
Comparison Between O(n2) and O(n) Neighbor Search

Algorithm and its Influence on Superlinear Speedup in

Parallel DEM for Complex-shaped Particles

Beichuan Yana,∗, Richard A. Regueiroa

aDepartment of Civil, Environmental, and Architectural Engineering, University of

Colorado Boulder

Abstract

This paper presents performance comparison between O(n2) and O(n) neigh-
bor search algorithms, studies their effects for different particle shape com-
plexity and computational granularity (CG), and investigates the influence
on superlinear speedup of 3D Discrete Element Method (DEM) for complex-
shaped particles. In serial computing, the more complex the particle shapes
(from sphere to ellipsoid to poly-ellipsoid), the smaller the neighbor search
fraction (NSF); and the lower the CG, the smaller the NSF. The O(n) search
algorithm is superior to O(n2) on the whole, especially for situations with
coarser CG; however, the O(n) algorithm is inferior to O(n2) for CG finer
than the parallel optimal CG.

In parallel computing of complex-shaped particles, O(n2) algorithm is
slower than O(n) at very coarse CGs; however, it becomes faster than O(n) at
fine CGs that are mostly employed in practical computations to achieve best
performance. This means that O(n2) algorithm outperforms O(n) algorithm
in large-scale parallel 3D DEM simulations generally.

Both O(n2) and O(n) algorithms exhibit a strong superlinear speedup
for large scale simulations of complex-shaped 3D DEM. The O(n) algorithm
always exhibits a lower speedup than the O(n2) algorithm across all compu-
tational scales and granularities, mostly due to the fact that the wall time
ratio between O(n2) and O(n) algorithms increases with an increase of CG,

∗Corresponding author. Fax: +1-303-492-7317
Email addresses: beichuan.yan@colorado.edu (Beichuan Yan),

richard.regueiro@colorado.edu (Richard A. Regueiro)

Preprint submitted to Engineering Computations June 5, 2018

until only one compute node is used. On average, the speedup in O(n) al-
gorithm is reduced by approximately 1/3 relative to O(n2) algorithm on the
simulation scale of 1 million ellipsoidal particles. In addition, the weak scal-
ing measurements reveal close-to-linear scalability in terms of nearly constant
computation time.

Key words: discrete element, complex-shaped particles, neighbor search,
contact resolution, superlinear speedup, computational granularity

1. MOTIVATION

In DEM simulations, there are three typical neighbor search algorithms
with different time complexities: O(n2), coming from n-by-n simple search;
O(nlogn), resulting from tree-based algorithms [Jagadish et al., 2005, Muja and Lowe,
2009]; and O(n), rooted from binning algorithms [Munjiza and Andrews,
1998, Williams et al., 2004] or link-cell (LC) method [Grest et al., 1989],
where n denotes the number of particles. How these different algorithms
influence DEM computational performance, not only for serial computing,
but especially for parallel computing, remains unanswered. In particular,
what difference they would make with change of particle shape (from sphere
to ellipsoid to poly-ellipsoid, and even more complex shapes) and change
of computational granularity (namely, number of particles per CPU core)
still needs investigation. Furthermore, how these algorithms would affect
the superlinear speedup phenomenon [Yan and Regueiro, 2018c] observed in
3D DEM parallel computing of complex-shaped particles is of great interest
when evaluating computational speedup and efficiency. In addition, many
times it has been taken for granted, for example, that O(n) algorithm always
performs better than O(n2); however, it turns out not to be the case.

This paper presents comparison between O(n2) and O(n) neighbor search
algorithms, studies their effects for particle shape complexity and computa-
tional granularity (CG), and investigates the influence on superlinear speedup
of 3D DEM of complex-shaped particles. It contains eight sections: section 1
has stated the motivation; section 2 provides an introduction to the com-
putational features and structure of DEM, and defines several fundamental
concepts; section 3 describes the implementation of O(n2) and O(n) neighbor
search algorithms in both serial and parallel computing; section 4 analyzes
O(n2) and O(n) performance in serial computing and the influence of particle
shapes and CG; section 5 compares the performance of O(n2) and O(n) algo-

2

rithms in parallel computing across 4 to 5 orders of magnitude of simulation
scale for complex-shaped 3D DEM on Department of Defense (DoD) super-
computers; section 6 focuses on the superlinear speedup of complex-shaped
3D DEM and evaluates the influence of O(n2) and O(n) algorithms on it;
section 7 demonstrates the close-to-linear scalability in terms of weak scaling
measurements; and a summary is given in the last section.

2. FUNDAMENTALS OF DEM

2.1. The DEM framework

A complete DEM system is composed of multiple essential components:
particle geometry representation, interparticle mechanical models (such as
Hertz nonlinear normal contact model [Hertz, 1882] and Mindlin’s history-
dependent shear model [Mindlin, 1949, Mindlin and Deresiewicz, 1953]), con-
tact search and resolution algorithm, time integration scheme, damping mech-
anism, boundary control methods for modeling various loading conditions,
etc. The DEM is computationally expensive owing to the following factors:
non-linear and history-dependent interparticle contact mechanical models,
complicated contact geometry resolution between particle pairs, and small
time step induced by explicit time integration scheme. A typical procedure
of DEM analysis consists of three major computational steps in sequence,
which are integrated in time using central difference method until a simula-
tion is completed:

1. contact detection between particles, including two phases:

(a) neighbor search (neighbor estimate)
(b) contact resolution

2. contact force computation for each pair of particles in contact.
3. particle motion update (translations and rotations) using Newton’s sec-

ond law.

The contact detection process is usually the major computational bottle-
neck, especially for a large number of complex-shaped particles. It is divided
into two phases: (a) the neighbor search (or spatial reasoning) phase, and
(b) the contact resolution phase. Neighbor search identifies/estimates ob-
jects near the target object. It often uses an approximate geometry for the
objects, such as bounding box or bounding sphere. In the paper we use the

3

phrases neighbor search and neighbor estimate interchangeably. The geo-
metric contact resolution phase then uses a specific geometric representation
of each body to resolve the contact geometry. For complex shapes such
as ellipsoidal particles (three different semi-axis lengths) [Yan et al., 2010]
or non-symmetric poly-ellipsoidal particles [Peters et al., 2009], the contact
resolution between two particles is much more expensive than spheres, in-
creasing the floating point operations by several orders of magnitude due to
the requirement of numerical accuracy and robustness. This is the most com-
putationally challenging part of 3D DEM in addition to the non-linear and
history-dependent mechanical models that describe interparticle interactions.

2.2. Neighbor search

As mentioned in Section 1, the neighbor search algorithm can have dif-
ferent time complexities: O(n2), O(nlogn) and O(n). The O(n) algorithm
is achieved either from no binary search (NBS) [Munjiza and Andrews, 1998],
binning algorithms [Williams et al., 2004] or link-cell (LC) method [Grest et al.,
1989].

The three methods are essentially the same, and they are just different
names used in geomechanics and molecular dynamics (MD). For example,
the idea of binning algorithm is to place each particle into a bin using a hash
on the particle’s coordinates. Once the particles are sorted into bins, one
can reason about the spatial closeness based solely on the fixed relationships
of the bins. Munjiza and Andrews [1998] implemented the NBS, a binning
algorithm which scales linearly to large numbers of particles but is limited
to particles of approximately the same size. Williams et al. [2004] extended
the traditional binning algorithm so that objects of arbitrary shape and size
in two and three dimensions can be handled by introducing an abstraction.
The algorithm achieves the partitioning of n particles of arbitrary shape
and size into n lists in O(n) operations, where each list consists of particles
spatially near to the target object; the LC method divides a computational
spatial domain into equal cubical cells of size not smaller than the cutoff
distance (in MD) or diameter of the largest particle (in DEM). Each particle
is referenced to the cell according to the position of the particle centroid.
The neighbor estimate comprises referencing of individual particles to the
cells and constructing of the neighbors list of particles using surrounding
cells.

It is worth noting that the three algorithms, O(n2), O(nlogn) and O(n),
only affect the performance of neighbor estimate. They have no bearing on

4

contact resolution. And it can be imagined that the overall performance
improvement resulting from these algorithms might be highly limited for
complex-shaped particles, because neighbor estimate only takes up a small
fraction of floating point operations in the whole computation.

2.3. Contact resolution

(a) Ellipsoids with various

aspect ratios.

(b) Spherical particles. (c) Disk-like particles.

(d) Needle-like particles. (e) Poly-ellipsoids with

various aspect ratios.

(f) Poly-ellipsoids.

Figure 1: Ellipsoids and poly-ellipsoids represent a wide variety of shapes in DEM.

Yan et al. [2010] developed a robust contact resolution algorithm for true
ellipsoidal particles by constructing an extreme value problem of finding the
deepest penetration of one particle into the other. Such an extreme value
problem results in a sixth order polynomial equation. Conventional polyno-
mial root finders cannot satisfy the high-precision numerical requirement in
the 3D DEM computation. For example, the elastic overlap between two par-
ticles of typical quartz sand may vary between 10−8 to 10−5 meters depending
on particle size, shape and external loading, and a low-precision solver can

5

lead to numerical instability or spurious explosion of particles. Therefore, an
iterative eigenvalue method is selected to find roots of the polynomial and
determine the contact geometry.

The algorithm and its implementation has been shown to be robust such
that it is applicable to not only regularly bulky ellipsoidal shapes but also
extreme-shaped ellipsoidal particles such as disks and needles, as shown in
Figure 1(a∼d).

Peters et al. [2009] proposed a non-symmetric poly-ellipsoid shape which
joins eight component ellipsoids in eight different octants respectively to pro-
duce continuous surface coordinates, normal directions and intersections. It
is more computationally expensive than a symmetric ellipsoid but it acts as
a useful extension, shown in Figure 1(e∼f).

It is worth emphasizing that the algorithm comparison pertains to complex-
shaped particles such as ellipsoids [Yan et al., 2010], poly-ellipsoids [Peters et al.,
2009], superellipsoids [Wellmann et al., 2008, Delaney et al., 2010], superquadrics
[Williams and Pentland, 1992] or asymmetrical particles constructed by non-
uniform rational Basis-Splines (NURBS) [Lim and Andrade, 2014], rather
than simplistic spheres; we specifically focus on ellipsoids and poly-ellipsoids
in the paper. In many natural phenomena and engineering problems, the
shapes (and sizes, gradations, etc) of the discrete particles play an insur-
mountably important role such as for capturing particle interlocking and
particle fracture.

3. O(n2) and O(n) IMPLEMENTATIONS

3.1. Implementations in serial computing

Figure 2 illustrates the O(n2) and O(n) algorithms in serial computing. In
O(n2) algorithm each particle is checked against all other particles to identify
potentially interactive particle pairs, therefore space division is not needed.
Within one step the particle pairs are pushed into data structures such as
vector or linked-list for subsequent contact resolution. In O(n) algorithm
two sequential steps have to be followed: (1) particle assignment, which
subdivides the computational domain into equally-sized cuboidal cells (white
cells shown in Figure 2) and each particle must be assigned to a cell in terms
of its centroid location; and (2) neighbor search, which not only searches
contact pairs inside each cell, but also finds contact pairs between a cell and
its surrounding cells.

6

Figure 2: O(n2) and O(n) search algorithms in serial computing: 1 process handles all
particles.

7

The particle assignment can work in O(n) rather than O(n2) time com-
plexity, based on the assumption that cuboidal cells are equally-sized in either
of the three dimensions independently. For instance, to identify in which cell
a particle should be located along x direction, the following equation can be
applied,

ix = Integer

(

x− xmin

∆dx

)

(1)

where x is the centroid of the particle, xmin is the minimum coordinates in
x direction, ∆dx denotes the cell dimension in x direction, Integer denotes
type conversion operator, and ix is the desired cell coordinate in x direction.

Referring to Figure 2, a serial O(n) algorithm marks each cell that has
been searched in sequence, and guarantees that the cell will not be searched
again to generate duplicate contact pairs when cycling through all of the
cells. For example, cell 1 checks with cells 7, 8 and 2; cell 2 only checks with
cells 7, 8, 9, 3; and cell 8 only checks with cells 13, 14, 15 and 9, when the
search occurs in sequence in space. Since it is serial computing, there are
actually no halo particles received from other processes.

It is easily imagined that the O(n) algorithm might be inferior to O(n2)
for computing a very small number of particles, due to its particle assignment
overhead, which is verified in Section 4.

3.2. Parallel computing framework

3.2.1. Link-block and four-step MPI design

We upscale the link-cell (LC) to link-block (LB) technique in parallel
DEM, and apply Foster’s four-step paradigm in designing a parallel algorithm
in DEM.

Partitioning: The computational domain is divided into blocks. Each
block may consist of many virtual cells. In Figure 3, there are 8 blocks
numbered from 0 to 7, each containing 5 x 5 x 5 small virtual cells. The
size of the virtual cells is chosen to be the maximum diameter of the discrete
particles.

Communication: Each cell, as a primitive task unit, can communicate
with 26 possible surrounding ones to determine contact detection. However,
the communication manner may be changed after the process of agglomera-
tion.

Agglomeration: By combining 5 x 5 x 5 virtual cells into a block, com-
munication overhead is lowered in that each block only needs to communicate

8

with neighboring blocks through border/ghost layers, which are virtual cells
marked by blue dots in Figure 3.

Mapping: There are choices of mapping a block of particles to a core,
a CPU, multiCPUs within a node, or even a whole node. Very often each
block is mapped to a whole compute node.

Figure 3: Link-blocks, virtual cells and border layers.

3.2.2. Flowchart of the parallel algorithm

The flowchart of the parallel algorithm is depicted in Figure 4. For brevity,
the serial algorithm is not illustrated separately, because it only includes the
following steps shown in Figure 4: steps 1, 4, 5, 6, 7 and 8. In comparison
to the serial code (Ellip3d), the parallel code (ParaEllip3d) ends up with six
more steps as follows:

1. step 2: 2-Root process divides and broadcasts info. This step only runs
once so it does not cost much CPU time.

2. step 3: 3-All processes communicate with neighbors. This interprocess
communication is the most important step in the parallel algorithm.

3. step 9: 9-All processes update compute grids. This step arises from
consideration of computational load balance.

4. step 10: 10-All processes merge and output info. This step serves the
goal of snapshotting simulation states. Beware that it does not execute
at each time increment, otherwise it could cause unacceptable cost.

9

5. step 11: 11-All processes release memory of receiving particle info. This
step arises from MPI transmission mechanism and must be carefully
taken care of.

6. step 12: 12-All processes migrate particles. This step handles the sit-
uation when particles move across block borders.

3.3. Implementations in parallel computing

Figure 5 illustrates the O(n2) and O(n) algorithms in parallel computing,
whereby 2x2x3 compute grids/blocks in x, y, z direction respectively (in
green) are used as an example. A block (or compute grid) not only manages
its internal particles (enclosed by green or red dashed lines), but also handles
halo particles (enclosed between the red and blue dashed lines) transmitted
from neighboring blocks through MPI.

The O(n2) algorithm remains the same as long as it processes both in-
ternal particles and halo particles as a whole. The O(n) algorithm needs
to extend the equally-sized cells from red line enclosed volume to blue line
enclosed volume, which is required in order to keep track of all particles
accurately in numerical computations.

4. O(n2) VS O(n) IN SERIAL COMPUTING

A Dell T7500 Precision Linux workstation of dual hexa-core Intel Xeon
X5690 processors is used to carry out performance tests for serial computing.
It is shown that the complex-shaped particles are much more computationally
demanding than simple spheres. For instance, the contact resolution between
a pair of true ellipsoids is approximately 50 times as expensive as that of a
pair of spheres, and contact resolution between a pair of poly-ellipsoids is
nearly 300 times as expensive as that of a pair of spheres.

Serial computing tests on the O(n2) and O(n) algorithms are carried out
for different particle shapes (sphere, ellipsoid and poly-ellipsoid) and different
computational granularity (CG) of 50, 150, 500, 2k and 5k particles. The
neighbor search fraction (NSF) is defined as follows:

NSF =
Tneighbor estimate

Tcontact detection time
=

Tneighbor estimate

Tneighbor estimate + Tcontact resolution
,

where T denotes the wall clock time.

10

Figure 4: Flowchart of the parallel algorithm of 3D DEM.

11

Figure 5: O(n2) and O(n) search algorithms in parallel computing, e.g., 2x2x3 processes
in x, y, z direction, respectively.

12

(a) O(n2). (b) O(n).

Figure 6: O(n2) and O(n) algorithms on three particle shapes.

Figure 6 presents the NSF of O(n2) and O(n) algorithms for three particle
shapes and 5 CGs. It is observed that the more complex the shapes are (from
sphere to ellipsoid to poly-ellipsoid), the smaller the NSF is; and the lower
the CG is, the smaller the NSF is. The data for ellipsoid and poly-ellipsoid
are listed in Table 1. As a typical example, the NSFs are 1.3% for O(n2) and
1.8% for O(n) on ellipsoid, and 0.4% for O(n2) and 0.5% for O(n) on poly-
ellipsoid at the parallel optimal CG (150 ∼ 300 particles per core (PPC)).

Table 1: NSF(%) of Ellipsoid and Poly-ellipsoid

Ellipsoid Poly-Ellipsoid
of particles O(n2) O(n) O(n2) O(n)

50 0.6 1.7 0.2 0.3
150 1.3 1.8 0.4 0.5
500 4.0 2.1 1.1 0.6
2000 13.2 2.9 4.0 0.7
5000 27.3 2.8 9.0 0.8

Beware the parallel optimal CGs are obtained by testing various number

13

(from one to excessive) of compute nodes and selecting the one which achieves
shortest wall clock time from parallel computing. Yan and Regueiro [2018b]
pointed out: for a fixed problem size (or simulation scale), the parallel over-
head (mostly the interprocess communication) percentage increases with a
decreasing CG, due to the fact that computation time decreases faster than
the communication time when the CG decreases in 3D DEM of complex-
shaped particles, and the best performance is achieved at a certain CG in
parallel computing. It should be emphasized that the the parallel optimal
CG of 150 ∼ 300 particles per core (PPC) is measured for complex-shaped
particles; for spheres it is much larger due to computational cost difference,
e.g., 15, 000 ∼ 30, 000 PPC.

(a) Sphere by O(n2). (b) Ellipsoid by O(n2). (c) Poly-ellipsoid by O(n2).

(d) Sphere by O(n). (e) Ellipsoid by O(n). (f) Poly-ellipsoid by O(n).

Figure 7: Wall clock time percentage of DEM components by O(n2) and O(n) algorithms
using different particle shapes.

Figure 7 plots pie charts on time percentage of DEM components using
2,000 particles with different shapes, and it confirms that the more complex
the particle shapes are, the smaller the NSF is. With poly-ellipsoid comput-
ing by O(n) algorithm, the NSF is as low as 0.7% whereas contact resolution
takes up to 95.5%.

Figure 8 compares the NSFs of O(n2) and O(n) algorithms on ellipsoid
and poly-ellipsoid. It can be seen that the NSF in O(n2) algorithm exhibits

14

an overall higher percentage range, up to 27% for ellipsoid and 9% for poly-
ellipsoid, than that of the O(n) algorithm, up to 2.8% for ellipsoid and 0.8%
for poly-ellipsoid, across 5 computational granularity (CG) of 50, 150, 500,
2k and 5k, respectively.

(a) Ellipsoid. (b) Poly-ellipsoid.

Figure 8: NSFs of O(n2) and O(n) algorithms on ellipsoid and poly-ellipsoid.

Figure 9 compares the neighbor search time, and Figure 10 compares
the contact detection time, of O(n2) and O(n) algorithms on ellipsoid and
poly-ellipsoid, respectively.

It is clear that the NSF, neighbor search time and contact detection time
increase faster with regard to CG in O(n2) algorithm than it does in O(n)
algorithm, and the gap between O(n2) and O(n) algorithms increases with
the increase of CG. That indicates the O(n) search algorithm is superior to
O(n2) on the whole in serial computing, especially for situations with coarser
CG.

However, it is worth noting that the O(n2) and O(n) algorithms perform
nearly the same at the parallel optimal CG (150 ∼ 300 PPC), which is
observed for NSF (Figure 8), neighbor search time (Figure 9) and contact
detection time (Figure 10). In particular, the NSF and neighbor search time
of O(n2) algorithm are even lower than that of O(n) algorithm when the
CG goes finer than 150 PPC. In other words, the O(n) search algorithm is
inferior to O(n2) for CG finer than the parallel optimal one.

Table 2 lists the overall serial computing time, and it is seen that the

15

(a) Ellipsoid. (b) Poly-ellipsoid.

Figure 9: Neighbor search time of O(n2) and O(n) algorithms on ellipsoid and poly-
ellipsoid.

(a) Ellipsoid. (b) Poly-ellipsoid.

Figure 10: Contact detection time of O(n2) and O(n) algorithms on ellipsoid and poly-
ellipsoid.

16

Table 2: Overall serial computing wall clock time (s)

Ellipsoid Poly-Ellipsoid
of particles O(n2) O(n) ratio O(n2) O(n) ratio

50 3.56E-03 3.61E-03 0.984 2.19E-02 2.21E-02 0.989
150 1.26E-02 1.25E-02 1.002 6.15E-02 6.14E-02 1.002
500 5.40E-02 5.12E-02 1.055 2.89E-01 2.79E-01 1.037
2000 2.71E-01 2.35E-01 1.155 1.33E+00 1.28E+00 1.043
5000 8.66E-01 6.18E-01 1.401 3.66E+00 3.31E+00 1.108

time ratio of O(n2) to O(n) is 1.002 at approximately parallel optimal CG,
and it even goes below 1 for finer CG than the parallel optimal one.

Tables 3, 4, 5 list the time of neighbor estimate, contact resolution and
overall computation, respectively. The average time ratios of poly-ellipsoid
to ellipsoid are 1.5, 5.5, and 5.1 in neighbor estimate, contact resolution and
overall computation, respectively.

Table 3: Neighbor estimate time

wall clock time (s) O(n2) O(n)

150 500 2000 5000 150 500 2000 5000
sphere 1.44E-04 1.80E-03 3.71E-02 2.26E-01 1.28E-04 6.26E-04 3.09E-03 8.30E-03

ellip 1.69E-04 2.19E-03 3.57E-02 2.37E-01 2.28E-04 1.08E-03 6.70E-03 1.70E-02
poly 2.76E-04 3.31E-03 5.36E-02 3.31E-01 3.07E-04 1.59E-03 9.16E-03 2.49E-02

poly/ellip 1.6 1.5 1.5 1.4 1.3 1.5 1.4 1.5

Table 4: Contact resolution time
wall clock time (s) O(n2) O(n)

150 500 2000 5000 150 500 2000 5000
sphere 1.18E-04 4.72E-04 2.56E-03 7.41E-03 1.20E-04 4.81E-04 2.06E-03 5.64E-03

ellip 1.15E-02 4.86E-02 2.21E-01 5.94E-01 1.14E-02 4.69E-02 2.14E-01 5.66E-01
poly 5.81E-02 2.74E-01 1.23E+00 3.21E+00 5.79E-02 2.66E-01 1.22E+00 3.16E+00

poly/ellip 5.0 5.6 5.6 5.4 5.1 5.7 5.7 5.6

5. O(n2) VS O(n) IN PARALLEL COMPUTING

The parallel simulations are performed on a DoD HPC supercomputer,
Spirit, which is an SGI ICE X System located at the AFRL DSRC. Spirit has
4,590 compute nodes each with 16 cores (73,440 total compute cores), 146.88
TBytes of memory, and is rated at 1.5 peak PFLOPS. Each compute node

17

Table 5: Overall computation time

wall clock time (s) O(n2) O(n)

150 500 2000 5000 150 500 2000 5000
sphere 8.78E-04 4.62E-03 4.97E-02 2.59E-01 8.52E-04 3.49E-03 1.48E-02 3.97E-02

ellip 1.26E-02 5.40E-02 2.71E-01 8.66E-01 1.25E-02 5.12E-02 2.35E-01 6.18E-01
poly 6.15E-02 2.89E-01 1.33E+00 3.66E+00 6.14E-02 2.79E-01 1.28E+00 3.31E+00

poly/ellip 4.9 5.4 4.9 4.2 4.9 5.4 5.5 5.3

has two Sandy Bridge-based Intel Xeon CPU E5-2670 2.60GHz and 32 GB
memory. The cluster of compute nodes are interconnected through FDR 14x
InfiniBand network with enhanced LX hypercube topology. A combination
of the following compilers and libraries is used: Intel compilers 16.0.3, SGI
MPT 2.14 and Boost C++ 1.57.

Figure 11 plots the wall clock time consumed across 5 orders of magnitude
of simulation scale, 2.5k, 12k, 150k, 1M and 10M ellipsoidal particles, each of
which tests various number of compute nodes. In other words, various CGs
are tested for each scale.

On the scales of 2.5k and 12k particles plotted in Figure 11(a, b), O(n2)
algorithm is always faster than O(n), across 1 to 64 compute nodes. Note the
CGs are fairly fine in these two cases; for example, the CG is 156 particles
per core (PPC) using 1 node and 39 PPC using 4 nodes for 2.5k particles,
and the CG is 750 PPC using 1 node and 47 PPC using 16 nodes for 12k
particles.

On the scales of 150k and 1M particles plotted in Figure 11(c, d), O(n2)
algorithm is slower than O(n) with a few compute nodes, however it becomes
faster than O(n) with appropriate number of compute nodes used in practice.
For example, O(n2) algorithm is slower than O(n) using 1 node (9,375 PPC)
to 2 nodes (4,688 PPC) but faster using 4 nodes (2,344 PPC) to 128 nodes
(73 PPC) for 150k particles, and O(n2) algorithm is slower than O(n) using
1 node (62,500 PPC) to 32 nodes (1,953 PPC) but faster using 64 nodes (977
PPC) to 512 nodes (122 PPC) for 1M particles. These are clearly plotted
with log-log graphs in Figure 11(c’, d’).

Figure 12 plots the wall clock time consumed across 4 orders of magnitude
of simulation scale, 2.5k, 12k, 150k and 1M poly-ellipsoidal particles, each of
which tests various number of compute nodes.

On the scales of 2.5k and 12k particles plotted in Figure 12(a, b), O(n2)
algorithm is always faster than O(n), across 1 to 64 compute nodes. Note
like the ellipsoid cases, the CGs are fine in these two cases, for example, the
CG is 156 particles per core (PPC) using 1 node and 39 PPC using 4 nodes

18

(a) 2.5k particles (log). (b) 12k particles (log). (c) 150k particles (log).

(d) 1M particles (log). (e) 10M particles (log). (c’) 150k particles (log-log).

(d’) 1M particles (log-log). (e’) 10M particles (log-log).

Figure 11: Wall clock time in computing ellipsoids across 5 orders of magnitude of simu-
lation scale.

19

(a) 2.5k particles (log). (b) 12k particles (log). (c) 150k particles (log).

(d) 1M particles (log). (c’) 150k particles (log-log). (d’) 1M particles (log-log).

Figure 12: Wall clock time in computing poly-ellipsoids across 4 orders of magnitude of
simulation scale.

20

for 2.5k particles, and the CG is 750 PPC using 1 node and 47 PPC using
16 nodes for 12k particles.

(a) O(n2). (b) O(n).

Figure 13: Parallel overhead percentage for ellipsoid and poly-ellipsoid.

On the scales of 150k and 1M particles plotted in Figure 12(c, d), O(n2)
algorithm is slower than O(n) with a few compute nodes, however it becomes
faster than O(n) with appropriate number of compute nodes used in practice.
For example, O(n2) algorithm is slower than O(n) using 1 node (9,375 PPC)
to 2 nodes (4,688 PPC) but faster using 4 nodes (2,344 PPC) to 128 nodes
(73 PPC) for 150k particles, and O(n2) algorithm is slower than O(n) using 1
node (62,500 PPC) to 16 nodes (3,906 PPC) but faster using 32 nodes (1,953
PPC) to 512 nodes (122 PPC) for 1M particles. These are clearly plotted
with log-log graphs in Figure 12(c’, d’).

The following conclusion is drawn based on the statistics of complex-
shaped particles such as ellipsoid and poly-ellipsoid: in parallel computing,
O(n2) algorithm is inefficient at coarse CG, however it executes faster than
O(n) algorithm at fine CGs that are mostly employed in practice.

As a result, the parallel overhead percentage, defined as the ratio of com-
munication overhead to total time (communication overhead + computation
time), is affected. First, the influence of particle shape is plotted in Figure 13
for 1M particles, where poly-ellipsoid gives a lower parallel overhead percent-
age due to its more CPU consumption on particle computation, meanwhile
it has nearly the same parallel communication overhead as ellipsoid.

Second, Figure 14 compares the influence of O(n2) vs O(n) algorithm for
1M particles. At the commonly used CGs, i.e., where more than 32 com-
pute nodes are used, the O(n2) algorithm gives a higher parallel overhead

21

(a) Ellipsoid. (b) Poly-ellipsoid.

Figure 14: Parallel overhead percentage by O(n2) and O(n) algorithms.

percentage than the O(n) algorithm. This appears to be counterintuitive
since O(n2) algorithm consumes more CPU on computation and thus should
have lower parallel overhead percentage. However it is correct: referring to
Figure 11(c’, d’) and Figure 12(c’, d’), the O(n2) algorithm actually exe-
cutes faster and consumes less total time at such CGs, namely, its wall clock
time decreases faster than communication overhead with respect to the O(n)
algorithm, which results in a higher parallel overhead percentage. This is
actually another proof that the O(n2) algorithm performs better than the
O(n) algorithm at fine CGs that are mostly employed in practice.

6. O(n2) VS O(n) INFLUENCE ON SUPERLINEAR SPEEDUP

In parallel computing, speedup is defined as the ratio between sequential
execution time and parallel execution time, as shown in Eq. (2), and effi-
ciency, a measure of processor utilization, is defined as speedup divided by
the number of processors used, according to Eq. (3).

speedup ψ(n, p) ≡
sequential execution time
parallel execution time ≤

σ(n) + ϕ(n)

σ(n) + ϕ(n)/p+ κ(n, p)
(2)

efficiency ε(n, p) ≡
sequential execution time
p×parallel execution time =

ψ(n, p)

p
(3)

where n is the problem size (number of particles), p is the number of pro-
cessors, σ(n) is the inherently serial portion of computation, ϕ(n) is the

22

parallelizable portion of computation, and κ(n, p) is the overhead of paral-
lelization (communication operations and redundant computation).

Yan and Regueiro [2018c] have discovered strong superlinear speedup in
large scale simulations of parallel 3D DEM for complex-shaped particles, and
the larger the scale is, the stronger is the superlinear speedup. They repro-
duced the phenomena on multiple DoD supercomputers in strong scaling and
weak scaling measurements, and pointed out that cache miss rate is sensi-
tive to the memory consumption shrinkage per processor, and the last level
cache (LLC) contributes most significantly to the strong superlinear speedup
among all of the three cache levels of modern microprocessors.

Their investigation was based on O(n2) neighbor search algorithm. On ac-
count of aforementioned statistics, it is imagined that O(n2) neighbor search
algorithm could overestimate the speedup at coarse CGs although it does not
at fine CGs. In this section, a comparison is made between O(n2) and O(n)
algorithms, to study if superlinear speedup still exists with O(n) algorithm;
and if it exists, to what degree it is reduced.

Figure 15 plots the speedup by O(n2) and O(n) algorithms across 5 orders
of magnitude of simulation scale, 2.5k, 12k, 150k, 1M and 10M ellipsoidal
particles, each of which tests various number of compute nodes, i.e., various
CGs. It is interesting to see that the O(n) algorithm always exhibits a lower
speedup thanO(n2) algorithm across all CGs, although it executes faster with
coarse CG and slower with fine CG than O(n2) for larger scale computation,
as discussed in Section 5.

The speedup gap is due to the difference of base point measurement using
1 compute node: O(n) algorithm runs much faster at such a coarse CG than
O(n2) algorithm. As a result, its speedup cannot go as high as that of O(n2)
algorithm. The explanation is even clearer on the grounds of data listed in
Table 6: the wall clock time ratio between O(n2) and O(n) algorithms is 1.49
with 1 node, and it decreases to 0.87 with increasing number of nodes.

Figure 16 plots the efficiency by O(n2) and O(n) algorithms across 4 or-
ders of magnitude of simulation scale. It is expected that the O(n) algorithm
always exhibits a lower efficiency than O(n2) algorithm across all CGs. It
is shown that neither O(n2) nor O(n) reveals superlinear speedup (greater-
than-1 efficiency) on the scales of 2.5k and 12k particles. At 150k particles,
O(n2) exhibits superlinear speedup whereas O(n) does not. On the scales
of 1M and 10M particles, both O(n2) and O(n) present strong superlinear
speedup.

The average speedup or efficiency ratio between O(n2) and O(n) algo-

23

(a) 2.5k particles. (b) 12k particles. (c) 150k particles.

(d) 1M particles. (e) 10M particles.

Figure 15: Speedup in computing ellipsoids across 5 orders of magnitude of simulation
scale.

24

Table 6: O(n2) vs O(n) at 1M ellipsoidal particles

wall clock time (s) speedup efficiency
nodes O(n2) O(n) ratio O(n2) O(n) ratio O(n2) O(n) ratio

1 128284.2 85997.2 1.49 1.0 1.0 1.00 1.0 1.0 1.00
2 27783.8 23770.4 1.17 4.6 3.6 1.28 2.3 1.8 1.28
4 6135.4 4502.4 1.36 20.9 19.1 1.09 5.2 4.8 1.09
8 1597.1 1048.0 1.52 80.3 82.1 0.98 10.0 10.3 0.98
16 477.2 470.1 1.02 268.8 182.9 1.47 16.8 11.4 1.47
32 277.3 259.3 1.07 462.6 331.7 1.39 14.5 10.4 1.39
64 134.3 171.9 0.78 955.3 500.3 1.91 14.9 7.8 1.91
128 97.3 125.4 0.78 1318.3 686.0 1.92 10.3 5.4 1.92
256 81.4 101.3 0.80 1575.2 848.6 1.86 6.2 3.3 1.86
512 71.7 87.6 0.82 1788.2 982.2 1.82 3.5 1.9 1.82
768 83.1 95.3 0.87 1544.5 902.0 1.71 2.0 1.2 1.71
1024 71.6 82.5 0.87 1792.9 1042.5 1.72 1.8 1.0 1.72

average 1.0 1.5 1.5

rithms is 1.5 for 1M particles according to Table 6, in other words, the
speedup in O(n) algorithm is reduced by approximately 1/3 relative to O(n2)
algorithm, even though both algorithms reveal suplinear speedup.

7. WEAK SCALING MEASUREMENT

The Performance Application Programming Interface (PAPI) is coded to
measure the FLOPS performance based on weak scaling tests, where the
problem size (workload) assigned to each processor stays constant; namely, a
constant CG is employed across different orders of magnitude of simulation
scale. In these tests, 2,500 complex-shaped particles are assigned to each
compute node (approximately 150 particles per core); the number of com-
pute nodes ranges from 1 to 2,048, and the number of particles ranges from
2,500 to 5,120,000 accordingly; the O(n2) algorithm is used since it performs
better than the O(n) algorithm at fine CGs that are mostly employed in
practice. Hereby it is emphasized again that the CG of 150 particles per core
is optimized for complex-shaped particles, not for spheres.

Figure 17(a) and (b) plots the total and per core FLOPS performance
with regard to problem size (in direct proportion to number of compute
nodes), respectively. It can be seen clearly that the total FLOPS exhibits

25

(a) 2.5k particles. (b) 12k particles.

(c) 150k particles. (d) 1M particles.

Figure 16: Efficiency in computing ellipsoids across 4 orders of magnitude of simulation
scale.

26

a linear relationship with regard to the problem size, and the uniprocessor
FLOPS performance nearly stays constant in spite of the problem size change.

(a) Overall FLOPS. (b) Per core FLOPS.

Figure 17: Floating-point operation performance on Spirit (weak scaling).

Figure 18 plots the module execution times. The communication time
stays constant until the number of nodes reaches 512 or 1,024, whereby
the increase is most likely attributed to the lack of hypercube interconnect
[Rudi et al., 2015].

The computation time increases slightly with respect to the increase of
number of compute nodes, yet overall it exhibits linear scaling with close
to constant computation time. The slight increase of computation time is
attributed to the characteristics of memory consumption and cache hit/miss
rate on the system [Yan and Regueiro, 2018a].

8. SUMMARY

This paper presents implementation comparison between O(n2) and O(n)
neighbor search algorithms, studies their effects for different particle shape
complexity and computational granularity (CG) in serial computing, ana-
lyzes the performance difference in serial and parallel computing, and inves-
tigates the influence on superlinear speedup of 3D DEM for complex-shaped
particles.

In complex-shaped DEM, the neighbor search algorithm or time com-
plexity only affects the performance of neighbor estimate, and they have no

27

Figure 18: Weak scaling measurement on Spirit.

bearing on contact resolution, which usually takes a significant majority of
overall floating point operations.

Serial computing reveals that the more complex the particle shapes (from
sphere to ellipsoid to poly-ellipsoid), the smaller the neighbor search fraction
(NSF); and the lower the computational granularity (CG), the smaller the
NSF.

In serial computing, theO(n) search algorithm works more efficiently than
O(n2) on the whole, especially for situations with coarser CG; however the
O(n) algorithm is inferior to O(n2) for CG finer than the parallel optimum,
owing to its particle assignment overhead.

In parallel computing of complex-shaped 3D DEM, the O(n2) algorithm
is inefficient at coarse CG, however it executes faster than the O(n) algorithm
at fine CGs that are mostly employed in computational practice, which means
that O(n2) algorithm outperforms O(n) algorithm in large-scale parallel 3D
DEM simulations generally.

Both O(n2) and O(n) algorithms exhibit a strong superlinear speedup
on large scale simulations of complex-shaped 3D DEM. The O(n) algorithm

28

always exhibits a lower speedup than the O(n2) algorithm across all compu-
tational scales and granularities, mostly due to the base point measurement
at 1 compute node, whereby the O(n) algorithm executes much faster than
the O(n2) algorithm. On average, the speedup in O(n) algorithm is reduced
by approximately 1/3 relative to O(n2) algorithm on the simulation scale of
1 million ellipsoidal particles.

The weak scaling measurements of complex-shaped particles show a linear
relationship between FLOPS and the number of compute nodes, and close-
to-linear scalability in terms of nearly constant computation time.

Acknowledgments

We would like to acknowledge the support provided by ONR MURI grant
N00014-11-1-0691, and the DoD High Performance Computing Moderniza-
tion Program (HPCMP) for granting us the computing resources required to
conduct this work. We declare that there is no conflict of interest.

References

Gary W Delaney, Paul W Cleary, Matt D Sinnott, and Rob D Morrison.
Novel application of dem to modelling comminution processes. In IOP
Conference Series: Materials Science and Engineering, volume 10, page
012099. IOP Publishing, 2010.

Gary S Grest, Burkhard Dünweg, and Kurt Kremer. Vectorized link cell
fortran code for molecular dynamics simulations for a large number of
particles. Computer Physics Communications, 55(3):269–285, 1989.

Heinrich Hertz. Ueber die Berührung fester elastischer Körper. [On the fixed
elastic body contact]. Journal für die reine und angewandte Mathematik
(Crelle), 92:156–171, 1882.

Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui
Zhang. idistance: An adaptive b+-tree based indexing method for nearest
neighbor search. ACM Transactions on Database Systems (TODS), 30(2):
364–397, 2005.

Keng-Wit Lim and José E Andrade. Granular element method for three-
dimensional discrete element calculations. International Journal for Nu-
merical and Analytical Methods in Geomechanics, 38(2):167–188, 2014.

29

R.D. Mindlin. Compliance of elastic bodies in contact. Trans. ASME, J.
App. Mech., 16(3):259–268, 1949.

R.D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying
oblique forces. Trans. ASME, J. App. Mech., 20(3):327–344, 1953.

Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2:331–340, 2009.

A. Munjiza and K.R.F. Andrews. Nbs contact detection algorithm for bodies
of similar size. International Journal for Numerical Methods in Engineer-
ing, 43(1):131 – 149, 1998.

John F. Peters, Mark A. Hopkins, Raju Kala, and Ronald E. Wahl. A
polyellipsoid particle for nonspherical discrete element method. Engineer-
ing Computations, 26(6):645–657, 2009.

Johann Rudi, A Cristiano I Malossi, Tobin Isaac, Georg Stadler, Michael
Gurnis, Peter WJ Staar, Yves Ineichen, Costas Bekas, Alessandro Curi-
oni, and Omar Ghattas. An extreme-scale implicit solver for complex pdes:
highly heterogeneous flow in earth’s mantle. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, page 5. ACM, 2015.

Christian Wellmann, Claudia Lillie, and Peter Wriggers. A contact detec-
tion algorithm for superellipsoids based on the common-normal concept.
Engineering Computations, 25(5):432–442, 2008.

John R Williams and Alex P Pentland. Superquadrics and modal dynamics
for discrete elements in interactive design. Engineering Computations, 9
(2):115–127, 1992.

John R Williams, Eric Perkins, and Ben Cook. A contact algorithm for par-
titioning n arbitrary sized objects. Engineering Computations, 21(2/3/4):
235–248, 2004.

Beichuan Yan and Richard Regueiro. Large-scale dynamic and static
simulations of complex-shaped granular materials using parallel three-
dimensional discrete element method (dem) on dod supercomputers. En-
gineering Computations, (just-accepted):00–00, 2018a.

30

Beichuan Yan and Richard A Regueiro. A comprehensive study of mpi par-
allelism in three-dimensional discrete element method (dem) simulation
of complex-shaped granular particles. Computational Particle Mechanics,
pages 1–25, 2018b.

Beichuan Yan and Richard A Regueiro. Superlinear speedup phenomenon in
parallel 3d discrete element method (dem) simulations of complex-shaped
particles. Parallel Computing, 2018c.

Beichuan Yan, Richard A Regueiro, and Stein Sture. Three-dimensional
ellipsoidal discrete element modeling of granular materials and its coupling
with finite element facets. Engineering Computations, 27(4):519–550, 2010.

31

	MOTIVATION
	FUNDAMENTALS OF DEM
	The DEM framework
	Neighbor search
	Contact resolution

	O(n2) and O(n) IMPLEMENTATIONS
	Implementations in serial computing
	Parallel computing framework
	Link-block and four-step MPI design
	Flowchart of the parallel algorithm

	Implementations in parallel computing

	O(n2) VS O(n) IN SERIAL COMPUTING
	O(n2) VS O(n) IN PARALLEL COMPUTING
	O(n2) VS O(n) INFLUENCE ON SUPERLINEAR SPEEDUP
	WEAK SCALING MEASUREMENT
	SUMMARY

