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In this paper we give a classification of parallel branch and bound algorithms and develop a class of asyn-
chronous branch and bound algorithms for execution on an MIMD system.

We develop sufficient conditions to prevent the anomalies that can occur due to the parallefism, the asyn-
chronicity or the nondeterminism, from degrading the performance of the algorithm. Such conditions were
known already for the synchronous case. It turns out that these conditions are sufficient for asynchronous
algorithms as well. We also investigate the consequences of nonhomogeneous processing elements in a
parallel computer system.

We introduce the notions of perfect parallel time and achieved efficiency to empirically measure the effects
of parallelism, because the traditional notions of speedup and efficiency are not capable of fully characteriz-
ing the actual execution of an asynchronous parallel algorithm.

Finally we present some computational results obtained for the symmetric traveling salesman problem.
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1. Introduction

There always is a need for more powerful computers. On one hand we want to solve problems fas-
ter than can be done now, on the other hand we want to solve problems which are too big for the
computers we have today.

Under the traditional model of computation, in which a single processing element performs all tasks
sequentially, it is no longer possible to realize significantly more powerful computers. This is due to
the fact that in order to execute an instruction, data have to be transferred from one place in the
computer to another. Such a transfer cannot be done at a speed greater than the speed of light.
Some of today’s computers are approaching this upper bound.

To be able to build still more powerful computers, a new model of computation had to be developed.
In this new model several processing elements cooperate in executing a single task. The idea behind
this model is that a task can be split into subtasks which are independent of each other and therefore
can be executed in parallel. This type of computer is called a parallel computer.

As long as it is possible to split a task into subtasks in such a way that the length of the biggest

subtask continues to decrease and as long as there are enough processing elements to execute all these
subtasks in parallel, the computing power of a parallel computer is unlimited.
However, in real life these two conditions cannot be fulfilled. Firstly, it is impossible to divide each
task in an arbitrary number of independent subtasks. There will always be a number of dependent
subtasks which must be executed sequentially. Hence the time needed for executing a task in parallel
has a lower bound. Secondly, each parallel computer which has actually been built has a fixed
number of processing elements. As soon as the number of tasks exceeds the number of processing
elements, some of the subtasks have to be executed sequentially and the parallel computer can realize
at the most a speed up by a constant factor.

Branch and bound algorithms solve discrete optimization problems by partitioning the solution
space. Throughout this paper we will assume that all optimization problems are posed as minimiza-
tion problems and that solving a problem means finding a feasible solution with minimal value. If
there are many such solutions, it does not matter which one is found.

A branch and bound algorithm decomposes the problem into smaller subproblems by splitting the
solution space into smaller subspaces. Each subproblem thus generated is either solved or proved not
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to yield the optimal solution to the original problem and eliminated. If, for a given subproblem, nei-
ther of these two possibilities can be realized immediately, the subproblem is decomposed into smaller
subproblems again. This process continues until all subproblems generated are either solved or elim-
inated.

For most algorithms it holds that the work involved in executing the algorithm is fairly well known
in advance. The exact work to be done depends only in a minor way on the particular problem
instance on hand. There are even algorithms for which the work to be done is completely indepen-
dent of the problem instance on hand, for example, adding or multiplying two fixed length integers.
Unfortunately, for branch and bound algorithms the work to be done during execution is heavily
influenced by the particular problem instance on hand. Without carrying out the actual execution it
is often impossible to obtain a good estimate of the work involved.

Next to that, the way the work is organized also influences the work to be done. Each successive step
to be performed during the execution of a branch and bound algorithm depends on the knowledge

~ obtained thus far. The use of another search strategy or the branching from several subproblems in

parallel can result in a different knowledge obtained, and thus in a different order in which the sub-
problems are branched from. Without making additional assumptions, nothing can be said about
how these changes will influence the actual execution. The total amount of work done can even
increase or decrease by an arbitrary factor [Ibaraki 1976, Lai & Sahni 1984].

Note that in the sequential model of computation an increase in computing power only influences
the speed of the execution of a branch and bound algorithm. The work involved remained exactly the
same, it was only done faster. However, if the computing power of a parallel computer is increased
by adding additional processing elements, the execution of the branch and bound algorithm (i.e. the
oréer in which the subproblems are branched from) changes implicitly. Therefore, solving discrete
optimization problems as fast as possible with a parallel computer is not just a case of increasing the
computing power of the parallel computer, but also of developing good parallel algorithms.

In this paper we develop a class of asynchronous parallel branch and bound algorithms. Section 2
gives a brief description of sequential branch and bound. Section 3 gives a brief description of paral-
lel computers and algorithms and proposes a way to measure the effects of the use of parallelism.
Section 4 describes how to parallelize branch and bound algorithms and gives a classification of these
parallel algorithms. Section 5 is devoted to the investigation of sufficient conditions to prevent the
parallelism from degrading the execution of a parallel branch and bound algorithm. It turns out that
the conditions already known for the synchronous case are also sufficient for the asynchronous case.
Sections 6 through 9 report on our experiments solving symmetric traveling salesman problems. Sec-
tions 6 and 7 describe the computer system we used and the algorithm we developed. Section 8 con-
tains the computational results. Finally, section 9 states our conclusions. It turned out to be possible
to get a nearly perfect speedup.

2. Branch and Bound

A branch and bound algorithm can be characterized by four rules: a branching rule defining how to
split a problem into subproblems, a bounding rule defining how to compute a lower bound on the
optimal solution of a subproblem, a selection rule defining which subproblem to branch from next and
an elimination rule stating how to recognize and eliminate subproblems which cannot yield the
optimal solution to the original problem.
The concept of heuristic search provides a framework to compare all kinds of selection rules, for
example depth first, breadth first or best bound [Ibaraki 1976]. In a heuristic search a heuristic func-
tion h is defined on the set of subproblems. This function governs the order in which the subprob-
lems are branched from. The algorithm always branches from the subproblem with the smallest
heuristic value.
The elimination rule can consist of three tests for eliminating subproblems. Firstly, the lower bound
test: A subproblem can be eliminated if its lower bound is greater than or equal to the value of a
known feasible solution. Secondly, the feasibility test: a subproblem can be eliminated if it can be
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proven not to have a feasible solution. Finally, the dominance test: a subproblem which is dominated
by another subproblem can be eliminated. A subproblem is dominated by another subproblem if a
positive outcome of the dominance test applied to these subproblems implies that for each feasible
solution of the former problem there is at least one feasible solution of the latter problem with a
smaller or equal solution value. A dominance relation is required to be reflexive, antisymmetric and
transitive and defines a partial ordering on the subproblems [Ibaraki 1977].

The branch and bound process generates a search tree. The root of this tree P corresponds to the
original problem, whereas all the other nodes P; correspond to subproblems generated by decomposi-
tion. If subproblem j is generated by decomposition from subproblem i, there is an edge between P;
and P;, the two corresponding nodes in the search tree. The level of a node in the search tree is equal
to the number of edges between this node and the root (the root is at level 0).

A possible implementation of branch and bound algorithms can be described as follows. An active

subproblem is a subproblem which is generated and hitherto neither branched from nor eliminated. In
each stage of the computation there exists an active set, i.e. the set containing all active subproblems
which are not being branched from at that moment. There is a main loop in which repeatedly the
following steps are executed. Using the selection rule, one of the subproblems in the active set is
chosen to branch from. This subproblem is extracted from the active set and decomposed into
smaller subproblems using the branching rule. For each of the subproblems thus generated a lower
bound is calculated. If during computation of this bound the subproblem is not solved, it is added to
the active set and the elimination rule is used to prune this set. If the subproblem is solved during
computation of the bound, the value of the best known solution is updated. This value is an upper
bound on the value of the optimal solution to the original problem. The computations continue until
there are no more active subproblems. The work done during the execution can be represented by the
search tree generated.
During execution of a branch and bound algorithm knowledge is continually collected about the
problem instance to be solved. This knowledge consists amongst others of all subproblems generated,
branched from and eliminated, upper bounds on the value of the optimal solution and the feasible
solutions found. The decisions on what to do next, for example the choice of the next subproblem to
branch from or the elimination of a subproblem, are based on this knowledge.

3. Parallel computers and algorithms
In this section we give a brief description of parallel computers and parallel algorithms and we pro-
pose a method to measure the effects of the use of parallelism.

3.1. Parallel Computers
One of the main models of computation is the control driven model [Treleaven, Brownbridge & Hop-
kins 1982]. In this model the user has to explicitly specify the order in which the operations have to
be performed as well as which of these operations can be performed in parallel.
The control driven model can be subdivided using the independency of the processing elements as a
criterion [Flynn 1966). In SISD (Single Instruction stream, Single Data stream) computers, there is
one processing element which can perform a single operation at a time. In MIMD (Multiple Instruc-
tion stream, Multiple Data stream) computers, there are several processing elements, performing in
parallel different instructions on different data. In SIMD (Single Instruction stream, Multiple Data
stream) computers all processing elements have to perform the same instruction at the same time on
different data, although it is often possible to mask out processing elements. A masked processing
element does not store the result of the operation it just performed. SIMD systems tend to consist of
a large number of simple processing elements, whereas MIMD systems usually consist of a few power-
ful ones.

The class of MIMD systems can be further subdivided using as a criterion the way in which the
various processing elements are connected and communicate with each other. If all processing ele-
ments are connected to and communicate through a common memory, the system is called a tightly
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coupled system. Another possibility is that the processing elements do not share a common memory
but are connected through some kind of network and communicate through message passing on this
network. Such a system is called a loosely coupled system. ‘

The common memory of a tightly coupled system is both its strongest and its weakest point. It
allows for easy and fast sharing of information between various processing elements. Communication
boils down to simple read/write operations on the common memory and each processing element can
communicate directly with all other processing elements. However, if the number of connected pro-
cessing elements increases, the common memory becomes a bottleneck. Therefore the number of pro-
cessing elements that a tightly coupled system can consist of is limited. Due to the fact that all pro-
cessing elements have to be connected to the common memory, tightly coupled systems are built as a
whole and tend to be compact, i.e. the processing elements are packed close to each other in one
cabinet. It is not possible to add processing elements to the system.

On the other hand, communication in a loosely coupled system is tedious and slow. The passing of
messages requires more time than reading or writing on a common memory would do and it is possi-
ble that a processing element is not connected directly to the processing element it wants to communi-
cate with. In such a case, the message has to be sent through other processing elements. In contrast
to the compactness of a tightly coupled system, the processing elements of a loosely coupled system
might be scattered all around. Therefore the physical distance that a message has to travel can be
big. Due to the fact that the processing elements use a protocol to communicate on the network,
loosely coupled systems can consist of different types of processing elements and it is possible to add
additional processing elements to the system. In general the processing elements are complete com-
puters in themselves.

An example of an SIMD system is the ICL-DAP [ICL 1981]. Due to their capability of performing
vector operations at very high speed, pipeline computers resemble SIMD systems very much, although
strictly spoken the results are delivered sequentially by the pipeline. Examples of pipeline systems are
the CRAY-1 and the CYBER-205. An example of a tightly coupled system is the Denelcor HEP.
Examples of loosely coupled systems are the Distributed Processing Utilities Package running on the
various computers of the University of Colorado at Boulder [Gardner et al. 1986] and the AMETEK
hypercube.

A brief overview of commercially available parallel systems can be found in [Dongarra & Duff 1985].

3.2. Parallel Algorithms

A parallel algorithm consists of subtasks that have to be performed. Some of these subtasks can be
executed in parallel, but there also might be subtasks which must be executed sequentially. The exe-
cution of a subtask is done by a separate process. Important features of a parallel algorithm are the
way these processes interact, whether they are synchronized and whether the algorithm is determinis-
tic.

Two processes interact if (part of) the output of one of these processes is (part of) the input of the
other process. The way two processes interact can either be completely specified or not. If an
interaction between two processes is completely specified, the two processes can communicate only if
both are willing to do so. The sender cannot proceed if the receiver is not yet ready to communicate.
During execution of a synchronous algorithm all processes have to synchronize at various points,
amongst others before interacting. Synchronizing means that before starting their next subtask, they
have to wait for other processes to complete the subtask they are currently working on. While execut-
ing an asynchronous algorithm, processes do not have to wait for each other to finish their tasks. Of
course it is possible for an asynchronous algorithm to be partly synchronous.

Note that synchronized parallelism need not imply that all processing elements are always executing
the same instruction.

An algorithm is deterministic if each time the algorithm is executed on the same input the executions
are identical, i.e. the same instructions are performed in the same order. This will be the case if in
each execution each decision to be made will have the same outcome. Subsequent executions of such
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an algorithm will therefore always yield the same output. In nondeterministic algorithms however,
the same decision can have different outcomes, for example the outcome of a decision might depend
also on certain environmental factors which are not controlled by the algorithm. Therefore subse-
quent executions of a nondeterministic algorithm can yield different outputs.

Nondeterminism in a tightly coupled system can occur because a process may read a variable from
the common memory exactly at the same time that another process wants to write to this variable. In
case of an asynchronous algorithm, nothing can be said about the order in which the read and write
will occur. Nondeterminism in a loosely coupled system can occur if the next task to be performed
by a process depends on the availability of a message from another process. Again, without syn-
chronizing, nothing can be said about what will happen first: the sending (and arriving) of the mes-
sage or the check whether there is a message.

The work to be done by a parallel algorithm can be split into computations and communications.
Therefore the overall complexity of a parallel algorithm can also be split into a computation complex-
ity and a communication complexity.

Some examples of synchronicity, interaction and determinism can be demonstrated from a fixed
point computation in parallel. A fixed point of a function f: R" — R™ is a point x for which
f(x) = x. During a parallel computation of fixed points, each process repeatedly computes a new
estimate of a specific coordinate of x and broadcasts this estimate to the other processes. The esti-
mate is based upon estimates for all coordinates of x. Each time new estimates of the other coordi-
nates become available, a process computes a new estimate of its coordinate and sends this new esti-
mate to the other processes. In a synchronous algorithm, a process does not start to compute its next
estimate until it has received exactly one new estimate for each coordinate. In an asynchronous algo-
rithm a process can start the next computation on its coordinate as soon as the old computation is
finished and at least one new estimate has arrived [Bertsekas 1983].

Synchronous algorithms tend to divide the work in a more rigid way among the processes than
asynchronous algorithms do. In a synchronous algorithm this division tends to depend solely on the
kind of problem to solve and not on the particular problem instance on hand. Before the execution
of the algorithm starts, it is usually known how the work will be divided among the available
processes. In an asynchronous algorithm however, the division of the work can also depend on the
particular problem instance on hand. The exact division of the work is therefore made at run time.

Avoiding synchronizations has two main advantages. Firstly, it allows for a higher utilization of
the processing elements in the case that the tasks to be executed are not of equal size. Secondly, it
makes it easier to deal with algorithms in which the work to be done is not completely known before-
hand. It is difficult to divide an unknown quantity in an equitable way.

3.3. Complexity and Speedup
One would like to know and measure the effects of the use of parallelism on the time needed for exe-
cuting an algorithm.
In case of synchronous parallel algorithms these effects can be described using the notions of speedup
and efficiency and by the way these notions change as a function of the number of processing ele-
ments used. The speedup measures the reduction in total execution time due to the parallelism and is
defined as the number of instructions needed by a single processing element to execute the best
sequential algorithm, divided by the number of instructions needed by a parallel computer to execute
the parallel algorithm. The efficiency provides information on the quality of this speedup compared
to an ideal speedup and is defined as the speedup divided by the number of processing elements used.
However, the above described notions of speedup and efficiency are not capable of characterizing
the execution of an asynchronous parallel algorithm adequately. Firstly, they do not take into
account the time needed for synchronization. Secondly, they postulate that the time needed for a sin-
gle communication is constant. In reality, these times not only depend on the number of communica-
tions and/or synchronizations, but also on the particular parallel computer system the algorithm is
running on. Thirdly, these notions postulate that all processing elements used are identical, whereas
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for many parallel computer systems, especially loosely coupled systems, the various processing ele-
ments are different. For a synchronized parallel algorithm this variation in processing power does not
matter because the time needed for parallel execution is the time needed by the least powerful pro-
cessing element. For asynchronous algorithms however, there need not be a direct link between the
work done by the various processing elements. It is possible that a redistribution of the work among
the processing elements can result in a lower execution time.

To be able to describe the execution of asynchronous parallel algorithms the above described
notions have to be generalized. We therefore introduce the notions of perfect parallel time and
achieved efficiency.

A parallelization is perfect if the use of parallelism does not influence the work to be done and if the
work to be done is divisible among the processing elements in such a way that, firstly, each processing
element needs the same amount of time to complete its share of the work and, secondly, all shares are
independent of each other. More powerful processing elements thus will take a larger share of the
work, whereas weak processing elements will take a smaller share. Note that the first assumption
implies that interactions between processing elements do not take time.
The perfect parallel time is the time needed for the perfect parallel execution of an algorithm. Let W
be the number of instructions to be performed by the corresponding sequential algorithm and let S;
be the speed of processing element i, i = 1,...,N, ie. the number of instructions processing element
i can perform per unit of time. The corresponding sequential algorithm is defined as the parallel algo-
rithm executed by a single process. The perfect parallel time is defined as follows:

N
3.1 PPT =W / XS

i=0
The achieved efficiency is the quotient of perfect parallel time and the actual time needed for parallel
execution. As can be seen from this definition, the achieved efficiency takes the time required for
communication and synchronization into account.

Because the above assumptions on divisibility, independency and interacting are unrealistic in real
life, the perfect parallel time is a lower bound on the time needed for parallel execution on the given
parallel computer system.

4. Parallel Branch and Bound

There are several ways to introduce parallelism in a branch and bound algorithm. Again, we can
distinguish between synchronous and asynchronous parallelism. In the synchronous case the execu-
tion of the main loop of the branch and bound algorithm is divided into subtasks which are executed
sequentially, although within the execution of such a subtask there may be parallelism. In the asyn-
chronous case, an execution can no longer be divided this way. Subtasks can correspond to one or
more iterations of the main loop or conversely, an iteration of the main loop can consist of several
subtasks.
The parallelism in an asynchronous parallel algorithm tends to be at a higher algorithmic level than
the parallelism in a synchronous algorithm.

4.1. Synchronous Parallel Branch and Bound

It is very easy to introduce synchronous parallelism in a branch and bound algorithm. Each part of
the algorithm in which many steps have to be performed is a natural candidate for such a paralleliza-
tion. Promising candidates are:

(a) Lower bound calculation. Some branch and bound algorithms use lower bound functions
which are hard to compute. Dependent on the particular lower bound function used, parallelism
might be introduced in this part of the algorithm. There are however lower bound algorithms that are
intrinsically sequential, for example bounds based on the greedy algorithm [Anderson & Mayr 1984].

(b) Selection. At some stages during the execution the number of subproblems in the active set
can be very large. Therefore, selecting the next subproblem to branch from and extracting this
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(c) Elimination. Testing whether the bound of a subproblem is still better than the hitherto
best known feasible solution is easy. However, applying dominance tests and checking whether a sub-
problem still can produce a feasible solution can be very hard. The dominance test involves the com-
parison of the subproblem just generated with all other subproblems generated and not dominated so
far. It might be possible to perform (part of) these tests in parallel.

(d) Branching. Instead of selecting and branching from a single subproblem at a time, it is pos-
sible to select several subproblems at once and branch from them in parallel. In order to have a good
processing element utilization, the number of active subproblems must at least be equal to the number
of processing elements.

The parallelism thus created is a parallelism on a higher algorithmic level than the parallelism created
by (a), (b) and (c).

Not all of the above mentioned opportunities to introduce synchronous parallelism leave the execu-

tion of the branch and bound algorithm unchanged. The work done while branching from several
subproblems in parallel might differ from the work involved in executing the corresponding sequential
algorithm, i.e. the search trees generated might be different. This is due to the fact that it is possible
that some of the subproblems branched from in parallel would have been eliminated or even never
been generated in the sequential case.
Branching from several subproblems in parallel in essence amounts to a change the search strategy.
Due to the fact that several subproblems are branched from in parallel, the knowledge obtained at a
certain point during execution can differ from the knowledge obtained in the sequential case. This in
turn can influence the selection of the subproblems to branch from next. The consequences of such a
change are not clear in advance. All kinds of anomalies can occur, creating unreasonable speed ups
or slow downs [Li & Wah 1984, Lai & Sahni 1984].

The resulting synchronous parallel algorithm is deterministic. Due to the synchronizations, the
knowledge obtained will always be combined in the same manner. So consecutive executions of the
algorithm will always yield the same answer.

In case of several subproblems being branched from in parallel, it can be very hard to organize the
- work in such a way that the various processing elements are always executing the same instruction at
the same time. If the processing elements only infrequently execute different instructions and if the
number of different instructions at a time is small, this can be arranged for by masking. This tech-
nique however has the disadvantage that it increases the overall complexity of the algorithm and
obscures its essence. Not surprisingly then, earlier experiments showed that SIMD(like) systems are
very unsuitable for the execution of synchronous parallel branch and bound algorithms [Kindervater
& Trienekens 1985].

4.2. Asynchronous Parallel Branch and Bound
Asynchronous parallelism can only be introduced by parallelizing the branch and bound algorithm as
a whole. If only part of the algorithm would be parallelized, all processes would have to synchronize
after this part.
The iterations of the main loop of a branch and bound algorithm are fairly independent of each
other. Rearranging the order in which these iterations are performed does not affect the correctness
of the algorithm. For all active subproblems it still holds that, until that point of time, they are nei-
ther branched from nor eliminated. Therefore the preconditions on these subproblems remain valid.
However, a rearrangement of the ordering can result in a different search tree generated. (In essence,
such a rearrangement is a change in selection rule used.)
The basic idea behind asynchronous parallelism is that several iterations of the main loop are per-
formed in parallel. Each process is given its own set of iterations to perform. As soon as a process
has finished its iterations, it starts executing a new set of iterations without waiting for other processes
to finish their set.

As said before, it is impossible to get a good impression of the work involved in executing a branch
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and bound algorithm without carrying out the actual execution. Therefore the only way to achieve an
equitable division of the work among the various processes is to divide the work as it is generated, Le.
dynamically during execution. To be able to divide the work, a basic unit of work has to be chosen.
During execution of a parallel branch and bound algorithm the processes have a need to exchange
information. For example, knowledge obtained by a particular process might be used by another pro-
cess to eliminate some of its active subproblems. Information exchange can only be realized by
means of communication.

Therefore asynchronous parallel branch and bound algorithms can be classified according to the way
the available work is divided among the various processes, the unit of work chosen as the basic one
and the way the knowledge obtained by the various processes is exchanged.

Dividing the work among the processes is done by creating pools of work still to be done. New work
created by the processes is added to the pools and each time a process becomes idle, it obtains new
work out of the pools. Each pool is accessed by a subset of the processes. Extremes are a single cen-
tral pool accessed by all processes and a private decentral pool for each process. In case a pool dries
up, there is the option to refill it from one of its fellow pools. For example, suppose we chose the
branching from a single subproblem and the computing of the lower bounds to the subproblems thus
generated as the basic unit of work and use a single central pool, containing the active set, to divide
the work among the processes. Each time a process becomes idle, a subproblem is extracted from this
pool and given to this process to branch from. All subproblems generated are added to the pool. Of
course the pool is pruned regularly by the elimination rule.

The advantage of a single central pool is that it provides a good overall picture of the work still to be
done. This makes it easy to give each process a good subproblem to branch from and to prune the
set of active subproblems. However, the disadvantage is that accessing the pool tends to be a
bottleneck because the pool can only be accessed by one process at a time. The advantage and disad-
vantage of decentral pools are just the opposite. The bottleneck of all processes accessing the same
pool is avoided, but some of the processes might not be branching from good subproblems simply
because there happened to be no good subproblems in their pool. Apart from that, it is hard to elim-
inate subproblems by dominance tests because the subproblems are scattered all around the place.
The choice of the number of pools to use depends on the frequency with which the processes access
these pools. This frequency can be influenced by the unit of work chosen as the basic one.

While executing an asynchronous parallel branch and bound algorithm, the processes have a need
to communicate. For example, knowledge obtained by a particular process might be used by another
process to eliminate some of its active subproblems. However, the broadcasting of all knowledge
obtained increases the communication complexity of the parallel algorithm, and thus reduces the gain
of fewer subproblems to solve. As can easily be seen, there exists a tradeoff between the number of
subproblems eliminated and the number of communications performed.

As mentioned before, applying dominance tests can be very hard if several decentral pools are used
for dividing the work. Because a subproblem can be dominated by an arbitrary other subproblem,
each pool has to have complete knowledge about all the subproblems in the other pools generated
thus far. The only way to accomplish this is by broadcasting all subproblems generated. This how-
ever severely increases the communication complexity of the algorithm.

Instead of applying dominance tests at a global level by checking all pairs of subproblems generated,
these tests can also be applied at a local level by checking only pairs of subproblems in the same
pool. This way some of the advantages of dominance tests can be kept without encountering the
increase in communication complexity.

What constitutes a good tradeoff between communication complexity and computation complexity
depends on the characteristics of the problem that has to be solved as well as on the characteristics of
the parallel algorithm and the parallel computer system used.

Dividing the work among the processes and exchanging the knowledge obtained introduce non-
determinism in an asynchronous parallel branch and bound algorithm. Due to the asynchronicity,
nothing can be said about the exact order in which the extractions, additions and eliminations on the
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pools of work are done by the various processes or when exactly a process will be notified of, for
example, an update of the upper bound. Interchanging an addition to a pool by a process with an
extraction from the same pool by another process might cause the algorithm to take another course,
resulting in a different solution. Even if two consecutive executions of the algorithm yield the same
solution, the work done during these executions might be completely different.

The nondeterminism does not change the properties of the subproblems in the active set. For all
these subproblems it still holds that, as long as they are in a pool, they are neither branched from nor
eliminated. The solution yielded is always a correct one. Because we are only interested in finding a
solution yielding the optimal solution value, the fact that different solutions are found is no drawback.
Nondeterminism however has one practical disadvantage: debugging a parallel branch and bound
program becomes complex because it is very hard to trace what has happened during execution. Log-
ical errors which caused run time errors and wrong answers during a particular execution might never
occur again, simply because the program does not take the same course again.

5. Anomalies

During execution synchronous parallel branch and bound algorithms can suffer from acceleration
anomalies, deceleration anomalies and detrimental anomalies [Li & Wah 1984]. Apart from these three
anomalies, the execution of an asynchronous parallel branch and bound algorithm can suffer from
Sluctuarion anomalies. :
An acceleration anomaly occurs if the time needed for parallel execution is smaller than the perfect
parallel time. A deceleration anomaly occurs if the time needed for parallel execution is larger than
the time needed for executing the corresponding sequential algorithm. A detrimental anomaly occurs
if the time needed for parallel execution is smaller than the time needed by the corresponding sequen-
tial algorithm, but greater than the perfect parallel time. Finally, a fluctuation anomaly occurs if
another division of the work among the processes would result in a change in execution time.

FIGURE 1.

An example of a fluctuation anomaly can be demonstrated from the problem instance displayed in
figure 1. In this problem instance, each subproblem decomposes into two smaller subproblems. The
branching from the first subproblem generated yields a feasible solution which can eliminate all other
subproblems. All subproblems generated by branching from the second subproblem do not have a
feasible solution, but this fact cannot be proven without complete decomposition. All decompositions
take eight units of work to perform, four units for each subproblem to be generated.

Suppose this problem is solved using two processing elements, A and B. Processing element 4 can
perform four units of work in one unit of time, whereas processing element B can only perform one
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unit of work per unit of time. Processing element 4 branches from the original problem. As soon as
this branching is completed, the two processing elements start branching from subproblems. Amongst
others, the following two divisions of work are possible: Firstly, processing element A gets subprob-
lem 2 and processing element B gets subproblem 1. Or secondly, processing element A gets subprob-
lem 1 and processing element B gets subproblem 2. In the first case, the feasible solution eliminating
all other subproblems is generated after nine units of time. In the second case however, it takes only
four units of time.

For examples of the first three kinds of anomalies we refer to [Li & Wah 1984] and [Lai & Sahni
1984]. Although the examples in these papers are for synchronous branch and bound algorithms,
they can be adapted in a straightforward manner to asynchronous branch and bound algorithms.

Fluctuation anomalies are likely to occur if a subproblem which must be branched from in order to
(eventually) generate the optimal solution, is being branched from by the process running on the least
powerful processing element, at a time that there are not enough promising subproblems available for
branching by the other processes. In this case, the other processes start performing superfluous work
by branching from subproblems which otherwise would have been eliminated in a later stage of the
execution.

Clearly fluctuation anomalies can only occur while executing asynchronous parallel branch and bound
algorithms on a set of processing elements which are not equally powerful.

As a consequence of fluctuation anomalies, the addition of a very powerful processing element to a
system, although increasing the computing power of the system as a whole, need not decrease the time
needed for executing a parallel algorithm. Adding a weak processing element to a system can even
increase the total time needed for execution: the additional power of the system might be used only to
perform additional superfluous work, whereas all the "useful’ work is performed by the weak process-
ing element.

Naturally one would like to preserve acceleration anomalies, avoid deceleration and detrimental

anomalies and use fluctuation anomalies in such a way that the time needed for executing a parallel
branch and bound algorithm is minimized.
However, detrimental and deceleration anomalies cannot be completely eliminated. Detrimental
anomalies can sometimes be unavoidable because they can be inherent to the particular problem
instance on hand. For example, it can happen that all the subproblems which the corresponding
sequential algorithm would branch from are descendants of each other. Deceleration anomalies can
always occur because a parallel branch and bound algorithm does have to spend effort on communi-
cations and/or synchronizations, whereas the corresponding sequential algorithm does not have to
spend effort on these subjects.

In the following sections we will develop sufficient conditions to prevent deceleration anomalies
from degrading the performance of a parallel branch and bound algorithm in which the basic unit of
work is the branching from a single subproblem and the computing of lower bounds to the subprob-
lems thus generated. Within the above framework, we will develop necessary conditions to allow
acceleration anomalies from improving the performance of the algorithm.

It turns out that the already known sufficient conditions for synchronous branch and bound algo-
rithms with a single central pool for dividing the work [Li & Wah 1984] are sufficient for all synchro-
nous and asynchronous branch and bound algorithms.

For the lemma’s and theorems following, we need some definitions.

A basic subproblem is a subproblem which is branched from during execution of the corresponding
sequential branch and bound algorithm. Note that a basic subproblem can only be generated by
branching from another basic subproblem.

The path number of a node in the search tree is a sequence of at most d +1 integers, where d is
the maximum level of the search tree. This number uniquely represents the path from the root to the
node. The root has path number 1. All other path numbers e = egejey * €, n = 1,...,d, are
defined recursively. A node P; on level k that is the j’th son (counting from the left) from node P;
with path number e(P;) = epejep " € -1 has path number e(PiJ) = epe e, " - €. —j. Figure 2
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shows an example of how to number the nodes of a search tree.

Path numbers can be ordered lexicographically, Two path numbers e = ege; - e, and
¢ = g, - - - &, are said to be equal (denoted by e = e) if they are identical sequences of numbers,
ie.m=nand e = ¢ fori =0,...,m. eissaid to be smaller than ¢ (denoted by e < ¢) if its
sequence is lexicographically smaller, i.e. either there exists an i < min(m,n) such that ¢, = e; for
j=0,...,i—1l,and ¢ <§i0rej Zéjforj =0,...,nand n < m.

5.1. Parallel branch and bound with lower bound tests only.

All anomalies are caused by the branching from several subproblems in parallel. Due to these
branchings in parallel, the knowledge obtained at a particular point during the execution of the paral-
lel algorithm can differ from the knowledge obtained at the corresponding point during the execution
of the corresponding sequential algorithm. This different knowledge can result in a different order in
which the subproblems are branched from, and thus in a different search tree generated.

Deceleration anomalies can be prevented if it can be achieved that the knowledge obtained during
execution of a parallel branch and bound algorithm is always a superset of the knowledge obtained
during execution of the corresponding sequential algorithm. This can be done by letting the order in
which the subproblems are branched from by the parallel algorithm resemble the order of the
corresponding sequential algorithm as much as possible. To accomplish this, it is necessary that all
subproblems can be uniquely identified by their heuristic value.

One way to accomplish a unique identification is by requiring the heuristic function h used by the
selection rule to be injective, i.e. to assign a unique value to each subproblem:

(5.1) h(P,) % h(P;) if P; 5 P,

This is no real restriction because each non injective heuristic function can easily be transformed into
an injective one by adding a unique additional component to each function value, namely the path
number of its argument (which corresponds to a node of the search tree). Due to the fact that all
path numbers are unique, all heuristic values will be unique.

Note that an injective heuristic function allows for a complete ordering on the subproblems through
their heuristic values.
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Next to being injective, the heuristic function also must be non misleading, i.e. provide no mislead-
ing information about the problem instance to be solved. It must be impossible that a subproblem
looks more promising than the subproblem it was generated from by decomposition. Otherwise, if the
parallel algorithm branches from a subproblem earlier than the corresponding sequential algorithm
does, the subproblems thus generated would have a higher priority to be branched from than the sub-
problems branched from by the corresponding sequential algorithm before branching from this partic-
ular subproblem, but which are not yet branched from by the parallel algorithm.

Clearly a heuristic function is non misleading if the heuristic values it assigns do not decreas, i.c.

(5.2) h(P) <h(P) ifP;isa descendant of P;.

Now we are ready to consider the case of parallel branch and bound algorithms without dominance
tests.
Firstly, we will consider the case of preventing deceleration anomalies from degrading the perfor-
mance of the parallel algorithm. We start by proving a lemma which yields an upper bound on the
work to be done while executing a parallel branch and bound algorithm. This lemma states that if all
basic subproblems are either branched from or eliminated, enough knowledge is obtained to solve the
problem instance on hand. Then we will prove a lemma which states sufficient conditions to ensure
that at each point of time during execution the active basic subproblem with the smallest heuristic
value is being branched from. Using these two lemma’s we will prove a theorem stating sufficient
conditions to prevent deceleration anomalies from degrading the performance. The sufficient condi-
tions will ensure that always at least one of the basic subproblems is being branched from. In the
worst case, all basic subproblems are branched from sequentially by the process running on the least
powerful processing element.
Secondly, we will consider the case of allowing acceleration anomalies to improve the performance of
the parallel algorithm. We will prove a theorem which states necessary conditions for such an
improvement to be possible.
Note that the lemma’s and theorems are independent of synchronicity or asynchronicity, the way the
work is divided among the various processes and the relative speeds of the various processing ele-
ments. .

Lemma 1:
If during execution of a parallel branch and bound algorithm which uses only lower bound tests and
no dominance tests, a point is reached where there are no more active basic subproblems, there is
enough knowledge obtained to solve the problem instance on hand. Le., a feasible solution has been
found which can eliminate all remaining active subproblems by a lower bound test.

Proof:
By definition, the execution of the corresponding sequential algorithm is completed after branching
from all basic subproblems. Therefore branching from these basic subproblems must have yielded a
feasible solution which eliminated all non basic subproblems by a lower bound test. For convenience,
we call this solution the sequential solution.
A parallel branch and bound algorithm starts by branching from the original problem. Therefore, at
the beginning of the execution, there is an active basic subproblem. If during execution a point is
reached at which there are no more active basic subproblems, the parallel algorithm has either
branched from all basic subproblems or eliminated some basic subproblems.
If all basic subproblems have been branched from, the sequential solution has been generated and this
solution can eliminate all remaining active subproblems by a lower bound test.
If some basic subproblems have been eliminated, the branching from some subproblem must have
generated a feasible solution which eliminated these basic subproblems. The basic subproblem whose
decomposition yields the sequential solution is either branched from, eliminated or never generated
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(in case one of its predecessors was eliminated). If this subproblem has been branched from, the
sequential solution has been found and this solution can eliminate all active subproblems. If this sub-
problem has been eliminated or never generated at all, the subproblem itself, or one of its predeces-
sors, must have been eliminated by a lower bound test by another feasible solution found. This other
feasible solution must have the same value as the sequential solution and therefore can also eliminate
all active subproblems. ’

QE.D.

To be able to prove the next lemma we have to postulate that it is possible to interrupt a process
once new knowledge obtained has revealed that the subproblem this process is branching from can be
eliminated by a lower bound test.

Lemma 2:
At each point of time during execution of a parallel branch and bound algorithm which uses only
lower bound tests, no dominance tests and a heuristic function which is injective and non misleading,
some process will be branching from the active basic subproblem with the smallest heuristic value.

Proof (by contradiction):

Consider the first time that during execution of the parallel branch and bound algorithm the active
basic subproblem with the smallest heuristic value is not being branched from.
The fact that the active basic subproblem with the lowest heuristic values is not being branched from
implies that at least one of the processes is branching from a non basic subproblem with a smaller
heuristic value.
Let P, ,P; ,....,P; be the series of basic subproblems. This series is ordered according to increasing
heuristic value. Let P; be the active basic subproblem with the smallest heuristic value which is not
being branched from at that point of time. Let P, be the non basic subproblem with smaller heuristic
value which is being branched from. ‘
Because P; is the active basic subproblem with the lowest heuristic value, the basic subproblems
Pi,... ,P,} _, do not exist at that point of time. Furthermore, because the heuristic function used is
non misleading, P; , ...,P;  cannot be generated anymore. Hence they must be branched from or
eliminated by the parallel algorithm.
The fact that the parallel algorithm is branching from P, implies that, until then, the algorithm has
not obtained enough knowledge to eliminate this subproblem. However, the knowledge obtained by
the parallel algorithm is a superset of the knowledge obtained by the corresponding sequential algo-
rithm. Hence the corresponding sequential algorithm too cannot eliminate Py. Because P has a
smaller heuristic value, the corresponding sequential algorithm has to branch from P, before branch-
ing from P;. Hence Py is a basic subproblem. This however contradicts the fact that Py is a non
basic subproblem.

Q.ED.

Let T,(I) be the time needed for solving problem instance I on a particular parallel computer sys-
tem with a parallel branch and bound algorithm using only lower bound tests, no dominance tests
and a heuristic function which is injective and non misleading. Let T,(I) be the time needed by the
least powerful processing element of this parallel system for solving problem instance I with the
corresponding sequential branch and bound algorithm. Let 7 be the maximum number of processes
accessing the same pool of work and let b be the time needed to send a subproblem from a process to
a pool (or vice versa).

We assume that adding a subproblem to a pool and pruning all active subproblems or extracting a
subproblem from a pool can be done in constant time ¢ and that once we have enough knowledge
obtained to solve the problem, the halting of the execution does not take additional time.
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Theorem 1: ,H<sTIDH+2.00+0 —1.c)

Proof:

Lemma 2 states that at each given point of time the active basic subproblem with the smallest heuris-
tic value will be being branched from. In the worst case, all basic subproblems are branched from
sequentially by the process executed on the least powerful processing element.
The term 2.(b+(n—1).c) stems from the fact that apart from computations on the branchings, there
is also work involved in dividing the subproblems among the processes. Each basic subproblem gen-
erated must be added to a pool and (in the worst case) extracted. The time needed for adding (sub-
tracting) a subproblem is the sum of the time needed for sending it to the pool and the waiting time
in case of the pool first having to service other requests. Because there are at the most n processes
accessing the same pool, there are at the most n —1 requests which must be served prior to this
request. Serving these queued requests takes at the most (n —1).c time. Because this division of work
is not needed by the corresponding sequential algorithm, we have to account for it.

QE.D.

Note that theorem 1 does not state anything about the total number of subproblems branched
from.

Now for the neccessary conditions for improving the performance by acceleration anomalies.
A heuristic function h is said to be consistent with a lower bound function g if the fact that
h(P;) < h(P;) implies that g(P;) < g(P;) for all subproblems P; and P;.

Theorem 2:
The performance of a parallel branch and bound algorithm which uses only lower bound tests, no
dominance tests and a heuristic function which is injective and non misleading cannot be improved
by acceleration anomalies unless the heuristic function used is not consistent with the lower bound
function used.

Proof (by contradiction):

The only way an acceleration anomaly can improve the performance of a parallel branch and bound
algorithm is by eliminating some of the basic subproblems instead of branching from them.
Let Py, P,, ..., P, be the series of basic subproblems ordered according to increasing heuristic value.
This order is equivalent to the order in which these basic subproblems are branched from.
Suppose the heuristic function used is consistent with the lower bound function used. This implies
that the lower bound of basic subproblem P, must be greater than the lower bounds of all other basic
subproblems P;,i = 1,...,n—1
The fact that P, was the last subproblem branched from implies that this subproblem cannot be elim-
inated by a lower bound test. Therefore the lower bound of P, must be smaller than the value of the
optimal solution. In turn this implies that the lower bounds of all other basic subproblems are
smaller than the value of the optimal solution. Therefore no basic subproblem can be eliminated by a
lower bound test. Hence, the execution cannot be improved upon.

Q.ED.

5.2. Parallel branch and bound with lower bound and dominance tests.

The combined use of lower bound and dominance tests in a parallel branch and bound algorithm can
cause additional problems because this combined use need not be transitive. For example, if sub-
problem P; can eliminate subproblem P; by a lower bound test and if subproblem P; can eliminate
subproblem P; by a dominance test, it does not follow automatically that P; can eliminate P, by
either lower bound or dominance test.

This non transitivity can cause all kinds of anomalies if a parallel algorithm applies these tests in a
different order than the corresponding sequential algorithm does. For example, suppose again P; can
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eliminate P; by a lower bound test and P; can eliminate Py by a dominance test. Suppose the order
in which the corresponding sequential algorithm generates these subproblems is Py, P; and P;,
whereas the parallel algorithm generates them in order P;, P; and Py,. Hence the corresponding
sequential algorithm will eliminate both P; and Py, whereas the parallel algorithm will only eliminate
P;. Therefore the parallel algorithm has to branch from Py, which might involve lots of work.

Because nothing can be said about the order in which the various subproblems are generated by the
parallel algorithm, it is impossible to solve the non transitivity problem by ensuring that the tests are
always performed in the same order as the corresponding sequential algorithm would perform them.
However, for certain classes of dominance relations and heuristic functions it holds that these tests are
transitive. Firstly we will prove a lemma which states that for these classes of dominance relations
and heuristic functions no basic subproblems will be eliminated during parallel execution. Then we
will prove a lemma which states that once all basic subproblems are branched from, there is enough
knowledge obtained to solve the problem instance on hand. Using these two lemma’s, a theorem stat-
ing sufficient conditions to prevent deceleration anomalies from degrading the performance of a paral-
lel branch and bound algorithm can be proven in a straightforward manner. Again the sufficient con-
ditions will ensure that always at least one of the basic subproblems is being branched from.

A dominance relation D is said to be consistent with a heuristic function h if the fact that P; dom-
inates P; implies that h(P;)) < h(P)) for all subproblems P; and P;.

Lemma 3:
If a parallel branch and bound algorithm uses lower bound tests, a dominance relation which is con-
sistent with the heuristic function and a heuristic function which is injective, non misleading and con-
sistent with the lower bound function, then during execution of this algorithm no basic subproblems
are eliminated.

Proof (by contradiction):
First note that the lower bound of a basic subproblem is smaller than the value of the optimal solu-
tion because the heuristic function used is non misleading and consistent with the lower bound func-
tion.
Now for the proof of the lemma: Suppose there exists a basic subproblem P; which is eliminated dur-
ing execution of the parallel branch and bound algorithm. P; is eliminated either by a lower bound
test or by a dominance test.
Suppose P; was eliminated by a lower bound test. This implies that the lower bound of P; is greater
than the value of a feasible solution. However, this contradicts the fact that the lower bound of P; is
smaller than the value of the optimal solution.
Suppose P; was eliminated by a dominance test by P;. P is either a basic subproblem or not.
Suppose P; is a basic subproblem. Due to the consistency of the dominance relations with the heuris-
tic function this implies that h(P;) < h(P;). Therefore the corresponding sequential algorithm
branches from P; before it branches from P;. Hence if P; dominates P;, P; would never be branched
from by the corresponding sequential algorithm. This however is in contradiction with the fact that
P; is a basic subproblem.
Suppose P; is a non basic subproblem. Because P; is non basic, there exists a series of subproblems
P, ,Pj,... P such that P;,...,P; are non basic subproblems and P; is a basic subproblem
with the properties that P; can eliminate P, (k = 2,...,n) and P; can eliminate P;. This chain
of eliminations either consists solely of eliminations by dominance tests or not. If there are only elim-
inations by dominance tests, P; can eliminate P; directly by a dominance test because dominance
relations are transitive. Therefore the above case of P; being basic applies mutatis mutandis. If one
or more of these eliminations is an elimination by lower bound test, the consistency of the dominance
relation with the heuristic function and of the heuristic function with the lower bound function imply
that the lower bound of P; is greater than the value of a feasible solution. This however contradicts
the fact that the lower bound of P; is smaller than the value of the feasible solution.
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Q.ED.

If the heuristic function used is injective (assigns unique values), the consistency of the heuristic
function with the lower bound function implies that all lower bounds are unique. This however is no
real restriction on a lower bound function. Just like in case of a heuristic function, this uniqueness
can be easily arranged for by adding as an additional component to the lower bound value yielded
the path number of the corresponding node of the search tree.

The conditions stated in Lemma 3 imply only that an optimal solution will be found within a lim-
ited effort. Now we have to prove this solution to be optimal.

Lemma 4:
If during execution of a parallel branch and bound algorithm which uses lower bound tests, a domi-
nance relation which is consistent with the heuristic function and a heuristic function which is injec-
tive, non misleading and consistent with the lower bound function, a point is reached where there are
no more active basic subproblems, there is enough knowledge obtained to solve the problem.

Proof:

Using Lemma 3 it can be concluded that that once there are no more active basic subproblems, an
optimal solution has been found. It remains to be proven that there is also enough knowledge
obtained to eliminate all remaining active subproblems.

Let P; be an arbitrary non basic subproblem. Because P; is non basic, P; would be either eliminated
or never generated at all by the corresponding sequential algorithm. The last case implies that a
predecessor of P; would have been eliminated. Let P; be P; if P; would have been eliminated by the
corresponding sequential algorithm. Otherwise, let P; be the predecessor of P; which would have

been eliminated. Because P; is non basic, there exists a series of subproblems P; ,P; , ..., P; such
that P; ,...,P;  are non basic subproblems and P, is a basic subproblem with the property that P;
can eliminate P, by a lower bound and/or a dominance test, j = .,n. Again this chain of

eliminations either consists only of eliminations by dominance tests or not
If there are only eliminations by dominance tests, P; can eliminate P; (and therefore P;) directly by
a dominance test because dominance relations are transitive.
If one or more of these eliminations is an elimination by lower bound test, then the sequential solu-
tion can eliminate P; (and hence P;) by a lower bound test. Let P; be the first subproblem in this
series eliminating its predecessor in the series by a lower bound test. Because the dominance relations
are consistent with the heuristic function, which in turn is consistent with the lower bound function, it
holds that the lower bounds of P,, k = 0,...,j—1, are greater than the value of P;. This value
however is greater than or equal to the value of the sequential solution. Therefore the sequentlal solu-
tion can eliminate P; by a lower bound test.

QED.

Now it is easy to prove that the performance of the above described parallel branch and bound
algorithm is not degraded by deceleration anomalies. The proof is analogous to the one given for
theorem 1.

6. The Distributed Processing Utilities Package

The Department of Computer Science of the University of Colorado at Boulder, Colorado, United
States, owns several Vaxes, Pyramids and Suns. These machines are running the Berkeley Unix
operating system and are connected via an Ethernet. On top of Unix Timothy Gardner built the Dis-
tributed Processing Utilities Package (DPUP), a distributed programming tool box which allows the
user to use the machines on the net as a loosely coupled system [Gardner et al. 1986].
This loosely coupled system is an unusual system in that it is possible for a processor to be executing
in a time sharing mode concurrently more than one process.
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DPUP enables a process to create a remote process and establish a communication link with it. The
machine on which the remote process is created can be determined either by the creating process or
by DPUP itself. In the latter case, DPUP starts the remote process on the machine with the lowest
load in the network. Of course DPUP enables a process to communicate with a remote process
created previously by this process. DPUP also enables a process to kill a remote process it started
and to discard the corresponding communication link. Finally, DPUP enables different remote
processes to communicate directly with each other. While communicating, the sending process does
not become synchronized with the receiving process. DPUP stores the message in an internal buffer
and the sending process can continue directly after having sent the message. The receiving process
can empty the buffer as it is ready to do so. It is possible to interrupt a remote process. The fact
that DPUP enables a process to start another process is very elegant because it allows a user to ini-
tiate the execution of a parallel program by just starting a single process (which in turn will start all
other processes).

Because the machines are connected through an Ethernet, only one process can send a message at a
time. Therefore all communications have to be handled sequentially. Fortunately an Ethernet has a
very high bandwidth, i.e. has a very high communication capacity. So, as long as there are not too
many big messages, the chances of two messages colliding or of the Ethernet becoming a bottleneck
are small.

7. Our Parallel Branch and Bound Algorithm

For our research we are interested in the consequences of branching from several subproblems in
parallel with the best possible use of the knowledge obtained so far. By "best possible use of the
knowledge obtained so far’ we mean that during execution of a parallel branch and bound algorithm
we try to branch only from those subproblems which the corresponding sequential algorithm would
also branch from. The branching from subproblems which would have been eliminated or even never
generated by the corresponding sequential algorithm is considered to be superfluous work which
unnecessarily slows down the execution.
With this in mind, we developed an asynchronous branch and bound algorithm using a single central
pool for dividing the work and with as basic unit of work the branching from a single subproblem
and the computing of lower bounds to the subproblems thus generated. We chose asynchronicity
because we did not want to waste computing power in case the effort needed for branching from a
subproblem or for computing a lower bound varied with the particular subproblem on hand. Apart
from that, because we intended to run our algorithm on a loosely coupled system where communica-
tions are slow and tedious, we did not want to spend time on communications to synchronize.
We realize that the best possible use of knowledge obtained so far increases the communication com-
plexity of our algorithm. However, because the lower bound function we intended to use involved
lots of computations, we hoped that this increase in communication complexity would be dominated
by the decrease in computation time it caused.

master

slave slave slave slave

FIGURE 3.

Our algorithm introduces a master process and several slave processes (c.f. figure 3). The master
takes all important decisions and the slaves do as they are told to do by the master. In particular, the
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master decides which subproblems to branch from and when. The slaves perform the actual branch-
ings and compute lower bounds to the subproblems thus generated.

In order to supervise everything properly, the master collects all knowledge obtained so far by the
slaves (the subproblems generated, the feasible solutions found etc.). Interpreting this knowledge, the
master maintains the set of active subproblems. Each time the master is aware of a slave becoming
idle, it extracts a subproblem from this set and sends this problem to the slave to branch from. If the
master runs out of active subproblems, the slave is put into a queue of idle slaves until new subprob-
lems to branch from become available. The execution of the branch and bound algorithm is ter-
minated as soon as all slaves are in this idle queue. Each time the upper bound is updated, the mas-
ter sends the new upper bound to all slaves. This enables the slaves to perform lower bound tests on
the subproblems they generate. The master does not need to know about subproblems eliminated by
such a test because those subproblems can never yield the optimal solution. This way the knowledge
to be collected and interpreted by the master decreases. Note that the fact that a subproblem is not
eliminated by an lower bound test carried out by a slave does not imply that the master will automat-
ically add this subproblem to the active set. This holds because the slave simply might not yet know
about a better solution found by another slave in the meantime. The master can even interrupt a
slave if new knowledge reveals that the work that that particular slave is performing has become
superfluous.

A slave branches from the subproblem it receives from the master. As soon as the computations on
one of the subproblems thus generated are finished, this subproblem is sent to the master. This is
done to allow the master to take this new knowledge into account as soon as possible. As a conse-
quence, at the start of the execution it is possible to have all the slaves active as soon as possible.
After completing the branching, the slave requests new work from the master by notifying the master
that it has become idle.

At first sight it may seem strange that a slave sends all the subproblems it generates to the master and
than asks the master for a new subproblem to branch from instead of branching from one of the sub-
problems it just generated itself. This is done because a slave does not have overall knowledge. The
subproblems just generated might not be good ones. By letting a slave ask the master for new work,
the amount of superfluous work done is minimized

To execute our algorithm we would like to have a system in which it is possible for a process to
send a message to another process without these two processes becoming synchronized and with the
capability to buffer messages. A process must be able to continue its computations immediately after
having sent its message, without having to wait for the message to arrive. This type of communica-
tion is to be preferred because, for example, each time a slave obtains new knowledge it has to send
this knowledge to the master. Immediately thereafter the slave wants to continue with the rest of its
work. There is no need (or use) for it to wait until the master has received the message. The system
must buffer the messages because it is possible that a process sends a second message before the other
process has read the first one.

If the system used does not provide the interprocess communication described above, it is still capable
of executing the algorithm, although computational power will be lost due to the unnecessary syn-
chronizations.

The master process is not strictly necessary. It is also possible to let the slave processes themselves
take all decisions by storing all the knowledge obtained so far in some kind of common memory.
This however introduces all kinds of problems if several slaves try to update this information at the
same time. These problems are problems around concurrency control which can be solved in various
ways [Andrews & Schneider 1983].

In our algorithm we do not make any assumptions about the computational power of the various
slave processes. We only postulate that a subproblem given to a slave will be branched from eventu-
ally. If not all slaves are equally fast, the queue of idle slaves becomes a priority queue in which the
slaves are ordered according to their computational power. As a subproblem becomes available, it is
given to the most powerful idle slave.
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As mentioned earlier, DPUP provides the user the opportunity to run several processes in parallel,
but some of these processes might be running on the same processor. Running more than one process
on a processor introduces all kinds of overhead like process control, swapping etc. Therefore we
intended to run all our processes on different processors. However, we had to make an exception for
the master process. It turned out that this process had hardly any work to do, so it would have been
a waste to assign a processor solely to it. We ran the master process together with one of the slave
processes on the same processor. However, because the work to be done by the master is more
important than the work to be done by the slave, the master process ought to be given a higher prior-
ity.

Our algorithm resembles the sequential branch and bound algorithm very much. The only rules
which must be added are rules telling how to divide the work among the various processes. A conse-
quence of this is that all the features of a sequential branch and bound algorithm can be easily incor-
porated into our algorithm.

Because parallel computer systems tend to be complex entities, there is always the possibility of one
or more processing elements or communication channels suddenly failing. It is possible to build a
certain level of fault tolerance and correcting into our parallel branch and bound algorithm. By let-
ting the master keep track of the orders given to the various slaves, it is possible for it to give the
same order to another slave if it detects that a slave has gone dead. However, a failure in the master
process is still lethal.

8. Computational Experiments

We tested our algorithm by solving some random generated instances of the symmetric traveling
salesman problem on the DPUP system of the University of Colorado at Boulder.

Let G = (V,E) be an undirected graph with node set ¥ = {1,...,N} and edge set E. Each edge
¢;; € E has weight ¢;;. The symmetric traveling salesman problem is to find a hamiltonian circuit on
G of minimum total weight.

The sequential branch and bound algorithm we started from has been developed by Jonker & Vol-
genant. Following we will give a brief description of this algorithm. For a more detailed description
we refer to [Jonker & Volgenant 1982].

The lower bound function used by the algorithm is based on a minimal I-tree relaxation. A 1-tree of
G consists of a spanning tree on the nodes ¥\ {1} combined with two edges incident to node 1. A
minimal 1-tree is a 1-tree of minimum total weight. Clearly, a hamiltonian circuit is a special case of
a l-tree. Therefore the weight of a minimal 1-tree is a lower bound on the weight of a hamiltonian
circuit, and thus on the weight of the minimal hamiltonian circuit. Computing a minimal spanning
tree is very easy to do using the greedy algorithm due to Kruskal. The major part of the work
involved in executing this algorithm is the sorting of the edges according to their weight. Given a
minimal spanning tree, a minimal 1-tree can be constructed by adding the two edges incident to node
1 with minimal weight to the spanning tree.

Obviously a weight transformation 2,; ; = ¢; + m + m; has no influence on the minimal hamiltonian
circuit. Because in a hamiltonian circuit there are exactly two edges incident to each node, the above
transformation will add a constant to the weight of a hamiltonian circuit and therefore does not
change the minimal hamiltonian circuit. However, the minimal 1-tree will generally be changed.
Using the above described weight transformation as lagrange multipliers, the quality of the lower
bound can be improved upon by a heuristic iterative process which tries to maximize the weight of a
minimal 1-tree.

The branching rule decomposes each problem into three subproblems by requiring and/or forbidding
some of the edges of E to be in the 1-tree. The new required and forbidden edges are chosen in such
a way that they try to break the cycle in the minimal 1-tree, thereby forcing the 1-tree towards a ham-
iltonian circuit. The choice of these edges therefore depends on the I-tree found during the lower
bound process.

As the heuristic function guiding the selection of the subproblem to branch from next, we chose the
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lower bound computed on a subproblem, i.e. our algorithm performs a best bound first search. We
chose for this selection strategy because, in a sequential branch and bound algorithm, it minimizes the
number of subproblems branched from [Fox, Lenstra, Rinnooy Kan, Schrage 1978]. We did not use
path numbers to guarantee that all heuristic values would be distinct. Firstly because, due to the use
of lagrange multiplier technique, the chances of two lower bounds being equal are very small,
secondly, because the use of path numbers would have required additional memory.

As soon as it can be deduced that a subproblem cannot yield a feasible solution, this subproblem is
eliminated. For example, if a subproblem contains three or more required or (m —1) or less forbid-
den edges incident to a particular node (where m is the number of edges incident to this node), than
this subproblem does not have a feasible solution.

Our algorithm does not use dominance relations because we do not know of useful dominance rela-
tions for the traveling salesman problem in conjunction with the branching strategy chosen.

The parallel program was written in C, the same language as DPUP is written in. This way it was
easy to link the DPUP routines into the program.

The program is organized in such a way that the user only has to start the master process. The mas-
ter in turn starts and kills all slave processes.

The problems of debugging a nondeterministic parallel program were partly bypassed by starting to

execute our program using only one slave process. Because the interactions between the master and a
particular slave are well defined, such a program is deterministic. (The nondeterminism is introduced
only if several slaves want to interact simultaneously with the master.) Only after this program exe-
cuted flawlessly, we started to use more slave processes.
Even using the above described method of program development, debugging a parallel program
appeared to be very cumbersome. The main obstacle was that it was very hard to see what exactly
happened inside a slave process. Because a slave process is started by the master process and not by
the user, it could not be run under control of a debugger.

While implementing our algorithm and debugging the program, it turned out that not all the

machines on the net performed their floating point arithmetic in exactly the same way. The outcome
of a floating point operation depended on the machine on which the operation was performed. The
differences between the various machines were minor (in the same order as rounding errors). How-
ever, these minor differences could accumulate and influence the way a subproblem was decomposed
into smaller subproblems. (The way a subproblem is decomposed depends on the minimal I-tree gen-
erated. The 1-tree generated depends on the weights of the various edges. Due to the fact that these
weights were computed using floating point arithmetic, they differed on the various machines. These
different weights could result in a different ordering of the edges on the various machines, and hence
in different 1-trees) Therefore the subproblems generated by decomposition did not only depend on
the branching rule but also on the machine the process branching from this subproblem was running
on.
These different decompositions did not affect the correctness of our program. However, they made it
very difficult to compare consecutive executions of the same parallel algorithm or to compare the exe-
cution of a parallel algorithm with the execution of the corresponding sequential algorithm. Because
we were interested in studying the effects of parallelism, we decided to eliminate this variation in
decomposition into subproblems. The only way to do this was by changing all our floating point
arithmetic to integer arithmetic. Although this change decreased the accuracy of the lagrange multi-
pliers and thereby the quality of the 1-trees generated, it speeded up the overall execution of the algo-
rithm, especially if the algorithm was executed on the Suns. This speedup was due to the fact that
integer arithmetic is much easier to perform than floating point arithmetic. The extraordinary
speedup on the Suns was due to the fact that those machines did not perform their floating point
operations in hardware but had to simulate them in software.

In essence, communications through DPUP correspond to shipping bit patterns from one process to
another. Therefore processes on different types of machines can communicate using DPUP if they
use the same interpretation of bit patterns. If two processes use a different internal representation of
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bit patterns, one of the two processes has to convert the representation of the message to the
representation used by the other process. Currently the user himself has to arrange this conversion
process.
It turned out that the various C compilers running on the Pyramids and the Suns did not all use the
same internal representation of records, i.e., data structures containing various fields of nonhomogene-
ous data. The compilers differed in the way they packed the various fields in a record. By adding
dummy fields to a record it could be easily arranged that all compilers used the same representation.
A parallel program executed using DPUP is heavily influenced by other activities happening in the
net. If a machine is executing other processes apart from the processes of the parallel program, this
implies that it has less time for the parallel program. Also if there is much traffic on the Ethernet
connecting the various machines, the communications between the various processes of the program
can be interfered with. The real problem in this is that all these circumstances cannot be controlled
by the program. Therefore each time a parallel program is executed the environment differs and the
effects caused by the different environment mingle with the effects caused by the parallelism.
The only way to acquire reliable test results was by using a dedicated system, i.e. a system whose
machines are doing nothing besides the execution of the parallel program. Because we were running
our tests between Christmas and New Year we could get all machines stand alone during the night.

8.1. Computational results

We tested our parallel branch and bound algorithm by applying it to two sets of randomly generated
symmetric traveling salesman problems.

To study the effects of the number of processes used in parallel and of processes of varying comput-
ing power, we ran our program on different combinations of machines. Each machine always exe-
cuted a single slave process. Apart from that, the most powerful machine also executed the master
process. We started by using two Pyramids and then repeatedly added an additional Pyramid until in
the end we used 5 Pyramids. The computing power ratio of these Pyramids was approximately 1.00 :
0.96 : 0.96 : 0.80 : 0.62 (depending on the size of the problem instance to be solved). The Pyramids
were added in order of decreasing computing power.

Finally we included a couple of Sun-2’s in our tests to study the effects of adding a weak processing
element to the system. The computing power of a Sun-2 is approximately 4 times less than the power
of the most powerful Pyramid. In these experiments, the master process was executed by one of the
Sun-2’s, whereas each Pyramid and the other Sun-2 were each executing a single slave process.

The first set of test problems consisted of euclidean problems. Using a two dimensional uniform

distribution we generated points in a two dimensional space. The weight of an edge between two
nodes is equal to the euclidean distance in the plane between the two corresponding points. The
second set of test problems consisted of random problems, in which all weights were drawn at ran-
dom from a uniform distribution.
The random set consisted of five instances of 50 nodes, two instances of 75 and two instances of 100
nodes, whereas the euclidean set consisted of five instances of 50 nodes and a single instance of 75
nodes. All test problems (except the 75 node euclidean problem) were relative easy to solve. We
have chosen to use these easy test problems because we were primarily interested in the effects and
consequences of the use of parallelism, and not in solving problems as big as possible as fast as possi-
ble. We wanted to study the behaviour of a parallel branch and bound algorithm with increasing
number of processes used in parallel. We were especially interested in whether we could keep all
processes busy all the time.

As mentioned earlier, asynchronous branch and bound algorithms are nondeterministic. While
solving our test problems, the nondeterminism only occasionally resulted in different answers yielded
for different executions. The division of the work among the processes however varied heavily for
different runs, and thus the time needed for execution our parallel program. In order to get reliable
results, we had to make several test runs for each problem instance and average the results.

The small variety in answers yielded is due to the fact that the cardinality of the set of optimal
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feasible solutions of a traveling salesman problem tends to be small. Apart from that, if a problem
instance has several optimal solutions, the effort involved in generating these solutions must be nearly
comparable, i.e. the effort involved in traveling in the search tree from the root to these problems
must be comparable.

Figure 4 shows the average achieved efficiency and the average number of subproblems branched
from as a function of the number of processes used. The number of subproblems the corresponding
sequential algorithm branches from is shown underneath the problem name. Remember that due to
the fact that not all machines used are equally powerful, there is no direct link between the achieved
efficiency and the total time needed for executing the parallel program. In most cases, this time
decreased as the number of processes used increased. In a few cases, this time increased a little bit
due to fluctuation anomalies caused by the varying computing power of the machines used to execute
our processes. We will return to these anomalies in our experiments with the Sun-2’s.

As can be easily seen there exists only a limited amount of parallelism within a problem instance.
Therefore the achieved efficiency drastically decreases as soon as the number of processes used
exceeds a certain maximum number (which depends on the particular problem instance on hand).
Until that moment, there is enough parallelism in the problem instance to keep all processes busy
most of the time.

Our parallel algorithm starts by computing a lower bound to the original problem. These computa-
tions are performed by a single process whilst all other processes are idle. As can be easily deduced,
this has bad effects on the achieved efficiency. If we discount for the time needed to compute the
lower bound to the original problem, the achieved efficiencies are much higher. The discounted
achieved efficiencies are also shown in figure 4.

Some of our test runs show an achieved efficiency of more than 100 %, whereas the work done dur-
ing parallel execution exactly equaled the work done during sequential execution (i.e. the search trees
generated were completely identical). The only way we can explain this unreasonable efficiency is by
looking at the various tricks a computer uses to speed up execution of a program. Firstly, a compiler
tries to generate code that is as efficient as possible. This is easier to do for smaller programs than for
bigger programs. The parallel program consists of a set of smaller programs whereas the sequential
program is one big program. Secondly, the amount of memory needed by a slave process for storing
its data is smaller than the amount of memory used by the sequential program. Therefore a greater
part of the slave process fits into the cache (a kind of very fast memory, which is only limitedly avail-
able on a computer). Finally, a slave process can store all its data in static variables, whereas the
sequential program has to store its data in dynamic variables. Again the slave process can be exe-
cuted faster because accessing static variables goes faster than accessing dynamic variables.

In most cases the addition of a slave process running on a Sun-2, even though increasing the power
of the system as a whole, resulted in an increase in the time needed for executing the parallel pro-
gram. The execution of a program normally ended with all the other processes being idle and waiting
for the slave process running on the Sun-2 to complete its last task. Therefore, if there was only a
limited amount of parallelism present within the problem instance, the speedup gained at the start
was completely destroyed by the waiting in the end. Therefore execution could take a longer time
even though the work to be done was completely equal (i.e. identical search trees were generated).
Sometimes even the number of subproblems branched from drastically increased. As mentioned
before, this increase was caused by the fact that the least powerful slave process was branching from a
basic subproblem at a time that there were no more basic subproblems for branching from by the
more powerful processes. In such a case, the other processes started branching from subproblems
which would have been eliminated otherwise. As the least powerful process finished branching from
its subproblem, the subproblems thus generated were given to the more powerful processes to branch
from and the execution left the wrong track.

Figures 5 and 6 show minimum and maximum execution times and the number of subproblems
branched from while solving two specific problems as a function of the machines used. These figures
are characteristic for problem instances with a great and a small amount of intrinsic parallelism.



bounding root node and branching branching only
problem 2 3 4 5 2 3 4 5
pyramids pyramids pyramids pyramids || pyramids pyramids pyramids pyramids
e50a 0.93 0.90 0.68 0.57 1.00 1.11 0.85 0.72
(19) (20.0) (19.0) (20.0) (21.0) (20.0) (19.0) (20.0) (21.0)
e50b 0.88 0.65 0.46 0.39 0.98 0.75 0.54 0.44
an (11.0) (14.5) (18.8) (21.3) (11.0) (14.5) (18.8) (21.3)
e50c 0.84 0.60 0.42 0.34 0.91 0.68 0.47 0.37
(1 (12.0) (16.0) (21.0) (23.0) (12.0) (16.0) (21.0) (23.0)
e50d 0.88 0.68 0.52 0.45 0.95 0.76 0.60 0.53
(16) (18.0) (21.0) (24.3) (26.3) (18.0) (21.0) (24.3) (26.3)
e50e 0.89 0.72 0.50 0.41 0.98 0.86 0.60 0.48
(16) (17.0) (17.0) (18.0) (18.0) (17.0) (17.0) (18.0) (18.0)
e75b 0.97 0.94 0.95 0.93 0.99 0.97 1.00 0.99
(260) (260.0) (260.0) (260.0) (260.0) (260.0) (260.0) (260.0)  (260.0)
150a 0.97 0.85 0.68 0.57 1.06 1.01 0.86 0.72
(22) (22.0) (22.0) (22.0) (23.0) (22.0) (22.0) (22.0) (23.0)
r50b 1.02 0.92 0.80 0.72 1.09 1.04 0.95 0.91
(33) (33.0) (34.0) (33.0) (33.5) (33.0) (34.0) (33.0) (33.5)
r50c 0.85 0.61 0.46 0.39 0.95 0.71 0.55 0.46
1) (11.0) (11.5) (12.8) (14.3) (11.0) (1L.5) (12.8) 14.3)
r50d 1.05 0.92 0.76 0.68 1.12 1.03 0.89 0.81
(36) (36.0) (36.3) (37.0) (37.3) (36.0) (36.3) (37.0) (37.3)
r50e 1.09 0.98 0.84 0.77 1.14 1.07 0.94 0.88
(62) (62.0) (62.0) (62.3) (62.3) (62.0) (62.0) (62.3) (62.3)
175b 0.82 0.72 0.71 0.63 0.90 0.84 0.90 0.81
34) (34.0) (34.0) (37.0) (39.0) (34.0) (34.0) (37.0) (39.0)
r75¢ 0.90 0.83 0.78 0.73 0.96 0.93 0.92 0.89
(64) (64.0) (64.3) (65.0) (65.3) (64.0) (64.3) (65.0) (65.3)
r100a 0.86 0.74 0.66 0.60 0.97 0.90 0.88 0.82
37 (38.0) (39.0) (39.5) (41.0) (38.0) (39.0) (39.5) (41.0)
r100¢c 0.84 0.65 0.54 0.48 1.01 0.85 0.75 0.68
(22) (22.0) (23.0) (24.0) (25.0) (22.0) (23.0) (24.0) (25.0)

acchieved efficiency
(nr of subproblems branched)

figure 4



24

Figure 5 displays information about problem e75b, a huge problem with lots of intrinsic parallelism.
Therefore most of the time there was a basic subproblem available for an idle process running on a
Pyramid and the speedup at the start of the execution dominated the waiting at the end. Therefore
the increase in execution time caused by fluctuation anomalies is small. Figure 6 displays data about
problem e50c, a problem with limited intrinsic parallelism. Here fluctuation anomalies severely
increased the time needed for execution.

slave processes fastest nr of | slowest  nrof
running on time nodes time nodes

2 pyramids || 29:39.48  (271) | 29:4946  (271)
3 pyramids | 20:21.18  (271) | 20:23.92 (271)
4 pyramids || 15:49.26  (271) | 15:51.26  (271)
5 pyramids || 13:55.96  (271) | 14:03.40 (271)
2 pyramids + sun || 26:47.06  (271) | 27:01.80  (271)
3 pyramids + sun || 18:54.12  (271) | 19:0246  (271)
4 pyramids + sun || 15:00.90  (271) | 15:06.34  (271)
5 pyramids + sun || 13:18.00 (271) | 13:45.38  (271)

figure 5 - problem €75b

slave processes fastest nrof | slowest mnrof
running on time nodes time nodes
2 pyramids || 0:48.78 (12) | 0:50.82  (12)
3 pyramids || 0:48.10  (15) | 0:53.14 ~(14)
4 pyramids || 0:43.12  (20) | 0:53.64 (17)
5 pyramids || 0:49.02  (24) | 0:52.68  (24)

2 pyramids + sun || 0:54.80 (13) 1:41.90 25
3 pyramids + sun || 0:49.32 (17) 1:03.30 (19)
4 pyramids + sun || 0:58.40 (21) 1:10.88 29)
5 pyramids + sun | 0:48.42 (26) 1:11.08 27

figure 6 - problem e50e

8.2. Branching in parallel from the original problem
As already mentioned, our branch and bound algorithm has one inherent sequential part: a single
slave process computes the lower bound to the original problem. Until this slave process has com-
pleted this computation, all other slave processes are idle and thus wasting their computing power.
Computing a lower bound to the original problem tends to be a much heavier task than computing a
lower bound to a subproblem generated by branching. In computing a bound to the latter problem
often knowledge is used which has been obtained while computing the bound on the original problem.
A good initial bound tends to lead to good bounds on the subproblems which can also be computed
efficiently. Therefore often a more complex lower bound function is used in branching from the origi-
nal problem.
It might be possible to speed up the execution of our parallel branch and bound algorithm by paral-
lelizing the computing of the lower bound to the original problem. However, parallelizing this lower
bound computation, although decreasing the overall computational complexity, increases the com-
municational complexity of the algorithm. Therefore whether such a parallelization is worthwhile
depends on the lower bound function used and the particular system which the algorithm is run on.
As one of our computational experiments we tried to speed up the execution of our parallel
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program by parallelizing the computation of the lower bound to the original problem.

Most of the effort involved in computing this bound is spent in generating a good 1-tree. This pro-
cess consists of a main loop, which updates the weights of the edges, sorts the edges according to their
new weights and finally constructs a minimal spanning tree and a 1-tree. Because the way the weights

are updated depends on the 1-tree generated in the previous iteration, the iterations of this main loop -

are inherently sequential. The generating of the minimal spanning tree is done by a greedy algorithm
and therefore difficult to parallelize [Anderson & Mayr 1984]. Therefore the only part fit for parallel-
izing is the sorting of the edges. We parallelized the sorting by dividing the edges into sets and giving
each slave process its own set of edges to sort. After that, the master process collected the sorted sets
and merged them.

It turned out that the increase in communicational complexity completely dominated the decrease in
computational complexity. Only when we ran our program solely on the Suns and still used floating
point arithmetic, it turned out to be faster.

8.3. Robustness

Parallel execution also tends to increases the robustness of a branch and bound algorithm. An
branch and bound algorithm is said to be robust if it does not spend much effort in branching from
subproblems which could have been eliminated if the order in which the subproblems are branched
from would have been different. For a sequential branch and bound algorithm it is very easy to
spend large amounts of its time decomposing subproblems which can never yield the optimal solution.
Because parallel branch and bound algorithms decompose various subproblems at the same time, the
chance that all processes are decomposing subproblems which can never yield the optimal solution is
smaller. However, as can be easily seen from the fact that deceleration anomalies exist, it cannot be
guaranteed that parallel branch and bound algorithms are more robust than sequential branch and
bound algorithms.

9. Conclusion

Our experiments showed that it is possible to get high achieved efficiencies while executing asyn-
chronous parallel branch and bound algorithms on a loosely coupled system with one central pool for
dividing the subproblems to branch from among the various processes. If the effort needed for
branching from a single subproblem is big, the frequency with which the various processes want to
access the central pool is low, and accessing the pool is not a bottleneck. Therefore, while executing a
parallel branch and bound algorithm using lower bounds which are hard to compute, there is no use
for decentral pools.
Each problem instance contains only a limited amount of parallelism. Therefore there exists an upper
bound on the number of processes which can be used in parallel successfully to decrease the execution
time.
Adding a weak processing element to the system turned out to be dangerous. Most of the time this
increased the execution time. The amount of increase was inversely proportional to the intrinsic
parallelism of the problem.
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