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Abstract— In this paper, we propose a compositional frame-
work for the construction of finite abstractions (a.k.a. finite
Markov decision processes (MDPs)) for networks of not neces-
sarily stabilizable discrete-time stochastic control systems. The
proposed scheme is based on a notion of finite-step stochastic
simulation function, using which one can employ an abstract
system as a substitution of the original one in the controller
design process with guaranteed error bounds. In comparison
with the existing notions of simulation functions, a finite-
step stochastic simulation function needs to decay only after
some finite numbers of steps instead of at each time step.
In the first part of the paper, we develop a new type of
small-gain conditions which are less conservative than the
existing ones. The proposed condition compositionally quantifies
the distance in probability between the interconnection of
stochastic control subsystems and that of their (finite or infinite)
abstractions. In particular, using this relaxation via finite-step
stochastic simulation functions, it is possible to construct finite
abstractions such that stabilizability of each subsystem is not
necessarily required. In the second part of the paper, for the
class of linear stochastic control systems, we construct finite
MDPs together with their corresponding finite-step stochastic
simulation functions. Finally, we demonstrate the effectiveness
of the proposed results by compositionally constructing finite
MDP of a network of four subsystems such that one of them
is not stabilizable.

I. INTRODUCTION

Controller design to achieve some complex specifications
for large-scale interconnected stochastic systems has been
inherently a challenging task due to the computational com-
plexity. In order to overcome this challenge, one promising
approach is to develop compositional frameworks using no-
tions of stochastic simulation functions. Accordingly, one can
first abstract the original system by a simpler one possibly
finite or with a lower dimension, design a controller for it,
and then refine it to a controller for the concrete system, by
providing quantified errors for this detour process.

In order to reduce the complexity of controller synthesis
problems, construction of finite abstractions was introduced
over the last few years. In finite abstractions, each discrete
state and input respectively correspond to an aggregate of
continuous states and inputs of the original system. Since
the abstractions are finite, the algorithmic machineries from
computer science [1] are applicable to synthesize controllers
for concrete systems.

There have been several results on the construction of
(in)finite abstractions for continuous-time stochastic systems
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in the past few years. Infinite approximation techniques for
jump-diffusion systems are investigated in [2]. Finite bisim-
ilar abstractions for incrementally stable stochastic switched
systems are proposed in [3]. Other existing results include
construction of finite abstractions for stochastic control
systems without discrete dynamics [4], and for randomly
switched stochastic systems [5]. For jump-diffusion systems,
compositional construction of infinite abstractions is recently
discussed in [6] using small-gain type conditions.

For discrete-time stochastic models with continuous-state
spaces, construction of finite abstractions for formal veri-
fication and synthesis is initially presented in [7]. Exten-
sion of such techniques to infinite horizon properties and
improvement of the construction algorithms in terms of
scalability are proposed in [8] and [9], respectively. For-
mal abstraction-based policy synthesis and compositional
construction of finite abstractions using dynamic Bayesian
networks are discussed in [10] and [11], respectively. Com-
positional construction of infinite abstractions (reduced order
models) is proposed in [12] and [13] using small-gain type
conditions and dissipativity-type properties of subsystems
and their abstractions, respectively. Moreover, compositional
finite bisimilar abstractions for networks of stochastic sys-
tems are presented in [14] using disturbance bisimulation
relations. Recently, compositional synthesis of large-scale
stochastic systems using a relaxed dissipativity approach is
proposed in [15].

There have been also some results in the context of stabil-
ity verification for non-stochastic systems. Nonconservative
small-gain conditions based on finite-step Lyapunov func-
tions were originally introduced in [16]. Moreover, noncon-
servative small-gain conditions for closed sets using finite-
step ISS Lyapunov functions are presented in [17]. Recently,
compositional construction of finite abstractions via relaxed
small-gain conditions for discrete-time systems is discussed
in [18]. Although the proposed results in [18] employ relaxed
small-gain conditions via finite-step ISS Lyapunov functions,
their setting is non-stochastic.

Our main contribution is to develop a compositional
scheme using relaxed small-gain type conditions for the
construction of finite MDPs for networks of discrete-time
stochastic control systems. The proposed framework relies
on a relation between each subsystem and its abstraction
employing a new notion of simulation functions, called finite-
step stochastic simulation functions. In comparison with the
existing notions of simulation functions in which stability
or stabilizability of each subsystem is required, a finite-step
simulation function needs to decay only after some finite
numbers of steps instead of at each time step. This relaxation
results in a less conservative version of small-gain conditions,
using which one can compositionally construct finite MDPs
such that stabilizability of each subsystem is not necessarily



required. Proofs of all statements are omitted due to space
limitations.

Related literature. Compositional construction of finite
MDPs for networks of discrete-time stochastic control sys-
tems is recently discussed in [19], [20] and [21], but by
using a classic simulation function in where stabilizability
of each subsystem is required. In general, the proposed
compositional approach here is less conservative in the sense
that the stabilizability of individual subsystems here is not
necessarily required.

II. DISCRETE-TIME STOCHASTIC CONTROL SYSTEMS

A. Notation
The sets of real numbers, nonnegative and positive in-

tegers are denoted by R, N := {0, 1, 2, . . .}, and N≥1 :=
{1, 2, 3, . . .}, respectively. We employ x = [x1; . . . ;xN ] to
denote the corresponding vector of dimension

∑
i ni, given

N vectors xi ∈ Rni , ni ∈ N≥1, and i ∈ {1, . . . , N}. We
denote by ‖ · ‖ the infinity norm. The identity matrix in
Rn×n and the column vector in Rn×1 with all elements equal
to one are denoted by In, and 1n, respectively. We denote
by Id and symbol ◦, the identity function and composition
of functions, respectively. Given functions fi : Xi → Yi,
for any i ∈ {1, . . . , N}, their Cartesian product

∏N
i=1 fi :∏N

i=1Xi →
∏N
i=1 Yi is defined as (

∏N
i=1 fi)(x1, . . . , xN ) =

[f1(x1); . . . ; fN (xN )]. A function γ : R≥0 → R≥0, is said to
be a class K function if it is continuous, strictly increasing,
and γ(0) = 0. A class K function γ(·) is said to be a class
K∞ if γ(r)→∞ as r →∞.

B. Discrete-Time Stochastic Control Systems
In this work, we are interested in discrete-time stochastic

control systems (dt-SCS) defined by the tuple

Σ = (X,W,U, ς, f), (1)

in which the state space of the system X ⊆ Rn is a Borel
space. The measurable space with B(X), which is the Borel
sigma-algebra on the state space, is denoted by (X,B(X)).
The internal and external input spaces of the system are
presented by sets W ⊆ Rp and U ⊆ Rm which both are
Borel spaces. A sequence of independent and identically
distributed (i.i.d.) random variables on a set Vς with sample
space Ω is denoted by

ς := {ς(k) : Ω→ Vς , k ∈ N}.

Moreover, the map f : X×W×U×Vς → X is a measurable
function characterizing the state evolution of the system.

Remark 2.1: Since our main contribution is to develop a
compositional framework, we are interested here in the in-
terconnected discrete-time stochastic control systems without
internal inputs with map f : X × U × Vς → X .

Evolution of the state of dt-SCS Σ in (1), for given initial
state x(0) ∈ X and input sequences w(·) : N → W and
ν(·) : N→ U , can be described by

Σ :

{
x(k + 1) = f(x(k),w(k), ν(k), ς(k)),
x(·) ∈ X,w(·) ∈W, ν(·) ∈ U, k ∈ N. (2)

The sets W and U , respectively, associated to W and U ,
are collections of sequences {w(k) : Ω → W, k ∈ N}
and {ν(k) : Ω → U, k ∈ N}, in which w(k) and ν(k)
are independent of ς(t) for any k, t ∈ N and t ≥ k. For

any initial state a ∈ X , w(·) ∈ W , ν(·) ∈ U , the random
sequence xawν : Ω × N → X , satisfying (2) is called the
solution process of Σ under initial state a, internal input w,
and external input ν. If X,W,U are finite sets, system Σ is
called finite, and infinite otherwise.

For a dt-SCS Σ, we are interested in synthesizing control
policies that are Markov.

Definition 2.2: Given the dt-SCS Σ in (2), a Markov
policy is a sequence µ = (µ0, µ1, µ2, . . .) of universally
measurable stochastic kernels µn [22]. Given X ×W , each
stochastic kernel µn is defined on the input space U such
that for all (xn,wn) ∈ X ×W , µn(U |(xn,wn)) = 1. We
denote by ΠM the class of all such Markov policies.

In the following subsection, we define the M -sampled
systems, based on which one can employ the proposed finite-
step stochastic simulation function to quantify the mismatch
between the interconnected dt-SCS and that of their (in)finite
abstractions.

C. M -Sampled Systems

The existing methodologies for compositional (in)finite
abstractions of interconnected discrete-time stochastic con-
trol systems [12], [13], [19], [20], [21], rely on the as-
sumption of each subsystem to be individually stabilizable.
This assumption does not hold in general even if the in-
terconnected system is stabilizable. The main idea behind
the relaxed small-gain condition proposed in this paper
is as follows. We show that the individual stabilizability
requirement can be relaxed by incorporating the stabilizing
effect of the neighboring subsystems in a local unstabiliz-
able subsystem. Once the stabilizing effect is appeared, we
construct abstractions of subsystems and employ small-gain
theory to provide compositionality results. Our approach
relies on looking at the solution process of the system in
future time instances while incorporating the interconnection
of subsystems. The following example illustrates this idea.

Example 2.3: Consider two linear dt-SCS Σ1,Σ2 with
dynamics

x1(k+1)=1.01x1(k)+0.4w1(k)+ς1(k),
x2(k+1)=0.55x2(k)−0.2w2(k)+ς2(k),

(3)

that are connected with the constraint wi = x3−i, for
i = {1, 2}. For simplicity, these two dt-SCS do not have
external inputs, i.e., νi ≡ 0 for i = {1, 2}. Note that the
first subsystem is not stable thus not stabilizable as well.
By looking at the solution process two steps ahead and
considering the interconnection, one can write

x1(k+2) =0.94x1(k)+0.62w1(k)+0.4ς2(k)
+ 1.01ς1(k) + ς1(k+1),

x2(k+2) =0.22x2(k)−0.31w2(k)−0.2ς1(k)
+ 0.55ς2(k) + ς2(k+1),

(4)

which we denote them by Σaux1,Σaux2 in which wi = x3−i,
for i = {1, 2}. These two subsystems in (4) are now
stable. This motivates us to construct abstractions of original
subsystems (3) based on auxiliary subsystems (4).

Remark 2.4: Note that after interconnecting the subsys-
tems with each other and propagating the dynamics in the
next M -steps, the interconnection topology may change (cf.
case study). Then the internal input of the auxiliary system
(w) may be different from the original one (w).



The main contribution of this paper is to provide a general
methodology for compositional synthesis of interconnected
dt-SCS with not necessarily stabilizable subsystems, by
looking at the solution process M -step ahead. For this, we
raise the following assumption on the input signal.

Assumption 1: The control input is nonzero only at time
instances {(k+M−1), k = jM, j ∈ N}.

This assumption helps us in decomposing the network
after M transitions after which each subsystem depends only
on its own external input. This is essential for decentralized
controller design. On the other hand, this assumption restricts
the external input to take values only at particular time
instances making the controller synthesis problem more
conservative.

Next lemma shows how dynamics of the M -sampled
systems, call auxiliary system Σaux, can be acquired.

Lemma 2.5: Suppose we are given N dt-SCS Σi defined
by

Σi :

{
xi(k + 1) = fi(xi(k),wi(k), νi(k), ςi(k)),
xi(·) ∈ Xi,wi(·) ∈Wi, νi(·) ∈ Ui, k ∈ N, (5)

which are connected in a network with constraints wi =
[x1; . . . ;xi−1;xi+1; . . . ;xN ],∀i ∈ {1, · · · , N}. Under As-
sumption 1, the M -sampled systems Σauxi, which are the
solutions of Σi at time instances k = jM, j ∈ N, have the
dynamics

Σauxi :

{
xi(k+M) = f̃i(xi(k), wi(k), νi(k+M−1), ς̃i(k)),
xi(·) ∈ Xi, wi(·) ∈Wi, νi(·) ∈ Ui, k = jM, j ∈ N,

(6)
where ς̃i(k) is a vector containing noise terms as follows:

ς̃i(k) = [ς̄1(k); . . . ; ς̄∗i (k); . . . ; ς̄N (k)], ς̄∗i (k) = [ςi(k); . . . ;

ςi(k+M−1)], ς̄j(k)=[ςj(k); . . . ; ςj(k+M−2)],∀j∈{1, . . . N},
j 6= i. (7)

Note that some of the noise term in ς̃i(k) may be elim-
inated depending on the interconnection graph, but all the
terms are present for a fully interconnected network. Proof
of Lemma 2.5 is based on recursive application of vector
field fi and utilizing Assumption 1. Computation of vector
field f̃i is illustrated in the next example on a network of
two linear dt-SCS.

Example 2.6: Consider two linear dt-SCS Σi with dynam-
ics

x1(k+1)=A1x1(k)+D1w1(k)+B1ν1(k)+R1ς1(k),
x2(k+1)=A2x2(k)+D2w2(k)+B2ν2(k)+R2ς2(k),

(8)

connected with constraints wi = x3−i, i ∈ {1, 2}. Matrices
Ai, Di, Bi, Ri, i ∈ {1, 2}, have appropriate dimensions. We
can rewrite the given dynamics as

x(k+1)=Āx(k)+D̄w(k)+B̄ν(k)+R̄ς(k),

with x = [x1;x2],w = [w1;w2], ν = [ν1; ν2], ς = [ς1; ς2],
where

Ā=diag(A1, A2), D̄=diag(D1, D2), B̄=diag(B1, B2),

R̄=diag(R1, R2).

By applying the interconnection constraints w = [w1;w2] =

[x2;x1] = C[x1;x2] with C =

[
0 I
I 0

]
, we have

x(k + 1) = (Ā+ D̄C)x(k) + B̄ν(k) + R̄ς(k).

Now by looking at the solutions M steps ahead, one gets

x(k+M)=(Ā+D̄C)Mx(k)+

M−1∑
n=0

(Ā+D̄C)nB̄ν(k+M−n−1)

+

M−1∑
n=0

(Ā+D̄C)nR̄ς(k+M−n−1).

After applying Assumption 1 and by partitioning (Ā+D̄C)M

as

(Ā+ D̄C)M =

[
Ã1 D̃1

Ã2 D̃2

]
,

one can decompose the network and obtain the auxiliary
subsystems proposed in (6) as follows:

x1(k+M)=Ã1x1(k)+D̃1w1(k)+B1ν1(k+M−1)+R̃1ς̃1(k),

x2(k+M)=Ã2x2(k)+D̃2w2(k)+B2ν2(k+M−1)+R̃2ς̃2(k),

where wi = x3−i, for i = {1, 2}, are the new internal inputs,
ς̃1(k), ς̃2(k) are defined as in (7) with N = 2, and R̃1, R̃2 are
matrices of appropriate dimensions which can be computed
based on the matrices in (8). As seen, Ã1 and Ã2 are now
depend also on D1, D2, which may make the pairs (Ã1, B1)
and (Ã2, B2) stabilizable.

Remark 2.7: The main idea behind the proposed approach
is that we first look at the solutions of the unstabilizable
subsystems, during which we connect the subsystems with
each other based on their interconnection networks. We go
ahead until all subsystems are stabilizable (if possible). Once
the stabilizing effect is evident, we decompose the network
such that each subsystem is only in terms of its own state,
and external input. In contrast to the given original systems,
the interconnection topology may change meaning that the
internal input of auxiliary system may be different from the
original one (cf. case study). Furthermore, external input of
the auxiliary systems after doing the M -step analysis is given
at instants k+M−1, k = jM , j ∈ N. Finally, noise in
the auxiliary systems is now a sequence of noises of other
subsystems in different time steps depending on the type of
interconnection.

In the next section, we first define the notions of finite-
step stochastic pseudo-simulation and simulation functions to
quantify the error in probability between two dt-SCS (with
both internal and external inputs) and two interconnected dt-
SCS (without internal inputs), respectively. Then we employ
dynamical representation of Σ̂aux to compare interconnec-
tions of dt-SCS and those of their abstract counterparts based
on finite-step stochastic simulation functions.

III. FINITE-STEP STOCHASTIC PSEUDO-SIMULATION
AND SIMULATION FUNCTIONS

In this section, we introduce the notion of finite-step
stochastic pseudo-simulation function (FPSF) for dt-SCS
with both internal and external inputs. We also define the
notion of finite-step stochastic simulation function (FSF) for
dt-SCS without internal inputs. We then quantify closeness
of two interconnected dt-SCS based on FSF.

Remark 3.1: Simulation function is a Lyapunov-like func-
tion defined over the Cartesian product of the state spaces,
which relates the state trajectory of the abstract system to the
state trajectory of the original one such that the mismatch
between two systems remains within some guaranteed error



bounds. We employ here a notion of finite-step simulation
function inspired by the notion of finite-step Lyapunov
functions [23].

Definition 3.2: Consider dt-SCS Σi and Σ̂i, where Ŵi ⊆
Wi and X̂i ⊆ Xi. A function Vi : Xi× X̂i → R≥0 is called
a finite-step stochastic pseudo-simulation function (FPSF)
from Σ̂i to Σi if there exist M ∈ N≥1, αi, κi ∈ K∞, with
κi < Id, ρinti, ρexti ∈ K∞ ∪ {0}, and constant ψi ∈ R≥0,
such that for all k = jM, j ∈ N, xi := xi(k) ∈ Xi, x̂i :=
x̂i(k) ∈ X̂i,

αi(‖xi − x̂i‖) ≤ Vi(xi, x̂i), (9)

and for any ν̂i := ν̂i(k + M − 1) ∈ Ûi, there exists νi :=
νi(k + M − 1) ∈ Ui such that for any wi := wi(k) ∈ Wi

and ŵi := ŵi(k) ∈ Ŵi,
E
[
Vi(xi(k +M), x̂i(k +M))

∣∣xi, x̂i, wi, ŵi, νi, ν̂i] (10)

≤max
{
κi(Vi(xi, x̂i)), ρinti(‖wi−ŵi‖), ρexti(‖ν̂i‖), ψi

}
.

We denote by Σ̂i �FPS Σi if there exists an FPSF Vi from
Σ̂i to Σi. We drop the term finite-step for the case M = 1,
and instead call it a classic simulation function, which is
identical to the ones defined in [19], [20], [21].

Remark 3.3: Note that κi defined in (10) depends on M
and is required to be less than Id. FPSF Vi here is less
conservative than the classic simulation function defined
in [19], [20], [21]. In other words, condition (10) may not be
satisfied for M = 1 but may hold for some M ∈ N>1. Such
a dependency on M increases the class of systems for which
the condition (10) is satisfiable. This relaxation allows some
of the individual subsystems to be even unstabilizable.

Remark 3.4: In Definition 3.2, second condition implicitly
implies existence of an interface function νi(k+M−1) =
νν̂i(xi(k), x̂i(k), ν̂i(k+M−1)), for all k = jM, j ∈ N,
satisfying inequality (10). This function is employed to refine
a synthesized policy ν̂i for Σ̂i to a policy νi for Σi.

Definition 3.2 can also be stated for systems without
internal inputs by eliminating all the terms related to w, ŵ,
as the next definition.

Definition 3.5: Consider two dt-SCS Σ and Σ̂ without
internal input, where X̂ ⊆ X . A function V : X×X̂ → R≥0
is called a finite-step stochastic simulation function (FSF)
from Σ̂ to Σ if there exists M ∈ N≥1, and α ∈ K∞ such
that
∀x(k) :=x∈X, x̂(k) := x̂∈X̂, α(‖x− x̂‖)≤V (x, x̂), (11)

and ∀x(k) := x ∈ X, ∀x̂(k) := x̂ ∈ X̂, ∀ν̂(k+M−1) := ν̂ ∈
Û , ∃ν(k+M−1) := ν ∈ U such that

E
[
V (x(k +M), x̂(k +M))

∣∣x, x̂, ν, ν̂]
≤max

{
κ(V (x, x̂)), ρext(‖ν̂‖), ψ

}
, (12)

for some κ ∈ K∞ with κ < Id, ρext ∈ K∞∪{0}, ψ ∈ R≥0,
and k = jM, j ∈ N.
We call Σ̂ an abstraction of Σ, and denote by Σ̂ �FSF Σ if
there exists an FSF V from Σ̂ to Σ.

Next theorem is borrowed from [12, Theorem 3.3], and
shows how FSF can be employed to compare the state
trajectories of two dt-SCS (without internal inputs) in a
probabilistic setting. The theorem also holds for our setting
here since our max form implies the additive form employed
in [12, Theorem 3.3].

Theorem 3.6: Let Σ and Σ̂ be two dt-SCS without internal
input, where X̂ ⊆ X . Suppose V is an FSF from Σ̂ to Σ
at the times k = jM, j ∈ N, and there exists a constant
0 < κ̂ < 1 such that the function κ ∈ K∞ in (12) satisfies
κ(r) ≥ κ̂r, ∀r ∈ R≥0. For any random variables a and â
as the initial states of the two dt-SCS, and for any external
input trajectory ν̂(·) ∈ Û that preserves Markov property for
the closed-loop Σ̂, there exists an input trajectory ν(·) ∈ U
of Σ through the interface function associated with V such
that the following inequality holds:

P

{
sup

k=jM, 0≤j≤Td

‖xaν(k)− x̂âν̂(k)‖ ≥ ε | [a; â]

}
(13)

≤

{
1−(1− V (a,â)

α(ε) )(1− ψ̂
α(ε) )

Td if α (ε)≥ψ̂κ̂ ,
(V (a,â)
α(ε) )(1−κ̂)Td+( ψ̂

κ̂α(ε))(1−(1−κ̂)Td) if α (ε)<ψ̂
κ̂ ,

where the constant ψ̂ ≥ 0 satisfies ψ̂ ≥ ρext(‖ν̂‖∞) + ψ.

IV. COMPOSITIONAL ABSTRACTIONS FOR
INTERCONNECTED SYSTEMS

In this section, we assume that we are given a complex
stochastic control system Σ composed of N ∈ N≥1 discrete-
time stochastic control subsystems Σi as in (5), where their
internal inputs are partitioned as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], (14)

where wij ,∀i, j ∈ {1, . . . , N}, i 6= j, are the states of
other subsystems as appeared in the interconnection con-
straint (15). Now we are ready to define the interconnected
stochastic control systems.

Definition 4.1: Suppose we are given N ∈ N≥1 discrete-
time stochastic control subsystems Σi, i ∈ {1, . . . , N},
with the internal input configuration as in (14). The in-
terconnection of Σi for any i ∈ {1, . . . , N}, denoted by
I(Σ1, . . . ,ΣN ), is the interconnected stochastic control sys-
tem Σ, such that X :=

∏N
i=1Xi, U :=

∏N
i=1 Ui, and

function f :=
∏N
i=1 fi, subjected to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wij = xj , Xj ⊆Wij . (15)
Suppose we are given N ∈ N≥1 stochastic control subsys-

tems (5) together with their corresponding finite abstractions
Σ̂i, where Ŵi ⊆ Wi and X̂i ⊆ Xi, in which Vi is an FPSF
from Σ̂i to Σi with the corresponding functions and constant
denoted by αi, κi, ρinti, ρexti, and ψi. Prior to presenting the
next theorem, we raise the following small-gain assumption.

Assumption 2: Assume that K∞ functions κij defined as

κij(r) :=

{
κi(r) if i = j

ρinti(α
−1
j (r)) if i 6= j,

satisfy
κi1i2 ◦ κi2i3 ◦ · · · ◦ κir−1ir ◦ κiri1 < Id (16)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈
{1, . . . , N}. Note that small-gain condition (16) implies the
existence of K∞ functions σi > 0 [24, Theorem 5.5],
satisfying

max
i,j

{
σ−1i ◦ κij ◦ σj

}
< Id, i, j = {1, . . . , N}. (17)

In the next theorem, we leverage small-gain Assumption
2 together with concavity assumption of maxi σ

−1
i to show

the main compositionality result of the paper.



Theorem 4.2: Suppose we are given the interconnected dt-
SCS Σ = I(Σ1, . . . ,ΣN ) induced by N ∈ N≥1 stochastic
control subsystems Σi. Let each Σi admits an abstraction Σ̂i
with the corresponding FPSF Vi. If Assumption 2 holds and
also ∀i, j ∈ {1, . . . , N}, i 6= j : Ŵij = X̂j ,

then function V (x, x̂) defined as
V (x, x̂) := max

i
{σ−1i (Vi(xi, x̂i)}, (18)

for σi as in (17), is an FSF function from Σ̂ =
I(Σ̂1, . . . , Σ̂N ) to Σ = I(Σ1, . . . ,ΣN ) at the times k =
jM, j ∈ N provided that maxi σ

−1
i is concave.

V. CONSTRUCTION OF FINITE ABSTRACTIONS

In the previous sections, we considered Σi and Σ̂i as
general discrete-time stochastic control systems without con-
sidering the cardinality of their state spaces. In this section,
Σi and Σ̂i are considered as an infinite dt-SCS and its
finite abstraction, respectively. We first discuss construction
of finite MDPs as abstractions of dt-SCS, and then impose
conditions on the infinite dt-SCS Σauxi in order to find
an FPSF from Σ̂i to Σi. In particular, we focus on the
construction of finite MDPs whose state trajectories are close
to those of the concrete system at times k = jM, j ∈ N, for
some M ∈ N≥1.
A. Finite Abstractions of dt-SCS

Given a dt-SCS Σaux in (6), we construct its finite ab-
straction Σ̂aux following the approach of [9]. The abstraction
algorithm works based on selecting finite partitions of state
and input sets as

X = ∪nx
i=1Xi, W = ∪nw

i=1Wi, U = ∪nu
i=1Ui,

and selecting representative points x̄i ∈ Xi, w̄i ∈ Wi,
and ν̄i ∈ Ui. It then constructs finite sets X̂ = {x̄i, i =
1, . . . , nx}, Ŵ = {w̄i, i = 1, . . . , nw}, and Û = {ūi, i =
1, . . . , nu}, that contain representative points of the partition
sets as abstract states and inputs. Dynamics over the abstract
states are defined via function f̂ : X̂× Ŵ × Û ×Vς → X̂ as
f̂(x̂(k), ŵ(k), ν̂(k+M−1), ς̃(k)) =

Πx(f̃(x̂(k), ŵ(k), ν̂(k+M−1), ς̃(k))), (19)

where Πx : X → X̂ is the map that assigns to any x ∈ X ,
the representative point x̂ ∈ X̂ of the corresponding partition
set containing x. The initial state of Σ̂aux is also selected
according to x̂0 := Πx(x0) with x0 being the initial state of
Σaux.

Abstraction map Πx employed in (19) satisfies
‖Πx(x)− x‖≤δ, ∀x ∈X, (20)

where δ is the state discretization parameter defined as δ :=
sup{‖x− x′‖, x, x′ ∈ Xi, i = 1, 2, . . . , nx}.
B. Construction of Finite Abstractions

In this subsection, we focus on the class of linear dt-SCS.
Suppose we are given a network composed of N linear
discrete-time stochastic control subsystems as follows:

Σi :xi(k+1)=Aixi(k)+Diwi(k)+Biνi(k)+Riςi(k), (21)

where the additive noise ςi(k) is a sequence of independent
random vectors with multivariate standard normal distribu-
tions. Suppose wi is partitioned as (14). Let M ∈ N≥1 be
given. By employing the interconnection constraint (15) and

Assumption 1, the dynamic of the sampled system at M -step
forward can be written as

Σauxi :xi(k+M)=Ãixi(k)+D̃iwi(k)+Biνi(k+M−1)

+ R̃iς̃i(k),

where ς̃i(k) for the fully interconnected network is obtained
as in (7). Although the pairs (Ai, Bi) may not be necessarily
stabilizable, we assume that the pairs (Ãi, Bi) after M -
step are stabilizable as discussed in Example 2.3. Therefore,
we can construct the finite Markov decision processes as
presented in Section V-A from the new auxiliary system. To
do so, take the following simulation function candidate from
Σ̂auxi to Σauxi

Vi(xi, x̂i)=((xi−x̂i)T M̃i(xi−x̂i))
1
2 , (22)

where M̃i is a positive-definite matrix of appropriate dimen-
sion. In order to show that Vi in (22) is an FPSF from Σ̂i to
Σi, we require the following assumption on Σauxi.

Assumption 3: Assume that there exist matrices M̃i � 0,
and Ki of appropriate dimensions such that the matrix
inequality

(1 + 2πi)(Ãi +BiKi)
T M̃i(Ãi +BiKi) � κ̂iM̃i, (23)

holds for some constant 0 < κ̂i < 1 and πi > 0.
Now, we raise the main result of this subsection.
Theorem 5.1: Assume system Σauxi satisfies Assump-

tion 3. Let Σ̂auxi be its finite abstraction as described in
Subsection V-A with state discretization parameter δi. Then
function Vi defined in (22) is an FPSF from Σ̂i to Σi.

VI. CASE STUDY

In this section, we demonstrate the effectiveness of the
proposed results by considering an interconnected system
composed of four discrete-time linear stochastic control
subsystems, i.e. Σ = I(Σ1,Σ2,Σ3,Σ4), such that one of
them is not stabilizable. The discrete-time linear stochastic
control subsystems are given by

Σi :


x1(k + 1)=1.001x1(k)+0.4w1(k)+ς1(k),
x2(k + 1)=−0.95x2(k)−0.08w2(k)+ν2(k)+ς2(k),
x3(k + 1)=−0.94x3(k)−0.05w3(k)+ν3(k)+ς3(k),
x4(k + 1)=0.6x4(k)+0.9w4(k)+ν4(k)+ς4(k),

(24)

where
w1 = x2 + x3,w2 = x1 + x3,w3 = x2,w4 = x3.

As seen, the first subsystem is not stabilizable. Then we
proceed with looking at the solution of Σi two steps ahead,
i.e., M = 2,

Σauxi:



x1(k+2)=0.97x1(k)+D̃1w1(k)+R̃1ς̃1(k),

x2(k+2)=0.8745x2(k)+D̃2w2(k)+ν2(k+1)

+R̃2ς̃2(k),

x3(k+2)=0.8876x3(k)+D̃3w3(k)+ν3(k+1)

+R̃3ς̃3(k),

x4(k+2)=0.36x4(k)+D̃4w4(k)+ν4(k+1)

+R̃4ς̃4(k),
(25)

where



D̃1 = [−0.0004;−0.0076]T, D̃2 = [−0.0041; 0.1192]T,

D̃3 = [0.004; 0.0945]T, D̃4 = [−0.045;−0.306]T,

w1=[x2;x3], w2=[x1;x3], w3=[x1;x2], w4=[x2;x3],

ς̃1(k)=[ς3(k);ς2(k);ς1(k);ς1(k+1)],ς̃3(k)=[ς2(k);ς3(k);ς3(k+1)],

ς̃2(k)=[ς3(k);ς1(k);ς2(k);ς2(k+1)], ς̃4(k)=[ς3(k);ς4(k);ς4(k+1)].

Moreover, R̃i = [R̃i1; R̃i2; R̃i3; R̃i4]T ∀i ∈ {1, 2}, where
R̃11 = 0.4, R̃12 = 0.4, R̃13 = 1.001, R̃14 = 1,

R̃21 = −0.08, R̃22 = −0.08, R̃23 = −0.95, R̃24 = 1.

and R̃i = [R̃i1; R̃i2; R̃i3]T ∀i ∈ {3, 4}, where
R̃31=−0.05,R̃32=−0.941,R̃33=1,R̃41=0.9,R̃42=0.6,R̃43=1.

One can readily see that Ã1 is stable. Now, we proceed with
constructing the finite Markov decision processes from the
M -sampled systems as acquired in (25). We fix FPSF as
Vi(xi, x̂i) = (xi − x̂i)T M̃i(xi − x̂i). One can readily verify
that condition (23) is satisfied with
κ̂1 = 0.9597, κ̂2 = 0.588, κ̂3 = 0.7115, κ̂4 = 0.337,

K2 = −0.1745,K3 = −0.1176,K4 =0, π1 = 0.01, π2 =0.1,

π3 = 0.1, π4 = 0.8, M̃i = 1, ∀i ∈ {1, 2, 3, 4}.

Then function Vi(xi, x̂i) = (xi− x̂i)2 is an FPSF from Σ̂i to
Σi satisfying condition (9) with αi(s) = s2,∀i ∈ {1, 2, 3, 4}
∀s ∈ R≥0, and condition (10) with
κi(s)=0.99s,ρexti(s)=0,∀i∈{1, 2, 3, 4},ρint1(s)=0.8802s2,

ρint2(s)=0.8517s2, ρint3(s)=0.8344s2, ρint4(s)=0.9779s2,

ψ1 = 7409 δ2, ψ2 = 555 δ2, ψ3 = 433 δ2, ψ4 = 57.48 δ2.

Now we check small-gain condition (16) that is required
for the compositionality result. By taking σi(s) = s ∀i ∈
{1, 2, 3, 4}, one can readily verify that the small-gain condi-
tion (16) and as a result condition (17) are satisfied. Hence,
V (x, x̂) = maxi(xi− x̂i)2 is an FSF from Σ̂ to Σ satisfying
conditions (11) and (12) with α(s) = s2, κ(s) = 0.99 s,
ρext(s) = 0, ∀s ∈ R≥0, and ψ = 7409 δ2.

By taking the state set discretization parameter δ = 0.001,
and starting the initial states of the interconnected systems Σ
and Σ̂ from 14 and employing Theorem 3.6, we guarantee
that the distance between states of Σ and of Σ̂ will not exceed
ε = 1 at the times k = 2j, j = {0, . . . , 30} with probability
at least 90%, i.e.
P(‖xaν(k)− x̂âν̂(k)‖≤1, ∀k=2j, j={0, . . . , 30})≥0.9.

Note that for the construction of finite abstractions, we have
selected the center of partition sets as representative points.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[2] A. A. Julius and G. J. Pappas, “Approximations of stochastic hybrid
systems,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp.
1193–1203, 2009.

[3] M. Zamani, A. Abate, and A. Girard, “Symbolic models for stochastic
switched systems: A discretization and a discretization-free approach,”
Automatica, vol. 55, pp. 183–196, 2015.

[4] M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and
J. Lygeros, “Symbolic control of stochastic systems via approximately
bisimilar finite abstractions,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3135–3150, 2014.

[5] M. Zamani and A. Abate, “Approximately bisimilar symbolic models
for randomly switched stochastic systems,” Systems & Control Letters,
vol. 69, pp. 38–46, 2014.

[6] M. Zamani, M. Rungger, and P. Mohajerin Esfahani, “Approximations
of stochastic hybrid systems: A compositional approach,” IEEE Trans-
actions on Automatic Control, vol. 62, no. 6, pp. 2838–2853, 2017.

[7] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic
reachability and safety for controlled discrete-time stochastic hybrid
systems,” Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[8] I. Tkachev and A. Abate, “On infinite-horizon probabilistic properties
and stochastic bisimulation functions,” in Proceedings of the 50th
IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), 2011, pp. 526–531.

[9] S. Soudjani and A. Abate, “Adaptive and sequential gridding pro-
cedures for the abstraction and verification of stochastic processes,”
SIAM Journal on Applied Dynamical Systems, vol. 12, no. 2, pp. 921–
956, 2013.

[10] I. Tkachev, A. Mereacre, J.-P. Katoen, and A. Abate, “Quantitative
automata-based controller synthesis for non-autonomous stochastic
hybrid systems,” in Proceedings of the 16th ACM International Con-
ference on Hybrid Systems: Computation and Control, 2013, pp. 293–
302.

[11] S. Soudjani, A. Abate, and R. Majumdar, “Dynamic Bayesian net-
works as formal abstractions of structured stochastic processes,” in
Proceedings of the 26th International Conference on Concurrency
Theory, 2015, pp. 1–14.

[12] A. Lavaei, S. Soudjani, R. Majumdar, and M. Zamani, “Composi-
tional abstractions of interconnected discrete-time stochastic control
systems,” in Proceedings of the 56th IEEE Conference on Decision
and Control, 2017, pp. 3551–3556.

[13] A. Lavaei, S. Soudjani, and M. Zamani, “Compositional construction
of infinite abstractions for networks of stochastic control systems,”
arXiv: 1801.10505, Jan. 2018.

[14] K. Mallik, S. Soudjani, A. Schmuck, and R. Majumdar, “Composi-
tional construction of finite state abstractions for stochastic control
systems,” in Proceedings of the 56th IEEE Conference on Decision
and Control, 2017, pp. 550–557.

[15] A. Lavaei, S. Soudjani, and M. Zamani, “Compositional synthesis
of large-scale stochasticsystems: A relaxed dissipativity approach,”
arXiv:1902.01223v2, February 2019.

[16] D. Aeyels and J. Peuteman, “A new asymptotic stability criterion for
nonlinear time-variant differential equations,” IEEE Transactions on
automatic control, vol. 43, no. 7, pp. 968–971, 1998.

[17] N. Noroozi, R. Geiselhart, L. Grüne, B. S. Rüffer, and F. R. Wirth,
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