A Proposal for an Integrated Testing
System for Computer Programs

Leon J. Osterweil

CU-CS-093-76 August 1976

|]
%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A PROPOSAL FOR AN INTEGRATED TESTING
SYSTEM FOR COMPUTER PROGRAMS
by
Leon J. Osterweil
Department of Computer Science

University of Colorado
Boulder, Colorado 80309

CU-CS-093-76 August, 1976
Revised Ocﬁober, 1976

This work supported by NSF Grant #DCR75-90072

Abstract

The idea of combining three well known program testing techniques--
dynamic testing, symbolic execution and static analysis--into a single
testing system is advanced and explored here. The characteristics of
each of the three techniques are presented and analyzed. Then it is
shown that the strengths andkweaknesses of the techniques are largely
complementary and represent, from a number of points of view, a natural
progression of diagnostic capabilities. A system exploiting this pro-
gression is proposed, and a number of difficulties to be expected in
implementing such a system are discussed. Approaches to resolving
many of these difficulties are also presented.

I. INTRODUCTION

There has been considerable interest lately in methodologies for
the production of high quality computer software. Work in this area
has been carried out by researchers in a wide variety of disciplines
and covers an impressive spectrum of approaches. Some of the more active
current Tines of research include: proof of correctness of programs [1],
[2]; creation of error resistant programming techniques [3], [4], [5];
and design of error resistant programming languages [6], [7].

There has also been considerable activity in the creation of program
testing techniques. The work in this area has been directed primarily
towards two different but related goals -- the detection and examination
of errors present in a program, and the determination that a given pro-
gram has no errors of some particular type. In this paper we shall refer
to the former activity as erron detection and the latter as validation.
Among the diverse activities in the areas of error detection and valida-
tion, we shall focus on three of the major approaches -- namely dynamic
testing, symbolic executibn, and static analysis. In this paper the
different patterns of strengths, weaknesses and applications of these
approaches are shown. It is, moreover, demonstrated that these patterns
are in many ways complementary, offering the hope that they can be co-
ordinated and unified into a single comprehensive program testing system
capable of performing a diverse and useful variety of error detection
and validation functions. This paper also explores some of the problems
involved in integrating the methodologies with one another, indicating
areas where a great deal of valuable and challenging research remains to

be done.

IT. THREE PROGRAM TESTING METHODOLOGIES
In this section, the different characteristics of dynamic testing,
symbolic execution, and static analysis shall be examined.

A. Dynamic Testing

The term dynamic testing, as used here, is intended to describe
most of the systems known as execution monitors, software monitors, and
dynamic debugging systems (see for example [8], [9], [10], [11]). The
term dynamic testing is used because in contemporary usage it has come
to suggest the most important feature of this methodology.

In dynamic testing systems, a comprehensive record of a single execu-
tion of the program is built. This record -- the execution history -- is
usually obtained by instrumenting the source program with code whose pur-
pose is to capture information about the progress of the execution.

Most such systems implant monitoring code after each statement of the
program. This code captures such information as the number of the state-
ment just executed, the names of those variables whose values had been
altered by executing the statement, the new values of these variables,
and the outcome of any tests performed by the statement. The execution
history is saved in a file so that after the execution terminates it

can be perused by the tester. This perusal is usually facilitated by

the production of summary tables and statistics such as statement execu-
tion frequency histograms, and variable evolution trees. ‘

Despite the existence of such tables and statistics, it is often
quite difficult for a human tester to detect the source or even the
presence of errors in the execution. Hence, many dynamic testing systems
also monitor each statement execution, checking for such error conditions
as division by zero and out-of-bounds array references. The monitors
implanted are usually programmed to automatically issue error messages
immediately upon detecting such conditions in order to avoid having the
errors concealed by the bulk of a Targe execution history. Some systems
[9], [10] even allow the tester to create his own monitors, direct their
implantation anywhere within the program, and specify where and how
their messages are to be displayed.

The previous paragraphs should make it clear that dynamic testing
systems have strong error detection capabilities due not simply to their
powerful facilities for recognizing errors during the execution of a
program, but also for tracing these errors to their sources. These
systems are capable of examining only a single execution of a program,
however, and the results obtained are not applicable to any other execu-
tion of the program. Hence, the non-occurrence of errors in a given
execution of a program does not guarantee their absence in the program
itself. It is thus seen that dynamjc testing systems have no inherent
validation capabilities.

It should also be clear from the previous paragraphs, that the
user of a dynamic testing system has access to a wealth of very detailed
information about the program he is examining. It is this very precise

information that is responsible for the power of this approach. It
should be observed, however, that this information is obtained only as
- a resylt of an execution occurring in response to actual program input
data. The generation of this input data is the responsibility of the
tester, and in many cases involves quite a significant amount of
effort and insight into the program. It is important to recall in this
context, moreover, that a-significant amount of human involvement is
required in order to effectively use the capabilities of the system
to detect and explore execution errors. Hence it is seen that the
power to obtain detailed insight comes in part from significant involve-
ment of the human program tester. o

Thus, summarizing, it has been shown that dynamic testing systems
provide strong error detection capabilities, but have no inherent
validation capabilities. Their results are narrowly applicable, being
valid only for a single program execution. These results are quite
extensive and detailed, however, providing sufficient material for
deep insight. These systems allow extensive human interaction, and their
- power is most fully realized when a skilled human tester is using them
interactively. They require as input a complete set of actual program
input data. The success of a dynamic testing run as a vehicle for dis-
covering and exploring errors is largely dependent upon the selection
of revealing and provocative input data. This usually presumes the
involvement of a human tester who is knowledgeable about the program
being tested. '

B. Symbolic Execution

“In symbolic exzoution, symbolic représentations (in the form of
formulas) are kept for the evolving values of variables instead of
numeric quantities. For a given path through the program, the values of
all the variables encountered are maintained as formulas. The only un-
knowns in these formulas are the input values to the program (these may
be arguments, in the case a procedure is being tested, or read-in values);
all other values are functions of constants and these input values and,
therefore, can be removed by substitution. The formulas can be examined
by a human tester to see whether they embody the intent of the program.
If so, then the tester has determined that the program will yield the
desired results for all executions which follow the given program path.

A number of symbolic execution systems have been produced [12], [13],
[14], [15].

Clarke's system [12] is perhaps the most interesting symbolic
execution system in the context of this paper, in that it indicates
better than the others the range of error detection and validation
capabilities possible with the symbolic execution approach. In Clarke's
system, the execution path which is specified as input is used to
dictate the required outcome of all conditional tests along the path.
Hence the path dictates a set of constraints which must be satisfied
in order for execution to proceed along the given path. These con-
straints are in terms of current values of program variables, but
through the use of symbolic execution, they can more profitably be
expressed as relations in terms of the program's input values. The
system of relations obtained in this way is taken to be a set of
simultaneous constraints, and is examined by Clarke's system for con-
sistency. A solution to a consistent set of constraints is a set of
values which, when taken as input to the program, will force execution
of the given path. If the constraints are inconsistent then the path
is unexecutable -~ that is, there exists no data which will effect the
execution of the given path.

Clarke's system also creates additional, temporary constraints for
the purpose of error detection and validation. For example, whenever a
division operation is encountered in the process of symbolically execu-
ting a path, a new, temporary constraint is created, constraining the
divisor to be zero. The current system of constraints, accumulated to
this point, is augmented by this new zero divisor constraint. If this
augmented system of constraints is inconsistent then a division by zero
error is impossible along the given path to this point. Otherwise,
Clarke's system will attempt to solve the system of constraints to pro-
duce program input data which forces the traversal of the given input
path, followed by a zero-divide error at the given point. In a
similar fashion, constraints are created which test for the possibility
of array bounds violations and DO statement loop control variable errors
(e.g. non-positive values for these variables).

From the previous paragraphs, it can be seen that symbolic execu-
tion systems are capable both of error detection and of a Timited type
of validation. Error detection for program computations can be achieved

(@3]

by examining the formulas generated by the system. Computations in-
volving the use of uninitialized variables are, moreover, readily
detected automatically when the system attempts to create a symbolic
value for the result of the computation and discovers that there is no
symbolic value for one of the variables used by the computation.
Examination of the systems of constraints arising from the symbolic
execution yields other powerful error detection capabilities which seem
to have some validation-1ike characteristics. If a system of constraints
leading up to a division is consistent, yet the system augmented by a
zero-divisor constraint is inconsistent, then there is no way that a
division by zero can occur at that division, provided the division is
reached by the given path. Hence, this procedure is capable of demon-
strating the absence of division by zero errors along the path. We
shall refer to this as pathwise validation. Clearly pathwise validation
falls short of complete validation, because an error such as division

by zero may still occur in the prdgram simply by reaching a division
along some path other than the one given as input to the symbolic
execution system.

The previous discussion also shows that the information gathered
about a program by a symbolic execution system is less detailed, but
has more general applicability than the information obtained from a
dynamic testing system. Virtually no information about specific values
of program variables is obtainable from symbolic execution systems.
Instead, what is obtained is information about the relations of possible
values to each other, and about the manner in which the values are
derived. This relation and derivation information is app]icab]e.to
the class of all executions which follow the given input path. It
should be noted that this situation is in marked contrast to the situa-
tion for dynamic testing systems. In dynamic testing highly detailed,
specific information is obtained, which is, nevertheless, very limited
in its applicability.

The human tester plays an important role in exploiting the error
detection capabilities of symbolic execution systems, although this role
seems to be more straightforward than it is in dynamic testing. The
human must examine the formulas produced by the system to determine

whether they represent the desired computations. This examination pro-
cess can be automated to some extent by incorporating an assertion

6

writing cépability into the symbolic execution system as is done in
EFFIGY [14]. Here the tester asserts what the desired formulas are to
be before symbolic executiaen begins (much as he might create monitors
for a dynamic testing system) and has the system verify that the formulas
produced are the expected ones. This capability serves to alter the
nature of human interaction required from post-execution examination to
pre-execution hypothesis. It does not, however, diminish the importance
of the human interaction. The pathwise validation capability, in con-
trast, requires no human interaction. Finally, it must be noted here
that the human tester is called upon to supply a program test path to
the symbolic execution system, just as he is required to supply program
input data to a dynamic analysis system. Moreover, the success of the
symbolic execution run in uncovering errors depends crucially on the
selection of an appropriate path--analogously to the situation for 1
dynamic testing.

In summary, it has been shown that symbolic execution systems pro-
vide strong error detection capabilities and some pathwise validation
capabilities, which fall short of the power of full validation. Symbolic
execution systems provide diagnostic information which is applicable to
classes of executions rather than a single execution. This is achieved
by supplying symbolic .relationships between program values in place of
precise numeric data. These systems require human” intervention and
evaluation in order to carry out error detection, although the pathwise
validation cahabiTities require no human assistance. Symbolié execution
systems perform their analysis along specific paths. Therefore, since
they are expensive systems to run, it is desirable to restrict their
application to carefully se1ect§d paths in a program, paths which are
suspected to contain errors or are otherwise provocative. This (often)
requires the skills of a knowledgeable human tester.

C. Static Analysis

In static analysis systems, the text of a source program is
examined in an attempt to determine whether the program is defec-
tive due to Tocal malformations, improper combinations of program
events, or improper sequences of program events. In order to make
this determination, each statement of the program is represented by
a small, carefully selected set of characteristics. The static
analysis system can then examine each characteristic set on a’
- statement-by-statement basis for maTformations, and various

combinations and sequences of statements on a characteristic-by-
characteristic basis for faulty program structure or coordination. No
attempt is made at replicating the entire behavior or functioning of
the program. Rather, static analysis attempts to examine the behavior
of the entire program only with respect to certain selected features.
The syntax checking of individual statements of a program pro-
vides a good example of static analysis. Here each statement is repre-
sented only by its source text, or the derived token string. This re-
presentation is far from a complete characterization of the statement
(its semantics are totally unrepresented, for example), but it is suf-
ficient for the determination of the statement's syntactic correctness.
More interesting and valuable error detection is obtained by examining
the characteristics of combinations of statements. For example, illegal
combinations of types can be detected by examining declaration state-
ments and then examining the executable statements which refer to the
variables named in the declarations. Similarly mismatches between
argument lists and parameter lists associated with the invocation of
procedures or subroutines can also be made by static analysis systems.
In such cases, the invocation and procedure definition statements are
both represented by such information as the number of arguments or para-
meters, the type of each, any dimensionality information associated with
1

each, and input/output characterizations for each. The static ana ysis
consists of comparing the characteristics of the corresponding arguments
and parameters. Mismatched Tengths, types and functional usages can be
detected in this way. Some of the types of static analysis discussed
above are available with most compilers. Other types, such as argument/
parameter 1ist agreement are far less common in compilers, but are

found 1in such stand-alone static analysis systems as FACES [16] and

RXVP [17].

The use of static analysis techniques to examine sequences of pro-
gram events enables the detection of still other types of program errors.
In DAVE [18] each statement of a program is represented by two lists --
a Tist of all variables used to supply values as inputs to the computa-
tion, and a 1ist of all variables used to carry away values produced as
output by the computation. The static analysis then examines sequences
of statement executions which are possible given a program's control
flow structure, and determines such things as whether it is possible to

reference an uninitialized or otherwise undefined variable, and whether
it is possible to compute a value for a variable and then never refer
to the computed value. In such cases, the static analyzer determines
and outputs the statement sequence for which the anomalous pattern of
references and definitions occurs. Similarly it would be possible to
scan programs for other improper sequences of events such as openings,
writings, and closings of files; and enablings and disablings of inter-
rupts. Paths along which these sequences could occur would then also
be determined. It should be emphasized here that the most recent
static analysis systems which examine event sequences for improprieties
employ search techniques which enable the examination of all sequences
of statement executions which are possible, given the flow of control
structure of the program. These search techniques, first studied in
connection with program optimization (see for example [19], [20], [21],
and [22]) are also quite efficient. Unfortunately, the most efficient
of them will merely detect the existence of such improper sequences.
Somewhat less efficient algorithms are needed in order to determine

the actual sequences.

It can be seen from the preceeding paragraphs that static analysis
systems offer a Timited amount of error detection, but are capable of
performing certain validation functions. This is done by discarding a
great deal of detailed information about the program, retaining only
complete information about some specific . aspect of the program. The
static analyzer then determines the possible effects of executing all
program paths considering only those aspects of the execution for which
information has been gathered. Hence static analysis only examines a
few narrow aspects of a program's execution, but the results of this
analysis are comprehensive and broadly applicable to all possible execu-
tions of the program. Here, as in the case of symbolic -execution, it
is seen that the validation capabilities are obtained without the need
for human interaction. A human tester is required, however, in order
to interpret the results of the analysis and pinpoint errors. In an
important sense it can be seen that static analysis rarely
detects errors at all, but rather detects symptoms of errors, Teaving
the actual error detection to human analysts. Finally, it is important
to observe that static analysis requires no input from a human tester.

As output, it produces either paths along which anomalous program be-
havior is possible, or validation results indicating that no anomaly
bearing paths exist.

ITI. AN INTEGRATED TESTING SYSTEM

In this section it shall be shown that the strengths and weak-
nesses of the three methodologies just discussed are fortuitous1y com-
plementary. It shall be seen that it is reasonable to consider the
construction of a single comprehensi?e system capable of validating a
program (in some significant sense), efficiently detecting the existence
of errors and anomalies, and then employing increasingly powerful tools
for pinpointing and examining these errors and anomalies. This pro-
gressive exploration, moreover, would exploit and encourage increasing
amounts of human interaction.

In the recent past, each of the three testing methodologies
has received considerable attention and investigation. Stand-alone
systems, implementing each methodology have been constructed, and
experience has been gained in using each. Partly as a result of this
experience, there is a growing concensus that no single methodology
adequately meets all program testing needs, but-that each contributes
some valuable capabilities. It thus becomes clear that the three
methodologies should not be viewed as competing approaches, but rather
that each is a contributor to the body of needed testing tools. Atten-
tion then naturally turns to the examination of how the various con-
tributions can be melded into a useful total system.

The strategy for such an Integrated Test1ng System (ITS) should be
‘to~begin with static ana]ys1s of the source program, thereby obta1n1ng
validation results and broad error and anomaly detection capabilities;
proceed to a symbolic execution phase, thereby obtaining more detailed
Tand powerful error and anomaly detection capabilities focused largely
upon program paths already known to contain'interestjng»phenomena; _
and finally cawry‘out dynamic testing of the program in order to obtain
the most precise examination of the nature and sources of errors and
anomalies whose existence has previously been determined.

It is anticipated that an Integrated Testing System (ITS) static
analyzer will begin by examining source programs for a wide variety of

10

error and anomaly conditions. Some of these conditions may not be asso-
ciated with any particular path, but rather with a single node or edge
of the program flow graph. In such cases, path generation capabilities
- such as described in [23] will be used to generate the associated paths.
Most of the more interesting conditions, however, are associated with
specific .paths. Existing systems such as DAVE [18] demonstrate that a
number of such interesting conditions and the paths along which they
occur can be generated. A formal framework for describing this type of
static analysis is presented in [24] and offers hope that other Signi—
ficant families of errors and anomalies and associated paths can be
scanned for in similar ways. .

The ITS symbolic execution system will then accept the paths pro-
duced by the static analyzer and probe the nature of the error or anomaly
more carefully. In the course of symbolically executing a path, the
executability of the path will be determined. If the path is found to
be unexecutable, then the phenomenon occurring along the path can no
Tonger be considered to be of interest, and the path will be removed
from further consideration. Other paths to the phenomenon may have to
be generated and considered. If the path is found to be executable,

- then the results of the symbolic execution should shed additional Tight
on the nature and origin of the phenomenon by exposing the derivations
of all program variables associated with it. In addition, the symbolic
execution will search for such conditions as possible divisions by zero
and array bounds violations, which appear difficult to detect infallibly
by using static analysis techniques. A path generation subsystem (see
for example [25] and [26]) may be used to augment the path set produced
by-the static analyzer in order to bring to bear the expanded error and
anomaly detection power of symbolic execution upon a more comprehensive
set, of progfam paths. For each path symbolically executed and found to
be executable, a set of test data will be generated, which will be suf-
ficient to effect the execution of the input path.

The ITS dynamic testing phase will be available to carry out a
carefully monitored execution of any path desired by the human tester.
It is expected that the information obtained from theAstatic analysis
and symbolic execution will suffice to elucidate many errors and
anomalics sufficiently that dynamic testing will not be required.
to furnish further error exploration capabilities. In these

11

cases, the human tester will make no use of the test input data generated
In other cases, an actual dynam1c test may seem useful. One of the primary
advantages of performing a dynamic test is that the environment in which
the subject program is run is quite close to the actual execution environ-
ment. Thus possible execution errors cannot be hidden by inconsistencies
between the assumptions of the symbolic executor and the actualitites of
the compiler, operating system and hardware which comprise the execut1on
environment. In short, it seems dangerous to consider a testing regimen
to be satisfactory until and unless the subject program has actually been
executed in its destination environment. For this reason, many paths to
which no'errors or anomalies have been associated will be executed'by the
dynamic testing system. These paths will be drawh from the set of paths
generated by the path generation subsystem as input to the symbolic execu-
tion system. The human tester will assume a role of great importance dur-
ing this phase, deciding which input data sets are to be given to the
dynamic testing system, and using the facilities of the system to expediti-
ously determine the source of observed errors or anomalies.

A schematic diagram of the proposed ITS is shown in Figure 1.

It can be seen from the preceeding parageaphs that the ITS strategy
organizes the three methodologies into a progression of capabilities
which 1is natural in a number 6f important ways. The ITS begins with
a broad scanning procedure and progress to deeper and deeper probing
of errors and anomaly phénomena. ITS initially requires no human
interaction or input, and progresses to involve more significant human
interaction as human insight becomes more useful in tracing errors to
their sources. ITS provides the possibility of validation without
human intervention, and then allows error detection based upon the
negative results of the validation scan. The flow of data through ITS
is also ﬁost fortuitous. The first phase static analysis requires no
input. It produces as output, however, paths through the program
which are deemed to be significant in error and anomaly exploration.
The second phase of ITS, symbolic execution, requires a set of paths
as input. This, however, is precisely the nature of the output of the
first phase. Finally, the third phase, dynamic testing, requires
actuzl program input data. It has been observed, however, that symbolic
execution systems can be used to produce data sets which are sufficient

12 -

SIHSISNI ONV S39VSSIW

ATVWONY ANV d0YY3

ONILSIE
JIWYNAQ

SI9YSSIN
ATVWONY ONY d0Yd3

13S Hlvd
ONILINIWONY

vivd
1831

"SLI pesodoad 8yl jo wedbelp orjewsyods y

NOILYY43IN3Y
HLVd 1531

SA9YSSIN
ATVWONY GNY dO¥¥3

SH1vd

NOILNI3Xd INTHY34
g

JITOGWAS ATYWONY

NV d0¥u3

SISATUNY
JI1ViS

;] sunbL4

WY¥H0Yd

ElIN

13

to force the execution of their input paths. Hence the second phase
can be used to provide the input required by the third phase.

There also appears to be a natural progression of costs for the
processing of the three phases of the ITS, although exact cost deter-
minations are difficult to make due to the scarcity of production
static analyzers and symbolic execution systems. Static analysis appears
to be the Teast expensive, most straightforward operation. It involves
a single scan over the program flow graph, using information encoded
as bit vectors and algorithms which execute in order n log n time,
where n is the number of flowgraph vertices. The symbolic execution
phase appears far more costly. It entails performing considerable
symbol manipulation and constraint solving for each of the presumably
many paths generated by both the static analyzer and path generator.
Dynamic testing is Tikewise relatively costly and, perhaps, the most
involved process of the three. It entails performing a number of
closely monitored executions of the program. Each execution may take
as much as several times as long as an unmonitored execution [277 and
will generate a large data base of diagnostic information which may
have to be probed extensively by human interaction.

IV. PROBLEMS AND FUTURE RESEARCH

The foregoing section has presented a rather sanguine view of the
capabilities of an integrated testing system combining the best
features of static analysis, symbolic execution, and dynamic testing.
Although software systems implementing each of these three methodolo-
gies have been produced, the task of constructing a usable ITS is
still far more formidable than simply building software interfaces
between existing systems. Significant research must be completed
before a useful ITS can be built. It is the purpose of this section
to discuss a number of these research areas and in some cases to pro-
- pose avenues of approach to their solution.

The overriding goal of this body of research should be to deter-
mine which validation and error detection capabilities should be per-
formed by which testing methodologies. The capabilites of each
methodology have been indicated briefly in previous sections, and
investigators in each area have shown that these basic capabilites can

14

often be expanded. The focus of this research, however, should be not
on what can be done by each individual methodology, but rather on what
should be done by each in the context of the overall system. In order
to determine this, it seems important not only to continue the explora-
tion of the basic capabilities of each methodology, but also to study
the relationship of these capabilities to the desired overall capabili-
ties of an ITS, and to explore the significant problems involved in
interfacing the methodologies to each other.

Many of the most important and challenging research questions
surround the integration of symbolic execution into an. ITS. The re-
search already done into the strengths and weaknesses of symbolic exe-
cution (e.g. see [28]) should form a basis for some of this work. For
example, it is recognized that problems often arise in attempting to
symboTically execute a program path which references arrays. It is
known, moreover, that in some cases the symbolic execution cannot
safely proceed beyond such references, while there is a range of ather
cases for which the symbolic execution is possible, but at the cost of
analysis of increasing difficulty. It is important to determine how
severely the validity of symbolic execution as a testing tool is re-
stricted by the problems posed by array references. An empirical
study of actual programs would be able to determine a profile indicat-
ing a distribution of expected array reference patterns. This profile
would be helpful in formulating a strategy for producing a set of
heuristic routines for enabling the symbolic execution of most pro-
gram paths containing array references. The empirical study would
indicate which existing heuristics should be incorporated into the
symbolic execution system of a practical ITS, and might also indicate
cases for which new heuristics are needed. In the same vein, it has
been observed [28] that even if the symbolic execution of a particular
program path is completed successfully, the constraints generated may
nevertheless be so complex as to prohibit solution, thereby eliminating
the possibility of generating test data. It is observed that this is
due to a fundamental theoretical impossibility, rather than an engineer-
ing difficulty. Hence, from the point of view of an ITS this implies
that there will be program test paths for which the symbolic execution
system will be unable to generate input to the dynamic testing system.

15

In Clarke's system, test data generation is only attempted in case the
constraints imposed by the path through the program upon the input
values are found to akl be linear. 1In this case 1inear programming
techniques are used to solve the system of constraints. Here too, an
empirical study would be quite useful in determining how often non-
linear constraints can be expected to occur. In any case, it seems
necessary to consider methods for dealing with non-linear constraints.
Heuristic approaches to the solution of systems of non-linear constraints
have been studied (see [29] for example), and should be investigated
further from the point of view of practicality in an ITS. In addition,
recent encouraging results with interactiVe‘theorém provers -[1]

seem to indicate that human intervention is often extremely helpful to
automatic programming systems which manipulate formal mathematical
systems. Hence, some form_of human intervention in the process of
solving non-linear constraints should be considered in designing an

ITS symbolic execution subsystem. v :
Another area that will be studied further is procedure invocation.

Current symbolic execution systems either ignore procedure caTTs or ana-
lyze a procedure path each time the procedure is invoked. Neither method
is satisfactory. The first method does not detect the effect the called
procedure has on the remaining path. The second method is inefficient,
often requiring that a path be analyzed repeatedly. Techniques are
needed therefore to encapsulate a procedure's input and output behavior
so that its consistency with the existihg path may be verified and its
effect on the continuing symbolic execution conveyed. Methods of en-
capsulating a set of paths for each procedure, selecting an appropriate
path whén the procedure is invoked, and incorporating the encapsulated
1nformat1on into the calling procedure must be investigated.

There must also be further investigation of the classes of errors
which are detectable by means of symbolic execution. Clarke's system
is able to detect the possibility (or impossibility) of the occurrence
along a given path through a program, of such errors as division by
zero, and out of bounds values for such variables as subscripts, DO
statement parameters, and computed GO TO indices., It has been shown
that the overall error detection and validation capabilites of the ITS
have been significantly enhanced in this way. It is important to
determine whether there are other classes of errors which can be

16

detected and validated for in this way. In particular, it seems that
the technique employed by Clarke, namely the creation and insertion of
a new constraint embodying the error condition, could be used to
detect any error which could occur as the result of an improper value
for some variable or set of variables. There are undoubtedly other
Tanguage constructs in FORTRAN and in other Tlanguages which require
certain variables to assume restricted sets of values. A carefully
organized, thorough study should be undertaken to determine the nature
of all such errors and the mechanisms by which symbolic execution can
be used to detect them and validate for their absence.

Perhaps more important, however, it seems . that the process of |
comparing programmer-defined assertions to the actual workings of the
program could also be performed as an application of the constraint
generation and solution process during symbolic execution. Assertion
verification has previously been described as a capability of some
dynamic testing systems ([19], [10]) and King's EFFIGY symbolic execu-
tion system [14]. The advantage of attempting assertion verification
during symbolic execution would be that the symbolic execution system
| could carry out pathwise validation for the impossibility of violating
such assertions, while the dynamic tester can on]y perform error detec-
 tion. The idea of applying symbolic execution to assertion verificaz
tionvis not totally new here. In EFFIGY, symbolic execution is used
to simplify expressions and thereby facilitate the theorem proving pro-
cesses needed to verify assertions contributing to proof of the program's
correctness. A similar approach is taken by Deutsch in the PIVOT system
[36], which sometimes attempts to verify assertions along specific in-
dividuai paths. Neither system, however, seems to exploit the possi-
biTity sof using numerical constraint solving techniques to verify asser-
tions. It appears that many significant assertions can be stated as
relations between the values of sets of program variables. Formulas
embodying these assertions could thus be supplied by the user and
could then be compared to formulas generated by the symbolic execution
system as the actual relations between the given program variables.
Determination of the equivalence of the giVen and actual relations
could be attempted both by direct comparison of formulas and through
the solution of equivalence constraints. It is recognized that this
equivalence determination will not be possible in some cases, but it is

17

expected that it will be feasible for significant classes of assertions.
Here too, a study should be made to classify the assertion chécking
capabilities which‘can be readily performed by a symbolic execution
_system to determine how well these capabilities meet anticipated needs.
‘ Another challenging and important research matter is the study of
the extent to which the symboTic execution system can be relied upon

to assist in determining the exact test -paths which shouid be-executed
to obtain the optima] diagnostic value. Static analysis systems can

be used to provide test paths, but the paths which they supply have
significant failings. First, static analyzers currently make no attempt
at detérmining whether the paths which they generate are executable or
not. Symbolic execution systems can often make this‘determination,_but
it would be better if at least some non-executable paths were screened
out by the static anaTyzer. Some advances in this direction have been
made, and will be discussed later. Another approach to this problem
would be to have the static analyzer supply not an entire path, but
rather a specification of a path. This specification would include
sufficient information (e.g. a sequence of nodes and/or edges of the
flow graph) to describe a family of paths along which anomalous or
erroneous behavior would necessari]y take place, but would Teave the
exact specification of the path to the symbolic execution system. The
symbolic execution system, because it has access to information about
the relations between values of program variables, is in a good'position
to construct executable program paths within the constraints imposed by
the static analyzer, even as the symbolic execution proceeds. Clearly
the exact mechanisms for conveying the path constraints must be

studied: as must the procedures to be used by the symbolic execution
system ,in constructihg an actual path.

A second significant failing of the paths supplied by static
analysis systems 1s that they contain no information about how many
times Toops should be iterated. It is easy to see, however, that cer-
tain errors occur only after a certain number of loop iterations.' Con-
sider the sequence of code in Figure 2, for example, Here it is easy

to see that an array subscript bounds.violation will occur only
after the Toop has been iterated more than 100 times. Static analysis

systems may be able to detect the possibility of such subscript errors
in some cases. More will be said about this later. It is cértain,
however, that even should static analysis systems be able to detect

18

SUBROUTINE A (ARRAY, N)
DIMENSION ARRAY(100)

DO 10 I=1, N
10 ARRAY(I)=0

RETURN

END

Figure 2: A subroutine for which an error will occur only
after the loop is iterated more than 100 times.

the possibility of such erfors, they would not have sufficient infofma-
| tion about the values of variables to determine the number of Toop
iterations necessary to force the error. Symbolic execution systems,
seem to contain the necessary information. The exact mechanism
needed fo use that information to synthesize loop counts must be
studied. There is hope, however, that some of the current work in
the area of using symbolic execution to synthesize Toop invariants
(e.g. [30]) will be useful here. In the subroutine shown in Figure 2,
for example, it is easy to synthesize the information that the sub-
script in statement 10 increases by 1 for every iteration of the Toop.
Coupled with the information that the initial subscript value is 1,
this makes it clear that on the 101st iteration of the loop a subscript
error will occur. Hence a constraint, constraining the value of the
Toop termination variable to be 101 or greater, could be created. The
symbolic execution system could then determine that this constraint,
N>101, 1s consistent with the other constraints and that the error
could occur. This appears to be a very valuable type of diagnostic
capability. Hence techniques for synthesizing loop invariants should
be studied and mechanisms for using them to compute Toop counts which
force errors and anomalies should be examined.

There-are also many crucial research questions surrounding the
integration of a static analyzer into the ITS. As already noted, the
static analyzer is expected to supply to the rest of the ITS a set of
program test paths along which anomalous or erroneous situations will
arise. It has also been observed that the test paths produced by
current static analysis systems (e.g. [16], [17], and [18]) are not
satisfactohy'in the context of an ITS. The paths are inadequate because
static analyzers do not currently scan for a rich enough variety of

19

erfor and anomaly conditioné, and because'theée‘systems make no effort
at éuppressi;g unexecutable paths. It is crucially important that -
these problems be attacked, because the static analyzer is the front
end for the ITS, and it would be extremely difficult for subsequent
systems to compensate for its inadequacies in scanning for -phenomena
to be investigated more closely, or in screening out inherently un-
interesting pheonomena. |

There seems to be considerable cause for optimism that the static
analyzer can be used as a scanner for wider classes or errors and
anomalies. There are well known algorithms, currently in use in pro=
gram optimization, which are capable of efficiently scanning all pos-
sible paths through a program flow graph for the existence of paths
having certain specific patterns of tagged nodes. The algorithms
operate only on graphs whose nodes are tagged with only two different
kinds of labels. It appears that these algorithms are applicable to
the detection of a number of anomalies and errors which are charac-
terized as specific sedquences of events along paths through a two-
tagged graph. One exampie of an error of this type is an attempt to
write on, or read from,:a file which has not previously been obened
(such errors are possible in languages such as COBOL). Here the flow
graph of the program would be annotated by two different labels --
open and reference. The sequence which would be scanned for would be
a reference not preceded by an open. Other such examples can Tfkewise
be produced.

It is more interesting, however, to consider the class of errors
and anomalies which are naturally described as sequences of tags along
paths through graphs having more than two types of tags. The DAVE
;ystem‘[18] provides a good model of what can be accomplished. 1In
DAVE, %he nodes of the program flow graph are tagged with three dif-
ferent kinds of labels indicating reference, definition, and undefini-
tion of program variables. In [23] it is shown that this three-tagged
graph can be transformed into a two-tagged graph and analyzed by the
data flow analysis algorithms referred to above. These algorithms are
used to detect patterns of tags along paths in the two—tagged graph
whose analogs in the original three-tagged graph correspond to such
errors as referencing an undefined variable, and to Such anomalies as
defining a variable without subsequently referencing it.

20

Many other worthwhile phenomena can apparently be modelled as
sequences of events along paths in such graphs with higher order tag- -
gings. For example, consider the problem of detecting the possibility
of division by zero. In order to protect a division operation from
the possibility of division by zero, it is advisable to precede the
division with a test of the divisor for equality to zero. Restating
this, a protected division operation is one such that on all paths
Teading to the division, there is a test of the divisor against zero
which precedes the division, and there is np‘intervening redefinition
of any of the variables contained in the expression comprising the
divisor. An unsage division is one not preceded, along some path, by
such an event sequence. Hence we see that it is possible to recog-
nize a protected division by zero by examining the sequences of the
three events -- division by an expression, testing of the expression,
and redefinition of expression variables -- along all pkogram paths.
It seems likely that a data flow analysis algorithm could be used to
detect both unsafe and protected divisions by scanning a two-tagged
graph which had been derived from this three-tagged graph by trans-
formations similar to those used in DAVE.

Hence, unsafe divisions, those which lie on at least one path
for which the division is inadequately protected from the possibility
of a zero divisor, could be detected by a static analyzer. A path to
such a division could likewise be generated and passed to the symbolic
execution system for more definitive study by the constraint solving
process. It is important to acknowledge that some of the division
operations passed to the symbolic execution system in this way may not
‘be unsafe at all. This is quite conceivable if the program tests an
expregsion which is equivalent (but not identical) to the divisor
against zero before performing the divison operation. In such cases,
the symbolic execution system will be able to determine that the division
is protected. Hence it is seen that the use of the symbolic execution
system to test for possible division by zero is still necessary, and
“has not been negated by this procedure within the static analyzer.
Rather, the static analyzer is acting as a filter, relieving the
symbolic execution system from the need to consider certain paths.
Hopefully the static analyzer will act as a fine filter, removing most
of the paths which contain protected divisions. Experience and experi-

21

mentation should demonstrate whether this is so, or whether'stronger
static analysis should be performed in an attempt td improve the path
filtering capability. | 4

Other error and anomaly conditions should likewise be detectable
~ to some extent by static analysis provided that the flow graph can be
annotated with larger numbers of tags. Array subscript bounds viola-
tions should be detectable by a procedure analogous to the one out-
Tined above for detecting unsafe divisions. Another possibility is
the detection of possible change in the data type by which a given
variable is referenced. In FORTRAN, theke‘is little possibility of
referencing a variable with the wrong data type, as most such refer-
ences are readily detected by the compiler. One case in which this
error is possible involves reading in a variable under one type con-
version, and then subsequently referencing the variable under another
data type. Howden [31] notes that this error is the cause of program
failure in some of the sample programs in Kernighan and Plauger [32],
lending weight to the suspicion that this is an error that is worth
checking for in FORTRAN programs. This checking could probably be
done by techniques which are less sophisticated than data flow
analysis, however. The best application of this type of checking would
probably be to some other language such as SNOBOL4 [33]. In this
language, there is a wide variety of data types and, due in part to
the highly interpretive nature of the language, many data type con-
versions are done automatically by the interpreter. Here the detec-
tion of impfoper changes in the data type of a given variable is far
harder for a static analyzer. Such checking could probably be done,

howevef, with data flow analysis algorithms like those just described.
) The preceding paragraphs make it clear that it should be both
impor%ant and fruitful to pursue research into the range and diversity
of error and anomaly conditions whose detection can be effected by
data flow analysis. This will be an important contribution to under-
standing the proper relations and interactions between the static
analysis system and the symbolic execution system in an ITS.

With the realization, moreover, that so much valuable static
analysis can be carried out by adaptations of a few basic data flow
analysis algorithms, comes an appreciation of the pivotal importance
of these algorithms. Hence, the further study of these algorithms must

22

be recognized’as a closely allied research area of importance. 'In
addition, it appears that it would be quite interesting to study '
algorithms for performing data flow analysis directly on graphs for
which the nodes carry more than two types of tags. It seems clear that
algorithms for analyzing such graphs can be produced as adaptations.of
the algorithms for studying two-tagged graphs. It is 1mportant‘to con-
sider, however, whether other algorithms might not be devised which
might be more efficient or better suited to the overall constraints of
an ITS. ‘
As alluded to earlier, another important research area is the

~study of how the static analysis system can recognize unexecutable
paths and suppress their transmission to the symbolic execution system.
It has already been observed that it is theoretically impossible to
always detect whether an arbitrary path through an arbitrary program

is executable or not. Moreover, it has also been observed that
symbolic execution systems have other difficulties in making this
determination. Hence, it appears that here, as in the detection of
conditions such as unsafe division, what is needed is a mechanism
within the static analyzer for filtering out as many unexecutable paths
as possible, rather than attempting a definitive resolution of the
executability question. Here too, there is considerab1e hope of con-
structing such a filter, and the mechanism, fortuitously, appears to be
the same type of data flow analysis algorithms as those used in error
and anomaly detection. It was noted earifer that a path is unexecut-
able by virtue of the fact that the constraints upon its input data
posed by its transfer conditions are unsatisfiable by any input data.
Hence the executability of a path can be studied by examining its
tramsfer conditions. There are some simple cases in which this exam-
ination can be done quite readily. For éxamp]e, suppose a program
contains two IF statements which test predicates which are lexically
identical, and that along all paths from one predicate to the other

the values of all predicate variables are Teft unchanged. Then clearly
the outcome of the second IF test must always be the same as the out=
come of the first IF test for any execution. A pair of transfers
representing opposite outcomes from two such tests is called an im-
possible pair (see [34]). Clearly any program path containing both
transfers of an impossible pair must be unexecutable. Thus knowTedge

23

of the imposstble pairs of a program can be used to filter out un-
executable paths. It appears that’data flow analysis algorithms such
as those proposed above for inclusion in the static analysis system of
an ITS, can also be used to detect impossible pairs within a program.
This would enable the static analyzer to perform some f11ter1ng out

of unexecutable paths.

The mechanism by which data flow analysis can be used to generate
impossible pairs can be demonstrated in the following way. Suppose
that each edge of a program flow graph is annotated.with the pred1cate
which must be satisfied in order to effect the traversal of the edge. |
Further suppose that each node of the flow graph is annotated with the
identities of all variables whose values are reset by computations
performed within the node. Finally suppose that all pairs of incom-
patible predicates have beeniidentified. Clearly the graph has been
annotated with two kinds of tags -- the predicate test tag and the
variable reset tag. The data flow analysis procedure now must recog-
nize sequences of edges and nodes which start with a predicate edge,
and end at an'edge labelled with an incompatible predicate, and which
pass through no nodes which reset the value of predicate variéb1es:
This data flow analysis procedure differs from the others in that it
must examine both nodes and edges. Moreover, the Tabels thémselves
appear to be somewhat more complicated. Nevertheless, the algorithms
for analyzing such graphs appear to be inherently little different
from those needed to perform error and anomaly scans, as described
earlier. It is expected that other concepts, similar to the impossible
pairs concept, will emerge from the study and creation of this family
of algorithms. 1In addition, it seems that these techniques should also
enable the identification of certain edges (such as DO-loop fall
th?ough edgés) as being unexecutable in some cases. It is also ex-
pected that the conditions under which impossible pairs can be identi-
fied might be extended by anhotating the flow graph more completely
with additional program phenomena, and by increasing the sophistica-
tion of the data flow analysis algorithms used. This may become
desirable if experience indicates that the static ana]yzer still pro-+
duces too many unexecutable paths. o

A11 of these approaches should result in the production of suf-
ficient information to inhibit the generation of some unexecutable

24

paths by the static analyzer. ‘There must be édditioné1 attention
devoted: however, to the question of how this information will be.
utilized in inhibiting these paths. It has already been observed that
impossible pairs can be used as filters to reject paths already
generated. This, however, is a less satisfactory approach than utiliz-
ing the same information to somehow avoid the generation of the un-
executable paths as the path generation process is proceeding. Because
the path generation process is necessarily an outgrowth of the data
flow analysis which is performed as part of the error and anoma1y
detection described éar1ier, it is hoped that the error/anomaly scan
might be guided away from unexecutable paths by a simultaneously on-
going data flow scan for impossible paths. This path suppression idea
should be explored. Another possible use of the impossible pairs in<
formation is to supply it to the symbolic execution system along with
an incomplete path specification, as described earlier, and allow the
symbolic execution system to use this information to in some'way

guide the creation of complete executable paths from the incomplete
specifications. This approach would almost certainly necessitate the
use of heuristics, because it has already been demonstrated that just
the generation of any path constrained to obey impossible pairs can be
expected to be a lengthy process (this has actually been shown to be

an NP-Complete problem [35]).

A1l of the above questions are actually differing facets of the
more overriding question of how much effort should be devoted by the
static analyzer to the suppression of unexecutable paths, and how much
should remain within the symbolic execution system. No matter what
decision is reached, however, it must be expected that the static |
analyzer will sometimes pass to the symbolic execution system paths
which are subsequently found to be unexecutable. This poses an import-
ant problem, which must also be considered carefully. Because the path
was generated by the static analyzer, it must be assumed that its exe-
cution would have caused an error or anomaly. In finding that the path
is unexecutable, however, it is not proven that the error or anomaly
cannot occur, it is only proven that the error or anomaly cannot occur
along the given path. Hence there remains the question of whether an
executable path might not be constructible for which the same error
or anomaly would occur. It appears that the search for such a new,

25

executable path might be guided to some extent by the information
ga%hered by the symbolic execution system in the process of detecting
the unexecutability of the original path. The unexecutability finding
arises from the discovery that a set of constraints are inconsistent.
More specifically, it must be expected that there is a relatively small
subset of the constraints (probably only two) which is inconsistent.
Hence some information about the source of the unexecutability can be
made available and used to guide subsequent path generation efforts.
The exact mechanism for profitably utilizing this information should
be the object of further research, and, depending upon the outcome,
the generation of subsequent paths might be carried out within the
symbolic execution system itself, or within the static analyzer.

Finally, there are a number of problems which should be addressed
in integrating the dynamic testing system into an ITS. First and most
obviously, the test data produced by the symbolic execution system
must be formatted in such a way that it can be correctly read as input
by the instrumented program in order to carry out the dynamic test.
There should also be a communications protocol between the two systems
so that duplication of testing is avoided. For example, user supplied
assertions which have been verified during symbolic execution should
not be retested dynamically, while those which could not be verified
by symbolic execution (due, presumably, to intractible array refer-
ences and/or systems of constraints), should be tested dynamically.
Another research area which should be pursued is the investigation of
data base accessing systems as tools for building and examining the
execution history generated by dynamic testing. Much of the cost of
berforming dynamic testing might be avoided if the evolving technology
for handling large data bases were applied directly to the management
of the execution histofy.

V. CONCLUSIONS

There are numerous-obstacles t0 the creation-of-a practically use-
ful ITS. A number of the most pressing of these obstacles have been
presented here. There appears to be good reason, however, to expect
that the solutions to many of them are within reach today. Clearly
a great deal of research is indicated. The primary goal of this
research should, at Teast for the near term, be the determination of

26

which testing functions should be performéd by which testing subsystems,
and how these subsystems can be merged into an optimally comprehensive
yet efficient system.

The outlines of some of the longer range outcomes of this line
of research can be observed already. It appears, for example, that this
research will show that many of the testing operations currently per-
formed by dynamic testing systems can be performed more effectively by
static analysis and symbolic execution, lessening the reliance of test-
ing upon chance and human interaction. It also appears that this
research will show that the activities of program tesfing and program
proving are more closely related than previously generally thought.
Some of the static analysis techniques proposed here can reasonably
be thought of as techniques for producing proofs of the correctness
of certain restricted aspects of a given program. Moreover, certain
proposed applications of symbolic execution are tantamount to assertion
verification over a limited range. It is expected that this research
may provide some insight into some ways in which testing and proving
activities can be utilized as complementary activities. The proposed
research should confirm these and other important conjectures.

VI. ACKNOWLEDGMENTS

The author would 1ike to thank Lloyd D. Fosdick for the many valu=
able and stimulating conversations which helped shape the ideas presented
here, as well as for his perceptive comments on early versions of this
paper. The ideas presented here were also shaped by stimulating conver-
sations with Lori Clarke, Bill Howden, Jim King, Dick Fairley, Leon Stucki,
Bob Hoffman, and many others. Finally, the support of the National Science
Foundation in funding this work is most gratefully acknowledged.

VII. REFERENCES

[1] D. I. Good, R. L. London, and W. W. Bledsoe, "An Interactive Pro-
gram Verification System", IEEE Transactions on Software Engineer-
ing, SE-1 pp. 59-67 (March 1975).

[2] B. Elspas, K. N. Levitt, R. J. Waldinger, and A. Waksman, "An
Assessment of Techniques for Proving Program Correctness", ACM
Computing Surveys 4 pp. 97-147 (June 1972).

[3] E. W. Dijkstra, "Notes on Structured Programming", in Structured
Programming by 0.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare,
Academic Press, London and New York, 1972.

26

which testing functions should be performéd by which testing subéystemé,
and how these subsystems can be merged into an optimally comprehensive
yet efficient system.

The outlines of some of the longer range outcomes of this line
of research can be observed already. It appears, for example, that this
research will show that many of the testing operations currently per-
formed by dynamic testing systems can be performed more effectively by
static analysis and symbolic execution, lessening the reliance of test-
ing upon chance and human interaction. It also appears that this
research will show that the activities of program testing and program
proving are more closely related than previously generally thought.
‘Some of the static analysis techniqués proposed here can reasonably
be thought of as techniques for producing proofs of the correctness
of certain restricted aspects of a given program. Moreover, certain
proposed applications of symbolic execution are tantamount to assertion
verification over a limited range. It is expected that this research
may provide some insight into some ways in which testing and proving
activities can be utilized as complementary activities. The proposed
research should confirm these and other important conjectures.

VI. ACKNOWLEDGMENTS

The author would 1ike to thank Lloyd D. Fosdick for the many valu=
able and stimulating conversations which helped shape the ideas presented
here, as well as for his perceptive comments on early versions of this
baper. The ideas presentéd here were also shaped by stimulating conver-
sations with Lori Clarke, Bill Howden, Jim King, Dick Fairley, Leon Stucki,
.Bob Hoffman, and many others. Finally, the support of the National Science
qundation in funding this work is most gratefully acknowledged.

VII. REFERENCES

(1] D. I. Good, R. L. London, and W. W. Bledsoe, "An Interactive Pro-
gram Verification System", IEEE Transactions on Software Engineer-
ing, SE-1 pp. 59-67 (March 1975).

[2] B. Elspas, K. N. Levitt, R. J. Waldinger, and A. Waksman, "An
Assessment of Techniques for Proving Program Correctness", ACM
Computing Surveys 4 pp. 97-147 (June 1972).

[3] E. W. Dijkstra, "Notes on Structured Programming", in Structured
Programming by 0.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare,
Academic Press, London and New York, 1972.

4]
[5]
[6]

L7]

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
([16]
[17]
[18]

[19]
[20]

[21]

27
N. Wirth, "Program Development by Stepwise Refinement" CACM 14

pp. 221-227 (April 1971). |

D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems
Into Modules" CACM 15 pp. 1053-1058. (December 1972).

N. Wirth, "An Assessment of the Programming Language PASCAL"

IEEE Transactions on Software Engineering SE-1 pp. 192-198
(June 1975). ; :

J. D. Gannon and J. J. Horning "Language Design for Program
Reliability", IEEE Transactions on Software Engineering SE-1
pp. 179-191 (June 1975).

R. M. Balzer, "EXDAMS: Extendable Debugging and Monitoring System",
AFIPS 1969 SJCC 34 AFIPS Press, Montvale, New Jersey pp. 567-580.

R. E. Fairley, "An Experimental Program Testing Faci1ity”, Pro-
ceedings of the First National Conference on Software Engineer-
ing, IEEE Cat. # 75CH0992-8C, pp. 47-52.

L. G. Stucki and G. L. Foshee, "New Assertion Concepts for Self
Metric Software Validation", Proceedings 1975 International
Conference on Reliable Software, IEEE Cat. #75CH0940-7CSR,

pp. 59-71.

R. Grishman, "The Debugging System AIDS", AFIPS 1970 SJCC 36
AFIPS Press, Montvale, N. J. pp. 59-64.

L. Clarke, "A System to Generate Test Data and Symbolically
Execute Programs", IEEE Transactions on Software Engineering
SE-2, pp. 215-222 (Sept.1976).

W. E. Howden, "Experiments With A Symbolic Evaluation System",
AFIPS 1976 NCC 45 AFIPS Press, Montvale, N. J. pp. 899-908.

J. C. King, "Symbolic Execution and Program Testing", CACM 19
pp. 385-394 (July 1976).

R. S. Boyer, B. Elspas, and K. N. Levitt, "SELECT-~A Formal
System for Testing and Debugging Programs by Symbolic Execu-
tion", Proceedings 1975 International Conference on Reliable
Software, IEEE Cat. # 75CH0940-7CSR, pp. 234-245.

C. V. Ramamoorthy and S-B."F. Ho "Testing Large Software With
Automated Software Evaluation Systems", IEEE Transactions on
Software Engineering SE-1 pp. 46-58 (March 1975).

E. F. Miller, Jr., "RXVP, Fortran Automated Verification System",
Program Validation Project, General Research Corporation, Santa
Barbara, California (October 1974).

L. J. Osterweil and L. D. Fosdick, "DAVE--A Validation, Error
Detection, and Documentation System for Fortran Programs”,
Software Practice and Experience (to appear)

F. E. Allen and J. Cocke, "A Program Data Flow Analysis Procedure",
CACM 19 pp. 137-147 (March 1976).

K. W. Kennedy, "Node Listings Applied to Data Flow Analysis",
Proceedings of 2nd ACM Symposium on Principles of Programming
Languages, Palo Alto, California pp. 10-21 (January 1975).

M. S. Hecht and J. D. Ullman, "A Simple Algorithm for Global
Data Flow Analysis Problems", SIAM J. Computing 4 pp 519-532
(December 1975).

[22]
[23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]
-+ [33]
[34]
[35]

[36]

28

J. D. Ullman, "Fast Algorithms for the Elimination of Common
Subexpressions", Acta Informatica 2 pp. 191-213 (December 1973).

L. J. Osterweil, "Depth First Search Techniques and Efficient
Methods for Creating Test Paths", University of Colorado Depart-
ment of Computer Science Technical Report # CU-CS-077-75

(August 1975).

L. D. Fosdick and L. J. Osterweil, "Data Flow Analysis in Soft-
ware Reliability", ACM Computing Surveys (to appear).

J. C. Huang, "An Approach to Program Testing", ACM Computing
Surveys 7 pp. 113-128 (September 1975).

R. H. Hoffman, "NASA/Johnson Space Center Approach to Automated
Test Data Generation", Proceedings of the Computer Science and
Statistics Eight Annual Symposium on the Interface, Los Angeles,
California, pp. 336-341 (February 1975).

R. E. Fairley, "Dynamic Testing of Simulation Software", Pro-
ceedings of 1976 Summer Computer Simulation Conference,
Washington, D. C. pp. 708-710.

L. Clarke, "Test Data Generation and Symbolic Execution of Pro-
grams as an Aid to Program Validation", University of Colorado
Department of Computer Science Ph.D. Thesis (August 1976).

B. Elspas, M. W. Green, A. J. Korsak and P. J. Wong, "Solving
Nonlinear Inequalities Associated with Computer Program Paths',
Stanford Research Institute, Menlo Park, California; Preliminary
Draft (October 1974).

T. Cheatham, Talk presented to Department of Defense Invita-
tional Conference on Software Verification and Validation,
Syracuse, N. Y., August 1976.

W. E. Howden, "Symbolic Testing and the DISSECT Symbolic Evalua-
tion System", University of California, San Diego, Applied Physics
and Information Science Department, Computer Science Technical
Report #11, (May 1976).

B. W. Kernighan and P. J. Plauger, The Elements of Programming
Style, McGraw Hill, New York 1974.

R. E. Griswold, J. F. Poage and I. P. Polonsky, The SNOBOL4
Programming Language, Prentice-Hall, Englewood Cliffs, N. J.
Second Edition 1971.

K. A. Krause, R. W. Smith and M. A. Goodwin, "Optimal Software
Test Planning Through Automated MNetwork Analysis", 1973 IEEE
Symposium on Computer Software Reliability, IEEE Cat. #
73C40741-9CSR New York, pp. 18-22 (June 1973).

4, N. Gabow, S. N. Maheshwari, and L. J. Osterweil, "On Two
Problems in the Generation of Program Test Paths" IEEE Trans-
actions on Software Engineering SE-2,.pp. 227-231 (Sept.1976).

L. P. Deutsch, An Interactive Program Verifier, Ph.D.thesis,
University of California, Berkeley (1973). Reprinted as
technical report CSL-73-1, Xerox, Palo Alto Research Center,
Pal Alto, CA (1976).

29

DISCUSSION OF SPECIFIC TASKS TO BE PERFORMED

The goal of this research will be to determine which testing capa-
bilities should be incorporated into an ITS, and how these different
capabilities can be optimally implemented and distributed among the
three major testing subsystems. Much of the proposed work will be con-
ceptual, focusing on the adaptation of existing algorithms to meet vari-
out testing needs, and the creation of new algorithms. Another import-
ant aspect of the work will be experimental. As noted in the previous
text, many of the primary goals of testing systems (such as the deter-
mination of the executability of an arbitrary path through an arbitrary
program) are provably impossible, hence alternatives are proposed.
Therefore an important aspect of this work will be to study the adequacy
of various proposed heuristic approaches to demonstrably unsolvable
problems. In particular, it is proposed that a prototype ITS be con-
structed, and that the ITS be designed for maximum flexibility through
extensive modularity. In this way, different heuristic solutions can
be implemented, experimented with, and evaluated. The following list

enumerates various specific aspects of this overall project.

1. STUDY ERROR AND ANOMALY PHENOMENA WHICH CAN BE DETECTED BY DATA :
FLOW ANALYSIS

This task entails a search for those phenomena which can be de-.
tected by data flow analysis and which are either symptomatic of errors
or constitute outright errors themselves. In the DAVE system, we have
shown that data flow ana]ysis techniques can be used to detect errors
such as reference to undefined variables. In the above text, misuse
of data types, references to items in unopened files, division by zero,
array bounds violations, and improper use of semaphores in concurrent
processing were cited as examples of other phenomena which could be
detected in similar ways. This study would identify and categorize as
many of these phenomena as possible. It is anticipated that the study
would range over a wide variety of languages, including Tanguages per-
mitting recursion and parallelism, assembly languages, and micropro-
gramming languages. The primary goal of this task is to identify the
error phenomena which can be detected by data flow analysis, to dis-
cover good algorithms for their detection, and to characterize the

30

lTimitations of this approach. The last aspect of this goal seems at-
tainable only after algorithms for detecting several of these phenomena
have been implemented and integrated into a working ITS. After such an
implementation has been completed, it can be tested using a set of pro-
grams drawn from real-world programming environments. The adequacy of
any heuristic approaches could then be determined and analyzed. Simi-
larly, the actual division of Tlabor between static analyzer and symbolic
executor could be analyzed and evaluated.

2. STUDY ERROR AND ANOMALY PHENOMENA WHICH CAN BE DETECTED BY
SYMBOLIC EXECUTION

This task entails a search for the phenomena which can be detected
by symbolic execution and which are either symptomatic of errors or
cohstitute outright errors themselves. Earlier work has shown that
symbolic execution is a powerful tool for determining whether or not
a given path is executable. In addition, it has been shown that
symbolic execution can be used to check for the possibility of array
bounds violations and division by zero through the introduction of
automatically generated artificial constraints. The above text has
also proposed that it is reasonable to consider the possibility of
verifying assertions about the relations between the values of program
variables through symbolic execution. The primary goal of this task
is to identify the error phenomena which can be detected by symbolic
execution, to propose techniques by which such detection can be effected,
to characterize the lTimitations of this approach, and to evaluate the
practical significance of these Timitations. The last aspect of this
goal seems attainable only after a symbolic execution system with some
of these error detection capabilities has been built and integrated
into an ITS. After this has been accomplished the necessary evaluations
can be made based upon experience in analyzing a body of real-world

programs .

3. EXPLORE METHODS FOR INHIBITING THE GENERATION OF UNEXECUTABLE PATHS
DURING STATIC ANALYSIS
It has already been observed that symbolic execution is a powerful
tool for identifying unexecutable paths. The above text also points
out that this process is relatively expensive, and an unexecutability

31

finding by the symbolic executor is awkward, as it leaves in doubt
whether or not the phenomenon of interest along the given path is
actually accessible by some executable path. A1l of this points to
the desirability of being able to filter out some of the unexecutable
paths during static analysis. Such a capability promises to be more
cost effective and poses fewer problems to the overall structure and
flow of capabilities within the ITS. The above text proposes a
method by which data flow analysis can be used to filter out some
unexecutable paths during static analysis. This method would be
implemented and integrated into an ITS. Then its effectiveness in
filtering out unexecutable paths in an actual set of real-world pro-
grams would be measured. Embellishments to this algorithm would be
studied as indicated by actual experimental results. Other approaches
to the filtering problem would also be investigated as part of this

task.

4. STUDY THE APPLICABILITY OF LOOP INVARIANT SYNTHESIS TECHNIQUES TO

THE DETECTION OF PATHS WHICH BEAR ERRORS AND ANOMALIES

The synthesis of loop invariants has already been.studied in con-
nection with formal proof techniques for program correctness. In the
above text it was proposed that a symbolic execution system could be
used to synthesize some of these invariants. The invariant could then
be used, in conjunction with other information about the relationships
between variables, to hypothesize the number of loop iterations which
would force the occurrence of such errors as out of bounds referencing
of an array. The purpose of this task is to study the feasibility of
incorporating such a Toop count synthesis capability into the symbolic
execution. There are a number of aspects to this task. There must be
a study of which error and anomaly phenomena might be detected in this
way. There must also be a study of whether existing Toop invariant
synthesis techniques are adequate to produce the information needed to
specify the paths bearing these errors. A related Tine of research
would involve the production of new loop invariant synthesis capabilities
as dictated by path synthesis needs. There is also a more experimental
aspect to this work. Some loop iteration count synthesis capabilities
would be built into a symbolic execution system and tested by examining
a body of real-world programs. Such actual test cases should allow the

32

evaluation of whether the synthesis of loop counts should be pursued
further as an error detection capability and should also help dictate
the direction of further research.

5. INVESTIGATE METHODOLOGIES FOR THE GENERATION OF PATHS WHICH ARE

ALTERNATIVES TO THOSE WHICH ARE FOUND TO BE UNEXECUTABLE

As was observed above, it must be expected that the static analysis
subsystem will at times generate paths which are unexecutable, although
they bear errors or anomalies. When this occurs, the impossibility of
the occurrence of the error has not been established, only the impos-
siblity of its occurring along the given path. It must be expected
that the determination of unexecutability may be made by the symbolic
execution subsystem, despite the presence of filtering mechanisms within
the static analysis system. This task, therefore, is concerned with
finding an adequate mechanism for generating an alternative path which
bears a given error or anomaly after the error or anomaly has already
been found to Tie on one or more unexecutablé paths. Information within
the symbolic execution system's constraint solver should be helpful
here, as it can be used to point out which conflicting constraints cause
the unexecutability. Hence it seems that this path regeneration mecha-
nism might be at least partially imbedded within the symbolic execution
subsystem. An important aspect of this task is the development of a
criterion which can be used to abort the search for an executable error
or anomaly bearing path, because it is sometimes the case that no such
path exists. Clearly, most of these questions are best explored experi-
mentally. Hence this task requires the completion of an ITS in which
the path regeneration capability would be carefully embodied in modules
which could be altered and interchanged during experimentation.

6. STUDY METHODS FOR DIVIDING PATH SPECIFICATION RESPONSIBLITY BETWEEN

THE STATIC ANALYSIS SUBSYSTEM AND THE SYMBOLIC EXECUTION SUBSYSTEM

Some of the foregoing task descriptions have made it clear that
many difficulties arise if the static analysis subsystem is relied upon
to furnish a complete specification of a path along which an error or
anomaly occurs. It has been noted, for example, that unexecutable paths
may be generated in this way. This causes difficulties in determining
whether the underlying error or anomaly is actually executable along
some other path and, in such cases, clearly implies the problem of

33

determining and specifying one such path. It has also been noted that
symbolic execution seems to be a promising vehicle for determining, in
certain cases, loop iteration counts which force the occurrence of
certain errors and anomalies. In these cases, static analysis seems
i1l equipped for determining this count. Hence it seems reasonable

to study strategies for dividing between the static analysis and
symbolic execution subsystems the responsibility for completely speci-
fying anomaly and error bearing paths. The static analysis subsystem
might be relied upon to produce only an abbreviated path specification,
consisting of an ordered Tist of critical nodes to be included on the
path, other nodes to be omitted from the path, and interesting Toops
to be iterated an unspecified number of times. The symbolic execution
subsystem would then be expected to use its more detailed information
about the program and path to determine the exact loop iteration counts
to be used and the identities of the nodes to be included between the
critical nodes. Various methodologies exploiting differing divisions
of path generation labor would be defined and examined experimentally.

7. EXAMINE THE ADEQUACY OF CURRENT DATA FLOW ANALYSIS ROUTINES AND

CONSTRUCT NEW ONES AS NEEDED

Anticipating that the first task described above will identify
phenomena- intrinsically different from those presently attacked very
effectively by LIVE and AVAIL algorithms (see {24]), we propose to
search for new algorithms which might be better suited to handle these
phenomena. Such phenomena might be characterizable only by a more com-
pTek sequence of events than simply an alternation of two events such
as is the case for LIVE and AVAIL (in these cases, the two events are
GEN and KILL). We propose to explore new algorithms which are well
suited for the detection of phenomena which can only be characterized
by somewhat more complex patterns, perhaps involving more than two
events. This work would include an investigation of the relation
between the complexity of the pattern searched for and the complexity

of the algorithm.

8. INVESTIGATE SUPERIOR METHODOLOGIES AND ALGORITHMS FOR SIMPLIFYING
AND SOLVING CONSTRAINTS ARISING FROM PROGRAM PATH PREDICATES
It was noted in the above text that it is impossible to determine
the executability of an arbitrary path through an arbitrary program,

34

because this is tantamount to being able to determine the consistency
of an arbitrary set of non-Tinear 1inequalities. This task is concerned
with developing a methodology for simplifying and solving such systems
of constraints which arise in the course of examining program paths.

The simplification methodology should be based upon the existing litera-
ture on symbol manipulation, and adapted to best serve the needs arising
from constraints embedded in actual code. The constraint solving
methodology must be able to accept mixed systems of constraints (j.e.
systems involving both integer and real values) as well as non-linear
constraints. Such a methodology would be synthesized from the existing
Titerature and technology, and augmented where necessary by original
research. This task would necessarily be guided by éxperiences with
different methodologies embedded within an ITS. Initially, an empirical
study of programs, using existing symbolic execution systems, would be
condubted to determine the sorts of constraint solving and simplification
capabilities which appear to be most important. The results of this
study would be used to guide in the development of improved method-
ologies.

9. INVESTIGATE PATTERNS OF ARRAY USAGE IN ORDER TO GUIDE THE DEVELOPMENT
OF SPECTIALIZED ARRAY ANALYSIS METHODS WITHIN THE SYMBOLIC EXECUTION
SYSTEM

In the above text it was noted that certain patterns of array
definition and reference cause problems of varying degrees of difficulty
in attempting symbolic execution. Some work in the detection of paral-
lelism in programs indicates that specialized forms of analysis can be
employed to facilitate the examination of some of these patterns. The
applicability of such techniques to symbolic execution would be studied.

An empirical study of the patterns of array reference and definition

within real-world programs would also be conducted in order to determine

which of the troublesome patterns are most common in actual code. The
results of this ‘empirical study would then be used to guide efforts at
adapting known analytic methods and devising new methods.

G/

0

saeaf-uosdad #
94BYS S333SNYoessey 10 A3LSAdALUN

00l

€€

0G

09

0¢

74

0
%

/L

9

saeaf-uosduad #
94BYS OpRU0|0) JO AL LSUBA LU

L9

00l

0§

09

0S

00l

0oL
%

SASYL 03S0d0dd ¥04 Ly0443 TINNOSYId 40
SIILISYIAINA NI3MLIE NOILNEIYLSIQ 40 FLVWILST

G ve

9

sdeaf-uosdad

steiol

Asel

gy ol 0°¢ Gl G0°¢ Al siejol
‘0 6
01 T g* Ge- 4 8
0°¢ G* g € L
G9- Ge- L "L 9
g9° G- L’ "L G
0§° ge- G- 1 14
G'1 G- T 4 €
G9- G- L 1 N
g'e SL71L Gc* g* 9 L
sueaf-uosuad S4eaf-uosdad sdeaf-uosdad Sueak-uosdad saeaf-uosdad jsel
JUR1SLSSY Asueaboud S401eb L) SaAU] S4071e61]S3AUT |e30L
youeasay 43430 LedLoutdd

N3 LV Q3WM04Y3d 39 0L SUSYL ¥0d
NOILNETYLSIG TINNOSYId 40 ITI140¥d QILYWILSI

*051°801$
"000°£L
1000° L€
1005°8

"000°81

"000°1LL

002y

"000°8
"006°¢

00ty

05l ¢

€ Jeap

06001
"000°91
"000°62
"000°8

"005°91

"000°0L

"068°¢

"00%°L
"009°¢

"0G0°Y

056°L §

7 Jeaj

"009°26 $

"000°SL
"000°£2

"006°L
"000°S1L

"000°6

"00G°€

"008°9
"00g“€

"00L°¢
"008°1L

IECER

$

SABYM ANV SITHVIVS TvLOL
(Wwgl) J8uWwns *sow G*z awll %001
(Wuzz) A"y “sow 6 ‘8wl %0G
(9) S3juelSLSSY yduRDS3IY 23eNnpedy g
(uwz]) -sow gl ‘swil %00l
AJde1ad28§ g
(Wwzl) -sow zZ| ‘awi} %001
ISLIUSLOS J4els 'y

(WG)" A"Y "SOW g BUWLY 9ng
paieu mn 0]

S91RLO0SSY ydheasay ‘¢

(Wwz) Jsuwwns *sow g sWLl %001
moqey "H

40786 11SOAUT 23eLD0SSY °7

(Wuz) Jsuwns -sow z “swtl %001

(Wup)* Aty -sow g “swll %01
A2Lpsoq "1

(wwgz) Jawwns *sow z “swLll %001

(Wup)"A"y csow 6 “auily 301
LLaM4BLS) 7]

S403eH13SOAUT [edLduULud-0) |

sabeM pue sardeleS -y

139ang

"005°2 $ 0052 $
000°L ¢ "000°6 §
"000°2 "000°¢y
*000°1L *000°1L
000t $ 000t $
"000°2 % "000°2 $
00E‘y $ "000°% $
00L°2 "006°2
*009°L ¢ 006t §
€ URI} ARLEN

006°2

"000°S

"000°1
"000°Y

"000°2

"00L°€

"00E‘e
"00v°1L

$

| desj

uorjedtidng “sjuLaday °s3s509 sbey

$750) UOL1e31(qng

TIAVYL vioL

S9LILALLOR (I4I ul ®3edioijded pue sziuebuo 03 s,Id

_ :ubLsuoy

s119snydessep JO AYLSASALUN 03 SALJ] UOLIRULPAOO) °7
49p|nog wo4} pue o3

Sjuel|nsuod pue sbuiyssw 01 |[suuosdad 308f0dd |

1013 ssuoq

[oARA]

soL|ddns soueusjulew | L} pue 901140

Jusudinbl pue sat|ddng o|qepuadx3

SUON

Juawdinbl juauewdsd

SLI43AN3d I9NTHL TvLOL

Solde|®s jJjels JO %$9°0l :wd3Id
salde|es A3|ndey 4O 4/ :YYIL

S1Liousg oburad

4

(penutiuos) 139ang

"06.°02¢

"00€°LS

"05vE9L
"005°6¢€

"000°€
"000°0¢
"000°€
"000°¢
"006°1L

$

$

$
$

$

¢ Jdea)

"055°012%

*002°€S°$

"0GE°LG1S
"005°6E ¢

"000°€
*000°0¢
*000°¢
"000°2
"00G°L $

o 4RI

006°161$

*009°67 $

"00€°SH 1S
"005°6¢ §
"000°€
"000°0¢€
"000°€

"000°2
"00S°L

L des

<1v10L aNYY9

ssbeM pue saLJeleS JO 9€G :snhdwe) ug

S3S0) 309JLpuT

53507 1399d1Q e300l

S1S0J 193¥1IC ¥3HL0 Tvlol

SaulLyoeul J4aylo uo [rIUDY
auLydew ny ug
15150) J493Nndwoy
("0G91$9 4eak/shep gz) :s994 ,S3ue3|NSUO)
doueuajulew juswdinbl
$$9208 Jdal1hdwod
duoyda 9] buLpnN[dUL--S3502 UOLILDLUNULIWLOY

$350) 109410 49U30

9

(penuL3uod) 139ang

BUDGET NOTES

The following section supplies elaboration and explanation of

some of the expenditures itemized in the budget for this proposal.

1.

It is important to note that the responsibility for the integra-
tion of all programs produced under this proposed work into a
single operational system will be assumed by the University of
Colorado. Distribution and maintenance will Tikewise be performed
by the University of Colorado. Hence the University of Colorado
requests considerable support for these efforts both in personnel
and in computer time. Among the personnel requested is a full
time staff scientist who will have overall responsibility for the
integration, dissemination and maintenance of the entire system
as it evolves. Due to the size and complexity of the proposed
system, such a person is deemed crucial to the success of the
project.

The attached charts provide additional detail as to how the vari-
ous proposed personnel will be utilized in completing the pro-
posed individual tasks.

Because the proposed work will require expertise in a wide variety
of areas, some associate investigators and other investigators are
proposed. In particular, Professor Harold Gabow is proposed as an
associate investigator because of his expertise in the design and
analysis of algorithms for data flow analysis. The expertise of
other investigators will also be useful in performing such tasks
as designing the non-linear inequality solving capability for the
symbolic execution subsystem and building a capability for
synthesizing and utilizing loop invariants.

The attached budget includes funding for a full time secretarial
position. This request is made because past experience in adminis-
tering grants of similar size has demonstrated that considerable
secretarial work is necessary to the smooth functioning of the
research activities. The proposed secretarial position would
entail responsibility for such tasks as typing and duplicating
reports, performing accounting and auditing of computer usage and
general project funds, handling the considerable correspondence
that seems likely to be necessary and facilitating coordination
between the University of Colorado and the University of
Massachusetts.

The attached budget requests considerable travel funds. Our past
experience indicates that substantial travel will be required dur-
ing the course of the project. The travel funds would be used to
support trips to scholarly conferences, trips to user sites to
install and maintain the software produced by this project, and
travel by outside consultants visiting our project for short
periods of time. We have also requested sufficient travel to -
cover the cost of several trips to the University of Massachusetts

for the purpose of coordination. We anticipate that some of the
work done by the University of Colorado personnel will have to
be performed at the University of Massachusetts in order to co-
ordinate effort most efficiently. Hence adequate travel funds
must be allowed for.

We have also requested foreign travel funds due largely to the in-
volvement of one of the principal investigators with IFIP working
group WG 2.5. This participation will entail a trip to Europe
during year 3 of the proposed grant period to attend a group meet-
ing, and another trip during year 2 in order to organize and
attend an IFIP Working Conference. It is requested that suffi-
cient travel funds be allocated to allow the other principal in-
vestigator to attend this working conference, as the topic of the
conference relates to quality software development, and is thus
closely related to the topic of this research proposal.

The attached budget includes a request for substantial communica-
tions funding. This is partially due to the fact that we antici-
pate a large amount of communications between the two universities
will be carried out via telephone, where the telephone will be
used both for voice communication, and for accessing computer
files. We hope that much of the software coordination work will
be carried out by telephone data 1inks, thereby reducing to some
extent the need for coordination trips.

The proposed maintenance budget is designed to include funds for
the maintenance of terminal equipment already owned by the
University of Colorado, but intended for heavy use by the proposed
project. The maintenance expense proposed here also includes an
allocation to the maintenance of a microprogrammable computer.
Earlier in the technical proposal, we stated that some of the data
flow analysis techniques to be explored appear to have strong
applicability to the analysis of microcode. We are, in a separate
proposal, requesting funds for the purchase of a microprogrammable
computer in conjunction with a number of other investigators.
These others would use the proposed machine in a variety of ways,
thus generating a body —of microcode which we could then use to
gauge the effectiveness of our techniques at detecting and validat-
ing for errors. We intend to share the maintenance cost and are
requesting funds for our share, in anticipation of the possibility
that funding for the purchase of the machine will be forthcoming.

In the attached budget, we have requested funding for bringing con-
sultants to Boulder. In previous grants of this magnitude we have
had such funding, and have found that the specialized expertise of
the people who have visited us has been most valuable. In this
proposed work, there will be an increased emphasis on integrating
widely diverse capabilities. Hence, here even more than in the
past, we would Tike to be guided by experts in divergent fields

for short periods of time in order to be sure that our coordination
and integration efforts are not based on faulty assumptions.

10.

We have requested a special allocation of computer funds to be
expended on machines other than those available at the University
of Colorado. These funds would be used to compensate computing
facilities which we might use to test implementations of our soft-
ware on different types of hardware and operating systems. In

the past we have relied upon the hospitality of friends to pro-
vide us with free computer time and services for the purpose of
testing our implementations, and thereby verifying the portability
of our software. We would prefer to be able to provide our own
support for such efforts in the future.

