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Abstract
Recent results from molecular dynamics simulations have shown that significant concentrations of
Frenkel pairs can be introduced by the proliferation of phonons lying at the edge of the Brillouin
zone and when above the Debye temperature. Following the work of Granato (2014 Eur. Phys. J. B
87 18) we extend those calculations to the influence of Frenkels on the elastic modulus. Significant
softening is predicted which is confirmed by in situ measurements of the elastic modulus during
flash. Frenkel pairs have been proposed to play a central role in the flash phenomena.

1. Introduction

In 2018 the authors have published results from molecular dynamics (MD) simulations [1] that predicted
the generation of Frenkel pairs by the proliferation of phonons with wavelengths lying at the edge of the
Brillouin zone when the temperature rose above the Debye temperature. Results from this first work, on
aluminum single crystals, are reproduced in figure 1. (Similar results were obtained in titania, for both
cations and anions, that were published soon thereafter [2].) In this figure we note that: (i) injection of
phonons at sufficiently high rate and at temperature below the Debye temperature θD raises the
temperature but only until it crosses the Debye threshold, where it levels off and is accompanied by the
formation of Frenkel pairs in increasing concentrations, (ii) if the starting temperature is above Debye—but
not too close to the melting temperature—the temperature falls and then hugs Debye again producing
Frenkels. The Debye asymptote of the temperature suggests that the injected energy is consumed by
endothermic formation of Frenkel pairs.

In the nineties Granato [3] was intrigued by the local strain field of Frenkels in metals and argued that
they increased the entropy thereby lowering the melting temperature. He considered thermodynamic
equilibrium for the formation of Frenkels, which having a high energy of formation, would develop close to
the melting temperature. Thus, the lowering of the melting point would have been slight, which could not
be confirmed by experiment.

However, the analysis of the strain field of Frenkels and their influence on the elastic modulus emerged
as a standalone issue. Granato predicted a softening of the shear modulus with increasing concentration of
interstitials, cI, which he described by [4]

G (cI) /G0 = exp (−βcI) . (1)

Here, the left-hand side is the ratio of the shear modulus with and without interstitials.
Frenkels can be produced by athermal stimulation, as for example in radiation damage. In this same

article Granato shows that the reduction in the shear modulus when applied to experimental results from
copper, was consistent with the equation just above. The Frenkels had been infused by radiation damage;
the value of β, the susceptibility constant, was determined to be ∼20.
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Figure 1. Time evolution of kinetic energy in a phonon-driven adiabatic MD simulation [1]. A lattice normal mode near the
Brillouin zone edge is being excited with a rate of 0.42 THz.

Thus the influence of the Frenkels on elastic behavior emerges as an area of research on its own. It is
relevant to Frenkels produced not only in radiation damage but also by another athermal mechanism, as
hypothesized during flash experiments, where it was demonstrated that, in three instances, flash occurred
only if the specimens were above the Debye temperature [5, 6], as predicted in figure 1.

The hypothesis of Frenkels in flash experiments was also supported by comparing the measurements of
excess lattice expansion (measured in situ with x-ray at Argonne National Laboratory) with predictions
from ab initio calculations [7]. More recently measurements of an energy deficit between the measured
temperature and the temperature predicted from a black body radiation model, gave quantitative agreement
between the extent of defect generation and the acceleration in the sintering rate [8].

In this article, the above theoretical and experimental results are extended to the influence of Frenkels on
the elastic modulus. We begin with MD calculations to predict the elastic modulus with Frenkels and
compare subsequently with in situ measurements of the modulus in specimens held in a steady state of flash
(so called stage III). The experiments were carried out by measuring the change in the free vibration
frequency of cantilever beam specimens. Baseline data were obtained with furnace heating. They were
compared with measurements of the modulus during in-flash experiments. The results from MD
simulations gave good agreement with experiment.

2. Theory

2.1. The method
We did MD simulations of ZrO2 in order to answer the following questions: can the presence of Frenkel
defects account for elastic softening in zirconia, and if so, how does the extent of softening depend on their
concentration?

The simulations were done with the program LAMMPS [9]. As interaction potential we took

V
(
rij

)
= Aij exp

(
− rij

ρij

)
+

qiqj

4πε0rij
− C̃ij

r6
ij

, (2)

where qi and qj are the effective charges of the ions i and j, and rij is their distance. The parameters Aij, C̃ij

and ρij for Zirconia were determined in [10]. For the two non-Coulombic terms in equation (2) we chose a
short-range cut-off distance of 10 Å. The Coulomb interactions were evaluated by means of the Ewald sum
method [11] with a precision of 10−5.

We constructed initial configurations with Frenkel defects by the following procedure: following [10], we
started from a perfect cubic lattice of ZrO2 with periodic boundary conditions. It consisted of 10 × 10 × 10
unit cells with a lattice constant of a = 5.082 Å, each containing 4 Zr-atoms and 8 O-atoms, so that the
total number of molecules was N = 4000. The zirconium and the oxygen atoms sit in alternating planes
separated by the vector 0.25a(0, 0, 1). In the zirconium planes the atoms form a square lattice with relative
coordinates of nearest neighbors 0.5a (1, 1, 0) and 0.5a (−1, 1, 0). The oxygen atoms form a square lattice
with relative coordinates 0.5a(1, 0, 0) and 0.5a (0, 1, 0). Then we selected nZr zirconium and nO = 2nZr

oxygen atoms at random and displaced each of them by the vector�rI = 3.25a(1, 1, 0) from their perfect
lattice positions to preliminary off-lattice ones. This configuration was then allowed to relax anisotropically
at fixed temperature T = 1400 ◦C and zero pressure [12] for 0.3 ns allowing the displaced atoms to settle
into preferred interstitial positions. Choosing different random seeds we produced six initial configurations
for nZr = 3, and four for nZr ∈ {15, 25, 45, 60} this way.
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During the relaxation the initial cubic structure transformed spontaneously into a tetragonal structure,
as also reported in [10], regardless of the concentration cI of interstitials. Both, the vacancies and the
interstitials are mobile during the relaxation, leading to clustering and partial recombination. The surviving
numbers of Zr- and O-interstitials, ntrue

Zr and ntrue
O , were measured for each initial configuration by means of

the Wigner–Seitz defect analysis [13] (after a quench to T = 0 at zero pressure). The molar concentration
of interstitials was then calculated by

cI =
ntrue

Zr + ntrue
O

N
� 3nZr

N
, (3)

assuming that no crystal defects are lost during the quench. Deviations from ntrue
Zr = 2ntrue

O occurred, but
they were not systematic.

For each relaxed initial configuration (not quenched) the six independent single-crystal elastic constants
C11, C12, C13, C33, C44, and C66 (Voigt notation [14]) were calculated. These results are reported in
supplementary information (https://stacks.iop.org/NJP/23/053013/mmedia). In order to compare with the
experimental results for polycrystalline ZrO2 we used the Voigt–Reuss–Hill approximation [15] to calculate
the shear modulus, G, and the bulk modulus, B [16],

G =
1

2
(GV + GR) , and, B =

1

2
(BV + BR) , (4)

where

GV =
1

30
[M + 3C11 − 3C12 + 12C44 + 6C66] , BV =

1

9
[2 (C11 + C12) + C33 + 4C13] ,

GR = 15

[
18

C2
BV +

6

C11 − C12
+

6

C44
+

3

C66

]−1

, and BR =
C2

M
, where

C2 = C33 (C11 + C12) − 2C2
13, and, M = C11 + C12 + 2C33 − 4C13.

The Young modulus E was calculated from bulk and shear modulus: E = 9BG/(3B + G).
We obtained the elastic constants from the slope of the stress(σ)–strain(ε)-diagrams according to

Hook’s law in Voigt notation [14],
σi = Cijεj. (5)

The initial configurations were deformed in an MD-simulation without a thermostat and a barostat. For the
dilatational strains ε1, ε2 or ε3 we increased the total x-, y-respectively z-length of the simulation box by
Δ	 = 0.5 · 10−3 Å in each MD-timestep tn and rescaled the x-, y-respectively z-coordinates of all atoms
accordingly. For ε4 or ε6 we sheared the yz-respectively xy-face of the simulation box by Δ	 in each
MD-timestep tn and imposed corresponding displacements of the atomic coordinates,
y (tn+1) = y (tn) + Δ	

Lz
z (tn) leaving the x- and z-coordinates unchanged (for ε4); and

x (tn+1) = x (tn) + Δ	
Ly

y (tn) leaving the y- and z-coordinates unchanged (for ε6). For each timestep the stress

components were measured as the sum of a kinetic and a virial contribution as implemented in LAMMPS.
During the elastic deformation we monitored the temperature (derived from kinetic energy as usual).

Since the deformation happens adiabatically, the temperature decreases slightly with increasing strain, as
shown in figure 2 (left). The decrease is less than 3% for maximal strain.

2.2. Results from MD simulations
A specific example of how we calculated one of the elastic constants, C11, is shown in figure 2 (right). It
shows the stress–strain curves for a perfect crystal (red line) and a crystal with an interstitial-concentration
of cI = 0.03475 (blue line). The elastic constant C11 is the slope.

In figure 3, the shear modulus G, bulk modulus B and Young modulus E are plotted as functions of the
concentration of interstitials cI. The error bars are calculated from the errors in the linear fits to the
stress–strain curves. Data with the same value of nZr are marked by the same color. Their spread indicates
the variability of the true interstitial concentration (3) after relaxation of the initial configuration, arising
from different degrees of recombination.

The simulation results show that the zirconium oxide crystal softens in the presence of interstitials. The
data can be well fitted by the functions

G (cI) = Gam + (G0 − Gam) exp
(
−β′cI

)
,

B (cI) = Bam + (B0 − Bam) exp
(
−β′′cI

)
, (6)

E (cI) = Eam + (E0 − Eam) exp
(
−β′′′cI

)
,

3
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Figure 2. Temperature (left) and stress tensor component σ1 (right) for adiabatic, dilational strain ε1 of a perfect (red) and
defect-enriched (blue) ZrO2 crystal. The temperature decreases by less than 3%. According to equation (5), the slope of the linear
fit of the elastic regime (dashed lines) is the elastic constant C11. The lower slope for the defect enriched crystal indicates that the
ZrO2 crystal softens in the presence of interstitial atoms.

Figure 3. Shear modulus G (upper left), the bulk modulus B (upper right), and the Young modulus E (lower panel).

which in contrast to equation (1) takes the moduli for amorphous zirconia, Gam, Bam, and Eam into account
for large interstitial concentrations cI. The fit parameters are

Gam

G0
= 0.815, β′ = 276.2,

Bam

B0
= 0.735, β′′ = 343.7,

Eam

E0
= 0.802, β′′′ = 294.2.

(7)
calculated with equation (4) as a function of the molar concentration of interstitials cI. The result shows
that the softening of the shear modulus increases with the concentration of interstitials. The full lines are
the fits, equation (6), to all data.

A linear approximation of (6), G (cI) ≈ G0 (1 − βcI) leads to the shear susceptibility constant β = 51,
while the linear fit to the data up to cI < 0.006 gives β = 33.79, which shows how sensitive this parameter is
to the way the fitting is done. The absolute values for the defect-free case, G0 = 137 GPa, and B0 = 251 GPa
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are larger than the experimental values. This is probably due to the choice of the potential, equation (2), an
experience in line with previous studies [17].

3. Experiments

The experiments measured the change in the vibration frequency of a cantilever beam, with and without
the electric field applied to the mid-portion along the length of the specimen. The change in the frequency
was related to the change in the modulus with modal finite element analysis, which is described in detail in
the following section.

The flash behavior of ceramics is orchestrated by placing the specimen within a furnace held at a specific
temperature and applying an electric field. After an incubation time, there is an abrupt rise in conductivity
signaling the onset of the flash. This is called stage I. The rise in current is controlled by switching the
power supply from voltage to current control. This transition has been called stage II. Thereafter the
specimen can be held nearly indefinitely under current control, which has been known as stage III [18].
While the original experiments were designed for flash sintering of powder pressed samples, the more
fundamental studies of the flash mechanism, as in the present work, have been carried out with dense
polycrystals. Flash experiments with single crystals have provided further insights into the science of the
flash phenomenon [19].

It is of note that flash in stage III can be maintained with the current supplied directly to the specimen
from a power supply operated under current control, without any auxiliary heating. At this point the
furnace can be switched off. The in situ experiments described below were carried out with furnace-off,
which rendered considerable simplicity to the measurement of the specimen temperature.

The objective of the experiments was to measure the change in the elastic modulus under the influence
of flash, relative to the intrinsic modulus of zirconia. Therefore, the experimental protocol consisted of two
steps. First the intrinsic modulus was measured with furnace heating—these results compared reasonably
well to literature data. Next the specimen was activated with flash and the modulus measured as a function
of temperature. These two measurements were compared at same temperature, the first obtained with the
furnace and the second with heating from the current deployed to sustain the flash.

3.1. The method
In situ elastic modulus was measured from the change in the frequency of (free) vibration of a cantilever
beam specimen. The change in the frequency was related to the change in modulus with the help of finite
element modal analysis, as explained later.

Displacement–time signals for the vibrations were collected by a Polytech Portable Digital Vibrometer
(PDV-100). It uses a helium neon laser of wavelength 633 nm with a frequency measurement ranging from
0.5 to 20 000 Hz. It was kept at a distance of about 20 inches from the sample as proposed by Polytech in
order to get optimal measurements. An impact model-hammer (PCB 086C02) from PCB Piezotronics was
used to give an impulse to the sample so that it would vibrate in a direction parallel to the laser beam. A
Polytech Data Acquisition System (VIB-E-220) was used to acquire data from both the Vibrometer and the
model-hammer. VibSoft 5.3 and VibSoft 5.3 Desktop (software) along with keys (VIBSOFT-20 and
VIBSOFT-desktop) were needed to access the data on a computer.

The beam was vertically aligned. It was held securely at the bottom. The top, the free end of the beam,
was ground to a flat surface. A reflective tape was attached to this surface. The laser beam was focused on
this flat surface so that the reflection could be read by the vibrometer. In this way the back-and-forth
vibrations of the free end of the beam parallel to the laser beam could be specifically measured.

The experimental set-up is shown in figure 4. A rod of 3YSZ, 1.83 mm in diameter and 137.6 mm long,
obtained from CoorsTek, Inc., Golden, CO, served as the cantilever. The beam was fixed at the bottom with
the top end being free to vibrate. The fixed end was secured within a short piece of alumina tube with
Omega Bond OB-600 (Omega Engineering, Norwalk, CT) high temperature cement. The sample was
placed on a support structure for 24 h to allow the cement to dry after which it is was cured at 82 ◦C for 4 h
and then further at 104 ◦C for another 4 h. The beam was placed within a home-built platinum furnace
with a total height of 56 mm.

The vibration frequency of the beam at ambient temperature was checked against the theoretically
expected value from the Euler–Bernoulli beam equation

ωn = 3.516

√
EI

M	3
, (8)

where ωn (rad sec−1), E (GPa), I (m4), M (kg), and 	 (m) are the natural frequency (first harmonic), the
elastic modulus, the area moment of inertia, and the mass and the length of the sample respectively. Here, I
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Figure 4. The set-up of the experiment for in situ measurements of the elastic modulus. The cantilever has three portions. The
mid-section is at elevated temperature, heated either with the furnace, or with flash-current. The outer sections are at ambient
temperature. Three different flash lengths, approximately 10, 20 and 30 mm were investigated. Once stage III of flash was
established in the mid-section, the furnace was turned off. The change in vibration frequency of the cantilever in the presence of
flash was translated into the change in the elastic modulus.

Figure 5. (a) The influence of the elastic modulus on the vibration frequency is calculated from modal finite element analysis.
(b) Shows the change in the experimental vibration frequency with the (known) temperature of the mid-section of the cantilever
beam. Thus, on the one hand the simulation relates the frequency to the modulus, and on the other hand experiments correlate
the frequency to the temperature. (c) The intrinsic temperature dependence of the modulus measured in this way is compared
with literature values.

has a constant value of 5.51 ∗ 10−13 m4, 	 is 137.6 ∗ 10−3 m and M is 2.417∗10−3 kg. Substituting
E = 198.6 GPa into equation (8) predicts a frequency of 77.73 Hz while the experimental frequency was
nearly exactly the same, 77.78 Hz, which provides support that the laser vibrometer was measuring the
oscillations parallel to the laser beam. Experiments with several specimens gave E to lie in the range of 198
to 201 GPa. The values from literature vary from 200 to 204 GPa [20]. Experimental values of the frequency
were determined by fast Fourier transform (FFT) with a program written in MATLAB. The first
fundamental frequency of vibration was chosen.

The change in frequency was translated into the change in modulus of the hot section of the beam by
modal finite element analysis. The method is illustrated in figure 5. The graph in 5(a) on the left predicts
the change in frequency as a function of the change in the modulus of the mid-section of the beam, based
upon modal finite element analysis. The graph 5(b) shows the experimental data for the change in the
frequency when the mid-section is heated to a certain temperature. Cutting across the two figures at the
same frequency yielded the modulus as a function of temperature. The same approach yielded the modulus
when the specimen was heated with a flash current.

The baseline temperature dependence of the modulus was measured by heating the furnace from
ambient to 1200 ◦C. A comparison of these data with literature values is shown in figure 5(c). The
difference between the current data and literature values [20] lies within 15 GPa. This difference is much
smaller than the change in the modulus induced by flash, as shown later.

6
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Figure 6. The electrical parameters for the case of 20 mm gage length sample, flashed with 100 V cm−1. The furnace, which was
held at 750 ◦C to initiate the flash, was switched off upon reaching stage III, and allowed to cool down before measuring the
vibration frequency. The current density was now changed in steps to change the specimen temperature. At each step the
vibration frequency was measured.

3.2. Measurements of the elastic modulus with a flash current
To induce flash two thin platinum wires were attached to the mid-section of the beam creating an effective
gage length for the flash current which was controlled by the power supply. Three sets of data for flash
lengths of approximately 10 mm, 20 mm and 30 mm, were obtained. The wires were wrapped around the
thin rod with a touch of platinum paste to promote electrical contact. The effect of the platinum wires on
the vibration was determined by measuring the frequency with and without the platinum wires. At room
temperature the frequency with the wires was lower by 0.5 Hz than without the wires; this drop corresponds
to a difference in effective modulus of 2 GPa, which is insignificant in comparison to the softening induced
by flash.

Flash was triggered by heating the furnace to 750 ◦C and applying a field of 100 V cm−1. The steady state
of the flash under current control (stage III) was quickly established. At this point the furnace was turned
off. The specimen was now heated with the flash current supplied directly to the specimen from the power
supply. Experiments were carried out for four levels of current density 120, 100, 80, and 60 mA mm−2. The
voltage expressed across the gage length, was measured. The product of the measured field and the injected
current density gave the power density. The data were analyzed with the following nomenclature and units
for the electrical parameters: PWis the power density in units of mW mm−3, φ is the field in V cm−1, and J
the current density in mA mm−2. Therefore PW = (φ/10) × J mW mm−3. The power density is used to
estimate the temperature of the specimen with a black body radiation model [21].

The field, the current density and the power density for the case of 20 mm gage length are shown in
figure 6. Note that the furnace was turned off after ∼2000 s and allowed to cool down to ambient
temperature before measuring the vibration frequencies. The temperature of the specimen was reduced in
steps by changing the current flowing through the specimen.

The spike in the power density seen during the transition from stage II to stage III is characteristic of
flash experiments [18]. The downward spike is seen when the current is dropped down to 100, 80 and
60 mA mm−2; but it rises nearly immediately to a steady state value. Note that the field generated across the
specimen under current control does not change with the current density. The reason for this effect, which
has been observed in other flash experiments in our laboratory, remains unclear. Experiments similar to
those in figure 6 were carried out for gage lengths of 10 mm and 30 mm. Those results can be found in [22].

The temperature of the in-flash specimen was estimated by two methods: with a black body radiation
model (BBR) [21], and then by direct measurement of the temperature with a pyrometer. The BBR model

7
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Figure 7. Temperature of the specimen as measured with the pyrometer and compared with the estimate from the black body
radiation model.

has been shown to be consistent with synchrotron measurements with a platinum standard [23]. The model
invokes the concept that the black body radiation loss should be equal to the electrical power dissipation,
which leads to the following expression,

TK

[
T04

K +
PWV

εAσ

] 1
4

. (9)

Here, TK is the specimen temperature and T0
K is the ambient temperature in K. In the present analysis

T0
K = 300 K (since the furnace had been turned off). PW is the power density calculated from the prescribed

gage-section, V is its volume and A the surface area of the gage-section. The Stefan Boltzmann constant is
σ = 5.687 × 10−8 W m2 K−4, and ε is the emissivity, assumed to be 0.9 for zirconia [24].

The error in TK for uncertainty δPW is obtained by taking logarithm both sides in equation (2),
assuming that TK � T0

K, and differentiating

δTK

TK
= 0.25

δPW

PW
(10)

Equation (10) was applied to estimate the error in the temperature from uncertainty in the power
density. Since the power density is equal to the watts expended divided by the volume of the flashed section
of the cantilever beam, an uncertainty in the gage length can lead to an error in PW. The electrical contact
was made by wrapping platinum wire around the cylindrical sample by hand and applying some platinum
paste to establish good contact. The error in the placement of the wires would have been most likely for the
shortest gage length. Indeed this was apparent in the measurement of the power density: it was 700 mW
mm−3 for 10 mm but 560–600 mW mm−3 for 20 and 30 mm gage lengths, leading the an uncertainty in
the power density of about 15%. Substituting in equation (10) it would have led to an error of ∼4% in the
estimate of the temperature by the BBR model.

The specimen temperature was also measured with a pyrometer (Micro-Epsilon, Model 1MH, Focus:
CF4; Raleigh, NC). The emissivity at the pyrometer was set to 0.9. The pyrometer measurements, which are
explained in detail in [22], are compared with the BBR estimates in figure 7.

The in situ modulus of the specimens was obtained by the method explained in figures 5(a) and (b).
First the vibration frequency was predicted for different values of the elastic modulus in the mid-section of
the cantilever beam. Then the vibration frequency was measured as a function of the specimen temperature.
In this way, the elastic modulus was linked to the temperature, via the frequency.

Twelve sets of experiments were carried out, corresponding to three gage lengths and four current
densities for each of them. These results are reported in figure 8. They show a significant softening of the
modulus under flash current. Furthermore, the rate of decrease of modulus steepens with temperature
whereas the intrinsic modulus tends to flatten out at higher temperature.

While the data for 20 mm and 30 mm are consistent, those for 10 mm fall significantly lower. As
described earlier there was some uncertainty in the power density for this specimen but that is accounted
for in the error bar for the temperature. Our view is that this difference arises from the behavior of the
platinum-zirconia interface. As the gage length becomes narrower the relative influence of the interface

8
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Figure 8. The softening of the elastic modulus in stage III of flash. Note that the rate of change of modulus with temperature in
flash is steeper than the intrinsic behavior which appears to be flattening. The data for the 10 mm specimen appears to give lower
values than the 20 and 30 mm specimens, which is discussed in the text.

Figure 9. Influence of flash on damping behavior. The coefficient was measured by the decay of the amplitude and by the
broadening of the peak in Fourier space. Both measurements refer to approximately 1200 ◦C. (a) The data from furnace heating.
(b) In situ measurements in stage III of flash experiments.

Table 1. Data for the damping coefficient with furnace heating (w/o flash), and with flash heating (with the furnace OFF).

Without flash Flash ON/furnace OFF

Furnace
temperature (◦C)

Damping
coefficient(ζ)

Current
density (mA mm−2)

BBR
temperature (◦C)

Damping coefficient (ζ)
10 mm 20 mm 30 mm

900 0.0022 60 940 0.0023 0.0026 0.003
1000 0.0023 80 1030 0.0028 0.004 0.0054
1100 0.0024 100 1108 0.0033 0.0055 0.0075
1200 0.003 120 1184 0.004 0.0071 0.0104

(which does not depend on the gage length) becomes more important. These measurements may suggest
that the softening in the region close to the interface is stronger than within the gage section.

3.3. Measurements of damping
We have measured the damping of free vibrations. It was analyzed in two ways: (i) by the logarithmic
decrement defined as δ = (1/n)	n(x0/xn), where x0 and xn are the amplitudes separated by n number of
oscillations, and (ii) by measuring the full width half maximum (FWHM) of the frequency peak in the
Fourier transform space; the logarithmic decrement is related to the FWHM, Δf, and the peak frequency, f,
by δ = 1.814(Δf/f ) [24]. The damping coefficient, ζ used in the description of the damped simple
harmonic motion is then related to the loss tangent by ζ = δ/

√
4π2 + δ2. The damping in internal friction

is usually expressed as a Q factor, which is related to the damping coefficient: Q−1 = 2ζ.
The damping profiles, with flash and without flash are shown in figure 9. Both sets of data were

obtained at approximately the same temperature of 1200 ◦C. Note that the amplitude decays more quickly
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under flash, and that the width of the Fourier peak is broader. Expansive data for different temperatures and
gage lengths are given in table 1.

4. Discussion and conclusion

This paper presents a couple of new facts, which give further insight into the flash phenomenon in yttria
stabilized zirconia. We were interested to study if steady state of flash (so called Stage III) softens the elastic
modulus. The experiments measured the change in modulus as a function of temperature, first with furnace
heating, and then with the flash current without furnace heating. These results are summarized in figure 8.
The data show that the intrinsic change in modulus up to a temperature of 1300 ◦C were in good agreement
with published results [20]. Next the experiments were repeated with the sample held in a steady state of
flash (stage III) supplied with constant current. The sample temperature was measured with a pyrometer;
and then also estimated from a black body radiation model. These two measurements are compared in
figure 7; they differ by less than 10%.

The elastic modulus in the state of flash was measured at temperatures above 1000 ◦C, this high
temperature being needed to sustain the flash. The modulus was significantly lower than the measurements
of the intrinsic modulus without the flash. At 1100 ◦C the modulus under flash is about 13% lower, at
1200 ◦C about 28% lower, and for 1400 ◦C, with slight extrapolation it is lower by 33% in comparison to
the intrinsic modulus.

In order to answer the question, whether the softening of the modulus could be explained by Frenkel
defects, we calculated the elastic constants of tetragonal zirconia at 1400 ◦C with molar interstitial
concentrations varying between 0 and 0.045. The numerical values were combined to obtain approximate
values of the elastic moduli of polycrystalline zirconia. The dependence on the interstitial concentration
could be fitted to an exponential decay for defect concentrations of <0.01. At higher concentrations the
softening approaches asymptotic values between 20% and 30% of the moduli for a crystal without Frenkel
defects. These predictions should be valid for other temperatures, as well, and are in qualitative agreement
with the experimental values described above.

In conclusion, we can interpret the elastic softening observed in flashed zirconia as an indication of a
concentration of Frenkel defects that increases with the current density (and hence the sample temperature)
supplied to maintain stage III of flash. According to the simulation, the interstitial concentration at 1400 ◦C
should be of the order of 0.01. Such high molar concentrations of interstitials cannot be expected to be
thermally excited at 1400 ◦C (the applied electric fields were too weak—they corresponded to just a few
milli-eV; while the formation energy of interstitials is several eV). Therefore, our results point towards a
far-from-equilibrium mechanism for the generation of Frenkels, as discussed in the results from MD
simulations reported in figure 1. The MD simulations invoke the concept that the current preferentially
excites short wavelength lattice vibrations creating a state that is far from equilibrium. This non-equilibrium
proliferation of phonons was recently shown to lead to Frenkel concentrations in titania [2] that are of the
same order as the ones reported in this paper.

Finally, it is notable in figure 8 that the 10 mm specimen consistently yielded a lower elastic modulus
than specimens with much longer gage lengths. We attribute this difference to interface behavior at the
electrodes. As the specimen length decreases interfaces play an increasingly dominant role in the overall
behavior. Thus, we anticipate that there is greater softening in the modulus near the interfaces. The defect
generation near interfaces in flash experiments has been of interest recently in explaining the presence of
some blackening at the cathode [25].

The measurements of damping we present are also likely to be of interest in understanding the
movement of defects in the crystals. It is possible that internal friction experiments can be designed where
the applied frequency can be resonated with the intrinsic jump frequency of the defects [26].
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