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Abstract

In this paper we reexamine the knowledge in the Rumelhart and McClelland (1986) connectionist model
of the acquisition of the English past tense. We show that their original connection matrix is
approximately equivalent to one that can be explicitly decomposed into what we call soft rule matrices.
Each soft rule matrix encodes the knowledge of how to handle the verbs in one of the verb classes
determined for this task by Bybee & Slobin (1982). This demonstrates one approximate but explicit
sense in which it is reasonable to speak of the weights in connectionist networks encoding higher-level
rules or schemas that operate in parallel. Our results also suggest that it may be feasible to understand the
knowledge in connectionist networks at a level intermediate between the microscopic level of individual
connections and the monolithic level of the entire connection matrix.

Copyright © 1988 by Clayton McMillan & Paul Smolensky.
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With the rise to prominence of the connectionist or parallel distributed processing approach to
cognitive modeling, the issue of the relation of such models to rule-based descriptions has been a
consistent source of debate. It is our purpose in this paper to show that rather than regarding these
approaches as completely mutually exclusive, there is insight to be gained in viewing standard
connectionist models from a rule-based perspective. Our strategy is to show how a classic PDP model
can be decomposed and viewed as a kind of rule-based model. We start with a summary of the PDP
model we studied: Rumelhart and McClelland’s (1986) model of acquisition of the past tense in English.
This model is a natural choice, partly because it — and Rumelhart and McClelland’s claims about its
implications for the relation between connectionist models and rule-based accounts — has recently been
the center of considerable controversy (Lachter & Bever, 1988; Pinker & Prince, 1988).

The past tense model

The past tense model simulates how children acquire the past tense of English verbs. It was designed
to test the power of the PDP approach in what has long been considered the domain of rule-based models,
natural language description and acquisition. Upon repeated presentation of verb stems and their
corresponding past tense forms, the model leamns a set of weights capable of producing the past tense of
all 460 verbs in the corpus, plus many others not in the corpus. We are primarily concemed with the
model after leaming has been completed by presenting a corpus of verbs over 200 training cycles, and
this final set of weights has been achieved.

The model is a bipartite graph. A phonetically spelled representation of the input — the stem of an
English verb — is translated into a subset of 460 Wickelfeatures. These 460 Wickelfeatures are position-
independent, context-dependent phonetic features and represent a fine-grained but somewhat restricted
representation of phonemes present in the English language. For example, [Back Vowel Front] is a
Wickelfeature present in any phonetic string that, somewhere, contains a vowel preceded by a back
phoneme and followed by a front phoneme. This Wickelfeature is present in /kKAm/ (came); there are 15
other Wickelfeatures present in this context-dependent representation of the vowel. Each Wickelfeature
corresponds to one of 460 input units in the model. The input pattern is presented to the model by
activating each of the input units corresponding to Wickelfeatures present in the input stem. Activation
then passes once across the connections to a set of 460 output units, each of which also represents a
Wickelfeature. As a result, units in the output become either on or off, depending upon the values of the
weights on the connections, according to a certain stochastic rule. These output units indicate the
Wickelfeatures present in the past tense form of the input verb.

Interpreting the output of the model is a bit complex. The degree to which the model prefers a given
target output string over other possible strings is quantified in several ways. The most complex measure
is response strength, which is computed by a rather complex network for decoding the output
Wickelfeatures into output phoneme strings. A simpler measure Rumelhart and McClelland used is

1 = [fraction of target 1s not matched + fraction of target Os not matched ]

We will simply call this the feature match between the target and output. This can be defined for a single
verb, or for a set of verbs; in the latter case, the two fractions appearing in the formula are each computed
once over the whole set of verbs.



McMillan & Smolensky

In general, if the correct response has a feature match in the range .50-.60, the decoding network
tends to produce a response strength for the correct response that is greater than that of any other
responses, but its superiority is often weak. With feature matches higher of about .65, the superiority in
response strength starts to become pronounced.

The behavior of the model is regulated by the weights on the connections. The weights may be
viewed as a matrix, where the weight on the connection between input unit i and output unit j occupics
location (j, i) of the matrix: wj;. We will refer to this matrix as Wy, because it is generated by
training the model on an entire corpus of verbs simultaneously.

If this were a rule-based system the behavior would be regulated by rules that transform the verb
stems into the past tense. After training, rules are implicitly present, although inaccessible, in Wg;,,. Itis
this set of inaccessible rules that we wish to extract from Wy;,,. Our strategy is to decompose Wy;,, into
several weight matrices, each of which may be considered to correspond to a rule.

Goal of this research

Rule-based views of the formation of the English past tense have been developed by Bybee and
Slobin (1982) and Hoard and Sloat (1973). Although these views are quite different, they share a
common ground: Each verb is marked as belonging to a certain verb class. For each verb class there
exists one or more rules that transform those verbs into the correct past tense form. The combination of
these rules and markings represent a rule-based description of this cognitive task.

Our goal is to decompose Wy, into separate matrices, one for each class of verbs. We use the verb
classification of Bybee and Slobin for our decomposition. They have identified eight irregular and three
regular classes of verbs, each identified by shared morphological and phonological characteristics. We
will therefore decompose W;,, into 11 separate matrices.

In order to view the weight matrices derived from W;,, as rules, each matrix must generate the
-correct past tense for verbs in its class. Each such matrix will be called a soft rule matrix. In order that
these define something like a rule system, there must be a means of combining these 11 soft rule matrices
into a single composite matrix, W,,,,. We seek a W, that performs the task at a level comparable to
that of Wy, .

Decomposing the weight matrix

We have taken a very simple approach to decomposing Wy;,,. Wq;,, is generated by training the
model on all verbs in all classes simultaneously. In a sense, it is a soft rule matrix that generates the past
tense of all verbs in the corpus. Taking this same approach, we have chosen to generate soft rule matrices
for each of the 11 classes of verbs by training the model separately on each class of verbs. The result of
this approach is 11 soft rule matrices, one for each class.

The exclusive case

In the simplest technique, the training for a given verb class involves exclusively the verbs in that
class; this training regime will therefore be called the exclusive case.

The behavior of the soft rule matrices in the exclusive case may be illustrated as follows. Bybee and
Slobin’s verb class 1 is the set of verbs that don’t change in the past tense, such as beat or cut. Given any
verb in class 1, Wy will generate the correct past tense for that verb. For a verb not in class 1, the
behavior of the model is unspecified and unpredictable. Generally, the output for a verb outside class 1
will be a pattern containing features common to verbs in class 1. The same behavior is exhibited by Wy,
for all classes o = 1, ..., 11 in the exclusive case.

In this sense these soft rule matrices differ from traditional rules. With a traditional rule one would
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expect a conditional clause to determine whether or not the rule should fire. If the rule fires, it will
perform a deterministic transformation upon the state of the system. Either the transformation will be
performed because the condition is met, or the state of the system will not change. By contrast, the soft
rule matrices W, have no conditional element: they will always "fire" when presented with input. The
output is only predictable when the soft rule matrix is applied to input that it is designed to accept.

The null case

It is possible to change the training regime so that the soft rule matrix corresponding to a given verb
class corresponds more nearly to a traditional rule in that it fails to "fire" when presented with input
outside the class — that is, for such input it produces zero output. Because of this null output
specification, we call this training regime the null case. In the null case, the matrix W, is generated by
training the past tense model on verbs in class ot with the verb stems and correct past tense as the target,
just as in the exclusive case. However, in addition, the model is presented with all verbs from the original
training corpus that are not in class o, with null target patterns instead of the correct past tense.

To implement the null training regime we need to modify the delta learning rule used by Rumelhart
and McClelland. In training Wy, the goal for verbs outside class o is that the net input to each output
unit j be zero. Thus, if the input to the network represents a verb outside class o, let net; be the net input
to unit j: net; = Y,;wj;a; (Here @; is the activity of input unit i.) Let 6; be 1 if net; <0, -1 if
netj > 0, and 0 if net; = 0. Then we change the weight accordmg to the usual delta rule: Awﬂ =dja;
This will drive the welghts towards the desired target of net; = 0.! (Here, as throughout, the thresholds
on the output units are replaced by weights to a hypothetical input unit that is always on; these weights
are modified exactly like all other weights.)

Combining soft rule matrices into a single system

We have adopted two methods for combining the 11 soft rule matrices into a single composite matrix
Weom: linear regression and straight summation. In both methods we are assuming that there exists a
linear relationship between the separate soft rule matrices and W, .

Linear regression

The idea behind the linear regression technique is to search for some set of weighting coefficients for
the 11 soft rule matrices such that the weighted sum of these matrices will generate a single matrix that is
close to Wy;,, and therefore can be expected to behave in a similar fashion. In effect we wish to
minimize an error which is the mathematical difference between W, and Wy, .

In this analysis, Wy;, is viewed as the dependent variable and the 11 soft rule matrices as
independent variables. The result of the analysis is a set of 11 coefficients ¢; each coefficient is
multiplied by the corresponding soft rule matrix Wy, and the results are summed together to produce
Weom: Weom = c1Wi1+ -+ +¢13Wiy. The error we minimized is the usual sum-squared measure of
the difference between W, and W, :

2
error = ﬁ’ [S:O[ws‘m—wco’”]
=

where the w,j"” are the weights in W, and w5 are the weights in We,,,. Minimizing this with
respect to the coefficients (cq, ¢, -, €11) = ¢ that determine W, leads to: ¢ = X1 x, where X
and x are respectively the 11 X 11 matrix and the 11-dimensional vector defined by:

Xap = Xww,p Yo = EXwfowjl
tJ

Here the w{* are the weights in W,



McMillan & Smolensky

Straight summation

The straight summation technique is much simpler than the linear regression technique: W, is
simply the unweighted sum of all 11 soft rule matrices W,. The straight summation of the soft rule
matrices is a special case of of the linear combination considered in the previous section: the case in
which all coefficients ¢ o have value 1.

In the null case, there is a theoretical basis for expecting that straight summation will produce a
Wom that does a reasonable job of combining the capabilities of the individual rules. Imagine an input
verb from class [3 being processed by this W,,,. The net input to each output unit j is precisely the sum
of the net inputs contributed by each separate Wy: net; = ¥'d1inet*. Now for each o=, by the
definition of the null case, net/* = 0. Thus, net; = neth: the net input to each output unit from W, is
the same as the net input from WB alone; thus, the output of the network under W, is the same as
under Wg. But, again by the definition of the null case, the output from the soft rule matrix Wy for a
verb in class 3 is the correct past tense for that verb.

So, provided it actually is possible to use the null training regime to develop soft rule matrices that
satisfy the null specifications, straight summation is a mathematically sound means of soft rule
combination.

Null soft rule matrices combined with straight summation can be likened to a rule system in which-
each rule carries relatively equal weight and functions independently of other rules, and in which rules
can be thought of as firing in parallel because the order in which they fire is unimportant. Such a rule
system is said to be free (Lewis, 1987). Free rule systems probably provide the best analog to the type of
rule system we are viewing the connectionist network as embodying.

Summary of the resuits

" To test the hypothesis that Wy;,, may be viewed as a set of soft rule matrices that have been
combined to form a matrix W, , we generated the 11 soft rule matrices W, for both the exclusive and
the null cases, and examined both the linear regression and straight summation techniques for combining
them.

To better understand the relationship between the various soft rule matrices we also charted the
development during training of the c¢ ¢ coefficients in the linear regression technique. Each ¢ may be
viewed as indicating the weight of the contribution of W, to the composite matrix W,,,, .

During training of the soft rule matrices we would expect certain soft rule matrices to emerge
dominant over others. In particular, we would expect soft rule matrices representing the larger body of
regular verbs to dominate soft rule matrices representing the smaller body of irregular verbs. This can be
seen in Figure 1. In the first ten training cycles, we trained only on the same ten verbs that Rumelhart and
McClelland used for these cycles (those they identified as the ten most frequent verbs in the Kucera and
Francis (1967) corpus). Of these ten verbs, eight are irregular; in the first ten cycles, the ratio of the
average irregular ¢ to the average regular ¢ is very large. As a large body of regular verbs is
introduced to the model at cycle 11, this ratio virtually flips, quickly stabilizing at .37 in the exclusive
case and 1.01 in the null case.

This reveals three important points: (1) the relative contribution of each soft rule matrix Wy, to W,
is established early in training, (2) in the exclusive case there is a substantial imbalance between irregular
and regular soft rule matrices, and (3) in the null case the ratio is almost 1 to 1. Thus we might expect a
better performance in combining soft rule matrices in the null case than in the exclusive case, because the
various soft rule matrices are more nearly alike.

In order to measure the quality of performance of our "rule system," we tested the model separately

=l =
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Figure 1: Ratio of average coefficients for regular verbs to average for irregular verbs.

on Wi, on W, , and on each of the soft rule matrices W,. Our measure was the feature match (as
defined above) over all the relevant verbs in the training corpus (the entire set for Wg;,, and W, ; the
verbs in class o for W).

We first consider the results in the exclusive case. As shown in Table 1, the average feature match of

the soft rule matrices is .97; this is comparable to the feature match of W;,,, .95. We may conclude that
the soft rule matrices perform on average at the same level as W;,, when presented with words in the

corresponding class.

Table 1: Performance (feature match)

Training  Original matrix ~ Average of soft Composite matrix
technique Wein rule matrices Weom
{Wyldi, Linear regression  Straight summation
Exclusive .95 97 .62 .54
Null .95 98 .52 .87

The quality of the two composite matrices in the exclusive case is indicated by a feature match of .54
and .62 for the linear regression and straight summation respectively. Substantially lower than Wi,
these figures definitely are on the lower bounds of acceptability, as discussed earlier.

Why is the performance of W,,,, rather poor when the linear regression produces a matrix that
minimizes the difference between its weights and the weights in Wy, ? Our explanation is as follows:
There are an infinite number of matrices that perform the correct input/output transformation on the
corpus of verbs across all 11 verb classes. The past tense model employs a method that simply produces
one such matrix, W;,,. Many of the other matrices will have a large difference from Wiim, while
nonetheless performing identically to W, . Thus producing a matrix W, in which there is minimal
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difference between the weights in that matrix and Wy;,, does not guarantee that W,,,, is the best
combination of W, for approximating the performance of Wy;,, on the training corpus.2

It is perhaps less surprising that the straight summation performs poorly in the exclusive case. While
there is a theoretical basis for the soundness of the straight summation combination in the null case, there
is none for the exclusive case.

The results of combining the soft rule matrices in the null case are also summarized in Table 1. Again
we see that the performance of the individual soft rule matrices is comparable to that of Wy;,,. The
performance of W,,, generated through linear regression is .52. The same explanation for the rather
poor performance of W, in the exclusive case applies here in the null case.

As predicted by our earlier analysis, the performance of the W,,,, generated through straight
summation of the soft rule matrices is much better: The feature match is .87 for W, when presented
with the full corpus of verbs. In general, with a feature match of .87, we can expect the model’s decoding
network to consistently generate the correct past tense with very few, and weak, alternatives — if any
alternatives are generated at all.

From this result we may conclude that the soft rule matrices in the null case may, in a sense, be
viewed as free rules that may be applied separately or combined through straight summation into a single
system.

Conclusion

We have shown how a classic PDP model, Rumelhart and McClelland’s past tense model, may be
decomposed into a set of "soft rule matrices." These rules may be applied separately or combined into a
single system. Using the best technique, soft rule matrices trained in the null regime combined using
straight summation, we can view the knowledge in this model’s weight matrix in four approximately
equivalent ways:

(1) Knowledge = W, : The past tense model is a PDP model consisting of no rules.
(2) Knowledge = YWy The past tense model is a PDP model in which the knowledge in the
" weights is a system built (by simple summation) of 11 individual matrices each handling a

different subset of the input space.

(3) Knowledge = {Wg}d1;: The past tense model is a set of 11 separate noninteracting rules.
Each rule is implemented as a PDP network.

(4) Knowledge = We,, = 3 oW The past tense model is a rule system combining 11 rules
into one single system. The rules, and the way they combine, are defined via connectionist
networks. The rules apply independently, in parallel.

In this work we have been exploring the hypothesis that the higher-level perspective provided by rule
systems can help us understand the knowledge contained in a PDP network. Another hypothesis worth
exploring is that PDP-based "soft" rules of the sort we have been considering might help, in simple
domains, to alleviate some of the brittleness that has often plagued systems based on hard rules.

Our explorations clearly constitute the barest beginings. Especially important extensions of our work
are to systems with hidden units and to methods for finding rule-decompositions of the sort we used here
automatically — without the need for a prior (non-connectionist) analysis of the task (provided in our case
by Bybee and Slobin). Nonetheless, we are encouraged that our preliminary foray has helped us
understand the knowledge contained in a rather inscrutable weight matrix of well over 200,000 weights.
We expect further useful results to come from explorations of how conceptual and technical tools of the
PDP and rule-based frameworks can be used to strengthen each other.
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Footnotes

1. In practice, in order to avoid oscillations we set Sj = 0 if net; is within a certain tolerance y of
the target value 0. If yis chosen too small the system will generally fail to converge; on the other hand,
Y = e reduces the null case to the exclusive case. We found that Y = 850 was an acceptable value; this
may seem large, but since there are 460 weights to each output unit, each with an integer weight and
many of these greater than 1, the value of 850 is not large compared to a typical net input to an output
unit.

2. Recall that our measure of difference is purely based on the weights in the matrices, and not in
terms of their responses to the particular inputs in the training or testing sets.
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