble E1/3θ. At the right hand
side of each time series a PDF formed from all thermistors at z = 0.2 is shown.
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Figure 2.7: Ensemble averaged temporal auto-correlations (a) for signals at z = 0.8 and cross-
correlations (b) between signals at z = 0.2 and 0.8 for θ and for parameters shown in figure 2.1.
Decreasing duration of coherence (a) as well as decreased vertical coherence (b) is evident. In this
case auto-correlations are even functions and thus only positive displacements are shown for (a).
Similar correlation functions are found for vertical velocity and vorticity fields.
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thermistor (i.e., structure width divided by the advective velocity Ucoh of the structure). Table 2.1

summarizes the comparison between advective structure velocities (Ucoh) to RMS fluid velocities

(Urms). For convenience temporal cross-correlations are measured in terms of a relative buoyancy

time scale (Tb) which is related to the horizontal viscous time scale Tν = ((Ra−Rac)E4/3/σ)1/2Tb,

where in this expression the term Ra−Rac acts to collapse large viscous times when Ra−Rac < σ

or expand short viscous times when Ra − Rac > σ. The temporal cross-correlation describes the

duration of the vertical coherence. For rigid vertical CTC structures we expect these correlations

to be near unity at zero lag while we expect a rapid drop in cross-correlation at the transition

to plumes through geostrophic turbulence. Spatio-temporal renders in figure 2.6 show the time

evolution of a single horizontal plane, θ(x, y, 0.8, t), for the same parameters as the volume renders

in figure 2.1. Displayed beside each render is sample time histories from a pair of thermistors at

Z = 0.2 and 0.8 along with accompanying probability distribution functions (PDFs). Figure 2.7

shows the auto- and cross-correlations resulting from ensemble averaging across a large number of

thermistors or pairs of thermistors, respectively, as described in section 2.2.3. We find very similar

temporal correlation functions for vertical velocity and vorticity fields.

The cellular case at RaE4/3 = 10, σ = 7 shown in figure 2.6(a) lacks strong horizontal ad-

vective motions and coherent structures remain stagnant in time, therefore the duration of vertical

coherence is relatively long-lived. The wide auto-correlation in figure 2.7(a) and strong cross-

correlation in figure 2.7(b) describe the cellular regime as one of slow modulations in time and

space, additionally the PDF of the time series is Gaussian with a kurtosis of 3.14. The CTC flow

at RaE4/3 = 50, σ = 7 in figure 2.6(b) shows the characteristic physical structure, namely strong

thermal cores shielded in a weaker envelope of opposite sign. The cross-correlations in figure 2.7(b)

indicates continued strong vertical coherence across the entire fluid layer, however the temporal du-

ration of vertical coherence is significantly decreased from that of the cellular regime. For CTCs the

PDF of the time series is no longer Gaussian with kurtosis of approximately 15. From table 2.1 the

RMS fluid velocities are seen to be roughly 3 times larger than in the cellular regime. Notably, with

exception of the turbulent regime, all advective structure velocities are significantly smaller than the
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RMS velocities. At RaE4/3 ≈ 55 the flow transitions from CTCs to plumes and a marked change

in the temporal behavior of the flow is seen as the plume regime is reached (figure 2.6(c)). At this

point the CTCs have lost their strong oppositely signed shields and the resulting weakly shielded

plume structures interact strongly with one another as evident in figure 2.6(c). Figure 2.7(b) shows

evidence of vertical coherence across the fluid layer albeit weaker than that measured in the cellular

and CTC regimes. Plume ejections from one boundary layer now only weakly synchronize with

the opposing boundary layer resulting in columnar structures that are now intermittent in time.

Thermal cross-correlations are therefore only registered when an intermittent column is present,

hence the small temporal cross-correlation coefficient at zero lag (θ0.8 ? θ0.2)(lt = 0) in figure 2.7(b).

For the turbulent case (RaE4/3 = 140, σ = 1) the large scale circulation mixes the flow strongly as

can be seen in the space-time diagram in Fig 2.6(d). Time signal data across the layer at Z = 0.2

and Z = 0.8 is uncorrelated ((θ0.8 ? θ0.2)(lt = 0) = 0.04) and the PDF shows fews signs of extreme

events, having a kurtosis of 3.15.

As a way of discerning flow regimes the maximum cross-correlation values at zero lag are

plotted as a function of RaE4/3 in figure 2.8(a) and are similar to the spatial cross-correlations

of figure 2.4(b). The cross-correlations between thermal boundary layers are the most sensitive

to regime transitions: from figure 2.8(a) we can identify RacE
4/3 < RaE4/3 . 20 as the cellular

regime, 20 . RaE4/3 . 55 as the CTC regime, and RaE4/3 & 55 as the plume regime. The

abrupt transition at RaE4/3 ≈ 55 marks the location where CTCs become unstable and where

cross-correlations undergo a sharp decline due to a loss of vertical coherence. This sharp transition

is also evident in figure 2.11 where the advective structure velocity scales are given. Figure 2.8(b)

shows half-width measurements of the averaged temporal auto-correlations in terms of buoyancy

times, along with power-law fits to the regimes shown in figure 2.8(a) and summarized in table A.1

(Appendix). The half-width measurements decrease monotonically within the cellular regime and

then the rate of decrease slows within the CTC regime before dropping off rapidly within the plume

regime.
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2.4 Analysis

2.4.1 Direct comparison with spatial structure

A remarkable feature, mentioned in section 2.3.1, of the spatial auto-correlation functions is

that they recover the radial structure of the flow (see figure 2.9). To illustrate this we compare en-

semble averaged auto-correlations obtained in the four regimes to radial profiles of θ similar to those

studied by Grooms et al. (2010). Radial profiles of θ are obtained by first identifying well-formed

and well-separated columnar structures. These representative structures are then normalized with

respect to the maximum value of θ at each Z-level and azimuthally averaged to obtain radial profiles

in the horizontal (Grooms et al., 2010). From figure 2.9, we can see that spatial auto-correlations

provide a means to reconstructing the spatial structure in rapidly rotating convection. From flow

visualizations it has been observed that vertically coherent structures within a given regime are very

similar in horizontal size, shape (i.e., columnar or cylindrical), and magnitude. Therefore, ensemble

averaged correlation functions should resemble azimuthally averaged profiles. The variability be-

tween the two curves in figure 2.9 can be argued to arise as a consequence of several factors. First,

the azimuthally averaged radial profiles are drawn from the mean of well-formed and well-separated

columnar structures. Secondly, the profiles obtained from cross-correlating are a consequence of

sampling only one spatial direction in the calculation for the ensemble averaged auto-correlation

function. Despite minor differences illustrated in figure 2.9, the comparisons suggest a statistical

and practical approach to extracting information about the lateral structure in rapidly rotating

convection both numerically and experimentally.

2.4.2 Circulation, mass and heat flux

Given that the axisymmetric radial profiles are well resolved and well-approximated by the

normalized ensemble averaged spatial auto-correlations, we determine the flow circulation and

vertical mass flux by direct evaluation of the integral relations by quadrature. Specifically, within a

horizontal plane at height Z we take auto-correlation functions as sufficiently good approximations
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Figure 2.9: Spatial auto-correlation at Z = 0.2 (dashed red curve) and the azimuthally averaged
radial structure (solid blue curve) for (a) the cellular regime, (b) the CTC regime for well-formed
and well-separated CTCs (Grooms et al., 2010), (c) the plume regime, and (d) the geostrophic
turbulence regime. For each regime auto-correlations closely resemble radial profiles found by
azimuthally averaging well-formed and well-separated columnar structures. Hence, spatial auto-
correlations extract the radial structure of the flow.
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Figure 2.10: Transport properties of coherent structures. The rows show net circulation C and
net vertical mass flux (solid lines) for the CTC regime (RaE4/3 = 50, σ = 7), the plume regime
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dotted curves are the corresponding auto-correlations at Z = 0.8.



41

to radial profiles of vorticity and vertical velocity, i.e. ζ(x, y, Z) ≈ (ζZ ? ζZ)(r, Z) and w(x, y, Z) ≈

(wZ ? wZ)(r, Z). With this approximation we may estimate fluid circulation and vertical mass flux

by evaluating the integrals∫∫
(∇× u) · ẑdS = 2π

∫ dx/Lc

0
r(ζ0.8 ? ζ0.8)(r)dr, (2.13)∫∫

u · ẑdS = 2π

∫ dx/Lc

0
r(w0.8 ? w0.8)(r)dr, (2.14)

respectively. Here, we present circulation and fluxes at Z = 0.8. Figure 2.10 shows these quantities

for the CTC, plume and geostrophic turbulence regimes. Within the CTC and plume regimes

the net circulation (figure 2.10(a, b)) goes to zero at about 3.5 critical length scales, indicative of

isolated structure that weakly interacts with its surroundings (illustrated in figure 2.6(b, c)). Similar

behavior is seen for vertical mass flux (figure 2.10(d, e)) indicating a balance between upwelling and

downwelling flow over a lateral domain spanning about 3.5 critical lengths.

As the turbulent regime is approached net circulation becomes non-zero, saturating to a value

of approximately 1.1 at roughly 5 critical lengths. In this regime CTCs and plumes have lost their

shielding which results in vortices with strong velocity circulations that lead to strong vortex-vortex

interactions. The vertical mass flux is non-trivial and saturates to approximately 1.4 at roughly

3 critical lengths. This indicates that columnar structures are no longer isolated entities and are

connected to the global fluid flow. The scale at which net circulation saturates in comparison to

mass flux communicates the scale disparity seen between the large scale circulation and the physical

mechanisms that transport mass vertically (Julien et al., 2012a).

2.4.3 Characteristic scales

As mentioned above, temporal cross-correlations measures the time for coherent structure

to be advected across a thermistor. Advective velocity scales may now be estimated by using

the half-width measurements provided by spatial and temporal auto-correlations as representative

width of a structure and advective structure time scales, respectively. An example of the advective

velocity scale using data provided in figure 2.4(a) and figure 2.8(b) is shown in figure 2.11(a) along
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identified in figure 2.8(a).
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with scaling exponent fits (also, see tables A.1 and A.2 in the Appendix). These advective velocity

scales are seen to increase monotonically across all regimes, however, we note the strong increase

in advective velocity in the plume regime is a consequence of strong vortex-vortex interactions. A

similar analysis yielding similar results is carried out for spatial and temporal half-widths taken at

the top TBL (see figure 2.11(b)).

2.4.4 Correlation convergence

As mentioned in section 2.2.3, temporal cross-correlations considered are the result of en-

semble averaging over a large number of thermistor (auto-correlation) or thermistor pair (cross-

correlation) locations in the horizontal. The large number of spatial samples in (x, y) embedded in

the ensemble averaging is equivalent to long duration samples in time at a single horizontal spatial

location. Statistical stationarity and isotropy indicate that the accumulation of averages over large

time intervals are equivalent to ensemble averages over many horizontal spatial locations (Sprague

et al., 2006). If the number of thermistors or thermistor pair time signals of duration τe used in an

ensemble average is Nt then we find that the uniform convergence of temporal cross-correlations

goes roughly as CN−βt , where our fittings find values of C of about 0.7 and β of approximately 0.55

(with signal duration ranging from O(104) to O(100) viscous times from the cellular to geostrophic

regime, respectively). Hypothetically, if a uniform error of ε = 0.025 is to be obtained then Nt must

be chosen such that Nt = (ε/C)−1/β. With the values of C and β above, such an error demands

Nt ≈ 428 in the ensemble average. To illustrate the total duration of an experimental time signal

(τe × Nt) needed to emulate results presented here, consider the experimentally accessible (King

and Aurnou, 2012) parameters: E = 2.5 × 10−6, H = 0.032m, and ν = 1.5 × 10−6m2/s. With

these choices the viscous time scale becomes T = L2/ν = E2/3H2/ν ≈ .1257s (having used the

anisotropic aspect ratio (Sprague et al., 2006; Julien et al., 2006) AZ = H∗/L∗ = E−1/3). With the

values of T and Nt as above one can determine the total duration of an experimental time signal

τs = TNtτe (where τe is the signal duration in viscous times). Based on the duration of signals used

to determine the results presented in this paper, values of τs are found and presented in table 2.2.
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Table 2.2: Estimates for experimental signal duration based on flow regime and the experimentally
accessible values E = 2.5× 10−6, H = 0.032m, and ν = 1.5× 10−6m2/s. Intervals for total signal
duration τs (ensemble time signal duration times the number of thermistors or thermistor pairs, i.e.,
τeT × Nt) are shown for each regime: cellular (RaE4/3 ∈ [8.6956, 22]), CTC (RaE4/3 ∈ [22, 55]),
and plume RaE4/3 > 55, each for σ = 7, and geostrophic turbulence for RaE4/3 = 140 and σ = 1.

regime cellular columnar plume geostrophic turbulence

τs [7.8, 2.6] days [2.6 days, 4.7 hours] . 4.7 hours ≈ 2.0 min

2.5 The effects of thermal boundary conditions

Here we briefly describe a related problem in which rapidly rotating Rayleigh-Bénard con-

vection is again the focus, however with a modification to the thermal boundary conditions. In the

above we have made use of fixed temperature boundary conditions which presumes the existence

of physical boundaries that are perfectly conducting; this is likely not the case for geophysical and

astrophysical applications and certainly not true for laboratory experiments. In fact, in laboratory

settings the thermal boundary conditions more closely resemble fixed flux thermal boundary con-

ditions where the temperature gradient normal to the boundary surface is very nearly held fixed.

Such considerations naturally bring into question the validity and relevance of the identification of

coherent structures provided above in the presence of fixed thermal boundary conditions. Motivated

by this we consider the dynamical consequence on rapidly rotating Rayleigh-Bénard convection in

the presence of fixed flux thermal boundary conditions and compare with results of fixed thermal

boundary conditions.

To differentiate between discussions of these two problems we introduce notation regarding

the definition of the Rayleigh number. For a fluid with thermal expansivity α, kinematic viscosity

ν and thermal diffusivity κ, the non-dimensional Rayleigh number quantifies the strength of the

buoyancy force. For the fixed temperature (FT) conditions and the fixed flux (FF) conditions we

have, respectively, appropriate definitions for the Rayleigh number

RaFT =
gα∆TH3

νκ
, RaFF =

gαβH4

νκ
, (2.15)

as before ∆T is the fixed temperature difference between the top and bottom boundaries and β is
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the fixed temperature gradient maintained at the boundaries. Upon defining the non-dimensional

measure of heat transfer via the Nusselt number,

Nu =
total heat transfer

conductive heat transfer
=
βH

∆T
, (2.16)

it is straightforward to show that the two Rayleigh numbers defined above are related simply by

RaFF = NuRaFT . We see that for linear convection in which Nu ≡ 1 the two Rayleigh numbers

are equivalent. For nonlinear convection in which the critical Rayleigh number has been surpassed,

Nu > 1 is achieved by adjustment of the temperature gradient β at fixed ∆T for FT boundaries,

and vice versa for FF boundaries.

As before, a pure conduction state T = 1 − Z is used for both sets of thermal boundary

conditions, therefore the fluctuating thermal boundary conditions become

θ = 0, at Z = 0, 1, (FT ) (2.17)

∂Zθ = 0, at Z = 0, 1. (FF ) (2.18)

Stress-free, impenetrable mechanical boundary conditions on the top and bottom boundaries are

assumed throughout and given by

w = ∂Zu = ∂Zv = 0, at Z = 0, 1. (2.19)

A boundary layer analysis given by Calkins et al. (2015) shows the leading-order system

satisfies fixed temperature boundary conditions implicitly, however double boundary layer structure

is necessary to satisfy fixed flux thermal boundary conditions. The boundary layers consist of an

inner Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a middle

layer in thermal wind balance adjacent to the Ekman inner layers that adjusts the normal derivative

of the temperature fluctuation to zero. The induced vertical mass flux via Ekman pumping is shown

to be asymptotically weak and implies that studies employing FT thermal boundary conditions

accurately describe FF thermal boundary conditions as long as the Rossby number remains small.

In light of the boundary layer analysis, we conclude that the leading order quasi-geostrophic

dynamics are described by equations (2.7a)–(2.7d) for both FT and FF thermal boundary conditions.
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Indeed, inspection of the system shows that it is invariant under the following rescaling of the

Rayleigh numbers and temperature variables,

R̃aFT =
R̃aFF
Nu

, θFT = NuθFF , TFT = NuTFF . (2.20)

Integrating the time-averaged mean heat equation with respect to Z yields

Pr(wθFT ) = ∂ZTFT +Nu, (FT ) (2.21)

Pr(wθFF ) = ∂ZTFF + 1, (FF ) (2.22)

for the FT and FF cases, respectively. The appropriate thermal boundary conditions have been

applied at Z = 0 in the above relations. Taking either equation (2.21) or (2.22) and utilizing (2.20)

shows that the mean interior temperature gradient is described by identical equations for the two

cases. This leading order correspondence is the result of the anisotropic spatial structure of rapidly

rotating convection.

The above results indicate that the findings of previous work on small Rossby number con-

vection employing FT thermal boundary conditions can be accurately applied to the case of FF

thermal boundary conditions by use of the rescalings given by equations (2.20). Julien et al. (2012a)

identified four flow regimes that occur in rapidly rotating convection as a function of the Prandtl

and (FT) Rayleigh numbers. The convective Taylor column (CTC) regime is distinguished by

coherent, vertically aligned convective structures that span the depth of the fluid. Figure 2.12(a)

shows a volumetric rendering of the temperature perturbation for Pr = 7 and R̃aFT = 46.74,

or R̃aFF = 1000 and Nu = 21.39; this case was computed explicitly with FF thermal boundary

conditions. The CTC regime occurs over the FT Rayleigh number range of 20 . R̃aFT . 55,

corresponding to a FF Rayleigh number range of 82 . R̃aFF . 1656 (see figure 2.4a and 2.8b

above). Figure 2.12(b) shows mean temperature profiles obtained utilizing the FT and FF thermal

boundary conditions, along with the remapped FF mean temperature profile. The Nusselt number

Nu = 21.39 corresponds to a mean temperature difference of 0.0468 between the top and bottom

boundaries for the FF case. Given that the mapping defined by equation (2.20) is independent of
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Figure 2.12: (a) An example volumetric rendering of the temperature perturbation from a simu-
lation of the NH-QG convection equations showing the convective Taylor column (CTC) regime
computed explicitly with FF boundary conditions. (b) Mean temperature profiles obtained with
both FT (solid blue) and FF (dashed black) boundary conditions, and the rescaled FF temper-

ature profile (red open circles). The parameters are Pr = 7, R̃aFT = 46.74, R̃aFF = 1000, and
Nu = 21.39.
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the Prandtl number, we note that the rescaling shown in Figure 2.12(b) can be carried out for any

Prandtl number.

Of particular interest in convection studies is the dependence of the heat transfer scaling with

the strength of the thermal forcing input via Nusselt-Rayleigh number scalings of the form Nu ∼

R̃a
α

FT . With the rescaling given in (2.20) the FF equivalent of this relation becomes Nu ∼ R̃a
β

FF

where β = α/(α+ 1). For the CTC regime the exponent is α ≈ 2.1 (Julien et al., 2012a), yielding

β ≈ 0.68. Additionally, the final regime of geostrophic turbulence achieves a dissipation-free scaling

law with α = 3/2 such that β = 3/5 (Julien et al., 2012a). Similarly, the dependence of all other

variables of interest on the Rayleigh number (e.g. mean temperature gradient, vorticity, etc.) can

also be remapped to the case of FF thermal boundary conditions.

2.6 Conclusions

A statistical survey of auto- and cross-correlations that quantify the vertical coherence in

rotationally constrained Rayleigh-Bénard convection has been presented. Notably, the strategies

presented in this chapter can be utilized for both experimental and DNS data in the rotationally

constrained regime, i.e., in the limit of E,Ro� 1. While these techniques have been employed in

related studies on non-rotating convection (Kunnen, 2008) and electromagnetically forced rotating

turbulence(van Bokhoven et al., 2009), these techniques are not presently used in rotationally con-

strained Rayleigh-Bénard convection where heat transport (i.e., the Nusselt number) still remains

the most experimentally utilized investigative tool in assessing the flow morphology. Remarkably,

the spatial auto-correlations capture the radial profile of coherent structures obtained from the

numerical solutions of rapidly rotating Rayleigh-Bénard convection. The evolution of the flow mor-

phology and the transition between flow regimes are readily identified in the analysis: the transition

from the cellular regime to the CTC regime is seen to occur near RaE4/3 ≈ 20, while the transition

from the CTC regime to the plume regime is seen to occur at RaE4/3 ≈ 55 (see figure 2.8(a)).

The identification of these transitions in the flow morphology are observed from both ensemble

averaged spatial and temporal cross-correlations and for each field variable θ, ζ, and w. Moreover,
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the transitions are most easily identified by considering correlation values at zero lag for vertically

well-separated fluid signals. These transitions provide a further refinement to the work of Julien

et al. (2012a).

From half-width measurements of ensemble averaged spatial and temporal cross-correlations

advective velocities for vertically coherent structures are obtained. These measurements are seen

to follow a power-law β(R̃a − R̃ac)α, where α is seen to depend upon the RaE4/3 as outlined in

table A.1 and table A.2 in the appendix. Moreover, these advective velocities evolve from a state of

nearly static motion towards the motions similar to the vigorous RMS velocities as the geostrophic

turbulent regime is approached (see table 2.1 and figure 2.11).

Spatial auto-correlations are used to extract radial profiles and study net circulation and

mass flux (figure 2.10). The transition from weakly interacting structures in the cellular, CTC,

and plume regimes to strongly interacting structures in the geostrophic turbulent regime can be

identified by a net circulation that saturates to zero to a net circulation that saturates to a non-zero

value, respectively.

We have shown that the leading order dynamics of rapidly rotating convection in a plane

layer geometry are equivalent for FT and FF thermal boundary conditions. FF thermal bound-

ary conditions give rise to a double boundary layer structure in the limit of rapid rotation that

induces a vertical mass flux, via Ekman pumping. The Ekman pumping velocity is asymptotically

weak, therefore we conclude that previous work employing FT thermal boundary conditions also

accurately describes FF thermal boundary conditions as long as the Rossby number remains small.

Recently, the influence of both thermal and mechanical boundary conditions on non-rotating

convection has received significant attention (e.g. Johnston and Doering, 2009; van der Poel et al.,

2014). For plane layer rotating convection investigations have shown that no-slip and stress-free

mechanical boundary conditions yield similar convective dynamics (King et al., 2009; Schmitz and

Tilgner, 2010), however, the presence of Ekman pumping occurs for no-slip boundary conditions

and is now known to significantly enhance heat transfer relative to stress-free boundary conditions

(Kunnen et al., 2006; Stellmach et al., 2014). At present, studies investigating the role of ther-
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mal boundary conditions on nonlinear rotating convection have been focused solely on spherical

geometries. Zhang and Gubbins (1993) showed that convection cells in a rotating spherical shell

can resonate with spatially inhomogeneous temperature boundary conditions. A subsequent inves-

tigation by Davies et al. (2009) has shown that resonance is dependent upon both the rotation rate

and the spatial scale of the thermal anomaly along the outer boundary, with resonance vanishing

when the scale of the temperature variation is comparable to the most unstable wavelength and

the rotation rate of the system is large. Our asymptotic analysis complements these previous nu-

merical findings and rigorously shows that any horizontal thermal variation along the boundaries

that varies on the scale of the convection, as allowed for with FF thermal boundary conditions, has

no leading order influence on the interior convection. However, we note that resonance can occur

when the spatial scale of the thermal anomaly is comparable to the vertical scale of convection

(Davies et al., 2009); this is the mechanism likely to cause significant changes in the magnetic and

velocity fields observed in spherical dynamo simulations with FF boundary conditions (Sakuraba

and Roberts, 2009, 2011). For a complete description of the investigation on the effects of thermal

boundary conditions for rapidly-rotating convection see Calkins et al. (2015). This work was done

in collaboration with Mike Calkins, Keith Julien, Kevin Hale, and Derek Driggs.



Chapter 3

Investigations of Rapidly Rotating and Stably Stratified Flow

3.1 Introduction

The study of fluid turbulence connects bulk statistical properties like energy spectra, structure

functions, and the energy dissipation rate to physical processes like vortex stretching and instabil-

ities (Frisch, 1995). In the context of geophysical turbulence, the emphasis is on how rotation and

density stratification affect the statistical and dynamical properties of the turbulent flow. At small

scales rotation and buoyancy are expected to become dynamically unimportant, with statistics

resembling those of non-rotating, constant-density flow. More specifically, rotation and buoyancy

respectively are expected to become unimportant for length scales smaller than the Zeman scale

LΩ =
√
ε/(2Ω)3 (Zeman, 1994) and the Ozmidov scale LN =

√
ε/N3 (Ozmidov, 1965) where ε is

the mean rate of energy dissipation per unit mass, Ω is the rate of rotation, and N =
√
−g∂zρ/ρ0

is the buoyancy frequency in a density-stratified fluid under the Boussinesq approximation (g is

the gravitational acceleration, ρ is the density, and ρ0 is a constant reference density). Studies of

geophysical turbulence therefore include scales larger than either the Ozmidov or Zeman scales, or

both.

Rotation and stratification induce restoring forces that lead to wave dynamics; when the

axis of rotation is parallel to gravity, the linear wave spectrum includes frequencies between N

and 2Ω. Waves with no vertical vertical variability are pure gravity waves (where gravity alone

acts as the restoring force) with frequency N . Waves with no horizontal variability are pure

inertial waves (where the restoring force is the “fictitious” inertial Coriolis force) with frequency
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2Ω. Rotation and stratification are expected to have a qualitative impact on turbulence when

the period of wave dynamics is comparable to or less than the time scale of nonlinear advection.

More precisely, rotation and stratification respectively are expected to strongly affect the dynamics

when the Rossby number Ro = U/(2ΩL) and Froude number Fr = U/(NL) are small, where U

and L are characteristic velocity and length scales of the turbulent flow. Geophysical turbulence is

characterized by small Rossby and/or Froude numbers.

The linear eigenfunctions of the Boussinesq system include two wave modes and a zero-

frequency ‘vortical’ mode (Bartello, 1995). At low Rossby and Froude numbers there is a clear time

scale separation between the slow, nonlinear evolution of the vortical mode and the fast, weakly-

nonlinear evolution of the wave modes which can be exploited to derive asymptotically a reduced

set of dynamics for the vortical modes; this reduced system is the celebrated quasigeostrophic

equations (Eady, 1949; Charney, 1948; Pedlosky, 1987; Vallis, 2006b). Time scale separation was

exploited by Embid and Majda to rigorously prove the validity of the quasigeostrophic system even

in the presence of wave modes with amplitudes comparable to the vortical modes, in contrast to the

asymptotic derivation which assumes that any waves have low amplitude (Embid and Majda, 1996,

1998; Majda and Embid, 1998). Temam and Wirosoetisno (2010, 2011) have also proven rigorously

that, under mild assumptions, the small-Rossby, small-Froude dynamics eventually approaches a

quasigeostrophic balance irrespective of the amplitude of wave modes in the initial condition. The

quasigeostrophic system is thus a natural touchstone for geophysical turbulence, and the qualitative

properties of turbulence in the quasigeostrophic system were presciently forecast by Charney (1971)

based on an analogy with previous studies of two-dimensional turbulence.

The rigorous framework of Embid and Majda (1996) exploits an asymptotic time scale sepa-

ration between the fast wave dynamics and the slow ‘balanced’ dynamics. Embid and Majda (1998)

and Wingate et al. (2011) also used the framework to rigorously derive equations governing the slow

limiting dynamics in the limits of low Froude and finite Rossby numbers, and low Rossby and finite

Froude numbers, respectively. Because of the need for an asymptotic time scale separation, the

slow limiting dynamics include a single pair of wave modes at the slowest linear frequency (2Ω for
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Embid and Majda (1998) and N for Wingate et al. (2011)) and all other wave modes are assumed

to be asymptotically fast by comparison, and do not appear in the slow limiting dynamics. Results

analogous to those of Temam and Wirosoetisno (2010) for the quasigeostrophic system are lacking

for these two systems of slow limiting dynamics, and it is not yet clear whether these systems

have the same relevance for geophysical turbulence in their respective asymptotic regimes as the

quasigeostrophic system has for the low-Froude, low-Rossby number regime.

If either the Rossby or Froude number is order-one, there is not a clear time scale separation

between the linear wave dynamics and the nonlinear advective dynamics, so a reduced system that

eliminates nearly all the wave dynamics is arguably inappropriate. Nevertheless, the smallness of

one of the nondimensional numbers can still be exploited in both cases to reduce the complexity

of the full Boussinesq system. When the Froude number is small but the Rossby number is order-

one one can make the hydrostatic approximation to arrive at the so-called primitive equations.

When the Rossby number is small but the Froude number is order-one one can make a geostrophic

approximation and arrive at the non-hydrostatic quasigeostrophic equations (NHQGE; Julien et al.,

1998, 2006). Both of these equation sets are significantly easier for both numerical simulation and

mathematical analysis than the unreduced Boussinesq equations, and both sets of equations include

linear wave dynamics with frequencies between either 2Ω (primitive equations) or N (NHQGE) and

infinity. The quasigeostrophic equations can be recovered from both sets of equations in the limit

where both the Rossby and Froude numbers are small.

As the Froude number is typically smaller than the Rossby number in atmospheric and

oceanic turbulence, studies of rotating, stratified turbulence have primarily focused on strongly-

stratified regimes where the Froude number is small. The regime of geostrophic turbulence with

low-Rossby number and order-one Froude number has seen comparatively little study, though

this regime is relevant to weakly stratified abyssal ocean dynamics at high latitudes and in the

western Mediterranean (Emery et al., 1984; Timmermans et al., 2003; van Haren and Millot, 2005;

Timmermans et al., 2007). The regime is also relevant to planetary and stellar interiors where the

stratification transitions from unstable (imaginary N) to stable (N ≥ 0). Examples include the
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solar tachocline believed to be the origin of large scale solar magnetism (Miesch, 2005) and the

Earth’s outer liquid core where the existence of stably-stratified layers have been postulated (Pozzo

et al., 2012). The present investigation focuses on rotating, stratified turbulence at low Rossby

number, with Froude numbers varying from large to small.

The main points of comparison for the transitional regime of Froude numbers between

zero and infinite are the ‘quasigeostrophic’ regime at small Froude numbers and pure rotation

at large Froude numbers. Quasigeostrophic turbulence theory, by analogy with the theory of two-

dimensional turbulence (Boffetta and Ecke, 2012), predicts a transfer of energy from the forcing

scale to larger scales through an inertial range where the energy spectrum is proportional to k̃−5/3,

where k̃2 = k2
h + (2Ω/N)2k2

z . At scales smaller than the energy forcing quasigeostrophic turbulence

theory predicts an energy spectrum proportional to k̃−3. The −5/3 (Smith and Waleffe, 2002;

Marino et al., 2013) and −3 (Waite and Bartello, 2006) spectral slopes are evident in simulations

of triply periodic Boussinesq dynamics in the regime of low Rossby and Froude numbers, and both

Waite and Bartello (2006) and Whitehead and Wingate (2014) observed energy accumulating in

the vortical modes. These results underscore the importance of quasigeostrophic dynamics, and

demonstrate that the theorem of Temam and Wirosoetisno (2010) applies qualitatively even in this

stochastically-forced regime.

In simulations of constant-density (infinite Froude number) low-Rossby number turbulence

energy is transferred to scales larger than the forcing scale through an inertial range with spectrum

proportional to k−3; energy is also primarily transferred to a depth-independent horizontal velocity,

the ‘barotropic mode’ (Smith and Waleffe, 1999; Smith and Lee, 2005). Marino et al. (2013) found

transfer of energy into the barotropic mode to be less rapid in the purely rotating regime than

in the quasigeostrophic regime. Sen et al. (2012) observed a k−5/3 spectrum at large scales in a

purely rotating system when the stochastic forcing was depth-independent; this case is somewhat

degenerate and likely not indicative of universal behavior.

The transitional regime between pure rotation and quasigeostrophy has seen comparatively

few simulations. In the experiments of Sukhatme and Smith (2008) the Froude and Rossby num-
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bers are both comparatively small, though in some experiments the Froude number was larger by

up to a factor of 5. In their experiments with Froude number larger than Rossby number the

wave mode energy grows to dominate, in contrast to the behavior in both the quasigeostrophic and

purely-rotating limits where energy accumulates primarily in the vortical and depth-independent

components; this may be related to the fact that forcing was applied near the scale of the compu-

tational domain. They found that the vortical mode spectrum retained its quasigeostrophic k−3

behavior at scales smaller than the forcing, though it deviated towards a shallower slope at much

smaller scales. In a single experiment with low Rossby number and moderate Froude number, also

forced near the scale of the computational domain, Aluie and Kurien (2011) diagnosed a downscale

transfer of both energy and potential enstrophy; spectral slopes were not reported. Whitehead and

Wingate (2014) also forced near the scale of the computational box, and found energy accumulating

in the barotropic mode; spectral slopes were not reported. These investigations leave open entirely

the question of how the large scale dynamics transition between the quasigeostrophic and purely

rotating regimes as the Froude number increases, which is the focus of the present investivation.

This chapter is organized as follows: §3.2 introduces preliminaries including discussions re-

garding Proudman-Taylor constraints and inertia-gravity waves, §3.3 provides an overview of the

reduced equations used in our numerical simulations, §3.4 summarizes the numerical methods in-

cluding the forcing scheme employed for numerical simulations, and §3.5 gives the results of our

numerical experiments.

3.2 Governing Equations and Preliminaries

We consider an incompressible fluid subject to an imposed constant vertical gravitational

field g = −gẑ and a system rotation with constant angular velocity Ω = Ωẑ. The fluid is stably-

stratified in the vertical with total density ρ∗ = ρ̂∗(z∗) + ρ′∗(x∗, t∗), where ρ̂∗(z∗) = ρ∗0 + δρ̂∗(z∗)

is an ambient density profile consisting of a constant reference density ρ∗0 and a density variation

δρ̂∗(z∗) (where asterisks denote dimensional quantities). It follows that the total buoyancy of a
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fluid parcel, given by

b∗ = − g

ρ∗0

(
δρ̂∗(z∗) + ρ′∗(x∗, t∗)

)
= − g

ρ∗0
δρ̂∗(z∗) + b∗′(x∗, t∗), (3.1)

is decomposed as the sum of the ambient buoyancy field and a fluctuating component b∗′ associated

with fluid motions. Pressure is decomposed in a fashion similar to buoyancy p∗ = p̂∗(z∗)+p′∗(x∗, t∗)

with an ambient pressure component in hydrostatic balance with the ambient buoyancy

∂z∗δp̂
∗(z∗) = −gρ̂∗(z∗). (3.2)

The governing equations in the Boussinesq approximation for a fluid with constant kinematic

viscosity ν and buoyancy diffusion κ are given by

D∗tu
∗ + 2Ωẑ × u∗ = −∇p∗′ + b∗′ẑ + ν∇∗2u∗, (3.3a)

D∗t b
∗′ +N2(z∗)w∗ = κ∇∗2b∗′, (3.3b)

∇∗ · u∗ = 0. (3.3c)

where

D∗t (·) = [∂t∗ + u∗ · ∇∗] (·). (3.4)

The ambient stratification is now characterized by the buoyancy (Brunt-Väisälä) frequencyN2(z∗) =

−gρ∗−1
0 ∂z∗(δρ̂

∗(z∗)).

An external forcing is required to excite fluid motions, and in the present investigation energy

is generated by a stochastic vertical velocity forcing. Recent studies in a similar parameter regime

have used stochastic buoyancy forcing (Whitehead and Wingate, 2014) while other studies perform

simultaneous forcing of all components of velocity (Marino et al., 2013). The present investigation

includes regimes of weak stratification (large Froude numbers) and initial tests with buoyancy

forcing in the weakly-stratified regime led to frequent large-scale overturning. Vertical velocity

forcing avoids these spurious dynamics in the weakly-stratified regime while also avoiding direct

forcing of the slow quasigeostrophic dynamics in the strongly-stratified regime.
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Characteristic scales determined from the energy injection rate ε∗f and forcing length scale

L∗f are the forcing velocity, time, and buoyancy scales

U∗f =
(
ε∗fL

∗
f

)1/3
, T ∗f =

(
L∗2f ε

∗−1
f

)1/3
, B∗f =

(
ε∗2f L

∗−1
f

)1/3
. (3.5)

This gives rise to the following nondimensional equations

Dtu+
1

Rof
ẑ × u = −Euf∇p+ bẑ +

1

Ref
∇2u, (3.6a)

Dtb+
1

Fr2
f

S (z)w =
1

σRef
∇2b (3.6b)

∇ · u = 0, (3.6c)

where

Dt(·) = [∂t + u · ∇] (·) (3.7)

and S(z) is the nondimensional stratification profile defined according to the relation N2(z∗) =

N2
0S(z). We have defined N0 ≡ |gρ∗−1

0 (∂z∗δρ̂
∗(z∗))max| as the maximal buoyancy frequency and

S ≡ −∂zδρ̂.

The nondimensional parameters that appear in (3.6) are determined a priori based on the

energy injection rate ε∗f and forcing length scale L∗f . These parameters are the Rossby number Rof ,

Froude number Frf , Euler number Eu, and Reynolds number Ref defined as

Rof =
U∗f

2ΩL∗f
, F rf =

U∗f
N∗0L

∗
f

, Euf =
δp0

ρ0U∗2f
, Ref =

U∗fL
∗
f

ν
≡

(
ε∗fL

∗4
f

ν3

)1/3

. (3.8)

The Rossby number is the ratio of rotation period, T ∗Ω = 1/2Ω, to the forcing time, T ∗f = L∗f/U
∗
f ,

and measures the rotational constraint of the fluid at the forcing scale. Hereafter, we focus solely

on the rotationally constrained regime Rof � 1. The Froude number is the ratio of the Brunt-

Väisälä time, T ∗N = 1/N0, to T ∗f and measures the ratio of the slowest linear wave period to the

nonlinear advective time scale. The Reynolds number provides a nondimensional measure of the

energy injection rate into the system and therefore controls the degree of turbulence achieved at the

forcing scale L∗f . The Euler number measures the significance of the pressure gradient force relative
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to inertial accelerations. The Prandtl number σ = ν/κ is the ratio of dissipation parameters and

quantifies the thermometric properties of the working fluid.

In addition to the nondimensional forcing length scale Lf = 1 four internal length scales are

also present: the dissipation (Kolmogorov) scale LK , first Rossby radius of deformation LD, the

Zeman length scale LΩ, and the Ozimodov length scale LN . These nondimensional length scales

are defined, respectively, as

LK ≡ Re−3/4
f , LD ≡

(
N0H

∗

2ΩL∗f

)
=
ARof
Frf

, (3.9)

LΩ ≡

(
ε∗fL

∗−2
f

(2Ω)3

)1/2

= Ro
3/2
f � 1, LN ≡

(
ε∗fL

∗−2
f

N3
0

)1/2

= Fr
3/2
f . (3.10)

The dissipation scale is the scale at which the nonlinear turnover time equals the time scale of viscous

dissipation. The first Rossby radius of deformation is the scale where baroclinic instability converts

potential to kinetic energy, and depends on H∗, the depth of the domain. The ratio A = H∗/L∗f is

the nondimensional height of the domain. In quasigeostrophic dynamics the conversion of baroclinic

to barotropic1 energy occurs mainly at scales larger than LD. Rotation influences the dynamics

at scales larger than the Zeman scale, and the Ozimodov scale is that above which eddies are

influenced by stratification.

In this investigation, we consider only the case LΩ < LK such that all fluid scales are

influenced by rotation. This constraint places an upper bound for the Rossby number, namely

Rof = o
(
Re
−1/2
f

)
. (3.11)

Given that the Rossby number is very small and the Euler number passively scales pressure, it

becomes clear that there exist two primary control parameters Ref , F rf . Varying these parameters

causes the three dynamical length scales, LD, LN , and LK to vary through seven distinct regimes

shown in Figure 1.

1 We adopt the convention that the ‘barotropic’ component of the system includes only the depth-independent
part of the horizontal velocity; all other fields including vertical velocity and buoyancy are ‘baroclinic.’
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Figure 3.1: Distinguished Parameter Regimes from strong stratification (Ia) to weak stratification
(IIIc). ∗ =boundary regimes.
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3.2.1 Geostrophy and the Proudman-Taylor constraint

Motions under consideration occur on timescales much longer than the period of planetary

rotation. Explicitly, we will be concerned with dynamics for which the Rossby number is a small

parameter ε, i.e.,

ε ≡ Rof =
U∗

2ΩL∗
=
T ∗Ω
T ∗f
� 1. (3.12)

For the Earth 2Ω = O(10−4) and motions observed to be affected by rotation in the atmosphere

occur on O(103)km horizontal scales while such dynamics in the ocean are observed to occur at rel-

atively smaller O(10)km horizontal scales. For this reason motions affected by Earth’s rotation are

referred to as “large-scale,” however the notion of “large” is clearly not universal and length scales

considered to be affected by system rotation depend on velocities characteristic of the dynamics we

wish to describe. These examples place an emphasis on the manner in which Rof may be made

small. Additionally, it is clear that 2Ω need not be extremely large in the context of discussions

on “rapidly” rotating flows, however when flows are described as rapidly rotating what is meant is

that Rof � 1.

When Rof � 1, the dominant force balance is geostrophy where the Coriolis force balances

the pressure gradient force on O(L∗) length scales in equation (3.6), i.e.

1

Ro
ẑ × u ≈ −Eu∇p, (3.13)

where Eu ∼ Ro−1. Why this balances is to occur occur over others is made obvious by considering

the other possible balances in equation (3.6) and their consequences. In making these considerations

we remind ourselves of the types of flows we intend to study: rapidly rotating, stratified, and

non-hydrostatic flows. A balance between the Coriolis term with relative accelerations leads us to

conclude that Rof ∼ 1, in contradiction to the rapidly rotating flows we have set out to study. When

the Coriolis term balances the buoyancy term this leads to geostrophic and hydrostatic balance

(involving fluctuating pressure and buoyancy fields), referred to as the thermal-wind balance, where

buoyancy is large and stratification is strong, however our interests reside with non-hydrostatic

flows such that Γ = o(Ro−1
f ) and w = O(1). If kinematic dissipation is to balance the Coriolis
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acceleration then the Ekman number must be order-one. The scale L∗ν on which such a balance

might occur requires

1� 1

Rof
=
L∗2

L∗2ν

1

Re
, (3.14)

where typical values of Re are large and leading us to conclude that L∗ν � L∗. Therefore, frictional

effects can rise to balance Coriolis accelerations only on scales o(L∗), for example, like those found

near viscous boundaries. In addition, such viscous small-scales are well-separated from scales of

motion that are geostrophically balanced. The remaining balance given by equation (3.13) is

most reasonable for the flows of interest, in fact, such a balance is approximately observed for

large-scale flow in Earth’s atmosphere and oceans. However, it is important retain the notion of

approximation when discussing this balance for large-scale motions since neglecting this notion

leads to one unrealistic constraints on geostrophically balanced dynamics.

From equation (3.13) we may deduce constraints on the flow that inhibit vertical variations,

however this is made clear upon taking the curl of equation (3.6) to arrive at the vorticity equation

Dtω =

(
ω +

1

Rof
ẑ

)
· ∇u+∇× bẑ +

1

Re
∇2ω. (3.15)

where ω = ∇×u (note that in the Boussinesq approximation the “baroclinic” or “solenoidal” term

∇p × ∇b in the vorticity equation is identically zero). For Rof � 1 the leading-order balance is

vertically invariant and (from incompressibility) horizontally non-divergent, that is, to leading-order

∂zu = 0, ∇⊥ · u⊥ = 0, (3.16)

and is consistent with the leading-order geostrophic balance given by equation (3.13) with strict

equality. This is the so-called Taylor-Proudman constraint and it restricts motions to planes per-

pendicular to the axis of rotation resulting in motions that are strictly two-dimensional (Taylor,

1923; Proudman, 1916). However, these relations are not precise and are merely approximations.

In writing these leading-order balances we have neglected terms which are not identically zero. For

example, when considering the vorticity equation it is best to express the leading-order balance
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and its consequence for incompressibility as

∂zu = O(Rof ), ∇⊥ · u⊥ = O(Rof ) (3.17)

and stresses that the degree to which the Taylor-Proudman constraint is satisfied depends directly

on the smallness of the Rossby number. For example, regions near viscous boundary layers where

fluid motions must quickly and continuously adjust to satisfy boundary conditions have advective

time scales that are much shorter than the rotation period (due to decreasing characteristic length),

therefore Rof is no longer small and the Taylor-Proudman constraint (3.16) is broken/relaxed.

The preceding arguments should convince us that the strict requirement (3.16) on geostroph-

ically balanced flows is wholly unrealistic. In fact, such constraints are not not observed geophysi-

cally realized. Small departures from this balance do occur and are referred to as quasi-geostrophy,

and result in turbulent three-dimensional fluid motions. To allow three-dimensional motions when

Rof � 1 and ultimately relax Taylor-Proudman constraints for flow well-separated from viscous

boundary layers equation (3.17) suggest that vertical variations be allowed on large vertical scales

H∗ such that H∗/L∗ = O(Ro−1
f ). In summary, for weak buoyancy, associated with weak strati-

fication, one expects the dynamics to be tall and thin (where L∗ = RofH
∗), whereas for strong

buoyancy and strong stratification one expects the dynamics to display an order-one aspect ratio

(L∗ = Fr∗−2H∗). The equations used in our the numerical experiments (described in §3.3) are

geostrophically-balanced, yet break the Proudman-Taylor constraint at small horizontal scales by

allowing long vertical variations. The equations also allow the Proudman-Taylor constraint to be

broken on unit-aspect-ratio scales in the presence of sufficiently strong stratification.

3.2.2 Eddy-wave dispersion relation at Rof � 1

A linear analysis of the unforced and inviscid form of equations (3.6), for normal modes

∝ exp[i(ωt+k⊥ ·x⊥+kzz)], provides the inertia-gravity dispersion relation for the wave frequency

of oscillation ω and the horizontal and vertical wavenumbers k⊥, kz:

ω2
wave =

1

Fr2
f

sin2 θ +
1

Ro2
f

cos2 θ, ω2
eddy = 0. (3.18)
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Here θ = tan−1(k⊥/kz) denotes the angle made with the positive z-axis. The dispersion relation

(3.18) implies the following bound on the wave frequencies

ωwave ≥ min

(
1

Frf
,

1

Rof

)
. (3.19)

It is particularly interesting to interpret the wave dispersion relation in the Rof � 1 limit

as a function of stratification which, as established in the previous section, is tied to the spatial

anisotropy of the flow. In the presence of strong stratification where Frf � 1, the wave dispersion

relation implies ωwave � O(1) for all θ. Hence wave and eddy turnover timescales are asymptoti-

cally separated for all waves. This is the classical quasi-geostrophic limit where it is well-established

that fast inertia-gravity waves may be filtered from the Boussinesq equations. This reduction leads

to the hydrostatic QG equations describing the evolution of eddies on a slow manifold.

For weakly stratified flows characterized by Frf = O(1) there are fast waves and slow waves,

depending on the anisotropy of the wave given by θ. The dispersion relation (3.18) clearly shows

that waves with θ ∼ ±(π/2−O(Rof )) retain order-one frequencies in the limit Rof � 1. Waves with

angle θ ∼ ±(π/2 − O(Rof )) have k⊥/kz ∼ Ro−1
f , where vertical scales are longer than horizontal

scales. It is now seen that these anisotropic inertia-gravity waves are not fast compared to the

nonlinear eddy dynamics; since there is no gap between the time scale of waves and the time scale

of eddies, the idea of a slow manifold absent of inertia-gravity waves is no longer applicable.

An approximate dispersion relation for these slow waves is obtained by inserting k⊥/kz ∼

Ro−1
f into the dispersion relation (3.18) and eliminating small terms; the result is

ω2
wave ∼

1

Fr2
f

+

(
kz

k⊥Rof

)2

,
kz
k⊥
∼ Rof . (3.20)

The phase and group velocities vp and vg associated with these slow waves are given by

vp ∼ ωwave
k2
⊥

(kx, ky, kz) = O(1, 1, Rof ), (3.21a)

vg ∼
(

kz
k⊥Rof

)2 1

k2
⊥ωwave

(
−kx,−ky,

k2
⊥
kz

)
= O(1, 1, Ro−1

f ) (3.21b)

with vp ·vg = 0 and |vg| � |vp|. Hence, inertia-gravity waves have phase and group velocities that

are perpendicular: the slow waves propagate predominantly in horizontal directions whilst wave-
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energy propagated by the group velocity is transmitted predominantly in the vertical direction

(Greenspan, 1968). We note that velocity magnitudes are such that information is transmitted

on the O(1) eddy-turnover time in all directions; this follows from the fact that information in

the horizontal propagates over O(1) horizontal scales while information in the vertical propagates

over O(Ro−1
f ) vertical scales. The consequences of wave-eddy interactions without a time scale

separation are still not fully understood, primarily because the main approach has been the use of

DNS where efficiency and accuracy becomes increasingly prohibitive in the Ro � 1 limit. In the

following, we analyze, and simulate reduced equations that describe the nonlinear interactions of

vortical modes and slow inertia-gravity waves.

3.3 Reduced NonHydrostatic QG equations

A detailed asymptotic derivation of the reduced NH-QG equations is given in appendix B,

however the following highlights the mosts paramount features. As mentioned above we treat

the Rossby number as a small parameter 0 < ε ≡ Rof � 1 and introduce the asymptotic series

expansions for all dependent fluid variables

v = (u, p, b)T = ε−1v−1 + v0 + εv1 + ε2v3 +O(ε3) (3.22)

together with a multiple time scale expansion and a rescaled, anisotropic vertical coordinate

∂z → ∂z + ε∂Z , ∂t → ∂t + ε2∂T (3.23)

into the Boussinesq equations. The large vertical scale is precisely the scale at which deviations from

the Proudman-Taylor constraint are allowed. As argued above vertical variations on small vertical

scales are constrained by Taylor-Proudman effects and one may simply set ∂z ≡ 0, but above we

retain the appearance of ∂z as a didactic reminder of the multiple scales approach utilized. The

slow dimensional time scale T ∗ is the period over which the vertical buoyancy flux acts to modify

the mean buoyancy profile, and is such that the ratio of the order-one time scale T ∗f to the slow

time scale T ∗ is given by AT = T ∗f /T
∗ = ε2. The derivation procedure results in a sequence of
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equation balances that must be solved in succession, each balance associated with a power of ε.

The multiple scales approach of (3.23) requires that fluid variables be decomposed into mean and

fluctuating components, separating explicit dependence on small O(L∗) spatial scales and fast O(1)

time scale from the large O(ε−1) vertical scale and the slow O(ε−2) time scale, i.e.,

v(x, Z, t, T ) = v(Z, T ) + v′(x, Z, t, T ), (3.24)

where overbars denote small scale and fast time averages such that

v(Z, T ) ≡ 1

τV

∫
τ,V

f(x, Z, t, T )dxdt, v′ ≡ 0. (3.25)

The non-dimensional parameters and their distinguished relations to ε are now determined

as (Julien et al., 2006)

Frf = O(1), Eu ∼ ε−1, Ref = O(1). (3.26)

The Reynolds number in particular has an upper bound value Ref = o(Ro−2
f ) that indicates fluid

motions may be driven from laminar through to turbulent motions. Importantly, Frf serves as a

control parameter that may be varied from the strong stratification regime (Frf → 0) through to

the pure rotation regime (Frf � 1).

The asymptotic perturbation analysis given in appendix B reveals the simplification u−1 =

v′−1 ≡ 0 together with a leading order mean hydrostatic balance, i.e.,

∂Zp−1 = b−1. (3.27)

The leading order dynamics captured by the NH-QG equations are found to be in pointwise

geostrophic balance satisfying

ẑ × u′0 +∇p′0 = 0, (3.28a)

∇ · u′0 = 0. (3.28b)

This yields, on defining ∇⊥ = (∂x, ∂y, 0), the diagnostic solution

u′0 = −∇⊥ × ψ′0ẑ + w′0ẑ, p′0 = ψ′0, u0 = 0. (3.29)
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The reduced NH-QG equations describing the flow evolution are deduced at the next order

by application of asymptotic solvability conditions and are given by (dropping primes)

∂tζ0 + J [ψ0, ζ0]− ∂Zw0 =
1

Ref
∇2
⊥ζ0, (3.30a)

∂tw0 + J [ψ0, w0] + ∂Zψ0 = b0 +
1

Ref
∇2
⊥w0 + fw0 , (3.30b)

∂tb0 + J [ψ0, b0] + w0

(
∂Zb−1 +

1

Fr2
f

S(Z)

)
=

1

σRef
∇2
⊥b0, (3.30c)

∂T b−1 + ∂Z
(
w0b0

)
=

1

σRef
∂2
Zb−1. (3.30d)

This equation set gives the coupled evolution of vertical vorticity ζ0 = ∇2
⊥ψ0, vertical velocity

w0, and buoyancy b−1 + εb0 (decomposed into its mean and fluctuating components). Note that

Eu and Γ no longer appear, having been absorbed by a rescaling of the pressure (p→ p/Eu) and

buoyancy (b→ b/Γ ).

The NH-QG equations bear the enduring characteristics of quasi-geostrophic theory, specifi-

cally: leading-order pressure plays the role of the geostrophic streamfunction (p′0 = ψ0); planetary

rotation is solely responsible for axial vortex stretching (∂Zw0 in equation (3.30a)); material advec-

tion occurs only in the horizontal direction with u0⊥ · ∇⊥ ≡ J [ψ0, ·] = ∂xψ0∂y − ∂yψ0∂x, vertical

advection is a subdominant phenomenon with w0∂Zv0 = O(ε), where v0 = (u0, p0 = ψ0, b0)T .

In the presence of weak stratification, that is, when Frf ∼ 1 vertical motions are now

significant and result in the appearance of inertial acceleration terms in vertical momentum equation

(3.30b). Notably, linearization about a constant stable stratification profile S(Z) = −∂zρ̂ = 1 in the

inviscid limit Re→∞ captures the dispersion relation for slow inertial-gravity waves and vortical

eddies, both evolving on the order-one advective time scale. Therefore, the NH-QG equations

for rapidly rotating (Rof � 1) and weakly stratified (Frf ∼ 1) flow describe a regime in which

inertial-gravity waves and eddies (evolving on similar time scales) interact nonlinearly.
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3.3.1 Energetics and conserved quantities

Like the Boussinesq equations, the inviscid and unforced NH-QG equations conserve several

positive quadratic functionals. The time-rate-of-change of horizontal kinetic (HKE), vertical kinetic

energy (VKE) and potential energy (PE) are given2 , respectively, by

∂tHKE := ∂t

[
1

2

(
〈|∇⊥ψ0|2

A〉
)]

= 〈w0∂Zψ0
A〉, (3.31a)

∂tVKE := ∂t

[
1

2
〈w2

0

A
〉
]

= −〈w0∂Zψ0
A〉+ 〈w0b0

A〉, (3.31b)

∂tPE := ∂t

1

2

〈
b20
A(

∂Zb−1(Z) + Fr−2
f S(Z)

)〉
 = −〈w0b0

A〉, (3.31c)

where 〈·〉 and ·A denote vertical and horizontal averages, respectively, and the time-invariance of

total energy E = KE + PE = HKE + VKE + PE is clear. The equations also conserve a total

buoyancy variance

∂t〈(b20 + (b−1 + Σ(Z))2
A
〉 = 0, S(Z) := ∂ZΣ(Z) = −Fr−2

f ∂Zδρ̂. (3.32)

Finally, the NH-QG equations materially conserve a form of potential vorticity (PV)

∂tq + J [ψ0, q] = 0, (3.33a)

q = ζ0 + (ω⊥ · ∇⊥ + ∂Z)

(
b0

(∂Zb−1+Fr−2
f S(Z))

)
. (3.33b)

Notably, it can be seen the potential vorticity q can be partitioned into a linear and nonlinear

component dependent on vortical and vertical motions respectively.

3.3.2 Barotropic, baroclinic decompostion

Rapid rotation often induces a transfer of energy to the depth-independent component of

horizontal velocity (Smith and Waleffe, 1999). It is useful therefore to examine pathways by which

energy is converted to the depth-independent horizontal velocity with the remainder of the system.

In quasigeostrophic theory, the velocity is often expanded as a sum over a basis of vertical modes,

2 ‘Potential energy’ here is not an approximation to the gravitational potential energy −g〈ρzA〉, but the termi-
nology is conventional.
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the first of which is depth-independent and is conventionally called the ‘barotropic’ mode (Rocha

et al., 2016). More generally, the definition of a barotropic fluid is a fluid for which density is

a function of pressure alone. A constant-density fluid is an example of a barotropic fluid, but a

constant-density fluid need not be depth-independent – an apparent conflict with the conventional

quasigeostrophic usage of the term.

To fix a particular usage of the terms ‘baroclinic’ and ‘barotropic’ in the context of a stratified

Boussinesq fluid we take the following line of reasoning. In a Boussinesq fluid the deviation from

the constant reference density is −b∗ρ∗0/g, which is not generally a function of pressure alone unless

b∗ = 0. Because vertical velocity in the presence of a backckground stratification induces buoyancy

perturbations, w is intimately associated with baroclinicity and we choose to consider it as part of

the ‘baroclinic’ component of the dynamics. The barotropic component, having both b0 = 0 and

w0 = 0, must also have no vertical pressure gradient ∂Zψ0 = 0. This line of reasoning leaves the

depth-independent part of the horizontal velocity as the only element of the barotropic component,

with the baroclinic component comprising w0, b0, and the depth-dependent part of ψ0. Our use

of the terms is distinguished from an alternate use where ‘barotropic’ simply indicates the depth-

independent component and includes both 〈w0〉 and 〈b0〉.

We thus arrive at the barotropic-baroclinic (bt-bc) decomposition

u0,bt = −∇⊥ × 〈ψ0〉ẑ, b0,bt = 0, (3.34)

u0,bc = −∇⊥ × ψ′0ẑ + w0ẑ, b0,bc = b0

where ψ0 = 〈ψ0〉+ψ′0. Partitioning the NH-QG equations thus reduces to decomposing the vorticity

equation (3.30a), into its barotopic and baroclinic components. Namely

∂t〈ζ0〉+ J [〈ψ0〉, 〈ζ0〉] = −〈J [ψ′0, ζ
′
0]〉+

1

Ref
∇2
⊥〈ζ0〉, (3.35a)

∂tζ
′
0 + J [〈ψ0〉+ ψ′0, ζ

′
0]− 〈J [ψ′0, ζ

′
0]〉+ J [ψ′0, 〈ζ0〉]− ∂Zw′0 =

1

Ref
∇2
⊥ζ
′
0. (3.35b)

Equation (3.35a) is the two-dimensional barotropic vorticity equation. Within the barotropic sub-

space kinetic energy |∇⊥〈ψ0〉|2
A

and enstrophy 〈ζ0〉2
A

are conserved quantities in the absence
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of dissipation and forcing. Forcing of barotropic vorticity occurs through nonlinear interactions

between purely baroclinic fields in the form of advection of baroclinic vorticity by baroclinic hori-

zontal velocities, i.e., 〈J [ψ′0, ζ
′
0]〉 = 〈u′0⊥ ·∇ζ ′0〉. Therefore, this term acts as a source when u′0⊥ and

∇ζ ′0 are barotropically collinear.

Some comments are appropriate on the distinguishing features of the NH-QG equations in

comparison with a recent and alternative formulation by Wingate et al. (2011). In Wingate et al.

(2011) the asymptotic development is based strictly on a multiple-scales approach in time only

with an isotropic scaling of the spatial coordinates. The resulting slow manifold is found to be

one that strictly enforces the Proudman-Taylor constraint of the velocity field, i.e., ∂Zu0 = 0.

Consequently, the term coupling baroclinic and barotropic dynamics 〈J [ψ′0, ζ
′
0]〉 is predicted to be

asymptotically small, therefore decoupling barotropic vorticity dynamics from the now Taylorized

depth-independent baroclinic dynamics of 〈w0〉 and 〈b0〉. Stochastically forcing baroclinic dynamics

therefore cannot influence barotropic motions (Whitehead and Wingate, 2014). We contend that

the NH-QG equations demonstrate that slow inertial-gravity waves and baroclinic eddies are a vital

leading-order component of the dynamics at low Rossby and moderate Froude numbers.

3.4 Numerical simulation for stably stratified NH-QG equations

Since the layer of stably stratified fluid is void of a natural instability capable of inducing

fluid motion, artificial forcing is required. Previous studies have accomplished the task of forcing a

stable layer through the controlled injection of motion inducing energy (Smith and Waleffe, 2002;

Lindborg, 2006; Wingate et al., 2011). The present study induces fluid motions in a fashion similar

to these past investigations. In particular, we perform numerical simulations where motion is

induced by a controlled injection of vertical kinetic energy. By forcing the vertical momentum

equation only this study differs from those in which all three components of momentum are forced

(e.g. Sen et al., 2012; Marino et al., 2013). The forcing of vertical momentum has the desirable

consequence that the energy injected manifests only as wave energy energy, i.e., only wave modes

are directly excited. This is made clear by inspecting the amplitudes for the vortical and wave
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Regime Frf (Ref ) Frf (Ref = 50) Frf (Ref = 100) Frf (Ref = 300)

Ia 1
2Re

−1/2 0.0707 0.0500 0.0289

Ib* Re−1/2 0.1414 0.1000 0.0577

Ic 1
2(1 +Re−1/2) 0.5707 0.5500 0.5289

II* 1 1 1 1

IIIa 1
2(1 +Re3/4) 9.9015 16.311 36.542

IIIb* Re3/4 18.803 31.623 72.084

IIIc 2Re3/4 37.606 63.246 144.17

Grid resolution Nx ×Ny ×Nz 96× 96× 96 192× 192× 192 384× 384× 384

Table 3.1: Values of Frf as a function of Ref used in simulations of the NH-QG equations based on
the seven regimes identified in figure 3.1. Domain size for each simulation is 10Lf ×10Lf ×1, where
Lf = 1 is the imposed forcing length scale. To ensure sufficient resolution we use the convention
that ∆x = 2LK , where LK = Re−3/4 is the dissipation length scale, giving the number of Fourier
modes used in each Cartesian direction as Nx,y,z = LbRe

3/4/2. The Prandtl number is fixed at
σ = 7 for all simulations.
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eigenmodes C0
k and C±k , respectively,

C0
k =

Fr−1
f k⊥ζ̂k + ikZk⊥Frf b̂k

ωkk⊥
, (3.36a)

C±k =
−ik2

⊥ωkŵk ∓ ikZ ζ̂k ∓ k2
⊥b̂k

21/2ωkk⊥
. (3.36b)

It is clear that forcing any component of horizontal velocity or buoyancy directly induces vortical

energy, yielding nonzero values for C0
k. Therefore, if system energy is injected through vertical

kinetic energy by forcing the vertical momentum equation to induce non-zero values of ŵk (and

therefore non-zero values of C±k ), then energy transfer to the vortical modes C0
k must occur through

nonlinear interactions among these linear eigenmodes that act to transfer wave energy to vortical

energy. Why we desire vortical energy to originate from non-artificial means (i.e., nonlinear interac-

tions) is due to an interest in the natural process for the formation of large-scale coherent vortices.

Allowing such coherent structures to arise naturally allows for (in some sense) an uncontaminated

study of the inverse cascade.

The energy source occurs through the vertical momentum equation (3.30b) through the

physical-space forcing function fw0 . The following describes the method for building the forc-

ing function at each time-step in the numerical simulation of the NH-QG equations. An array

holding the discretized from of the forcing function is seeded pointwise in physical-space with inde-

pendent and identically distributed (i.i.d) spatial noise. For simulations performed here Gaussian

distributions are used and we employ the methods by Marsaglia and Tsang (2000) to generate

samples drawn from a normal distribution with zero mean and unit variance (these samples are

assigned to each grid point in the numerical domain). The discretized forcing function holding the

pointwise i.i.d. spatial noise is then Fourier transformed and then “shaped,” or spatially-correlated,

such that the forcing function fw0 has a spherically symmetric spectrum given by

Efw0
(k) = Cεf exp

(
−1

2
(|k| − kf )2

)
. (3.37)

This is implemented by performing the Fourier-space pointwise product of the forcing function fw0
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(holding the i.i.d Gaussian noise in Fourier-space) with√
Cεf exp

(
−1

2
(|k| − kf )2

)
, (3.38)

where εf is the flux of vertical kinetic energy into the system, kf is the prescribed forcing wavenum-

ber and the constant C is determined such that averaged energy injection is εf . This implementation

ensure that the vertical kinetic energy is centered about kf . For this study we set kf = 2π (setting

the nondimensional horizontal length scale to Lf = 1) and εf = 1 and we normalize the spectrum

of the forcing function so that volume averaged energy flux becomes∫ 2π

0

∫ π

0

∫ ∞
0

E2
fw0

(k)k2 sinφdkdφdθ = 1. (3.39)

The choice of Lf is important given the interest in studying the upscale energy transfer through

inverse cascade. To this end, the choice for a forcing scale requires our box-scale to be significantly

large (relative to the forcing scale) so as to allow room for the growth of large-scale fluid structures.

Forcing at larger scales or the box-scale would directly influence the largest scales, not allowing for

a natural inverse cascade through energy transfer via nonlinear interactions.

Numerical simulations of the NH-QG equations are performed in a triply-periodic box and

solutions are expanded in Fourier series. Such an idealization is standard and simplifies the anal-

ysis. We note that the Fourier expansion employed here is distinct from the use of Chebyshev

discretization in vertical as in §2 for the study of rapidly rotating Rayleigh-Bénard convection. The

numerical box has dimensional size LbLfRofH
∗ × LbLfRofH∗ ×H∗, where Lf = 1 is the nondi-

mensional forcing length scale and Lb is the nondimensional length of the horizontal domain, thus,

the nondimensional domain size is Lb × Lb × 1 and we set Lb = 10. The numerical time-stepping

scheme used is an implicit/explicit formally second-order Runge-Kutta scheme derived by Spalart

et al. (1991a) and previously used by Sprague et al. (2006) for numerical simulation of the NH-QG

equations for the rapidly rotating Rayleigh-Bénard problem.

While the spatially-correlated and normalized forcing function fw0 is a smooth physical-

space function it is, however everywhere discontinuous in time. That is, following the procedure
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outlined above at each time-step gives fw0 in Fourier-space (call this Fourier-space variable χ) as

a stochastic process. In particular, the variable fw0 satisfies the definition for a standard Wiener

process (Higham, 2001). The consequence for such a variable is that it cannot be treated with

standard numerical methods for time-stepping solutions to deterministic differential equations that

assume some degree of temporal smoothness/differentiability. The stochastic dynamics in this

investigation are treated with a simple splitting method where the deterministic dynamics are

treated independently of the stochastic forcing. After completing a full time step of the deterministic

dynamics a random forcing increment
√
dtχ is added to the deterministic solution for w0 (or, in

some initial tests, to b0), effectively using the Euler-Maruyama method

w∗n+1
0 = wn0 +

√
dtχ (3.40)

for the stochastic forcing term fw0(t) (Higham, 2001). In addition to respecting the stochastic

nature of the dynamics, this approach has the desirable property that the mean rate of energy

injection is independent of the system state, and is controlled a priori.

Fourier expansions are dealiased using the standard 2/3s rule. To ensure sufficient resolution

we use the convention that ∆x = 2LK , where LK = Re−3/4 is the dissipation length scale for

statistically steady flow. Use of this convention gives the number of Fourier modes used in each

Cartesian direction as Nx,y,z = LbRe
3/4/2. Resolutions used in our numerical simulations are given

in table 3.1. The simulation parameters (Ref , F rf , σ) are selected based on the regimes identified

in figure 3.1. For a given Ref we vary Frf so as to explore each of the seven regimes identified in

figure 3.1. This process of selecting Frf is outlined in table 3.1. All simulations are computed with

σ = 7.

In addition to forcing vertical velocity we have also performed numerical simulations with

buoyancy forcing as in Whitehead and Wingate (2014), however, since the momentum equations

decouple from the buoyancy equations for large Frf the injection of potential energy becomes

unphysical. For this reason we only present results associated with the injection of vertical kinetic

energy via the vertical velocity equation (3.30b).
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Numerical simulations are accomplished through the use of Fortran code written in large

part by Keith Julien, Edgar Knobloch and Joe Werne. For the parameters outlined in table 3.1

simulations are run on parallelized code using 16, 32, and 64 cores. The Janus supercomputer at

the University of Colorado Boulder was used where compute nodes contain two hex-core 2.8Ghz

Intel Westmere processors for 12 cores per node. These simulations were run with 963, 1923 and

3843 grid points, respectively. Run times vary from just a few hours for the smallest simulations

with 963 grid points split among 16 processors to several days for the largest simulations with 3843

grid points split among 64 processors. The method of parallelizing these simulations made use of

MPI and was achieved by partitioning physical space grid points into horizontal blocks grouped into

layers containing Nzp = Nz/ncpu vertical grid points (where ncpu is the number of processors used).

Blocks in Fourier-space are organized similarly, however, layers are split along the x̂-direction for

purposes of time-efficient communication.

3.5 Results

The nondimensional parameters defined in section 3.2 are based on a priori characteristic

scales built from the energy injection rate εf and injection scale Lf . These scales are not necessarily

the same as the scales that truly characterize the flow; certainly it is not the case that the large-

scale flows observed here occur on the forcing scale Lf = 1. For this reason we give a summary of a

posteriori nondimensional parameters that define the flows simulated. To do this we compute the

centroid of energy spectra to get a characteristic wavenumber kc and associated length scale Lc; we

compute a characteristic velocity Uc from the volume-averaged horizontal kinetic energy (HKE),

that is,

kc =

∫
kE(k)dk∫
E(k)dk

, Uc = (2HKE)1/2, (3.41)

where E(k), for example, are the curves in figure 3.9. These nondimensional measured values are

then used to define a posteriori Reynolds and Froude numbers
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Rec =
U∗c L

∗
c

ν
=
U∗fUcL

∗
fLc

ν
= RefUcLc, F rc =

U∗c
N∗0L

∗
c

=
U∗fUc

N∗0L
∗
fLc

= Frf
Uc
Lc

(3.42)

A posteriori Frc and Rec for a range of are parameters are summarized in table 3.2. Generally,

characteristic horizontal scales are larger than Lf , and characteristic velocities are larger than

Uf .This results in Reynolds numbers that are larger than Ref . The larger measured horizontal

scale Lc outweighs the increase in Uc, leading to Froude numbers that are smaller, in some cases by

an order(s)-of-magnitude, than Frf , however, what was considered weakly stratified as measured

by Frf remains so as measured by Frc.

Performing DNS of the NH-QG equations (with the nondimensional parameters outlined in

table 3.1) two qualitatively identifiable regimes are observed, corresponding to strong and weak

stratification: Frf < 1 and Frf ≥ 1 respectively. The regime diagram in figure 3.2 partitions

(Ref , F rf )-space into two regimes based on volume renders of vertical vorticity. In both regimes

the flow organizes into a large-scale, barotropic dipole with some additional small-scale turbulence.

Figures 3.3 and 3.4 gives renders for vertical vorticity, buoyancy and vertical velocity for strong

and weak stratifications when Ref = 300.

The strong stratification regime (Frf < 1, figure 3.3) is distinguished by a tendency of the

flow to form well-defined and sustained layers where small-scale turbulence is active and the local

stratification is reduced. Layering is observed for Ref = 100 and Ref = 300, but not for Ref = 50.

We conclude that the instability responsible for layering is inhibited by viscous effects at lower

Ref . We note that layering, as observed in figure 3.3 is not observed for classical QG dynamics

where energy rapidly transfers to large vertical scales (Smith and Vallis, 2001, 2002). In the second

regime of weak stratification (Frf ≥ 1, figure 3.4) the columnar structures are unobstructed by

layers, and evolve in a sea of small-scale turbulence.

In both regimes the energy accumulates primarily in the barotropic mode and at large hori-

zontal scales, indicating a robust inverse cascade of energy. At lower Reynolds numbers Ref ≤ 100

(Rec up to ≈ 2000) the total energy in the system reaches a statistical equilibrium. In addition to
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Figure 3.2: A qualitative partitioning of (Ref , F rf )-space using volume renders of vorticity. Values
of (Ref , F rf ) for which simulations were performed are denoted by an × (see Table 3.1). The
flow is characterized by layering, barotropization and an inverse cascade. For Frf < 1 the flow
organizes into well-defined layers (except at low-Ref , e.g., Ref = 50) and when Frf ≥ 1 layering
is absent. We emphasize the presence of a dominant barotropic component of energy and a clear
inverse cascade for all Frf simulated. Similar flow characteristics are observed for buoyancy and
vertical velocity (see Figures 3.3 and 3.4).

Frf = Re
−1/2
f

subspace Lc Uc Rec Frc
BT +BC 6.0 0.5 1.4× 102 0.0115

Ref = 50 BT 8.4 0.7 3.0× 102 0.0122
BC 3.3 0.2 33 0.0088

Re
3/4
f

Lc Uc Rec Frc
7.1 1.7 5.9× 102 4.5
8.6 2.5 1.0× 103 5.3
2.5 0.3 40 2.3

BT +BC 7.0 1.4 9.6× 102 0.0199
Ref = 100 BT 8.4 2.0 1.6× 103 0.0228

BC 2.0 0.1 29 0.0077

7.3 3.0 2.0× 103 12.1
8.4 3.5 2.0× 103 13.4
2.2 0.3 66 4.3

BT +BC 6.5 2.2 4.4× 103 0.0199
Ref = 300 BT 7.7 2.8 6.5× 103 0.0209

BC 2.2 0.2 1.5× 102 0.0056

6.6 2.9 5.7× 103 31.3
8.0 4.0 9.6× 103 35.8
1.6 0.3 1.4× 102 12.4

Table 3.2: Characteristic scales Uc and Lc computed from centroids of energy spectra and nondi-
mensional quantities Rec and Frc based on the measured values Lc and Uc. Scales that most closely
resemble Lf are baroclinic, while Lc in the barotropic subspace are significantly larger and resemble
the box-scale.
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(a) Vertical vorticity, ζ (b) Buoyancy, b (c) Vertical velocity, w

Figure 3.3: Volume renders of vertical vorticity ζ (left column), buoyancy b (middle column), and

vertical velocity w (right column) for the case of strong stratification Ref = 300, F rf = Re
−1/2
f .

Top row (top view), bottom row (side view).
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(a) Vertical vorticity, ζ (b) Buoyancy, b (c) Vertical velocity, w

Figure 3.4: Volume renders of vertical vorticity ζ (left column), buoyancy b (middle column), and

vertical velocity w (right column) for the case of weak stratification Ref = 300, F rf = Re
3/4
f . Top

row (top view), bottom row (side view).
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the inverse energy transfer, we diagnose a robust direct transfer of kinetic energy in the barotropic

mode, which allows the small amount of energy injected by the baroclinic motions to be balanced

by small-scale dissipation, leading to energy saturation. At higher Reynolds numbers, Ref = 300

(Rec greater than ≈ 4000), the total energy shows no sign of saturation. These results are presented

in more detail in the following subsections.

We note that these results do not necessarily represent universal properties of rotationally

constrained stratified flow in every respect. Undoubtedly, the dynamic behavior depends signifi-

cantly on the method by which external energy is injected to excite motion. As mentioned above,

the forcing method employed here excites vertical motion, therefore, only excites wave modes and

does not directly force the vortical mode. This approach to forcing aims to better understand

the energetic pathway from three-dimensional baroclinic motions to two-dimensional barotropic

motions.

3.5.1 Layering

Layering is observed in all fields though most distinct in the renders of vertical vorticity

shown in figure 3.3. To clarify terminology, we define layers to be the localized planar regions

home to small-scale turbulence and occurring for Frf < 1. Figure 3.5 shows the effect of strong

stratification on the time-averaged vertical gradient of the total mean buoyancy profile and on the

structure of ζ0,RMS for simulations with Ref = 100 and Frf ≤ 1. Reduction of stratification within

the layers is presumably associated with local turbulent mixing within the layers.

Some basic characteristics of the location and height of layers are given by the mean buoyancy

gradient and vertical profiles of ζ0,RMS . The more informative of the two is the set of RMS profiles

of vertical vorticity. The center locations for layers coincide with the location of local minima within

the peaks for ζ0,RMS and are obvious for Frf = 0.05 and Frf = 0.1. The neighboring local maxima

may be used to give a reasonable metric for layer height and indicate the presence of top and bottom

sublayers that make up an entire layer. As Froude number is increased layer height is observed

to increase. This effect is illustrated in figure 3.5 as Frf is increased from 0.05 to 0.55. When
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Figure 3.5: Time averaged vertical profiles for Ref = 100. Profiles of (a) total mean buoyancy, (b)
vertical gradient of mean buoyancy and (c) RMS vertical vorticity. Layering occurs in horizontal
planes where mean stratification is locally minimized. The effect on the stratification profile is due
to the nature of vertical buoyancy flux, similarly, layered structuring seen for vertical vorticity is
due vortex stretching. Layer locations coincide with locations of sharp local minima within the
peaks of ζ0,RMS . Layer height may be given by the distance between local maxima surrounding the
singular local minima and indicate the presence of sublayers (jets). The vertical extent of layers and
their sublayers is observed to increase with decreased stratification. Similar structuring is observed
for vertical velocity, buoyancy, and dissipation.
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Frf = 0.55 there is only one large layer of reduced stratification and increased turbulence, and one

smaller less-turbulent region of increased stratification that occupies approximately Z ∈ [0.2, 0.4].

Finally, we note that the instantaneous dissipation rate for energy is increased within the

layers. The instantaneous dissipation rate for horizontal kinetic energy is Re−1
f ζ2

A
, and figure 3.5(c)

clearly shows that this is increased within the layers. The dissipation rates for vertical kinetic energy

and buoyancy variance are also locally increased within the layers (not shown). The dynamics

leading to the formation of the layers is as yet unknown.

3.5.2 Timeseries, equilibration and average energy conversions

We find that total energy is largely dominated by horizontal kinetic energy and this becomes

increasingly true as stratification weakens and the system approaches purely rotating dynamics.

For this reason we focus primarily on the horizontal kinetic energy, hereafter HKE. Figure 3.6

shows timeseries of volume averaged HKE for strong stratification (Frf = Re
−1/2
f , top row) and

weak stratification (Frf = Re
3/4
f , bottom row) at Ref = 50, 100, and 300; the panels correspond

to places where dashed lines in figure 3.2 intersect with an ×. Each plot shows the volume averaged

barotropic, baroclinic and total horizontal kinetic energy, denoted as 〈HKE〉, HKE′, and HKE,

respectively. In every case, the total HKE is dominated by the barotropic part; the only exception

in our simulation suite being Ref = 50 and Frf = 0.0707, where the energy accumulates in a large

vertical scale, but not barotropic (not shown). At lower Reynolds numbers, Ref ≤ 100, the HKE

saturates, while the simulations at Ref = 300 show no indication of saturation, and it is not clear

whether it will eventually saturate.

Equation (3.31) shows that vortex stretching and vertical buoyancy flux govern the conversion

of V KE to HKE and PE to V KE, respectively. Furthermore, conversion of kinetic energy from

the baroclinic component HKE′ to the barotropic component 〈HKE〉 may be understood by

multiplying inviscid equations (3.35a) and (3.35b) by −〈ψ0〉 and −ψ′0 to get
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(a) Ref = 50, F rf = 0.1414 (b) Ref = 100, F rf = 0.1 (c) Ref = 300, F rf = 0.0577
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(d) Ref = 50, F rf = 18.803 (e) Ref = 100, F rf = 31.623 (f) Ref = 300, F rf = 72.084
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Figure 3.6: Timeseries of volume averaged barotropic, baroclinic and total horizontal kinetic energy

at Frf = Re
−1/2
f (a)-(c) and Frf = Re

3/4
f (d)-(f). These timeseries correspond to points where an

× sits on the dashed lines in figure 3.2(a). A notable feature is the saturation of HKE at Ref = 50
and Ref = 100. Computationally expensive simulations at Ref = 300 have not equilibrated. The
barotropic component 〈HKE〉 contains nearly all the horizontal kinetic energy after an initial
spin-up time.
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∂t〈HKE〉 := ∂t

[
1

2
|∇⊥〈ψ0〉|2

A
]

= 〈ψ0〉〈J [ψ′0, ζ
′
0]〉A (3.43a)

∂tHKE
′ := ∂t

[
1

2
〈|∇⊥ψ′0|2

A〉
]

= −〈ψ0〉〈J [ψ′0, ζ
′
0]〉A + 〈w′0∂Zψ′0

A〉 (3.43b)

From the above equations it is clear that vortex stretching occurs only within the baroclinic subspace

from which the two-dimensional barotropic subspace derives its energy. Moreover, flows for which

a dynamic equilibrium is obtained have volume averaged conversion rates that balance dissipation

rates. Specifically, by including viscous terms in equations (3.31) and (3.43) and assuming steady

states, the following expressions for dissipation rates result

〈HKEdissip〉 := −〈ψ0〉〈J [ψ′0, ζ
′
0]〉A = − 1

Ref
〈ζ0〉2,

A
(3.44a)

HKE′dissip := 〈ψ0〉〈J [ψ′0, ζ
′
0]〉A − 〈w′0∂Zψ′0

A〉 = − 1

Ref
〈ζ ′20
A
〉, (3.44b)

V KEdissip := 〈w0∂Zψ0
A〉 − 〈w0b0

A〉 − εf = − 1

Ref
〈|∇⊥w0|2

A〉, (3.44c)

PEdissip := 〈w0b0
A〉 = − 1

Pef

〈
|∇⊥b0|2

A

∂Zb−1 + Fr−2
f S(Z)

〉
. (3.44d)

Summing equations (3.44a) and (3.44b) gives the total dissipation rate of HKE, which matches

the total energy conversion by vortex stretching. Summing all dissipation rates in (3.44) gives the

total energy dissipation rate, which is precisely the rate εf at which energy is injected. Figure 3.7

shows volume and time averaged energy conversion rates as functions of Frf . These conversions

are those given by equations (3.31) and (3.43). Additionally, for equilibrated flow, as is the case for

simulations with Ref = 50 and Ref = 100, energy conversion rates in figure 3.7 also provide the

dissipation rates given by equation (3.44). In the following we compare and contrast the ways in

which energy is converted from one type to another before being eventually dissipated in the two

regimes.

From figure 3.7(f) it is clear that in both regimes most of the energy input to V KE is

dissipated as V KE. A greater percentage of the total energy input is dissipated as V KE in the
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(a) 〈w0∂Zψ0
A〉 (b) 〈ψ0〉〈J [ψ′0, ζ

′
0]〉A
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Figure 3.7: Volume and time averaged energy fluxes and dissipation rates for Re = 50, 100, 300
for strong (Frf < 1) and weak (Frf ≥ 1) stratification. Conversion of kinetic energy via (a) vortex
stretching (appearing to be most efficient at Frf ≥ 1), (b) baroclinic forcing, and (c) vertical
buoyancy flux (showing the decreased role of PE as Frf increases above Frf = 1). Curves in
(d) give the ratio of fluxes due to baroclinic forcing to that due to vortex stretching. Dissipation
of HKE′ and V KE are given in (e) and (f), respectively. For small values of Frf roughly 90
percent of all energy dissipation is done on V KE while it accounts for about 75 percent of energy
dissipation at the weakest stratifications.
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strong-stratification regime (more than 80%), but a significant amount is still dissipated as V KE in

the weak-stratification regime too (65–75%). The vortical mode lacks vertical velocity, and the fact

that most of the energy injected to wave modes does not convert to horizontal kinetic or potential

energy is an indication of the weakness of the wave-vortex interactions in the rapidly-rotating

regime.

Figure 3.7(a) shows the mean energy conversion rate from V KE to HKE by vortex stretch-

ing. In the weakly-stratified regime the percentage of total energy injection that is converted to

HKE remains around 20%, with a very weak sensitivity to the Reynolds and Froude numbers. By

contrast, as the stratification increases past Frf ≈ 1 the rate of conversion to HKE drops rapidly,

with less conversion for lower Reynolds numbers. Indeed, of the total input, only approximately

3–4% is converted to HKE at the smallest Froude number at Ref = 100. This is consistent

with known results for the strongly-stratified, rapidly-rotating quasigeostrophic regime where wave

modes interact extremely weakly with vortical modes.

We next examine conversion of baroclinic to barotropic HKE. From equation (3.35) it

is clear that baroclinic motions are solely responsible for exciting barotropic motions. In both

regimes of weak and strong stratification, we find that the conversion of baroclinic to barotropic

energy (F = 〈ψ0〉〈J [ψ′0, ζ
′
0]〉A) is roughly statistically steady in time and positive. Time averaged

values for the conversion F are summarized in figure 3.7(b). Like the rate of conversion from V KE

to HKE, the rate of conversion from baroclinic to barotropic HKE is insensitive to Ref and

Frf in the weakly-stratified regime, and drops sharply with Frf in the strongly-stratified regime.

Not only does the gross rate of energy injection to the barotropic mode decrease with Frf in the

strongly-stratified regime, the percentage of conversion from V KE to HKE that further converts

to barotropic HKE decreases too, as shown by figure 3.7(d). For example, at the smallest Froude

number and at Ref = 100 less than 40% of the conversion to HKE further converts to barotropic

HKE. As mentioned above, the simulation with Ref = 50 at the strongest stratification does not

exhibit barotropization, which may be due to an insufficient O(10−3) energy flux into the barotropic

mode compared to viscous dissipation (see figures 3.7(b) and 3.7(e)).
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Clearly, the saturation of the barotropic energy observed at moderate Reynolds numbers is

not the result of a shutdown of injection to the barotropic mode. The fact that the barotropic en-

ergy saturates despite a net positive energy injection indicates that there must be a net dissipation

to balance the forcing. None of our simulations use a large-scale dissipation, so the barotropic dissi-

pation must be viscous. In section 3.5.3 we diagnose a small yet robust direct cascade of barotropic

kinetic energy that carries enough energy to small scale dissipation that the total barotropic energy

is able to equilibrate at Ref ≤ 100.

Energy injected directly to V KE also converts to potential energy; the mean rate of conver-

sion from V KE to PE is shown in figure 3.7(c). This conversion out of V KE displays somewhat

opposite behavior to the conversion from V KE to HKE: in the strongly-stratified regime the con-

version remains flat, insensitive to both Reynolds and Froude numbers, while in the weakly-stratified

regime the conversion decreases rapidly as the stratification weakens and with little dependence on

Reynolds number.

To summarize, in both regimes energy injected to V KE is primarily dissipated as V KE,

and there is a net positive conversion to barotropic KE that is, for moderate Reynolds numbers,

balanced by dissipation leading to total energy equilibration. In the strongly-stratified regime the

conversion to baroclinic HKE decreases with Frf , as does the rate of conversion to barotropic

HKE, while the rate of conversion to PE remains moderate and insensitive to Frf . In the weakly-

stratified regime the conversion to baroclinic HKE remains moderate and insensitive to Frf , as

does the rate of conversion to barotropic HKE, while the rate of conversion to PE decreases

rapidly as Frf increases.

3.5.3 Cospectra and scales active in energy conversion

While illuminating, the discussion in section 3.5.2 is based on global scalars obtained from

volume and time averages and is altogether lacking any spatial information. To improve on this, ver-

tically and time averaged cospectra are computed. These one-dimensional cospectra are calculated

by decomposing horizontal means of point-wise physical space products as a the sum of Fourier
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Figure 3.8: Vertically and time averaged horizontal cospectra of energy fluxes at Ref = 100 for
times proceeding energy saturation. Cospectra in (a) give conversions between HKE and V KE by
vortex stretching, (b) give the barotropization of HKE and indicate a flux of HKE′ into the gravest
horizontal mode at k̃⊥ = 1, and (c) give conversions between V KE and PE by vertical buoyancy
flux and strongly indicate that these conversion become increasingly weak as Frf increases beyond
unity.
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space products, reordering sums over circular rings, binning, and averaging in the ẑ direction, i.e.,

(f, g)(k̃⊥) = 〈
∑

0<|k̃′⊥−k̃⊥|≤1

f̂(k′⊥, Z)ĝ(k′⊥, Z)〉, k̃⊥ =
k⊥
k0

= 1, 2, 3, . . . (3.45)

where k̃⊥ and k̃′⊥ are horizontal wavenumbers normalized by the box scale k0 = 2π/Lb, the bar

here denotes complex conjugation, hats denote horizontal Fourier amplitudes, and angle brackets

denote a vertical average. Furthermore, the temporal mean of cospectra are computed to provide

the scales active in energy conversion on average. Figure 3.8 shows cospectra of vortex stretching,

barotropization of HKE, and vertical buoyancy flux for simulations with Ref = 100 and with

Frf = Re
−1/2
f , 1, Re

3/4
f . Similar cospectra are observed for Ref = 50 and Ref = 300. Although

simulations with Ref = 300 have not reached a dynamic equilibrium they too convey the trends

observed for Ref = 100 in figure 3.8.

For the strongest stratification, figure 3.8(a) indicates that conversion to HKE′ by vortex

stretching occurs at all available scales with a preference for k̃⊥ ≈ 5 (or L ≈ 2Lf ), and may hint

at a preferred scale for wave-vortex interactions. The centroid (or the average wavenumber) active

for this energy conversion by vortex stretching is just less than k̃f = 10 (or L ≈ Lf = 1), however,

the efficiency of vortex stretching is best at L = 2Lf . The barotropization of HKE in figure 3.8(b)

shows that horizontal baroclinic motions act to force barotropic motions at all scales, however,

with a strong preference for the largest available horizontal scale. That this baroclinic forcing is,

on average, positive definite is consistent with equation (3.44a) and implies that this barotropized

energy is trapped in the barotropic mode until it is viscously dissipated. Figure 3.8(c) shows that

the conversion between PE and V KE depends on scale: V KE is converted to PE for k̃⊥ < k̃f ,

and PE is converted back to V KE for k̃⊥ & k̃f with a net conversion to PE and a peak efficiency

at k̃⊥ = 3 (L ≈ 3.3Lf ).

When stratification weakens and Frf = 1, there is still a net conversion from V KE to HKE

by vortex stretching, but that for stronger stratification stretching converts horizontal kinetic energy

back to vertical kinetic energy at the two largest available scales (k̃⊥ = 1, 2). Vortex stretching
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continues to most efficiently convert vertical to horizontal kinetic energy at k̃⊥ = 5 (L = 2Lf ),

and is nearly four times the conversion seen at stronger stratification. Baroclinic motions continue

to drive barotropic motions in a fashion similar to that at stronger stratification, however, this is

done with slightly increased efficiency especially for 5 < k̃⊥ < 20 (figure 3.8(b)). Potential energy

becomes weak to the point were the feedback to vertical kinetic energy for k̃⊥ > k̃f is substantially

reduced and a preference to convert vertical to potential energy at scales k̃⊥ = 5 (L = 2Lf ) is

smaller than that at Frf = Re
−1/2
f .

Finally, for the weakest stratification where Frf = Re3/4, conversion from V KE to HKE

is very similar to Frf = 1, with the exception that conversion back to vertical kinetic energy only

occurs at k̃⊥ = 2 rather than both k̃⊥ = 1 and 2. At all other scales vortex stretching acts to

move energy from vertical motions to baroclinic horizontal motions and does so most efficiently

near k̃⊥ = 5. That the largest scale now plays a role via vortex stretching in converting vertical

to horizontal energy (contrary to what occurs when Frf = 1) might be explained by an increased

pool of energy made available by the decreased role of buoyancy (see figure 3.7(c)). Barotropization

of horizontal kinetic energy, forced by baroclinic motions, is virtually identical to Frf = 1 and

figure 3.8(c) iterates the insignificance of buoyancy and an approach to purely rotating dynamics.

3.5.4 Energy spectra

Vertically and time averaged horizontal energy spectra for simulations with Ref = 300, Frf =

0.0577, and Frf = 72.084 are computed using equation (3.45) and are given in figure 3.9. Similar

spectra are observed for remaining values of Frf and at lower Ref . Both plots give barotropic,

〈HKE〉 = (−〈ψ0〉, 〈ζ0〉), and baroclinic, HKE′ = (−ψ′0, ζ ′0), components of the total horizontal

kinetic energy spectrum, HKE = (−ψ0, ζ0).

For both strong and weak stratification a k̃−3
⊥ energy spectrum for k̃⊥ ∈ [1, 3] is dominated

by barotropic energy. For strong stratification the barotropic energy drops off steeply as k̃
−20/3
⊥

for k⊥ ∈ [3, 8], and gives way to a k̃−3
⊥ scaling below the forcing scale. At weak stratification the

steep scaling is short-lived and the barotropic spectrum quickly gives way to a k̃−3
⊥ scaling near the
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Figure 3.9: Vertically and temporally averaged horizontal energy spectra for Ref = 300 with
(a) Frf = 0.0577 and (b) Frf = 72.084. Each figure shows the barotropic, 〈HKE〉 = (−〈ψ0〉, 〈ζ0〉),
and baroclinic, HKE′ = (−ψ′0, ζ ′0), components of horizontal kinetic energy spectra, HKE =
(−ψ0, ζ0). A k−3

⊥ energy spectra at small wavenumber is due to energy containing scales in the
barotropic subspace for both strong and weak stratification. For strong stratification and larger

wavenumber a steep k
−20/3
⊥ scaling for barotropic energy gives way to a k−3

⊥ scaling near the
dissipation range. For weak stratification the steep scaling is short-lived.
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forcing scale. The presence (absence) of the steep drop-off in energy for strong (weak) stratification

might be explained, to some extent, by the weaker (stronger) baroclinic forcing for k̃⊥ ∈ [3, 8]

(see figure 3.8(b)), indeed, the shape of the forcing cospectrum decreases (sustains) in this range.

In turn, the difference in behavior of baroclinic forcing might be explained by flow morphology.

At strong stratification horizontal layers appear and are associated with increased viscous effects

that may disrupt collinearity of baroclinic advection of the baroclinic vorticity with the barotropic

streamfunction (figure 3.8(b)). When layers are absent at weaker stratification so are associated

regions of increased viscous effects and the result is an increased efficiency of baroclinic forcing

(figure 3.8(b)).

For strong stratification, as k̃⊥ increases and barotropic energy becomes subdominant, the

baroclinic energy spectra scales as k̃
−5/3
⊥ for k̃⊥ ∈ [4,≈ 20]. When stratification is weaker this

scaling range appears to narrow, which may be explained by increased vortex stretching which acts

to force baroclinic energy most efficiency in the range k̃⊥ ∈ [4, 5].

3.5.5 Barotropization and inverse cascade

It is interesting to consider the barotropic dynamics since these motions are governed by the

two-dimensional vorticity equation (3.35a). If two-dimensional dissipative flow is forced at scales

well separated from frictional effects acting on energy and enstrophy then an upscale energy range

and a downscale enstrophy range form where, in the limit of vanishing viscosity the downscale

transfer of energy through the enstrophy range is expected to vanish. In our simulations, of the

energy converted to baroclinic HKE by vortex stretching a fraction (which depends on Frf ) acts

to force the barotropic vorticity equation (see figure 3.7(d)). Figure 3.8(b) illustrates that baroclinic

motions establish a natural injection of energy directly into the gravest barotropic mode, so that

the accumulation of energy at large scales in the barotropic mode does not result primarily from a

two-dimensional inverse-cascade process. Dissipation in the barotropic subspace, therefore, occurs

through a nonzero forward energy cascade. Figure 3.10 gives a detailed map of the transfer of energy

between barotropic Fourier modes performed by barotropic triad interactions for equilibrated flow
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T
k̃⊥p̃⊥

, T
k̃⊥

Figure 3.10: Energy transfer map showing how barotropic triad interactions move energy within
the barotropic subspace for equilibrated dynamics where Ref = 100 and Frf = 0.1. The vertical
profile (on the right) is the result of summing the transfer map Tk⊥p⊥ over p⊥ to get Tk⊥ . Note the
scale for Tk⊥ is O(10−5), an indication that energy transfer via triad interaction are weak relative
to baroclinic forcing. Similar results are seen for weak stratification. Red (blue) shading indicates
that energy is transferred into (out of) wavenumber k̃⊥ through interactions with wavenumber p̃⊥.
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at Ref = 100 (Rubio et al., 2014). The near-diagonal elements of this map at large wavenumber

show a local forward transfer of energy to small scales coexisting with a non-local inverse cascade at

larger scales. The accumulation of energy at large horizontal scales in the barotropic mode in these

rapidly rotating flows is primarily the result of three-dimensional baroclinic motions interacting

to directly induce large-scale and vertically-invariant structures; it is not primarily a result of

baroclinic injection to an intermediate scale, followed by a purely-barotropic inverse cascade to

larger scales.

3.6 Vortical and wave modes for Rof � 1 and Frf ∼ 1

This section provides a brief introduction to the vortical and wave eigenmodes of the reduced

NH-QG equations. Note that the terms “eigenmode,” “eigenfunction,” and simply “mode” are

used interchangeably to refer to the decomposition of the fluid state at a prescribed wavenumber

k. In the literature, the vortical and wave modes are sometimes referred to as the geostrophic and

ageostrophic modes, respectively, however in the context of the NH-QG equations where solutions

satisfy a point-wise geostrophic balance such a categorization does not make sense. For this reason,

when dealing with the NH-QG equations we will refer to these modes as vortical and wave modes.

The initial goal here is to obtain a decomposition of solutions to the linear NH-QG equations

similar to that obtained by Bartello (1995), however this is done for the NH-QG equations valid for

Ro� 1 and Fr = O(1), a regime of increasing importance with increased attention to small-scale

oceanic motions where non-hydrostatic effects become important. Once such a decomposition is

obtained we take note of the linear independence of eigenvectors and use their basis expansion in

the expression of nonlinear terms. It is noted that such an analysis is also carried out by (Warn,

1986) for the shallow water equations.

It is hard to emphasize enough that the NH-QG equations are valid for Fr = O(1).

We make use of the toroidal-poloidal decomposition which automatically satisfies leading-

order geostrophy. We consider the an inviscid and unforced fluid linearized about a state of rest

using the NH-QG equations with stable stratification S(Z) = 1 and in terms of the geostrophic
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streamfunction ψ, velocity potential φ. Dropping subscripts indicating asymptotic order the equa-

tions become

∂t∇2
⊥ψ − ∂Z∇2

⊥φ = 0, (3.46a)

∂t∇2
⊥φ+ ∂Zψ = b, (3.46b)

∂tb+
∇2
⊥φ

Fr2
= 0, (3.46c)

∂T b−1 = 0. (3.46d)

Here b−1 is slowly varying in time and decoupled from the remaining fluctuating quantities. We

continue to work in a triply-periodic domain so that fluid variables are expressed as Fourier series


ψ

φ

b

 (x, y, Z, t) =
∑
k


ψ̂k

φ̂k

b̂k

 (t)eik·x, (3.47)

where

k = (k⊥, kZ) = (kx, ky, kZ) ∈ Z3. (3.48)

The Fourier coefficients at a given wavenumber k satisfy one of three different systems depending

on which set k belongs to: the barotropic set where kZ = 0, the baroclinic set where kZ 6= 0,

and the horizontally averaged set where k⊥ = 0. Substituting (3.47) into (3.46) the linear NH-QG

system at a single Fourier mode satisfies (assuming k⊥ 6= 0)

∂t


−k2
⊥ψ̂k

−k2
⊥φ̂k

b̂k

 =


0 ikZ 0

ikZ
k2⊥

0 1

0 − 1
Fr2

0




−k2
⊥ψ̂k

−k2
⊥φ̂k

b̂k

 . (3.49)

However, when k⊥ = 0 (or θ = tan−1(k⊥/kZ) = 0) the system (3.46) is in hydrostatic balance

where (u, v, w) = (−∂yψ, ∂xψ,∇2
⊥φ) = 0, b and ψ are slowly varying. For the Boussinesq equations

such a state where k⊥ = 0 corresponds to pure inertial waves, however for the NH-QG equations



95

pure inertial waves are absent (a consequence of the large aspect ratio dynamics/scaling that filters

these fast waves see §3.2.2). Given that flow described by the NH-QG equations trivializes to a

quiescent state when k⊥ = 0 we no long consider this case. We may, if we wish, consider separately

the dynamics associated with the case where kZ = 0, however, this follows immediately from the

results of the linear analysis with k⊥ 6= 0 and kZ 6= 0. The following change of variables elucidates

the linear wave solutions


−k2
⊥ψ̂k

ik3
⊥φ̂k

Frk⊥b̂k

 =


1 0 0

0 −ik⊥ 0

0 0 Frk⊥




−k2
⊥ψ̂k

−k2
⊥φ̂k

b̂k

 , (3.50)

where, Pk = diag[1,−ik⊥, F rk⊥]. Upon writing (−k2
⊥ψ̂k, ik

3
⊥φ̂k, F rk⊥b̂k)T = (ζ̂k,−ik⊥ŵk, F rk⊥b̂k)T ,

the linear system may be written as

∂t


ζ̂k

−ik⊥ŵk

Frk⊥b̂k

 = i


0 ikZ/k⊥ 0

−ikZ/k⊥ 0 −1/Fr

0 −1/Fr 0




ζ̂k

−ik⊥ŵk

Frk⊥b̂k

 , (3.51)

which is similar to the system (3.49) (i.e., they share the same spectrum). It is worth noting that

conditions for real-valued solutions become ζ̂∗k = ζ̂−k, ŵ∗k = −ŵ−k, and b̂∗k = b̂−k. Alternatively,

we may write (3.51) as

∂tvk = iLkvk (3.52)

where vk = (ζ̂k,−ik⊥ŵk, F rk⊥b̂k)T . We note that Lk is self-adjoint, therefore the operatorA = iLk

is skew-adjoint and we expect solutions to display oscillatory behavior (i.e., the system has purely

imaginary eigenvalues). The eigenvalues for A = iLk are

λ0
k = 0, λ±k = ±i

√
1

Fr2
+
k2
Z

k2
⊥

= ±iωk, (3.53)
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with associated eigenvectors

ξ0
k =

1

ωkk⊥


k⊥/Fr

0

−ikZ

 , ξ±k =
1

21/2ωkk⊥


±ikZ

ωkk⊥

∓k⊥/Fr

 . (3.54)

where ωk = (1/Fr2 + k2
Z/k

2
⊥)1/2, and the eigenvectors are normalized to satisfy the orthogonality

condition 〈ξik, ξ
j
k〉 ≡ ξ

i†
k ξ

j
k = ωi,j (where † denotes complex-conjugate transpose), therefore eigen-

vectors form the columns of the unitary matrix Uk = (ξ0
k, ξ
−
k , ξ

+
k ). Moreover, the state of the

system at any time t and wavenumber k can be uniquely expressed by the linear combination

vk =
(
ξ0
k, ξ
−
k , ξ

+
k

)


C0
k

C−k

C+
k

 (t) = UkCk =
∑
i=0,±

Cik(t)ξik. (3.55)

Upon substituting this decomposition into (3.52) and using orthogonality gives the relation

∂tC
i
k = λikC

i
k (3.56)

for i = 0,±, therefore define

Vk = C0
k, C±k = G±k e

λ±k t (3.57)

It is clear from (3.55) that solutions may either be built from or decomposed into the modal

amplitudes Ck. Projections onto eigenvectors ξik yields the the modal amplitudes via Ck = U †vk

giving

C0
k =

Fr−1k⊥ζ̂k + ikZk⊥Frb̂k
ωkk⊥

, (3.58a)

C±k =
−ik2

⊥ωkŵk ∓ ikZ ζ̂k ∓ k2
⊥b̂k

21/2ωkk⊥
. (3.58b)

Inspection of these modal amplitudes and eigenvectors conveys the fluid motions they describe.

The slowly evolving mode with zero frequency and amplitude corresponds to horizontal rotational
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motions which is made obvious by considering the eigenfunction ξ0
k which lacks vertical velocity,

therefore describes horizontal flow in hydrostatic balance. The remaining inertial-gravity mode with

amplitudes C±k and eigenfunctions ξ±k are referred to as such since these satisfy the inertial-gravity

linear dispersion relation.

This analysis separates the dynamics at a given wavenumber k into components with slow

variation (no linear/localized variation) and oscillatory (wave) dynamics that vary (relative to the

slow dynamics) rapidly, denoted with subscripts i = 0,± respectively. Moreover, the fluid state

may now be expressed uniquely as

Y (x, y, Z, t) =
∑
k

∑
sk=0,±

Cskk (t)ξskk e
ik·x, (3.59)

where the modal amplitudes and eigenvectors satisfy the properties

Csk∗k = Csk−k, ξsk∗k = ξsk−k, (3.60)

yielding real-valued solutions Y (where asterisks denote complex-conjugation).

3.6.1 Modal energy

Thus far the linear analysis of the reduced NH-QG bears strong similarities with the analysis

presented by Bartello (1995), with the exception of differences due to aspect ratio and the simplifi-

cation of the dynamics with k⊥ = 0. The energy at k⊥ = 0 has been observed to tend to zero with

decreasing Ro in simulations by Waite and Bartello (2006) who claim that in such a regime energy

transfer into this “shear” mode ceases, or at the very least, is significantly inhibited. From the

perspective of the NH-QG equations we claim that transfer into this mode is asymptotically weak

in the limit Ro � 1 for Fr ∼ 1. Working forward from here we take note of contrasting defini-

tions for the terms “barotropic” and “baroclinic” described in §3.3.2 from that implied by Bartello

(1995). In the present study the baroclinic dynamics are entirely represented by vertical veloc-

ity, buoyancy and depth-dependent horizontal velocity, while barotropic dynamics are exactly the

depth-independent component of horizontal velocity. The total energy E = HKE + V KE + PE,
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decomposed as the sum of horizontal and vertical kinetic energy and potential energy, may be

written as

E = 〈|∇⊥ψ|2 + w2 + (Frb)2〉 (3.61a)

=
∑
k

k2
⊥|ψ̂k|2 + |ŵk|2 + Fr2|b̂k|2 (3.61b)

=
∑
k

k−2
⊥

(
|ζ̂k|2 + k2

⊥|ŵk|2 + k2
⊥Fr

2|b̂k|2
)

(3.61c)

=
∑
k

k−2
⊥ v

†
kvk =

∑
k

k−2
⊥ C

†
kCk (3.61d)

where the last line uses (3.55) and the fact that U is unitary and shows the manner in which energy

at wavenumber k may be partitioned among slow and fast dynamics. Therefore, define the energy

Ek at wavenumber k by

Ek = k−2
⊥ C

†
kCk (3.62a)

= k−2
⊥
(
|C0

k|2 + |C−k |
2 + |C+

k |
2
)
. (3.62b)

3.6.2 Nonlinear wave-eddy interactions

As mentioned in §3.2.2, when Ro � 1 and Fr ∼ 1 there is no clear time scale separation

between wave periods and the eddy-turnover time, on the other hand these values for Ro and Fr

allow for an increased range of resonant interactions. With this in mind we introduce the expression

(3.59) into the inviscid and nonlinear NH-QG equations

∂tY = iLY −N (3.63)

where, upon taking Fourier transforms and using orthogonality eigenvectors of iL, the equation

governing modal amplitudes Cskk at wavenumber k is given by

(
∂t − λskk

)
Cskk =

∑
k=p+q

∑
sp=0,±

∑
sq=0,±

N
sk,sp,sq
k,p,q C

sp
p C

sq
q , (3.64)

where sk = 0,±, k = p+ q gives the condition for triadic interactions where

N
sk,sp,sq
k,p,q = N(p⊥, q⊥)

(
x̂ · ξspp

) (
P †kξ

sk
k

)†
ξ
sq
q , (3.65)
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N(p⊥, q⊥) = N(q⊥,p⊥) =
ẑ · p⊥ × p⊥

2p2
⊥q

2
⊥

(
p2
⊥ − q2

⊥
)
. (3.66)

Equation (3.67) exemplifies that linear wave dynamics and variation due nonlinearities occur on the

same time scale. Specifically, when Fr ∼ 1 (moderate stratification) or Fr � 1 (weak stratification)

then corresponding wave frequencies are λ±k ∼ 1, i.e., wave motions and the nonlinear response

(the right-hand-side of (3.67)) occur on the same time scale. However, in the presence of strong

stratification, when Fr � 1, the linear wave frequency is such that λ±k ∼ Fr−1 � 1. In this

strongly stratified regime the fast dimensional time scale τ∗wave for temporal variations of wave

modes and the slow time scale T ∗L∗/U∗ for the temporal variations of the vortical mode are such

that T ∗/τ∗wave � 1. Therefore, a clear time scale separation between the fast weakly nonlinear

evolution of wave modes and the slow evolutions of the vortical mode is abundantly evident when

Fr � 1, and a multiple time scale analysis may be performed (Bartello, 1995).

These results are nearly identical to those of the full Boussinesq equations. In summary, when

k⊥ = 0 the system is in hydrostatic balance and kinetic energy is identically zero and pure inertia

waves have been filtered, in agreement with numerical simulations of Waite & Bartello (2006) where

it is shown that kinetic energy tends to zero with Ro.

For the linearized equations (small-amplitude motions) potential vorticity (PV) becomes

q = ζ + Fr2∂Zb. Expressing conservation of linear PV in Fourier space, where field variables are

linear combinations of ei(k·x+ωkt), gives

0 = ωk

(
ζ̂k + iFr2kZ b̂k

)
,

= ωkFr
(
Fr−1k⊥ζ̂k + ik⊥kZFrb̂k

)
,

= ω2
kFrk⊥C

0
k.

If ωk 6= 0 then linear PV must be zero, i.e., q = 0. Moreover, the vortical mode energy must vanish.

Similarly, if linear PV is nonzero then it must be the case that ωk = 0. Therefore, eigenmodes for

which ωk 6= 0 possess zero linear PV and the eigenmode with frequency ωk = 0 carries all linear

PV. For this reason the mode associated with ωk = 0 is often referred to as the PV mode. We now

take note that this PV mode is a conserved quantity. These results, which hold for the reduced
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equations, are precisely those for the full Boussinesq equations (Smith & Waleffe (2002), Bartello

(1995)).

3.6.3 Energetics

We may consider the energy exchanges that occur as a result on nonlinear response for both

vortical and wave modes. From equation (3.67) we may form the evolution of vortical and wave

energies (adopting the schematic notation used by Bartello (1995)):

∂t|Vk|2 =
∑

k=p+q

N0,0,0
k,p,qV

†
kVpVq +N0,0,±

k,p,qV
†
kVpG

sq
q e

λ±q t (3.67a)

+ N0,±,±
k,p,q V

†
kG
±
pG
±
q e

(λ±p +λ±q )t,(
∂t − λ±k

)
|G±k |

2 = N±,0,0k,p,qG
±†
k VpVqe

−λ±k +N±,0,±k,p,q G
±†
k VpG

±
q e

(λ±q −λ±k )t (3.67b)

+ N±,±,±k,p,q G±†k G±pG
±
q e

(λ±p +λ±q −λ±k )t.

From the nonlinear interaction terms the manner in which energy is transferred among triadic

wavenumbers may be determined through an analysis similar to that presented by Bartello (1995).

3.7 Conclusions

We have presented an investigation into stably stratified and rapidly rotating turbulence us-

ing the asymptotically reduced NH-QG equation set valid for Ro � 1 describing geostrophically

balanced flow. Such a regime is relevant to abyssal oceans (where observations indicate the presence

of weak stratification) as well as planetary and stellar interiors (in regions where stratification tran-

sitions from unstable to stable). Within this parameter regime the Proudman-Taylor constraint is

relaxed/broken by allowing anisotropic dynamics with vertical scales O(Ro−1) larger than horizon-

tal scales. In this setting slow inertia-gravity waves with order-one frequencies are retained and not

filtered, moreover, timescales for nonlinear eddy dynamics and anisotropic inertia-gravity waves

are not asymptotically separated (see §3.2.1). Numerical simulations with wave-eddy interactions

are performed where motions are induced by a stochastic injection of vertical kinetic energy; do-
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ing so only provides wave-energy and any emergence of vortical mode energy must originate from

wave-eddy interactions (see §3.4).

Our results reveal two regimes corresponding to strong (Fr < 1) and weak (Fr ≥ 1) strati-

fication. These regimes are primarily distinguished by the presence at strong stratification of thin

horizontal turbulent layers in which energy transfer and dissipation are most active. As Fr in-

creases up to unity, layer thickness also increases until the layers occupy the entire vertical extent

of the domain. We note such layer formation is not observed for classical QG dynamics for which

inertia-gravity waves are entirely absent. Evidence of layering has been previously observed in

experiments of decaying purely stratified turbulence (Billant and Chomaz, 2000) and numerical

studies of decaying rotating-stratified turbulence (Cambon, 2001), but not in previous studies of

rapidly-rotating, strongly-stratified, forced-dissipative turbulence. Unlike the ‘pancake’ structures

that form in stratified turbulence (Kimura and Herring, 2009), the layers here are localized and

long-lived. Also, vertical shear of the horizontal velocity ∂zu⊥ is absent from the reduced equations

governing the dynamics, so layer formation cannot be associated with shear instabilities like Kelvin-

Helmholtz or symmetric instability. Unlike the ‘staircase’ layering in doubly-diffusive convection

(Stellmach et al., 2011) the layers consist of thin regions of reduced stratification. We conjecture

that their existence is related to our use of vertical velocity forcing, in the sense that other kinds

of forcing may disrupt the dynamics leading to layer formation. Here, layer formation at Fr < 1

is associated with mixing by vertical buoyancy flux and energy conversion by vortex stretching

(evident in vertical profiles in figure 3.5). Additionally, vertical profiles of stratification and RMS

vertical vorticity quantify layer location and thickness.

In addition to the presence or absence of layers, the regimes are distinguished by energetics.

In the strongly-stratified regime only a small percentage of the energy injection rate to vertical

kinetic energy is converted to horizontal kinetic energy, and a modest amount is converted to

potential energy. In the weakly-stratified regime only a small percentage of the energy injection

rate to vertical kinetic energy is converted to potential energy, and a modest amount is converted

to horizontal kinetic energy.
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Both regimes are characterized by the emergence of a large-scale barotropic dipole (see fig-

ure 3.2). When the Reynolds number is not too large (Ref ≤ 100, or Rec ≤ 2000) system energy

reaches a statistically steady state, evidence that geostrophically balanced flow is capable of estab-

lishing a direct route to dissipation. The process leading to energy saturation is attributed to a

downscale transfer of kinetic energy within the barotropic mode, which balances the injection of

barotropic energy by baroclinic motions. Another distinct trait of the flows studied here is that

three-dimensional baroclinic motions interact in such a way as to inject energy into the largest

barotropic scales; therefore, the accumulation of energy at the largest scales in the barotropic mode

is not the result of an upscale transfer within the barotropic mode.



Appendix A

Tables

Table A.1: Values of α for the half-width power-law fits, L = β(RaE4/3 − RacE4/3)α, for each of
the three intervals identified in figure 2.8(a).

RacE
4/3 < RaE4/3 . 20 20 . RaE4/3 . 55 55 . RaE4/3 ≤ 70

Equispaced -0.7052 -0.2225 -4.6102
TBL -1.2072 -0.2849 -5.8706

Table A.2: Values of α for the the power-law fits for velocity scale, U = β(RaE4/3 − RacE4/3)α,
for each of the three intervals identified in figure 2.8(a).

RacE
4/3 < RaE4/3 . 20 20 . RaE4/3 . 55 55 . RaE4/3 ≤ 70

Equispaced 0.7230 0.2601 4.4897
TBL 1.2323 0.2376 5.2038



Appendix B

Derivation of the Reduced NH-QG Equations

As mentioned above a detailed account of the asymptotic derivation of the reduced non-

hydrostatic quasi-geostrophic (NH-QG) equations is given. Introduction of the multiple scale ex-

pansions (3.23) into the Boussinesq equation (3.6) with ε ≡ Ro� 1 gives the multi-scale equation

set

(
Dt + ε2∂T + εw∂Z

)
u+ ε−1ẑ × u = −Eu (∇+ ẑε∂Z) p+ bẑ (B.1)

+
1

Re
(∇+ ẑε∂Z)2 u,(

Dt + ε2∂T + εw∂Z
)
b+

w

Fr2
S =

1

σRe
(∇+ ẑε∂Z)2 b, (B.2)

∇ · u+ ε∂Zw = 0. (B.3)

Decomposing each fluid variable in to mean and fluctuating components according to (3.24) and

(3.25) and averaging the above multi-scale equations produces the mean equations

ε2∂Tu+ ε∂Z
(
w′u′

)
+ ε−1ẑ × u =

(
b− Euε∂Zp

)
ẑ +

ε2

Re
∂2
Zu, (B.4)

ε2∂T b+ ε∂Z
(
w′b′

)
=

ε2

σRe
∂2
Zb, (B.5)

∂Zw = 0. (B.6)

where the the continuity equation (B.3) is used in re-expressing the nonlinear terms in (B.4)–(B.6).

Without loss of generality the mean continuity equation gives w ≡ 0 such that u = (u⊥, 0).

Equations governing fluctuating quantities are obtained by subtracting (B.4)–(B.6) from
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(B.1)– (B.3), giving

(
Dt + ε2∂T + εw∂Z

)
u′ + ε

(
w′∂Zu− ∂Z

(
w′u′

))
+ ε−1ẑ × u′ (B.7)

= −Eu (∇+ ẑε∂Z) p′ + b′ẑ

+
1

Re
(∇+ ẑε∂Z)2 u′,(

Dt + ε2∂T + εw∂Z
)
b′ + ε

(
w′∂Zb− ∂Z

(
w′b′

))
+
w′S

Fr2
(B.8)

=
1

σRe
(∇+ ẑε∂Z)2 b′,

∇ · u′ + ε∂Zw
′ = 0. (B.9)

Simplification occurs upon introducing asymptotic series expansions (3.22) into the equations gov-

erning mean and fluctuating quantities, (B.4)–(B.6) and (B.7)–(B.9). At O(ε−2) in (B.4) and (B.7)

we must have u−1 ≡ 0. Note the horizontal component of (B.4) at order O(ε−2) yields u⊥,−1 = 0

and thus u−1 = 0, since w ≡ 0 by (B.6). Thus, equations (B.7)–(B.9) are solely responsible for

describing the leading-order fluid motions. The vertical component of (B.4) requires Eu ∼ ε−1 for

mean hydrostatic balance (3.27). All non-dimensional parameters are now determined upon setting

Fr = O(1) as discussed in section 3.2.1 for the non-hydrostatic regime, restricting Re = o(ε−2) as

discussed in section 3.2, and letting σ = O(1).

B.0.1 Perturbation theory and solvability

The end result of the multiple scale asymptotic approach is a sequence of linear partial

differential equations (PDEs) to be solved order-by-order in ε. Equation (B.7) at O(ε−2) gives

∇p′−1 = 0 permitting the choice p′−1 ≡ 0. From equation (B.8) we find that the variable b′−1 ≡ 0

satisfies the advection-diffusion equation

D0
t b
′
−1 =

1

σRef
∇2b′−1 (B.10)

where D0
t = ∂t +u′0 · ∇. The variance over O(L∗) spatial scales satisfies limt→∞

(
b′−1

)2
= 0. Thus,

we set b′−1 ≡ 0.
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Equation (B.7) at O(ε−1) and the continuity equation (B.9) at O(1) give

ẑ × u′0 +∇p′0 = 0, (B.11)

∇ · u′0 = 0, (B.12)

while equations (B.7) at O(1) and (B.9) at O(ε) yield

ẑ × u′1 +∇p′1 = −D0
tu
′
0 +

(
−∂Zp′0 + b′0

)
ẑ +

1

Re
∇2u′0, (B.13)

∇ · u1 = −∂Zw′0. (B.14)

Equation (B.5) at O(ε) gives

∂T b0 + ∂Z

(
w′0b

′
0

)
=

1

σRe
∂2
Zb0. (B.15)

At O(1) equation (B.8) gives

D0
t b
′
0 + w′0

(
∂Zb−1 +

S

Fr2

)
=

1

σRe
∇2b′0. (B.16)

Equations (B.11) through (B.16) represent the closed reduced system. Equations (B.11)-(B.14)

constitute a sequence of linear PDEs in powers of ε and (B.11) and (B.12) may be expressed as

Lgeov0 = 0, (B.17)

where v′0 = (u′0, p
′
0)T and Lgeo is the geostrophic operator defined as

Lgeo ≡



0 −1 0 ∂x

1 0 0 ∂y

0 0 0 ∂z

∂x ∂y ∂z 0


. (B.18)

At subsequent orders the systems to be solved are similar to (B.17) and are of the form

Lgeovi = ri. (B.19)
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The next system in the sequence for v1 = (u1, v1, w1, p1)T has r1 given by equations (B.13)–(B.14)

and may be written as

r1 =



ru,1

rv,1

rw,1

rp,1


=



−D0
t u0 +Re−1

f ∇
2
⊥u0

−D0
t v0 +Re−1

f ∇
2
⊥v0

−D0
tw0 − ∂Zp0 + b′0 +Re−1

f ∇
2
⊥w0

−∂Zw0


. (B.20)

Note that r1 is determined from solutions to the system at previous asymptotic order. To ensure

solvability of the linear system (B.19) conditions on ri must be determined for solutions vi to

remain bounded in space and time which demands ri be orthogonal to the null-space (solutions v†

to Lgeov†=0) of the adjoint operator L†geo defined as

〈v†,Lgeov〉 = 〈L†geov†,v〉. (B.21)

where the inner-product is defined as 〈v†,u〉 ≡
∫
v†udxdydz. The procedure to determine L†geo is

straightforward: start with equation (B.21) and integrate by parts until all derivatives no longer

operate on v and operate exclusively on v†, that is,

〈v†,Lgeov〉 =

∫ [
u†(∂xp− v) + v†(∂yp+ u) + w†∂zp+ p†(∇ · u)

]
dx

= −
∫ [

(∂xp
† − v†)u+ (∂yp

† + u†)v + (∂zp
†)w + (∇ · u†)p

]
dx

= 〈L†geov†,v〉.

The geostrophic operator is found to be skew-adjoint, i.e., L†geo = −Lgeo, therefore the null-space

of the adjoint operator is related to solutions of homogeneous problem (B.17) by v† = −v0. Or-
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thogonality of v† and r1 follows

0 = 〈v†, r1〉,

=

∫ [
u†ru,1 + v†rv,1 + w†rw,1 + p†rp,1

]
dxdydz,

=

∫
[(∂yψ)ru,1 − (∂xψ)rv,1 − wrw,1 − ψrp,1] dxdydz,

=

∫
[ψ (∂xrr,1 − ∂yru,1 − rp,1)− wrw,1] dxdydz,

=

∫
ψ

[∫
(∂xrv,1 − ∂yru,1 − rp,1) dz

]
dxdy −

∫
w

[∫
rw,1dz

]
dxdy,

using integration by parts, periodic boundary conditions, and the geostrophic streamfunction (p†0 =

−p0 = −ψ0). With ψ and w independent of z the above integrals vanish provided the following

solvability conditions hold∫
(∂xrv,1 − ∂yru,1 − rp,1) dz = 0,

∫
rw,1dz = 0. (B.22)

Conditions in (B.22) provide equations governing leading-order vertical vorticity ζ0 and velocity

w0. Coupling between vertical velocity and buoyancy occurs through the z-averaged fluctuating

variable defined as

b′ ≡ 〈b′0〉z = lim
λ→∞

1

λ

∫
λ
b′0dz, (B.23)

as required by the second integral condition in (B.22). From equation (B.8), we find that rapid

variations b′0− 〈b′0〉z on the Taylor-Proudman scale satisfies an advection-diffusion equation. Thus,

if unforced, its variance decreases monotonically to zero and b′0 − 〈b′0〉z ≡ 0. Fluctuating buoyancy

b′, therefore, satisfies Taylor-Proudman constraints on vertical scales L∗. Solutions to the leading-

order geostrophic balance (B.17) may be written in toroidal-poloidal form Chandrasekhar (1961);

Julien et al. (2006)

u′0 = −∇× ψ0ẑ + w′0ẑ, (B.24)

Due to Taylor-Proudman constraints we may write D0
t = ∂t+u

′
0⊥ ·∇⊥ = ∂xψ0∂y−∂yψ0∂x ≡ J [ψ0, ·].

The reduced equations become those given in (3.30).



109

We note that vertical velocity forcing or buoyancy forcing may be included from the onset

of this derivation. The condition that b′−1 ≡ 0 indicates that forcing equation (B.8) at O(ε−1)

should be absent. Moreover, similar to previous studies where stochastic white noise forcing is

used, any such forcing present in (B.1)–(B.3) vanishes upon horizontal averaging over small spatial

scales and fast temporal scales. Hence, stochastic white noise forcing necessarily occurs through

the fluctuating equations.



Appendix C

Code Validation

Before running numerical simulations of stably stratified and rapidly rotating flow some vali-

dation of the numerical scheme is in order. For numerical simulations of rapidly rotating Rayleigh-

Bénard convection a third-order mixed implicit/explicit Runge-Kutta scheme was used for numer-

ical time-stepping. In that framework the domain was horizontally periodic, and therefore used

Fourier expansions in the horizontal directions. Given the impenetrable vertical boundary condi-

tions for this problem Chebychev expansions are used to expand fluid variables in the ẑ-direction.

The stable layer study makes use of the same time-stepper, however, in this framework the aim is

to perform numerical simulations in a triply-periodic domain. This requires the use of subroutines

not used or validated for simulations of the reduced NH-QG equations in the stable layer config-

uration, we take a moment to show the numerical scheme laid out by Spalart et al. (1991a) and

used by Sprague et al. (2006) for the Rayleigh-Bénard problem gives valid results when applied to

a triply-periodic stably stratified fluid. It is noted that no modification is made to the numerical

scheme itself, but only calls to routines responsible for computing discrete Fourier transforms. Val-

idation is accomplished by imposing initial conditions at a single-wavenumber for fixed Re, Fr and

σ = 1 and allowing the simulation to decay. Numerical solutions are then compared to analytic

solutions of the linearized NH-QG equations. Once the linear problem is validated, nonlinear terms

are included to ensure that single-mode solutions behave correctly.

In what follows we make use of the toroidal-poloidal decomposition

u0 = −∇⊥ × ψ0ẑ −∇⊥ ×∇⊥ × φ0ẑ (C.1)
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where ∇⊥ = (∂x, ∂y, 0) and which automatically satisfies leading-order geostrophy (additionally,

numerical scheme is evolved using this decomposition). The linearized and unforced equations in

terms of ψ0, φ0, and b0 become

∂t∇2
⊥ψ0 − ∂Z∇2

⊥φ0 =
1

Re
∇4
⊥ψ0 (C.2a)

∂t∇2
⊥φ0 + ∂Zψ0 =

b0
Fr2

+
1

Re
∇4
⊥φ0 (C.2b)

∂tb0 +∇2
⊥φ0 =

1

σRe
∇2
⊥b0 (C.2c)

where w0 = ∇2
⊥φ0, buoyancy has been scaled such that b0 → b0/Fr

2, and S(Z) = 1. The domain

is triply-periodic (i.e., f(x + Liei) = f(x), where Li is the length of periodicity and ei is the ith

unit vector for i = 1, 2 and 3) so that a fluid variable f is expressed as Fourier series

f(x, t) =
∑
k

f̂k(t)eik·x (C.3)

Wavenumbers take the form

k = (k⊥, kZ) = (2πnx/L, 2πny/L, 2πnZ), (C.4)

where n = (nx, ny, nZ) ∈ Z3. For real-valued solutions we require f̂−k = f̂k, where the overbar

denotes complex conjugation. Substituting Fourier series in the linear system (C.2) yields a linear

system of first-order differential equations. A given wavenumber k = (k⊥, kZ), where k⊥ = (kx, ky),

will satisfy one of three different systems depending on which set k belongs to: the barotropic set

where kZ = 0, k⊥ 6= 0, the baroclinic set where kZ 6= 0, k⊥ 6= 0, and the horizontally averaged set

where k⊥ = 0. This is nearly identical to the analysis by Bartello (1995). Solutions to the linear

systems can be expressed as a linear combination of eigenvectors ξi with associated eigenvalues λi

and are of the form

f̂k(t) =


ψ̂0,k(t)

φ̂0,k(t)

b̂0,k(t)

 =

3∑
i=1

αiξie
λit (C.5)

Since the code is pseudospectral and performs real fast Fourier transforms (real FFTs in terms of
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sine and cosine coefficients), the eigenvectors ξi must be re-expressed to give cosine sine coefficients.

Before giving the eigenvectors in real form the following outlines the three linear systems that a

single-wavenumber may satisfy. For simplicity only the case where σ = 1 is considered.

C.1 Case I: vertical variability: k⊥ = 0, kZ 6= 0

When kZ 6= 0 and k⊥ = 0 the Fourier coefficients at wavenumber k satisfy the system

∂t


0

0

b̂

 =


0 0 0

ikZ 0 −1
Fr2

0 0 0




ψ̂

φ̂

b̂

 . (C.6)

The single eigenvalue λ1,2,3 = 0 has algebraic multiplicity three and geometric multiplicity two.

The linearly independent eigenvectors corresponding to the two-dimensional eigenspace are

ξ1,2 =


ψ̂

0

iFr2kZψ̂


1

,


0

φ̂

0


2

. (C.7)

Solutions to this system represent a state of hydrostatic balance in which u0 = (−∂yψ0, ∂xψ0,∇2
⊥φ) =

0 and ∂Zψ = b/Fr2.

C.2 Case II: barotropic mode: k⊥ 6= 0, kZ = 0

When kZ = 0, the Fourier coefficients at wavenumber k satisfy the system

∂t


ψ̂

φ̂

b̂

 =


−k2⊥
Re 0 0

0 −k2⊥
Re

−1
Fr2k2⊥

0 k2
⊥ −k2⊥

Re




ψ̂

φ̂

b̂

 . (C.8)

with the following eigenvalues and eigenvectors:

λ1 = −
k2
⊥
Re

(C.9)

λ2,3 = −
k2
⊥
Re
± i 1

Fr
(C.10)
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ξ1,2,3 =


ψ̂

0

0


1

,


0

φ̂

∓iφ̂Frk2
⊥


2,3

. (C.11)

C.3 Case III: baroclinic mode: k⊥ 6= 0, kZ 6= 0

When both k⊥ 6= 0 and kZ 6= 0 the Fourier coefficients now satisfy

∂t


ψ̂

φ̂

b̂

 =


−k2⊥
Re ikZ 0

ikZ
k2⊥

−k2⊥
Re

−1
Fr2k2⊥

0 k2
⊥ −k2⊥

Re




ψ̂

φ̂

b̂

 . (C.12)

The eigenvalues and eigenvectors of this linear system are

λ1 = −
k2
⊥
Re

(C.13)

λ2,3 = −
k2
⊥
Re
± i

√
1

Fr2
+
k2
Z

k2
⊥

(C.14)

ξ1,2,3 =


ψ̂

0

iFr2kZψ̂


1

,


ψ̂

±
√

1
Fr2

+
k2Z
k2⊥
k−1
Z ψ̂

−ik2
⊥k
−1
Z ψ̂


2,3

. (C.15)

These systems provide three eigenvalues and three linearly independent eigenvectors (with exception

of the case where k⊥ = 0). For the first and second cases the first of eigen pairs (ξ1, λ1) has

zero temporal frequency and corresponds to the PV mode, while the remaining eigen pairs pairs

correspond to wave-modes. Any vector belonging to C3 can be expressed as a linear combination of

eigenvectors as in equation (C.5) yielding generalized time-dependent solutions to the appropriate

linear system.
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C.4 Code compatibility

Again, since the code works in spectral space and performs real FFTs the eigenvectors above

must be decomposed to give cosine coefficients a(k) = f̂k + f̂k = 2Re(f̂k) and sine coefficients

b(k) = i(f̂k − f̂k) = −2Im(f̂k). In physical space the single-wavenumber solution to a real-valued

field variable f(x, t) takes the following form:

f(x, t) = f̂ke
−ik·x + f̂ke

in·x (C.16)

= 2Re(f̂k) cos(k · x)− 2Im(f̂n) sin(k · x) (C.17)

Therefore, the evolution of the Fourier coefficients of a real-valued single-wavenumber solution is

determined by

2Re(f̂k(t)) = 2Re(

3∑
i=1

αiξie
λit)

= (α1a1 + (α2a2 + α3a3) cos(δt) + (α2b2 − α3b3) sin(δt)) exp

(
−k2
⊥

Re
t

)
, (C.18)

−2Im(f̂k(t)) = 2Im(
3∑
i=1

αiξie
λit)

= (α1b1 + (α2b2 + α3b3) cos(δt) + (α3a3 − α2a2) sin(δt)) exp

(
−k2
⊥

Re
t

)
, (C.19)

where δ =
√

1/Fr2 + k2
Z/k

2
⊥, ai = 2Re(ξi), and bi = −2Im(ξi). In general α ∈ C3 and are

determined by initial conditions, however, since the current aim is to validate the code, without

loss of generality, we take α ∈ R3 in the above. In particular, we focus on the special cases when

α = ei, for i = 1, 2, 3. For reference, the real form of the eigenvectors are summarized below where

Fourier coefficients are decomposed into real and imaginary parts as f̂ = f̂r + if̂i.
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C.5 Case II: barotropic mode: k⊥ 6= 0, kZ = 0

a1(k) =


2ψ̂r

0

0

 b1(k) =


−2ψ̂i

0

0

 (C.20)

a2(k) =


0

2φ̂r

2φ̂iFrk
2
⊥

 b2(k) =


0

−2φ̂i

2φ̂rFrk
2
⊥

 (C.21)

a3(k) =


0

2φ̂r

−2φ̂iFrk
2
⊥

 b3(k) =


0

−2φ̂i

−2φ̂rFrk
2
⊥

 (C.22)

C.6 Case III: baroclinic mode: k⊥ 6= 0, kZ 6= 0

a1(k) =


2ψ̂r

0

−2Fr2kZψ̂i

 b1(k) =


−2ψ̂i

0

−2Fr2kZψ̂r

 (C.23)

a2(k) =


2ψ̂r

2δk−1
Z ψ̂r

2k2
⊥k
−1
Z ψ̂i

 b2(k) =


−2ψ̂i

−2δk−1
Z ψ̂i

2k2
⊥k
−1
Z ψ̂r

 (C.24)

a3(k) =


2ψ̂r

−2δk−1
Z ψ̂r

2k2
⊥k
−1
Z ψ̂i

 b3(k) =


−2ψ̂i

2δk−1
Z ψ̂i

2k2
⊥k
−1
Z ψ̂r

 (C.25)
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C.7 Validation examples for the barotropic mode (case II)

To illustrate the process of code validation we consider the barotropic case (k⊥ 6= 0 and

kZ = 0). Furthermore, the linear evolution of each eigen-mode is considered by setting α = ei,

for i = 1, 2, 3 and validating separately. When α = e1, the Fourier coefficients evolve according to

(C.18) and (C.19) with eigenvalue λ1 = −k2
⊥/Re, and are given by the cosine and sine coefficients

a1 exp

(
−k2
⊥

Re
t

)
=


2ψ̂r

0

0

 exp

(
−k2
⊥

Re
t

)
, (C.26)

b1 exp

(
−k2
⊥

Re
t

)
=


−2ψ̂i

0

0

 exp

(
−k2
⊥

Re
t

)
, (C.27)

respectively. When provided an initial conditions the the code evolves correctly and tracks the

analytic solutions as illustrated in figure C.1 (dashed lines are solutions from the code and solid

lines are analytic solutions outlined above).
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Figure C.1: Barotropic solutions corresponding to the parameters Re = 5, Fr = .01, (kx, ky, kz) =
2π(1, 1, 0) and where α = e1 corresponding to the vortical mode.

Similar results are obtained when one sets α = e2. The associated eigenvalue is now λ2,3 =
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−k2
⊥/Re+ i/Fr and the evolution of cosine and sine coefficients, respectively, are given by:

(a2 cos(δt) + b2 sin(δt)) exp

(
−k2
⊥

Re
t

)
= 2


0

|φ̂| cos(t/Fr − θ1)

Frk2
⊥|φ̂| cos(t/Fr − θ2)

 exp

(
−k2
⊥

Re
t

)

(b2 cos(δt)− a2 sin(δt)) exp

(
−k2
⊥

Re
t

)
= 2


0

|φ̂| cos(t/Fr + θ3)

Frk2
⊥|φ̂| cos(t/Fr + θ4)

 exp

(
−k2
⊥

Re
t

)

where |φ̂| =
√
φ̂2
r + φ̂2

i , θ1 = tan−1(−φ̂i/φ̂r), θ2 = tan−1(φ̂r/φ̂i), θ3 = tan−1(−φ̂r/φ̂i), and θ4 =

tan−1(φ̂i/φ̂r). When provided the initial conditions the code correctly tracks the analytic solutions
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Figure C.2: Barotropic solutions corresponding to the parameters Re = 5, Fr = .01, (kx, ky, kz) =
2π(1, 1, 0) and where α = e2 corresponding to wave modes.

as illustrated in figure C.2 (dashed lines are solutions from the simulation and solid lines are analytic

solutions). When setting α = e3. The associated eigenvalue is now λ2,3 = −k2
⊥/Re− i/Fr and the

evolution of cosine and sine coefficients, respectively, are given by:
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(a3 cos(δt)− b3 sin(δt)) exp

(
−k2
⊥

Re
t

)
= 2


0

|φ̂| cos(t/Fr + θ1)

Frk2
⊥|φ̂| cos(t/Fr + θ2)

 exp

(
−k2
⊥

Re
t

)

(b3 cos(δt) + a3 sin(δt)) exp

(
−k2
⊥

Re
t

)
= 2


0

|φ̂| cos(t/Fr − θ3)

Frk2
⊥|φ̂| cos(t/Fr − θ4)

 exp

(
−k2
⊥

Re
t

)

where |φ̂| =
√
φ̂2
r + φ̂2

i , θ1 = tan−1(−φ̂i/φ̂r), θ2 = tan−1(φ̂r/φ̂i), θ3 = tan−1(−φ̂r/φ̂i), and θ4 =

tan−1(φ̂i/φ̂r). When provided the initial condition a3 and b3, the code correctly tracks the analytic
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Figure C.3: Barotropic solutions corresponding to the parameters Re = 5, Fr = .01, (kx, ky, kz) =
2π(1, 1, 0) and where α = e3 corresponding to wave modes.

solutions as illustrated in figure C.3 (dashed lines are solutions from simulations and solid lines are

analytic solutions outlined above).

Similar results are seen for the baroclinic case and for varying values of the controlling

parameters. These results validate the code. Physical space solutions have also been checked

and verified against analytic solutions mentioned above (equation (C.17)). For future reference a

description of how spectral-space amplitudes are handled and organized in the code is described

here. In each of the Cartesian directions the sine amplitudes (bi) and cosine amplitudes (ai) are
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organized as follows:

kx :

(
a0 aN a1 b1 a2 b2 . . . aNx−1 bNx−1

)
ky :

(
a0 a1 b1 a2 b2 a3 . . . aNy−1 bNy−1 aNy

)
kz :

(
a0 a1 b1 a2 b2 a3 . . . aNZ−1 bNZ−1 aNZ

)

At a single wavenumber k, the arrays that hold ψ, φ, and b in the code are v3, ww, and tt,

respectively, and are organized in Fourier space as illustrated below:

(bn) (−an)

(an) (bn)

(−an) (−bn)

(bn) (−an)
ky

kz

kx

If one wishes to introduce energy into one of the field variables at wavenumber k, then the sine

and cosine amplitudes at k must be arranged into eight entries of the array holding that variable’s

Fourier space coefficients. This Fourier space structure is such that the cyclic property of {sin, cos}

under differentiation is preserved.
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