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ABSTRACT

As the ﬂuﬁber of processes and resources increase within a computer
system, does the probability of that system's encountering deadiock increase
or decrease? The problem of deadlock in computer systems and a model applicable
to the investigation of this prdeem are preséﬂtéd, The model treats secuences
of resource activity as potential members of the set of strings accepted by
a probabilistic automaton. This paper, after explaining the medel and its
application, describes a transformation on the automaton which makes it
amenable to calculations of the probability of deadlock. These calculations
consist of:

1. Derivation of necessary and sufficient conditions for an automaton to be
well-behaved -~ formalily described as accepting a normalized Tanguage,
and
2. Usage of these conditions to yield ciosed-form equations of deadlock pro-
bability under several definitions thereof.
Although the automaton model used in these calculations is a probabilistic
pushdown automaton, it is indicated that the procedures described can also
be applied to other types of probabilistic automata modeling other deadlock
situations. Results of calculations on actual computer system modeis are alsc
described, indicating that within the types of systems considered, the

probability of deadlock increases.



INTRODUCTION

The author has presented e]sewhere4 preliminary results concerning a
model of deadlock in computer systems consisting of a probabilistic finite
automaton. That model constituted a Markov process and so was quite tractf—
ble for mathematical analysis. One restriction of that model was that if
two or more processes were waiting for a resource it would be randomly
allocated to one of the processes. This paper presents an extension of the
previous model which is a technique for modeling the more realistic
allocation schemes of first come first serve and last in our first out
service. This automaton is developed and then applied to calculate the
probability of deadlock .in computer systems. This model also forms an

interesting study because it is a non-Markovian process.



THE DEADLOCK PROBLEM

Deadlock is a phenomenon which can occur in a wide variety of settings.
For example, if two people hold halves of a treasure map and each refuses to
give up his half until he has obtained the other's half, then there is a dead-
Tock situation such that neither can find the treasure (assuming both hajyes of
the map are necessary to locate the treasure). In the context of a Targe multi-
processor or multiprogramming computer system, deadlock (sometimes called deadly
embrace) can occur if two or move processes, i.e., concurrently executing pro-
grams, each wait for a resource held by the other. Usually, these processes
must remain idle for an indefinite amount of time until this situation is detected
and manual intervention by the computer operator corrects this situation. Dead-
Tock is possible only when three conditions are satisfied in a computer system:
1. A process can c1a§m exclusive control over the resource it holds.
2. A resource cannot be preempted from a process.
3. A process can hold a unit of resource while requesting another unit of a

(possibly different) resource, i.e., a circular wait is possible.

As a result of the e?ucidatimn of these criteria necessary for deadlock,
the automatic detection and prevention of deadlock has recently received a Tot

”’6’7*8’9*1‘@ Qur approach in this paper is dif-

of attention in the Titerature
ferent from these previous citations because we use probabilistic techniques to
investigate the likelihood of deadlock occurring in certain classes of computer
systems. If it can be shown that the probability of deadlock increases as the
number of processes and resources becomes large, then the deadlock problem wili

need to be explicitly dealt with (perhaps in hardware or fivmware) in multi-

multi-processor systems of the future.



THE MODEL

A computer system consisting of a set of processes and varying units of
various types of resources can be described at any particular instant of time
as being in some state defined by: (1) the number of units of each type of
resource available, (2) the number of units being held by each process, and
(3) the number of units being requested by each process. A transition or
change to another state corresponds to a hew request, an allocation, or some
other system action causing any of the above three parameters to change.

10 shcws that this type of system can be graphically represented by a

Holt?
System State Diagram. This directed graph can also be viewed as a finite state
automaton provided that the number of states is finite. Furthermore, for
each possible transition out of a given state, one can attach a probability to
the occurrence of this event. We further require that the sum of the proba-
bilities associated with transitions out of a given state sum to one for each
state in the system yielding a probabilistic automaton model of the computer
system. A specific example and formal definitions follow.
Consider a system composed of two processes, P] and PZQ and two units of
a resource. The following actions may occur in this examp?e}and correspond to
transitions of the probabilistic automaton.
A. Process Pi may request a unit of resource, denoted r; in which case
the process is suspended (he waits) until a unit is allocated where
i=1or 2. Process Pi can only request one unit at a time and never
request more if all units (two in this case)(have already been allocated
to process Pi'
B. If process Pi is in a suspended state waiting for a unit of resource
the system may allocate a unit to Pi denotead 255 provided all units

of the resource have not already been allocated.
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FIGURE 1

A PROBABILISTIC AUTOMATON CORRESPONDING TO A 2 x 2 SYSTEM



C. If process Pi is not in a suspended state, P,i may de-allocate a
unit of resource which was previously allocated to him, denoted
di’ implying that the process no lTonger needs the unit.

Ho}t9’1o has considered the System State Diagram for this system. By making
some assumptions concerning the probabilities of state changes, a Probabilis-
tic Automaton can be defined from this. Suppose, for example, that without
any apriori knowledge of the system we assign equal probabilities to all
transitions out of any given state. Then because these equal probabilities
must sum to one, we get the automaton represented graphically by Figure 1.
Each circle (node) of Figure 1, denoting a possible state of the system, con-
tains the probability of leaving that state. This representation can be used
in this case if one makes an equal probabi]ity assumption. Thus this number
is simply the multiplicative inverse of the number of arcs leaving the node.
The upper first node in row 00 and column 00 denotes a state (henceforth
designated (00,00)) in which process P, holds no resources and requests no re-
sources, 1 = 1, 2. In general, the column labels (row Tabels) are two digit
numbers, the first digit specifying resources held and the second,’resources
requested by process P1 (process Pz). The equal probability assumption im-
plicitly imposes a random resource allocation algorithm upon the system be-
cause if the system is in a state such that both processes are suspendad
waiting for a unit of resource, then we randomly choose one or the other.
The node in row 01, column 01, of Figure 1 is an example of this. If the
system began in the initial state (00,00), (no allocation, no requests), then

rl
one way it could get to this state (01,01) is via a request by P], (00,00) -

(01,00) followed by a request by Pys (01,00) re (01,01). Another possibility

is that P, could first make a request and then Py, (00,00) » (00,01) » (01,01).



Thus the arcs are marked to identify the actions of the system (which corres-
pond to transitions of the automaton). The probability of the automaton mov-
ing from state (00,00) to (01,01} in two transitions is 1/2, the sum of the

probabilities of the paths which allow this to be done:

172 12
Path T: (00,00) > (00,01) ~ (01,01), pr(path 1) = 1/4
1/2 1/2
Path 2: (00,00) » (01,00) > (01,01), pripath 2) = 1/4
total pr = 1/2

Note that a path is the conjunction of a sequence of system actions, so the
path probability is the product of the transition probabilities of the cor-
1 responding transitions compesing the path. These concepts are formalized

in the definitions which follow. Once the system is in the state (01,01),
there is a probability of 1/2 of moving to state (10,01) and probability of
1/2 of moving to (C01,10) because the node in row (01,01) has arcs to these
two states and contains 1/2. This implies that our rescurce allocation al-
,-gowithm allocates to process P1 with probability 1/2 ov to process ?2 with
probability of 1/2. This random resource allocation model forms a Markoy
Chain and has been investigated via simulation and via analytic ﬁechﬂiquesée
Two other more realistic algorithms, first-come-first-serve and last~come~
first-serve can be modeled by adding an auxiliary storage to our automaton,
forming respectively a probabilistic queue automaton and a probabilistic
pushdown automaton. In these cases, whenever a request is made by process
Pi’ the symbol r. is put into the auxiliary storage, and whenever an alloca-
tion is made, the process P, to whom this allocation is made is determined

by the symbol r; extracted from the storage. This symbol is then discarded.



In the case of a queue, this will be the Teast recently inserted symbol among
the symbols in storage and for a stack, this will be the most recently inserted
symbol. The model is formally defined as follows:

Definition: A Probabilistic Language over a vocabulary I is a system

ﬂ = (L,u) where L is a class of words formed from ¢ (we
will take this class to be @ subset of IZ*=all finite strings
formed from %) and u is a measure on the set L. If p is

a probability measure, then E is a Normalized Probabilistic

Language.

Definition: A Probabilistic Automatgn over a vocabulary I is a system

~

A= (K, B, 6, a, v» b}); K is a finite, nonempty set of

states, S1s SpsesssS B is a finite set of storage tape

n

symbols, bi’ b2""’bm'

b] e B is the start symbel which
initially appears on the storage tape.

vis; >~ R is an initial state vector (YI’ YoseensY ) such that

i

v; = Y(si) specifies the probability that s is the initial

state, where R is the set of real numbers.

§:K x B x 2 » R(8) is a mapping called the transition function whose domain
is K x B x (ZUA). The range of this function R(§) determines
the specific type of probabilistic automaton defined.

o:K x B x (2Ux) x R(8) »~ R is a mapping called the transition probability func-
tion which associates a real value with each possible map of
§, to designate the probability of that transition.

Several different types of normalization of probabilistic automata have

15,16

been presented in the Titerature A classification of normalization

types is given in ET]isZ. In this paper, we investigate the probabilistic
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pushdown automaton. The results in this paper also hold for probabilistic
queue automata. The appropriate transition function and type of normali-
zation for our application are given next.

A Probabilistic Pushdown Automaton (PPA) is defined by a transition

function ¢ mapping from K x B X (zUx) to finite subsets of K x B*. This
automaton is normalized if and only if v is a stochastic vector and

b2

b4

transitions out of state ¥ with b as the top symbol of the stack. Thus

pr{a:(siab)%—(sj,s)} =14%s; ek, b e B where s, is the set of all

the sum is over all acZ, 3jaK, and BeB* such that (3338) £ S(Si,bsa) and
the 1s interpreted to mean that if S, is the current state of the automaton
and b is currently on the top of the stack, then an input of asl can cause

the automaton to change to state s, and replace the symbol b on the stack

J
- by the string 8. The probability of this event is specified by the function
<. We adopt the convention that the leftmost symbol of B is placed highest
on the store {first out) and the rightmost symbol Towest on the store.

If 8 = A, then this denotes the empty string (i.e., popping the stack).

The rep?acememt of acX by » in one of these transitions, i.e., (Sj,B) £
6(si,b,x)§ is interpreted as a transition without the input of a symba?,

A configuration of a PPA is a pair (s,B), and we say that a PPA E is
in configuration (s,B8) if A is in state s with 8 on the pushdown store.

in K and pushdown

If for 81585500052 each in tU{A}, states S13S00e 0554

strings 81,82,..,,Bn+] in B* we have: .
. i ,
ai‘(sissi)i . (Si+19 Bi+?)’ T<i<n
then we write

aﬁ,az,...,an:(sl,51)F§ﬁ (Spiq28007) -



Note that in this notation, (Si’Bi) now represents a configuration rather
than a state, stack top pair and the probability Pi of the transition which
causes the configuration change is written over the . The subscript A
will be dropped fromlgi~whenever the meaning remains clear. The probability
p of a sequence of transitions is the product of the probabilities Py

The Probability of Acceptance of a string wer* is

1 Y5 ? priw:(s..b,) b (sps2)3
i

N~ =

i
where |K| = n and r, is the set of all sequences starting from ¥ which input

all of w and terminate with an empty pushdown store. Thus S| can be any state.

The probabilistic Tanguage accepted by a PPA A is (L,u) where L is the set of
all w such that w:(sl,b)}~(sk,k) and u(w) = probability of acceptance of w.
As an example of these concepts, consider the following PPA which accepts

strings of a's of odd length.

~

A] - ({S]5szbsf};{bA:bB}s S, q9 (19030)3 bA) over ¥ = {a}

where § and a are specified by

6(S1sbAsa) 2‘{(525bBbA)9 (stk)}a o = (p1>q])
8(s,,b55a) = {(s,,b500)5 (55,00) 3, @ = (py.q,)
a(szabAaa) 2.{(Sf9K)} > o = 1



f»;u

We assume p, tgq; = 1{9=1,2) so this automaton is normalized. Accord-
ing to the last two parameters of A, this automaton starts in state S because
vy = (1,0,0) and initially contains bA on the stack. The shortest string ac-
cepted by A is the singleton a via the transition a:(s},bA) éil-(sf,x)g The
probabi@ity of acceptance of this string is u(a) = qy- The string 37 = 3ananaa

can be accepted by two different sequences of transitions each with probability

2 3
P1P24;-
1. Z.
a: (S Al g"'j S,), A} a: 15 A) ém_“ Z’b
a.(s29 A)F—“-(¢2 b.b bA’ a: (sz,ngbA)¥~*'(sz bBbBbA)

o3
QJ

:(s,.bpb bA)F—~f(52 bybpbgby)
e 2;
'(“Z?Qabsbsbafg” 5p5bpbgh)

H(55:05050p) 5 (5,4Dg,)

e8]
QJ

2
H(sbghy) - (@?’bBbBbA)

a: (s2 brb bA)%~* (s55bpb,) a:(s,,byb bA)$~ (5,:bgby)
a: Aww(sm\) a:(s,.by A)V (5,:b,)
a:(329 A)[‘"“ (Sfﬂs}\} : a:(sza A) 'E“”\S.f;s;’\}

?, 2p1p§q§) are members of the probabilistic language

Thus (a,qg} and (a
generated by this PPA A, Is this tanguage generat@d by ﬁ a merma?i?ed probabie
Tistic language? If we set p = q\,f = 1/2 in this examp? . we find that therr
probabilistic Tanguage gentrated is not normalized. In the remainder of this
paper, we derive a necessary and sufficient condition for a normatized PPA to
generate a normalized ]énguage, and then using this we calculate an expression
for the expected number of transitions of a PPA before it halts. This can

be equated to the expected number of actions to deadlock in a computer sys-

tem. Another calculation will yield the expected number of
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occurrences of any aiez in the average input string of any PPA A. This can
be equated to the expected number of allccations (or other system actions)
to deadlock in a computer system. Before making these calculations, we need

to transform a PPA into a one state PPA. An algorithm used in (nonprobabilistic)

11

automata theory ' will be elucidated and expanded to the probabilistic case

in the next section to realize this transformation.

TRANSFORMATIONS ON PROBABILISTIC PUSHDOWN AUTOMATA

Given a PPA A = (K, B, 8, o, v, b]) we transform it into a one state

PPA_A' = ({s}, B', &', o', (1), Z) as follows:

| Let B' be the set of objects [Si bj sk] where Si’SkQK’ bjeB. ‘Also add the
symbol Z to the set B' where this new symbol Z is initially on the stack. Let &'
be defined by' | | - o

1. &'(s, Z, A) contains (s,[si by sj]) for all SiEB’ s_eB with its correspond-

ing o = Vi Note that as a'mode1 of deadlock, an automaton will ysually have a
single initial state, that is y = (100...00).
‘ p
2. Also put the following into s':(s,[sy bj syl.a) }j‘(s,[sga] bh,1 s,2]

A
[52,2 bp,2 32,3] ... [Sz,m bh,m Sz,m+1]) for each si, sy 1, Sg,2 ++ Sy mtl

in K, where s, =s; ., for each a in 3UG, and by, by 4 ....by i B

such that 6(51, bj’ a) contains (Sk’ bh,T bh,2 - bh,m) with a = p for
this transition.
If m = 0, then Sk = Sp10 6(51, bj’ a) contains (Sk’ A) and the transition

added to §' is (s,x)gs‘(s,[si b Sk]’a)‘ Before justifying this transformation

N
we show an application of these rules to the previous example automaton

labeled Ai‘ The transformed PPA will be Ai = ({s}, B', &', a', (1)
Z. To construct &' easily we must realize that some stack symbols may not
appear in any valid transition sequence. Thus we can save some effort by

starting with the rules for the (s, Z) configuration, then adding rules onty
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for those stack symbols in B' which are actually generated with positive
g

‘probability. The rules for (s, Z) are

’a‘(sa Z, a) = {(s,lsy by sq1)s (sslsy by s,0)s (s5[sy by s.1))

We did not include the transitions (s,[si bA Sj]) in §'(s, Z, A) where ¥ # Sy

because Yy = 0 if i # 1. The probabilities associated with these three transi-
tions are o = (1,1,1). The interpretation of [smi bk sj] is that we are simu~-
Tating a multiple state automaton which must somehow make a sequence of transi-
tions from state S5 terminating in state Sj and in the process get rid of bk
which is on the top of the stack. Thus we will find that oniykihe third of
the three members of 6'(s, Z, &) is a viable stack symbol because AT must

enter state Ae before it can pop the symbol bA off of the stack. Using the

second rule, we add transitions for (s,[s~§ bA sj])

65(5;;{51I by 5¥},a) ﬂ‘{(sy[sg by 513[51 by s}])g(sg[s2 by 52][52 by 31]}3
(s.ls, by sellse by sy}, @ = (pys pys py)

5‘(3,[5»I bAksz}sa) ':'{(55[32 by s}][s1 by 52]),(3,[52 by 52][32 By szj)g
(5,05, by sellse by so0)bs @ = (pys pys py)d

§'(s,[sy by sela) :‘{(33[52 by s11lsy by 1) (5.5, by 5,108, by 1),
(sslsy by sellse by sel)s (s, 2)3, @ = (pys pps Pys a7).

Note that some of these stack symbols, i.e., [se by s.], cannot be used

further. They are dead-end. Using stack symbols which have thus far occurrad

- we can write:
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8'(s,Ls, by sy1,a) = {(s,[s, by s;1s; by 5;1).(s.[s, by 5,105, by s11)»
{s,[sz bg sf][sf bB s]})}

§' (s, [s, b g Spla) z‘{(s,[sz by ST][s1 by SZ]),(55[52 by 32][52 by 52]),
(s,[s2 5 sf][sf by 52])5 (s,1)}

§'(s,[s, by f] a) = {(s,[s, by s71[sy by sc1)s(ss[s, by s,10s, by s.1),
(s.ls, by sellse by se1)}

§'(s,[s, b n Sglsa) = {(s,A)}

Since the stack symbols [s] s J [52 A }] [bf A S ] [¢£ 32], [sf bA sf],
[SI»bB s]J,[sf B s]},[s] 8 52],[51C B 32]’[ST B sf], and [sf bB sf] cannot
appear on the right-hand size (they are dead-end) we delete all transitions

depending upon them which yields the PPA ﬁi:

6,(8,[5—1 bA sf],a) = {(S’[SZ bB 52][32 bA Sf])s(s.a)‘)} o = (p‘l >Q])
5‘(5 3[52 bB Sz]aa) »="{(S:[32 bB 52][52 bB Sz]a(s))‘-)}s o = (P25q2)
(s, o= (1)

it

§'(s,[s, by sclsa)

We next prove that, as can be seen in this example, every string accepted
by the original automaton AT is also accepted by Ai with the same probability,
so these automata are equivalent in the sense that they accept the same pro-

babilistic Tanguage.

Theorem - If E is the probabilistic language accepted by some PPA A,

then JA' which is a one state PPA also accepting L.

D .
- . . - . 7o
Proof - We will show that W'(Si’gi) A (sk,h) iff w:(s ’[Si B sk])
*A,! (s',x). Even stronger, the prohability of acceptance by A' of any

weZ* is equal to its probability of acceptance by A.



Using induction on the number of transitions of the automatbn} suppose
e (s?g B. )%i { sA) in one transition. This implies w is a string of length
one (assuming no X transitions) and so is the string 8 of stack symbols. Then
our algorithm implies there must be a rule of A’ of the form (s', A) ¢
6‘(3‘,[51 B sk]), and its probability must be the same under o' as that under
. kThus w:(s‘,[si B sk]} %%} (s',A) Now assume the hypothesis is true for
any process of up to k-1 transitions. To show it is true for k trans ition
processes, we assert that a first transigéan and there may be many)from a given
(Si§ Bi) must be of the form a:(si, b) PE~ (s. b97b£? m) where a must be
the first symbol of w(aw=w) and b must be the first symbol of g(bbyb,...b, = 8
This must be followed by a set of transition sequences of length k-1 sbecif?&d
by w: (s s b bz2 b b1b2 P* (s it By hypothesis, there exists a
set of transition sequences in A‘ (one for each way in which A accepts w)
whose sum adds to p and each of which can be written as QE(S‘,[sj bN 521]
[sM bgg S 2]‘u‘[s£m 1 bg Szmj°‘ [s -] bn sn}' ;WTA(S sa). Combining this

A

with the rule a:(s',[s. bsgm]) qu_s .Ls. bM zY][SzT quﬁzj [Skm Tbxmﬂﬁm])ﬁ

which is implied by the corresnord:ng rule in A, we get the desirad result.

A similar induction argument verifies the only if portion of this praof.
Furthermore, the initial probabilities of A defined by v are simulated by the
initial transitions from the initial situation (s',Z) of A‘g so the probability

of acceptance of a string w is the same within the two automata.

CALCULATIONS ON PROBABILISTIC PUSHDOWN AUTOMATA

Although a pushdown automaton processes its stack symbols from top to
bottom (from left to right in our notation) it can be considered to process
all of its stack simultaneously within a one state automaton because we know
apriori which state to associate with each stack symbol. This parallel pro-

cessing can be conceptualized as occurring in steps as follows. The zeroth
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stack step will correspond to the initial stack symbol Z. The first stack |
step will correspond to whatever string B] of stack symbols is generated by
(s',Z). The second step &% will correspond to the stack after the application
of one transition to (s',b) for every b in By. Similarly, the ith stack

step will correspond to the string 81 of stack symbols obtained by applying
transitions to all stack symbols of Bi—1‘ Figure 2 shows a transition se-
quence for accepting a7 expressed in paraliel using stack steps of the example
one state automaton Ai. In this figure we denote stack symbois [s] Z1 sf],
[52 b2 SZ], and [52 bA'sf] by by, by, and by respectively. Define the transi-
tion generating function for each b B (where [B| = k) as
fj(x], Xz’“"’xk) = Zj d{ai,j

the o function is thézlprobabiiity associated with the transition, mj denotes

: rq(Bss) v (8..)
™
(s, bj)Pjr(s, Bij)}XT ‘]..,xkk WY where

the number of distinct transitions possible out of s with bs on the top of the
stack, A is a one state PPA, and rz(gij) denotes the number of occurrences
of bx within the string Bij’ For example, Ai has the following transition
generating functions:
F1ls 255 x3) = pyxXg * 4
Faligs Ko X3) = BpXp + 4
i

1]

f3(x1, X5 x3)
Define the ith step transition generating function recursively as:
Fo(x], XZ”“’Xk) = Xy
F](x}, XZ""’Xk) = f](x], xz,...,xk)
Fi(x], XZ""’Xk) = Fi-](f1(xl’ xz,,..,xk)y fz(x], X2"“’Xk)’“"
,fk(x], x2"°"xk)) for i > 1.

Thus in our example,

1

Folxys Xps %3) = %
Fr(xys Xps X3) = pyxoxg + g

Fo (x = 2
2045 x5 x3) = pyppd + Py, +
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FIGURE 2

AUTOMATON /?\}f

§' (s, b], a) = {(s, bzbg}, (s,2)3, oy = (p}, q])

§'(ss bgs a) = {(s:2)1, az = (1)
Stack Steps Input Accepted
B i\)l
8 b.,b a
1 2.3 —
/N
A aa a

B2 //b?b\z\ -
A b,b aaaa_a

/\

. 7/
An acceptance sequence for a

aaadaaa
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In each of these expressions, the constant term of F_i denotes the total proba-

bility of strings being accepted in i or less stack steps; also the coefficient

of the term x}r1 x2r2 ce xkrk in Fi denotes the probability of exactly r
occurrences of b], r, occurrences of b2,...,rk occurrences of bk in the Bi
string of the ith stack step. In a normalized PPA, this implies that the

Timit as i =~ = of the constant portion of Fi must approach one and the rj

exponents must approach zero. The matrix M of values ifi

9X. X1 x2,..;,xk=1

exactly represents the expected number of occurrences J
of the stack symbol bj in the set of transitions out of (s, bi)’ whereas

oF .
ggl-represents the expected value at the ith stack step. Thus a normalized

.

PPX must satisfy the criterion Tim 'Mi = 0 in order for the language generated
to be normalized. The matrix M]w?1T satisfy this criterion if the magnitude

of a?i characteristic roots are Tess than one. Similarly, if any roots have

a magnitude greater than one, the limit diverges. Consider our example Ai;

The matrix of partial derivatives looks like:

0 py Py
M=o 2p, 0
0 0 0

The characteristic equation associated with M is:
5(y) = ¥y - 2py)
Thus this PPA will accept a normalized probabilistic language as long as
Py < 1/2.
For any PPA A, we can define the expected number of transitions assuming
no input = A transitions, to be E =W§L£(w) u(w) where L is the set of strings
accepted with positive probability by A, 2(w) is the length of w, i.e., number

of symbols ael in w, and u{w) is the probability of acceptance of w by A.
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We can show that if A is normalized and its matrix M eigenvalues are less

than one, then
3

E = (100...00) (1 - M)~ (1),

This is true because the average length of all strings accepted by A with b“j

.

as the initial symbol 1is

m.
2 s (e)
n. = 4y + L n.nh.(B.s
NI o 1T
where hi is the number of occurrences of bi in Bj’u’ and aj U is the proba-
bility p associated with the uth transition out of (s,bj), i.e.,
. p
auj“(sa bJ) {“W(Sﬁ Bj,u)‘
m. m,
e b My T
n. = & 5o LB n. + p.
S I ey P R P B A

By normalization criteria, the second term eguals one. The term

R >
J hi(gj u) is the {i,i) term of the matrix M, thus if (1) denotes
- 5 >

'I -
a column vector of all ones, we have N = MN + (1). Solving for N yields

o M3

G. o
Jol

O

N = (}iuM)“T (1) where (I»-M)""-i exists because M has eigenvalues all less than
unity. Premultiplying by (100...00) removes all terms except Ny which is
the desired value E.

The expected relative number of occurrences of a.eZ in strings of (Lu)
denoted E,, can also be calculated. Let ti(Bj,u) denote the number of occur-

rences of a, in 8 of a -i(Sabi)}fl(s,p.

5.u U3 J,u)‘ Then Tet T.i be the column vector

whose jth element is

This term is interpreted as the mean number of ai‘s accepted by A in one
transition with bj on the top of the stack. From the calculation of E we see

that
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(100...00) [1-M]"! T

yields the average number of occurrences of Ay Division by E makes this
value relative since E is the average number of input symbols in a string of L.

Thus
E; = (100...00) [1-M]" T.JE.

SUMMARY AND CONCLUSIONS

With the methods described in this paper, it is possible to investigate
and answer questions concerning probability of deadlock in various models
of computer systems, where this deadlock was defined as the expected value
of 1) the number of system actions to deadlock or 2) the number of resource
allocations before deadlock. A1l techniques used in this paper were applied
to a pushdown automaton modeling last-come-first-serve scheduling. It is
significant that, because we considered parallel stack reduction, our techniques
apply equa]Ty well to queue automata modeling first-come-first-serve scheduling
algorithms. This is because in our generating functions, the order of reduction
of the stack (or queue) symbols is immaterial at each stack step.

The calculations described in this paper have been carried out for systems
containing small numbers of processes and resources. Results of these calcu~-
lations appear in the appendices. For example, the 2 x 2 system of Figure 1
described earlier has a mean time to deadlock of 24.72 system actions under
first-come-first-serve and Tast-come-first-serve scheduling, but 25.50 under
random allocation.

If the number of units of resource increases while the number of processes
remains fixed, one would intuitively expect that the probability of deadlock
would decrease. This expectation is substantiated by the data presented in

appendix B indicating that as the number of resources increases from 2 to 3,
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to 4,..., the expected number of transitions to deadlock increases imp}yiﬂgw
that the system would run for a longer pericd of time in a deadlock free mode,
so the probability of deadlock is smailer. Conversely, increasing the number
of processes in a fixed resource system should increase the probability of
deadlock because more processes would be competing for the same number of
resources. Appendix C confirms this hypothesis for small systems, indicating
that an increase in processes decreases the expected number of transitions

to deadlock. This phenomenon has, in fact, been observed in actual systems
[127]. If one uniformly increases both processes and resources, 1t is
intuitively unclear what happens to the probability of deadTock. Appendix A
indicates that as the number of processes (= the number of units of resource)
increases, the expected number of transitions to deadlock decreases implying
that the probability of deadlock actually increases. This study has been
concerned with models of generic process-resource systems; if a specific
system was being modeled, one could change the transition probabilities to
more vrealistically réf?ecﬁ the system's behavior. The mean time between
relevant system actions could also be obtained in order to translate number
of transitions to deadlock into time units.

Areas of further research include extension of this model to systems
containing different classes of resources and to consumable resource systems.
Also, it could be hypothesized that as the system becomes large, the expected
number of transitions to deadlock under the three scheduling algorithms would
differ by a negligible amount. Is this true? Can one bound this differenca
as a function of the number of processes and resources? If not, then perhaps
it can be proven that one of the scheduling algorithms always has the lowest

probability of deadlock.
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APPENDIX A

MEAN NUMBER OF TRANSITIONS TO DEADLOCK FOR n x n SYSTEM

30 _
28 t~ \
26 \\ \\
T \\\\\\w_whmhéﬁmﬁ_uq
a. LCFS scheduling
22 fw u«. b. Random scheduling

Expected Value c. FCFS scheduling

of . 20 |-

Number of Events
to Deadlock

18 L
16 |..
14 L.
12 |.

10}~

n = Number of Processes = Number of Resources



APPENDTX B

MEAN NUMBER OF TRANSITIONS TO DEADLOCK FOR 2 PROCESS SYSTEMS

70 -~
60 |-
Expected 0 -
Value of
Number of B
Transitions
to
Deadlock 4o L
(2 x n System)
30 -
20
10 -
i i i i t i ! [

n = number of resources



APPENDIX C

MEAN NUMBER OF TRANSITIONS TO DEADLOCK FOR 2 RESOURCE SYSTEMS

50
40 —
30 |
20 — .
' k/a. LCFS scheduling
- ¢-b. Random scheduling
N c¢. FCFS scheduling
10 |
| l ! f | l !

n = number of processes






