Understanding the Connectivity of Heap Objects
Technical Report: CU-CS-923-01 *

Martin Hirzel, Johannes Henkel, Amer Diwan
University of Colorado, Boulder

Abstract

Modern garbage collectors partition the set of heap
objects to achieve the best performance. For exam-
ple, generational garbage collectors partition objects
by age and focus their efforts on the youngest objects.
Partitioning by age works well for many programs
because younger objects usually have short lifetimes
and thus garbage collection of young objects is of-
ten able to free up many objects. However, genera-
tional garbage collectors are typically much less effi-
cient for longer-lived objects, and thus prior work has
proposed many enhancements to generational collec-
tion.

Our work explores whether the connectivity of ob-
jects can yield useful partitions or improve existing
partitioning schemes. We look at both direct (e.g.,
object A points to object B) and transitive (e.g., ob-
ject A is reachable from object B) connectivity. Our
results indicate that connectivity correlates strongly
with object lifetimes and deathtimes and is therefore
likely to be useful for partitioning objects.

*This work is supported by NSF ITR grant CCR-0085792,
an IBM Faculty Partnership Award, and an equipment grant
from Intel. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are the authors’ and do
not necessarily reflect those of the sponsors.

Michael Hind
IBM Research

1 Introduction

Modern garbage collectors partition the set of heap
objects to achieve the best performance. Ideally, a
partition has three properties: (i) objects that are of-
ten accessed at the same time are grouped together in
the same partition (spatial locality) improving mem-
ory system performance; (ii) objects in a partition
can be garbage collected independently of other par-
titions, which helps to avoid the overhead and long
pause times of full collections; and (iii) objects in
a partition die at the same time, which enables a
garbage collector to collect many objects at the same
time. Although age-based partitioning [39, 34], used
in generational garbage collectors, provides the above
properties for the youngest objects, these properties
do not necessarily hold for the older objects [21]. To
alleviate some of the shortcomings of age-based par-
titioning, researchers have proposed many enhance-
ments [4, 10, 11, 24, 43].

Our work explores whether the connectivity of ob-
jects can yield new partitioning schemes or improve
existing schemes. We investigate both direct con-
nectivity (e.g., object O; points to object Os) and
transitive connectivity (e.g., object O; is reachable
from object Os). Using empirical evidence, this pa-
per studies the potential usefulness of partitioning by
connectivity; a collector that exploits partitioning for
connectivity is a subject for future work.

We conducted our research in the Jikes Research
Virtual Machine (RVM)! [1] (compiler [6] and run-
time system) to collect lifetime and connectivity data
for Java programs. Our benchmarks include the
SPECjvm98 suite, the Java-Olden suite, and a num-
ber of other applications including a web server.
Broadly speaking, we investigated three kinds of con-
nectivity: (i) connectivity from the stack (ii) connec-

IThe Jikes RVM is an open source research virtual machine
for Java that was formerly called Jalapeno. It is available at
www.ibm.com/developerworks/oss/jikesrvm.

Page 1

tivity from globals?, and (iii) connectivity in the heap.

Our results indicate that all three kinds of con-
nectivity correlate strongly with object lifetimes and
deathtimes: (i) objects that are reachable only from
the stack are usually shortlived [4]; (ii) objects that
are reachable from globals usually live for most of the
program execution; (iii) heap objects with a pointer
(or path of pointers) between them usually have the
same deathtime. We also discuss an algorithm for
performing partial garbage collections based on con-
nectivity information. We defer implementation and
evaluation of the collector to future work.

The remainder of the paper is organized as follows:
Section 2 introduces terms that we use throughout
the paper. Section 3 explains how we conduct our
measurements, and Section 4 describes our bench-
mark programs. Section 5 presents our results. Sec-
tion 6 distinguishes our contributions from prior work
and Section 7 concludes.

2 Background

From the point of view of a memory manager, a run-
ning program creates new objects and modifies point-
ers in existing objects. A garbage collector traverses
the heap starting from the roots (stack and global
pointers) to determine which objects are unreachable
and collects them. The heap can be viewed as a di-
rected graph, where each object is a node and each
pointer is a directed edge. In these terms, the running
program can be viewed as a mutator that adds and re-
moves edges and creates new nodes. The garbage col-
lector deletes nodes unreachable from the roots along
with their outgoing edges.

A global object graph (GOG) is a graph that has a
node for each object created in a program execution
and a directed edge for each association between two
objects via a pointer in a program execution. The
GOG is the union of the object graphs at all points
in a program execution. Thus, if at one time an ob-
ject O1 points to object Os, and at another time O,
points to object Oz, then the GOG has edges from
O1 to both O5 and Os. Associated with each node of
the GoOG is a birthtime, the time at which the object
was created, and a deathtime, the time at which the
object became unreachable. The lifetime of an object
is the difference of its deathtime and birthtime. We
follow other garbage collection researchers (e.g., [4])
in measuring time in bytes allocated since the start
of the program.

A strongly-connected component (Scc) in the Goa
is a maximal set of objects such that each object in

2We consider static fields of Java classes as global variables.

the Scc is reachable from all other objects in the
Scc [13]. A weakly-connected component (Wca) in
the GOG is a maximal set of objects such that if one
ignores the directions of edges, each object in the
Wcc is reachable from all other objects in the Wcc.
For example, a doubly-linked list is an SCC or part of
a larger Scc, and a tree is a WCC or part of a larger
Wcc or Scc.

Blackburn et al. [4] classify objects by their life-
time and deathtime into shortlived, longlived, and
immortal objects. We extend this definition by fur-
ther classifying immortal objects into quasi and truly
immortal as follows:

e An object that dies at the termination of the
program is truly-immortal.

e Else, if the time from the object’s deathtime to
the termination of the program is shorter than
the object’s lifetime, then the object is quasi-
immortal.

e Else, if the object’s lifetime is shorter than
the threshold T, x high_watermark, the ob-
ject is short-lived (we use T, = 0.2). The
high_watermark is the maximum number of bytes
in reachable heap objects during the program ex-
ecution.

e Else, the object is long-lived.

The motivation for the definition of shortlived as
a fraction of high_watermark is that generational
garbage collectors often reserve a fixed fraction of the
heap for the nursery. In our measurements, we found
the shortlived/longlived distinction to be largely in-
dependent from the precise definition of shortlived.
Ideally, a tracing garbage collector should not expend
any effort on quasi immortal or truly immortal ob-
jects, but focus mostly on shortlived and occasionally
on longlived objects.

Some of our benchmarks, such as SPECjvm9s,
are invoked by harness code that is also written in
Java and executed by the VM. We consider objects
that survive until the termination of the benchmark
proper as truly immortal even if they do not survive
until the termination of the harness.

3 Methodology

Unless stated otherwise, we conducted our ex-
periments using a “BaseBasenoncopyingGC” image
(called “BaseBaseMarkSweep” in version 2.0.0) of
version 1.1 of the Jikes RVM on Linux/PowerPC.

Page 2

This image uses the baseline (non-optimizing) com-
piler to compile both VM and application methods
and uses a mark-and-sweep garbage collector. Using
a mark-and-sweep collector ensures that objects do
not move, and thus the memory address of an object
is a reliable way of identifying it during its lifetime.

To gather the runtime program characteristics re-
quired to build the GoG, we modified the Jikes
RVM [1] to trace the following events:

e The object allocation event identifies the newly
allocated object and its allocation context
(thread and activation record).

e The pointer assignment event identifies the ob-
ject pointed to and the location where the
pointer is stored.

e The deallocation event identifies a dead object.
The garbage collector generates these events.

An object allocation event creates a node in the
GOG and annotates it with birthtime, type, and allo-
cation context. An object deallocation event updates
the deathtime and lifetime of the corresponding ob-
ject. Since the garbage collector generates the deal-
location events, the timings for these events are not
precise: an object reported as dead at garbage collec-
tion n may have become unreachable any time after
collection n — 1. To reduce this imprecision, we per-
form relatively frequent garbage collections, and we
use precise deathtime traces [22] for the set of num-
bers most sensitive to this issue (Section 5.3.4).

There are two kinds of pointer assignment events.
A pointer assignment event where the pointer is
stored into a field of a heap object creates an edge
between two objects if the edge does not already ex-
ist. A pointer assignment event where the pointer
is stored into a global or a stack variable updates
information in the pointed-to object that we use to
determine whether it escapes.

4 Benchmark Programs

Table 1 describes our benchmark suite. Our bench-
mark suite includes the SPECjvmn98 [32] and Java-
Olden [7] suites. Prior work on garbage collection
has also used these programs. In addition, we used
four real-world applications as benchmarks: an XML
database, a web-server, a chat-server, and an XSLT
processor.® The micro-benchmark null consists of an

3The benchmarks are available at
http://systems.cs.colorado.edu/colorado_bench/.

empty main method. The average row in each ta-
ble gives the arithmetic mean of the results for all
benchmarks, except null.

The second column of Table 1 shows the total size
of all class files for each benchmark in KB. The Java-
Olden benchmarks are small, they are kernels illus-
trating a single algorithmic task. The third and
fourth column of Table 1 give descriptions of the
benchmarks and their inputs. The Column “GC in-
terval” shows the number of bytes allocated between
forced garbage collections. We chose GC intervals of
approximately 1/25 of the high watermark in Bytes.

The Jikes RVM is written in the Java programming
language and is self-hosted; it provides its own run-
time services, allocating objects in the same heap as
user data. Thus, the effectiveness of the garbage col-
lector impacts not only the application, but also the
virtual machine. For most of our measurements, we
present two sets of numbers: one for all allocated ob-
jects (including VM and library objects), and one for
just the objects allocated on behalf of the application.
The numbers for all allocated objects are relevant be-
cause VM boot-up and compilation are part of the
program’s execution. The application-only numbers
illustrate the differences between benchmarks.

Table 2 shows some statistics for our benchmarks.
Of the SPECjvm98 benchmarks, compress and mpe-
gaudio do not exercise the garbage collector much.

The “Owner” columns in Table 2 categorize heap
objects into the percentage of total objects that are
allocated (i) in the Jikes RVM boot image, (ii) by the
running VM, and (iii) by the application. The Jikes
RVM boot image contains a memory snapshot of com-
piled core VM classes and their associated objects.
When the VM boots, this file is read and the cor-
responding objects are recreated [2]. Once the Jikes
RVM has booted, we use the allocation site to clas-
sify objects into RVM or application objects. If the
allocation site is within the standard Java library, we
traverse the dynamic chain until we encounter a caller
in the RVM runtime system or the application. For
the larger benchmarks, most of the objects are allo-
cated by the application itself; on the other end of the
spectrum, the synthetic benchmark null intentionally
does not allocate any application objects.

The “Lifetime” columns in Table 2 categorize heap
objects by their lifetime following the definitions in
Section 2. The numbers in parentheses count only
objects where the owner is the application (we use
this convention throughout this paper). The “n/a”
for the null benchmark indicates that the application
does no allocation.

We see that most benchmarks have a high percent-
age of shortlived objects confirming the weak gener-

Page 3

Table 1: Benchmark programs.

Benchmark [Size/KB [Description [Input [GC interval]
null [0.2 [Empty main method, does nothing. [- 553,905]
SPECjvm98
compress 17.4 Modified Lempel-Ziv method (LZW). -s 100 -m1 -M1 1,193,412
db 9.9 Performs database functions on memory resident database. -s 100 -m1 -M1 951,881
jack 127.8 Parser generator, earlier version of JavaCC. -s 100 -m1 -M1 678,956
javac 1909.2 The Java compiler from the JDK 1.0.2. -s 100 -m1 -M1 1,080,090
jess 387.2 Java Expert Shell System. -s 100 -m1 -M1 684,702
mpegaudio 117.3 Decompresses audio files. -s 100 -m1 -M1 789,493
mtrt 56.5 Multi-threaded raytracer. -s 100 -m1 -M1 895,044
Java-Olden
bh 17.3 Solves the N-body problem using hierarchical methods. -b 500 -s 10 591,819
bisort 4.6 Sorts by creating and merging bitonic sequences. -s 100000 588,607
em3d 7.1 Simulates electromagnetic waves propagation in 3D object. -n 2000 -d 100 805,814
health 9.8 Simulates Columbian health care system. -15-t 500 -s 0 559,042
mst 5.8 Computes minimum spanning tree of a graph. -v 50 558,853
perimeter 9.8 Computes perimeter of quad-tree encoded raster images. -116 1,118,846
power 11.2 Solves the power system optimization problem. - 608,275
treeadd 3.1 Adds the values in a tree. -1 20 1,375,696
tsp 5.9 Computes estimate for traveling salesman problem. -c 60000 669,420
voronoi 13.9 Computes Voronoi diagram of a set of points. -n 2048 590,537
Colorado Benchmarks
ipsixql 1986.2 Performs queries against persistent XML document. XQL queries against Shakespeare 689,387
jigsaw 4312.9 W3C’s web-server, reference implementation of HTML 1.1. download of complete contents 1,000,000
nfc 556.0 Chat-server. 10 rooms, 100 users, 100,000 messages 1,000,000
xalan 4200.0 XSLT tree transformation language processor. summarize a Shakespeare play 905,853
Average
average [655.6 | No benchmark, arithmetic mean of all benchmarks but null. | — 825,510 |

Table 2: Benchmark statistics. The owner and lifetime numbers are in percent of allocated objects. The numbers
in parentheses count only objects where the owner is the application.

Benchmark | High watermark Total allocation Owner (%) Lifetime (%)

(bytes) (bytes) (objects) Boot RVM App. Shortlived Longlived Quasi imm. Truly imm.

[Coull 14,109,770 | 14,396,503 106,000 | 764 23.6 00 [24 (n/a) 00 (n/a) 92 (n/a) 884 (u/a) |
compress 27,088,408 | 132,031,724 226,002 | 358 6238 13 | 420 (37.2) 96 (17.1) 00 (2.3) 474 (43.4)
db 23,503,105 | 97,809,266 3,401,539 2.4 32 044 | 87.6 (90.1) 0.1 (0.1) 0.1 (0.1) 122 (9.8)
jack 16,007,838 | 331,031,287 8,194,044 10 127 863 | 966 (97.6) 1.8 (21) 01 (01) 1.6 (0.2)
javac 25,296,557 | 285,631,761 8,228,933 1.0 233 757 | 81.0 (77.0) 135 (17.8) 1.1 (15) 44 (3.6)
jess 17,056,718 | 334,187,450 8,662,674 | 0.0 76 91.4 | 98.0 (99.3) 0.3 (0.3) 0.0 (0.0) 1.7 (0.4)
mpegaudio 16,578,151 35,850,575 380,054 21.3 o 1.0 68.6 (7.6) 0.0 (0.0) 0.0 (0.0) 31.3 (92.4)
mtrt 22,414,466 173,683,581 6,889,168 1.2 2.9 95.9 93.7 (95.1) 0.0 (0.0) 2.2 (2.3) 4.1 (2.6)
bh 14,580,046 | 42,000,870 1,212,320 6.7 51 882 | 884 (955) 12 (1.3) 04 (0.4 101 (2.7)
bisort 14,628,360 | 16,085,265 176,878 | 458 17.2 371 | 11.5 (0.0) 0.0 (0.0) 0.0 (0.0) 88.4 (100.0)
em3d 19,534,225 | 22,101,972 135,804 | 59.6 28.6 11.8 | 21.1 (0.0) 0.0 (0.0) 0.0 (0.0) 78.9 (100.0)
health 16,563,273 38,618,097 1,332,116 6.1 4.0 89.9 82.2 (88.1) 0.5 (0.5) 0.5 (0.5) 16.9 (10.8)
mst 14,254,193 | 15,446,260 124,317 | 652 307 4.1 | 135 (0.0) 0.0 (0.0) 6.0 (0.0) 80.4 (100.0)
perimeter 27,458,366 31,528,263 595,507 13.6 10.3 76.1 8.5 (0.0) 0.0 (0.0) 0.0 (0.0) 91.5 (100.0)
power 14,914,494 38,101,825 912,770 8.9 5.3 85.8 85.1 (94.4) 0.0 (0.0) 0.0 (0.0) 14.9 (5.6)
trecadd 33,644,773 | 35,751,748 1,159,451 7.0 2.6 004 | 1.7 (0.0) 0.0 (0.0) 0.0 (0.0) 98.3 (100.0)
tsp 16,836,300 | 21,583,001 310,056 | 26.0 107 632 | 45.5 (60.7) 0.0 (0.0) 0.0 (0.0) 545 (39.3)
voronoi 14,832,375 | 17,712,879 191,434 | 423 26.1 31.6 | 27.0 (22.2) 0.0 (0.0) 0.1 (0.2) 72.9 (77.7)
ipsixql 17,141,410 | 99,008,400 2,357,562 34 166 800 | 840 (85.7) 67 (84) 19 (24) 7.3 (34
Jigsaw 26,487,443 | 257,452,354 4,280,782 19 68.0 302 | 93.4 (92.2) 0.0 (0.0) 0.0 (0.0) 6.5 (7.8)
nfc 25,643,076 173,637,549 2,154,719 3.8 21.7 74.6 93 3 (99.4) 0.0 (0.1) 0.0 (0.0) 6.7 (0.5)
xalan 22,784,083 123,412,189 1,637,966 4.9 92.5 2.5 5 (87.2) 0.1 (0.9) 0.1 (1.4) 12.2 (10.5)
l average 20,416,555 [110,736,063 2,503,528 [17.1 25.2 57.7 [62.4 (58.5) 1.6 (2.3) 0.6 (0.5) 35.3 (38.6)]

Page 4

ational hypothesis [21]. Few objects are longlived or
quasi immortal but many benchmarks have a signifi-
cant fraction of truly immortal objects. The number
of truly immortal objects is particularly high for the
micro-benchmark null. This is because null allocates
only system objects, and many of these survive un-
til the VM terminates. It may therefore be worth-
while to treat system objects specially in a memory
manager for a VM implemented in Java. A signifi-
cant percentage of application-only objects are also
truly immortal. This is contrary to the strong gener-
ational hypothesis and motivates techniques like pre-
tenuring [20, 4]. For those benchmarks where almost
all objects are truly immortal, never attempting to
collect garbage may be the best approach to memory
management [16].

5 Results

This section presents our results. Section 5.1 inves-
tigates connectivity from the stack, Section 5.2 in-
vestigates connectivity from globals, and Section 5.3
investigates connectivity within the heap.

Modern collectors achieve short pause times by per-
forming partial collections. However, these partial
collections usually require write barriers, which are
expensive. In Section 5.4 we investigate an idea for
how connectivity information can enable safe partial
garbage collections without write barriers.

5.1 Correlation between lifetime and
connectivity from stack

This sections considers two kinds of connectivity from
the stack: objects that are reachable only from the
stack and objects that escape their allocating activa-
tion records or threads.

5.1.1 Objects reachable only from the stack

Given sufficient compiler support, objects pointed
to only by the stack should be relatively cheap to
garbage collect because they are not pointed to by
the heap or global variables. Figures 1(a) and (b)
present data for all objects and only for objects al-
located on behalf of the application, respectively. In
both figures the length of a bar gives the percent-
age of objects that are reachable only from the stack.
Each bar has four segments, for shortlived, longlived,
quasi immortal, and truly immortal objects.

Our results indicate that the benchmarks have a
significant percentage of objects that are pointed to
only from the stack: in 11 of the 22 benchmarks it is

Table 3: Escape rates (in percent of allocated ob-
jects). The numbers in parentheses count only ob-
jects where the owner is the application.

Benchmark [No escape [Stack frame [Thread
10.0 (n/a) [90.0 (n/a) [74.0 (n/a) |

null

compress 10.5 (21.5) | 89.5 (78.5) | 39.4 (4.5)
db 0.8 (0.1) 99.2 (99.9) 2.6 (0.0)
jack 37.2 (39.2) 62.8 (60.8) 1.2 (0.0)
javac 29.7 (37.3) 70.3 (62.7) 1.4 (0.0)
jess 40.4 (43.3) 59.6 (56.7) 1.2 (0.0)
mpegaudio 9.4 (8.3) | 90.6 (91.7) | 24.8 (0.3)
mtrt 82.5 (85.6) 17.5 (14.4) 1.4 (0.0)
bh 211 (452) | 589 (54.8) | 7.0 (0.0)
bisort 6.4 (0.0) | 93.6 (100.0) | 46.3 (0.0)
om3d 14.8 (50.0) | 85.2 (50.0) | 60.6 (0.0)
health 13.8 (14.3) | 86.2 (85.7) | 6.2 (0.0)
st 9.4 (0.0) | 90.6 (100.0) | 66.1 (0.0)
perimeter 2.2 (0.0) | 97.8 (100.0) | 13.9 (0.0)
power 817 (97.0) | 1563 (3.0) | 9.1 (0.0
trecadd 1.0 (0.0) | 99.0 (100.0) | 7.1 (0.0)
tsp 16.2 (66.7) | 53.8 (33.3) | 26.8 (0.0)
voronoi 7.4 (0.1) | 92.6 (99.9) | 44.0 (0.0)
ipsixql 4.0 (2.7) | 96.0 (97.3) 4.2 (0.0)
Jigsaw 26.5 (36.1) | 735 (63.9) | 6.2 (5.9)
nfc 28.2 (26.4) | 71.8 (73.6) | 21.3 (21.7)
xalan 66.6 (18.8) | 33.4 (31.2) | 7.4 (7.5)
[average [26.8(28.2) [73.2 (71.8) [19.0 (2.0) |

higher than 30%. For most benchmark programs, the
majority of these objects are shortlived. If a compiler
can identify allocation sites whose objects do not es-
cape into the heap or globals, these objects can be
allocated in a special area where they can be garbage
collected cheaply.

5.1.2 Lifetime of escaping objects

Recently, there has been much work on escape anal-
ysis [12, 18, 36]. Prior work has used escape analysis
to eliminate synchronization or to allocate objects on
the stack [17, 38]. We investigate whether object es-
capement has any correlation to object lifetime.

Table 3 gives the percentage of objects that es-
cape the stack frame or thread that created them
(the numbers in parentheses consider only applica-
tion objects). An object escapes its stack frame if
it (i) is returned from its allocating method, (ii) is
assigned to a global, or (iii) is assigned to a field of
some other object that is reachable from a caller ac-
tivation record. An object escapes from a thread if
it becomes reachable from a thread other than the
one that created it. The Jikes RVM runtime system
creates threads for garbage collection and finalization
and thus even single-threaded benchmarks may have
thread-escaping application objects.

We see that on average, only 26.8% of all objects
are non-escaping, the rest escape at least their stack
frame, and 19% even escape their thread.

Page 5

0 10 20 30 40 50 60 70 80 90

100

null [T
compress 7\:.
o | ‘ -
ek | 1 DShortived
favac ::I HLonglived
jess |] OQuasi immortal
mpegaudio 7\:| ‘ W Truly immortal
mtrt | 1
bh | ‘ 3
bisort 7:|
em3d 7:|
heaith | .
mst 7:.
perimeter 7E|
power | -
treeadd 7[| ‘
tsp | -
voronoi 7\:|
ipsixql 7|:|
jigsaw | 1
nfc | 1
xalan | ‘ —
average | 1 ']

(a) In percent of all allocated objects.

100

null
compress [
db

\
B Shortlived

BLonglived
OQuasi immortal

jess]
mpegaudio [l W Truly immortal

mirt 1
bh |
bisort
em3d
health 1
mst |

jack]

javac 1

perimeter

power |
treeadd
tsp .
voronoi [T
ipsixql [
jigsaw |

nfc 1
xalan E—

average | |

(b) In percent of objects allocated by application.

Figure 1: Lifetime of objects pointed to only by the
stack. For most benchmarks the longlived and quasi
immortal segments of the bars are nearly empty.

Figure 2 shows the lifetime of objects that escape
their thread. In Figure 2, the length of the bars shows
the percentage of objects that escape their thread.
Each bar is subdivided into four segments, one for
each lifetime bin. Figure 2(a) shows data for all ob-
jects, whereas Figure 2(b) only shows data for the
application objects.

From Figure 2 we see that while escaping objects
are often truly immortal, it is not always true. In
particular, nfc has many objects that escape a thread,
but are shortlived. Since nfc is one of our most realis-
tic benchmarks, we conclude that a garbage collector
cannot ignore thread-escaping objects; indeed many
of them may be shortlived. The intuition for this is
that server applications often use shortlived thread-
escaping objects to communicate between threads.
We found the correlation between lifetime and escap-
ing from the stack to be weaker than the correlation
between lifetime and escaping from the thread.

We repeated the above experiments for our three
multi-threaded benchmarks, mirt, jigsaw, and nfc,
and this time ignored objects that escaped to the
garbage collector thread. While the data changed
slightly, the main conclusions remained the same. For
example, most of the objects that escaped a thread
in nfc remained shortlived.

5.2 Correlation between lifetime and
connectivity from globals

Figure 3 shows the lifetime of objects reachable from
globals. It includes objects that may also be reachable
from the stack or heap. In Figure 3, the length of the
bars shows the percentage of objects reachable from
globals. Each bar is subdivided into four segments,
one for each lifetime bin. Figure 3(a) shows data for
all objects, whereas Figure 3(b) only shows data for
the application objects.

Because global variables exist as long as their
classes exist, we expect objects reachable from glob-
als to be immortal.* Figure 3 confirms our expec-
tations. From Figure 3(a) we see that with the ex-
ception of jack, nfc, and ipsizql, most objects reach-
able from globals are truly immortal. Of these bench-
marks, jack has a relatively small percentage of ob-
jects reachable from globals.

The benchmark ipsizql has a large SccC that is
reachable from globals and is heavily mutated. Fig-
ure 4 demonstrates this pictorially. The horizontal

4With an interprocedural liveness analysis for global vari-
ables, a garbage collector may be able to collect objects even
if they are still reachable from globals [23]. We disregard this
possibility, because we believe interprocedural liveness analysis
for globals is unrealistic for Java programs.

Page 6

100

null
compress
db
jack
javac
jess
mpegaudio
mirt
bh
bisort
em3d
health
mst
perimeter
power
treeadd
tsp
voronoi
ipsixql
jigsaw
U — |
xalan [
average |G

B Shortlived
HLonglived
O Quasi immortal
W Truly immortal

(a) In percent of all allocated objects.

o
=)

20 30 40 50 60 70

80 0

100

null
compress

d |

jack 1

javac 1

jess 1
mpegaudio |
mirt 1

bh

bisort |
em3d |
health |

mst
perimeter 1
power 1
treeadd 1

tsp 1
voronoi |
ipsixql 1
josaw | —
nfc | 1
xalan 7[-

average [

DOShortlived
W Longlived
OQuasi immortal
W Truly immortal

(b) In percent of objects allocated by application.

Figure 2: Lifetime of objects escaping their thread.
For most benchmarks the longlived and quasi immor-

tal segments of the bars are nearly empty.

null
compress
db

jack
javac
jess
mpegaudio
mirt

bh

bisort
em3d
health
mst
perimeter
power
treeadd
tsp
voronoi
ipsixql
jigsaw
nfc

xalan

average

null
compress
db

jack
javac
jess
mpegaudio
mirt

bh

bisort
em3d
health
mst
perimeter
power
treeadd
tsp
voronoi
ipsixql
jigsaw
nfc

xalan

average

30 40 50 60 70 80 90 100

@ Shortlived
HLonglived
O Quasi immortal
W Truly immortal

30 40 50 60 70 80 90

100

OQuasi immortal
W Truly immortal

—

e

(b) In percent of objects allocated by application.

Figure 3: Lifetime of objects reachable from globals.
For most benchmarks the longlived and quasi immor-
tal segments of the bars are nearly empty.

Page 7

100000

10000 9

1000 B

SCC size [objects]

100 - 1

| ! I I I I I I
10MB 20MB 30MB 40MB 50MB 60MB 70MB 80mMB 90MB
allocation time after booting

Figure 4: Sccs in ipsizql.

axis gives time in bytes allocated. The vertical axis
(in log scale) gives the size of an SCC in number of ob-
jects. There is one curve for each Scc with at least
two objects. A point (z,y) on a curve, C', means
that at time x, Scc C has size y objects. Figure 4
shows that ipsizql has one very large SCC and several
smaller ones. Although many of the objects in the
largest Scc die together at the end of the program,
significant parts of the SCC are continuously replaced
with newly allocated objects. This large SccC is part
of a cache that stores faulted objects.® The atypical
behavior of this large SCC dominates the behavior of
ipsizql, and among other things destroys the correla-
tion between lifetime and reachability from globals.
In addition, we will see in Section 5.4 that ipsizql in-
curs a significant write barrier overhead.

In summary, we see that for all benchmarks (ex-
cept for jack, nfe, and ipsizql) there is a strong corre-
lation between reachability from globals and lifetime.
A generational garbage collector could exploit these
observations by eagerly promoting objects reachable
from globals to old generations.

5.3 Correlation between lifetime and
connectivity from heap

In this section we consider several kinds of heap con-
nectivity. We investigate how likely it is for objects
that are connected by a pointer to have the same
deathtime (Section 5.3.1) and whether the popularity
of objects is related to their lifetimes (Section 5.3.2).
Next, we investigate how likely it is for transitively
connected objects to have the same deathtime (Sec-

5Because sources for ipsizql are not available our observa-
tions are based on the output of a decompiler, and thus are
somewhat speculative.

tion 5.3.3), and we conclude by evaluating how sensi-
tive these same-deathtime results are to our method-
ology of tracing with frequent garbage collections
(Section 5.3.4).

5.3.1 Linked objects

This section explores the deathtime of directly-linked
objects. First, we look at how often objects are modi-
fied. Consider a program that repeatedly modifies an
object O such that a field in O points to one of many
different objects at different times. In this case, we
can expect O’s deathtime to be largely unrelated to
the deathtime of objects that O points to. If, on the
other hand, the program modifies few objects after
initialization, then we can expect a significant corre-
lation between the deathtime of connected objects.

We view the first non-null assignment to an object
field as “initialization”, and we view subsequent non-
null assignments to the same field as “mutations”.
Column “Mutated” of Table 4 gives the percentage
of all allocated heap objects that are mutated during
program execution. The numbers in parentheses are
the percentage of objects allocated by the application
that are mutated during program execution. Table 4
shows that programs do not mutate the majority of
objects, and thus, the lifetimes of linked objects are
likely to be related.

Column “Write barrier” of Table 4 gives the over-
head of the write barrier for our benchmark program
runs. We omit timing data for jigsaw and nfc because
they are interactive. Write barrier overheads are mea-
sured using a Jikes RVM (v2.0.2) FastSemispace im-
age on a 1 processor PPC/AIX machine. The write
barrier is implemented as a sequential store buffer.
Because the Jikes RVM is written in the Java pro-
gramming language, the overheads include the execu-
tion of the application, VM, and optimizing compiler
at its default optimization level (1).

Table 5 investigates the correlation between direct
object connectivity and object deathtimes. Column
“O1 — O9” of Table 5 gives the probability that two
adjacent objects in the GOG have the same death-
time. We see that for many programs the probability
is nearly 100%. In contrast, column “Any pair” gives
the probability that any two possibly unlinked objects
in the program die at the same time. We compute
this value by considering all pairs, both linked and
unlinked. We see that in most cases, the probabil-
ity that linked objects die at the same time is much
higher than the probability of any two objects dying
at the same time.

Column “O; — O3, O1 mutated” in Table 5 gives
the probability that two objects, O; and Oz, have

Page 8

Table 4: Mutation rates in % of allocated objects
and write barrier overheads in % of total execution
time. In the mutation rates, the numbers in paren-
theses consider only objects where the owner is the
application.

Benchmark [Mutated [Write barrier ‘

[null | 186 (n/a) | 158 |
compress 10 5 (8.0) 3.9
db 7 (0.0) 1.5
jack 0 (4.2) 5.7
javac 18 2 (23.4) 19.4
jess 3.5 (3.3) 8.1
mpegaudio (3.8) 3.4
mtrt 1.2 (0.9) 4.3
bh 7 (4.5) 1.2
bisort 29 8 (50.0) 6.6
em3d 14.8 (0.0) 2.0
health 16.4 (16 6) 1.0
mst 16.2 (1.3) 2.6
perimeter 3.5 (0) 1.2
power 2.2 (0.0) 0.1
treeadd 1.7 (0.0) 6.0
tsp 27.5 (33.3) 10.9
voronoi 33.8 (73.2) 5.2
ipsixql 1.7 (0.4) 19.8
jigsaw 4.1 (6.4)
nfc 14.6 (17.6) -
xalan 2.0 (2.5) 324

l average ‘ 10.5 (11.9) ‘ 7.6

Table 5: Pairs of objects with same deathtime (in
percent of pairs of objects with given connectivity).
The numbers in parentheses count only objects where
the owner is the application.

Benchmark Any pair 01 — O O1 — Oa,
O1 mutated ‘
[null 79.5 (n/a) [965 (n/a) [97.7 (n/a) |
compress 22.8 (19.5) | 95.5 (63.9) | 96.8 (44.2)
db 2.0 (21) | 227 (19.7) | 125 (0.6)
Jack 03 (0.3) | 541 (46.4) | 191 (5.2)
javac 0.7 (0.9) | 66.1 (65.8) | 70.4 (68.7)
Jess 0.2 (0.3) | 63.6 (58.6) | 90.1 (89.0)
mpegaudio | 10.0 (83.6) | 94.8 (74.8) | 94.6 (43.8)
mtrt 07 (0.7) | 77.3 (71.2) | 75.9 (57.6)
bh 26 (23) | 893 (87.0) | 71.0 (51.1)
bisort 78.0 (100.0) | 98.9 (100.0) | 99.6 (100.0)
em3d 63.7 (100.0) | 99.1 (100.0) | 97.7 (100.0)
health 14 (31) | 114 (95) | 47 (3.6)
mst 66.2 (100.0) | 96.1 (100.0) | 96.6 (100.0)
perimeter 84.0 (100.0) | 99.3 (100.0) | 96.0 (n/a)
power 3.8 (2.8) | 96.3 (100.0) | 97.8 (n/a)
trecadd 96.6 (100.0) | 99.4 (100.0) | 97.7 (n/a)
tsp 27.9 (15.7) | 98.2 (100.0) | 99.4 (100.0)
voronol 147 (38.0) | 80.1 (82.7) | 85.3 (78.9)
Tpsixal 13 (1.3) | 79.1 (79.3) | 75.8 (25.2)
Jigsaw 0.8 (1.6) | 889 (83.6) | 92.1 (85.9)
nfc 1.0 (0.8) | 75.7 (68.9) | 69.5 (64.0)
xalan 2.2 (21.9) | 94.3 (93.2) | 94.2 (82.5)
[average | 245 (33.1) | 80.4 (76.4) [78.1 (6L.1) |

the same deathtime given that O; points to Os and
O, is mutated. For 14 of the 22 benchmarks (19 of
22 benchmarks when looking at the application-only
numbers), these probabilities are lower than the ones
in column “O; — O5”.

Tables 4 and 5 show that for many benchmarks
there is both a high probability that objects are not
mutated and that objects linked by a pointer have the
same deathtime. However, for some programs, such
as db, we see that even though it has a low mutation
rate (0.7%), it also has a relatively low probability
of linked objects dying at the same time (22.7%). In
other words, a low percentage of modified objects is
no guarantee for a high correlation of deathtimes of
connected objects. Apparently, even though db modi-
fies only few objects, the modifications happen in key
places and thus have a big impact on the deathtimes
of linked objects.

A garbage collector can exploit these results by
clustering linked objects together. Since on average
linked objects have a 80.4% probability of dying at
the same time, the garbage collector will be able to
free up many objects at once.

5.3.2 Incoming pointers

This section investigates whether there is a correla-
tion between the popularity of an object and its life-

Page 9

time. A popular object is one that is pointed to by
many other objects [24].

We counted the number of objects pointed to by at
least two other heap objects. For most benchmarks,
fewer than 40% of the objects had at least two prede-
cessors. We also looked at the lifetime distribution of
objects pointed to by at least two other heap objects.
The distribution varied widely: in some cases, most
of these objects were shortlived, while in other cases
most of these objects were truly immortal. Because
of space constraints we do not present the results in
detail.

To conclude, we saw little correlation between the
popularity of an object and its lifetime.

5.3.3 Sccs and lifetime

Table 5 suggests that direct connectivity is usually,
but not always, a good indicator of deathtime. In
this section we consider more global notions of con-
nectivity: strongly and weakly connected components
(Sces and Wcecs, Section 2).

Column “In nontriv. Scc” in Table 6 shows the per-
centage of objects that belong to Sccs with at least
two objects in the global object graph. On average,
only a minority of objects are members of nontrivial
Sces.

Column “Same ScC” in Table 6 gives the probabil-
ity that two objects in the same Scc have the same
deathtime. Column “Same Wcc” in Table 6 gives
the probability that two objects in the same Wcc
have the same deathtime. The numbers in parenthe-
ses consider only objects allocated by the application.
Since an ScC implies stronger connectivity, we ex-
pected that the probability would be higher for an
Scc than for a Wcc.

Table 6 shows that for many programs there is a
high probability that objects in the same Scc die
together. For many benchmarks the probability for
two objects in an SCC having the same deathtime
is greater than the probability of two linked objects
(Table 5) having the same deathtime. A garbage col-
lector could exploit these observations by designating
any object in an SCC as the key object [21], the object
whose death likely coincides with the death of other
objects connected to it. Thus, when that object dies,
there is a good chance that the rest of the Scc is also
garbage.

5.3.4 Trace granularity

For most of the numbers in this paper we analyzed
traces with three kinds of events: object allocation
events, pointer assignment events, and deallocation

Table 6: Column “In nontriv. Scc” shows objects
in non-trivial Sccs (in percent of allocated objects).
Columns “Same ScC” and “Same WcC” show pairs of
objects with the same deathtime (in percent of pairs
of objects in the same Scc or Wcc, respectively).
The numbers in parentheses count only objects where
the owner is the application.

[Benchmark [In nontriv. Scc [Same SCC [Same Wce]
[null [13.0 (n/a) T 99.8 (n/a) [95.4 (n/a) |
compress 9.8 (13.5) 99.4 (100.0) | 25.7 (64.6)
db 0.6 (0.0) | 995 (100.0) | 2.2 (2.0)
Jack 04 (0.0) | 99.0 (100.0) | 0.5 (0.3)
javac 15.1 (19.0) | 341 (34.0) | 1.3 (2.6)
joss 0.7 (0.0) | 949 (19.3) | 0.2 (0.3
mpegaudio | 8.7 (82) | 99.1 (100.0) | 10.4 (99.1)
mtrt 0.6 (0.2) 99.5 (100.0) 21.8 (23.1)
bh 141 (0.0) | 99.6 (100.0) | 285 (5.4)
bisort 8.0 (0.0) | 99.8 (u/a) | 87.7 (100.0)
em3d 197 (74.9) | 99.8 (100.0) | 71.5 (100.0)
health 144 (146) | 467 (46.3) | 62 (4.7)
mst 13.9 (50.9) | 99.8 (100.0) | 76.8 (100.0)
porimeter | 78.8 (100.0) | 100.0 (100.0) | 96.6 (100.0)
power 1.7 (0.0) 99.7 (n/a) | 64.1 (100.0)
trecadd 12 (0.0) | 99.8 (n/a) | 99.9 (100.0)
tsp 25.7 (33.3) | 100.0 (100.0) | 87.3 (100.0)
voronoi 37.0 (91.5) 42.6 (39.2) | 56.6 (38.0)
ipsixql 46.9 (56.5) 1.3 (1.3) 1.3 (1.3)
Jigsaw 5.0 (31) | 81.6 (638) | 1.2 (3.2)
nfc 9.6 (10.8) 19 (08) | 1.5 (0.8)
xalan 2.6 (2.0) | 99.0 (98.6) | 9.5 (26.0)
[(average | 144 (22.8) | 808 (72.4) | 35.8 (46.3)]

events (see Section 3). To obtain the deallocation
events, we performed frequent garbage collections. In
our traces, all objects that become unreachable be-
tween collection n and collection n+1 die at the time
when collection n + 1 happens. Thus, our traces are
granulated: deathtimes are not precise, but rounded
up to a multiple of the GC interval (rightmost column
in Table 1).

Until recently, the only known way to get pre-
cise deathtime traces (not granulated traces) was
to perform a garbage collection at every allocation
(e.g. [34]), which is prohibitively expensive. Recently,
Hertz et al. proposed the Merlin algorithm [22] that
generates precise deathtime traces much faster than
the brute force method. When we used Hertz’s pre-
cise deathtime traces to regenerate our results we
found that it made a significant difference in the same
deathtime numbers (Tables 5 and 6) but not in the
classification of objects by lifetime into shortlived,
longlived, quasi immortal, and truly immortal.

Table 7 shows how using granulated traces inflated
the numbers in Tables 5 and 6. To obtain the num-
bers in Table 7, we recomputed the numbers in Ta-
bles 5 and 6 using precise deathtime traces. Then, we
subtracted the numbers based on precise deathtime
traces from the numbers based on granulated traces.

Page 10

Table 7: Over-estimation of numbers in Tables 5 and
6 due to granulated traces.

Benchmark Any 01 — O2 01 — Oa, Same Same
‘ pair O mutated ‘ Scc Wcece ‘
compress 7.7 7.2 3.6 0.0 1.9
db 1.3 16.0 —1.0 0.0 1.3
jack 0.3 7.9 3.6 0.0 —0.3
javac 0.4 23.2 27.7 0.7 0.5
jess —0.3 43.3 14.0 18.3 —0.3
mpegaudio 6.0 4.5 1.8 0.0 0.6
bh 2.3 1.4 6.5 0.0 5.1
bisort 0.0 0.0 0.0 n/a 0.0
em3d 0.2 2.4 100.0 0.0 —0.1
health 2.2 5.4 3.0 0.5 1.9
mst 2.1 2.2 5.8 0.0 2.0
perimeter 0.0 33.3 n/a 0.0 0.0
power 2.7 0.0 n/a n/a 0.0
treeadd 0.0 0.0 n/a n/a 0.0
tsp 4.6 0.0 0.0 0.0 0.0
voronoi 8.8 12.3 13.4 8.5 8.8
[average [23] 9.9 | 13.7] 2.1] 1.3]

We report these differences for application objects
only. Since Merlin cannot yet trace multithreaded
programs, Table 7 does not contain the results for all
the benchmarks. Merlin’s inability to handle multi-
threaded programs is also the reason why we do not
use precise deathtime traces throughout the paper.

As expected Table 7 shows that granulated traces
inflate the same deathtime numbers, i.e. most entries
are greater than zero. (Since our precise and granu-
lated traces use different runs and different versions
of the Jikes RVM, there is some noise in our data
leading to a few negative numbers.) The following
table juxtaposes (a) the average number of pairs of
application objects with the same deathtime based
on granulated traces (last rows in Tables 5 and 6)
and (b) the average over-estimation in these numbers
(last row in Table 7).

Any | O1 — Os 01 — 0o, Same | Same

pair O1 mutated | Scc | Wcce

(a) | 33.1 76.4 61.1 72.4 46.3
(b) | 23 9.9 137 21| 13

From this table we see that even though the likeli-
hood of two linked objects having the same deathtime
is lower by 9.9% (on average) with precise traces than
with granulated traces, our basic results still hold. In
other words, the likelihood of linked objects or ob-
jects in the same SccC having the same deathtime is
much higher than the likelihood of two random ob-
jects having the same deathtime.

5.4 Partial collections with clustering
by connectivity

A partial garbage collection processes only a part of
the heap, as opposed to a full garbage collection that

processes the entire heap. For example, generational
garbage collectors frequently collect the younger ob-
jects (where most objects are likely to be dead) with-
out collecting the older objects. Partial collections in
a generational collector, however, use potentially ex-
pensive write barriers. Table 4 gives the overhead of
write barriers in percent of total execution time. We
see that write barriers are often expensive, account-
ing for 7.6% of program execution time on average.
Prior work confirms these findings [37]. Fitzgerald
and Tarditi [16] did experiments where generational
collectors “... did poorly on benchmarks that had
low collection costs and high write barrier costs. For
those benchmarks, the cost of the write barrier was
higher than the reduction in collection cost”.

We hope to use connectivity information to avoid
write barrier overhead even for partial collections.
Our approach is based on Harris’s algorithm in [19].
Harris’s algorithm starts by incrementally building a
type graph at class loading time in a Java system.
The type graph has an edge from type 17 to T if
T1 has a field that can point to an object of type T5.
He then collapses all strongly connected components.
The collapsed graph is a directed acyclic graph, and
he calls each of the collapsed nodes a partition. For
a partition Pj, we define ancestors(Py) = {Py | Py —
Py} as the set of partitions from which P; is reachable
in the partition DAG.

Harris uses these partitions for incremental collec-
tion. However, we observe that they can also be
used for performing partial garbage collection with-
out write barriers. For example, consider partitions
without any incoming edges. Objects in these parti-
tions (i.e. instances of classes in the partition) can be
garbage collected without scanning any other parti-
tions. To collect a partition with incoming edges, say
P, the garbage collector needs to look only at the ob-
jects in ancestors(Py). This is similar to generational
collection in that a partition with no incoming edges
is analogous to the youngest generation and a parti-
tion at depth d in the DAG is analogous to generation
d.

To use the above scheme for efficient partial collec-
tions, two properties must hold. First, the number
of objects in the ancestors must be small for most
partitions, otherwise we will end up having to collect
a good part of the heap at every partial collection.
Second, the objects that are close to the roots should
be the most profitable to collect since they are the
easiest to collect. We now present data for each of
the requirements. Figure 5(a) gives the number of
objects in the ancestors of the partition of each ob-
ject in a benchmark program. To generate this graph
we weighed the partition DAG with the live objects

Page 11

in each partition at a particular snapshot in program
execution. A point (z,y) in Figure 5(a) means that
y objects are in partitions whose ancestor sets have
sizes of at most 2% of all live objects. We see that
most objects require the garbage collector to look at
about 59% of the total objects at that point. As
Harris observes, these numbers are high because Java
does not yet support generic types and thus container
data structures have fields of type Object (and can
therefore point to all objects). Stronger static analy-
sis (or a language with generic types) may yield better
results.

Figure 5(b) presents the same graph as Figure 5(a)
except that it uses optimal partitioning: for each ob-
ject, it reports how many other objects reach it in the
snapshot used for Figure 5(a). Figure 5(b) thus gives
an upper bound on the quality of partitioning with
a stronger analysis than type-based analysis. Figure
5(b) shows that at least in the optimal scenario, all
objects can be garbage collected by examining only
about 18% of the objects.

Figures 5(a) and (b) present data measured on
snapshot object graphs. This is equivalent to sam-
pling the objects that happen to be alive at one par-
ticular point in time; such a sample will overempha-
size longlived, quasi immortal, and truly immortal
objects. Thus, it may be the case that for shortlived
objects a garbage collector may need to look at many
fewer objects than 59%.

Figure 6 shows the average number of objects from
which each object can be reached in the global ob-
ject graph. Figure 6(a) presents data for all objects
and Figure 6(b) presents data for application objects
only. The length of the bars is the average number
of objects with a path to an object on a logarith-
mic scale. There are four bars for each benchmark,
one per lifetime bin. We see that the bars for short-
lived objects are usually the shortest (we have ex-
plained the exceptional behavior of ipsizql in Section
5.2). That is encouraging because it means that to
garbage-collect shortlived objects, we do not have to
look at too many other objects. This data also sug-
gests that Figures 5(a) and (b) are overly pessimistic
since they are based on snapshots which will be biased
towards longer-lived objects.

6 Related Work

We now summarize relevant work on understand-
ing object behavior, generational garbage collection,
other relevant memory management schemes, and es-
cape analysis.

6.1 Understanding object behavior

Barry Hayes described and tested the weak and
strong generational hypotheses [21]. The weak gen-
erational hypothesis states that “newly-created ob-
jects have a much lower survival rate than older ob-
jects” [21]. The strong generational hypothesis states
that “even if the objects in question are not newly
created, the relatively younger objects have a lower
survival rate than the relatively older objects” [21].
He found that even though the weak generational hy-
pothesis is often true, the strong generational hypoth-
esis is usually false. He goes on to describe key object
opportunism, where the assumption is that connected
objects die together and this can be exploited by col-
lecting a data structure when its root dies. We pro-
vide supporting evidence for this claim and explore
the correlation of different kinds of connectivity with
lifetime.

Stefanovi¢ and Moss [35] explore the age distribu-
tion of objects. They collect their data by garbage
collecting frequently. Unlike our work, Stefanovi¢ and
Moss do not empirically relate age behavior to con-
nectivity.

Dieckmann and Hélzle [14] measure the distribu-
tion of object lifetimes, sizes, and types and the refer-
ence density (fraction of fields that contain pointers)
for the SPECjvm98 benchmarks. They focus on traits
inherent in individual objects, whereas we study con-
nectivity between various objects and how it corre-
lates with lifetime.

Shuf et al. [31] study the cache and TLB behav-
ior of the SPECjvm98 benchmarks and pBOB. They
use the Jikes RVM to trace high-level heap accesses
and then use a simulator to correlate cache and TLB
misses with object sizes and layouts.

6.2 Generational garbage collection

There has been significant prior work on collectors
that partition objects by age [26, 27, 39, 25, 42]. The
most common of these collectors are generational col-
lectors. Generational collectors generally have poor
performance if a significant number of objects do not
obey the generational hypotheses.

Prior work has proposed many variations and en-
hancements to generational collectors. Objects that
are expected to live long can be pretenured [40, 4].
Pretenuring avoids having to repeatedly copy objects,
but it typically requires profile information. Wilson
et al. [43] describe an alternative to the breadth-first
Cheney copying used in most garbage collectors [9].
Wilson’s scheme groups an object with its immedi-
ate children and thus hopefully improves the spatial

Page 12

live objects

450000

400000 mtrt
= = javac

db

350000

]
jack
——mpegaudio
300000

HelloWorld

250000

200000

150000

100000

50000 / I
[
0

0 10 20 30 40 50 60 70 80 920
% live objects to be traced

(a) Number y of objects that are reachable from at
most 2% of the live objects, where reachability is
based on static type information.

jects

live ob)

450000

400000

350000 +—

mitrt
= = = javac
db
jess
jack
'mpegaudio
compress
HelloWorld

300000

250000

200000

150000

100000

50000

0 10 20 30 40 50 60 70 80 90
% live objects to be traced

(b) Number y of objects that are reachable from at
most % of the live objects, where reachability is
based on the actual pointers in the heap.

Figure 5: Reachability in snapshot of heap.

locality of data accesses. Chilimbi and Larus [11] de-
scribe an enhancement to generational garbage col-
lection for improving data cache behavior.

Our results point at several possibilities for improv-
ing generational garbage collection. For example, our
results suggest that moving an object near its con-
nected objects is often a good idea since connected
objects have a similar deathtime. Thus, connectivity
information may give us the benefits of pretenuring
and locality optimizations without requiring profile
information. We will explore improvements to gener-
ational collection based on connectivity information
in future work.

6.3 Segregating objects by criteria

other than age

Region-based memory management can be viewed as
an alternative to both explicit memory management
and garbage collection. Allocation sites are anno-
tated such that they allocate objects into separate re-
gions. Deallocation points are determined statically,
but the granularity of deallocation is an entire re-
gion, not an individual object. The annotations can
either be performed automatically (for functional lan-
guages) based on a program analysis [38], or manually
by the programmer [17].

Contaminated garbage collection does a runtime
analysis to track the lowest activation record (the one
closest to the bottom of the stack) from which an ob-
ject is reachable [8]. Objects are only collected when

the activation record associated with them is popped.
In some ways, this technique can be thought of as a
runtime region analysis.

If there is an ownership relation between two ob-
jects such that the owned object dies before the
owner, and if the owned object has a fixed size, it
may be inlined into the owner [15].

In contrast to generational collection, the above
techniques segregate objects by deathtime (at some
granularity) rather than by age. Using our connec-
tivity results we hope to bring some of the benefits of
segregation by deathtime to generational collection.

Harris [20] describes a variation of Baker’s Tread-
mill collector [3] that segregates objects by connec-
tivity and types. Section 5.4 discusses his paper in
more detail.

Memory managers often segregate objects by
size [5] or even by type [30], which enables some im-
plicit bookkeeping of an object’s location, instead of
explicitly storing additional information.

Seidl and Zorn [29] segregate objects based on their
memory access behavior in the context of an explicit
deallocation system. The segregation improves local-
ity and reduces the active working set. We expect
that organizing objects based on their connectivity
will have similar benefits with respect to memory sys-
tem performance.

Page 13

1.E+00 1.E+01 1.E+02 1E+03 1E+04 1E+05 1.E+06 1.E+07

1.E+08

null
compress
db

jack

javac

jess

mpegaudio

O Shortlived

M Longlived
OQuasi immortal
W Truly immortal

mtrt

bh

bisort

em3d

health
mst
perimeter
power
treeadd

tsp

[1
voronoi |

ipsixql

jigsaw

nfc

xalan

1E+00 1.E+01 1.E+02 1E+03 1E+04 1.E+05 1E+06 1.E+07 1.E+08

null

compress
db

jack

javac

jess

mpegaudio I
mirt

bh

R

O Shortlived

M Longlived

O Quasi immortal
M Truly immortal

bisort

em3d

mst

[
perimeter

power

treeadd I

tsp

[1
VOronoi ¢

*—'—'

ipsixql

jigsaw

nfc

xalan

average

Figure 6: Average number of objects from which each object can be reached in the global object graph.

Page 14

6.4 Escape analysis

If the lifetime of a data structure ends before the rou-
tine that allocated it returns and the size of the data
structure is bounded, it can be allocated on the stack
instead of the heap. Analyses that try to determine
these properties of objects are called escape analyses
[12, 28, 18, 41, 36]. Some escape analyses focus on
objects that escape a thread (e.g., [33]). Our escape
behavior numbers help judge the potential benefit of
escape analyses for garbage collection.

7 Conclusions

This paper explores object connectivity and its rela-
tionship with object deathtime and lifetime. We clas-
sify connectivity into three categories: (i) connectiv-
ity from stack variables; (ii) connectivity from global
variables; and (iii) connectivity from heap objects.
We consider both direct connectivity (e.g., object O
points to object O3) and transitive connectivity (e.g.,
object Oj is reachable from object Os).

Our results demonstrate that many kinds of con-
nectivity correlate strongly with object deathtime or
lifetime. More specifically, we find that (i) objects
that are reachable only from the stack are usually
shortlived; (ii) objects that are reachable from glob-
als are usually quasi immortal or truly immortal; and
(iii) objects that are connected via pointers (directly
or transitively) usually die at the same time. Since
our infrastructure (Jikes RVM) uses the same heap
as the application, we present results for both all ob-
jects (including objects created on behalf of the Jikes
RVM) and application objects (objects created on be-
half of the application only).

In summary, our results provide valuable informa-
tion on object behavior, which should be useful in
both improving existing collection algorithms and de-
signing new collection algorithms.

Acknowledgements

We thank Matthew Hertz for his help with tracing
methodology. We thank David Bacon, Perry Cheng,
Kathryn McKinley and the anonymous reviewers for
their insightful comments.

References

(1]

(2]

(3]

[4

(5]

(6]

(7]

8]

(0]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapefio virtual machine. IBM Systems
Journal, 39(1), 2000.

B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F.
Hummel, D. Lieber, T. Ngo, M. Mergen, J. C. Shepherd,
and S. Smith. Implementing Jalapefio in Java. In Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 1999.

H. G. Baker, Jr. The Treadmill: Real-time garbage collec-
tion without motion sickness. In OOPSLA 91 Workshop on
Garbage Collection in Object-Oriented Systems, 1991. Also
appeared in SIGPLAN Notices, March 1992.

S. Blackburn, S. Singhai, M. Hertz, K. S. McKinley, and
J. E. B. Moss. Pretenuring for Java. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOP-
SLA), 2001.

Weiser.

CH+.

H. Boehm, A. Demers, and M.
A garbage collector for (@] and
http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

M. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. Serrano, V. C. Sreedhar, and H. Srinivasan. The Jalapeno
dynamic optimizing compiler for Java. In ACM Java Grande
Conference, San Francisco, CA, June 1999.

B. Cahoon. Java-Olden benchmarks.
ali.cs.umass.edu/ cahoon/olden.

http://www-

D. Cannarozzi, M. Plezbert, and R. Cytron. Contaminated
garbage collection. In Programming Languages Design and
Implementation (PLDI), 2000.

C. J. Cheney. A non-recursive list compaction algorithm.
Communications of the ACM (CACM), November 1970.

P. Cheng, R. Harper, and P. Lee. Generational stack collec-
tion and profile-driven pretenuring. In Programming Lan-
guages Design and Implementation (PLDI), 1998.

T. Chilimbi and J. Larus. Using generational garbage col-
lection to implement cache-conscious data placement. In In-
ternational Symposium on Memory Management (ISMM),
1998.

J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOP-
SLA), 1999.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. MIT press, 1990.

S. Dieckmann and U. Hélzle. A study of allocation behavior of
the SPECjvm98 Java benchmarks. In European Conference
for Object-Oriented Programming (ECOOP), 1999.

J. Dolby and A. Chien. An automatic object inlining op-
timization and its evaluation. In Programming Languages
Design and Implementation (PLDI), 2000.

R. Fitzgerald and D. Tarditi. The case for profile-directed
selection of garbage collectors. In International Symposium
on Memory Management (ISMM), 2000.

D. Gay and A. Aiken. Memory management with explicit
regions. In Programming Languages Design and Implemen-
tation (PLDI), 1998.

D. Gay and B. Steensgaard. Fast escape analysis and stack

allocation for object-based programs. In Compiler Construc-
tion (CC), 2000.

Page 15

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

T. Harris. Early storage reclamation in a tracing garbage
collector. ACM SIGPLAN Notices, April 1999.

T. Harris. Dynamic adaptive pre-tenuring. In International
Symposium on Memory Management (ISMM), 2000.

B. Hayes. Using key object opportunism to collect old objects.
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1991.

M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley,
and D. Stefanovié. Error-free garbage collection traces: How
to cheat and not get caught. In ACM SIGMETRICS, 2002.

M. Hirzel, A. Diwan, and A. Hosking. On the usefulness of
liveness for garbage collection and leak detection. In European
Conference for Object-Oriented Programming (ECOOP),
2001.

R. Hudson and E. Moss. Incremental collection of mature ob-
jects. In International Workshop on Memory Management,
St. Malo, France, September 1992.

R. Jones and R. Lins. Garbage collection: Algorithms for
automatic dynamic memory management. John Wiley &
Son Ltd., 1996.

H. Lieberman and C. Hewitt. A real-time garbage collec-
tor based on the lifetime of objects. Communications of the
ACM (CACM), 1983.

D. Moon. Garbage collection in a large Lisp system. In Lisp
and functional programming, 1984.

E. Ruf. Effective synchronization removal for Java. In Pro-
gramming Languages Design and Implementation (PLDI),
2000.

M. Seidl and B. Zorn. Segregating heap objects by reference
behavior and lifetime. In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 1998.

Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh. Exploit-
ing prolific types for memory management and optimizations.
In Principles of Programming Languages (POPL), 2002.

Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Character-
izing the memory behavior of Java workloads: A structured
view and opportunities for optimizations. In SIGMETRICS,
2001.

Standard Performance Evaluation
tion (SPEC). SPECjvm98
http://www.specbench.org/osg/jvm98.

Corpora-
benchmarks.

B. Steensgaard. Thread-specific heaps for multi-threaded pro-
grams. In International Symposium on Memory Manage-
ment (ISMM), 2000.

D. Stefanovié¢, K. McKinley, and E. Moss. Age-based garbage
collection. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 1999.

D. Stefanovi¢ and E. Moss. Characterization of object be-
haviour in Standard ML of New Jersey. In Lisp and func-
tional programming, 1994.

A. Salcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. In Principles and Practice of Par-
allel Programming (PPOPP), 2001.

D. Tarditi and A. Diwan. Measuring the cost of storage man-
agement. Lisp and symbolic computation, 1996.

M. Tofte. A brief introduction to regions. In International
Symposium on Memory Management (ISMM), 1998.

D. Ungar. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. In Practical Soft-
ware Development Environments, 1984.

[40]

[41]

[42]

[43]

D. Ungar and F. Jackson. An adaptive tenuring policy for
generation scavengers. Transactions on Programming Lan-
guages and Systems (TOPLAS), 1992.

F. Vivien and M. Rinard. Incrementalized pointer and escape
analysis. In Programming Languages Design and Implemen-
tation (PLDI), 2001.

P. Wilson. Uniprocessor garbage collection techniques. Ac-
cepted for publication in ACM Computing Surveys.

P. R. Wilson, M. S. Lam, and T. G. Moher. Effective ”static-
graph” reorganization to improve locality in garbage collected
systems. In Programming Languages Design and Implemen-
tation (PLDI), pages 177-191, Toronto, Canada, 1991.

Page 16

