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ABSTRACT

A general scheﬁe for calculating the change (both the
real part and imaginary part) of the propagation constant of
a,sﬁrface—wave node on a general open waveguide structure due
to curvature of its axis is presented. By carefully keeping
track of lower-order terms in the analysis, it is shown that
approximations commonly made in other analyses can résult in
quite large errors in the calculation of radiation loss:
Specific results for the asymmetric slab and the step-index
fiber are presented and compared to other solutions in the
literature. Marcuse's result for the attenuation of an asymmetric
slab is found to lack an important term which depends on the extent
éf asymmetry. Arnaud's result for the fiber is found to be in
serious error, whereas good agreement is found with that of Lewin.
Finally, the general result for a finite cross-section guide
indicates the necessity of an inverse square root dependence on
the radius of curvature for the attenuation which is absent from

Maractili's expression for the rectangular dielectric guide.



SECTION I

~ INTRODUCTION

, One’of the‘practical limitations on the use of open
;structu;es such as optipal fibers, or channel waveguides in
integrated optics for the guided‘transmission of information

is that such.structures are much-more susceptiblértd‘radiation
losses than are more conventlonal closed waveguides [1]. 1In
partlcular radlatlon from curVed surface waveguldes has re-
ceived a good deal of attentlon [2 l4] The earliest treat-
‘ment of this problem.seemskto have been Ridhtmyer'SvtIS] with
~additional developmént by Milier and'Talandv [16]. Of these
treatments, only [2—3,5,7,l0—ll,13,15] treat stfuctures of
finite Crossfsection. Of-theae [2,3] involve assumptiOns

about the field outside the waveguide whose validity is not
easily assessed, [5,13,15] rely on field approximatidns to the
known forms in guides of circular~crosa—séction whose applica-
bility is also open to question, and‘[4,8,ll] utiliée ray
treatments whose application to guides of general cross-
~section is not obvious. Unique among these is Lewin's work
[10] in whlch the attenuation of a unlform round fiber is
obta;ned by first constructing an integral representation of
the fields, then showing thatbthe.neceasary boundary conditions
‘are satisfied, and finally evaluatlng the 1ntegral asymptotlcally.
Unfortunately it is’ unclear how this approach could be extended

to.more complicated structures.



Arnaud [13] has recently presented a mofe physical scheme
based upon the cOupling between a surface-wave mode and a
- somewhat artlflcally -introduced whlsperlng—gallery mode. His
result for the unlform flber, however, does not agree with
Lewin's. In the present report, a more general and less
awkward formulation applicable to a waveguide of arbitrary in-
homogeneous cross-section is obtained, which retains much of
the simple physical interpretation of the slab case. By
carefully keeping track of small-order terms, significant
factors may be found in both the attenuation and phase shift
which are often incorrectly neglected.

Finally, in none of the previous treatments (with the
exception of [9] for the case of the slab guide) is specific
attention given to the case where the guided mode does not
| possess any symmetry with respect to the bending axis. As
"will be detailed in this treatment, the‘change in the propagation
constant for Such‘a situation can cause not only a'significant ,
additional phase shift arouhd the bend, but also a quite size-
able énhancement or reductién in the amount 6f continuous

radiation loss, depending on the extent of the asymmetry.



SECTION II

REVIEW OF THE CURVED SLAB PROBLEM [9]

We consider first a curved homogeneous dielectric slab
waveguide of thickness D having a radius of curvature R and
a refractive index n (with respect to the surrouhdings) as
depicted in Fig. 1. All quantities are assumed independent
of z, and we search for solutions of the form exp(iwt—ikOvRG),
Where ,kg = wzuoeo, which satisfy the usual boundary condi-
£ions at the slab and the»radiation condition at infinity.
Here the (normalized) propagation constant v, although as yet
undetermined,‘has to approach the value Vo corresponding to
the straight guide as R->ow, |

We now define a local coordinate system % = R 2n (p/R)

and § = RO so that the governing wave equation becomes

2

{g;? + kg[n§ exp (2&/R) -v21} E (R) = 0 (1)

where nj =1 or n‘for_j = 1 or 2, corresponding to the medium
outside or inside the slab. The slab boundaries have now
become X = 0 and =d =R (l+D/R) = D. Thus for all
practicalipurposes we can replace the curved slab of Fig.l(a)
by a straight one of virtually the same thickhess but with an
inhomogeneous refractivekindex profile as in Fig.l(b). For
the case of a straight homogeneous slab, the propagation

constant for a propagating surface-wave mode satisfies l<<vo<<n,
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Thus inside the slab the solution is a standing wave - a linear

. : c 2 2.1a 2 2,14 :
combination of sin(n -Vo)zx and cos(n _Vo)zx' Outside the
slab, n?-vi < 0 so that the solution is an evanescent wave

of the form expl-(y2-1)2|%|1.

Now in the case of the curved slab, if Vg is essentially
unchanged the character of the solutions is unchanged every—
‘ where except the region where §‘> ﬁo = Rﬂqlvo corresponding
to Po = Vo R. Beyond this point (which is known as the turn-
ing point) the effective refractive index I%Iexp(x/R) > vy
"and the solution of (l) satisfying the radiation condition
is an outgoing unattenuated cylindrical wave. Thus, in
spite of the fact‘that between ¥ = d and X = ﬁo the fields
‘must be evanescent, the character of the solution at §>= ﬁo
must,change’so that the field is partially transmitted and
partially reflected from the turning point, returning towards
the slab as an "incoming" evanescent wave. Near the slab-

surface X =4 then, the electric field must have a finite,

although small, exponentially grow1ng component [9]:

-k AR k kx

- kg
EZ ~ Eo(e + Goe~ 7) (2)

where the reflection coefficient is found by the WKB method

to be ,
- . -2x3koR/3v2 |
o, = ~(he R (3)

-1

Here X = (vz—l)?,\making,(kox) the penetration depth of the

 surface wave into the outside medium. It should be noted that



the reflection coefficient decreases exponentially with R,

so that when R > «, 9 + 0 and (2) reduces to the field out-
side a homogeneous‘straight slab. In [9], the attenuation
coefficient for this structure was calculated in a straight-
forward manner by considering the reflected field in (2) as a
perturbation, and calculating the resultant change in impedance

“at the slab surfaces.



SECTION III
SPECTRAL REPRESENTATION OF FIELDS IN FINITE

CROSS-SECTION WAVEGUIDES

We now attack the problem of a curved section of a dissipation-
less three-dimensional optical aneguide, shown in Fig.2.
We allow the guide to be of arbitrary cross-séctional shape,
and possibly~inhomogeneous, but the outside ﬁedium is required
to be homogeneous with refractive index nO for 0> pmax' We
construct four coordinate systems for this geometry as shdwn:
two global ones (Cartesian (x,y,z) and cylindrical (p,6,2)

as usual) and two local ones (local Cartesian (§,§,§), where

= z, and local cylindrical (£, 6,9)

X = R (o/R), ¥ = RO, 2
. A A ~ A . Il A .
where T cos ¢ = x and r sin ¢=-2z). The radius of curvature

R is chosen as the‘distance between the origins of the local
and global systems.

Now any Cartesian field component ¢ in the region
p > Prax (the largest value of p in the guide cross~section -

see Fig.2) must satisfy the scalar wave equation

2 . 2.2
P 92 o}

Q
LSy

19 =0 (4)

ol o

9.
ap(p

(o34

where an exp (iwt - ikovRe) dependence has been assumed as
before. Because the medium in this region is uniform in the
z-direction between * « , we may further reduce (4) using the’

Fourier transform pair



Fig. 2

Section of curved optical waveguide with Cartesian
céordinate system (x,y,z), cylindrical system (p,e,Z),
local Cartesian system (§,§,§), and local cylindrical
system (§f$,§).
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., .
3 (p,z) = %o, s)e 1KSZ g

% | (5)
5 . .
Fors) = gy [oto,2) 5% az

where k = konO is the wave number in the outer medium. The

~r

 spectrum function @ now satisfies the equation:

19 3% 2.2 2 ~
S 55l §2) + kJInS(1-s%) - e =0 (6)

The exact solution of (6) which satisfies the radiation

condition at p = » is well-known:

~ 1
Fo,s) = a2 ko1-sH?21 s? <
O .
-kaR oy
= Az(kp) s” =1
, . |
= A3K R{kp(sz-l)zl s > 1
o

(2) is the outgoing Hankel

where the Ai are ihdependent of p, H
function, and K is the modified Bessel function 6f the second
kind. |

As in [9], we shall find it more convenient to use
approximate solutions found by the WKB method than these exact

ones. Changing to the local Cartesian system and calling

A .
v = x/R, we have

2 , : ~
{—gf + szz[nz(l—sz)ezv— v2]}© =0 . (7)
av: | © o |

For conciseness, let us call
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2

R
The function g(v) or g(p) will always bé written out to
avoid confusion. We note that if v were real,va turning
point [9] would occur at v = v, = n [v/no(l—sz)é] or
P =P = vR/no(l—sz)%, and would be real only for s2 < 1.
" The necessity of radiation from curved open structures, hbwevér,
means that v will actually be complex, with a small negative
imaginary part accounting for the consequent attenuation; As
a result, no real value of p(or v) will cause g to vanish, but
some complex value of the turning pbing wili exist [17, pp.326—
333]. The nature of thé asymptotic (WKB) solution of (7) for

koR large is treated in Appendix A for the case of’complex V.

1
If we define [18] w = [g(v)]? and

v _
£ = j.' wivhav' =w -1 %{2n(w+iv) - fn(w-iv)} - %; : i
v

t : (8)

(for specification of the branch cuts, see Appendix A), we may

state thé results for two cases:

Case I: sz < 1. Except for a region surrounding the turning
point, we have

. . . 2
o ~ Dl(s)w_%{[l- 1 (QL + 513 )+ ...1 exp[+ikoR(£-€o)]

24k R " W
(o}
| 1 3i, 5iv2
+ OS [l + EZEO—R(-‘;T— + W3 )+...]exp[-1koR(€"Eo)]

p < |pgl (9)
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and
o ~ D+(s)w-% exp (-ik RE)‘ p>|p,.|
p o t
where
. : 1 1-ng
Eo = g(v=0) = lv{no + 5 ln(Ixﬁ;)} (10)
| ng(l—sz) ‘5
n. = [1- ————1]
(o} v2

This quantity was inserted into (9) in order to make

_ _ i Y , o
Oy = = 3 exp(-2ik RE) (11) =
the ratio of the incident field and that reflected from the

turning point in the local coordinate system.

Case II: 52 > 1l. 1In this case, the turning point is away

from the real axis, so that
1 31 Siv2

— (= +
24kOR w w3

. 1
@ =D (s)w °[1 - ) + --+] expl+ik R(E-E )]
(12)

for all P > P (see Appendix A) .

max
'In summary, theh, the fields of a curved guide outside
0of the guide can be represented by a spectral expansion in the
z-direction, and the spectrum'function 5(p,s)'can be represented
for largekaR by its WKB'approximati0n. For those componenté
'with sz>> 1, fbrmﬁ1a~(12) applies; i.e., locally decaying field

spectrum-componénts of this type remain evanescent all the way
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until p = w.l On the other hand, those components with 52 <1,

which appear evanescent (locally to the guide) must in fact -
possess a small exponentially growing wave below the turning
point as in (9), and beyond the turning point become an out-
wardly propagating rather than evanescent field. It is this,
as in the slab case, which accounts for the attenuation in the

curved waveguide.

1These are the so-called "stable waves" described by
Miller and Talanov [16]. See also Lewin [10].
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SECTION IV

PERTURBATION FORMULA FOR THE PROPAGATION CONSTANT

Having now a few general ideas about how the fields

in a curved waveguide must behave, we ask how to determine

the change in v, knowing the value V  and the fields in the
corresponding straight structure, into which the curved guide
guantities must go as R+ ». If an analytic form of the eigen-
value equation is'available, as it is for the slab [9], it is

a straightforward matter to perform a perturbation calculation
of the propagation constant of the curved structure. No such
'equation seems available in the finite cross-section case,
however (since no explicit matching of the boundary conditions
at a finite number of coordinate surfaces is possible), and so
some alternative perturbation technique must be found. 1In

this section we develop a mixed-field perturbation formula
applicable to waveguides of uniformly curved axis, similar to
formulas given in [21, pp. 326-331] for straight, uniformly
perturbed waveguides. |

Referring again to Fig. 2, and assuminming exp[iwt—ikovRe]

field dependence as before, we may write Maxwell's equations in
the familiar "longitudinal-transverse" form for guided waves
[21, p.346], where now longitudinal refers to the 6-direction,

and transverse to a pz-plane in which 6 = constant:
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&g - curl, ﬁ: = -iwung

56" curltﬁ: = iweE; | (13)
- iﬁ x gradt(pE;) - i kO:R ée‘x E:=—iwuoHt
- %? X gradt(pH;) - i kO:R ée X ﬁ: = iweﬁz .

Here ae is the unit vector along the 6-direction. Any vector A
is represented in terms of its longitudinal and transverse compo-
nents as At +;§eAe, and the various "true" transverse differential

bperators (i.e., in the global cylindrical coordinate SYStem) are

given by | |

gradt’f.= éfad'f = 56[%-§§j
=ap[§§]+aza§

dlvt A = div A - % g?ﬂ
R N

p 3p g 0z

curltﬁ = curl A - %? x %%
='5p[- ;;9],+ Ee[ggg - ;%5]4-5z[% %E(QAQ)]
= Ee(ae# curl, A ) - %@ X gradt(pAp) .7

It is easily verified that the transpose fields given by

=+ , . + +
Et"Et""e 0 e . 0

also satisfy (13) if +V is replaced by -V .



Finally, we will require a generalization of the two-
dimensional divergence theorem in order to obtain our pertuf-
bation formula. Consider an arbitrary surface S bounded by
a closed contour C, both lying in a constant f-plane as shown
in Fig.3. Let this plane be rotated about the z-axis so that
S moves to S'in the plane 6 + A8, tracing out the Volumelnh
aﬁd éimilarly C moves to C' tracing out the‘surface As as

 ghown. Applying the three-dimensional divergence theorem to
an arbitrary suitably differentiable vector function,? on AV,
we have
fdiv'F‘dv = f F-a,ds - f?-aéds+f F-a ds
AV | s' S
where an is the unit normal on  AS. Dividing'through by A6

and letting A® —+ 0, we have

resulting in either of two equivalent forms of the desired
theorem:
| v Fas = & [ 3 7.3
| fpd:l.y FdS = 55 fFaed.S--h,jgpF a_ds (14)
S : ’ S C
or

fpdiv Fds = f oF-a_ds Cs)
S t c n

15



leé

AS

~AV

/9+A8

N4

Fig. 3

Diagram for proof of 2-dimensional divergence
theorem transverse to 6. '
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Now if'EO, ﬁo’ Vg are the unperturbed fields and propaga-
tion constant of the straight guide, they will satisfy (13) with

. . . A N ) . .
R » », in which case (xX,y,z) become a genuine set of Cartesian

coordinates:
% x EY + igy HY = +ik v @ x ok
t o WHGHG = 2185V 6%5 o
(16)
4 =t L omE = 5t ’
Vt X H.O lweEo = tlko\)o 3? X HO
where
9A A, oA, AL

a . = % z =
Te x B = agl- g3t 1+ 3l - ax ) * Blay)

is the "local" transverse curl operator, becoming curlti only
in the limit as R » ». In (16), the fields E_, H_ may be
taken to have meaning for finite R, for the purposes of use

in a perturbational formula, so that the field in the curved

— — - -

guide are given by E = Eo + Ep; H = Ho + Hp, where Ep and Hp

are perturbations resulting from the curvature of the guide.
Such a perturbational formula is derived in Appendix B, from
(13), (15) and (16) by considering F = E;& at - £ « ﬁ; which,
to»terms of lowest order in each of the real and imaginary parts,
is:

k(v—v)z—il§+i— ' (17)

where
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- mt . ot
b—1 L] E .
P = 2 f &, [E] x H_lds o (19)
S
A : .
- 1 . X
A = f {ﬁ[H AE A=E AH A] - 2ik v () [E ~H A - E AH Al
s oy 0Z oy oz o oR 0z oXx oxX 0z" . .
(20)
o 3EO£ BHOA ) BEOA BHOQ
+ R [Ho§ 32~ Eoz 9%t Hop % Eop 5% l1as

These first order correcﬁions can be logicaily grouped into two
types - those involving A which are independent of the per—
turbation fields Eb, ﬁp and reflect only a geometric influence,
and those resulting from c¢ which are directly a result of

the kind of field distortion which occurs when the guide is
bent. The next two sections are devoted to an examination of

each of these corrections.
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SECTION V
GEOMETRIC CORRECTIONS TO THE PROPAGATION CONSTANT

Since we have assumed for simplicity that the waveguide
is lossless, we can show that the phase relationship of the
various field components is such that +iA/P is purelyrreal
[22, Appendix c therein], and so this term is a correction to
the phase constant only which contributes no attenuation.2
It can in fact be shown (Appendix C) that this (1/R) correc-
tion is zero for a symmetrical structure, provided that the
mode itself possesses certain symmetry properties. This re-
sult is well-known for certain closed waveguides [24] and open
slab waveguides [9], but not in the general case.

For those asymmetrical waveguide modes where they‘i/R)
correction is not equal to éero, one can in principle compute
A from (20) for any guide configuration once the fields of
the mode on the straight guide are known. Because of the

dependence exp[-ik,.vR8], any finite angle 6 of bkend will cause

0
accumulation of an appreciable excess phase shift in compari-

son with the straight guide. When the (1/R) correction does

2In the lossy case, any attenuation contributed by this
term would be strictly of geometric origin, resulting from a
rearrangement of the field pattern relative to the positions
of any loss [23]. This effect is guite separate from the ra-
diation loss considered in the next section.
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vanish, at most a (l/R2) correction will occur; however, the
total resulting excess phase shift will be of order (1/R) and
can thus reasonably be neglected. This phase shift may con-
tribute substantially to both single-mode and multimode pulse
distortion if its frequency dependence is strong enough; it is
.also a major factor in détermining the endfire radiation from
a curved section of waveguide, inserted between two semi-
infihite straight guides [25]. More importantly, however, this
phase shift can also afféct the amount of radiation loss as

detailed in section VII.



SECTION VI

RADIATION CORRECTIONS TO THE PROPAGATION CONSTANT

The remaining correction to the propagation constant is
givén by -ic/P. 1In contrast to the geometric correction, it
depends critically upon the perturbation fields Eé and ﬁb,
and will in addition be essentially an attenuation term.
Thus, we will need the more detailed description of Eb and
ﬁb given in Appendix B, as well as to specify the surface S
(hence the boundary C as well) we are to use in performing the
integrations.3 It is interesting to note the similarity of
the term -ic/P to a power balance relation [26], as well as
to a modal coupling coefficient for surface waves [13,22].As
a matter of fact, Arnaud [13] obtains a related expression
for the attenuative part of v, which he interprets as coupling
to a whispering gallery mode propagating along an artificially

introduced perfectly conducting cylinder. The cylinder is

21

then allowed to approach infinity, circumventing in the process

the mathematical difficulty that such modes in the absence of
the cylinder are not normalizable. The authors prefer to in-

terpret (18) as co-directional coupling to a fictitious,

3Some restriction on this choice has already been made
in Appendix C.



Second guide as whose fields are Ebr and ﬁbr, the portions of
Eb and ﬁé reflected from the furning point. These fields can
be thought of as produced by a mirror-image guide whose dis-
tance from the first guide can actually be idéntified (see
section VII). The analogy cannot, however, be pursued too

closely, since the phase relationship of the fields which re-

22

sults in the attenuation correction to v. could not be realized

0
by any physical second guide.

In order to obtain from (18) a useful expression for’c,

we first note that the only field components which are Cartesian

Zin‘all of the coordinate systems of Fig. 2 are Ez and Hz' We
will find it useful, then, to write (18), as far as possible,
solely in terms of these. Furthermore, to use the spectrum
function to the greatest possible advantage, we choose -the
Surface S so that its boundary C consists of the two infinite

lines at p = R, and p = R2, between z = -» and z = += , R1

1
and R2 must be away from the waveguide, on the outer and inner
side of the bend, respectively, but are otherwise as yet arbi-
trary. The resulting expression consists of two coqﬁributions

of the following form (one for each part of the boundary C--

see Appendix D):

= + S g 14
1 kon0 y 1—52 lwug 0X CO 02 P
H. o~ (X,s) 9H_(X,-s) TAMV,s) ,
+ OZ 2 pZ = ,-i 0 20 HO" (XIS)H A(S\{l—s) -
inOn9 9x ' n0 , 2 pz
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. §/R l A N C0 A A i
1A(v0,s)(e -1)[§5 EOQ(X,S)EOQ(X,—S) + ;7 Hoﬁ(x,s)ﬂoﬁ(x,-s)]
0
+ 2 (v=v eﬁ/R)[H (2,-s)E_  (&,s)-E. . (%,-s)H_,(&,s)]1} ds
n, 0 0z "' 0z ! 0z’ 02"’

(21)

Here we have set

1
Aw,s) = v+ nd(s®- 1)17

At this point it is appropriate to introduce an approxi-
mation which will appear several times in what follows and
greatly simplifies the analysis. We assume Rl and R2 are
taken far enough away from the guide so that essentially all
of the "power flow" is included in (19) (strictly speaking, P
is not a power since the integration is performed in "real"
space and not in the "natural" (§§) coordinates for the unper-
turbed mode. However, by arguments similar to those in Appen-
dix B, the difference has only a second-order effect on v—vo),
but not so far that Rl is near or past the WKB turning point.

This requirement may be stated in the form kOX(VO,s)R>>1 for

all,s, or simply kol R>>1, where we have abbreviated

0

A=

Thus, in equation (21), all terms involving exp[-zkok(vo,s)§]
may be considered as smaller than any inverse power of R, and
the only significant remaining terms are those in which the

exponential dependence has been cancelled, i.e., terms involv-

ing the product of a locally growing and a locally evanescent
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wave. To first-order then, we have a contribution only from
Clz

+

| 1 A(v,,8)0 N ~ ~
c = - 4T j' 0 s [ E(s)E(=s) , H(S)H(=8), 44 (22)

n 2 1wy . 2
0 -1 1-s 0 1weon0

where E and H are the spectrum functions of EO% and Hog after

ral ]
the x-dependence is removed:

E(s) _ komy ‘IQ)EO%(X’Z)l . kox(vo,s)§ + iksZz . (23)
fi (s) 2T Hyp (R,2) az

The integral (24) is only from -1 to +1 since we had set

Os = 0 outside this range. It should be further recognized
'that while B and H have no explicit dependence on R, there is
an indirect variation which arises when the choice of the ori-
gin of the %-axis is varied, and hence this choice will affect

the perturbed value of Vv to some extent.
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SECTION VII
STEEPEST-DESCENT EVALUATION OF THE ATTENUATION
Consistent with the foregoing approximations involving
the magnitude of R, the appropriate method to evaluate (22)
is the method of steepest descents [l7,vpp. 300-302]. We
have, by substitution of (10) and (11) into (22), the follow-

ing expression:

1 : A(\) ,S)dS
c=k§_‘“m§) [ 1egnGE(s)E (=8) +uft (s) B (-5) lexp Lk oRa (5) ]—2y—  (24)
N /1 1-s
0%o .
where q(s) = Z[A(v's) * %-zn (Xlﬁgx:z;)]'

It is easily verified that the steepest-descent path is essen-
tially the real axis between s = +1, and that the exponent

goes to -« as s2 + 1. Choosing k,R as the large parameter,

0 .
we have by the usual techniques that the saddle-point (which

satisfies gq'(s)=0) is located at the point s=0.4 Thus the

first-order steepest-descent asymptotic approximation is:

TA\Z
~ 2TWw <__9> [eongﬁz(0)+“0ﬁ2(0)]eXp(_2T) (25)

0

C

4Two spurious complex zeroes of q'(s) also occur; these,
however, are branch points of g(s) and will in fact provide
the limitation on R which insures the validity of the steepest-
descent approximation.
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where we abbreviate A = A (v,0) = [vz-ngl% » and
- - Y oon (XA
T =~k RIA + 5 n(533)] (26)

In the special case when |A/v| << 1 (quite typical of both
fibers and integrated optics), we have approximately
L1, A L2

T = 'gkoR-\;—z“ §k0)\ (ptO—R) (27)

where Pro is the WKB turning point for s=0. This way of ex-
pressing 1, in addition to the well-known dependence of
exp(—kOAW) of the parallel-guide coupling coefficient [22],
where W is the separation between guides, allows us to roughly
identify the distance between the first guide and the ficti-
tious second guide as W = % (pto—R). Finally, for (25) to be
valid, we must require the distance from the saddle-point to
the nearest singularities of g(s) (see footnote 4) to be large.
The condition is easily shown to be

| |t]>> 1 (28)
which, for the case|A/v|<< 1, is obviously more stringent
than the condition kOAOR>>l assumed in section VI. Thus (28)
is the single criterion of applicability for any finite cross-
section guide.

It will not’ordinarily be sufficient to evaluate Tt by re-
placing v everywhere by Vo In cases such as for a symmetric
mode when the difference (v-vo) is of order (1/R2) in its real
part and exponentially small as described above in its imagin-
ary part, this is allowed, sinece only a term of order (1/R)
"will be changed in the:exponent of (25). If the (1/R) correc-

*ﬁion:inSection"V’does not vanish, however, we must take it



27

into account, since a significant factor may be generated into
this exponent [9]. Thus, if we call AO =A(v=v0) and Tg =

T(v=v0), we have by a Taylor series expansion;

. Vo~Ag
pa oy | o— [
T Ty iko(v vO)R wn o ( P\ ) (29)
0”0
or, again for]AO/vo[ << 1,
= 1otk (v-v, )R %o + 3 (v-v.)R —13'+ (30)
T 7 Tp™ V™V vy 30 V™V RER
0

The appropriate procedure, then, for calculating (v—vo) is to
first calculate the real (1/R) correction as in section VvV, and
then, using this quantity in (29) or (30), proceed to calculate
the attenuation from (25). The only fields required in (25)
are actually "averaged" in the Z-direction by the integration
of (23); thus it is to be expected that less error will be in-
curred as a result of using inexact fields at this point than
would be if the "naked" inexact fields were used to calculate
the loss.5

For the case of.asymmetrical mode, v = v, SO that the ex-

pression for 1 reduces to

12

3
_l, g Mo (31)
Vo

5Marcat111 s [2] field approximations for the rectangular
dlelectrlc waveguide are thus utterly incapable of predicting
the R 2 dependence of the attenuation which by (25) should
occur in all finite cross-section structures. Not only does
there exist experimental evidence that this term should be
present [27], but similar studies of coupling between such wave-
guides show considerable error using these field approximations
[28].
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SECTION VIII
DISCUSSION AND CONCLUSIONS
To summarize the technique, then, given a straight surface

waveguide of arbitrary cross-section whose fields E., and H

0 0
and propagation constant v, are known, we may calculate the
shift in the real part of the propagation constant as iA/P,
where A and P are given in equations (19) and (20). This done,
‘we may calculate the attenuation due to radiation as ic/P,
where c is given by (25), (23), and (29) or (30), using the
previously determined value for the real part of the correc- ¢
tion to Vo in (29) or (30).

As applied to the asymmetric slab waveguide in Appendix

E, this procedure yields
k. v

070 1 1
Re[k, (v-v,)] = ( - )
0 0 2R koko Yo
| A (n3-v2) 11
Im[ko (V_\,O)] = - R exp[~2T0+k0)\od—k0)\0(k Y -Y—)]
\)OLe (nl—no) 070 0

where the various quantities appearing in these expressions

are defined in Appendix E. The term [ (k )—l - yal]'is a mea-

0*0 |
sure of the asymmetry of the guide, and may in fact be an ex-

tremely sensitive function of the guide parameters [9,23].

These results agree with those of [9] obtained by de-
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rectly perturbing the eigenvalue equation. The result of
Marcuse [7] omits the asymmetry term in the attenuation con-
stant, and the possibility of a factor of 2 or 3 difference
between the two results indicates the importance of retaining
the first-order correction in (29). 1In fact, it can be showﬁ
that the choice of the location of %=0 (i.e., the definition
of R) relative to the slab will have an effect on the phase
constant which amounts to a referral of the phase velocity to
the location £=0. However, the only change in the attenua-

- tion constant is a change in R (occurring in 10) by the appro-
priate amount, so that it is clear that the kOAOd term appear-
ing in the exponent is not removable by a redefinition of R.

In Appendix F the circular fiber is treated, which, being

a symmetric structure, has‘only the attenuation

2 2
(n]=vy) ng expl 21,1

3/2
0

Imk, (v=v )1 = -k, (=)*
0 0 0'k.R 2,2 2 \
0 #vo(koa) (n]-no) A Km+](kokoa)Km_](kokoa;

independently of mode orientation or polarization, for HEm+1 n
14

or EH modés. The quantities appeafing in this expres-

m-1,n ‘
sion are defined in Appendix F. = This result agrees with Lewin's
analysis [10] wiﬁh the exception that the present result is less
by a factor . The discrepancies with Arnaud's result [13], in
which a limiting case is treated, are more serious. The most
serious One is the omissioh of a factor exp(ZkOXOé) in his ‘ex-
pressibn. This very term will be quite large for the case he

has cohéidered (kok'a >> l); As discussed for the slab, this
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term cannot be removed by a redefinition of R, and, for Arnaud's
geometryr again points up the importance of the correction

term in (29), since it appears to have been neglected in [13].
The remaining discrepancy can be explained by Arnaud's use of

an approximate spectrum function instead of the exact one ob-
tained in Appendix F.

Finally, it will be noted that (25) predicts a dependence
df R-JZ for the attenuation of any finite cross-section guide.
As pointed out in footnote 5, field approximations which are
not somehow averaged (as, e.g., in equation (23) with s=0) do
not generally give satisfactory results, and in particular
Marcatili's analysis of the rectangular cross-section guide

[2] is in error by at least this term (in fact, to his approxi-

mations, the bending loss behaves as 1if the guide were a slab).
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APPENDIX A

In this Appendix, we examine closely the WKB solution to
equation (7). The solutions in terms of the integral (8) are
well-known [18], and herein we shall discuss what branch cuts
need to be chosen in the process. In the first place, the
imaginary parts of the logarithms in (8) may be taken to be
between -7 and m, since any other would amount to multiplying
‘the solution by a constant factor. To look at the definition

of w, we must consider the two cases separately.

‘Case 1: 52 < 1. The turning points are located at

_ .2\ %
Pr = ipR/nO(l s7)
as shown in Fig. A.l(a), which correspond to an infinite set

of: turning points in the v-plane, Ve = Vfr + 1vti with

2, % .
Vep = Zn[lvl/no(l-s N Vi; = arg v + nmi, n=0,+1,+2, ...

Along the positive real p-axis, for p sufficiently large,

14
2,. 2, p% 2%
recalling that w = [no(l—s ) Qf - v']® , we can choose w so
- R

that Re(w) > 0, and we have then

n,p n 2
w = —%— (1-s2) % - v R 5%
» 2n,p(1-s°)
“n o 2
‘ ZnOp(l—s ) ?

and as p > +» , Re () » 4w,
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p-PLANE
STOKES LINE
/org w=0
s
arg W= T
(a)
arg W= T
r 4
arg W’O/ 'DT
(b)
Fig. A.l

Tﬁrning points and branch cuts in p-plane. Only points
in right half-plane are shown. (a) s2 <1, (b) 52 > 1.
In (a), the Stokes line is shown crossing the real axis.



33

Thus & has a small, negative imaginary part, and exp(—ideg)
represents an outgoing wave which is bounded as p + =.
‘Decreasing p along the real axis now, we paés by the turning
point Py and arg w increases ffom near O to near n/2, so that

+ .
as p » 0 we can write

nZa-sho®
w S iy-i 3
2vR
n(z)(l—sz)p2 3 ng(l—s‘)p2
£ = iv[l+ 3on ( )1 -1 3 5
4v"R vR

~Thus Re(f) ~ (Im v) (») > -o as p > 0+, and it is apparent that
on the interval [0,+x), there is a point where Re(g) = 0, in-
dicating the crossing of the positive real p-axis by a Stokes
line [17, p. 293] (defined by Re(¢) = 0). At this point,
there must occur a discontinuous transition between two differ-
ent asymptotic (WKB) solutions for . Let us examine how this
occurrence (known as Stokes' phenomenon) leads to "reflection"
of the fields from the complex turning point.

For small |w| (i.e., near the turning point),

3
£ = 1 w” (A.1)

3 2
so that as arg w increases from 8 to n/2, arg £ increases from
~about 0 to about 3ﬁ/2. As a result, exp (+ik0Rg) represents
an outwardly-decaying field as ldng as p is below the Stokes
line crossing of the real axis, sincé £ is (essentially) ne-
gative imaginary and decreases in magnitude as p approaches p,

from below. Now, although for sufficiently large p only the

outgoing WKB solution is permitted in order to satisfy the ra-
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diation condition at infinity, below the Stokes line we must
in general expect a linear combination of the decaying solu-
tion (here called "incident") and a locally growing "reflected”
field as given by equation (9), directly as a consequence of
the Stokes phenomenon [17, p. 325].

The reflection coefficient o  may be determined as in
[17, pp. 322-326] by matching the behavior of the WKB solution
to that of the appropriate>Airy function which describes the
beahvior of & near the turning point. 1In the present case, the
appropriate behavior for large positive v is given in terms of

the outgoing Fock-Airy function WlA[l9, p. 112]:

3 = W, - k2 RD) 3 vy

4 l/3 2

12

Wl[—(k R /4

As v decreases along the positive real axis, the argument of
the function Wl changes in phase from about -m to about 0, and

in the latter range the asymptotic form of 3 is [19, pp. 76,113]:

3 -~ [_(k 82/402 1/3 2,-1/4 .

kR w3 i koR w3
-{expli —— \)——2] -5 exp[-i —— \—)7]}

and so the reflection coefficient may be identified using (A.1l)
by comparison with (9): |

o, = > expl-2ikgRE] ~oan

It is now clear that we are free to choose the branch cut de-
fining w in any manner so long as the range of arguments from

0 to m/2 is included. For simplicity, then, we choose 0 <
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arg w < T, so that the branch cut appears as in Fig. A,1(a).
The higher order terms in the asymptotic expansion ap-

pearing in (9) can be found as in [18], and in fact coincide

w{th Debye's expansion for the Hankel function, given for

real order in [20, p. 366].

Case II: s? > 1. The turning points are now located at

= 41 2_.43%
oy = ilvR/nO(s 1)
as in Fig. A.1(b), corresponding to the infinite set of turn-

ing points in the v-plane:

2 5. . . '

Vip = Qn[lvl/no(s 1)1 3 vy =arg v + in/2 + nni, n=0,+1,+2,...
In this case it is evident that w is predominantly imaginary

along the entire positive real p -axis. If we define w with

the same range of argument A.1l(b), arg w is approximately /2

on all of the positive real p-axis. Thus as p-++» on this axis

n.,p - 2
w = i '—%—(52‘1)% + i v R 2 1
2n0p(s -1)72
n.p 2
~ 3 072 443 _ . v R - T
€ 1 —ﬁ—(s 1) i 5

2n0p(s2-1)%
so that exp(+ik0Rg) again represents an outwardly-decaying wave.

. + ‘
As p~>0 we have

_ no(sz—l)p2
w - 1iv + 1 )
2VR
nZ (s®-1)p° 5 nd(s%-1)p° .
4v"R : ‘wR

And so Re(g) ~ (Im v) (») > == as p-+0+, and Re(g) + -(Re v) 7/2

~as p>+ ». Since Re(dg/dv) = Re(w) > 0 over the entire posi-
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tive real p-axis, there is no non-negative value of p for
which Re(g) = 0; therefore no Stokes line crosses the real
axis, and only the outwardly decaying WKB solution, egn. (12),
occurs.

The higher order terms in (12) are again found as in [18],
and coincide with Debye's expansion for the modified Bessel

function, given for real order in [20, p. 378].
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APPENDIX B
=+ . . .
Let E , H, v be the guide fields and propagation constant
for a curved waveguide, which satisfy (13), and E_, ﬁa, vy the
corresponding straight waveguide fields (as functions of the

local Cartesian coordinates) and propagation constant (trans-

posed) which satisfy (16). Then
[P — =+ =+ == o _ S =t =+ —
R let[EO x H E x HO] 1k0(v \)O)ae [E0 x H E x HOJ
—t+ — —t —
+ [H DR % EO + E DR X HO] (B.1)
where
- Q T _ o - _ 3 ;(/R_ -‘A N
DR x A R [curlt A vt x A] 1k0v0(e 1) ay X A
= (e;‘/R-l) a, TAQ + a {(1-e§‘/R) 9 +La.)
. %/R — —
ikyVg(e™ 7-1) {a§A2 aﬁAﬁ}
Note that Dp X A is of order 1/R compared with A itself. Ap-
plying (15) to (B.l), we have
e rE 3 =t - =t T 1 e — _ T —+ 7._-—-¢ . R
]g R [E0 x H E x HO] andJL = 1k0(\) vo)f ag [EO X H + E x HO]dS
c | s
+ —_ —+ —
+f [H "Dy X E, + E Dy X HO]dS : (B.2)

S

For the moment, we will not specify S or C. Let us call the

perturbation fields in the curved guide Eb and ﬁﬁ, so that

_=_+— —=— . —. .
E EO Ep and H H0 + Hp Then (B,2) becomes
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Jﬁ 8 (E; x ﬁ; -}Eg x Hyl-a ab = 2ik)(v=v,) j; 3, [Ey x Hy1ds
+ik0(v-v0)_£ ag [Ey x ﬁ; - E; x Hy1ds
+-j;[ﬁg.DR X Eg + ES.DR X ﬁg]ds (B.3)
+ fs [ﬁ;-DR x ES + E;-DR x ﬁg]ds
= 21k, (v-v,) j;ab-[ﬁg x Hi1ds + L;[ﬁ;-né x Ej + E;'Dﬁ « H]ds
+ l;{%[HoyEoﬁ - EoyHOQ] * (eg/le)[Hoy zgﬁ +vH02 _2%2 - Eoy “2%21 -
- 2ikgv, (eﬁ/R-l)[EoﬁHog - E_gH .1} ds (B.;)
where
Dé X A = DR x A + igo(v"vo)ab x A (B:S)

From the discussion of section III we are able to say a
few things about the general characteristics of the perturba-
tion fields. The spectrum function for a Cartesian component

of EO or H0 is given by at(s) exp[—koxh),S)ﬁlf where

A(v,s) = v[v2+ né(sz—l)]% (B.6)

As R » » , we require that E and H go over into the unperturbed
fields, so that from (9) and (12), the spectrum function am-

plitude D' can be given in terms of al as

pl(s) = A (v,s)1% ™ 4at (o) (B.7)
becausé
(AO8) 4F ik R(E-E) + kA (v,s)x + in/4] =
w1 SXPLIIK, o/ I KotV
. 2 . 2
B .elﬂ/4 no(l-s ) 2 :
_1"";2 Rt .- . (B.8)

D (v,s)1°7/2



as can be shown by expansion in a Taylor series about & = 0.

In like manner, exp[—kok(v,s)ﬁl can be expanded about its value

at vO:
' R ' vo(v-vo)
eXp[-kO)\ (V,S),.X] = eXp[-k())\ (VOIS)g] {l-koﬁm + . .. .}
(B.9)
}From‘(B.7) - (B.9), (9) and (12) it can be seen that Ep, Hp' and
lv-vol,are all of order (at most) 1/R, and we can ih,fact write:

3 (2,5) ~ AT(s) {I1 + 0(F)] expl-kAlys)®] +
+Os[l + O(E)] exp[+kox(v0,s)ﬁ]} (B.10)
(s < 1)
- with the same expression holding for s2 > 1 if we define cs=0-

for these values of s. The perturbation fields thus consist,of

evanescent waves which are O(%) compared with E0 or HO’ and
locally exponentially growing fields (for s2 < 1) as described
| by the second term of (B.10). |
It can be seen, then, that if‘(as shown in sections'V and'
VI) the first-order correction to thé real part of Q is given
by a (1/R) term, and the first order correction to the imagin-
ary part of is given by a term exponentially dependent on R,

0 "R

and so ‘the first-order corrections are given by (17). .

then'tgrms such ‘as ﬁ+'D X ﬁg, etc., are all of second-order,

39
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APPENDIX C

In this Appendix we show that the geometrical 1/R correc-
tion term iA/P in (17) is zero for waveguide modes antisymme-
tric or symmetric in the x-direction. We assume that e (-%,2)
= €(&,2) for all % and 2. Now by the symmetry properties of
Maxwell's equations (16) (which also give rise to the "trans-
pose" field relationships between E%‘and Hg), we can always
choose a given Cartesian field component to be either an even
or an odd function of . Equationé (16) will then force éll

other field components to be either even or odd functions as

follows:
E?v even (odd)
Hy odd (even)
E2 even (odd)
H2 odd (even)
E2 odd (even)
Hy even (odd)

An inspection of the integrand in (20) shows thét all integrands

are odd functions of %, and so if the surface S is chosen to

be symmetric with respect to =0, it is seen that A=0.
Invcertain waveguides of high symmetry (e.g. the circular

‘fiber), it is possible that modes of both types above may exist

and be degenerate so thét a linear combination of them (with

' no particular symmetry) may be considered as a single mode.
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In this case, it may be seen that the cross terms so introduced
into (20) will not in general vanish upon integration, so that
‘when such degeneracy exists, the phase correction term is in

general dependent on the polarization of the mode in question.
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APPENDIX D

Let us consider first the portion Cl of the contour C

shown in Fig. 2. Here the contribution c to ¢ is
- = B. B =t - =t T 1 e
cl f R[EOX Hp pr HO] a_dg
_ C
1
R [e]
— _lf - + + - + -
=t xR _m{Eoy Hp% Eos oy Ep? Hop * Epﬁ Ho§ }dz
R o : '
__ 1 + + + + + + + +
= -3 .j.{EO9 Hoy + Egp Hoo = Eg Hoo - Eoo Hoo }dz
- (D.1)

From here on, only "+" fields will be involved, and we drop the
superscript as unnecessary. The §-(or 6-) components of the

fields can be given in terms of the z-components by means of

the appropriate set of Maxwell's equations, (13) or (16):
2 3E H
3 2 — s 2 "To2 _ . o2
(322 + k7) Hyg = —iwegng —pm - Ikgvg 5
(D.2)
oH oE
, § 2 - i o2 _ . o2
o2 75 Fop T ¥ Hr tkovo 32
2 oE k.vR 3H
3 2 _ 2 z _ . _0 zZ
275 M 7 7H%% T T T Tz
(D.3)
2 oH k., vR 3E
] 2 _ s z _ . _0 z
(a 5 + k7) E_e = iwe 50 i 5 N7
z
valid for p > Prax Subtracting (D.2) from (D.3) gives
2 oE ~ OE
) 2, . .2 R p2 . 2,._ -%/R 02
(g;§-+ k%) pr lwegny 5 5% + 1weon0(l e ) =z
i‘kOVR 3H‘2'~ e QR 8H_,
o 02 0 'p 0 02



43

32 oH oH

2 - R "p2 _ . _~~%/R o%
(g;Z + k) Ep? iwu, 5 5% lwpo(l 3 ) T
dE
k.VR JE o2
_ . 0 p2 _ . VR - v.) —=
i 5 Y 1k0 — 0 RYA (D.4)

With the contour chosen as it is, we are able to make use
of the spectrum description of the 2—componentéyof the field
to find the corresponding description of the ¢-components.

. This done, we may rewfite (b.l) using’the convolution theoreﬁ

for Fourier transforms. Now

1 i SVo
H A= [— A(va,8)E , - — 0 ]
oy 1_SZ 0 0 oz n, 02
' icg SV, -
o 1 0 0
E A, = ——= [_' - )\.(\) ,S) H A - E /\]
oY  _g2 ng 0 oz n, oz
: oF .
- 1 R p2 i -&/R
1 = [ L2 - — X (v,,8) (1-e VB (D.5)
P  (_g2 luwmge 9% 2o 0 Y
9H icg
Eog = s [~ —— 352 + A (vy,8) (L-e 2/R)ﬁoz
p 1-s™ 1w€0nop n, .
sVR [] VR
_nop p2 HE (77 - vO)EOQ]

whére Ly = Yil,/€, is the wave impedance of free space, so that
application of the convolution theorem to (D;l) gives the ex-
pression in (21), in addition to some second order terms. Al-
though we have not explicitly looked into the character of the
solutions on the inner.side of the bend, it can be seen that a
similar expression will hold fdr the contribution from C2,-al—
though ﬁo WKB reflection occurs for any value of s on this
side of the bend, and so as discussed in section VI, the coh—

~tribution from C, may be neglected.
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APPENDIX E
The treatment of slab waveguides by the present method
is simplified somewhat since the surface integrals go over
into line integrals and the line integral expression for c is
no longer an integral at all, so that no steepest-descent eval-
uation is necessary. Here we examine the TE modes of an asym-
metric slab waveguide. If we locate %=0 at the center of the

slab, the fields are given by [29, p. 9]:

B = _pe~Koro(8-d/2) g > d/2 (1)
o2 » :
_ k AO '
~A[cos KO(R-d/Z) - sin K0(2-d/2)] -d/2 < x < d4/2 (II)
0
k AO y0(2+d/2)
-A[cos Kod + sin K.d] e R < -d/2 (I1I)
K0 0 —
with
‘ oE kv
H = -+ 92 . 4 _ 2070

og = Tun, 3% o2 = g Eos

and all other field components vanishing. Here

It

K

2 2.3
0 = Koy = v

2 2
n

_ 2 - w2\F L = _ %
Yo = ko(\)O n2) ; AO (vo 0)

where n,, n;, and n, are the indices of refraction in regions
I, II, and III, respectively. The parameters y—l and (ko)\o)-l
therefore have the physical meaning of penetration depths of

- a specific mode into the two exterior regions of the aneguide.k
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Continuity of Hoy<results in the eigenvalue equation

kOAO(Kocos KOd + y031n Kod) = KO(Kosln Kod - YOCOS Kod)

The P-integral is calculated in [29, p. 14]:

2 2 .2

oo BRovolelm™) 1 1

B 2_ 2 ' e Yo Koag

wuo(nlfvo) 0 0”0
From equation (20), A is
3E 3H

= Ll - 2i _02 _ __09;

A =gl WHgoBgy = 23kgvoREgHye + X (Hoo—g™ =~ Bop g 19%)
0E | o
_1 1 e 2,2, 2 2 02,2, 4
== { Torg o Xlkgy(vg+n )E0§ + (g T1agd

After considerable algebra, this can be shown to be

2.2.2,2 2
A - koVod™ (ny-np)Ly 4 1
- 2iwu R(nz-vz) [kOKO ) VE]
oR(n1=Vy

Thus, the real part iA/P of the correction to kovo in (17) is
simply
A 00, 1 1 (E.1)

As expected, this correction is zero in the symmetric case

(kox = YO).‘ Equation (E.l) is identical to the phase cor-

0
rection found by Chang and Barnes [9] for the asymmetric slab.
The quantity ¢ can be found from (D.l) with the line in- -

tegral having"dégenerated into an evaluation at a single point:

.- - 20, 2 A2ekoxod
iwuo 00
| 2 kK Ad
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where T is given by (30) and (27). From (E.l), then, the at-

tenuative correction becomes, for Ao/vo << 1:

c Xo(ni'\’g) "3 1 1
-i &= -3 exp [- - kA (———— - =) + k.A.d]
B ) 3o 5 0’0o 'k - 0o
voLe(nl no) Vo 0”0 0

(E.2)
Once again, this is in agreement with [9], if the reference
'point %=0 is changed, and the errors in eqn. (26) of [9] are
notedT As noted in [9], the extra term in the exponent re-
sulting from the asymmetry, which does not appear in [7], can

be quite significant.

+Some typographical mistakes are seen in their expression:
specifically, the exponentlal term in (26) should be exp (-kA 6)
instead of exp (- Zkv 6/3) .
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APPENDIX F
We consider here the "simplified" modes of the step—index
0 for £ > a and n=n, for ¢ < a, as dis-
cuSsed by Marcuse [29]. These simplified modes assume that

optical fiber with n=n

(nl-no)/n0 << 1, and what isvmore, assume convenient forms quite
naturally in the Cartesian coordinate system [29, pp. 62-77].
There exist two orthogonally polarized mode types in this ap-
proximation. One is polarized with the electric field in the

g-direction:

E, = —AJm(Kf)cos(m$-¢O) £ < a
= -AQm(vo)Km(koxof)cos(m$-¢0)’ £ > a
A = voh " et - 2 <
HOx = - —EE-Jm(Kr)cos(m¢-¢o) r a
= voA AP 5 | £ >
= - ——E Qm(vO)Km(kO 0r)cos(m¢-¢o) r a
— iAK 2 . 4 A . | I
Eop = EEEUE [T pq KE)Sin((m+1)9=0 ) +T _; (kE)sin ((m-1)8-¢,)]
£ < a
iax . o R
= —333 Qm(vo)[Km+l(kokor)31n((m+1)¢—¢0)-Km_l(kolor)51n((m—l)¢-¢o)]
. ? > a
_ i | A A
Ho? = mg [T 47 KE)cos ((m+1)¢=0,)-T _, (k £ )cos((m-1)é-¢,)]
r<a
1A, ~ . " )
= - §EE~ Qm(vo)[Km+l(koxof)cos((m+l)¢—¢0)+Km_l(koxof)cos((m—l)¢—¢0)]

£ > a

Here
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Qm(vo) = Jm(Ka)/Km(kOAOa);

(VR

C o= [n/e 1% 1 k= k.(n2-v3)?
0 o/l i 0 (P17

and db is an angle defining the orientation of the field maxima.
The other mode type is polarized with the electric field in the

R-direction:

E g = AJ, (k£)cos (mo=¢,) £<a
= AQm(VO)Km(kOXor)cos(m$—¢l) £ > a
\)OA
H s = Eg— Jm(Kf)cos(m$-¢l) £ < a
VoA . | »
= - —EE Qm(vo)Km(kOKor) cos (mp=¢; ) £ > a
B = 5%%§5 [Jm+l(Kf)cos((m+1)$—¢l)—Jm_l(Kf)cos((m-1)$—¢1)]
r <a
iAAO . N =
= —-2\)—0 Qm(\’o) [Km+1(ko->"dr)c°S( (m+1) ¢o— ¢l)+Km_l(ko}\b'f)cos((m—l) ¢-¢1)]
£ > a
Hg = 5%%% [T pq (B)sin ((m+1) =) +3 1 (k¥)sin ((m-1)F-¢;)]
f <a
= 'S Qm(vo)[Km+{kok&ﬂCOS(0n+l)¢-¢l)-Km_lgbA§ﬂcos((m—l)$-¢l)]

£ > a
where ¢l is another orientation angle. For either mode type
the eigenvalue equation can be given in two equivalent forms
[29, p. 68]:
_ _ N
KIpgq (Ka) /3 (ka) = koh Koy (kphga) /Ky (kphga)
kd —q (k@) /3 (ka) = -kOKOKm_l(kokoa)/Km(kOAOa)

and the P-integral (19) is also known [29, p. 70]:
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2 .
_ A 2 2 2 .
P=e 5 ma“vy(ny-n;) |91 (ka)J_ . ; (ka) | (F.1)
Cn A
0"0
where em=l for m#0, and ey = 2 cbs2 ¢0 1.‘ Note that a lowest
14 .

order mode of the m=0 class corresponds to.the dominant HEll
mode. Arbitrarily polarized modes may be constructed by mul-
tiplying an X-mode by cos ¢2 and adding it to the corresponding
2-mode multiplied by -sin ¢2 where ¢2 is the angle of polariza-
‘tion. Such a mode will have the same P value as the % or Z
modes separately, except for the case m=0, where we must take
ey = 2[cosz¢osin2¢2 + cos2¢1cosz¢2].

Since m is an integer, it may be readily seen by examining
©(20) that A must vanish by‘reason of the angular dependences of
~ the various field components. Thus we may immediately go about

calculating the attenuation. We shall need the spectrum func-

tion for Km(kokof)exp(i_im¢) in order to calculate E and H#.

We may start from an integral representation for Km [30]:

© -k A ¥ cosh t-mt
N 0”0 at
Km(k0 0r) 21; e
Letting t = ¥-i$, %=r cos %, z=-% sin %

' ©4id -k (x cosh ¥+i 2 sinh ¥) - mY + im@
K kgt = e 00 , a¥
—o+id

Further changing variables to n,s = A_ sinh ¥, so that X2= A

0 0 0

cosh ¥ and n,.ds = As d¥, gives

0
wel®  _x A %-iksf - m arcsinh(n_s/A )+im¢ n,ds
. A ~ =1 0 s 0 0 )
K (k. A r) =3 e (=

We choose the branch cuts in the s-plane from the branch points
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at Ag = 0 to go along the positive and negative imaginary axes
as shown in Fig. F.l. The present integration path may be de-
formed back to the real axis because we are interested only in
angles |$| < w/2. Thus
A ~ ~
oo =k A x—-iksz+imp n A m
K (kpod) =[ e 08 (2 ) (—2 ) ds .

iy ZKS nosfks

Thus the appropriate spectrum function for

oy +im$
Km(koxor)e
is
—.m N
n0 HOS+K koxsx
3N ( X ) e
S 0

which allows us to construct E(s) and H(s) for the arbitrarily

polarized mode described in the previous paragraph :

n n.s+x_ M -i¢. A, m i
it . 0 0 s 0 0 0
E(s) = Asin¢,0 (v,) =+ [(—w—) e + (=) e ]
2"m" "0 4xs AO , nos+)\S

v n n,s+x_ M =i¢ A m i¢
~ 0 0 0 s 1 0 1
H(s) = - — Acos ¢,Q _(v,) 7=+ [(——) e + (=) e 7]

Zo 2m 7’0 4AS Ao nos+)\S

As a result, from (25) and since no correction from (30) need

be made,
a2 Moyt 2,y 2.2 2 2 2 2
c = (—= V) ——5— . _
wuo kR m' 0 2HOX§ [nosln $,co8" ¢ytv cosTd,cos ¢1]exp( 210)

(F.2)

where as always, o - %kong/vg .
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n S-PLANE

INTEGRATION
PATH

Fig. F.1

Integration path in s-plane for Km(kokoﬁ) .
Branch points occur at s = iiko/no . '
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For the case m = 0, since n, & vo, we have that the
attenuation is essentially independent of polarization and

mode orientation, and is given by (making use of the eigenvalue

equation)
’ 2 2
. =21 (n - v.)n
ic . ﬂ 0 1 0’0
- === ~jk (_.._.) e ) f((b r¢ ld) )
) 0 ‘k.R 2 2,2 2.,2 .2 0'"1'72
0 4v0k0a (nl no)}\0 Kl(kokoa)
(F.3)
where
Ag cosz¢2 coschl
Elgrogrdy) =1+ 5 — > 3 7 =1
ng sin ¢2cos ¢0+cos ¢zcos ¢l

since )\O/n0 <<l This is half of Lewin's result for the HEll

mode [10]. For the mode very far from cutoff, k.iA.a >>1 and

0”0
Ka = pO,l , the first zero of JO. In this case we have
1 -271.+2k.\.a p2 n
-1 & . iy ( 1 )2 e 0 070 0,1 0
0 2 70 ﬂkOR n k3a3k 3
170 0

This result differs from that of Arnaud [13] in two significant
ways: (a) the additional ZkOAOa term in the exponent and (b) the
presence of R instead of R + a/kg under the square root sign.
From m # 0, a similar procedure gives
2 2 :
1. -
2 =21y (ny=vging g(d4r0y.0,)

- ik, (+=) e
0 k0R 2V

Ty

k2a? (n2-n2) A2 |K_ . (k. A.a)K__ - (k.A.a) |
0%02 (M1™0g) Ag 1Kpy (RoAp@) Ky (Rgdg

(F.4)



where

6 . 0.,6.) = sinZp cos’¢ . + .
EALNEAS RAS) 2 0"

oN

2 2
cos ¢2 cos ¢l

o N

(F.5)

Except for the polarization/orientation'function g, this
result coincides‘with Lewin's [10] for the HEmn modes. This
result seems to indicate that, unlike the m = 0 modes, these
modes have both polarization and orientation dependent losses.

However [31], we may recover the approximate EHm_l n
14

(respectively HE

l,n) modes by setting ¢l = ¢0 + m/2 or
¢l = ¢O + 3m/2 and ¢, = m/4 or 5n/4 (respectively

b, = 3n/4, 7m1/4); so that for these cases

2
A
1 0 . 2 1
g(¢ol¢ll¢2) = "2"[1 + —— sin ¢0] ~ 5
' n
0

and again this result is half that obtained by Lewin‘[lO].‘
The TE and ™, modes are included as a special case of the
EHm—l,n modes for m.= 1. Note that all exact modes of the
fiber have loss which is essentially independent of the polar-

ization and orientation, but that approximate composite m > 1

modes can be constructed using (F.5) to minimize the radiation

(e.g., ¢0 = ¢l = n/2).
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