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Abstract

We use the anelastic spherical harmonic code to model the convective dynamo of solar-type stars. Based on a
series of 15 3D MHD simulations spanning four bins in rotation and mass, we show what mechanisms are at work
in these stellar dynamos with and without magnetic cycles and how global stellar parameters affect the outcome.
We also derive scaling laws for the differential rotation and magnetic field based on these simulations. We find a
weaker trend between differential rotation and stellar rotation rate, ( (∣ ∣ )DW µ W W 0.46) in the MHD solutions
than in their HD counterpart (∣ ∣ )W W 0.66), yielding a better agreement with the observational trends based on
power laws. We find that for a fluid Rossby number between 0.15 Rof 0.65, the solutions possess long
magnetic cycle, if Rof 0.42 a short cycle and if Rof 1 (antisolar-like differential rotation), a statistically steady
state. We show that short-cycle dynamos follow the classical Parker–Yoshimura rule whereas the long-cycle period
ones do not. We also find efficient energy transfer between reservoirs, leading to the conversion of several percent
of the starʼs luminosity into magnetic energy that could provide enough free energy to sustain intense eruptive
behavior at the star’s surface. We further demonstrate that the Rossby number dependency of the large-scale
surface magnetic field in the simulation ( ~ -B RoL,surf f

1.26) agrees better with observations ( ~ - B RoV s
1.4 0.1) and

differs from dynamo scaling based on the global magnetic energy ( ~ -B Robulk f
0.5).

Unified Astronomy Thesaurus concepts: Solar dynamo (2001); Solar magnetic fields (1503); Stellar magnetic fields
(1610); Stellar rotation (1629); Solar differential rotation (1996); Magnetohydrodynamics (1964); Stellar
convection envelopes (299); Magnetohydrodynamical simulations (1966); Solar analogs (1941); K stars (878);
G stars (558)

1. Introduction

Sun-like stars go through various magnetic activity phases in
their lives. From young very active T Tauri stars rotating much
faster than our Sun to old stars that are less active, it is key to
understand how convection, rotation, turbulence, magnetism,
and surface activity evolve and feedback on one another over
secular time. Of particular interest is the generation of magnetic
field via dynamo action, because it is both the source of key
temporal variabilities like the Schwabe 11 yr or Gleissberg
90 yr magnetic cycles in the Sun and at the heart of a complex
feedback loop between stellar magnetism and rotation via wind
braking and the loss of mass and angular momentum by the star
(Matt et al. 2015; Brun & Browning 2017; Vidotto 2021). It is
also key in providing the free energy reservoir needed to power
eruptive events such as flares or coronal mass ejections
(Shibata et al. 2013; Aschwanden et al. 2015; Maehara et al.
2017). In this work, we seek to assess how solar-like stars with
different masses and rotation rates can power their magnetism
by means of dynamo action in their convective envelopes.

Various activity indicators have been derived observation-
ally over the last 50 yr using, for instance, photometric and
spectroscopic variability (Baliunas et al. 1995; Oláh et al. 2009;
Egeland 2017; Boro Saikia et al. 2018) and more recently

through asteroseismology (García & Aallot 2019) to connect
the spectral class and age of a star to its dynamical properties
and activity level. Turning specifically to solar-type stars,
spectropolarimetric studies have revealed several interesting
properties (Marsden et al. 2014). In Vidotto et al. (2014), it was
shown that the large-scale magnetic field is following a scaling
law with the stellar Rossby number á ñ µ - B RoV s

1.38 0.14 for
stars with Ros> 0.1 (here the stellar Rossby number is defined
as the ratio between the rotation period and the convective
turnover time). More recently, See et al. (2019b) have revisited
this trend and found a similar result with á ñ µ - B RoV s

1.40 0.10.
It was also proposed in Petit et al. (2008) and later by See et al.
(2015) that the toroidal magnetic field dominates over the
poloidal field for fast rotators. It was further shown that no
significant collapse of the large-scale field with respect to
higher multipole moments was observed as the star evolved
and is found less active (Vidotto et al. 2016). Recent work by
Lehtinen et al. (2021) including more evolved stars seems to
help constrain better the rotation–activity relationship, con-
firming that considering the Rossby number is better than the
rotation period alone. In Karoff et al. (2018). the possibility that
larger metallicity increases the activity level of solar analogs
was also proposed.
Moreover, long observational studies based on Ca II H&K

chromospheric observations have shown that magnetic activity
of solar-like stars (Wilson 1978; Saar 1990; Plachinda &
Tarasova 1999; Hall et al. 2007; Hall 2008) can be found to be
either irregular with no obvious cyclic activity or to possess
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activity cycles with short magnetic cycle periods (Metcalfe
et al. 2010; Jeffers et al. 2018) or long (decadal) ones (Noyes
et al. 1984; Baliunas et al. 1995) as in the Sun. Such studies
have further indicated the existence of a relation between
Rossby number and magnetic cycle periods, its exact nature
being still debated given the relatively small numbers of truly
confirmed cyclic magnetic stars (do Nascimento et al. 2014;
Egeland 2017).

A puzzling property regarding stellar magnetic cycles has
been the existence (or not) of active and inactive branches of
stellar activity, as proposed by Saar & Brandenburg (1999) and
Böhm-Vitense (2007). Recently it has been argued that stars
may be transiting from one state to the other as they evolve and
that such distinct activity branches do not exist. Instead,
activity would be decreasing while rotation would be almost
unchanged beyond a certain age or stellar internal dynamo
state. A key quantity to characterize this activity state transition
is again the Rossby number. Metcalfe & van Saders (2017)
proposed that once their Rossby number becomes large, stars
stop braking through their stellar wind, hence departing from
the classical Skumanich law Ω(t)∝ t−0.5 and gyrochronology
trend (Skumanich 1972; Barnes 2003, 2007). This is still highly
debated in the community as some observers find stars older
than the Sun still following Skumanich’s law (Meibom et al.
2015; Barnes et al. 2016; Lorenzo-Oliveira et al. 2018, 2019;
do Nascimento et al. 2020) while others do not (Metcalfe et al.
2016; Metcalfe & Egeland 2019; Hall et al. 2021). The
disagreement could also be due to the observation techniques
(photometric versus chromospheric studies for instance) and
observational data set (Kepler data versus long-term monitoring
of individual stars) used, as each has rotation rate and age
determination that sometimes differ significantly (Lorenzo-
Oliveira et al. 2016; do Nascimento et al. 2020). Another
alternative would be that stars temporarily stop spinning down
before starting again (Curtis et al. 2020; Spada & Lanzafame
2020) or that the coronal temperature drops, yielding a smaller
mass loss for older stars (Ó Fionnagáin & Vidotto 2018). Thus,
understanding what happens from a theoretical point of view to
stellar dynamo and magnetic field geometry for large Rossby
numbers is crucial in helping to interpret the most recent
observations. This is one of the goals of this study. Given the
close link between surface activity and stellar magnetism, a key
aspect to characterize is the amount of magnetic energy made
available in a given solar-like star by dynamo action. We know
that flare intensity is linked to the magnetic energy made
available to the magnetic structures. It is thus crucial to better
characterize energy transfers in solar-type star dynamos for a
wide range of Rossby numbers.

Characterizing the differential rotation (DR) realized at the
base and in the convective envelope of solar-type stars is
central to the understanding of their magnetic field generation,
activity level, and rotation, as it is directly linked to the Ω effect
(e.g., stretching of the poloidal magnetic field lines by large-
scale shear). Hence, the role of DR in driving the star’s
magnetic activity level and field properties should be clarified
(Donahue et al. 1996). Doppler imaging (Donati & Collier
Cameron 1997; Barnes et al. 2005), asteroseismology (Gizon &
Solanki 2004; Reinhold et al. 2013; García et al. 2014),
classical spot models (Lanza et al. 2014), and short-term
Fourier transform (Vida et al. 2014) are methods to infer DR.
The combination of all these observations on stellar rotation
and magnetism helps constrain the trends linking rotation with

stellar DR and magnetic activity. Various analyses of stellar
DR revealed different dependencies between DR and star’s
rotation (ΔΩ∝Ωn), with n varying between 0.15 and 0.7
(Barnes et al. 2005; Reiners 2006; Reinhold et al. 2013). There
is no clear consensus in the community for now; some authors
are even advocating that such laws should be derived per
spectral stellar classes and that the confusion comes from
mixing together F and K stars (Balona & Abedigamba 2016).
Saar (2011), Brandenburg & Giampapa (2018) also propose
that the dependency of the DR with the rotation rate may not be
monotonic, with a break near Rossby equals unity. By contrast,
a more systematic and stronger dependency is observed with
the star’s temperature (DW µ Teff

8.92, Barnes et al. 2005,
Reinhold et al. 2013; and DW µ Teff

8.6, Collier Cameron 2007).
Hence, we expect large-scale shear to vary both in amplitude
and profile (as a function of latitude and depth) as the global
stellar parameters change. Some recent studies have confirmed
this is happening in solar-type stars by inverting seismically
their profile (Benomar et al. 2018), pointing to a possible
antisolar DR state (e.g., slow equator/fast poles), which was
possibly already guessed in F stars (Reiners 2007) and
advocated to exist in numerical simulations (Matt et al. 2011;
Gastine et al. 2014; Brun et al. 2015, see below).
Considering the large number of global stellar parameters

probed by these different observational studies, it is expected
that the excitation of various types of convective dynamos may
occur (Weiss 1994; Tobias 1998; Brun & Browning 2017;
Brandenburg & Giampapa 2018; Charbonneau 2020). In order
to quantify the influence of key parameters such as rotation and
mass in characterizing the dynamo and magnetic level achieved
in solar-like stars and given the intrinsic nonlinear mechanisms
at work in stellar dynamos, multi-D numerical simulations have
been developed over the years in an attempt to provide more
quantitative answers.
Some studies have used the 2.5D mean-field dynamo

approach to do so, extending solar mean-field dynamo models
to other stellar spectral types (Chabrier & Küker 2006; Jouve
et al. 2010; Küker et al. 2011; Kitchatinov et al. 2018, and
references therein). While these studies are very helpful, most
of them lack the full nonlinearity and genuine parametric
dependence of 3D magnetohydrodynamic (MHD) simulations.
Recent developments by Pipin (2021) are starting to overcome
these limits and have extended the work of Rempel (2006) on
the Sun to solar-type stars with various rotation rates.
Nevertheless, with the arrival of more powerful supercompu-
ters, other authors have used instead global 3D MHD
simulations to model DR and stellar magnetism in the
convection zone of solar-like stars (Glatzmaier & Gilman 1982;
Miesch et al. 2000, 2006; Brun et al. 2004, 2011; Brown et al.
2008, 2010; Ghizaru et al. 2010; Käpylä et al. 2011, 2014;
Gastine et al. 2014; Augustson et al. 2015; Karak et al. 2015).
These studies pointed out the large magnetic temporal
variability and the critical effect of stellar rotation and mass
on magnetic field generation through dynamo mechanism,
leading in some parameter regimes to configurations with
cyclic activity (Gilman & Miller 1981; Gilman 1983;
Glatzmaier 1985a; Brown et al. 2011; Racine et al. 2011;
Augustson et al. 2013, 2015; Käpylä et al. 2013; Nelson et al.
2013; Beaudoin et al. 2016; Guerrero et al. 2016, 2019;
Strugarek et al. 2017, 2018; Viviani et al. 2018, 2019;
Warnecke 2018; Matilsky & Toomre 2020). Several studies
pointed out the positive effect of a stable region underneath the
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convection zone (Parker 1993) on the efficient storage of
intense toroidal field and the lengthening of the stellar dynamo
cycle period (Glatzmaier 1985b; Browning et al. 2006; Lawson
et al. 2015; Beaudoin et al. 2016; Guerrero et al. 2016, 2019;
Käpylä et al. 2019; Bice & Toomre 2020). Over the last
decade, significant progress has been made in successfully
simulating large-scale mean flows and stellar activity cycle
using different numerical codes and methods (Jones et al.
2011). This is quite reassuring that a global consensus is
growing on the nature of solar-like star dynamos. It is common
knowledge that there are still key transitions in Rossby number
(at low and high values of this parameter) that need to be
understood further, as well as what is the exact type of
convective dynamos realized in solar-like stars as their global
parameters are varied. This study continues this effort by doing
an even broader systematic parametric study of solar-like star
dynamos coupled to a stably stratified layer below than what
have been published so far. It extends the work published in
Varela et al. (2016) and Brun et al. (2017) with the MHD
anelastic spherical harmonic code (ASH) (Brun et al. 2004). In
particular, we wish to better characterize energy transfers and
how much of a star’s energy (luminosity) is converted into
magnetic energy by nonlinear global convective dynamos over
a wide range of Rossby numbers, generalizing to solar-like
stars the work by Starr & Gilman (1966) and Rempel (2006).

In the following sections, we analyze how DR and
magnetism feedback on one another (Brun 2004; Fan &
Fang 2014), as well as how kinetic and magnetic energies flow
within a stellar magnetized rotating convective envelope, using
15 convective dynamo MHD simulations for model stars with
different masses and rotation rates (hence Rossby numbers) in
order to achieve this goal. In Section 2 we present the equations
and model setup. In Section 3 we give a quick overview of one
of the dynamo solutions emphasizing the main properties of a
cyclic solution. In Section 4 we discuss the various DR profiles
obtained in our parametric studies, expanding Varela et al.
(2016) to include 15 models. We discuss angular momentum
and various scaling laws of the DR contrast ΔΩ. In Section 5
we analyze our dynamo solutions for various key properties as
a function of the Rossby number, such as their activity level,
the amount of magnetic flux generated by the dynamo, the
existence or not of an activity cycle and torsional oscillations,
how the cycle period for cyclic solutions changes, what is the
relative contribution of dipolar and quadrupolar magnetic fields
in the overall dynamo-generated magnetic field, and interpret
our simulations in terms of mean-field α– Ω classification. We
further expand our data set with the 17 simulations published
previously Strugarek et al. (2017, 2018) with the Eulag-MHD
code (Smolarkiewicz & Charbonneau 2013), in order to
improve the statistics. In Section 6 we perform an extensive
study of energy transfer between various reservoirs in stellar
dynamos, assessing how much magnetic energy is accessible to
stars like our Sun to power eruptive events. We compute all
MHD transfers between kinetic and energy reservoirs for the
large-scale flows and magnetic fields. In Section 7 we reflect on
our findings in an astrophysical context, comparing our results
with recent observational results and then conclude.

2. Numerical Setup

In this section we present the main features of the ASH code,
describing the boundary and initial conditions of the numerical
models and our choice of global parameters.

2.1. Set of Equations Solved

We perform 3D MHD simulations of convective dynamo
action coupled to a stable radiative interior where the anelastic
MHD equations are solved for the motions of a conductive
plasma in a rotating sphere (Jones et al. 2011). The anelastic
approximation captures the effects of density stratification
without having to resolve sound waves, which would severely
limit the time step (Brown et al. 2012). In the MHD context,
the anelastic approximation filters out fast magnetoacoustic
waves but retains Alfvén waves.
The code ASH uses a pseudo-spectral method (Clune et al.

1999). The velocity (v), magnetic (B), and thermodynamic
variables (entropy S, pressure P) are expanded in spherical
harmonics Yℓm(θ, f) for their horizontal structure and in
Chebyshev polynomials Tn(r) for their radial structure (Brun
et al. 2004). The density (ρ), entropy, pressure, and temperature
(T) are linearized about the spherically symmetric background
values, denoted by the symbol (ˆ). The equations solved by
ASH are (Brun et al. 2004)

· ˆ · ( )r = =v B0, 0 1



*
⎛
⎝

⎞
⎠

ˆ ( · )

( ) · ( )

r

r
p

 W

  

¶
¶

+ + ´

= - + + ´ ´ +

v
v v v

g B B

t

P

2

1

4
2

ˆ ˆ ˆ ˆ · ( ˆ ) · ˆ ( )r r r ¶
¶

= - + - + F +v qT
S

t
T S S 3d

[ ] ( )h ¶
¶

= ´ ´ - ´
B
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t

, 4

with the velocity field ˆ ˆ ˆ= + +q q j jv e e ev v vr r , the magnetic
field ˆ ˆ ˆ= + +q q j jB e e eB B Br r , the angular velocity in the
rotation frame * *ˆW = W ez, êz the unit vector along the rotation
axis, and g the magnitude of the gravitational acceleration. A
volumetric heating term r̂ is also taken into account to
approximate the generation of energy by nuclear reactions in
the stellar core. The nuclear reactions are modeled very simply
by assuming that   ˆ= T n

0
c. By enforcing that the integrated

luminosity of the star matches its known surface value, we can
determine ò0 and nc as listed in Table 7 of Brun et al. (2017).
Note that only the low-mass star series of models (e.g., 0.5 and
0.7 Me) require that heating source term, because their
computational domain includes a portion of the nuclear energy
generation core.
The diffusion tensor D and the dissipative term Φd are

defined as

⎡
⎣

⎤
⎦

ˆ ·rn d= - vD e2
1

3
,ij ij ij
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⎣
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2

with eij the stress tensor and J= c/4π∇× B the current
density. The energy flux q is the sum of a radiation flux and of
a turbulent entropy diffusion flux:

ˆ ( ˆ ) ˆ ˆ ˆ ˆ ˆ
ˆk r kr k r = + + +

¶
¶

q ec T T T S T
S

r
,r p r0
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with ν, κ, and η the effective eddy diffusivities of the
momentum, heat, and magnetic field transport, κr the atomic
radiation diffusion coefficient, κ0 the effective thermal
diffusivity acting only on the spherically symmetric (l= 0)
entropy gradient, and cp the specific heat at constant pressure.

Due to limitations in computing resources, current numerical
simulations cannot capture all scales of solar convective
motions and magnetic fields from global to atomic dissipation
scales. The simulations described in this study resolve
nonlinear interactions among a large range of scales but
motions and magnetic fields still exist in solar-like stars on
scales smaller than our grid resolution. Hence, our models
should be considered as large-eddy simulations (LES) with
parameterization to account for subgrid-scale (SGS) motions.
The effective eddy diffusivities ν, κ, and η represent
momentum, heat, and magnetic field transport by motions that
are not resolved by the simulation. They are allowed to vary
with radius but are independent of latitude, longitude, and time
for a given simulation. In the simulations reported here, ν, κ,
and η have the following profile:

( ) ( )n n n= +r f r ,bot top step

where

( ) ( ˆ ˆ ) [ ] ( )
( ) ( (( ) ) )

r r b

s
b n n

= -

= - +
= =

a

-

f r f r

f r r r

1 ,

0.5 tanh 1 ,

10 ,
t t

step top

bot top
3

and with ν, νbot and νtop in cm2 s−1 and rt and σt in cm, as
provided in Table 7 of Brun et al. (2017), and α is −0.5 for all
cases. All models assumed a Prandtl number Pr= ν/κ of 0.25,
so that κ can be directly obtained from the amplitude and
profile of ν. The magnetic Prandtl number Pm= ν/η is equal to
1 or 2 depending on the case considered (see Table 3), so that η
can as well be deduced from ν. These tapered profiles are
chosen in order to take into account the much smaller subgrid-
scale transport expected in the stably stratified radiative
interior. A representative profile is shown in Figure 1. Their
amplitudes are adapted for each rotation rate and stellar mass
considered in order to achieve the best turbulent convective

dynamo states while retaining a reasonable numerical resolu-
tion and computing effort (still, each model has used of the
order of 8 to 10 million CPU hours spread over several years).
The diffusivity κ0 is set such as to have the unresolved eddy

flux carrying the solar flux outward at the top of the domain
(see Figure 2). It drops off exponentially with depth in order to
avoid a large inward heat flux in the stable zone (see Miesch
et al. 2000). Of course, there is some arbitrariness in choosing
the exact shape and amplitude of our diffusivity profiles, and
we do our best to limit their influence on the results
reported here.
The mass flux and magnetic vector fields are maintained

divergenceless by a stream function formalism (Brun et al.
2004):

ˆ ( ˆ ) ( ˆ ) ( )r   = ´ ´ + ´v e eW Z , 5r r

( ˆ ) ( ˆ ) ( )  = ´ ´ + ´B e eC A . 6r r

A perfect ideal gas equation is used for the mean state and
the fluctuations are linearized:

ˆ ( ) ˆ ˆg r g= -P c T1 p

ˆ ˆ ˆ ˆr r g= - = -P P T T P P S cp

with γ= 5/3 the adiabatic exponent.
The anelastic MHD system of equations requires 12

boundary conditions (BCs). We use an impenetrable and
stress-free BCs at the top and bottom of the domain, i.e.,

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

=
¶
¶

=
¶
¶

=q f
v

r

v

r r

v

r
0.r

Magnetic BCs are perfectly conducting at the lower radial
boundary and the magnetic field matches a potential field in the

upper boundary: ( )( )∣ ∣ ∣= = =¶
¶

¶
¶

q jB 0r r r

B

r r r

B

r rbot bot bot and

∣ = Y  DY =B 0r rtop , with rtop and rbot, respectively, the
radius of the top and bottom of the numerical domain and rbcz
that of the base of the convective layer (see Table 1).
Finally, we maintain the entropy flux at the top and bottom.

Keeping the values of ˆ ∣dS dr r r,top bot fixed at all times in the
simulations further implies that the fluctuating dS/dr is set to
zero at both BCs.

2.2. Model Structure and Initialization

The simulation is focused on the bulk convection zone,
avoiding regions too close to the stellar surface. We include a
stably stratified layer below the convective envelope, hence
providing a realistic bottom boundary condition for the fields
and flow that are allowed to be pumped down and to penetrate
into the radiative interior. The code uses a realistic background
stratification for the profiles of entropy (Ŝ), density (r̂),
temperature (T̂ ) derived from a one-dimensional solar-structure
model CESAM (Morel 1997; Brun et al. 2002). Our starting
point is the G- and K-star rotating convective 3D models
published in Brun et al. (2017) (see also Matt et al. 2011; Brun
et al. 2015 and Table 1).
The MHD models are initialized from their equivalent

progenitor hydrodynamical models in which a small magnetic
field perturbation is introduced in the convective envelope
(many orders smaller than the final magnetic field observed in
the simulation). In that hydrodynamic study we published 15
simulations covering four mass bins and four rotation rates. We

Figure 1. Typical radial profile of kinematic viscosity ν used in this study, here
for case M11R3m. Profiles of κ and η are the same, but their amplitude
depends respectively for each case on the chosen Prandtl and magnetic Prandtl
numbers (see Table 3).
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have models for stellar masses 0.5, 0.7, 0.9, and 1.1 Me and
rotation rates ranging from 1/8 to 5 times the solar rotation
rates. In keeping with the naming nomenclature of Brun et al.
(2017), we name our model such as to indicate the mass of the
star and its rotation rate. The models are named MAxrm, where
“A” is the mass of the star and “r” the rotation rate of the star
(in solar rotation rate). The index “x” indicates slow/antisolar
(x= s) and prograde (x= R) DR models (except model
M11R1m, which is also antisolar) and “m” stands for
magnetism, to distinguish between the hydrodynamic progeni-
tor published in 2017 and their MHD dynamo counterparts
considered in this study.

The models have a numerical resolution of (Nr, Nθ, Nf)
769 × 256 × 512 except for few cases in the M09m and M11m
series rotating at Ω* = 3 or 5Ωe, where Nθ is 512 and Nf
is 1024.

In Figure 2 we show in (a) an example of the radial
dependence of the entropy gradient, and in (b) the temporal and
azimuthally averaged radial energy flux balance as luminosities
for the model with 1.1 solar mass and 3 times the rotation rate
of the Sun. We note the sharp increase of the stratification at the
base of the convective envelope that is coherent with the stiff
radiative interior found in main-sequence solar-like stars. Such
a realistic interface, as opposed to an impenetrable wall, allows
the convective motions to overshoot beyond the radius where
the entropy gradient changes sign. By doing so they generate
internal gravity waves and pump magnetic field. Because we
are in this study mostly interested in the magnetic state of our
simulation, we refer the reader to the following multidimen-
sional studies of internal gravity wave generation in solar-like
stars (Rogers & Glatzmaier 2006; Brun et al. 2011; Alvan et al.
2014, 2015). Turning to the radial flux balance, we note that the
enthalpy flux (dashed–triple-dotted line) dominates energy
transport in most of the convective envelope. The diffusive
fluxes (radiative in the bottom half of the computational
domain (long dashed) and unresolved near the top (dotted line))
carry the stellar luminosity at each end of the domain. We note
an inward kinetic energy flux (dashed–dotted line) reaching
about 10% of the star’s luminosity, as is common to find in
stratified convection simulations. The Poynting and viscous
fluxes account for less than 1% of the radial energy balance.

Finally, we note the negative enthalpy flux near the base of the
convective envelope, which is compensated by a local increase
of the radiative flux, such as to reach a satisfactory radial
energy balance and thermal equilibrium.

2.3. G- and K-star Parametric Study

As indicated above, we initiate each of the 15 dynamo
simulations from mature, relaxed hydrodynamics convective
states and introduce a seed magnetic field in the convective
envelope only. These hydrodynamical progenitors have been
run long enough to reach a statistically stationary state in the
convection zone and a well established rotation profile. They
possess a genuinely established tachocline, defined as the
transition between DR in the outer convective envelope to
solid-body rotation in their stable radiative interior, leading to
regions with strong shear (Spiegel & Zahn 1992). The
tachocline plays an important role in the dynamo process of
magnetic field generation in solar-like stars as reported in
simulations performed by several authors (Glatzmaier 1985b;
Browning et al. 2006; Racine et al. 2011; Masada et al. 2013;
Lawson et al. 2015; Guerrero et al. 2016).
The main parameters of the models are listed in Tables 2 and

3. The density scale heights between the top and the base
of the convection zone and between the top and the
bottom of the model are defined as ( ˆ ˆ )ˆ r r=rN ln out bczbcz

and
( ˆ ˆ )ˆ r r=rN lntot out in . For the M05 model, ˆ =rN 3.25

bcz
and

ˆ =rN 4.70
tot

; M07 model, ˆ =rN 3.48
bcz

and ˆ =rN 5.78
tot

; M09
model, ˆ =rN 3.31

bcz
and ˆ =rN 5.99

tot
; and M11 model,

ˆ =rN 3.28
bcz

and ˆ =rN 5.60
tot

. The convective flows at the
middle of the convective envelope vary from 5 m s−1 up to
about 300 m s−1 in our sample, and the convective turnover
time from 7 (case M11R1m) to 222 (case M05R3m) days. The
surface DR between the equator and latitude 60° varies from
−102 to +278 nHz in our sample, and we will study its
maintenance in detail in Section 4.1. In the middle of the
convection zone, the rms magnetic field typically varies from 1
to 70 G in our models. It is found to be maximum close to the
bottom of the convective envelope, where the large-scale shear
efficiently powers the dynamo, and the magnetic field can be

Figure 2. (a) Radial dependence of the mean entropy gradient for case M11R3m. The region of the tachocline is shown in the inset figure. (b) Time and horizontally
averaged radial energy fluxes as luminosities (normalized to the star luminosity) for case M11R3m. The solid line is the total flux, the long-dashed line the radiative
flux, the dashed–triple-dotted line the enthalpy flux, the dotted line the conductive entropy flux, the thick dashed–dotted line the kinetic energy, the dashed line the
viscous diffusion flux, and the thick dashed line the Poynting flux.
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stored in the tachocline close to the convective-radiative
boundary.

Our sample of simulations were designed to operate in a
relatively homogeneous turbulent Reynolds number regime, as
seen in the first column of Table 3. The supercriticality degree
can be characterized by the Rayleigh number achieved in our
models, compared to a critical Rayleigh number for the onset of
convection. Such a modified Rayleigh number was proposed
by Takehiro et al. (2020) and is listed in column 6 of Table 3.
All our models exhibit a Rayleigh number at least five times
larger than the critical Rayleigh number. We have run these
models as long as we could while maintaining a reasonable
numerical cost to achieve the large parameter study presented
here and while computing the models showing a magnetic
cycle over several decades. In this study we use the Rossby
number as a measure of the influence of rotation on the flows
maintaining the DR as well as power dynamos. Several Rossby
number definitions have been proposed in the community, and
we have computed the fluid Rossby number Rof, the convective
Rossby number Roc, and the stellar Rossby number Ros in
Table 3. We refer the reader to Brun et al. (2017) and their
Appendix for a more in-depth discussion of these various

definitions of the Rossby number. We will focus here on the
fluid Rossby number Rof and note that the other two are related
to Rof through a nearly linear relationship. The fluid Rossby
number decreases with rotation rate and increases with mass
and varies from 0.07 to 2.35 in our sample of models. This
range nicely covers the transition from solar-like to antisolar
DR regimes (the transition is nearly at Rof; 1), and our
smallest Rossby number (namely model M05R5m) is close to
the expected fast rotators’ saturation regime.
We now briefly present one representative cyclic dynamo

solution before entering into a more detailed analysis of our
dynamo simulations ensemble in Sections 4–6.

3. Overview of One Cyclic Dynamo Case

To illustrate the richness of the dynamo solutions discussed
in this study, it is key to show how the subtle nonlinear
interplay between convection, rotation, and turbulence leads to
the generation of time-dependent complex magnetic fields. All
15 models discussed in detail in this study successfully
generate and maintain a dynamo-generated magnetic field
against ohmic dissipation.

Table 1
Global Properties on the Main Sequence of the Four Stars Used in Our ASH Dynamo Models

Mass Radius L* Teff Sp. T. Mbcz rbcz T̂bcz r̂bcz r̂Dcz r̂Df rbot rtop
(Me) (Re) (Le) (K ) (Me, M*) (Re, R*) (K ) (g cm−3) L L (R*) (R*)

0.5 0.44 0.046 4030 K7 0.18, 0.36 0.25,0.56 4.3 × 106 14.0 42 193 0.13 0.95
0.7 0.64 0.15 4500 K4/K5 0.079, 0.11 0.42,0.66 3.0 × 106 2.1 50 605 0.32 0.97
0.9 0.85 0.55 5390 G8 0.042, 0.046 0.59,0.69 2.6 × 106 0.51 67 1013 0.38 0.97
1.1 1.23 1.79 6030 G0 0.011, 0.010 0.92,0.75 1.6 × 106 0.048 81 830 0.5 0.97

Note. All the listed values were computed with the CESAM stellar evolution code (Morel 1997). We adopt Me = 1.989 × 1033 g, Re = 6.9599 × 1010 cm, and
Le = 3.846 × 1033 erg s−1. The density ratios r̂Dcz and r̂Df are evaluated by forming the ratio between the value of the density, respectively, at the base of the
convection and the top of the domain and at the bottom and the top of the domain.

Table 2
Models Dimensional Characteristics

Ω* Ṽr q̃V f̃V ΔΩ B̃r ˜qB ˜fB τc τν τκ τη
(Ωe) (m s−1) (m s−1) (m s−1) (nHz) (G) (G) (G) (days) (yr) (yr) (yr)

MHD (HD)

M05Sm 1/8 13.52 12.19 29.35 −23 (−24) 13.54 15.01 24.87 102.23 15.78 3.94 15.78
M05R1m 1 7.27 7.39 29.72 112 (129) 15.92 15.66 40.92 190.03 37.33 9.33 74.65
M05R3m 3 6.21 6.80 56.85 200 (85) 10.32 9.34 25.91 222.49 64.65 16.16 64.65
M05R5m 5 6.95 4.69 6.59 9 (146) 39.36 49.61 70.71 198.79 64.65 16.16 64.65
M07Sm 1/4 25.44 18.14 30.35 −53 (−32) 11.85 11.05 17.72 62.82 4.50 1.13 4.50
M07R1m 1 16.34 14.48 44.72 111 (120) 5.28 5.00 8.12 97.82 8.22 2.06 16.45
M07R3m 3 14.74 11.21 38.41 68 (187) 29.62 33.21 67.96 108.46 14.24 3.56 28.49
M07R5m 5 13.42 11.55 14.34 −2 (223) 35.85 42.33 54.71 119.11 18.39 4.60 18.39
M09Sm 1/2 53.51 36.80 48.98 −36 (−25) 1.70 1.66 1.68 35.83 2.72 0.68 2.72
M09R1m 1 38.74 35.32 68.55 102 (108) 2.32 2.44 3.17 49.50 3.86 0.97 7.72
M09R3m 3 30.61 32.42 148.70 265 (288) 1.07 1.07 1.93 62.64 6.67 1.67 6.67
M09R5m 5 27.94 19.74 56.43 76 (338) 20.33 19.82 47.02 68.62 7.18 1.80 7.18
M11R1m 1 130.77 93.56 140.61 −102 (−131) 12.69 11.81 13.06 16.67 1.46 0.37 2.93
M11R3m 3 90.23 81.57 272.53 278 (291) 4.49 4.66 6.83 24.17 2.54 0.63 2.54
M11R5m 5 88.50 61.74 88.73 109 (435) 18.63 18.48 32.93 24.63 2.62 0.65 3.27

Note. Characteristic velocities, differential rotation, magnetic fields, and timescales are listed, using averages over a small interval of 0.01Rå at the middle of the
convective envelopes (unless stated otherwise). The differential rotation is taken between latitude 60° and the equator at the surface of the models (see Section 4.1).
Likewise, the total magnetic flux is computed at the surface of the models and averaged over at least one magnetic cycle for the cyclic cases (see Section 5.4). The rms

velocity and magnetic field are ˜ ( ˜ ˜ ˜ )= + +q fv V V Vr
2 2 2

and ˜ ( ˜ ˜ ˜ )= + +q fB B B Br
2 2 2

. Here, ˜t = D vc r is the overturning convection time, and the dissipation timescales
are defined as τx = D2/x with x ä [ν, κ, η], where D = rtop − rbcz the thickness of the convective layer that differs for each mass bin.
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We defer the systematic comparison between all 15 models
to the next sections and focus here on the representative case
M09R3m. Indeed, M09R3m is in an intermediate Rossby
number regime (Rof= 0.27) and therefore lies in the middle of
our sample of models. The temporal evolution of kinetic and
magnetic energies is shown in Figure 3. The magnetic energies
first rise very fast to then saturate after about 1000 days in this
case, and exhibit long-term oscillations over a decadal

timescale reminiscent of a solar-like magnetic cycle. All
components of the magnetic energy (toroidal, poloidal, and
fluctuating) oscillate in phase in this model. The mean toroidal
kinetic energy also presents oscillation of the same amplitude,
albeit anticorrelated with the magnetic ones. These energy
trends are similar to the ones found in the magnetic cycles
obtained with the EULAG code in Strugarek et al. (2018, see
their Figure 3) and points toward a similar dynamo mechanism
involving a strong feedback of the magnetic field on the DR
within the convective envelope. We will perform a detailed
analysis of this mechanism in Section 5. Here, we first illustrate
the dynamics of the dynamo achieved in model M09R3m in
Figure 4. The top row shows the 3D structure of our model by
means of a potential-field extrapolation outside our computa-
tional domain at three different instances covering a magnetic
reversal. We see that the field at the south pole changes from
blue to black, showing the polarity reversal. The strong toroidal
field at the base of the convective envelope can be seen through
the transparency. In the leftmost panel, this deep wreath is
mainly blue (westward oriented). Its polarity is reversed in the
rightmost panel (red, eastward oriented), showing that the
polarity reversal takes places over the full convective domain.
The subsequent rows show spherical slices of Bf at the base of
the convective envelope (second row), Br at the top of the
domain (third row), entropy fluctuations ( ¢S ) at the top of the
domain (fourth row), and enstrophy ∣ ∣ ´ v 2 (last row). We
recover in the second row the magnetic wreath located at the
base of the convective envelope and at midlatitude that changes
polarity as the cycle progresses. The toroidal field reaches high
values of up to 1.5× 104 G, with a strong temporal variation,
as seen in the middle panel during the reversal. The surface
radial field (third row) reaches values of about 100 G and
exhibits a complex topology, mixing dipolar and quadrupolar

Table 3
Model Characteristics Nondimensional Numbers

Re Rm Pe Pm Ra Raå/Rac Ta Rof Roc Ros Ek Λ

[106] [106] [10−3] [10−3]

M05Sm 56.34 56.34 14.08 1 0.01 67.64 0.21 1.74 0.38 3.96 4.37 4.57
M05R1m 71.71 143.42 17.93 2 0.89 16.83 37.49 0.33 0.31 0.70 0.33 1.88
M05R3m 106.08 106.08 26.52 1 7.15 8.58 1012.05 0.15 0.17 0.23 0.06 0.14
M05R5m 106.08 106.08 29.68 1 7.60 5.69 2811.24 0.07 0.10 0.14 0.04 4.59
M07Sm 26.16 26.16 6.54 1 0.01 73.32 0.05 1.24 0.72 2.98 9.03 7.18
M07R1m 30.69 61.38 7.67 2 0.11 28.75 1.82 0.42 0.50 0.89 1.48 0.39
M07R3m 47.94 95.88 11.98 2 0.64 14.78 49.12 0.16 0.23 0.30 0.29 8.40
M07R5m 56.36 56.36 14.09 1 1.59 8.91 227.44 0.09 0.17 0.18 0.13 8.68
M09Sm 27.69 27.69 6.92 1 0.01 54.09 0.05 1.28 0.74 3.02 8.98 0.12
M09R1m 28.48 56.96 7.12 2 0.04 24.71 0.40 0.68 0.66 1.51 3.16 0.14
M09R3m 38.90 38.90 9.73 1 0.33 11.02 10.79 0.27 0.35 0.50 0.61 0.01
M09R5m 38.21 38.21 9.55 1 0.36 7.00 34.70 0.10 0.20 0.30 0.34 5.33
M11R1m 32.06 64.12 8.02 2 0.01 47.17 0.06 1.38 0.78 3.30 8.33 11.36
M11R3m 38.31 38.31 9.58 1 0.10 17.16 1.56 0.54 0.50 1.10 1.60 0.51
M11R5m 38.81 38.81 9.70 1 0.13 6.87 4.62 0.27 0.34 0.66 0.93 13.06

Note. All quantities listed have been averaged over a small interval of 0.01Rå at the middle of the convective envelopes. ˜ n=Re vD is the Reynolds number. The
Prandtl number Pr = ν/κ = 1/4 in all cases. Pm = ν/η is the magnetic Prandtl number, Rm = RePm is the magnetic Reynolds number, and Pe = RePr is the Péclet
number. ( ˆ ) ˆr rnk= -¶ ¶ DRa S SgD3 is the Rayleigh number, and Raå/Rac is the modified Rayleigh number as computed by Takehiro et al. (2020).

* n= WTa D4 2 4 2 is the Taylor number. We also list three Rossby numbers: the fluid Rossby number w̃= WRo 2f , the convective Rossby number

=Ro Ra TaPrc , and the stellar Rossby number t=Ro P cs rot
CS. The latter is useful for comparison with observationally derived Rossby numbers. For Ros we have

therefore considered the empirical convective turnover time derived by Cranmer & Saar (2011), which is ⎡
⎣

⎤
⎦( )t = - - +314.24 exp 0.002c

T TCS
1952.5 K 6250 K

18eff eff days.

We note that it correlates well with our fluid Rossby number and find Ros ; 2.26Rof. The Ekman number is defined as Ek = ν/(ΩåD
2) and the Elsässer number

as ˜ ˆ ˜prL = WB Dv82 .

Figure 3. Temporal evolution in case M09R3m of the kinetic (KE) and
magnetic (ME) energies. We also show their axisymmetric toroidal TKE, TME,
and poloidal PKE and PME components and their fluctuating components FKE
and FME. We note the rise over about 500 days of ME just after having
introduced a weak seed field. Then follows a modulation of ME with a 9 yr
period. Case M09R3m is indeed one of our cyclic cases (see also Figure 4).
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Figure 4. Temporal evolution of a magnetic cycle for case M09R3m, taken at three different instances during one reversal. The upper row shows a 3D potential
extrapolation of the modeled magnetic field, with blue lines denoting field lines oriented outward and black lines oriented inward. Behind a semitransparent
representation, the radial velocity is close to the surface, while deeper below, the magnetic wreaths are shown by red (oriented eastward) and blue (oriented westward)
lines. The second row shows the azimuthal field at the bottom of the convection zone, and the third row the radial field at the top of the domain. The fourth row shows
the entropy fluctuations at the top of the domain, and the lowest row the enstrophy at the same depth.
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symmetries. We see again here that both fields oscillate in
phase and reach a minimum in the midst of the magnetic
reversal (middle panels). Finally, the two last rows show the
thermal (entropy) fluctuations and the vortical motions
(enstrophy) in our simulations. The first striking aspect is that
these two quantities vary very little along the magnetic cycle.
Indeed, the magnetic field modifies the large-scale motions and
the average convective state in our models. Yet the magnetic
cycles (when present) show little imprint on the convective
flows themselves and mainly act on the mean flows (see
Section 4.1). The specific entropy fluctuations have two
distinctive features. First, a mean pole-to-equator contrast is
well established in the model, with higher entropy fluctuations
at the poles. Such contrast is expected in models with a solar-
like DR (Brun & Toomre 2002) and can be generally related to
the pressure field required to drive the observed meridional
flow. Second, patterns in ¢S are imprinted by the nonaxisym-
metric convective motions themselves, which are also recog-
nizable in the enstrophy in the lower panel. The enstrophy is
concentrated at the boundaries of the so-called banana cells at
low latitude (Miesch et al. 2000) and is distributed between
convective cell centers and boundaries at high latitude.

We now turn to the detailed analysis of the large-scale flows
(Section 4), magnetic properties (Section 5), and energetic
balances (Section 6) achieved in the 15 models. The reader
mostly interested in the astrophysical consequences of our
study may consider going directly to Section 7 for a summary.

4. Large-scale Flows in the Models

In this section, we analyze the DR profiles of the models
including both a stable subadiabatic layer and magnetic field
self-consistently generated by dynamo action. The aim of the
study is to compare the DR profiles of the hydrodynamical and
MHD models. We confirm our preliminary results (Varela et al.
2016) and those of others (Karak et al. 2015; Guerrero et al.
2016; Viviani et al. 2018) that the presence of magnetic fields
leads to different trends for the DR with stellar rotation rate and
mass when compared to their hydrodynamical counterpart. We
further discuss how the meridional circulation is impacted by
the presence of a magnetic field and discuss the main
mechanisms acting to redistribute angular momentum within
the convective shell. We also observe torsional oscillations in
our set of dynamo simulations but delay their discussion to
Section 5.3.

4.1. Differential Rotation Profiles as a Function of Rossby
Number

We analyze the DR of the simulations that results from the
angular momentum redistribution occurring mostly in the
convection zone. The panels of Figure 5 show a meridional cut
of the axisymmetric DR averaged over 10 overturning
convective times, defined as ˜òt = dr vc r

r
r

bcz

top (see Table 2).
We observe that for the simulations M05Sm, M07Sm,

M09Sm, and M11R1m, there is an antisolar DR, with the poles
rotating faster than the equator, like their hydrodynamical
counterparts (see Figure 6 and also Brun et al. 2017). The cases
rotating at an intermediate rotation rate show a solar-like DR.
Finally, the cases rotating the fastest (R5 series) show almost no
DR (in particular for cases M05Sm and M07Sm). This
constitutes a big difference with their hydrodynamical counter-
part cases. The magnetic field here had a major impact, with

almost solid-body rotation imposed throughout the convective
envelope. There is little asymmetry in the profiles between the
northern and southern hemispheres, as expected when the
average is performed over an interval long enough with respect
to the convective overturning time (except for M05Sm for which
the rotational constraint is the weakest and the longitudinal
average less meaningful). Figure 6 also displays radial cuts of
the rotation for the MHD cases (blue lines) and hydrodynamic
progenitor cases (gray lines). In cases rotating 1, 3, and 5 times
the solar rotation rate (bottom three rows), the velocity range in
latitude (different styles of line) is generally reduced in the
presence of a magnetic field. This effect is observed to be
stronger as the rotation rate increases. Conversely, the effect of
the magnetic field is mild for the slowly rotating cases (upper
row), except on the slowly rotating case M11R1m, which still
shows some degree of magnetic feedback on its DR. As one may
expect, the radial gradient of the DR near the tachocline is
generally weaker in all MHD simulations compared with
hydrodynamic progenitors. This points to a magnetic feedback
of the dynamo field on the DR itself, a feedback that is observed
to strengthen as the rotation rate increases.
We have calculated the surface latitudinal DR ΔΩ for each

model, defined as the difference between the equator and 60°
latitude. A positive value thus denotes a solar-like DR and a
negative value an antisolar DR. We report these values for the
magnetic cases as well as the hydrodynamic progenitors in
Table 2 (fourth column).
The DR of our sample spans a range between −102 and

+278 nHz, with some fast-rotating models presenting an
extremely weak DR, like M05R5m with ΔΩ= 9 nHz. We find
that the absolute DR generally weakens in MHD models
compared to their hydrodynamic progenitors, as expected from
the radial profiles shown in Figure 6. This is particularly
striking for fast rotators such as M09R5m, which goes from
338 nHz in hydro to 76 nHz in MHD.
We investigate in Figure 7 the DR trends with respect to the

rotation rate (left panel) and rotation period (right panel). The DR
of the hydrodynamic progenitors and of the MHD cases are
respectively shown in small semitransparent and large opaque
symbols. The shape of the symbol labels the rotation of the model,
and the color the mass of the modeled star, as indicated in the
legend. In the right panel, we compare the model DR to the DR in
the Kepler sample obtained by Reinhold & Gizon (2015) (shown
as black dots). The dotted lines correspond to their estimated
observational detection limits. We first note that the absolute value
of our DRs agrees well with the observed values. In addition, the
DR range in our sample increases as the rotation period decreases,
like what is observed in the Kepler satellite sample. Several of our
models nevertheless lie outside the observed values: the three
antisolar DRs on the right (triangles) and two of our fast-rotating
models. Several reasons can explain this discrepancy. Slowly
rotating stars could produce very few starspots or even no
starspots at all (see, for instance, van Saders et al. 2019), making
their DR impossible to detect with photometry. Another
possibility is that they lie outside the presently detectable limit
with the Kepler data, due to their long rotational period (up to
about 200 days for our most slowly rotating model). Finally, the
two fast-rotating models (M05R5m and M07R5m) show very
weak DRs due to magnetic feedback, which are outside the
detection limits of Kepler (dotted black lines).
The left panel of Figure 7 shows the DR trend with the

rotation rate. Using only the hydrodynamic progenitors, we
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previously showed that the DR scales as Ω0.66 (Brun et al. 2017).
Blindly trying to fit such a power law to the MHD sample, we
find that the exponent reduces to Ω0.46. This weaker dependency
is expected due to the magnetic feedback on the DR through the
Lorentz force. It also agrees better with the observational trends,
which are still quite uncertain and were found to vary from 0.2
(Balona & Abedigamba 2016 for G stars), 0.3 (Reinhold et al.
2013 for cool stars), to even 0.7 (Donahue et al. 1996 for F-K
stars). Looking more closely at our sample on the left panel of
Figure 7, it clearly appears that a power-law fit is a poor
representation of the DR in our sample. Rather, we see that ΔΩ
increases withΩ for slow rotators, while it dramatically drops for
fast rotators due to the magnetic feedback. Following Saar
(2011), we recast in Figure 8 the DR trend in terms of relative
DR ΔΩ/Ω with respect to the fluid Rossby number Rof (for the
different definitions of Rossby number used in this work, see the
caption of Table 3 or the Appendix A of Brun et al. 2017). We

find a trend that is very similar to the observational trend
reported by Saar (2011) (shown by the dashed line in Figure 8):
ΔΩ/Ω is roughly constant for inverse Rossby numbers lower
than a certain threshold (here - Ro 5f

1 ), and it drops for fast
rotators as DW W µ Rof

p. Saar (2011) proposed that p= 2, but
here our sample agrees with a somewhat large range pä [2, 6].
Additional models with even higher turbulence level are required
to confirm the exact amplitude of the drop in DR contrast found
in the fast-rotating cases. Finally, our sample also shows some
hint of an increase of ΔΩ/Ω at large Rossby numbers, which is
outside the observable constraints for now. It would be
interesting to search observationally for candidate solar-like
stars possibly possessing such antisolar rotation states.
In Brun et al. (2017), we have proposed that the DR could

follow two power laws with respect to the Rossby number and
the stellar mass. Here, we find that the DR is weakened at high
Rossby number, and therefore we do not recover a simple

Figure 5. Temporal and longitudinal averages of the angular velocity profiles over 10 convective overturning times (10 τc) in our suite of models. Prograde flows are
in reddish tones and retrograde ones in bluish tones. In each panel, the dashed semicircle represents the base of the convective envelope and the dashed horizontal line
the equator.
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power-law trend, as we saw in Figure 7. We can nevertheless
attempt to fit such a combined power law on a subsample of
our models, excluding the fast-rotating case but retaining the
slow rotators. We obtain in this way

 ( ) ( )


DW = - 


Ro
M

M
107 nHz HD , 7f

0.73 0.13
1.93 0.42

 ( ) ( )


DW = - 


Ro
M

M
84 nHz MHD . 8f

0.40 0.20
0.78 0.62

In the MHD case, we find again that the DR is less sensitive to
both the Rossby number and the stellar mass. The power-law fit
is nevertheless questionable here, as the range covered by our
Rossby numbers and masses is quite small. We have

Figure 6. Radial cuts of the temporal- and longitudinal-averaged angular velocity from the equator to 75° latitude every 15° (black lines are for the hydrodynamical
cases and the blue lines the MHD/dynamo cases). The solid vertical line in each panel shows the bottom of the convective layer.
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nevertheless included the results of the fit here to compare with
the purely hydrodynamic case (Brun et al. 2017). We can
conclude here that the clear trend in stellar mass and effective
temperature found in the hydrodynamic study (Brun et al.
2017) is less significant when magnetism is taken into account,
but overall we see a better agreement with observations of the
dynamo models compared to their hydrodynamical progenitors.

The MHD simulations therefore show that the magnetic field
changes the angular momentum redistribution, especially for
fast-rotating stars. In the next section, we perform a detailed
analysis of this balance for four representative models.

4.2. Angular Momentum Transfer

We can better understand how the DR profiles are achieved
in the dynamo models by identifying the main physical
processes responsible for redistributing angular momentum
within rotating convective shells. Our choice of stress-free and
potential-field BCs at the top and stress-free and perfect
conductor BCs at the bottom of the computational domain have
the advantage that no net external torque is applied, and thus
angular momentum is conserved. We can assess the transport
of angular momentum by considering the mean radial (r) and
latitudinal (q) angular momentum fluxes, applying the
procedure used in Brun et al. (2004). Starting from the f
component of the momentum equation expressed in conserva-
tive form and averaged in time and longitude:
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In these equations, the terms on the right-hand side represent,
for both fluxes, contributions respectively from viscous
diffusion (which we denote as r

VD and q
VD), Reynolds

stresses ( r
RS and q

RS), meridional circulation ( r
MC and

q
MC), Maxwell stresses ( r

MS and q
MS), and large-scale

magnetic torques ( r
MT and q

MT). The Reynolds stresses are

Figure 7. Absolute value of the differential rotation between the equator and 60° latitude vs. rotation rate (left panel) and rotation period (right panel). The symbols
denote the rotation rate of the model and the color the mass of the modeled star, as shown in the legend. MHD models are shown by the large plain symbols, and the
hydrodynamic progenitors by the smaller open ones. On the right panel, the differential rotation in the Kepler sample obtained by Reinhold & Gizon (2015) is shown
as black dots and the observational detection limit by the two dotted black lines.

Figure 8. Relative differential rotation between the equator and 60° latitude as
a function of the fluid Rossby number. The symbols shape and color are the
same as in Figure 7. The trend found in the MHD sample is highlighted by the
gray area, and the observational trend reported by Saar (2011) is shown by the
dashed black line.
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linked to correlations of the fluctuating velocity components
coming from organized tilts within the convective structures,
especially in the downflow plumes. Likewise, the Maxwell
stresses are associated with correlations of the fluctuating
magnetic field components due to the twist and tilt of the
dynamo-generated magnetic structures.

In Figure 9 we show the components of r and q for the
M07 case series, having integrated over colatitude and radius as
follows:
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Thus, Φr represents the net angular momentum flux through
horizontal shells at different radii and Φθ represents the net flux
through cones at different latitudes. This representation is
helpful in assessing the direction and amplitude of angular
momentum transport within the computational domain by each
component of r and q.

For each of the four cases, we display Φr on the left panel
and Φθ on the right panel, both normalized by *R 2. Turning to
the radial angular momentum transfer, we first note a very good
overall radial balance. We find that the Reynolds stresses
(green dashed–dotted curves) transport angular momentum
outward in all the low Rossby number models. By contrast,
M07S, the slowly rotating case, has the Reynolds stresses
transporting angular momentum inward. The viscous diffusion
and Maxwell stresses oppose this transport, tending to rigidify
the rotation state in the radial direction. The meridional
circulation has one large cell per hemisphere for the M07Sm
case (see Section 4.3). It opposes the Reynolds stresses, but as
the rotation rate increases and the Maxwell stresses gain in
amplitude, it changes in profiles and direction to yield a radial
balance of angular momentum, from the angular momentum
equation. Note that the mean large-scale magnetic torques
(black dotted line) have little influence on the overall radial
angular momentum balance.
Considering now Φθ, we can assess the balance of latitudinal

angular momentum transport. We first notice that the Reynolds
stresses (green curves) are systematically equatorward in both

Figure 9. Angular momentum transport in the M07 case series. We display cases M07Sm (left) and M07R1m (right) in the top row and M07R3m (left) and M07R5m
(right) in the bottom row. For each model, the radial (left) and latitudinal (right) angular momentum balance are shown, with Reynolds stress contribution shown as
green dashed–dotted lines, viscous stresses as dashed–triple-dotted yellow lines, meridional circulation as dashed cyan lines, Maxwell stresses as long dashed magenta
lines, the large-scale magnetic torques as a black dotted line and the sum of all contributions as a solid black line. We note that a very good angular momentum balance
is achieved in most models in both directions with the sum being close to zero.
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hemisphere (positive in the northern hemisphere and negative
in the southern one). Because most cases exhibit a very good
latitudinal balance, as demonstrated by the solid black curve,
these Reynolds stresses must be nicely counterbalanced. A
quick survey of the right panels for all four models indicates
that many contributors act depending on the Rossby number of
the simulations. For the slowly rotating case (upper-left corner),
we see that it is mostly the meridional circulation (cyan dashed
curve) that does most of the work (we defer the reader to
Section 4.3 for a discussion of the meridional circulation
patterns in the various dynamo cases). By contrast, magnetic
terms do not play much role in the case of M07Sm. For
M07R1m (right-top corner) it is now the viscous diffusion that
plays that role of opposing the Reynolds stresses. For that case,
the meridional circulation is not doing much, but we do see a
20% contribution of the large-scale magnetic torques, the
Maxwell stresses being still weak. As the Rossby number
decreases and the dynamo action becomes more intense, we see
that the magnetic terms start influencing the latitudinal angular
momentum transport more and more, tending to oppose the
Reynolds stresses. It is particularly noticeable for the Maxwell
stresses. They are the dominant player for the M07R3m case
(bottom-left corner), helped by the large-scale magnetic
torques. In that case the meridional circulation is somewhat
helping the Reynolds stresses, notably at low latitudes near the
equator. For the M07R5m case, the story becomes less clear;
except for the Reynolds stresses, all terms fluctuate and
sometimes oppose or reinforce the turbulent stresses. Maxwell
stresses still play an important role as does the meridional
circulation. In that model, the DR has been so significantly
quenched by dynamo action that it is not surprising the trends
are less clear and systematic. In summary, in most cases the
transport of angular momentum by Reynolds stresses are
opposed by a combination of meridional circulation, viscous
stresses, and Maxwell stresses.

4.3. Meridional Circulation Profiles

The meridional flow patterns are also affected by the
presence of magnetism in our set of models, especially for the
fast-rotating cases. We immediately note that the meridional

circulation is indirectly modified by magnetism (as will be
made clear in Section 6.2). Indeed, magnetic stresses play a
negligible role in setting the meridional flows in our models,
and the differences we observe compared to the hydrodynami-
cal counterparts originate from changes in the DR (see, e.g.,
Passos & Charbonneau 2014).
We illustrate the meridional flow pattern achieved in the

M07m set of simulations in Figure 10. The slow-rotating case
(first panel) is very similar to its hydrodynamic progenitor, with
a well-defined circulation cell in each hemisphere. Both cells
circulate from the equator to the pole at the surface and from
the pole to the equator at the base of the convective envelope.
The second model rotating at the solar rate (second panel) is
also similar to its hydrodynamical progenitor and shows a more
complex circulation profile. These are consistent with previous
numerical experiments by, e.g., Karak et al. (2015). It consists
of stacked cells elongated along the rotation axis outside the
tangent cylinder and two counterrotating cells in each hemi-
sphere at high latitude. Finally, the fast-rotating models (third
and fourth panels) exhibit a peculiar meridional circulation
pattern concentrated at the equator, with two stacked
transequatorial cells (see, e.g., Simitev & Busse 2009). These
profiles can be understood as follows. In these models, the DR
is strongly quenched by magnetic feedback as seen in the
previous section. In particular, the radial shear of DR vanishes
at the equator as seen in Figure 6. As a result, gyroscoping
pumping (Miesch et al. 2006; McIntyre 2007; Featherstone &
Miesch 2015) dramatically weakens along the equator, and the
resulting meridional circulation is both very weak (this can be
seen in the drop of meridional flow kinetic energy in Table 5)
and mainly driven by the remaining latitudinal shear. This leads
to two meridional cells crossing the equator, as seen in the last
panels of Figure 10. Having presented the large-scale flows
achieved in the simulations, we now turn to discussing their
magnetic properties.

5. Magnetic Properties

In this section, we discuss in more detail various aspects of
our dynamo simulations, such as their type, their temporal

Figure 10. Meridional flows in M07m case series. The contours are normalized and denote clockwise (red) and anticlockwise (blue) circulations.
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variability, the amount of magnetic flux they generate, and the
distribution in space and size of their magnetic fields.

5.1. Properties of Dynamo Solutions: Long Cycles, Short
Cycles, and Steady Dynamos

We find three dynamo states in our sample of 15 MHD
models: long (decadal) magnetic cycles, short (yearly) magn-
etic cycles, and stable magnetic wreaths concentrated close to
the bottom of the convection zones. These three states are
illustrated in Figure 11 with models M07R5m, M09R3m, and
M09R1m.

Let us first focus on the decadal cycles, as the one found for
M09R3m (see middle left panels in Figure 11). In this model,

we find that the global magnetic field of the star reverses with a
period of 10 yr (see first column in Table 4). The averaged
azimuthal field at the bottom of the convection zone presents a
solar-like butterfly diagram, with both polar and equatorial
branches. The magnetic field is generally consistent with
dipolar symmetry, with the azimuthal field of inverse polarities
in each hemisphere. We also see some departures from
hemispheric symmetry (for instance around t= 42 yr). The
azimuthal field is found to be concentrated at the base of the
convective envelope and in the tachocline, where the radial
shear of Ω is maximized, as shown in the time–radius and
meridional diagrams. It develops over a relatively large
latitudinal extent, as shown by the active latitudinal band

Figure 11. Various dynamo states achieved in our sample by our models, as illustrated by M07R5m (top panels), M09R3m (middle panels), and M09R1m (lower
panels). In the top panel, we show the time–latitude, time–radius, and instantaneous meridional plane of Br (red denotes positive values and blue negative values), with
sampling times indicated by a vertical dashed line. These illustrate the short magnetic cycles achieved by our models. The four middle panels illustrate both the short
and long cycles achieved in model M09R3m. The first panels show the latitude–time (at the base of the convection zone) and radius–time (at midlatitude) diagrams of
the mean azimuthal magnetic field that reverses on a decadal timescale. The two panels below show the mean radial field at the top, which also shows the same
cyclicity. Once the long cycle is filtered, the short cycle appears in the zoomed panel on the right at a particular epoch and around the equator. The lowest panels show
the mean azimuthal field for model M09R1m and illustrate a dynamo with no cycles but which sustains strong stable wreaths at the base of the convective envelope.
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reported in the fourth column of Table 4. We find this band to
be centered at higher latitudes the slower the model rotates for
low and intermediate Rossby numbers. Conversely, this
activity band moves to high latitudes for models with antisolar
DR. The averaged radial magnetic field at the surface is also
found to reverse with the same timescale. At the surface, the
migration branches are nevertheless not as clear as deep within
the convection zone in this case. Strugarek et al. (2017, 2018)
also found similar deeply seated cycles using the EULAG code,
as well as Augustson et al. (2015) using the ASH code. The
cyclic behavior in their results originates from the nonlinear
magnetic feedback of the large-scale Lorentz force onto the
DR. This weakens the source of the mean toroidal field that
decreases and reverses, while the associated poloidal field
closely follows due to the sign inversion of the electromotive
force. We find the same mechanism in this new sample of
simulation with the ASH code. Indeed, the DRKE cyclic
variation observed in Figure 3 compensates the magnetic
energy cyclic variation, pointing toward a magnetic cycle
determined by the Lorentz force feedback. This fascinating
dynamo regime sustaining a long decadal magnetic cycle,
because of the existence of a subtle nonlinear feedback loop
between the large-scale shear and the toroidal magnetic field, is
therefore confirmed by the present study using a different
numerical code than Strugarek et al. (2017). We stress that its
existence can be unveiled here only because we consider fully
nonlinear convective dynamos, with a self-consistent DR
maintenance and magnetic field generation.

Still, we have attempted to interpret our simulations through
mean-field dynamo theory by inverting the α tensor and its
antisymmetric part γ by means of the singular-value decomposition
(SVD) technique (see Augustson et al. 2015; Simard et al. 2016).

The details of this procedure are given in Appendix B. One can
then use the derived ā profile to compute the Parker–Yoshimura
rule (Parker 1955; Yoshimura 1975) and assess the consistency of
a mean-field approach with our 3D turbulent model. We therefore
compute

( ) ( )la= - ¶ W WqS , 13r 0

wherel q= r sin . The time–latitude variations of Sθ are shown
at the base of the convection zone of M09R3m in the left panel
of Figure 12, with red/white denoting a southward migration
rule and blue/black a northward migration rule. We overlay
contours of Bf as black contours (solid/dashed denoting
positive/negative contours) in the left panel. We see that the
derived Parker–Yoshimura dynamo wave rule does not agree
with the observed latitudinal propagation, which strengthens
our interpretation in terms of a cycle dominated by the Lorentz
force feedback on the DR itself.
We also find another type of cyclical behavior in our sample

of models: short cycles, which seem to preferentially be sited
close the equator and in the upper part of the convection zone.
Such types of cycles have already been reported in previous
publications with numerical models (Beaudoin et al. 2016;
Käpylä et al. 2016; Strugarek et al. 2018) and could be
reminiscent of the possible quasi-biennial oscillations observed
in the Sun (Broomhall et al. 2012; Simoniello et al. 2013).
They oscillate on a yearly timescale as shown in the second
column of Table 4. Short cycles are interestingly found in
almost all of our models, except the slowly rotating cases. Two
short cycles are illustrated in Figure 11 for cases M07R5m and
M09R3m. In the former fast-rotating case, no long deeply
seated cycle is observed, and the short cycle clearly appears in
both the latitude–time and radius–time diagrams. In the case

Table 4
Magnetic Properties of the Modeled Dynamos

Long Cycle Short Cycle δtΩ Active lat. Φtot Brms Br,dip BL,surf fdip fquad
(y/[yr]/n) (y/[yr]/n) [nHz] [°–°] [1024 Mx]min

max [G]min
max [G]min

max [G]min
max

M05Sm n n 2.4 [43–45] 3.02.6
3.3 793683

884 191156
217 357296

407 0.21 0.22

M05R1m 13.6 ± 5.7 1.2 ± 0.6 2.1 [31–31] 1.91.3
2.5 575343

805 5817
99 15888

234 0.05 0.25

M05R3m 21.4 ± 9.4 0.5 ± 0.2 2.1 [44–45] 2.11.0
3.4 552297

830 385
93 14669

215 0.28 0.37

M05R5m n 1.8 ± 1.0 3.0 [49–55] 8.65.7
9.1 16981131

1851 19651
236 819426

929 0.19 0.35

M07Sm n n 5.4 [51–53] 4.84.5
5.2 575524

648 136130
142 306279

340 0.29 0.38

M07R1m 6.2 ± 1.1 1.4 ± 1.3 3.7 [26–35] 8.65.8
11.7 949616

1325 200100
266 439261

601 0.38 0.48

M07R3m y 2.5 ± 0.8 4.1 [21–22] 8.73.2
13.0 972127

1951 15740
251 340198

573 0.12 0.40

M07R5m n 1.0 ± 0.7 1.2 [55–58] 18.415.3
20.2 15971320

1879 18152
351 925699

1072 0.35 0.48

M09Sm n n 13.1 [72–73] 1.81.7
1.8 10997

123 5349
55 6055

66 0.60 0.17

M09R1m n n 9.0 [20–21] 1.10.9
1.5 6858

100 119
16 2318

33 0.23 0.29

M09R3m 9.9 ± 1.8 0.9 ± 0.6 9.0 [24–26] 2.20.3
4.0 13315

261 100.9
23 476

91 0.16 0.27

M09R5m n 1.3 ± 0.7 9.5 [30–35] 13.410.7
18.7 657485

970 274221
400 392284

608 0.35 0.44

M11R1m n n 12.4 [46–47] 14.513.2
15.8 589544

650 100.8
23 184161

197 0.06 0.31

M11R3m 4.9 ± 0.9 n 11.5 [20–21] 2.70.7
7.1 8620

226 110.7
31 5513

160 0.22 0.29

M11R5m . . 39.0 [52–77] 53.141.6
57.7 1208980

1329 713528
875 809596

986 0.51 0.11

Note. The first column indicates the presence or absence of a long (decadal), deeply seated magnetic cycle. When the time series were long enough to identify a cycle
period unambiguously, its value is given with error bars. Otherwise, the existence of such a cycle is indicated by a yes (“y”) and its absence by a no (“n”). The second
column shows the same for the short magnetic cycle that we identify in the upper convection zone near the equator. We do not indicate this information for model
M11R5m, which was not run long enough to determine the existence or absence of magnetic cycles. The third column indicates the amplitude of the torsional
oscillations at the surface in nHz (see Section 5.3). The fourth column shows the active latitudinal band at the bottom of the convection zone, based on the azimuthally
averaged and temporally varying azimuthal field straddling the base of the convection zone. The fourth column shows the total magnetic flux at the surface, in units of
1024 Mx, with the minimum and maximum as the subscript and superscript (see Section 5.4). The three next columns show the root-mean-squared surface field in
Gauss, the surface dipole in Gauss, and the surface large-scale radial field BL,surf (taken for l < 5) in Gauss with the same layout (see Section 7). Finally, the last two
columns show the fractions of the large-scale dipole ( fdip) and quadrupole ( fquad), as defined in Section 5.5.
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M09R3m, both types of cycle are found at the same time, and
the short cycle appears clearly once the signal of the long cycle
is removed (see zoomed panel). The short cycles are found to
always show a poleward propagation branch and to be
concentrated close to the equator. We have performed the
same SVD analysis and show the Parker–Yoshimura rule Sθ
(Equation (13)) for model M07R5m, which is shown in the
right panel of Figure 12. In this case, the analysis is carried out
in the upper part of the convective envelope, and contours of Br

are overlaid above the propagation rule. The Parker–Yoshimura
rule is found here to be in good qualitative agreement with the
poleward branch, suggesting that an α−Ω or an α2−Ω
dynamo could be at the source of this type of cycle. The short
cycles furthermore embed much less magnetic energy than the
deeply seated ones, and we do not find any clear DRKE beating
associated with them. As a result, we find that the two types of
cyclical behaviors likely originate from two different dynamo
processes: the deep-seated cycle from the large-scale feedback
loop between the magnetic field and the DR through Maxwell
torques, and the short cycles from the standard α−Ω or
α2−Ω dynamo loop. Finally, short cycles were also reported
in the study of Strugarek et al. (2018), with the same type of
localization within the convective envelope. In this previous
study, the short cycles were only found at small Rossby
number, i.e., for the fast- rotating cases. Here we find short
magnetic cycles much more ubiquitously in our sample models,
as they only disappear at large Rossby numbers. It is possible
that the coarse resolution used in Strugarek et al. (2018) with
the EULAG code prevented models at intermediate Rossby
number to develop such magnetic cycles. Additional modeling
effort pushing the turbulence level of the simulations is
required to properly assess this point, which is left for
future work.

Finally, some models in our sample do not present any
cyclical behavior. Instead, they sustain a steady dynamo with
stable magnetic wreaths within their convective envelope and

tachocline. This is the case, for instance, with model M09R1m
shown in the lower panels of Figure 11. We obtain such
solutions only in the high Rossby number regime, close to and
above the transition toward an antisolar DR.
To summarize, we find that the different types of cyclical

behaviors exist in specific Rossby number ranges in our
sample. We illustrate this in Figure 13 where we follow Gilman
(1983) and show DRKE/KE as a function of Rof in our set of
models. Short cycles are found for Rof 0.42, deeply seated

Figure 12. Parker–Yoshimura rule Sθ (see Equation (13)) as deduced from the SVD extraction of the equivalent mean-field α tensor. On the left, it is shown for model
M09R3m at the base of the convective envelope as a function of the cosine of the colatitude and time (color contours in m s−1). Contours of Bf are overlaid in black
contours (solid denotes positive values, dashed negative values; covering ±[250, 104] G). On the right, the same is shown for model M07R5m in the mid-upper part of
the convective envelope. In this case, the black lines label contours of Br (covering ±[75, 1500] G).

Figure 13. Summary of the dynamo states found in our study (circles) and in
the previous study of Strugarek et al. (2017) (stars). In both studies, we find a
clear trend in the type of cyclical behavior that models tend to produce as a
function of the Rossby number. They are shown here by the ratio between the
differential rotation and total kinetic energies. For small Rossby numbers, only
short cycles are found. At intermediate Rossby numbers, decade-long cycles
resembling the solar cycle start to appear on a relatively narrow parameter
space. At high Rossby numbers, magnetic cycles disappear and our models
produce energetic stable wreaths of magnetic field in their convective
envelopes.
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solar-like cycle for 0.15 Rof 0.65, and steady magnetic
fields for Rof 1.0. The exact boundaries between these
cyclical behaviors regimes are not precisely defined and may
depend on a number of factors. First, let us note that the same
trend was found in Strugarek et al. (2018) with the EULAG
code, as shown by the colored stars also plotted in Figure 13.
This is very important because it again demonstrates that the
results discussed in this study are not code or setup dependent,
but the results of genuine nonlinear convective dynamo action
in a rotating spherical shell. It confirms that the Rossby number
is one of the key parameters to characterize the various dynamo
states found in the literature and that cyclic convective dynamo
solutions clearly exist in a parameter regime that our study
helps to refine. The transitions between the different types of
cycles were found at slightly different Rossby numbers,
possibly due to different Reynolds, Prandtl, and Rayleigh
numbers regimes achieved in the two ensemble of simulations.
Indeed, Nelson et al. (2013) showed that fast-rotating models
exhibiting stable wreaths of magnetism (Brown et al. 2010)
could produce reversals when the Reynolds and Rayleigh
numbers are increased. Because the Rossby number of the
more turbulent models nevertheless changes significantly as
well, it is therefore unclear whether this can be attributed to a
fundamental change in the dynamo action or if it is the
consequence of a change in Rossby number. Fundamental
exploration aimed at predicting the Rossby number of turbulent
numerical experiments such as Anders et al. (2019) is very
promising in that respect and needs now to be extended to the
full MHD regime. For the time being, we can conclude here
that qualitatively the different regimes highlighted by our
simulations are robust, yet simulations at much higher turbulent
levels are required to assess the exact regime boundaries.
Please note that case M11R5m is sometimes omitted in
ensemble analysis in Sections 5 and 6 because it is not as well
numerically converged as all the other cases and can sometimes
be an outlier in some analysis. This does not impact our
conclusions in any of the results reported in the paper.

5.2. Dependencies of the Cycle Periods

We have calculated the period of the short and long cycles
and reported their values in the second and third columns of
Table 4. We use the approach initially followed by Käpylä
et al. (2016) and Strugarek et al. (2018) and rely on an
empirical-mode decomposition method (Luukko et al. 2015) to
identify quasi-periodic signals. Five of our models clearly

exhibit a deeply seated long cycle that can be identified by eye.
We were nevertheless able to calculate accurately the
associated period for four of them. The cycle period of the
fourth model would require integration times at least twice as
long to be identified. This would require an even more massive
numerical effort and will be explored in future work. Still we
can deduce with some confidence what characterizes this long-
cycle nonlinear dynamo case. Conversely, the short cycles take
place higher up in the convective envelope and their short
periods allow us to determine the cycle periods for all the
models exhibiting them. The error bars on the cycle periods are
directly estimated with the empirical-mode decomposition
method, as explained in Strugarek et al. (2018).
The left panel of Figure 14 shows the cycle periods (in years)

as a function of the rotation period (in days) of our models. We
report both short and long cycles here, respectively, in blue
circles and red circles. We have also added the cycles found
with the EULAG code and reported in Strugarek et al.
(2017, 2018) as red and blue stars. Finally, we have overlaid
the detected cycles of distant stars reported by Böhm-Vitense
(2007) as gray squares, as well as the Sun right in the middle of
the figure. Our three identified long cycles are achieved by
models with different masses, which make their direct
comparison subject to caution in a (Pcyc, Prot) diagram. Overall,
we do not recover the dichotomy between active and inactive
branches as initially proposed by Saar & Brandenburg (1999)
and Böhm-Vitense (2007). Rather, our sample of models
combining the ASH and EULAG simulations spans the whole
diagram, including the hypothetical gap where the Sun stands.
Using the EULAG sample of simulations only, we have

previously shown that the cycle period is controlled by the
effective Rossby number achieved by the simulated convection
zone (Strugarek et al. 2017). This is shown for the long and
short cycles in the middle and right panels of Figure 14. Here
we find that our new ASH simulations are compatible with the
trends obtained with the EULAG sample, which strengthens
the similarities between the modeled dynamos in our two
studies. This is moreover remarkable as the ASH simulations
include a tachocline and a deeper radiative layer, whereas the
EULAG sample considered only an isolated convective shell.
The fact that the cycle period seems to decrease with the

Rossby number has also been reported by other research groups
using yet another code (see, e.g., Warnecke 2018). So far, only
one study relying on 3D turbulent simulations (Guerrero et al.
2019) has shown some evidence for the cycle period increasing

Figure 14. Magnetic cycle period trends. The left panel shows the classical cycle period–rotation period diagram with our models (circles), the models published in
Strugarek et al. (2017) (stars), and the stellar sample of Böhm-Vitense (2007) (gray squares). The middle panel shows the trends of the long-cycle period divided by
the rotation period as a function of Rossby number. The right panel shows the same for the short cycles. In those two panels, the Rossby trend deduced in Strugarek
et al. (2018) is indicated by the gray dashed line.
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with rotation period. We believe this is due to how their DR
scales with rotation rate. Indeed, their simulations exhibit a DR
that strengthens as the rotation rate decreases (i.e., the rotation
period increases). This is at odds with all the aforementioned
studies (including the present work), where we find it to
increase with the rotation rate up to a point where magnetic
feedback strongly back-reacts to suppress it. We suspect that
the thermal treatment of the radiative-convective interface may
produce this effect in the work of Guerrero et al. (2019), albeit
additional analyses are required to confirm this interpretation.
Finally, it is worth noting that more complex dynamo states
have also been reported in a similar Rossby number regime
with the PENCIL code by Viviani et al. (2019). This again
warrants caution in the interpretation of simulation results at
moderate Reynolds number and highlights the need to achieve
more turbulent regimes in future work to confirm our trends.

5.3. Torsional Oscillations in Cyclic Solutions

We observe clear and strong torsional oscillations δtΩ (Basu
& Antia 2019) in all our models that exhibit a long, deeply
seated cycle. Torsional oscillations take the form of a
modulation of the azimuthally averaged rotation rate Ω(r, θ,
t) in depth, latitude, and time. We illustrate the torsional
oscillations at the base of the convection zone of model
M09R3m in Figure 15. The torsional positive/negative
oscillations are shown in red/blue in nHz as a function of
time and latitude. We have overlaid isocontours of Bf in black
(plain lines correspond to 4000 G, dashed lines to −4000 G).
The torsional oscillations are observed to be in phase with long
magnetic cycle. At cycle minimum (in between the black
contours), the poles are rotating slower (blue) and the equator
faster (red), meaning that the latitudinal DR is strengthened as
the magnetic field weakens and the associated magnetic torque
stops inhibiting it. During cycle maximum, the opposite
situation occurs, and the DR is found to decrease substantially.
We observe torsional oscillations very similar to what were
found with EULAG simulations by Strugarek et al.
(2017, 2018) and previous ASH simulations by Nelson et al.
(2013) and Augustson et al. (2015). In all these simulations, the
torsional oscillations are found to play a major role in
producing the deeply seated cycle. This is reassuring because

such nonlinear interplay between the flow and field seems
independent of setup details such as BCs or numerical schemes.
Moreover, torsional oscillations in our models are very
energetic: they reach more than 20 nHz at the base of the
convective envelope in model M09R3m, and their energy
corresponds to the energy variations in the total magnetic
energy (ME) seen in Figure 3. As a result, we find they play an
active role in allowing deeply seated cycles by reversing locally
∂Ω/∂θ and hence generating a toroidal field of opposite sign.
We have also searched for torsional oscillations at the

locations of short magnetic cycles, i.e., at the surface and close
to the equator of fast-rotating models. We find a temporal
modulation of the local rotation rate at the surface in all our
models. We have nevertheless not found any evidence for a
correlation between these temporal variations and the short
cycles themselves. This confirms that a different dynamo
process sustains the short cycles, which is likely related to a
more standard α−Ω mechanism as we have seen in
Section 5.1.
Finally, we have characterized the surface torsional oscilla-

tions in all our models and reported in Table 4 the average
values of δtΩ within the activity band identified in Table 4. The
surface torsional oscillations range from about 1 to 39 nHz in
our sample of simulations, which corresponds to 0.4%–6% of
the model rotation rates. Torsional oscillations associated with
short cycles are found to be very weak, and the ones associated
with the long cycle to be prominent deep inside the convective
envelope. As a result, we do not observe any strong correlation
between the amplitude of the surface torsional oscillations and
the Rossby number of our models: a linear regression
gives  d W W µ Ro Rot f

1.1 0.15
f .

5.4. Magnetic Flux Budget

To further assess the magnetic properties of a dynamo
solution, we display in Figure 16 for three representative cases
(M05R1m, M09R3m, M11R1m) various measures of the
magnetic flux available at the top boundary layer, that is,
Φ+ and Φ−, the magnetic fluxes for ∣ >=B 0r r rtop and

∣ <=B 0r r rtop , respectively, the total flux Φtot= |Φ+|+ |Φ−|,
the net flux Φnet=Φ++Φ−, and the southern ΦS and northern
ΦN hemispheric fluxes (i.e., integrated only over the northern

Figure 15. Torsional oscillations (in nHz) in model M09R3m at the base of the convective envelope, as a function of latitude and time. The black lines label the
contour of á ñf fB at +4000 G (plain lines) and −4000 G (dashed lines).
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and southern hemispheres, respectively). First, we see the very
good conservation of the divergenceless nature of the magnetic
field, with Φnet being systematically null (so implying that
Φ−= −Φ+, as clearly evident). This is the direct consequence
of solving the induction equation via a poloidal−toroidal field
decomposition (see Equation (6)). Likewise, the two hemi-
spherical measures of Φ have opposite signs, but a much
smaller amplitude than Φ+ and Φ− by about a factor of 10. This
is likely due to a highly structured magnetic field because for
an axial dipole they are expected to be equal. When adding up
the absolute value of Φ+ and Φ−, we can assess the total
amount of magnetic flux generated by the dynamo. We find
fluxes from 1024 to 1025 Mx, which are in good agreement with
values observed in the Sun (see for instance Figure 3 of
Schrijver & Harvey 1994). We also note that in the M05R1m
and M09R3m cases, both of which possess a clear and long
magnetic cycle, the temporal modulation of the magnetic fluxes
is obvious. In the M05R1m case, the modulation is about a
factor of 2 from the minimum to maximum of activity. In case
M09R3m, it reaches almost a factor of 8 (compared to 5 for the

Sun). Here again the larger mass (luminosity) of M09R3m and
its higher rotation rate leads to a larger temporal modulation of
the magnetic energy and hence the magnetic flux. Finally, for
the steady dynamo case M11R1m, possessing an antisolar DR,
a very small magnetic flux variability is observed. However, it
is the model with the highest value of the total magnetic flux,
reaching about 10 times what is observed in the present Sun.
We furthermore see a tendency for Φtot to increase with both

stellar mass and rotation rate, in good agreement with the level
of magnetic energy found in the simulations. However, more
robust tendencies appear on the rotation when one considers
only the model with Rof< 1. They are interestingly compatible
with a simple linear dependency, with F W 2.3tot

0.84 0.42 for
the rotation rate. When considering how the total magnetic flux
scales with rotation rate *F µ Wn

tot , different values from
n= 1.2 (Saar 2001) to n= 2.8 (Schrijver et al. 2003) have been
proposed (Rempel 2008). In our study we find a tentative
scaling with the fluid Rossby number as

( )F - Ro1.19 10 Mx, 14tot f
0.88 0.31 24

as shown in Figure 17, where the time-averaged total flux of
each model is considered (see also Table 2). Our models depart
significantly from this trend when their Rossby number exceeds
one, indicating a possible change for very slowly rotating stars.
In this regime, our sample of models suggests that the total
magnetic flux increases with Rossby number, as shown by the
dashed–dotted line. Additional models at large Rossby
numbers are required to fully characterize this regime properly,
which we leave for future work. To summarize, we find that the
total magnetic flux follows a trend compatible with the one
from Saar (2001) for intermediate and small Rossby numbers
and that this trend reverses for slow rotators (Rof> 1).

5.5. Dynamo Families and fdip

We now turn to considering how the change of DR state as a
function of the Rossby number may influence the relative
amplitude of the dynamo modes. We have seen in the previous
sections that as we vary the Rossby number, the type of
dynamo solution changes, going from steady for large Rossby
numbers to long-period cyclic solutions for intermediate values
of the Rossby number, to fast cyclic solutions for low Rossby
numbers.

Figure 16. Temporal evolution of various measures of the magnetic flux in representative dynamo cases studied. Plotted for models M05R1m, M09R3m, and
M11R1m are the positive (red) and negative (blue) fluxes Φ+ and Φ−, total flux Φtot = |Φ+| + |Φ−| in black, the net flux Φnet = Φ+ + Φ− as a dashed black line, and
the southern (cyan) and northern (magenta) hemispheric fluxes. In the M05R1m and M09R3m cases we clearly see the temporal modulation commensurable to their
activity cycle.

Figure 17. Total magnetic flux as a function of Rossby number. The different
models are labeled in the same way as in Figure 7. The trends from Saar (2011)
and Schrijver et al. (2003) are shown, respectively, by the dashed and dotted
black lines, assuming a constant stellar mass. An indicative trend proportional
to Rof

3 is indicated as a dashed–dotted line in the Rof > 1 regime.
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Such a variation of the temporal behavior of the dynamo
solutions may or may not be associated with a change in
dominant field geometry. This is of particular importance
because it has been recently claimed by van Saders et al.
(2016, 2019), Metcalfe & van Saders (2017), and Hall et al.
(2021) that the Sun and solar-like stars older than the Sun may
be undergoing a magnetic activity transition around a Rossby
number of 1 (see Lorenzo-Oliveira et al. 2018 for an alternative
view). In particular, they argue that the wind-braking efficiency
may be collapsing around that rotational state transition. This
would result in stars rotating more rapidly than what the
Skumanich law or gyrochronology would have predicted
(Skumanich 1972; Barnes 2003). If, for instance, a collapse
of the large-scale dynamo modes (mainly dipole and quadru-
pole) would occur after transiting to antisolar DR, this would
provide a very simple explanation, as it is well known that the
most efficient wind braking for Sun-like stars is found for the
simplest magnetic field geometry (Kawaler 1988; Réville et al.
2015; Finley & Matt 2018). In order to assess if such a change
of magnetic geometry occurs at or near the Rof∼ 1 limit, we
will use a measure called fdip, which was introduced by
Christensen & Aubert (2006), and that permits the assessment
of the energy content of the dipolar field with respect to the first
12 magnetic modes. We also introduce fquad, using the same
principle, as a quadrupolar field configuration is still quite
efficient at spinning down a star via its associated wind
braking. Both are defined as

( )
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where al,m are the spherical harmonics coefficient of the radial
magnetic field at the upper boundary (surface) of our models.

In Figure 18 we show fdip (left panel) and fquad (right panel)
from 32 dynamo cases: the 15 cases analyzed in details in this

paper, to which we add the 17 published in Strugarek et al.
(2018), using the EULAG-MHD code (Smolarkiewicz &
Charbonneau 2013). This allows us to extend our database and
to compare nonlinear dynamo solutions obtained with two
different MHD codes using very different numerical techniques,
hence giving us confidence that the trend found in our
simulations is not due to a given code. We observe a relatively
good agreement between the ASH and EULAG databases for fdip
and surprisingly find that the EULAG set of simulations produces
systematically a weaker fquad compare to the ASH database. In
both series we find a weak trend for a decrease of fdip and fquad
with the Rossby number. Nevertheless, we do not find any hint of
a collapse of fdip or fquad when the Rossby number exceeds 1 and
the DR realized in the simulations becomes antisolar. The weak
decreasing trend is not significant enough to explain the stalling
of stellar wind braking advocated by van Saders et al. (2016) and
Metcalfe et al. (2016). Hence, it seems unlikely that field
geometry is the source of the wind-braking regime change for old
solar-type stars. This is in agreement with the observational study
of Vidotto et al. (2016), who have analyzed spectropolarimetric
inversion for a suite of Sun-like stars, and they too did not find a
collapse of the dipole strength as they crossed the Rof= 1 limit.
So if such a stalling of stellar spin-down occurs, it must come
from another mechanism (see Section 7).
In summary, we have shown in Section 5 that the dynamo

solutions presented in this study possess very interesting
magnetic properties that agree very well with observations and
other theoretical studies. In particular, we have confirmed the
key role of the Rossby number (and magnetic Reynolds number)
in determining the type of dynamo realized. Now we wish to
characterize better their energy content and how energies flows
back and forth from kinetic to magnetic reservoirs.

6. Energy Content and Transfers in Stellar Convective
Dynamos

In the following section, we analyze the kinetic and magnetic
energies contained in the models and how they are distributed
between their various components.

Figure 18. fdip and fquad in all 15 models (color symbols) and those published in Strugarek et al. (2017, 2018) (gray stars). Models with Rossby number greater than 1
possess an antisolar differential rotation. We see only a weak decreasing trend of fdip and fquad with Rossby number (for the parameter space explored). In addition,
there does not seem to be a collapse of the large-scale magnetic field for slowly rotating stars.
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6.1. Global Measure of Kinetic and Magnetic Energies

We now turn to discussing the global energy content in the
convective envelope of the 15 dynamo cases presented in this
study. In Table 5 we list the kinetic (KE) and magnetic (ME)
energy densities and their axisymmetric and nonaxisymmetric
components (see their definition in Appendix A and Brun et al.
2004). We first notice that as we increase the stellar mass, the
KE is found to slightly decrease. This is due to the lower
averaged mean density due to the shallower convective
envelope in more massive stars. The averaged density over
the simulated convective envelopes varies from 4 to
0.05 g cm−3 when going from models M05m to M11m, so a
drop by a factor of 80. This is in part compensated by the
higher luminosity (convective velocity) of the more massive
stars, leading to values of KE in the range of 106–107 erg cm−3.
Note that the total KE (i.e., the energy density multiplied by the
volume) increases with stellar mass due to the much larger
volume occupied by larger-mass stars. If we now decompose
KE into its axisymmetric poloidal (MCKE) and toroidal
(DRKE) and nonaxisymmetric (CKE) components, we can
further understand how the energy is being distributed in the
various models. First, as is often the case, MCKE is found to
play a minor role in all models independently of their mass or
rotation rates. In most cases, MCKE is of the order of
104 erg cm−3 so about 1% or less of KE. This results in DRKE
and CKE being the dominant components. Analyzing these two
components, a clear trend is observed in common to all masses.
As the rotation rate is increased, going from a Rossby number
greater than 1 to a value less than about 0.1, we note that
DRKE first increases to constitute up to 96% of KE. This
means that most of the kinetic energy is in the DR with both
strong latitudinal and radial shear across the convective
envelope and at its base (we refer the reader to Section 4.1
where the angular velocity profiles of each model is discussed
in details). Such a behavior is similar to what was observed in
the purely hydrodynamic progenitors published in Brun et al.
(2017). Hence, up to a certain rotational influence, the presence
of dynamo-generated magnetic fields in the simulations does
not modify significantly the trends observed before in the
hydrodynamic cases. As a direct consequence, CKE is found to
contribute less and less to the overall dynamics. CKE is found

to be dominant for the slowly rotating cases, their convective
motions having little azimuthal mean. As the Rossby number is
decreased and the rotational influence on convective motions
made stronger, we see that CKE drops to less than a few
percent of the total KE. However, this is not the case when the
rotational influence increases even further. For all the fastest
cases with the smallest Rossby numbers, we notice a sudden
drop of DRKE both in percentage and absolute value, while
CKE contributes relatively more to KE (but KE also undergoes
a decrease of its amplitude). This is due to the strong feedback
of the Lorentz force on the DR, a phenomenon often called Ω
quenching (Glatzmaier 1985a; Brun 2004; Brun et al. 2005;
Karak et al. 2015) and seen only in global spherical rotating
models by similitude to α quenching (Blackman & Field 2001;
Brun et al. 2004; Subramanian & Brandenburg 2004) found in
most local dynamo simulations (at the origin of the interface
dynamo paradigm; Parker 1993; Mason et al. 2008) and
characterized in our simulations by the absolute concomitant
drop of CKE. This significant drop of DRKE or “Ω
quenching,” accompanied by a smaller decrease of CKE or
“α quenching,” leads to a strong decrease of KE. This confirms
that dynamo simulations do not have the same rotational
dependence as the purely hydrodynamic cases. Because most
solar-like stars are likely to have magnetic fields, such a finding
indicates that scaling laws derived in this work will likely be
more accurate when compared to observations. Because the
influence of magnetic field becomes more and more dominant
as we lower Rof, it is also instructive to analyze how the
magnetic energy content evolves as well.
In Table 5, we also provide the value of the ME densities

(total magnetic energy (ME), axisymmetric poloidal (PME) and
toroidal (TME) components, and nonaxisymmetric components
(FME)). Here there are some surprises given what we just
discussed for their KE counterparts MCKE, DRKE and FKE.
First, the axisymmetric poloidal component PME contributes
more to total ME than MCKE contributes to KE. It often
represents a few percent of ME, and in one case, M11R5m, it is
even found to be dominant. Interestingly, PME is found to
reach its lowest values for intermediate rotators close to the
Rof= 1 regime. In Rof> 1, we find that PME rises again,
confirming the trend we observed on the total magnetic flux in

Table 5
Kinetic and Magnetic Energy Densities

KE DRKE (%KE) MCKE (%KE) CKE (%KE) ME (%KE) TME (%ME) PME (%ME) FME (%ME)
(erg cm−3) ×106 ×106 ×104 ×106 ×106 ×105 ×104 ×105

M05Sm 9.3 2.1 (22.8%) 17.1 (1.8%) 7.0 (75.3%) 1.7 (17.7%) 6.7 (40.8%) 6.1 (3.7%) 9.2 (55.5%)
M05R1m 20.3 17.0 (83.9%) 2.3 (0.1%) 3.3 (16.0%) 0.8 (3.9%) 2.5 (31.9%) 0.6 (0.7%) 5.3 (67.4%)
M05R3m 74.3 71.4 (96.1%) 0.9 (0.01%) 2.9 (3.9%) 1.1 (1.5%) 7.6 (68.2%) 0.1 (0.1%) 3.5 (31.6%)
M05R5m 2.7 1.2 (44.7%) 0.3 (0.1%) 1.5 (55.2%) 2.7 (98.2%) 8.8 (33.2%) 11.6 (4.4%) 16.7 (62.5%)
M07Sm 4.0 1.2 (30.3%) 6.1 (1.5%) 2.7 (68.2%) 0.3 (7.6%) 2.0 (65.0%) 1.3 (4.3%) 0.9 (30.7%)
M07R1m 4.8 3.3 (68.5%) 1.0 (0.2%) 1.5 (31.3%) 0.9 (18.5%) 2.8 (31.5%) 1.4 (1.5%) 5.9 (67.0%)
M07R3m 3.5 2.3 (67.1%) 0.4 (0.1%) 1.1 (32.8%) 2.0 (57.8%) 9.4 (47.1%) 4.3 (2.2%) 10.2 (50.7%)
M07R5m 1.1 0.3 (24.6%) 0.2 (0.1%) 0.8 (75.3%) 1.3 (116.2%) 0.8 (6.4%) 5.1 (3.9%) 11.7 (89.8%)
M09Sm 3.2 0.4 (13.3%) 3.0 (0.9%) 2.7 (85.8%) 0.04 (1.4%) 0.3 (68.2%) 0.7 (16.8%) 0.1 (15.0%)
M09R1m 4.0 2.1 (51.2%) 1.7 (0.4%) 1.9 (48.4%) 0.2 (5.7%) 1.9 (85.4%) 0.1 (0.6%) 0.3 (14.0%)
M09R3m 11.9 10.2 (85.5%) 0.8 (0.1%) 1.7 (14.4%) 0.5 (4.4%) 4.3 (83.5%) 0.8 (1.5%) 0.8 (15.0%)
M09R5m 2.6 1.6 (62.4%) 0.3 (0.1%) 1.0 (37.5%) 1.3 (49.3%) 4.1 (32.5%) 2.9 (2.2%) 8.3 (65.3%)
M11R1m 2.0 0.4 (20.5%) 2.0 (1.0%) 1.5 (78.4%) 0.2 (12.1%) 0.9 (37.7%) 1.9 (7.9%) 1.3 (54.4%)
M11R3m 3.9 2.9 (74.0%) 0.6 (0.2%) 1.0 (25.9%) 0.3(8.8%) 2.7 (79.2%) 1.0 (2.8%) 0.6 (18.0%)
M11R5m 2.3 1.0 (43.3%) 8.9 (3.9%) 1.2 (52.7%) 4.4 (192.3%) 1.8 (4.1%) 384.3 (88.1%) 3.4 (7.8%)

Note. The explicit definitions of the different energy decomposition are given in Appendix A and Brun et al. (2004).
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Section 5.4. TME somewhat follows DRKE: it first increases
with rotation rate, with more and more energy being pumped
by the large-scale shear into toroidal ME via the dynamo Ω
effect and also via complex convective motions. TME can
reach values between 80% and 85% of the total ME. However,
the Lorentz force feedback is so strong past a certain point that
the large shear is quenched (the feedback destroying its
generating source). In most of these highly rotationally
constrained cases, the magnetic energy is found in the
nonaxisymmetric magnetic field. These trends are also
illustrated in Figure 19. It is worth noting that the three
magnetic energies show an overall similar trend: the total
energy density ME decreases with increasing Rossby number
until Rof; 1. The four models at Rof> 1 then exhibit a large
scatter, and only PME shows an unambiguous increase with
Rossby number in this regime. We also see a hint of a
saturation and possibly a slight decrease of TME at low Rossby
numbers. Additional simulations at even lower Rossby
numbers are required to confirm this trend, which is to be
expected based on the observed saturation of magnetic activity
for fast rotators (see, e.g., Wright et al. 2011; Reiners et al.
2014). In all panels, we have indicated the inverse Rossby
number trend as a gray dashed line. We remark that the three
magnetic energy densities are all compatible with the -Rof

1

trend at intermediate Rossby number, as expected from
standard dynamo scaling laws in this regime (see Augustson
et al. 2019). This translates into a bulk magnetic field

µ µ -B RoMEbulk
1 2

f
0.5. We note that this scaling does not

necessarily translate into the same scaling for the surface large-
scale magnetic field, as will be made clear in Section 7.

The relative energies (shown as percentages in Table 5) also
present interesting trends. We note first that in the slowly
rotating cases, ME is only a few percent of KE. As we lower
Rof, this value increases to reach equipartition by a subtle
combination of both ME increasing while KE first increases
and then decreases, as we have just seen. These variations
inevitably lead to the fact that for the fastest rotating cases ME
is even larger than KE and the simulations are in a so-called
global super-equipartition state. This is very interesting,
because it means that the kinetic energy in the convective
envelope is not the maximal value that the ME can reach. This
is due to a change in the force balance in the Navier–Stokes
equation between the Lorentz, inertia, buoyancy, and Coriolis
forces. As the rotation rate is increased and the Coriolis force
becomes stronger and stronger, the balance at first shifts from
being between mostly inertia and Lorentz force to a
magnetostrophic state that implies a balance between Lorentz

and Coriolis forces. We refer the reader to these following
studies for more detailed discussions of dynamo scaling laws
(Christensen 2010; Davidson 2014; Oruba & Dormy 2014;
Brun et al. 2015; Augustson et al. 2019).
Overall, we see that the dynamo states reached in our 15

cases do not show a strong difference as a function of mass, at
least in the range studied here. However, both in terms of
amplitude of the magnetic field and in the time variability of the
magnetic field (cyclic, unsteady or steady solutions), we
confirm that rotation plays a key role in determining the type
of dynamo found in our simulations. We also note that the
mean axisymmetric magnetic fields are not negligible in most
of the models, often reaching values of 5% of the total energy
content for the poloidal field and a large fraction for the toroidal
magnetic field. For the latter, this has important consequences
for the energy made available for the various magnetic
phenomena occurring at the surface of solar-like stars (see
Section 7).
Note that we did not look for hysteresis around the Rof= 0.1

limit by running various cases with different values of the seed
magnetic field, as was done in some geophysical dynamo
studies (Schrinner et al. 2014). We consider stars to acquire
their magnetic field through a complex formation process, in
which the seed magnetic field is likely very weak (interstellar
medium magnetic field amplitude are on averaged about
10–100 μG) and that starting the dynamo process with a weak
seed field is the most likely scenario (Emeriau-Viard &
Brun 2017). However, some studies have shown that weak
and strong dynamo branches may exist under certain initial
conditions (weak or strong seed magnetic field; Charbonneau
2004) or parameters such as the magnetic Prandtl number
(Simitev & Busse 2009; Petitdemange 2018). Such weak or
strong dynamo branches may explain some observed magnetic
and rotational states seen in M dwarfs (Morin et al. 2011).
Because this would depend on the local astrophysical context,
we have decided to focus on the most common case of a weak
seed magnetic field and refer the reader to these other
complementary studies.
Having discussed how the KE and ME are distributed in our

various models, we wish to go further in understanding exactly
how these subtle balances come about. For this purpose we
have computed the details of the energy transfers in our
models, focusing on the mean axisymmetric components
MCKE, DRKE, PME, and TME because large-scale fields
and flows are of key astrophysical interest.

Figure 19. Total energy density in the convective envelope of our models, shown as a function of the fluid Rossby number. The magnetic energy (ME), toroidal
magnetic energy (TME), and poloidal magnetic energy (PME) are displayed from left to right. The dashed gray lines indicate the -Rof

1 trend.
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6.2. Main Transfer Mechanisms between Energy Reservoirs

In this section we discuss the various energy transfers
occurring in a rotating magnetized convective envelope. We
refer the reader to Appendix A for the detailed derivation of the
energy transfer equations, in which we have followed Starr &
Gilman (1966) and Rempel (2006), generalizing their deriva-
tion to global 3D spherical geometry. We focus here on the
energy budget for the mean (axisymmetric) fields in the
convective envelope of our models. We decompose energies
into toroidal (along the azimuth) and poloidal (in the
meridional plane) components. The budgets can be summar-
ized as
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where all the different terms are detailed in Appendix A. We
have computed individually each of the terms and show them
normalized to the stellar luminosity in Figure 20, as a function
of the fluid Rossby number of the models. For each model, we
have averaged the balances (17)–(20) over typically 100
convective turnover time τc such that the sum of the terms is
close to zero. Cyclic cases show large variations of the energy
balance (we return to this point hereafter); in these cases, we
averaged on a shorter time span chosen at cycle maximum. In
addition, we have tabulated the transfers for three representa-
tive cases in Table 6 in units of both %Lå and %Le.

The DR (upper-left panel of Figure 20) is always sustained
primarily by Reynolds stresses in the models (as discussed in
Section 4.2), with a dominant contribution of the radial

component ¢ ¢fv vr over the latitudinal component ¢ ¢q fv v . The
cases exhibiting antisolar DR (Rossby number larger than 1)
present a reversal of the latter term, showing that the latitudinal
component of the Reynolds stress is detrimental to the DR KE
in these cases. The magnetic contributions QΩ (blue) and QMS

DR

(red) start playing a significant role for fast-rotating cases (low
Rossby numbers; see model M07R5m in Table 6), sometimes
even dominating completely viscous dissipation ( nQ DR, purple).
In all cases the magnetic contributions tend to oppose the DR,
as seen in Section 4.1. The power associated with the
maintenance of DR can reach about 30% of the stellar
luminosity and drops at minimum to about 4% in our sample
of models. We remark that simulations with fluid Rossby
numbers around Rof∼ 0.2 achieve the most powerful main-
tenance of DR that can reach values up to 17% of the solar
luminosity. At larger Rossby numbers, the star does not rotate
fast enough and the DR is weakly maintained. At lower Rossby
numbers, the magnetic feedback from the dynamo field is so
efficient that the power associated with the maintenance of DR
decreases significantly.
The meridional circulation energy balance (upper right panel

of Figure 20) is dominated by a balance between the work of
pressure (Q∇P, cyan), buoyancy (Qb, blue-green) and Coriolis
(Qc, green) forces (see also Table 6 where the dominant transfer
terms are highlighted in bold font). The latter almost always
remains negative, indicating an energy transfer from the
meridional flow to the DR when models are in a steady state.
Viscous dissipation (purple) plays a much lesser role for
MCKE compared to DRKE, and magnetic contributions can be
considered as negligible, except maybe for small Rossby
number cases possessing transequatorial meridional cells (see
Figure 10). We find that the relative contribution of buoyancy
and pressure gradients varies from model to model and also
varies in time for each model. We believe that is due to the
anelastic approximation used in this study, and expect that a
Lantz–Braginsky formulation (Brown et al. 2012) would lead
to more systematic relative contributions of these two important
terms for MCKE. Finally, we note that the power associated
with the meridional circulation maintenance increases with
Rossby number and does not go above 15% of the stellar
luminosity in our sample.
Let us now turn to the power sustaining magnetism in our

models. The toroidal (TME) and poloidal (PME) magnetic
energy budgets are shown in the left and right lower panels of
Figure 20. We immediately note that the power sustaining
magnetism corresponds at maximum to 3% of the stellar
luminosity in our sample for TME. This corresponds to an
absolute maximum of 6% of the solar luminosity. A very large
amount of power is therefore indeed channeled to sustain the
large toroidal ME reservoir that the dynamo builds up in the
simulations. Hence, it is expected that a significant proportion
of this large magnetic energy reservoir will be accessible to
trigger various surface magnetic activity events (Shibata et al.
2013). The power associated with PME is a bit weaker but still
reaches up to 0.4% of the stellar luminosity. We find again that
the most powerful transfers occur around Rof∼ 0.2. The power
involved saturates for lower Rossby numbers, which is
reminiscent of the saturation of magnetic activity observed in
the X-ray luminosity of fast-rotating stars (e.g., Wright et al.
2011). It slowly drops for large Rossby numbers, but the power
maintains a value of at least 0.01% of the stellar luminosity
even in our most slowly rotating models. These figures are in
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good qualitative agreement with the value of 0.1% found for
the Sun by Rempel (2006) using 2.5D mean-field dynamo
models. Let us stress again that with values ranging in our
sample between 0.01% and 3% of the star’s luminosity, this is a
massive reservoir of ME extracted by dynamo action.

The PME balance is relatively straightforward: it is sustained
primarily by the turbulent electromotive force originating from
the convective motions (QEMF

PM , yellow) and opposed by ohmic
dissipation (purple). Mixed stresses involving the mean
meridional flow (QPM

MC, salmon) are not observed to play any
major role here. The TME balance is slightly more complex. In
most of our models, it is primarily sustained by the Omega
effect (QΩ, blue), and saturated by ohmic dissipation (purple).
Interestingly, we find that the role of the turbulent electro-
motive force can change from one model to the other (see
Table 4), and it can even change sign with time in our cyclic
solutions.

This is highlighted in Figure 21 where we observe how the
various transfer terms for TME vary during one long cycle for
model M09R3m in the left panel (TME is overplotted in black)
and one short cycle for model M07R5m in the right panel.
First, we observe that the amplitude of the transfers vary by an
order of magnitude along the long cycle (left panel), being
maximum when the magnetic energy is maximum as one may
expect. We also see that electromotive force (yellow) plays a
dominant role when TME increases right after cycle minimum
and then switches sign and draws energy from TME when

TME decreases. This striking behavior is at odds with the
classical picture of constant-in-time parameterization of mean-
field coefficients. It furthermore supports our interpretation that
the dynamo processes behind the decadal magnetic cycles
observed in some models involve a complex interplay between
sources and sinks of magnetic energy that vary at different
stages of the cycle. This is important because it reinforces the
conclusions drawn in Section 5 about the special nature of the
long-cycle period dynamo simulations presented in this study.
We also see that the short cycle (right panel) behaves
differently than the long cycle on the left. In model
M07R5m, the electromotive force sometimes equates or even
dominates the Ω effect while still being balanced by ohmic
dissipation. In this case, the amplitude of the transfer terms
vary much less with time, and we recover a behavior expected
for α2−Ω dynamos. These simulations could therefore be
categorized either as α−Ω or α2−Ω dynamos depending on
the phases of evolution. We observe that the SVD analysis
discussed in Section 5.1 and Appendix B shows coherent
results when we take into account these temporal variations of
the production terms, as shown in Figure 21. Given the highly
time-dependent nature of these nonlinear convective dynamo
simulations, the analysis presented in this section about their
dynamical properties is more robust than the SVD decomposi-
tion we performed in Appendix B as a companion analysis,
because it does not assume any scale-separation approximation.

Figure 20. Energy budgets as a function of fluid Rossby number. Transfers are normalized to the stellar luminosity and the logarithmic fluid Rossby number. From left
to right and top to bottom, the energy budgets are shown for DRKE, MCKE, TME, and PME. The definitions of the various terms are given in Appendix A and
sketched in Equations (17)–(19).

25

The Astrophysical Journal, 926:21 (35pp), 2022 February 10 Brun et al.



7. Astrophysical Implications and Conclusion

We have shown in the previous sections how various
magnetic properties of solar-type stellar dynamo simulations
change as a function of stellar mass and rotation. Often such
variations can be understood by using the Rossby number as a
key control parameter. We here wish to reflect upon these
findings and their astrophysical implications. There are several
properties of solar-like stars such as their convective power and
spectra, rotation profile, level of activity, and presence of a
magnetic cycle, to cite only a few, that are of keen interest to be
characterized. Our set of simulations can help us discuss some
of these properties and provide clues to understand the physical
mechanisms acting behind them.

Take, for instance, their interior rotation profile. We have
seen in Section 4 that various states can be achieved in our set
of simulations. We have further confirmed that such states
depend on the Rossby numbers of the simulations. In Brun
et al. (2017), it was advocated, based on the hydrodynamic
counterpart of the dynamo cases studied here, that three states
of internal rotation could be found: solar like (fast equator,
slow poles), Jupiter like (cylindrical profile with alternations of
prograde and retrograde zonal jets), and antisolar like (slow
equator, fast poles). How is the presence of a self-sustained
dynamo field changing this statement? We find that two states
are retained: solar like and antisolar, and that the third one
found for small Rossby numbers has been replaced by a new
state. Indeed, we find that as the Rossby number decreases, the

feedback of the Lorentz force on the convective motion (via
Maxwell stresses opposing Reynolds stresses in the angular
momentum transport balance) yields smaller angular velocity
contrast. This comes about because the rotation state tends
toward uniform rotation (see Section 4). So for very small
Rossby numbers, cases such as M11R5m or M09R5m are
mostly showing a solid-body rotation in their convective
envelope, in sharp contrast with the banded profile of their
hydrodynamics counterpart. However, the disappearance of the
cylindrical banded DR state may be due to the range of
Reynolds and magnetic Reynolds numbers considered in our
study. The strong Lorentz force feedback may be due to our
moderate state of turbulent convection. It is possible that at
higher Reynolds numbers, a cylindrical state would be retained
even for a state near super-equipartition between KE and ME.
This is a point that needs to be investigated further with a
dedicated low Rossby/high Reynolds numbers study. Said
differently: is there a level at which the magnetic energy
contained in the convective envelope is so high that quasi-
uniform internal rotation is inevitable? We believe this is a
reasonable assumption given the tendency of the magnetic field
to quench DR as identified by many authors (Glatzmaier &
Gilman 1982; Charbonneau 2004; Brun et al. 2005; Karak et al.
2015; Warnecke & Käpylä 2020, and references therein). So, in
summary, we find that the likely rotation states of solar-type
stars depend on their increasing Rossby number: quasi-
uniform, banded/cylindrical, solar like, and antisolar. Such
variations of the DR states translated into an overall variation
of the surface angular velocity contrast being less sensitive to
the bulk rotation rate, with ΔΩ∝Ω0.46, down from Ω0.66 as in
Brun et al. (2017). We also find another potential interesting
property for the DR of solar-like stars: a scaling law may not be
the best fit to our simulations database. As in Saar (2011), we
find that there is a clear change of trend for small Rossby
numbers (see Figure 8). This is interestingly the change of
rotation state from solar to almost uniform rotation. Determin-
ing for these various rotation states the exact transition in
Rossby number will require more numerical study at higher
levels of turbulence and continued dedicated observations. We
intend to contribute to this effort with dedicated new
simulations but also in preparing the scientific exploitation of
PLATO (Rauer et al. 2014).
These various transitions of rotation profiles must impact the

resulting dynamo and field properties. We have shown in the
paper (Sections 5 and 6) that this is indeed the case. Going
from low to high Rossby numbers, we find that dynamo action
yields short-cycle, long-cycle, and statistically steady (yet
irregular) magnetic field evolution. This is very interesting
because we can guide observations to search for these
transitions in rotation state or temporal variability of the
magnetic field. This will also help us discriminate between
various dynamo scenarios.
Our set of dynamo solutions can help us characterize the

mechanisms at work to generate and maintain magnetic fields
for different sets of global stellar parameters. The rich range of
magnetic phenomena occurring in stars relies on the free
energy available in magnetic structures created by dynamo
mechanism. In this study we have focused our analysis on a
key aspect of the convective dynamo: energy transfers. We
have done an extensive study on how the energy flows to and
from the KE and ME reservoirs, separating them into their
toroidal and poloidal components. The first key result is that a

Table 6
Dominant Energy Transfer Terms for Three Representative Cases (M07R5m—

Low Rossby Number, M09R3m—Moderate Rossby Number, and M09R1m—

High Rossby Number)

M07R5m M09R3m M09R1m

[%Lå] [%Le] [%Lå] [%Le] [%Lå] [%Le]

− QC 0.38 0.06 2.96 1.63 1.35 0.75
QRS

DR 4.55 0.61 12.06 6.63 6.93 3.86

- nQ DR −0.53 −0.08 −13.97 −7.69 −7.43 −4.08
− QΩ −0.43 −0.06 −0.84 −0.46 −0.004 −0.002
-QMS

DR −3.84 −0.58 −0.70 −0.39 −0.05 −0.03

CDR 0.20 0.03 −0.26 −0.14 −0.50 −0.28

QC −0.38 −0.06 −2.96 −1.63 −1.35 −0.75
QRS

MC 0.15 0.02 0.29 0.16 0.15 0.08
- nQ MC −0.08 −0.01 −0.83 −0.46 −1.17 −0.64
Q∇P 1.36 0.20 2.65 1.46 2.17 1.20
− Qb −0.87 −0.13 0.50 0.28 0.29 0.16

QMS
MC −0.17 −0.03 −0.03 −0.02 −0.002 −0.001

CMC −0.01 −0.001 0.19 0.10 0.01 0.01

- hQ TM −0.44 −0.07 −0.54 −0.29 −0.004 −0.002

Qemf
TM 0.11 0.02 0.06 0.04 0.008 0.005

QΩ 0.43 0.06 0.84 0.46 0.004 0.002

- hQ PM −0.40 −0.06 −0.20 −0.11 −0.003 −0.002

Qemf
PM 0.42 0.06 0.27 0.15 0.005 0.003

Note. The strongest transfers for each case and each energy are identified in
bold font. The four blocks of rows correspond in order to (i) the differential
rotation kinetic energy balance (Equation (17)), (ii) the meridional circulation
kinetic energy balance (Equation (18)), and (iii) the toroidal magnetic energy
balance (Equation (19)) and the poloidal magnetic energy balance
(Equation (20)). Some transfer terms are tiny and have thus been omitted
from the table.
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significant amount of the star’s luminosity is being transferred
into KE and ME. In Table 6 we listed as a function of the star
luminosity (also with respect to the solar one) the amount of
accessible energy. We demonstrated that typical numbers for
the KE contained in the DR are of order 10%, for the
meridional circulation 1% of the star’s luminosity. We also
showed that for the TME, the energy available is also around
1% (with a maximum of 3%) and of the order of 0.1% for the
PME. Having access to 1% of the star luminosity to power
stellar magnetism via collective emergence of toroidal
structures is significant. This means that there is large reservoir
of ME accessible for the manifestation of various magnetic
phenomena at the star’s surface. We find for instance that our
modeled stars can power dynamos such that they reach a global
ME content from 1037 to 1039 erg. Part of this energy is found
to be stored in the mean TME (up to 6× 1038 erg), and the
mean PME is generally found to be much less energetic
(reaching at most 4× 1037 erg). The corresponding total
(unsigned) magnetic flux Φtot is found to vary between 1024

and 1025 Mx over the range of mass and rotation covered by
our study, thus very similar to observations of the Sun and
other solar-type stars. In dynamo cases with long cycles such as
case M09R3m, Φtot is found to vary by a factor between 7 and
8 (see Figure 16), which is slightly more than what is found for
the Sun (a factor of about 5 has been found for cycle 21
Schrijver & Harvey 1994).

We also found that Φtot follows a scaling law with the
Rossby number F ~ -Roftot

0.88 in qualitative agreement with
observations (see Figure 17).

Another interesting finding of our study, which confirms
results published in Augustson et al. (2015) with the same ASH
code and in Strugarek et al. (2017, 2018) with the Eulag-MHD
code, is the existence of a so-called nonlinear cyclic dynamo.
Of course, convective dynamos are nonlinear in essence but
what is meant here is that through the feedback of the Lorentz
force on the flow, a cyclic behavior of the dynamo arises.
Standard kinematic α−Ω mean-field dynamos follow the
Parker–Yoshimura (P-Y) rule (Parker 1955; Yoshimura 1975)
and do not take into account nonlinear retroaction or do so in a
limited way via the so-called Malkus–Proctor approach (Covas
et al. 2005; Bushby 2006; Lopes et al. 2014, and references
therein). By contrast, more and more 3D MHD convective
dynamo simulations find that in a limited range of the
parameter space, the P-Y rule does not apply anymore. This
is the case in this study, where we find that for intermediate

values of the Rossby number, typically 0.15 Rof 0.65, the
long-cycle periods are due to a subtle interplay between the
large-scale flow and the field. As the rotation rate is increased
and the toroidal component of the dynamo-generated magnetic
field becomes more and more dominant via an efficient Ω effect
acting on the large-scale poloidal field, the associated Lorentz
force starts to quench the DR via the action of Maxwell stresses
opposing Reynolds stresses. This quenching of the DR in turn
implies that the Ω effect is modified to the point that locally its
latitudinal variation ∂Ω/∂θ reverses sign, leading to the
generation of a toroidal field of opposite polarity, and through
the action of turbulent convection, a reversed poloidal field.
This nonlinear cyclic dynamo behavior is in sharp contrast with
P-Y mechanism. Note that this is a delicate dynamo state to
achieve, as the ME needs to be neither too weak nor too strong
as discussed in Gilman (1983; see for instance their Figure 31
or in Brun et al. 2005 where such a modulated dynamo state
was also found in stellar core dynamos). To demonstrate that
further, we have computed in Figure 12 the P-Y rule for one
typical long-cycle-period dynamo case of our study and
confirm that it is unable to explain the dynamo wave and
cyclic behavior of this subset of dynamo cases (M09R3m and
M11R3m for instance). However, we do find that for low
Rossby number (Rof< 0.42), the P-Y rule still works, and for
instance in a case such as M07d5m also shown in Figure 12,
we clearly have poleward dynamo waves compatible with the
radial shear and the α effect. Hence, we may have been able in
this study to identify when P-Y versus nonlinear cyclic
dynamos (in the sense defined in this study, e.g., feedback of
the magnetic field on the local shear) take place. This is very
important as it tells us how to reconcile various recent
publications in the community that sometimes were finding
that global convective dynamo could be interpreted as classical
α−Ω dynamos (Viviani et al. 2018, 2019; Warnecke 2018,
and references therein), whereas others did not (Augustson
et al. 2015; Strugarek et al. 2017, 2018). We propose that it is
linked to different effective values of the Rossby number used
in these various dynamo simulations.
As we have seen above, it is instructive to make the link

between full 3D MHD convective dynamo simulation and
mean-field dynamo concepts. Mean-field dynamo theory
usually uses the α effect to parameterize turbulent magnetic
field generation. In this study, we have estimated it through
both the kinetic helicity (see Appendix C and Pouquet et al.
1976) and an SVD decomposition (see Section 5.1,

Figure 21. Energy budget as a function of time for model M09R3m. The labels are the same as the lower left panel in Figure 20. The toroidal magnetic energy (TME)
is shown by the black line. The gray area in the left panel corresponds to the time-average interval used for M09R3m in Figure 20.
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Appendix B, and Racine et al. 2011; Dubé & Charbonneau
2013; Augustson et al. 2015; Emeriau-Viard & Brun 2017). In
the former case, we do not find a significant change of sign nor
amplitude in the kinetic helicity of models possessing an
antisolar DR. In the range of parameters considered in this
study, this means that antisolar-like stars need to be modeled
with an α effect similar to solar-like stars at least in their radial
dependency, if not in amplitude (see detailed discussion in
Noraz et al. 2021). In the mean-field α−Ω dynamo paradigm
this implies that antisolar-like stars will have a dynamo wave
with a propagation reversed to that of the Sun, e.g., poleward
from the equator to midlatitudes as imposed by the P-Y rule. In
our 3D simulations, we do not find such cyclic poleward
dynamos for slowly rotating simulations; instead, we find that
they are statistically steady (but highly time dependent on short
timescales). This is likely due to a less favorable phasing
between poloidal and toroidal magnetic field generation in the
convective envelope of these slowly rotating case that develops
via complex nonlinear interactions between the fields and
flows, which are not fine-tuned but instead evolves depending
on the global parameters considered.

Another interesting aspect is to assess how the dynamo-
generated magnetic field is distributed over spatial scales. It is
well known that there is a nonlinear feedback loop between
rotation, dynamo, stellar wind, and magnetic braking over
secular timescales (Skumanich 1972; Brown 2014; Matt et al.
2015; Brun & Browning 2017; Metcalfe & van Saders 2017;
Brun 2020; Vidotto 2021). It has been demonstrated that the
magnetic torque provided by stellar winds is mostly controlled
by the dipolar and quadrupolar modes (Garraffo et al. 2015;
Réville et al. 2015; Finley & Matt 2018). Hence, one key
question is to assess what happens with dipolar and
quadrupolar modes when the dynamo changes its properties.
To this end, we showed in Figure 18 how magnetic geometry
changes by computing quantities known as fdip and fquad. This
allows us to assess the overall contribution of these two
dynamo modes to the overall magnetic energy spectra. We
found that they are key contributors to the overall magnetic
energy with values ranging from 0.05 to 0.6, with most of the
cases studied possessing fdip and fquad around 0.2–0.3. We do
not see any clear trend with Rossby number. Fast rotators and
slows rotators both possess large dipolar and quadrupolar
components. So from a stellar dynamo point of view, it is

difficult to invoke a drop in the large-scale magnetic field to
explain a possible break of stellar spin-down for slow rotators
as proposed by Metcalfe & van Saders (2017). Similar findings
are obtained from observations of magnetic fields in cool stars
as shown in Vidotto et al. (2016). The advocated Rossby
number transition in magnetic field geometry to explain a
collapse of magnetic breaking is thus unlikely. This study
suggests that we must find a different explanation, maybe a less
efficient heating mechanism inducing a sudden drop of coronal
temperature and wind mass loss (Ó Fionnagáin &
Vidotto 2018), which directly impacts angular momentum
loss. Self-consistent rotating wind models with detailed
treatment of the coronal heating mechanism are needed (see,
for instance, Shoda et al. 2020; Hazra et al. 2021) in order to
confirm the existence or not of such a transition in mass loss at
slow rotation rates.
We have focused our analysis on the global energetics of the

dynamo, and showed that the global dynamo field followed
roughly a  -B Robulk f

0.5 trend (see Section 6.1) in agreement
with previously published dynamo scaling laws (Augustson
et al. 2019). It is also useful to interpret our simulations only
considering the top of the dynamo domain, making a more
direct link with stellar observations of the surface magnetism.
In this context, we show in Figure 22 the trend in Rossby
number for the surface dipole field (first panel), surface large-
scale field (second panel, see Table 5), and the ratio of the root-
mean-square (rms) surface field to the equipartition field (third
panel). The error bars were deduced from the temporal
variability of the fields, and the values are reported in
Table 4. The first striking observation is that the scaling law
of the surface large-scale field differs from the global volume-
averaged dynamo field e.g., including all scales with a steeper
slope. Indeed, we find for low and intermediate Rossby
numbers that

( ) - B Ro10 G, 21r,dip f
1.16 0.47

( ) - B Ro28 G. 22L,surf f
1.27 0.35

Both trends are compatible with the trends deduced from the
Zeeman–Doppler imaging surveys, which generally find the
large-scale surface magnetic field to follow an -Rof

1.3 trend at
intermediate Rossby numbers (See et al. 2019a). Finally, it is
also instructive to assess the level of equipartition at the surface

Figure 22. Large-scale field at the surface of our modeled convective envelopes as a function of the Rossby number. The first panel shows the total dipole field, the
second panel the large-scale fields (spherical harmonics ℓ < 5, including the nonaxisymmetric components (m ≠ 0)). The third panel shows the ratio between the total
rms field at the surface and the equilibrium field based on the gas pressure at the photosphere. It can be considered as a measure of the filling factor f (see Cranmer &
Saar 2011; See et al. 2019b). The symbols used in the panels are the same as in Figure 7.

28

The Astrophysical Journal, 926:21 (35pp), 2022 February 10 Brun et al.



through the ratio between the surface rms field Brms and
the equipartition field Beq (as defined in Johns-Krull &
Valenti 2000) deduced here from the gas pressure at the
surface of the stellar models we considered. Indeed, Cranmer &
Saar (2011) have proposed that this ratio measures the filling
factor f of the large-scale field that shapes the lower stellar
corona and ultimately determines the angular momentum loss
rate of stars. See et al. (2019b) have found observationally that
this ratio decreases with Rossby number. We find a similar
trend here as seen in the third panel of Figure 22, with
  - f B B Ro0.03rms eq f

0.97 0.27. Finally, we note that the
three magnetic field measures shown in Figure 22 all exhibit an
increase in amplitude at high Rossby number. This again
strengthens the case that dynamo action within cool stars does
not exhibit any significant decrease of the large-scale magnetic
field for slow rotators.

How are these results informing us about our star, the Sun?
First, we note that the study of Strugarek et al. (2017, 2018) is
about 1 solar mass stars and is taken into account in the
analysis presented in this study. Given the good agreement seen
in many of the plots discussed in Section 5 between the study
done with the Eulag-MHD code and the one presented here
with the ASH code (independently of models details), we are
confident that the dynamo solutions discussed in this study are
useful to understand the physical nature of the cyclic activity of
a 1 solar mass star such as the Sun. Second, in this parametric
stellar dynamo study we are proposing that in order to get both
a solar-like conical DR and a deep slow decadal-long magnetic
cycles, the Rossby number must be between 0.15 and 0.65.
Hence, we here acknowledge that cases M09R1m and
M11R1m rotating at the solar rate do not show behaviors that
are Sun like with respect to their magnetic activity (no cycles
present) because their Rossby number is not falling in the
0.15–0.65 range. Instead, we believe that M09R3m or
M11R3m are better, closer representations of the Sun even
though their rotation rate is faster than the Sun, because their
Rossby number is in the correct range of values. This means
that while the overall trends found in our study are robust, the
specific location of any given star must be thought with
extreme care due to the so-called convective conundrum, i.e., a
mismatch between global convection simulations and solar
helioseismic inversion regarding the amplitude of giant
convection cells (Hanasoge et al. 2016; Hotta & Kusano 2021).
This is likely due to the fact that for any given rotation rate,
because of the convective conundrum, the Rossby number
achieved in the rotating convection simulation is slightly too
large. So in order to be likely closer to the solar state and to aim
for the correct value of the solar Rossby number, models
rotating faster such as the M09R3m or M11R3m cases are
somewhat a better match to model the Sun than M09R1m or
M11R1m. Thanks to this knowledge, we will next build a new
global convective dynamo model of the Sun with an improved
set of parameters by keeping the rotation rate to the solar one
while controlling the effective Rossby number achieve in the
simulation to be in the right range of values. We will report our
finding in a future work.

To conclude, our study has confirmed the richness of
dynamo solutions in parameter regimes that are likely to be
found in solar-like stars and the large amount of magnetic
energy and flux made available to the star and its surface
activity by dynamo action. We have also identified the Rossby

number regimes for different realizations of DR profiles and
magnetic temporal modulations (cyclic or not), generalizing in
an MHD context what we published in Brun et al. (2017). Two
key transitions in parameter space seem to be present, one at
low Rossby number (Rof< 0.1), another at high Rossby
number (Rof> 1). We need to study them with even more
detail and at higher resolution and turbulence level to confirm
the trends and scaling laws we have reported here. We intend to
do so in the near future as well as study in more detail the
influence of a realistic atmosphere and of a wind (Perri et al.
2021) on the dynamo properties.
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Appendix A
Equation for Kinetic and Magnetic Energy Transfers in

MHD Anelastic Systems

In this appendix we list the set of equations describing the
energy transfer occurring in a star, focusing on mean energy
quantities such as the poloidal and toroidal mean axisymmetric
KE and ME. Following Starr & Gilman (1966), Brandenburg
et al. (1996), De Rosa et al. (2002), and Rempel (2006), we
derive the set of equations of full energy transfers in spherical
MHD configurations.
Let us denote the azimuthal average by a bar and the

derivation from it by a prime. For example, the radial velocity
component will be written as = + ¢v v vr r r . In order to
characterize the axisymmetric ME (Em ) and KE (Ek ) transfers
between the various reservoirs of energy (thermal, potential,
kinetic, and magnetic) we will split Em and Ek into three
components:
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with DRKE and TME the mean axisymmetric toroidal
energies, MCKE and PME the mean axisymmetric poloidal
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energies and FKE and FME the nonaxisymmetric energies. To
find the energy transfer equation for these various components,
we project the Navier–Stokes or induction equation onto the
direction we wish to write the energy equation for, e.g., f for
TME for instance and inject the decomposition between the
mean and prime quantities. Then we perform an azimuthal
average, thereby eliminating all terms that are linear in prime
quantities. For each energy equations, we then multiply by a
bar quantity (for instance fB for TME) and rearrange the terms.
For MCKE and PME, we combine the radial and latitudinal
equations. Doing so systematically leads to the following set of
equations.6

A.1. Overall Energy Budgets

We follow the approach of Starr & Gilman (1966) and write
the energy budgets in the following way (see the schematic in
Figure 23):

( )
¶ = - - -

- + -n

WQ Q Q Q

Q C S

DRKE

, A3

t CRS
DR

MS
DR

DR DR DR

( )

¶ = + + +

+ - - - + -n
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Q Q Q Q C S

MCKE

,
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t P

C b

RS
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TM
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PM
MC MC MC MC

( )¶ = + - - + -hWQ Q Q Q C STME , A5t emf
TM

TM
MC TM TM TM

( )¶ = + - + -hQ Q Q C SPME . A6t PM
MC

emf
PM PM PM PM

In all that follows, quantities are separated into mean and
fluctuating components through

¯ ( )= + ¢A A A , A7

and the corresponding terms in the original derivation of Starr
& Gilman (1966) are given in bold “SG66: [XX]” labels at the
end of each equation, where XX is the term or equation number
in Starr & Gilman (1966). Note that we have extra curvature
terms Cx due to our choice of spherical coordinates.

A.2. Axisymmetric Differential Rotation Kinetic Energy
Equation (DRKE)

The various terms of Equation (A3) are
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Figure 23. Global energy budget schematic. In red, we list all the key energy transport terms (see Appendix A). Black arrows correspond to the direction of transport
between the various energy reservoirs. Surface terms are indicated as black disks. We omit curvature terms to avoid crowding the figure.

6 Because we focus our study on the mean flows and magnetic fields, we will
not show the equations for FKE and FME.
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A.3. Axisymmetric Meridional Circulation Kinetic Energy
Equation (MCKE)

QC was defined previously in Equation (A10). The
remaining terms in Equation (A4) are
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A.4. Axisymmetric Toroidal Magnetic Equation (TME)

QΩ and QTM
MC were defined previously in Equations (A9) and

(A16). The remaining terms in Equation (A5) are
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A.5. Axisymmetric Poloidal Magnetic Equation (PME)

QMC
PM have already been defined in Equation (A19). The

remaining terms in Equation (A6) are
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Appendix B
Mean-field SVD Decomposition of Dynamo Solution

It is instructive to compare our 3D simulation results with the
concepts used in mean-field dynamo theory (see Section 5). For
instance, the generation of a poloidal magnetic field in the
simulation is dominated by the action of the fluctuating EMF:

= ¢ = á ¢ ´ ¢ñv BEFI . This process can also be interpreted
through the α-effect approximation, which is a first order
expansion of ¢ around the mean magnetic field and its
gradient:



( ) ( )
a bá ¢ñ = á ñ + ¶ á ñ

+ ¶á ñ ¶  á ñ

B B

B Bt, B1

i ij j ijk j k

2

with αij a rank-two pseudo-vector and βijk a rank-three tensor.
In the following, we will neglect the β term. However, this will
increase the systematic error when estimating the α term. Thus,
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a SVD including the β effect has been calculated in order to
provide a lower-bound on the systematic error as discussed in
Augustson et al. (2015). In the following analysis, α has been
decomposed into its symmetric and antisymmetric components

( )a a gá ñ = á ñ + ´ á ñB B B B2S
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Thanks to the SVD decomposition we can quantify the
relative efficiency of the α effect in generating the mean
magnetic field and characterize the type of dynamo through the
relative influence of its regenerating terms. We can start by
evaluating how the convective flows regenerate mean magnetic
fields. This can be determined by finding the amplitude of an
estimated α effect relative to the rms value of the nonaxisym-
metric velocity field
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where { · }¢ ¢v v is the sum of the diagonal elements of the
Reynolds stress tensor averaged over time and over all
longitudes. If we want to refine the analysis, we can use the
Equation (B4) to provide a measure of the importance of each
component of α as
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with ( )
( )e = a

xx E
xx and =g

g
E x E

x . By calculating this matrix (see
Table 7), we notice that for the antisymmetric part γ, the
predominant term is γj, which impacts the poloidal component
of the magnetic field. Only for M07R5m are the three
components of the same order of magnitude. In the three other
cases shown, γr and γθ have roughly the same order of
magnitude and are smaller by a factor 2 to 3 compared to γj.
By looking at the symmetric part αS, we see the same trend.
The predominant term is α(rr) with α(rθ) and α(θθ) close second.
They all act on the poloidal component of the magnetic field.
The smallest term is in most cases α(jj) which is at least five
times smaller than the predominant term except once more in
case M07R5m where it is of the same order of magnitude. The
sum of all α terms varies between 51% in case M07R5m up to
73% in case M09R3m. Hence, the γ terms (the antisymmetric

part of the alpha tensor) account for 49% in case M07R5m
down to 27% in case M09R3m.
In order to better quantify this relative influence we can

compute the αP/αj ratio:
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Looking at Table 7 where we report the value of this ratio for
all four representative models, we note the predominance of the
poloidal field regeneration over the toroidal field regeneration
for all models as the ratio αP/αj is always above 1. This ratio
varies from 1.59 in M09R3m up to 12.4 in case M07R5m.
Turning now to the regeneration of the toroidal field, we

know from mean-field dynamo theory that it can be due to
either the α effect coming from the fluctuating EMF ¢, or from
the Ω effect that acts on the poloidal field through DR. In all
our models, we note that the regeneration of 〈Bj〉 by the α
effect is small, compared to the one of Bpol. Therefore, we now
want to measure the relative influence of the Ω effect to that of
the α effect because the toroidal magnetic field can be
regenerated through both effects:
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We note that in all models the Ω effect is much stronger than
the α effect in generating the toroidal magnetic field (the ratio
Ω/αj is greater than 5), except for case M09R1m for which it
is closer to 1. This confirms that most of the dynamo models
considered in this study can be classified as α – Ω dynamos
rather than α2

– Ω. Statistically steady simulations such as

Table 7
α − Ω Effects from SVD Decomposition

α tensor Ω/αj αP/αj

0.120 0.092 0.073
M07R5m 0.155 0.063 0.061 19.7 12.4

0.220 0.119 0.097

0.246 0.194 0.088
M09R3m 0.166 0.125 0.056 7.0 1.59

0.042 0.053 0.030

0.174 0.157 0.087
M11R3m 0.162 0.135 0.054 5.53 3.18

0.075 0.109 0.047

0.209 0.120 0.112
M09R1m 0.157 0.110 0.089 1.81 4.31

0.067 0.099 0.037

Note. Results of the mean-field SVD dynamo analysis for four representative
models (M07R5m, M09R1m, M09R3m, and M11R3m) ordered from top to
bottom in increasing Rossby number values. The first column represents the α
tensor with its symmetric: αs and antisymmetric: γ (italic) portions (see
Equation (B2)). The middle column gives the relative importance of the Ω

effect to the α effect for the regeneration of the toroidal field. The last column
quantifies the ratio of the α effect used for the regeneration of the poloidal
magnetic field to the one used for the regeneration of the toroidal field.
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M09R1m on the contrary are closer to be classified as α2
– Ω.

Of course, this mean-field dynamo classification is mostly
useful for short magnetic cycle period cases (illustrated in the
table with case M07R5m) as they also follow the P-Y rule (see
Section 5). For long magnetic cycle period cases such as
M09R3m and M11R3m, this is less significant, as we observe a
complex nonlinear feedback that leads to a different type of
cyclic dynamo. Further, we have shown in Section 6 and
Figure 21 that these dynamo mechanisms are highly variable in
time and can sometimes be quenched while at other times they
become dominant. Hence, a mean-field classification on such
solutions could vary depending on the dynamo phase
considered.

Appendix C
Kinetic Helicity in Solar and Antisolar Cases

In Figure 24 we display several realizations of the
horizontally averaged radial profile of the kinetic helicity
Hk= v ·ω in our set of convective dynamo models. These
profiles have been averaged over the northern hemisphere only.

On the left panel we display the kinetic helicity profiles for
the M05m series. We first note that the kinetic helicity is
negative in most of the domain and changes sign at the bottom
of the convective envelope and is close to zero in the deep
radiative interior below. This sign reversal of Hk is understood
by the change of sign of the vorticity field in the downward
plumes. As they splash onto the top of the radiative zone
(whose realistic stiffness we recall is directly taken from 1D
stellar structure model, see Section 2), they diverge and this
yields a change of sign of the local kinetic helicity (see Miesch
et al. 2000 for a detailed explanation). Next, we can study how
dynamo-generated magnetic field influences the kinetic helicity
content of the convective shell. We do so by comparing the
M05 dynamo cases to their hydrodynamic counterpart
published in Brun et al. (2017) (dashed versus solid lines).
We mostly find that magnetic fields tend to reduce the kinetic
helicity content. In some rare cases we find it has little or no
influence. In cyclic dynamo cases such as M05R3m we do not
see a large influence of the cycle phase on the kinetic helicity
content. This confirms that unless magnetic feedbacks are
strong on the velocity and vorticity field (via the opposing/drag
effect of Maxwell stresses in the converging and cyclonic

intersection of downflow lanes), this quantity is not modified
much. In the middle panel, we show how the kinetic helicity
evolves with a decreasing Rossby number. We illustrate this by
plotting the radial kinetic helicity profiles of the M09m series
(other mass bins display similar behavior). We see that as we
increase the rotation rate from M09Sm to M09R1m and
M09R3m, the peak amplitude near the surface becomes more
and more negative (more cyclonic in the northern hemisphere,
i.e., more right-handed). This seems to stop for case M09R5m.
We believe this is due to the strong quenching of the DR and
convection state due to the stronger feedback of Maxwell
stresses in that case.
Finally, one important question, relevant to α−Ω dynamo

concepts, is how the kinetic helicity behaves in a high Rossby
number regime, when the DR harbors an antisolar rotation
profile. Indeed, we already know that in these cases, the
gradients of Ω have a reversed sign. We also know that there is
a relationship between the dynamo α effect and kinetic helicity.
In the mean-field dynamo approach · ( )a = - ´tv v

3
.

Hence, knowing if the α effect would change sign or not,
can yield interesting information on the dynamo properties
(e.g., is there or not a breaking of symmetry). On the right
panel of Figure 24, we display the kinetic helicity radial
profiles for the slow-rotating cases, those with a high (greater
than 1) Rossby number. Across the four mass bins, we see a
clear increase in the amplitude of the kinetic helicity in an
absolute sense (it becomes more negative near the surface of
each model). This is linked to the fact that the velocity
amplitude increases by more than one order of magnitude from
the M05 to M11 series due to the increased stellar luminosity of
the more massive cases. Moreover, even though these four
cases (M05Sm, M07Sm, M09Sm, and M11R1m) have
antisolar DR (see Figure 5) their kinetic helicity profile is
similar to the solar-like cases (negative in the upper layers and
positive at the base of the convective zone) as discussed in the
two previous panels. This can be understood by the fact that all
models still rotate in the same direction when considering their
rotating frame. This means that the mean-field α effect is not
expected to change sign when the DR (Ω effect) does. This
conservation of the kinetic helicity sign when changing the
Rossby number from greater to lower than 1 is confirmed when
displaying the radial vorticity near the surface in two cases,
M09S and M09R3 (not shown). The vortical nature of the

Figure 24. Radial kinetic helicity profiles in various models averaged over the northern hemisphere only. Left panel: comparing kinetic helicity for the M05 cases for
both the hydrodynamic progenitors and the MHD dynamo runs. Middle panel: for decreasing Rossby number for M09 series. Right panel: for the Rof > 1 models
spanning the four mass bins.
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interstices of the downflow lanes (as illustrated with the
enstrophy field in Figure 4) is not modified between the two
models even though they possess the opposite profile to the
DR. We note that there is some debate in the community
whether to include or not a correction from the current helicity
such that ( · ( ) · )ˆa

t = - ´ -
r

v v J B
3

m c

1 (see Pouquet

et al. 1976; Brandenburg & Subramanian 2005). So, it could
be the case where the kinetic helicity does not change sign, but
that a correction from the current helicity may. We have
assessed this point, and we find that the profile of the current
helicity is less coherent as a function of depth and does not
seem to modify the conclusion of our analysis.
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