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Topological Foundations of Tropical Geometry

Thesis directed by Professor Jonathan Wise

We construct two subcanonical Grothendieck Topologies on the category of commutative,

integral monoids and show that the moduli space of tropical curves is a stack in both topologies.

We additionally construct two subcanonical topologies on the category of sharp, saturated, inte-

gral, commutative monoids with an eye towards answering outstanding questions of algebraicity of

tropical moduli problems.



iv

Dedication

To my parents,

Mitchell and Pamela Willis



v

Acknowledgements

Thanks to many friends and family who have helped to maintain my sanity over the years:

Cody McAndrew; Brian Svoboda; Brett O’Mara; Frank Binder; Lehi Petersen; Ginny Danztler;

Ryan Phillips; Jesse Ball and Katie Mae; Jessica; Coli. I don’t have enough room here to name

you all, but you know who you are.

Thanks to my colleagues and friends for the many years of collaboration and comradery:

Paul Lessard; Shawn Burkett; Clifford Blakestad; Leo Herr; Sebastian Bozlee; Matt Grimes; Keli

Parker; Blake Farman; Andrew Moorhead.

Thanks to the many advisors, professors, and professional colleagues that have helped me

along the way: Richard Foote; John Voight; Ken Ono; Frank Thorne; David Zureick-Brown; Kate

Stange; Ravi Vakil; Danny Gillam; Seth McCann.

Thanks to the committee members: Nat Thiem; David Grant; Sebastian Casalaina Martin;

Renzo Cavalieri.

Special thanks to my advisor, Jonathan Wise. It has truly been an honor getting to work

with you for the past few years. It is genuinely difficult to put in to words how much I appreciate

your insight and mentorship.



Contents

Chapter

1 Introduction 1

2 Background on Monoids 5

2.1 Properties of Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Background on Grothendieck Topologies 12

3.1 Grothendieck Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Exact and Étale Topologies for Integral Monoids 16

4.1 Exact and Étale Families of Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 The Lifting Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 The Moduli Space Of Tropical Curves Is A Stack . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Proof of Theorem (4.0.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Smooth and Étale Topologies for Sharp Saturated Monoids 29

5.1 Formal Smoothness for Sharp and Saturated Monoids . . . . . . . . . . . . . . . . . 29

5.2 Descent Properties for Formally Smooth Covering Families . . . . . . . . . . . . . . 40

5.3 Formally Étale Families of Sharp and Saturated Monoids . . . . . . . . . . . . . . . 47

5.4 Formal Infinitessimal Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 54



Figures

Figure

2.1 The monoid (left) and its dual cone (right) . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 An étale covering of Cone(N2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 The lattice points in the shaded region, along with the solid ray along the line passing

through the origin and (−1, 1), comprise the monoid N[ε]. We have mapped it into

Z2 here by sending ε 7→ (−1, 1) and 1 7→ (1, 1). . . . . . . . . . . . . . . . . . . . . . 33

5.2 The “fuzz” extending from the ray passing through (1, 1) is coming from the e2

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Projection from a three dimensional cone onto a two dimensional cone. The point

defined by Q→M is the ray through the point (1
3 ,

1
3 ,

1
3 in the Cone(Q) and projects

down to (1
2 ,

1
2) in Cone(P ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 The shaded region is the monoid s(Q) containing P . . . . . . . . . . . . . . . . . . . 40

5.5 The lattice points in the shaded region comprise the maximal submonoid of N + εZ

such that the projection to N is sharp. . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 The “fuzz” extending from the ray passing through (1, 1) is coming from both the

e1 and e2 direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Chapter 1

Introduction

An foundational idea in the study of algebraic geometry is that every commutative ring is

a ring of functions for some space; given a commutative ring A the space for which A is a sheaf

of functions is the prime ideal spectrum Spec(A). Every commutative ring has an underlying

(additive) abelian group structure, and abelian groups are commutative monoids. Furthermore,

any commutative ring has a multiplicative structure which is also a monoid. It turns out that we

can often use monoids to encode the relations that define certain types of commutative rings. More

concretely, given a monoid P , we can form the monoid algebra Z[P ], which is a commutative ring

with generators and relations encoded by P . This defines a functor from the category of monoids

to the category of commutative rings. We can then consider the affine monoid scheme Spec(Z[P ]).

In the event that the cone associated to P is polyhedral – equivalently, if the monoid is fine, sharp,

and saturated – then this monoid scheme will be an affine toric variety. These affine toric varieties

are the building blocks of toric varieties, which are the central objects of study in toric geometry.

Furthermore, the scheme is naturally equipped with a log structure coming from P , and thus it will

be an affine log scheme; these objects are central to the study of log geometry. Thus commutative

monoids underlie these two commonly studied areas within algebraic geometry. Another, more

recently developed, area where monoids are center stage is tropical geometry. A deep connection

between tropical and algebraic geometry can be seen in the Deligne-Mumford compactification of

the moduli space of genus g curves. A theorem of F. Kato ([8]) shows that the moduli space of

stable log curves of genus g is isomorphic to the Deligne-Mumford compactification of the moduli



2

space of genus g curves. Then, in [1], it is shown that there is a one-to-one, inclusion reversing

bijection between the boundary strata of the Deligne Mumford compactification, and the cones

that comprise the generalized polyhedral complex structure on the moduli space of genus g tropical

curves. This is one illustration of the relationship between the dual cones associated to certain

types of monoids (in this case coming from log structures) and the objects of interest coming from

tropical geometry.

There have been many recent developments in studying the geometry of the moduli space

of tropical curves. In [9], the authors propose a Hodge Bundle on the moduli space of tropical

curves. Additionally in [11], the authors construct the tropical Picard group associated to a family

of logarithmic curves. These constructions add to the growing list of correspondences between

algebraic geometry and tropical geometry. However all of the constructions thus far make use

of topologies such as the face topology ([3], Section 2), which are chaotic and consequently not

sufficiently robust to generally show that these moduli problems are algebraic. For instance, in

showing that the moduli space of tropical curves and the tropical Hodge bundle ([9]) have the

structure of a generalized polyhedral complex ([3]), we recognize them as the colimit over a diagram

consisting only of face maps – these are also often referred to as ”Stacky Fans” (e.g. [4]). The

structure of the polyhedral cone complex on the moduli space of curves comes from a natural

polyhedral subdvision that decomposes the cone stack (see [3], Section 3); hence the topological

aspects of our theory do not really add anything to the description of the objects being parametrized

aside from showing that the moduli functor is still a stack in this more refined topology – that the

moduli space of curves is algebraic comes from the natural polyhedral cone complex structure,

which the authors of [3] use to produce a universal curve over the moduli space. However, there are

other situations in studying tropical moduli problems wherein it is of benefit to be ”agnostic” about

the choice of the polyhedral subdivisions – for instance in the case of the tropical Picard group (see

[11]). It is in these situations where the topologies we develop will add something to the story. Our

topologies do not require any sort of choice of polyhedral subdivision, which will hopefully prove

to be a useful perspective when studying the moduli of these tropical objects. Put another way,
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finding a cover of a moduli problem by rational polyhedral cones, in such a way that the cones

pullback along face maps to cones, is the tropical version of showing that the moduli problem is

algebraic – we would like some universal object covering the moduli space that when pulled back

along a morphism is still a cover whatever prescribed type, which in this case is a polyhedral cone

complex, where the gluing information is via face maps. There are situations, again for example

in [11], where the moduli problem is parametrized by a family of algebraic objects, in this case

log schemes, and admits a cover by algebraic objects, but the associated tropical moduli problem

has not yet been shown to be algebraic – the face maps that are used to define the topology often

pullback to subdivided faces and therefore are not comprised of face maps. The issue in these cases

is that the topologies that have been used on the category of rational polyhedral cones are too

chaotic, and there do not seem to be any “obvious” polyhedral subdivisions as there is in the case

of the moduli of curves.

We will be interested in monoids as an avenue to studying tropical geometry. Loosely speak-

ing, a tropical curve is a vertex weighted metric graph, with the metric valued in a commutative

monoid. The category of rational polyhedral cones can be equipped with the face topology. However

the descent data, in showing that the moduli space of curves is a stack over the category of rational

polyhedral cones, end up being trivial as there are no nontrivial covers in the topology. A natural

question arises then what other topologies on the opposite category of commutative monoids there

are, and whether there exist nontrivial covers as well as questions of descent. We propose two such

topologies; much of the intuition for these topologies comes from familiar constructions in algebraic

geometry. In particular, we draw from the constructions of the smooth and étale topologies on the

category of schemes – once we have a notion of infinitessimal motion, we can inspect morphisms

that lift that infinitessimal motion. In section one of chapter 4, we construct two topologies on

the category of integral commutative monoids, the exact and étale topologies, both of which are

subcanonical.

Theorem 1.0.1. The exact and étale topologies on the category of commutative integral monoids
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are subcanonical.

We then go on to show in section 3 of chapter 4 that the moduli space of genus g tropical

curves is a stack with respect to both of these topologies.

Theorem 1.0.2. The moduli space of genus g tropical curves is a stack over the category of

commutative, integral monoids with either the smooth or étale topology.

Some rather special objects that are studied in algebraic geometry – for instance toric varieties

– are built from rational polyhedral cones, which in turn can be realized as the dual cones of

finitely generated, sharp, saturated monoids. The exact and étale topologies, when restricted to

this subcategory of monoids, do not retain the desired descent properties due to issues with torsion

in the associated groups. Hence some tweaks are required. In chapter 5 we construct two other

topologies, the smooth and étale topologies, on the category of sharp, saturated monoids, with

sharp morphisms, and show them to be subcanonical.

Theorem 1.0.3. The smooth and étale topologies on the category of commutative, integral, sharp,

saturated monoids with sharp morphisms, are subcanonical.

The topologies in this article reflect several of the properties that the ring theoretic topologies

by the same name posess. For example, if a morphism of rings A→ B is smooth then the associated

morphism on Kahler differentials ΩA ⊗A B → ΩB is a split injection. We will see in Chapter 5

that an analogous result holds in the case of smooth morphisms of monoids. Additionally, smooth

morphisms of rings étale locally have sections; we will show, also in Chapter (5), that if a morphism

of monoids is formally smooth at a point, then there exists an étale neighborhood of that point

such that the morphism admits a section. Finally valuative monoids will provide for us a notion of

point in the cone associated to a monoid, along with their infinitessimal extensions, much the same

way fields and nilpotent extensions provide analogous notions for the associated scheme to a ring

– our topologies are defined by lifting critera that mimic smooth and étale morphisms of rings.

1



Chapter 2

Background on Monoids

2.1 Properties of Monoids

In this article, by a monoid P we will mean a set with an associative, commutative binary

operation + : P × P → P , which we will call addition, containing an identity element, denoted by

0. A morphism between monoids P → Q is a map of sets that respects the addition operation – i.e.

it is a linear map. Let Mon denote the category of monoids. Let Ab denote the category of abelian

groups. There is a functor (−)gp : Mon → Ab taking a monoid to its associated group, which we

refer to as the groupification of the monoid. The groupification of a monoid is formed by adjoing

an inverse for each element of the monoid. We will say that a monoid P is integral provided the

morphism P → P gp is injective. In the event that P is finitely generated and integral, we will say

that P is a fine monoid. As we will only be working with commutative integral monoids, we will

again use Mon to denote the category of commutative integral monoids, henceforth referred to as

simply “monoids”. Given morphisms M → N and M → P in Mon, the colimit over the diagram

M //

��

N

P

exists in Mon. We denote this object by N ⊕M P , the pushout of N with P over M .

We will say that a monoid M is sharp if the only invertible element of M is the identity.

Denote by M∗ the subgroup of units in M . We may form a quotient M ] = M/M∗; this is a sharp

monoid, which we refer to as the sharpening of M . Sharp monoids form a full subcategory Mon]
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of Mon and the sharpening functor (−)] : Mon → Mon] is left adjoint to the inclusion of sharp

monoids (see [6], Section 1.9 for details). The pushout of sharp monoids may not be sharp, as the

following example illustrates.

Example 2.1.1. Let e1, e2 ∈ Z2 be defined by e1 = (1, 0) and e2 = (0, 1). Then let Q = Ne1 +

N(e2 − 2e1), and Q′ = Ne2 + N(e1 − 2e2). Let P = Ne1 + Ne2. Then we may observe that

P gp ∼= Qgp ∼= Q′gp ∼= Z2. Therefore the pushout Q⊕P Q′ is isomorphic to the sum Q+Q′ taken in

Z2. But this is not a sharp monoid since the element e1 − e2 is invertible.

Therefore to define a pushout in the sharp subcategory Mon] of Mon, we take the pushout

in monoids and apply the sharpening functor.

A monoid P is said to be saturated if, for any x ∈ P gp and n ∈ N, nx ∈ P implies that x ∈ P

– this is akin to saying that P has all nth roots contained in P gp. Saturated monoids form a full

subcategory of Mon, which we denote by Monsat. There is a functor (−)sat : Mon→Monsat taking

a monoid to its saturation – given a monoid P , P sat is formed by adjoining all nth roots in P gp to P .

This functor is left adjoint to the inclusion of Monsat into Mon. The pushout of saturated monoids

will not necessarily be saturated, and hence we define the pushout in the category of saturated

monoids by taking the pushout in Mon and applying the saturation functor.

The units inside of the saturation of sharp monoids will play an important role in this article,

so we provide the following lemma.

Lemma 2.1.2. Let P be a sharp monoid. Then (P sat)∗ is a torsion group.

Proof. We form P sat by adding all of those elements x ∈ P gp for which there exists n ∈ N such that

nx ∈ P . Let x ∈ (P sat)∗. Then nx and −nx are elements of P , which implies that nx ∈ P ∗ = {0}

since P is sharp by assumption.

We can apply the saturation functor followed by the sharpening functor to all monoids in

Mon to obtain a full subcategory (Monsat)] of sharp and saturated monoids. This category has a

pushout defined as follows. Given P → Q and P → Q′ in (Monsat)], the pushout of Q and Q′ over

P is defined by ((Q⊕P Q′)sat)] where Q⊕P Q′ is taken in Mon.



7

To any monoid P , there is an associated functor

Cone(P ) : Monop → Sets

defined by Cone(P )(Q) = Hom(P,Q) for any Q ∈ Mon. Indeed, this is a contravariant functor

since given any morphism P → P ′, we get a morphism Cone(P ′)(Q) → Cone(P )(Q), for any

Q, by precomposition. We will refer to this functor as the dual cone of P . We may then observe

that Hom(P,Q) ∼= Hom(Cone(Q),Cone(P )). This is very much in analogous to the case with

commutative rings, wherein we consider the functors Hom(A,−) = Spec(A) for a commutative ring

A. We then have that Hom(A,B) ∼= Hom(SpecB, SpecA). In the Zariski topology on the category

of commutative rings, these representable presheaves turn out to be sheaves. The pushout of two

commutative rings A and B is the tensor product A⊗ZB, and Spec(A⊗ZB) = SpecA×SpecZSpecA.

Likewise in the case of cones we have that Cone(Q⊕P Q′) = Cone(Q)×Cone(P ) Cone(Q′). These

statements are both proved in the exact same why, by leveraging the convtravariance of the functors

in addition to the universal properties of the pushout and the fibered product.

The monoids we work with are the targets of the metrics that show up in the definition of

a tropical curve as a vertex weighted metric graph (see [3] for more details]). A certain type of

monoid, a valuative monoid, plays a very similar role in the study of monoids and cones as that

of a local ring in the study of commutative rings and schemes.

Definition 2.1.3. A sharp monoid M is said to be valuative if for any x ∈ Mgp, either x or −x is

an element of M .

Sharp morphisms from monoids to valuative monoids are of particular interest; sharp mor-

phisms to valuative monoids tell us the points of the associated cones. Given a morphism of monoids

f : P → Q, we get an associated morphism of cones f∗ : Cone(P ) → Cone(Q). Suppose that Q

is valuative, say Q = N, then the morphism on cones gives a ray Cone(N)→ Cone(P ). Therefore

the collection of all morphisms Cone(M)→ Cone(P ) over all sharp valuative monoids will tell us

all of the points in the dual cone of P . To say that f is sharp is to say that this ray does not land

in any face of the cone Cone(P ), so sharp morphisms to valuative monoids will recover all points
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in the relative interior of the cone.

Example 2.1.4. In the event that P is fine, sharp, and saturated monoid then it suffices, in partic-

ular because P is fine, to consider Hom(P,N) to recover the points of the cone – indeed, N is the

only non-trivial finitely generated valuative monoid. This should be reminiscent of considering all

morphisms of a ring to a field in order to recover the points of the scheme. But then Cone(P )(N)

consists of all non-negative linear functions on P . Since the monoid is also saturated and sharp, this

cone will be polyhedral, and hence is the dual cone of a toric monoid – the cone and the monoid live

in the same ambient vector space. Let x1, . . . , xn be generators for P – inside of an n-dimensional

Q vector space. Then there is a pairing that defines the relations that cuts out Cone(P ) inside

of Qn. For each generator xi we get a face of Cone(P ) defined by the orthogonal subspace x⊥i .

Said differently, we can think of xi as a function and the inequalty xi ≥ 0 defines a half space. We

intersect all of the half spaces to obtain Cone(P ). If P = N2, say with generators x1 = (1, 0) and

x2 = (−1, 1). Then the pairing takes x1 to the ray (0, 1) and x2 to the ray (1, 1). (see for example

[5] or [12]).

Figure 2.1: The monoid (left) and its dual cone (right)

There is an action of P on P gp by p · x = p+ x for any p ∈ P and x ∈ P gp.

Definition 2.1.5. We will say that a partial order ≤ on a set S is weak if when x ≤ y and y ≤ x, it

it not necessarily the case that x = y.

This action of P on P gp induces a weak partial order on P gp. If P is sharp, this weak partial

order is actually partial order on P gp defined as follows. For any x, y ∈ P gp we say x ≤ y provided
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there exists some p ∈ P such that x+ p = y (see [12], (1.1.7)).

Example 2.1.6. Suppose P ∗ 6= {0} and let x ∈ P ∗. Then x+(−x) = 0 so that x ≤ 0 and −x+x = 0

so that −x ≤ 0, which in turn implies that x ≥ 0. Therefore x ≤ 0 and 0 ≤ x but x 6= 0. That

is, non-trivial units are cmparable to zero but are not zero. Hence the partial order in this case is

weak.

We may equivalently define a sharp monoid to be valuative provided the partial order induced

on P gp by P is actually a total order.

Lemma 2.1.7. Let M be a sharp monoid. The following are equivalent:

(i) M is valuative;

(ii) The partial order induced on Mgp, by M , is a total order.

Proof. First assume that M is valuative, and let x, y ∈Mgp. Then x−y ∈Mgp and hence x−y ∈M

or −(x− y) ∈ M by definition of a valuative monoid. Since, under this partial ordering, M is the

monoid of elements that are ≥ 0 in Mgp, it is either the case that x − y ≥ 0 or y − x ≥ 0, that is

either x ≥ y or y ≥ x and hence Mgp is totally ordered.

Conversely assume that the partial order induced on Mgp by M is a total order and let

x ∈ Mgp. Then in particular either x ≥ 0 or x ≤ 0 which is equivalent to saying that x ∈ M or

−x ∈M .

Notice that we did not include the adjective saturated in the definition of a valuative monoid.

This is because a valuative monoid is always saturated.

Lemma 2.1.8. Valuative monoids are saturated.

Proof. Let M be a valuative monoid. Let x ∈Mgp such that nx ∈M for some n ∈ N. Then, since

we can view M as the monoid of non-negative elements under the total order induced from the

action of M on Mgp, we have that nx ≥ 0. It follows that x ≥ 0 and hence x ∈ M , from which it

follows that M is saturated.
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In algebraic geometry, we arrive at the definition of the smooth topology by essentially

abstracting the notion of a submersion from differential geometry, at least in the sense that we

reclver the fact that there is a surjection of tangent spaces. In order to do so, we study all points of

schemes and their infinitessimal extensions. This essentially boils down to studying lifting diagrams

associated to nilpotent extensions. In tropical geometry, while the valuative monoids play a similar

role to local rings, we have a notion that is akin to an infinitessimal extension: relatively valuative

morphisms.

Definition 2.1.9. Let f : P → Q be a morphism of monoids. We say that f is relatively valuative

provided for any x ∈ P gp we have that f(x) ∈ Q if and only if x or −x is in P .

The topologies that we construct are thus based on lifting diagrams associated to these

relatively valuative morphisms. We can see rather easily from the definitions of realtively valuative

morphisms and valuative monoids that any morphism out of a valuative monoid will necessarily be

relativey valuative.

Lemma 2.1.10. Let M be a valuative monoid, P a monoid, and f : M → P a morphism. Then

f is relatively valuative.

Proof. If f(x) ∈ P then x ∈Mgp and hence either x ∈M or −x ∈M since M is valuative.

Following our intuition for lifting of infinitessimal motion in the dual cones, we will restrict

our attention to the case where f is surjective and P is also valuative – we will think of the target

of f as a point of the cone while the source is an infinitessimal extension. We can see this come

out of the case of a surjective morphism from an infinitely generated valuative monoid to a finitely

generated one. It turns out that there is only one isomorphism class of finitely generated valuative

monoids.

Proposition 2.1.11. Any sharp valuative monoid generated by finitely many irreducible elements

is isomorphic to N.
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Proof. Let P be a sharp valuative monoid that is finitely generated, say by x1, . . . , xn. Then since

P gp is totally ordered, we have that xi ≤ xj or xj ≤ xi for each i, j. The xi are each irreducible

elements of P , and hence xi ≤ xj if and only if xj ≤ xi. Therefore, since P is totally ordered we in

fact have that xi = xj for all i, j. It follows that P ∼= N.

Let N[ε] be generated by 1 and 1−nε for all n ∈ N. There is a surjective morphism N[ε]→ N

by ε 7→ 0. Given a commutative diagram

P //

!!

N[ε]

��
N

we have the dual diagram on the level of cones

Cone(P ) Cone(N[ε])oo

Cone(N)

OOgg

where the morphism Cone(N) → Cone(P ) describes a ray inside of Cone(P ) and the morphism

Cone(N[ε]) describes infinitessimal motion inside of the cone of P anchored at the ray defined by

the image of Cone(N). See (5.1.9) for an example and picture of this exact situation. This is the

motivation for the topologies that we develop. We first develop a notion of infinitessimal, and then

ask for covering families to lift this infinitessimal motion.



Chapter 3

Background on Grothendieck Topologies

3.1 Grothendieck Topologies

It is rather unclear what exactly it would mean for a category to actually have a topology

– classical topology is steeped in the theory of sets. However, following Alexander Grothendieck,

we can abstract the properties that we wish a covering family from an topology to have. This

is the idea behind Grothendieck topologies. We only need to understand what it means for some

family of morphisms in a category to be covering, along with some extra compatibility conditions to

ensure that the covers behave in the way that we expect using our intuition from topology – covers

should be stable under base change for example. Consider the example of schemes; the Zariski

topology is far too coarse to allow for things we wish to have from topologies with a good notion of

local neighborhoods, such as homotopy theory for instance. We would like a refinement of this very

coarse topology, and we would like for it to have a good notion of local to global. We should be able

to get after such a thing by finding a way to construct a good notion of a neighborhood of a point.

We can realize the Zariski topology as a Grothendieck topology, at which point it is sensible to ask

for a refinement of the notion of covering coming from that topology. One approach is to define

the étale topology, where a cover in this topology is a family of jointly surjective étale morphisms.

This gives us a much more well behaved notion of a local neighborhood – the étale neighborhoods

are much smaller than Zariski open sets. The étale topology is built from morphisms that uniquely

lift infinitessimal motion, formalized algebraically by square zero extensions of rings.

We will work only with the definition of a pretopology. This will suffice for our purposes of
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studying sheaves, and furthermore we will not have to venture off into a discussion covering sieves.

Definition 3.1.1. Let C be a category that has all fibered products. For any object X of C, we may

define the notion of a covering family {Yi → X}i∈I . These covering families form a Grothendieck

pretopology precisely when the following conditions hold.

• For any object X of C and a morphism Y → X coming from a covering family of X and

any other morphism Z → X for some object Z of C, the fibered product Z ×X Y exists.

• Given a covering family {Yi → X}i∈I of some object X of C, and a covering family family

{Zij → Yi}j∈J for each i, the composition {Zij → X}j∈J forms a covering family of X.

• For any covering family {Yi → X}i∈I of an object X in C, and any morphism Z → X, the

family of morphisms {Z ×X Yi → Z}i∈I is covering.

• Any isomorphism X
∼−→ Y is a covering family.

These four properties are enough to ensure that the covering families will generate a

Grothendieck topology – this is very much like defining a basis of open sets in classical topology,

which then generate a topology when we complete under arbitrary unions, finite intersections, and

complements. To see why we are justified in calling this a topology, we refer to a familiar example.

Example 3.1.2. Let X be a topological space and let Open(X) be the category consisting of objects

as open subsets of X with morphisms given by inclusion, that is U → V is a morphism in Open(X)

provided U ⊆ V . Define a family of morphisms {Ui → V } to be covering provided V =
⋃
i Ui. This

defines a Grothendieck pretopology on Open(X) that generates the topology on X.

This example in part might justify why we should call these topologies. However, in this

example we already have a sort of notion of “neighborhood” coming from the topology that already

exists on the space X. We might wish to pass to different topologies in the event that this notion

of local neighborhood is too coarse. Consider again the example of schemes; the obvious topology

is the Zariski topology. Every affine scheme, and by extension every scheme, comes equipped

naturally with this topology. The Zariski topology can also be realized as a Grothendieck topology
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on the category of schemes, and once we have passed to this abstraction, we may start inspecting

what other types of covering families define topologies and furthermore how the various notions

of covering relate to one another – e.g. the fpqc, fppf, étale, flat, and smooth topologies. The

Zariski topology has a notion of open neighborhood, since there is a notion of open set and a

notion of a point, but the open sets are simply too large to behave as we would expect using

intuition from complex geometry, wherein we have an algebraic and analytic structure. One thing,

for instance, we might hope for is a notion of covering family where the elements in the cover can

be described algebraically, without any reference to analysis, and which give a good enough notion

of neighborhood that we can effetictively pass between the analytic and the algebraic topology. It

turns out that there are approximation theorems for the étale toology regarding tihs very thing, but

there is no hope that the Zariski topology could ever be fine enough to perform such approximations.

Grothendieck topologies give us the necessary tools to talk about descent, which allows us

to talk about sheaves on categories and their cohomology. Sheaves, and their cohomology, are

ubiquitous in algebraic geometry. A presheaf is a contravariant functor from a category to the

category Sets. Let C be a category and let F : Cop → Sets be a presheaf on C. In the event that

C = Open(X) for some topological space X, we can phrase the sheaf condition as follows. For any

object U in Open(X), and any open cover {Vi → U}i∈I of U the sequence

0→ F(U)→
∏
i

F(Vi)→
∏
i,j

F(Vi ∩ Vj)

is exact. Now the intersections Vi∩Vj can be rephrased as the fibered products Vi×U Vj , and hence

we can rewrite this sequence as

0→ F(U)→
∏
i

F(Vi)→
∏
i,j

F(Vi ×U Vj).

This small observation allows us to abstract immediately to the notion of a sheaf on a category

with a Grothendieck topology. Let C be a category with fibered products, and suppose we have a

Grothendieck pretopology defined on C. Then a presheaf F : Cop → Sets is a sheaf provided for
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any object X of C and any covering family {Yi → X}i∈I the sequence

0→ F(X)→
∏
i

F(Yi)→
∏
i,j

F(Yi ×X Yj)

is exact. A particular example of a presheaf that is often of interest is the contravariant functor

represented by an object in C. That is, every functor of the form Hom(X,−) is a presheaf on C.

A property that we often wish a Grothendieck topology to have is that each of these representable

presheaves is already a sheaf. This is something that is common, and desirable, enough that we

give it a name.

Definition 3.1.3. A Grothendieck topology on a category C is said to be subcanonical provided

every representable presheaf is a sheaf.

In the event that we have a subcanonical topology on a category, we can thus identify the

category as the category of sheaves with respect to some topology by the Yoneda embedding, which

takes an object to the functor that it represents X 7→ Hom(X,−). That is, if C is a category with

a Grothendieck topology that is subcanonical, then we get a functor C → Sh(C), where Sh(C) is

the category of sheaves on C. If this functor is an isomorphism then we say that C is a topos.



Chapter 4

Exact and Étale Topologies for Integral Monoids

The exact topology is generated by covering families {M → Ni}i where each M → Ni is

injective and the morphism M →
∏
iNi is exact. The reader might like to think of this as a

tropical analogue to the flat, or smooth, topology on the category of schemes. It is known, by

unpublished work of T. Tsuji (see [14], Section 3), that exact morphisms are stable under pushout

and composition, and hence it seems probable that these families generate a topology, which is

precisely the content of the first main proposition proved in Section 4.1.

Theorem 4.0.1. Exact and Étale covering families each generate a Grothendieck topology on the

category of monoids.

The étale topology is suboordinate to the exact topology. The families that generate the

Grothendieck topology are exact families with the added condition that the associated extensions

of groups are Kummer. A Kummer extension of monoids is characterized by adjoining nth roots,

which is effectively asking for torsion quotients. This is a kind of analogue for the étale topology

on the category of schemes. However, there is a subtle difference in the notion of an étale covering

family of monoids from that of schemes. For schemes, one may first define the notion of an étale

morphism between two schemes, and then ask for a family of étale morphisms to be covering if

that family is jointly surjective; for monoids we define only the notion that the “étale part” of the

family is covering. We do not require the notion of an individual étale morphism between monoids

in order to construct an étale covering family.
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As is the case with schemes, the étale covering families are characterized by a formal lifting

criterion. A valuative monoid is a monoid theoretic analogue to a local ring, and is analogously

used to produce an infinitessimal lifting criterion for being an étale covering family. Studying all

maps of a monoid P into all valuative monoids is effectively studying all possible ways of ordering

P . We will propose a lifting criterion in Section 4.2, where we formalize the following proposition.

Proposition 4.0.2. A family {P → Qi}i is étale covering if and only if it has the lifting criterion

at M for all valuative monoids M .

Given a monoid M , we may consider its associated contravariant functor Hom(M,−) on the

opposite category of monoids; these are the representable presheaves. In section 4.1 we prove that

every representable presheaf is a sheaf.

Theorem 4.0.3. The exact and étale topologies on the category of monoids are subcanonical.

Hence we get an embedding of the opposite category of monoids into the category of sheaves

on the exact site by sending a monoid to the functor it represents. This is reminiscent of the

case with schemes wherein we can construct affine schemes as the representable sheaves on the

Zariski site, and then use descent properties for the topology to glue the representables together

into schemes.

In the article [3], the authors introduce a moduli stack of tropical curves by studying the

functor

Mtrop
g,n : Mon→ Groupoids,

which takes a monoid P to the collection of pairs (P,Γ) where Γ is an n-marked, genus g, tropical

curve over P . In that article, the face topology is utilized on the category of rational polyhedral

cones – so the monoids are all fine, sharp and saturated. We will study the same functor, but

with respect to the exact and étale topologies on the category of monoids. Additionally, a main

difference in this chapter is that we do not require the monoids to be saturated. In section 4.3, we

prove that the moduli space of tropical curves is a stack in both of the topologies.
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Theorem 4.0.4. The functor Mtrop
g,n is a stack in the exact and étale topologies on Mon.

A significant difference between this stack and the one appearing in [3] is that the descent

data is nontrivial, and we can see in the proof how the higher descent data is needed in order to

descend the underlying graph of a tropical curve.

4.1 Exact and Étale Families of Monoids

In this section we will describe exact and étale families of monoids, which we will later show

to be the covering families that generate a Grothendieck topology. We will first define an exact

family of monoids, upon which the definition of an étale family will depend.

A morphism of monoids f : M → N is exact provided (fgp)−1(N) = M . Diagramatically,

this is the same as saying the following diagram is cartesian.

M N

Mgp Ngp

f

fgp

It is always the case that (fgp)−1(N) ⊃M . In the event that M and N are sharp, exactness is the

statement that x ≤ y if and only if f(x) ≤ f(y).

Definition 4.1.1. A morphism f : P → Q is universally exact if for any P → N , the morphism

N → N ⊕P Q is exact.

The category Mon has products, and thus given a family of morphisms {M fi−→ Ni}i, there

is a unique morphism to the product M
(fi)i−−−→

∏
iNi.

Definition 4.1.2. A collection of monoid morphisms {M → Ni}i is said to be an exact covering

family if there exists a subfamily {M → Nij}j such that each M → Nij is injective and (fij )j :

P →
∏
j Qij is universally exact.

An exact family of monoids should be thought of as analogous to a flat or smooth family

of commutative rings or algebras. A Kummer extension of rings is one obtained by adjoining nth
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roots. For monoids we can make a similar definition, which will be required in order to formulate

the notion of an étale covering family.

Definition 4.1.3. A morphism of monoids M → N is called Kummer provided it is injective and

Ngp/Mgp is torsion.

We now are ready to define an étale family of monoids; this should be thought of as something

like an étale family of rings or algebras.

Definition 4.1.4. A family {M → Ni}i is said to be an étale cover provided there is a subfamily

{M → Nij}j such that each M → Nij is injective, the induced morphism on groups Mgp → Ngp
ij

is

Kummer, and (fij )j : P →
∏
j Qij is exact.

Remark 4.1.5. We have only defined the notion of being étale for a family of morphisms. An étale

covering of Cone(N2) by two cones, say Cone(Q1) and Cone(Q2), is shown in Figure 4.1 – the

morphism Cone(Q1) → Cone(N2) is not étale at the face of Cone(Q1) that lies in the relative

interior of Cone(Q2), and conversely. The “étale part” of the collection is covering, as opposed to

each individual subcone being étale.

Figure 4.1: An étale covering of Cone(N2).

We will show that there exists a Grothendieck pretopology wherein a family of maps covering

precisely when it is an exact family. First, we will need some lemmas.

Lemma 4.1.6. Exact morphisms are stable under composition.

Proof. The proof is ommitted in [14, (3.2) (1)], so we present one here. Let f : M → N and

g : N → P be exact morphisms. Then

((g ◦ f)gp)−1(P ) = (ggp ◦ fgp)−1(P ) = (fgp)−1(ggp)−1(P ) = (fgp)−1(N) = M,
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from which it follows that g ◦ f is exact.

Lemma 4.1.7. Étale covering families are stable under pushout.

Proof. Let {M → Ni}i be an étale family and M → P any morphism of monoids. We have the

following diagram

P gp // (P ⊕M Ni)
gp // Ngp

i /M
gp

Mgp //

OO

Ngp
i

//

OO

Ngp
i /M

gp,

and hence P → P ⊕M Ni is Kummer for each i, since Ngp
i /M

gp is torsion by assumption. Further-

more exact families are stable under pushout by definition, completing the proof.

We are now ready to show that both types of families generate a Grothendieck topology on

Mon. We will then show that each is subcanonical.

Proposition 4.1.8. On the category Mon of integral commutative monoids, taking exact covering

families to be covers defines a Grothendieck pretopology.

Proof. Let {M → Ni}i be an exact family, and let M → P in Mon be any morphism. By replacing

the family with the subcollection having the exactness property, we may assume that M →
∏
iNi

is injective and exact. We need to verify the following conditions.

(I) Each of the pushouts Ni ⊕M P exist in Mon.

(II) Exact covers are stable under pushout.

(III) If {Ni → Qij}j is a cover for each i, then the family {M → Qij}i,j induced by composition

is a cover.

(IV) Any isomorphism M
∼−→M ′ is a covering family.

Let N =
∏
iNi, Qi =

∏
j Pij , and Q =

∏
i,j Pij . The pushouts Ni ⊕M P exist for all i as

Mon has pushouts, proving (I). For (II), that {P →
∏
iNi ⊕M P}i is an exact family follows from

the definition of an exact covering family.
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To prove (III), the morphisms M → Qij are injective for all i, j because the composition of

injective morphisms is an injection. Moreover, since pullbacks and products are both limits, they

commute, and hence N → Q is exact. Moreover, N → Q is an exact morphism by hypothesis.

Thus by Lemma 4.1.6, the morphism obtained from the composition M → N → Q is exact showing

that {M → Qij}i,j is an exact family.

Finally, to prove (IV), one simply observes that an isomorphism of monoids {M ∼−→ M ′} is

exact. It follows that exact families define a Grothendieck pretopology.

It the follows immediately that taking étale families to be covers defines a Grothendieck

pretopology.

Corollary 4.1.9. On the category Mon of integral commutative monoids, taking covers to be étale

covering families defines a Grothendieck pretopology.

Proof. Lemma 4.1.7 shows that étale covering families are stable under pushout. Given étale

covering families {M → Ni}i and {Ni → Pij}j for each i, we have the exact sequence of abelian

groups:

0→ Ngp
i /M

gp → P gpij /M
gp → P gpij /N

gp
i → 0.

As Ngp
i /M

gp and P gpij /N
gp
i are both torsion by assumption, it follows that P gpij /M

gp is torsion, and

hence that each M → Pij is Kummer, showing that the family {M → Pij}i,j is étale. Finally an

isomorphism of monoids is étale, and thus étale covering families define a Grothendieck pretopology

on the category of commutative monoids.

We will refer to the topology ex generated by the exact pretopology as the exact topology,

and we refer to the site Monopex as the exact site. Similarly, the topology ét generated by the étale

pretopology will be referred to as the étale topology, and the corresponding site Monopét the étale

site. We now show that each of these topologies is subcanonical.

Theorem 4.1.10. The exact topology on Mon is subcanonical.



22

Proof. Let {M → Ni}i be an exact family. Replace the covering family with the subfamily having

the exactness property. Consider the diagram

M →
∏
i

Ni ⇒
∏
i,j

Ni ⊕M Nj , (4.1.11)

where the morphism M →
∏
iNi is the unique morphism coming from the universal property of the

product, and the morphisms
∏
iNi →

∏
i,j Ni ⊕M Nj from the universal property of the pushout.

For any monoid P , there is the associated sequence

Hom(P,M)→
∏
i

Hom(P,Ni) ⇒
∏
i,j

Hom(P,Ni ⊕M Nj),

the exactness of which will follow from showing that M is the equalizer in (4.1.11).

There is a diagram in the category of abelian groups associated to (4.1.11) obtained by taking

the groupification of each entry in the sequence. This induces the following commutative diagram.

M
∏
iNi

∏
i,j Ni ⊕M Nj

Mgp
∏
iN

gp
i

∏
i,j N

gp
i ⊕Mgp Ngp

j

The bottom row of the diagram is exact because Mgp →
∏
iN

gp
i is injective and Ngp

i ⊕Mgp Ngp
j
∼=

Ngp
i ⊕N

gp
j /M

gp. We will show that M is the equalizer of the top row by leveraging the universal

property of an equalizer. Let P be a any monoid that equalizes
∏
iNi ⇒

∏
i,j Ni ⊕M Nj . Then

P will also equalize
∏
iN

gp
i ⇒

∏
ij N

gp
i ⊕Mgp Ngp

j . As Mgp is the equalizer of the bottom row,

there exists a unique morphism P →Mgp, from which there arises a commutative diagram of solid

arrows:

P

M
∏
iNi

∏
i,j Ni ⊕M Nj

Mgp
∏
iN

gp
i

∏
i,j N

gp
i ⊕Mgp Ngp

j .

Exactness implies that the left square is cartesian from which we obtain a unique dotted arrow

making the diagram commute. It follows that M is the equalizer of the top row in the diagram.
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The following corollary is then an immediate consequence.

Corollary 4.1.12. The étale topology on Mon is subcanonical.

Proof. The étale topology is coarser than the exact topology.

In the topologies generated by the exact and étale coverings, the functors

Hom(M,−) : (Monop)op → Sets

are sheaves. We refer to the functor Hom(M,−) as the cone associated to M , denoted by Cone(M).

4.2 The Lifting Condition

We are able to characterize étale covering families in terms of a lifting condition. This should

be reminiscent of the case with schemes wherein a morphism being étale is equivalent to satisfiying

a formal lifting criterion, plus a minor technical condition (see [2]). In the case of monoids, there

is a very similar situation; the notion of being an étale covering family and that of satisfying some

formal lifting criterion, plus an extra minor technical condition, are equivalent. We will make

precise “some formal lifting condition” after we do so with “extra minor technical condition”; this

extra condition required is that the monoids appearing in the cover be saturated.

Definition 4.2.1. For a family of monoids {P → Qi}i, if P and every Qi is saturated, we will refer

to the family as a saturated family.

Definition 4.2.2. For a family of monoids {P → Qi}i, if P and every Qi is sharp, we will refer to

the family as a sharp family.

Definition 4.2.3. When a saturated or sharp family is étale covering, we will refer to it as a saturated

étale covering family or sharp étale covering family, respectively.

The lifting condition will depend on valuative monoids, and will serve as a sort of valuative

criterion for a family to be étale covering.
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Definition 4.2.4. A family {P → Qi}i of monoids has the lifting property at M if given any

morphism of monoids P →M , there exists some i and a morphism Qi →M making the following

diagram commute:

P //

��

M

Qi

>>

.

We will say that the family has the unique lifting property at M if the lift in the diagram is unique.

The sharp and saturated étale covering families have the lifting property at all valuative

monoids. Before formalizing this as a proposition, we will need the following two lemmas, which

assert that submonoids of a common ambient group containing a valuative monoid are ordered by

inclusion, and that the associated group of a valuative monoid is torsion free.

Lemma 4.2.5. Let M be a valuative monoid and let {Mi}i be a finite family of monoids in Mgp

such that
⋂
Mi = M . Then there exists an i for which M = Mi.

Proof. By induction, it suffices to prove the lemma for the case of two monoids. To this end,

suppose K and L are two submonoids of Mgp such that K ∩ L = M . There exist some, possibly

infinite, families of elements {xi}, {yj} ⊂Mgp such that K = M [x1, x2, . . .] and L = M [y1, y2, . . .].

As M is valuative, Mgp is totally ordered and hence we may adjoin the elements to M in such a

way that xi ≤ xi+1 and yj ≤ yj+1 for all i, j. Then, either there exists some N such that xi ≤ yN

for all i, in which case L ⊂ K, or that for each i there exists a j such that yj ≤ xi, in which case

yj ∈ K for all j and hence K ⊂ L. Therefore M = K or M = L.

Lemma 4.2.6. Let M be a valuative monoid. Then Mgp is torsion free.

Proof. Suppose x ∈ Mgp with nx = 0 for some n ∈ N. We show that x = 0. As M is valuative,

either x ∈M or −x ∈M . Suppose without loss of generality that x ∈M . Then −x = (n−1)x ∈M .

As valuative monoids are sharp, it follows that x = 0.

The unique lifting property should be reminiscent of the formal lifting condition from alge-

braic geometry for being formally étale.
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Proposition 4.2.7. A sharp and saturated family {P → Qi}i in Mon is étale covering if and only

if there is some finite subfamily that has the unique lifting property at all valuative monoids M .

Proof. Suppose that {P → Qi}i is sharp and saturated étale covering family. Replace the family

with the finite subfamily such that P → Qi is injective and Kummer for each i, and P →
∏
iQi is

exact. We may identify P with its image in each Qi. As P is saturated and Qgpi /P
gp is torsion, it

follows that Qgpi ⊂ P gp ⊗ Q. Thus exactness ensures that P =
⋂
iQi in P gp ⊗ Q. Let P → M be

an arbitrary morphism of monoids with M valuative; form the pushout diagram for each i:

P //

��

M

��
Qi // Qi ⊕P M.

We then observe that M =
⋂
iQi ⊕P M . By Lemma 4.2.5 it follows that there exists some i

for which M = Qi ⊕P M , and thus the family has the lifting property at M . Now suppose

that there are two lifts h, h′ : Qi → M . Denote by Li(M) the collection of all lifts Qi → M .

Note that h′ − h : Qgpi → Mgp is identically zero on P gp and hence descends to a morphism

h′ − h : Qgpi /P
gp →Mgp. Thus, given a lift h, we get a map

Li(M)→ Hom(Qgpi /P
gp,Mgp)

h′ 7→ h′ − h.

This map has a two-sided inverse: given ϕ ∈ Hom(Qgpi /P
gp,Mgp), one produces ϕ + h ∈ Li(M).

In order to make sense of ϕ+ h as a morphism Qi →M , we think of ϕ as a morphism Qgpi →Mgp

that kills P gp, and then in order to produce a morphism on Qi, we may simply restrict ϕ|Qi - this

produces a morphism Qi →M that kills P . Thus for any x ∈ P , (ϕ+ h)(x) = ϕ(x) + h(x) = h(x)

which is indeed a lift. It follows that there is a bijection

Li(M) ∼= Hom(Qgpi /P
gp,Mgp), (4.2.8)
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provided Li(M) 6= ∅. Now Mgp is a torsion free group since M is valuative, and hence

Hom(Qgpi /P
gp,Mgp) = 0 because Qgpi /P

gp is torsion. This shows that Li(M) consists of precisely

one element, and hence the lift is unique.

Now suppose that there is a finite, sharp, and saturated subfamily {P fi−→ Qi}i that satisfies

the unique lifting condition for all valuative monoids. As P is sharp and saturated, we may realize

P as the intersection of all sharp valuative monoids that contain P inside of P gp. Indeed, for any

x ∈ P gp, if x ∈ M for every valuative M containing P , then since any morphism P → M ′ to a

valuative monoid factors through P → M , it is the case that the image of x is ≥ 0 in every M ′.

Therefore x ≥ 0 and hence x ∈ P , showing that
⋂
M = P . For each such valuative monoid M

with P ⊂ M ⊂ P gp, there exists some Qi that lifts the inclusion P ↪→ M . Hence P ↪→ Qi ↪→ M

for all such M . It follows then that
⋂
iQi = P ; this shows that P →

∏
iQi is exact.

Finally, we show that P → Qi is Kummer. Observe that each i for which there is a unique

lift at M will have Li(M) = 1, which by (4.2.8) shows that Hom(Qgpi /P
gp,Mgp) = 0. This forces

Qgpi /P
gp to be torsion since Mgp is torsion free, and thus P → Qi is Kummer. It follows that the

family is étale covering.

4.3 The Moduli Space Of Tropical Curves Is A Stack

A tropical curve Γ over a monoid P is a quadruple (G, h,m, d) consisting of a graph G, a

vertex weighting h : V (G)→ Z≥0, a marking m : {1, . . . , n} ∼−→ L(G) of the legs of G, and a metric

d : E(G) → P (for more details, see [3], Section 3). Given a tropical curve Γ, we will denote its

underlying graph by G(Γ). We now may define the main object of study in this section, the functor

Mtrop
g,n : Mon → Sets. Given a monoid P , the set Mtrop

g,n (P ) consists of all n-marked, tropical

curves of genus g over P . Given two tropical curves Γ = (G, h,m, d) and Γ′ = (G′, h′,m′, d′) over

monoids P and P ′, a morphism Γ → Γ′ consists of a morphism f : G → G′ of vertex weighted,

marked graphs, and a morphism of monoids g : P → P ′ such that the following diagram commutes
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G G′

P P ′

f

d d′

g

We will consider the categoryMtrop
g,n (Mon) whose objects are pairs (P,Γ) where Γ is a tropical curve

over the commutative monoid P , and whose morphisms are those defined above. This category is

fibered in groupoids over Mon under the projection (P,Γ) 7→ P .

Given a monoid P and an exact cover {P → Qi}i, consider the exact sequence

0→ P
(fi)i−−−→

∏
i

Qi ⇒
∏
i,j

Qi ⊕P Qj
→→→

∏
i,j,k

Qi ⊕P Qj ⊕P Qk.

Denote by Qij and Qijk the respective pushouts Qi ⊕P Qj and Qijk = Qi ⊕Qj ⊕P Qk.

4.3.1 Proof of Theorem (4.0.4)

Proof. Suppose we are given a curve Γi over each Qi, Γij over each Qij , and Γijk over each Qijk

along with isomorphisms Γi,Γj
∼−→ Γij , and Γij ,Γik,Γjk

∼−→ Γijk, for all i, j, k. Then we need to

produce a curve Γ over P such that (fi)∗Γ = Γi for all i. Let Gi be the underlying graph of each

curve and di the underlying metric. We need to show that we can descend the graph and that we

can descend the metric. We will first show that we can produce a G such that (fi)∗G = Gi for all

i. We can break up the diagram into subdiagrams of the form

Gi //

!!

Gij

""
P

α1

??

α2 //

α3

��

Gj

==

!!

Gik // Gijk

Gk

==

// Gjk

<<

where the solid arrows form a commutative diagram of isomorphisms; we need to show that there

exist dotted arrows – labelled α1, α2, and α3 – making the whole diagram commute. For the sake

of notational simplicity, let us assume that i = 1, j = 2, and k = 3, and label the isomorphisms

βiij : Gi → Gij and γijijk : Gij → Gijk. Choose an automorphism α1 of G, and define the graph
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G = α−1
1 (G1). Then we have an isomorpshim α1 : G → G1. Now define α2 : G → G2 and

α3 : G→ G3 by

α2 = (β2
12)−1β1

12α1 and α3 = (β3
23)−1β2

23α2.

Using the commuataivity of the solod arrows, we have that

γ12
123β

1
12α1 = γ23

123β
2
23(β2

12)−1β1α1 = γ3
123β

2
23α2,

and again the commutativity gives

γ3
123β

2
23α2 = γ13

123β
3
13(β3

23)−1β2
23α2 = γ13

123β
2
13α3.

Hence the αi give isomorphisms G
∼−→ Gi making the whole diagram commute. Therefore the graph

decends.

Each metric di is a map of sets di : E(Gi) → Qi. Since each Qi is a monoid, we may then

think of di as a morphism of monoids NE(Gi) → Qi, where NE(Gi) is the free monoid on the

edges of Gi. But we have already seen that Hom(NE(Gi),−) is a sheaf by (4.1.10), and hence the

metrics descend. Therefore the moduli space of tropical curves is a stack over Mon with the exact

topology.



Chapter 5

Smooth and Étale Topologies for Sharp Saturated Monoids

5.1 Formal Smoothness for Sharp and Saturated Monoids

Just as in algebraic geometry, we think of morphisms of local rings as being geometric when

they are local; we do not want the morphisms to invert elements that were not already invertible.

The analogous notion for monoids is a sharp morphism.

Definition 5.1.1. A morphism f : P → Q of monoids is said to be sharp provided f−1(Q∗) = P ∗.

Remark 5.1.2. Other authors refer to this condition as that of being local (e.g. in [7]), while others

use local to mean that there is an induced isomorphism P ∗ → Q∗ (e.g. in [12]). This distinction

doesn’t matter when working with sharp monoids, since the two notions coincide.

We will work in the category (Monsat)], consisting of sharp, saturated, integral, commutative,

monoids as objects together with sharp morphisms. As illustrated in Example (2.1.1), pushouts

of sharp morphsims are not necessarily sharp. Thus, following unpublished work by W.D. Gillam

wherein he makes the definition of “good pushout”, we make the following definition.

Definition 5.1.3. Let P → Q and P → Q′ be sharp morphisms of monoids. We say that Q and Q′

form an overlapping pair over P when Q→ Q⊕P Q′ and Q′ → Q⊕P Q′ are sharp.

Remark 5.1.4. We will often omit “over P”, and just say that Q and Q′ form an overlapping pair

when it is clear that we are working over P .

Proposition 5.1.5. Suppose we are given sharp morphisms P → Q and P → Q′. Then Q and

Q′ form an overlapping pair over P if and only if there exists some sharp, saturated monoid and a
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commutative diagram

P //

��

Q

��
Q′ // R

such that both morphisms Q→ R and Q′ → R are sharp.

Proof. Suppose that Q and Q′ form an overlapping pair. Then take R = Q⊕P Q′. Conversely sup-

pose that such an R exists creating a commutative diagram as in the statement of the proposition.

Then by the universal property of the pushout, we obtain a morphism Q ⊕P Q′ → R. Since the

morphisms Q→ Q⊕P Q′ and Q′ → Q⊕P Q′ are sharp, it follows that the morphisms Q→ R and

Q′ → R are sharp.

Geometrically speaking, this is saying that the cones do not intersect in a face. That is to

say the monoids Q and Q′ form an overlapping pair if and only if the intersection of the relative

interiors of Cone(Q) and Cone(Q′) is not empty, hence the name.

An overlapping pair of
monoids in Z2

The dual
cones of the overlapping pair.

The very definition of a formally smooth covering family relies on sharp morphisms to valu-

ative monoids. Morphisms to valuative monoids give all points of the assoicated cone, in addition

to infinitessimal motion away from the points. This is much like the case in algebraic geometry,

where we recover all points, in addition to infinitessimal information and specializations, of an

affine scheme by looking at all local morphisms to local rings. Every monoid admits non-trivial
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morphisms to some non-trivial valuative monoid. In particular, a monoid P admits a morphism to

a valuative monoid contained in P gp as the following lemma illustrates.

Lemma 5.1.6. Any sharp, integral monoid P admits a sharp morphism to a sharp valuative monoid

with the same associated group.

Proof. Extend the partial order on P gp to a total order ([10], pg. 387), call it V . Then take the

maximal sharp monoid of non-negative elements inside of V . This will be a sharp valuative monoid

admitting a sharp morphism from P .

By ([12], Lemma 2.2.2), in the event that P is finitely generated, it suffices to take the

valuative monoid whose existence is ensured by the lemma to be N. In fact, up to isomorphism,

N is the only finitely generated valuative monoid ([12], Proposition 2.1.16). What is more, every

sharp morphism to a sharp valuative monoid P → M factors through a sharp valuative monoid

contained in P gp containing P .

Lemma 5.1.7. Let f : P →M be a sharp morphism to a sharp valuative monoid. Then f factors

through P ⊆M ′ for some sharp valuative monoid M ′ contained in P gp containing P .

Proof. The group Mgp is totally ordered by definition of a valuative monoid. Hence the morphism

fgp : P gp → Mgp induces an order on P gp by x ≤ y if and only if f(x) ≤ f(y). Let M ′ be a

maximal sharp monoid inside of (fgp)−1(M) containing P . Then M ′ is a sharp valuative monoid

contained in P gp containing P such that the diagram

M ′

!!
P

>>

//M

commutes, completing the proof.

Let P , Q be monoids and M a valuative monoid, and let P → Q be a morphism of monoids.

The morphism P → Q is said to be formally smooth at Q→M if for any commutative diagram
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P

��   
Q //M,

and any surjection of valuative monoids M ′ →M producing a commutative diagram of solid arrows

P //

��

M ′

��
Q //

>>

M,

there exists a dashed arrow making the diagram commute.

Definition 5.1.8. A family {P → Qi}i is said to be formally smooth covering if for any valuative

monoid M and sharp morphism P →M , there exists an i such that P → Qi is formally smooth at

Qi →M .

Example 5.1.9. There is a way to formalize “infinitessimal motion” in the setting of monoids by

using certain valuative monoids. This infinitessimal motion provides some intuition as to what

geometric condition the formally smooth covering families should satisfy. To build this intuition,

let us work with the dual cones of the monoids. Given a ray lying in the interior of the dual cone

of a monoid, there should be some element of the cover that this ray factors through. Moreover,

infinitessimal motion away from this ray in any direction should factor through this same element

of the cover. For a concrete example, let N[ε] be the submonoid of Z + Z[ε] generated by 1 and

1 − nε for all n ∈ N. We observe that N[ε]gp ∼= Z2. Given any x ∈ Z2 either x or −x will lie in

N[ε], and thus N[ε] is a valuative monoid. Let f : N2 → N[ε] be any monoid morphism. Then,

taking dual cones, we will get f∗ : Cone(N[ε])→ Cone(N2). We need only say what the generators

pull back to under f in order to specify the associated map on cones. Let x1 and x2 be a pair of

generators for N2. Define f by x1 7→ 1 − ε and x2 7→ 1 + ε. Let e1 and e2 be the generators of

the dual cone of N2. In order to describe f∗, we may describe where each of the dual functions ε∗

and (1− nε)∗ gets sent in Cone(N2). We see that ε pulls back to e1 + e2, and 1− nε pulls back to

(n − 1)e1 + (n + 1)e2 for each n. We may envision this as a ray with a little bit of“infinitessimal

motion” in the e2 direction. The ray will pass through (1, 1) since f∗(ε∗) = e1 + e2.



33

Figure 5.1: The lattice points in the shaded region, along with the solid ray along the line passing
through the origin and (−1, 1), comprise the monoid N[ε]. We have mapped it into Z2 here by
sending ε 7→ (−1, 1) and 1 7→ (1, 1).

Figure 5.2: The “fuzz” extending from the ray passing through (1, 1) is coming from the e2 direction.

The collection of morphisms from a monoid P to valuative monoids determines all possible

ways of ordering P . If two elements x, y ∈ P are comparable in the same way, e.g. f(x) ≤ f(y), for

any morphism f to a valuative monoid, then we might expect that x ≤ y. Indeed, this is the case.

Lemma 5.1.10. Let P be a monoid. Let x, y ∈ P . If f(x) ≤ f(y) for all morphisms f : P → M

to all valuative monoids M , then x ≤ y.

Proof. If x = y then there is nothing to show, so suppose that x 6= y and f(x) ≤ f(y) for any

morphism f to a valuative monoid. By (5.1.7), there exists a valuative monoid M and an injective

morphism f : P →M . Therefore f(x) 6= f(y). It follows that x ≤ y since otherwise we would have

f(x) ≥ f(y) and f(x) ≤ f(y) which would then imply that f(x) = f(y) since the associated group

of a valuative monoid is totally ordered.
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It follows immediately from (5.1.10) that formally smooth covering families are exact.

Proposition 5.1.11. Let {P fi−→ Qi}i∈I be a formally smooth covering family. Then the morphism

f = (fi)i∈I : P →
∏
i∈I Qi is exact.

Proof. Let x, y ∈ P such that fi(x) ≤ fi(y) for all i. For any valuative monoid M and any

morphism h : P → M , there exists some i with a morphism g : Qi → M such that gfi = h.

Therefore g(x) ≤ g(y) for any morphism g : P → M for any valuative monoid M . By Lemma

(5.1.10), it follows that x ≤ y and hence f is exact.

Formally smooth covering families also behave nicely with respect to pushouts along sharp

morphisms.

Lemma 5.1.12. Let {P → Qi}i∈I be a formally smooth covering family. Let P → P ′ be a sharp

morphism. Then {P ′ → P ′ ⊕P Qi}i∈I is also a formally smooth covering family.

Proof. Let M be a valuative monoid and P ′ → M a sharp morphism. Then we get a sharp

morphism P →M by composition. By definition of a formally smooth covering family, there thus

exists a commutative diagram

P

  ��
Qi //M

for some i such that for any valuative monoid M ′ with a surjective morphism M ′ → M , and any

sharp morphism P →M ′, there exists a commutative diagram of solid arrows

P

��

//M ′

��
Qi //

==

M

such that the dotted arrow exists making the diagram commute. Now, applying the universal
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property of the pushout to the commutative diagram of solid arrows

P //

��

P ′

��

��
Qi //

,,

Qi ⊕P P ′

$$
M

ensures the existence of the unique dotted arrow making the diagram commute. Again, applying

the universal property of the pushout to the commutative diagram of solid arrows

P //

��

P ′ //

��

M ′

Qi //

44

Qi ⊕P P ′

::

ensures the existence of a unique dotted arrow making the diagram commute. Putting these two

diagrams together gives a commutative diagram of solid arrows

P ′ //

��

M ′

��
Qi ⊕P P ′ //

::

M

such that the dotted arrow exists making the diagram commute. This completes the proof.

Let A → B be a smooth morphism of commutative rings. Then the induced morphism

ΩA ⊗A B → ΩB is a split injection. Recall that for a ring A, ΩA is defined by the following

universal property. Let δ : A → ΩA be the universal derivation. Let M be any A-module and let

D : A→M be a derivation. Then there exists a unique morphism f : ΩA →M such that f ◦δ = D.

That is Hom(ΩA,M) = Der(A,M). Following Quillen (see [13], Section 5.13) we can arrive at this

universal property by considering the category of abelian group objects in the slice category over

a fixed ring A. Let CRng be the category of commutative rings. Let A be a commutative ring

and CRng /A the category of commutative rings over A. For any A-module we can construct an

abelian group object A ⊕M π1−→ A, where (a, x) · (b, y) = (ab, ay + bx) – this is the infinitessimal

extension of A by M . For a given M , the space of sections of π is in bijection with the space of

M -valued derivations Der(A,M), which in turn is isomorphic to Hom(ΩA,M).



36

We can perform a similar construction in the case of monoids. Fix a monoid P and let

Mon/P be the category of monoids with a morphism to P . To define an abelian group object

in Mon/P is to specify an abelian group V and form the direct sum P ⊕ V with the projection

to P . Then sections of this map are just Hom(P, V ) ∼= Hom(P gp, V ); this isomorphism follows

from the fact that a morphism from any integral monoid to an abelian group is determined by its

associated group. This makes clear why we can think of P gp as “ΩP ”. If we are working in the

category of sharp monoids with sharp morphisms, as we have been throughout this chapter, then

the infinitessimal extension of P by a sharp monoid is the maximal sharp submonoid M ′ of P ⊕M

such that the morphism to P induced by π is sharp. Indeed, the sections of this morphism will be

determined by sections of π and hence we still arrive at “ΩP ” = P gp. Thus the following theorem

makes the analogous statement for monoids as we have for commutative rings – that is, a formally

smooth morphism at a point is a split injection on Kahler differentials at that point.

Theorem 5.1.13. Let f : P → Q be a morphism of monoids that is formally smooth at h : Q→M

for some valuative monoid M , let g : P →M defined by g = h◦f , and assume that ggp is surjective.

Then P gp → Qgp is a split injection at Mgp. That is, there exists a commutative diagram of solid

arrows

P gp

fgp

��

P gp

ggp

��
Qgp

<<

hgp //Mgp

and a dotted arrow making the whole diagram commute.

Proof. We will first show that P gp → Qgp is injective. Let g : P → M be a sharp morphism to

a valuative monoid, with P gp → Mgp surjective, and suppose f : P → Q is formally smooth at

h : Q→M . Let g′ : P →M×εP gp by g′(x) = g(x)+εx. Let M be a valuative monoid in M×εP gp

containing the image of P . Then we obtain an induced surjective morphism M ′ →M from ε 7→ 0.
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Therefore the following diagram of solid arrows

P //

��

M ′

��
Q

h //

h′
>>

M

(5.1.14)

commutes, and the dotted arrow exists making the whole diagram commute. Now suppose x 6= y

in P gp. Then g′(x) 6= g′(y) since εx 6= εy. Now, as the diagram commutes we have that h′(f(x)) =

g′(x) 6= g′(y) = h′(f(y)) from which it follows that f(x) 6= f(y).

To see that P gp → Qgp is split at Mgp, we make use of the diagram (5.1.14) again, but

we replace M with a valuative monoid M [ε] in M × εMgp. Let ϕgp : Qgp → M × εMgp by

ϕgp(x) = h(x) + εh(x); let M [ε] be a valuative monoid containing the image of Q under ϕgp.

This defines a morphism ϕ : Q → M [ε]. Now let ψgp : P gp → Mgp × εMgp be defined by

ψgp(x) = ggp(x) + εggp(x). Since h ◦ f = g and f is injective, we obtain a morphism ψ : P →M [ε]

such that ψ = ϕ ◦ f . Finally let π : Mgp × εP gp →Mgp × εMgp by π(x+ εy) = x+ εggp(y). Then

on the level of monoids we get a surjective morphism π : M ′ → M [ε] of valuative monoids. Now

we may observe that

π(g′(x)) = π(g(x) + εx) = g(x) + εg(x) = h(f(x)) + εh(f(x)) = ϕ(f(x)),

from which it follows that we have a commutative diagram of solid arrows

P
g′ //

f

��

M ′

π
��

Q
ϕ //

==

M [ε].

where by assumption, there exists a lift h′ : Q → M ′ making the whole diagram commute. In

particular the diagram commutes on the level of groups, so h′gp : Qgp →Mgp × εP gp satisfies

h′gp(fgp(x)) = g′gp(x) = g(x) + εx.

Therefore h′gp = hgp + εs where s : Qgp → P gp is a section of fgp. Moreover we also have that the

lower right triangle commutes, hence also on the level of groups, which is to say that πgp◦h′gp = ϕgp.
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Therefore

hgp(x) + εhgp(x) = ϕgp(x) = πgp(h′gp(x)) = πgp(hgp(x) + εs(x)) = hgp(x) + ggp(s(x)).

Hence it follows that ggp ◦ s = hgp, which complete the proof.

Remark 5.1.15. The proof of Theorem (5.1.13) shows that the space of all sections of P gp → Qgp

at Mgp is a torsor under the group Hom(Qgp/P gp,K) where K = ker(P gp → Mgp), under the

assumption that P gp →Mgp is surjective, while the space of all sections, without any reference to

a point, is a torsor under Hom(Qgp/P gp, P gp).

As a direct corollary to this lemma, we may observe that formally smooth morphisms have

torsion free quotients.

Lemma 5.1.16. Let f : P → Q be formally smooth at Q→M . Then Qgp/P gp is torsion free.

Proof. By Lemma (5.1.13), the morphism f : P gp → Qgp admits a splitting s : Qgp → P gp.

Therefore Qgp ∼= P gp ⊕Qgp/P gp. Now P and Q are staurated and hence P gp and Qgp are torsion

free. It follows that Qgp/P gp is torsion free.

Example 5.1.17. Let P ∼= Q2
≥0 generated by x1 and x2, and Q ∼= Q3

≥0 generated by y1, y2, and

y3. Define f : P → Q by x1 7→ y1 + y3/2 and x2 7→ y2 + y3/2. Let M = Q≥0. Let g : P → M

by xi 7→ 1/2 and h : Q → M by yi 7→ 1/3. A slice of the associated picture on cones is shown in

figure 5.3. Then we wish to find a section s : Qgp → P gp such that ggp ◦ s = hgp. Now the space

of sections is a torsor under Hom(Qgp/P gp, P gp) ∼= Q2, and hence once we choose a “base point”,

we get an isomorphism of the space of all sections with Q2. Define s0 by y1 7→ x1, y2 7→ x2, and

y3 7→ 0. Then every other section is of the form s0 +α for some α ∈ Hom(Qgp/P gp, P gp). We have

that Qgp/P gp ∼= Q{y3 − 1
2y1 − 1

2y2} and thus every section is of the form:

y1 7→ (1− m

2
)x1 −

n

2
x2

y2 7→ (1− n

2
)x2 −

m

2
x1

y3 7→ mx1 + nx2
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(1,0,0)

(0,0,1)

(0,1,0)

(1,0) (0,1)

(1
3 , 1

3 , 1
3)

(1
2 ,1

2)

Figure 5.3: Projection from a three dimensional cone onto a two dimensional cone. The point
defined by Q → M is the ray through the point (1

3 ,
1
3 ,

1
3 in the Cone(Q) and projects down to

(1
2 ,

1
2) in Cone(P ).

where m,n ∈ Q. We see explicitly the action of Hom(Qgp/P gp, P gp) on the sections here. The

further condition that ggp ◦ s = hgp tells us that m + n = 2
3 . For instance, we can choose m = 1

and n = −1/3, which then gives us the section s defined by y1 7→ 1
2x1 + 1

6x2, y2 7→ 7
6x2 − 1

2x1,

y3 7→ x1 − 1
3x2. The image of s is an enlarged sharp monoid containing P : Notice that if we take

dual cones of the above picture then Cone(S(Q)) is a cone inside of Cone(P ) that has a section

back to Cone(Q).

A particularly useful observation is in order. Let Qi and Qj be any two monoids from a

formally smooth covering family. Let G = (Qi⊕P Qj)gp, the pushout Q1⊕P Q2 being taken in the

sharp and saturated category, and

H = Qgpi ⊕P gp Qgpj
∼= Qgpi ⊕Q

gp
j /P

gp,

the isomorphism coming from general abelian category theory nonsense (see e.g. [2]). Since (Q1⊕P

Q2)gp ∼= Qgp1 ⊕P gp Qgp2 with the pushout being taken in the category of integral monoids, it follows

that in the category of sharp and saturated monoids (Q1 ⊕P Q2)gp ∼= (Qgp1 ⊕P gp Qgp2 )/((Q1 ⊕P

Q2)sat)∗, which by Lemma (2.1.2) says that G = H/Htor. As a corollary to the previous lemma,

we observe that Htor = {0}.

Corollary 5.1.18. With the notation as above, Htor = {0}.
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Figure 5.4: The shaded region is the monoid s(Q) containing P .

Proof. Let x ∈ H such that nx = 0 for some x. Let x be the image of x in the quotient group

H/Qgpi . Then x is still a torsion element, but by Lemma (5.1.16) we have that x = 0. And therefore

x ∈ Qgpi . But Qgpi is torsion free since Qi is saturated. Therefore x = 0, from which the result

follows.

We have another set of isomorphisms that follows immediately.

Corollary 5.1.19. We have the following isomorphisms:

(Qi ⊕P Qj)gp ∼= Qgpi ⊕gp Q
gp
j
∼= Qgpi ⊕Q

gp
j /P

gp.

Proof. Apply the previous corollary to G = H/Htor.

This property of formally smooth covering families will prove to be quite useful when assessing

properties of descent on the category of cones with the formally smooth topology.

5.2 Descent Properties for Formally Smooth Covering Families

This section will be devoted to studying the following diagram of sequences:
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0 // P //

��

∏
iQi

//

��

∏
i,j Qi ⊕P Qj

��
0 // P gp //

∏
iQ

gp
i

//
∏
i,j(Qi ⊕P Qi)gp.

(5.2.1)

It is worth noting that the pushouts in this diagram are being taken in the category of sharp

and saturated integral monoids. In the next section, wherein we will show that taking formally

smooth covering families to be covering forms a topology on the category of sharp saturated monoids

with sharp morphisms, the exactness of the first row of this sequence will imply that the topology

is subcanonical. Indeed, this will show that each functor Cone(P ) represented by P is in fact a

sheaf.

We will constantly be using our geometric intuition to guide our algebraic formulation. Ge-

ometrically, the intersection of cones has a non-empty relative interior precisely when the cones do

not intersect in a face. We formulate this algebraically in terms of overlapping pairs.

Lemma 5.2.2. Assume that P , Q, and Q′ are objects in (Monsat)], P → Q and P → Q′ are

sharp, and P gp ∼= Qgp ∼= Q′gp. Then the following are equivalent:

1) Q and Q′ are an overlapping pair,

2) (Q+Q′)∗ = 0.

Proof. If P gp ∼= Qgp ∼= Q′gp then Q ⊕P Q′ = Q + Q′, taken in P gp. There is a nonzero element

q1 + q′1 ∈ (Q+Q′)∗ if and only if there is some q2 + q′2 ∈ Q+Q′ such that q1 + q′1 + q2 + q′2 = 0 and

hence q1 + q2 is an element of Q that has an inverse in Q′. This is the case if and only if the map

Q→ Q⊕P Q′ is not sharp, and hence if and only if Q and Q′ are not an overlapping pair.

Given a formally smooth covering family {P fi−→ Qi}i∈I , the collection of fi that are injective

is a formally smooth covering subfamily – this follows from Lemma (5.1.7). Moreover, by Lemma

(5.1.16), for any of those fi that are formally smooth at some point Q→M , the quotient Qgpi /P
gp
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is torsion free. Therefore we may assume from this point forward that every fi is injective and

that all of the quotients are torsion free. In particular, this implies that P →
∏
i∈I Qi is injective.

Therefore we only need to prove exactness of the sequence (5.2.1) at
∏
i∈I Qi.

Theorem (5.2.6) contains the formal statement that utimately is the main player in this

section. We will build up to this main theorem in stages. First, note that if we have a two element

family {P → Qi}2i=1 with P gp ∼= Qgp1
∼= Qgp2 , then

(Q1 ⊕P Q2)gp ∼= ((Q1 +Q2)sat)gp/(Q1 +Q2)∗ ∼= P gp/(Q1 +Q2)∗. (5.2.3)

Indeed, the assumption P gp ∼= Qgp1
∼= Qgp2 implies that Q1 ⊕P Q2 is the sum Q1 +Q2 inside of P gp

taken in the integral category, and (Q1 +Q2)gp ∼= P gp + P gp = P gp.

Proposition 5.2.4. Let {P → Qi}i∈I be a formally smooth covering family with P gp ∼= Qgpi for all

i. Then (5.2.1) is exact.

Proof. Applying the isomorphisms Qgpi
∼= Qgpj

∼= P gp for each i and j and equation (5.2.3) gives us

the isomorphisms

(Qi ⊕P Qj)gp ∼= P gp/(Qi +Qj)
∗

for all i and j. Now, the morphism
∏
i P

gp →
∏
i,j P

gp/(Qi + Qj)
∗, coming from the above

isomorphisms and the bottom row of diagram (5.2.1), takes the ith and jth component of x to

xi − xj . Suppose that the image of x under this morphism is 0, that is xi − xj ∈ (Qi +Qj)
∗ for all

i and j.

Consider the relation ∼ on the index set I of the covering family defined by i ∼ j if and

only if (Qi + Qj)
∗ = 0 (Note: the relation is symmetric and reflexive but not transitive; it is not

necessarily an equivalence relation on I). We build a graph Γ out of this relation on the index set

as follows. Include a vertex vi for every element Qi of the covering family. Then include an edge

between vi and vj whenever i ∼ j. To see that (5.2.1) is exact, it will suffice to show that ∼ is

connected, which amounts to showing that Γ is connected. We state this formally in the following

lemma.
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Lemma 5.2.5. With the hypotheses of (5.2.4), the graph Γ is connected.

Proof. Let x ∈ P gp such that x,−x 6∈ P . Choose some monoid Q from the covering family. If for

every x ∈ Q, there does not exist any Q′ in the covering family for which −x ∈ Q′, then Q forms

an overlapping pair with all Q′. If this is the case, then Γ is connected, from which we conclude

that (5.2.1) is exact. Otherwise, there exists some Q′ and some x ∈ Q such that −x ∈ Q′.

Assume that Q′ and x exist. Define the subgraphs Γ+ and Γ− of Γ as follows:

Γ+ = {vi | −x 6∈ Qi}, Γ− = {vi | x 6∈ Qi}.

To say that such Q, x, and Q′ exist is to say that there is some v ∈ Γ+ \ Γ− and v′ ∈ Γ− \ Γ+. In

the event that the graph only consists of one element, then there is nothing to show. Suppose that

the results of (5.2.5) hold when Γ contains up to N vertices. Then suppose that there are N + 1

vertices in Γ . As x,−x 6∈ P , it follows that each of P → P [x] and P → P [−x] is sharp, and hence

both of the families

{P [x]
fi,x−−→ Qi[x]}vi∈Γ+ and {P [−x]

fi,−x−−−→ Qi[−x]}vi∈Γ−

are formally smooth covering by Lemma (5.1.12). Moreover, since each of Γ+ and Γ− is strictly

contained in Γ, we may apply induction to deduce that each of Γ+ and Γ− is connected.

There exists a sharp valuative monoid M , and a sharp morphism fx : P [x,−x]→ M . Since

x,−x 6∈ P by design, the morphism f : P →M is also sharp. Therefore there exists some Qi such

that P → Qi has the lifting property at Qi →M . Let P →Mgp×εP gp be defined by p 7→ f(p)+εp.

Then choose any valuative monoid M ′ ⊆ M × εP gp containing the image of P [x]. This naturally

induces a commutative diagram

P [x] //

��

M ′

��
Qi[x] //

<<

M,

where under the dotted arrow, we will have x 7→ εx. Therefore it must not be the case that −x ∈ Qi

since otherwise −x 7→ −εx under the dotted arrow, but M ′ is sharp which forces the image of x
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to actually be zero. It follows then that −x 6∈ Qi. Likewise, if we repeat this argument with M ′

containing the image of P [−x], then we may conclude that x 6∈ Qi. It follows that vi ∈ Γ+ ∩ Γ−

and hence Γ is connected

It follows from the proof of the lemma that the sequence (5.2.1) is exact.

We may now remove the hypothesis that the ambient groups are isomorphic, and prove that

an arbitrary smooth covering family satisfies descent.

Theorem 5.2.6. Let {P → Qi}i∈I be a formally smooth covering family. Then the sequence

0→ P →
∏
i

Qi ⇒
∏
i,j

Qi ⊕P Qj

is exact.

Proof. For each i, let Q′i = (fgpi )−1(Qi). Then each Q′i → Qi is an exact morphism with (Q′i)
gp ∼=

P gp for all i, and P → Qi factors through P → Q′i for all i, from which it follows immediately that

{P → Q′i}i is a formally smooth covering family. Therefore by Lemma (5.2.4), the sequence

0→ P →
∏
i

Q′i ⇒
∏
i,j

Q′i ⊕P Q′j

is exact. Furthermore, this gives us a morphism of sequences

0 // P //

��

∏
Q′i //

//

��

∏
i,j Q

′
i ⊕P Q′j

��
0 // P //

∏
iQi

//
//
∏
i,j Qi ⊕P Qj .

(5.2.7)

We have isomorphisms Q′gpi
∼= P gp for all i, and (Q′i⊕P Q′j)gp ∼= P gp/(Q′i+Q′j)

∗ for all i, j. For any

formally smooth covering family, the subfamily of injective morphisms is still covering, and hence

we can assume each P → Qi is injective. It is then also the case that
∏
iQ
′gp
i →

∏
iQ

gp
i is injective.

Now, applying the isomorphism (Q′i ⊕P Q′j)gp ∼= P gp/(Q′i +Q′j)
∗ we get morphisms

P gp/(Q′i +Q′j)
∗ → (Qi ⊕P Qj)gp
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for all i and j. Applying the groupification functor to (5.2.7), we obtain the following diagram

0

��

0

��
0 // P gp //

∏
Q′gpi

//
//

h

��

∏
i,j P

gp/(Q′i +Q′j)
∗

h′

��
0 // P gp //

��

∏
iQ

gp
i

//
//

��

∏
i,j(Qi ⊕P Qj)gp

0
∏
i(Qi ⊕Q′i Qi)

gp .

(5.2.8)

By Lemma (5.2.5), for each i there exists some j such that (Q′i + Q′j)
∗ = 0 and hence we obtain

morphisms P gp → (Qi ⊕P Qj)gp for all such i and j. This will be useful in proving the following,

the proof of which we postpone until after the proof of the theorem.

Lemma 5.2.9. The morphism h′ is injective.

Let x = (xi)i ∈
∏
iQi such that xi − xj = 0 in each (Qi ⊕P Qj)gp. From Corollary (5.1.19),

we have

(Qi ⊕P Qi)gp ∼= Qgpi ⊕P gp Qgpi
∼= Qgpi ⊕Q

gp
i /P

gp

for all i. Therefore, by the middle column of (5.2.8) and that Q′gpi
∼= P gp, for each i there is an

exact sequence

0→ P gp → Qgpi → Qgpi ⊕Q
gp
i /P

gp.

Hence xi 7→ 0 ∈ Qgpi /P gp for each i, from which it follows that xi ∈ P gp for all i. Then, since h′

is injective by Lemma (5.2.9), the preimage h′−1(xi − xj) is also zero. As the top row is exact,

we deduce that (fgpi )−1(xi) = x ∈ P gp for all i. Finally, for each i the morphism P → Qi factors

through Q′i, from which we conclude that the bottom row of (5.2.8) is exact.

Consider now the diagram

0 // P //

��

∏
iQi

//

��

//
∏
i,j Qi ⊕P Qj

��
0 // P gp //

∏
iQ

gp
i

//
//
∏
i,j(Qi ⊕P Qj)gp.
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Take any monoid M that equalizes the top row. Then it will also equalize the bottom row producing

a commutative diagram

M

&&

��

!!
P //

��

∏
iQi

��
P gp //

∏
iQ

gp
i

of solid arrows. Since formally smooth covering families are exact by Lemma (5.1.11), the square

is cartesian; hence by the universal property of the fibered product we get a unique dotted arrow

showing that P is the equalizer of the top row, which completes the proof of the theorem.

We now provide the proof of (5.2.9) that was omitted during the proof of Theorem (5.2.6).

Proof of Lemma (5.2.9). Let i and j be a indices such that (Q′i + Q′j)
∗ = 0. Then we have a

commutative diagram of solid arrows

P gp
∼ //

∼

��

Q′gpi

∼

��

� � // Qgpi� _

��

Q′gpi
∼//

��

(Q′i +Q′j)
gp
� t

''
Qgpj

// (Qi ⊕P Qj)gp

with a unique dotted arrow coming from the universal property of the pushout. By [2], Lemma

12.5.13, since the morphism P gp → Qgpj is injective, then so isQgpi → Qgpi ⊕P gpQgpj , and consequently

so is Qgpi → (Qi ⊕P Qj)gp. By commutativity of the diagram, the dotted arrow is the composition

of P gp
∼−→ Q′gpi ↪→ Qgpi ↪→ (Qi ⊕P Qj)gp, which is therefore injective. By Lemma (5.2.5), for every

i there exists a j such that (Q′i +Q′j)
∗ = 0, from which it follows that h′ is injective.

We have effectively shown that taking covering families on (Monsat)∗, with sharp morphisms,

to be formally smooth families generates a subcanonical Grothendieck topology.
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Theorem 5.2.10. On the category (Monsat)] with sharp morphisms, taking covering families to

be formally smooth covering families defines a Grothendieck topology.

Proof. The category (Monsat)] has pushouts, and by (5.1.12) formally smooth covering families

pushout. Furthermore, any isomorphism is a formally smooth covering family. Thus we need only

show that cover compose. Let {P → Qi}i∈I be a formally smooth covering family, and suppose for

each i we have a formally smooth covering family {Qi → Rij}j . Furthermore suppose that we have

a surjection of valuative monoids M ′ →M and, for some i and j, a commutative diagram of solid

arrows

P //

��

M ′

��

Qi

��

==

Rij //

FF

M.

Both dotted arrows exist making each of the respective diagrams commute. Therefore the

lift Rij → M ′ exists making the diagram commute, from which it follows that {P → Rij}i,j is a

formally smooth covering family, completing the proof.

We will call this the formally smooth topology on (Monsat)], and the consequence of (5.2.6)

is that the topology is subcanonical.

Theorem 5.2.11. The formally smooth topology is subcanonical.

Proof. This is the content of Theorem (5.2.6).

5.3 Formally Étale Families of Sharp and Saturated Monoids

In analogy with the definitions of formally smooth and formally étale morphisms of schemes,

if we ask for the lifts appearing in the definition of a formally smooth morphism of monoids to be

unique, we arrive at the definition of a formally étale morphism. Let P and Q be monoids, given



48

with morphisms P → Q, and P → M for a valuative monoid M . We will say that P → Q is

formally étale at Q→M if the diagram

P

��   
Q //M

commutes and for any valuative monoid M ′ with a surjective morphism M ′ → M and any sharp

morphism P →M ′ the following diagram of solid arrows

P

��

//M ′

��
Q //

>>

M

commutes, and there exists a unique dotted arrow making the diagram commute. Just as we did

for formally smooth morphisms, we can extend this notion to a formally étale covering family of

monoids.

Definition 5.3.1. A family of monoid morphisms {P → Qi}i∈I is said to be formally étale if for any

sharp morphism P → M to a valuative monoid, there exists some i such that P → Qi is formally

étale at Qi →M .

Again, we may think of the associated group P gp of a monoid P as the cotangent space to

Cone(P ). Recall from algebraic geometry that if a morphism of rings A → B is étale then it is

the case that B ⊗A ΩA
∼= ΩB. We have the analogous statement in the case of monoids.

Lemma 5.3.2. Let P → Q be formally étale at Q→M . Then P gp ∼= Qgp.

Proof. Let M ′ be a valuative monoid with a surjective morphism M ′ → M , and let P → M ′ be

any sharp morphism such that the diagram of solid arrows

P //

��

M ′

��
Q //

>>

M
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commutes. Denote by L(Q,M ′) the collection of dotted arrows, i.e. lifts, that make the whole

diagram commute. Suppose there is some lift h ∈ L(Q,M ′). Let K = ker(M ′gp → Mgp). Given

any lift h′ ∈ L(Q,M ′) we may produce an element ϕh′ ∈ Hom(Qgp/P gp,K) by ϕh′ = h′ − h. This

morphism has a two sided inverse given by ϕh′ 7→ ϕh′+h. Therefore L(Q,M ′) ∼= Hom(Qgp/P gp,K)

provided that L(Q,M ′) 6= ∅. However by assumption that P → Q is formally étale at Q→ M we

have that L(Q,M ′) = 0 and hence Hom(Qgp/P gp,K) = 0, which implies that Qgp/P gp is a torsion

group since M ′gp is torsion free (M ′ is valuative). By Lemma (5.1.16) Qgp/P gp is torsion free and

hence Qgp/P gp = 0.

Theorem 5.3.3. Let f : P → Q be formally smooth at h : Q→M for some valuative monoid M ,

and assume that ggp : P gp → Mgp is surjective. Then there exists a monoid Q′ such that P → Q′

is formally étale at Q′ →M , Q′ → Q has a retraction, and Q→M factors through Q′ →M .

Proof. By (5.1.13) there exists a retraction s : Qgp → P gp at Mgp. Let Q′ = s(Q). Then Q′

contains P since s is a retraction. Let h′ : Q′ →M be the morphism coming from the composition

of h : Q→M with the inclusion Q′ ⊆ Q′. Then since h = g ◦ s|Q, and h is sharp, it follows that Q′

is sharp. It is clear that s is a section of Q′ ↪→ Q; thus we need only show that P → Q′ is formally

étale at Q′ → M ′. We first note that (Q′)gp ∼= P gp. Let M ′ → M be surjective with M ′ valuative

and such that we have a commutative diagram of solid arrows

P //

��

M ′

��

Q′

>>

��
Q //

FF

M.

The dotted arrow Q→M exists and makes the diagram commute by hypothesis, and hence there

exists an arrow Q′ →M ′ making the diagram commute by composition. However, the set L of lifts

Q′ → M is in bijection with the set Hom(Q′gp/P gp,K) = 0, where K = ker(M ′gp → Mgp), and

hence L = 0 from which it follows that the morphism P → Q′ is formally étale.
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Moreover, it follows immediately that formally étale families generate a subcanonical

Grothendieck topology.

Theorem 5.3.4. On the category (Monsat)] with sharp morphisms, taking covering families to be

formally étale families generates a subcanonical Grothendieck topology.

Proof. The formally étale topology is subordinate the formally smooth topology.

5.4 Formal Infinitessimal Smoothness

We have restricted our attention thus far to sharp morphisms to valuative monoids for the

lifting criterion that defines the formally smooth topology. Geometrically, this gives us a notion

of covering the points that are in the relative interior of the cones. However, we have no way

of addressing whether the faces of the cones are covered in this topology as we have defined it

– another way to phrase this is that we have topologized sharply monoidal spaces, but not fans.

We can move away from sharp morphisms to address the issue of covering the faces of the cones.

However, this requires a bit of a tweak to the notion of an infinitessimal extension that we have

been using to define our topologies thus far. This slightly modified lifting condition recovers the

formally smooth topology if we restrict to sharp morphisms and valuative monoids.

Let M be a valuative monoid. Choose any extension of Mgp by an abelian group V . Let

M ′ be a submonoid of V that contains the maximal submonoid M ′′ of V such that the morphism

M ′′ → M is sharp. Let f : P → Q, h : P → M , and g : Q → M be any morphisms of monoids

such that g ◦ f = h – we are not requiring the morphisms to be sharp anymore.

Definition 5.4.1. With the notation as above, we will say that P → Q is formally infinitessimally

smooth at Q→M provided for a commutative diagram of solid arrows

P //

��

M ′

��
Q //

>>

M

the dotted arrow exists making the whole diagram commute.
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The utility of this lifting criterion is that we can base change to a face of the cone and

consider whether the family is still covering. This was precluded in the original defintion of a

formally smooth family since we were working in the category of sharp and saturated monoids with

sharp morphisms. However, if we restrict ourselves to the case that the morphisms are sharp, then

the notion of being formally infinitessimally smooth coincides with that of being formally smooth.

Proposition 5.4.2. Let f : P → Q, h : P → M , and g : Q → M be sharp morphisms in the

category of sharp, saturated monoids with M valuative and such that g ◦ f = h. Then P → Q is

formally smooth at Q→M if and only if P → Q is formally infinitessimally smooth at Q→M .

Proof. Suppose first that P → Q is formally smooth at Q→M . Let V be an extension of M with

a morphism P → V . Let M ′ be a valuative submonoid of V containing the image of P and such

that the diagram of solid arrows

P //

��

M ′

��
Q //

>>

M

commutes. Then the lift Q → M ′ exists making the whole diagram commute. In particular, the

lift is a sharp morphism and hence the image of Q factors through the maximal submonoid M ′′ of

V such that the morphism M ′′ →M induced from V →M is sharp. Therefore P → Q is formally

infinitessimally smooth at Q→M .

Conversely suppose that P → Q is formally infinitessimally smooth at Q → M . Let M ′ be

any valuative monoid with a morphism P →M ′ and a surjection M ′ →M such that the diagram

of solid arrows commutes

P //

��

M ′

��
Q //

>>

M.

Then the dashed arrow exists because M ′gp is an extension of Mgp and M ′ contains the maximal

submonoid such that the morhpism to M is sharp. It follows that P → Q is formally smooth at

Q→M .
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Example 5.4.3. Let P be the submonoid of Z2 generated by x1 = (1, 0) and x2 = (0, 1), the first

quadrant in Z2. Let M = N, and M ′ the maximal submonoid of N + εZ such that the projection

to N is sharp; M ′ is the submonoid of Z2 generated by 1 + εn for all n ∈ Z, where when viewed as

embedded in Z2, we have that 1 7→ x1 + x2. Let P → N by x1 7→ 1 and x2 7→ 1, i.e. the sum map

(m,n) 7→ m+ n. Then we naturally get a commutative diagram

P //

  

M ′

��
M

where P → M ′ is just the inclusion. In order for the diagram to commute, we can envision M ′ as

sitting inside of Z2, as shown in figure 5.5.

Figure 5.5: The lattice points in the shaded region comprise the maximal submonoid of N + εZ
such that the projection to N is sharp.

On the level of cones, we will have each of the generators x1 + x2 + nε map to 1 in N.

Geometrically, the cone of N will be included inside of the cone of P as the ray through the point

x1 + x2 = (1, 1), and M ′ will sit inside of the cone of P . Each inequality 1 + nε ≥ 0 cuts out a

half plane in the cone of P , and hence the cone of M ′ is the intersection of these half spaces. The

picture of the situation on the level of cones is shown in figure 5.6.

Therefore, the infinitessimal lifting criterion can be viewed as lifting infinitessimal motion on
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Figure 5.6: The “fuzz” extending from the ray passing through (1, 1) is coming from both the e1

and e2 direction.

both sides of a ray inside the interior of the cone. If we base change to a face, i.e. along a mor-

phism that is not sharp, then the infinitessimal motion will “flatten” out onto the face; we are not

permitted to infinitessimally move from a face into the relative interior of the cones. Therefore the

topology of the interior of the cone and topology of the faces are treated separately. This seems a

promising direction for finding a topology that plays well with the algebraic topology (or topologies)

that we use when studying, for example, log geometry. The “anticontiuity” between the algebraic

and tropical perspectives has up until this point caused some problems with attempts at construct-

ing a tropical topology that plays well with algebraic topologies. However, this infinitessimal lifting

topology seems to take care of those issues. See [11] for a discussion on the logarithmic Picard

group and its tropicalization. This very issue of not having a sufficient topology prevents us from

being able to show that the tropical Picard group and tropical Jacobian of a curve are algebraic.

To this point, we have used specific polyhedral subdivisions to show that certain tropical moduli

problems are algebraic (e.g. in [3]), but this requires choosing “the right” polyhedral subdivision –

effectively, we want to produce a universal curve, but this necessitates polyhedral complexes formed

by gluing along face maps to pull back to polyhedral complexes formed by gluing along face maps,

i.e. face maps should pull back to face maps. Thus it might be helpful in certain situations to be

agnostic, in some sense, about a choice of subdivision, e.g. in the case that face maps pull back

to subdivisions of faces. This infinitessimal version of the smooth and étale topologies seems to be

promising in this regard.
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curves. Ann. Sci. Éc Nom. Super., 15:765–809.

[2] The Stacks Project Authors. Stacks project, 2017.

[3] Renzo Cavalieri, Melody Chan, Martin Ulirsch, and Jonathan Wise. A moduli stack of tropical
curves. arXiv:1704.03806v1 [math.AG], 2017.

[4] Melodie Chan, Margarida Melo, and Filipo Viviani. Tropical teichmuller and siegel spaces.
2012.

[5] William Fulton. Introduction to Toric Varieties. Springer, 2000.

[6] W.D. Gillam. Log geometry, 2009.

[7] W.D. Gillam. Fans. 2011.

[8] F. Kato. Log smooth deformations and moduli of log smooth curves. International Journal of
Mathematics, 1999.

[9] Bo Lin and Martin Ulirsch. Towards a tropical hodge bundle, 2017.

[10] Edward Marczewski. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae, 16:186–
189, 1930.

[11] Samouil Molcho and Jonathan Wise. The logarithmic picard group and its tropicalization.
2018.

[12] Arthur Ogus. Lectures on logarithmic algebraic geometry, 2006.

[13] Daniel G. Quillen. Homotopical Algebra, volume 43. Springer, 1967.

[14] Takeshi Tsuji. Saturated morphisms of logarithmic schemes. Research Institute for Mathe-
matical Sciences, 1997.


