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CHARACTERISTICS OF DISCRETE PROPAGATION MODES
ON A SYSTEM OF HORIZONTAL WIRES
OVER A DISSIPATIVE EARTH

Steven W. Plate, David C. Chang and Edward F. Kuester

I. Introduction

Wave propagation along a system of horizontal wires parallel to the
eafth‘s surface is of interest in many areas: the transmission properties
of overhead power lines, the performance of antenna arrays above ground,
the use of Goubau-lines in continuous ground wave detection systemS,and
so on. At present, most investigations of this problem have been limited
to a low-frequency approximation similar to that first used for the single
wire case by Carson (see the bibliography in [1]). These analyses and
various refinements to them [2-14] are not sufficient to describe higher
frequency characteristics of these wires. Only very recently have more
rigorous analyses of the problem appeared: in 1959, Kostenko [15] analyzed
the case of three identical conductors at the same height; in 1963, Perel'man
[16] analyzed the general m-wire problem. A specialization of the latter
analysis to the two-wire line was done [17], as well as an independent solu-
tion of the m-wire problem [18], both in 1965. Most recently, Olsen and
Chang [19] have investigated the types of modes which can exist on a two-
wire line over a conducting earth in light of the earlier discovery of the
existence of so-called "earth-attached" modes on a single-wire system [1,20].

In this report, the equation for determining the propagation constants
of the dis;rete modes of propagation on a system of m parallel lines above

a dissipative earth is derived. Our basic formulation of the problem follows



closely that of Perel'man [16]. More specifically, we assume under the
thin-wire approximation; that the current on each conductor is uniformly
distributed around the surface of the conductor and totally in the axial
direction. A modal equation in the form of a determinant is then derived
by imposing an impedance boundary condition in which we assume that the
average axial electric field equals  the axial surface impedance multi-
piied by the total axial current on the conductor. Obvioﬁsly, this approxi-
mation is good only if the conductor radius is small compafed to the freespace
wavelength, the distances between the individual conductors, and the héights
of the conductors above the earth.

We find approximations to the Sommerfeld integrals involved in the
modal equation that are accurate for relatively large values of the earth's
refractive index. We then use this approximate modal equation to calcu-
late the propagation constants for a dual line of bare wires. We find that
there are two monofilar modes and one or two bifilar modes depending on the
spacing between the wires. We also find that a modal degeneracy exists be-

tween the two bifilar modes for a particular set of parameters.
II. The Modal Equation

Consider a system of m infinitely long parallel thin wires located
over a plane interface between two half spaces of electrical constants
Hy and €y Hys O, respectively. The j-th wire has a radius of aj

(meters), and is located at a height x=hj (meters), and a position y=dj

€l,

(meters). Figure 1 illustrates the geometry of the problem. The current
on the j-th wire is assumed to be of the form Ij exp(iklaz—iwt) where
a is the yet undetermined propagation constant relative to that of region

1, w 1is the angular frequency of the fields, and kl = w(ulel 2
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Fig. 1l: Geometry for special case of two-wire line
over the earth.
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Following Wait [21], expressions for the electric and magnetic fields

in the region x>0 due to a filament of current I located at x=x' , y=y'

A e

can be written as

: = k2,2 " ( . = 12,27 *
Bip = K5 s Hp, = ket
E].X = 1k10t-a—x— * 1ulw3—y- ; H].X = 1]\10‘3)(— - 1€1(L)5-y'——
olly My * ol * ally
- s 1 L ol At . - 1
Ely 1k1aay 1u1wax ; “1y 1k1aay + ie wss (1)

The scalar potentials Hl and Hl* are the =z components of the electric

and magnetic Hertz vectors, respectively. By assuming that pl = Uy = H
expressions for these potentials are found to be
_nI

I = —Z%I-exp(iklaz) {Ho(l) [le ((x-x")2 + (y-y")?2) 2]

=iy [kr (+xZe g -yn2) e

[~
2
2 J ! - a exp [-u k., (x + x') - ixk. (y - vy")] dr 1} (2)
]‘_-"Cz_oo [ul+u2 u.2+n2u1] p [ 1 1( ) 1( b -
¥ Aexp[-u, k. (x+x') - irk, (y-y")]
n* = lgéﬂé_lill-exp(iklaz) J ?; L 1(+ T — —d ()
n 1; ) F (u2 nu, ) (uy 2
where
b
u, = (A% - 2)? | .3 -m/2 < arg u; < m/2
1 ﬁx/
u, = (A2 '-Ai)i 3 -1/2 < arg u, < /2
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t

. = M2 - a2)% ; 0

in

arg g <

The arguments of these variables are defined‘so that the electromagnetic
fields are bounded at infinity. In these expressions HO(I)(X) represents
the Hankel function of the first kind and of order zero, and n represents
the relative refractive index of region 2 compared to region 1, defined as
n2 ;'kﬁ /k%'= 52(1 + id)/e1 with 6 (loss tangent) given as 02/(wsé)
and 0 s arg n < n/4 . Finally, ni = (uo/&:l)l/2 is the intrinsic impedance
of region 1. We note that thé first and second terms in (2) are the direct
contributions due to the current filament ana its image in region 2, respec-
tively. The integral in (2) and the magnetic potential given in (3) are due
to the finite conductivity of region 2.

With the use of the addition theorem of cylindrical functions, we therc-
fore obtain the expression for the electric potential due to a uniform current
distributed on the surface of the j-th wire as

-n. I.

_ 173 . 2,,(1) - .2 _ 2.4
Hlj = 4C2k1 exp(lklaz)Jo(cajkl){C }h) [Ckl((x_hj) + {y dj) ) ° 1]

—czﬂo(l) [Tk, ((x + hj)?- + (y - dj)Z);"f] PP sk (o gk (y - d)))

where
2 © exp(,—Xu1 - 1iYA)
Pla;X,Y) = <= f dx (5)
1T u + Uu
- CO l 2
' Y I exp (-Xu; - iY})
Q(G:X)Y) = I_,".——' f o, + n2u dAa (6)

2 1

-0
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and X = klx and Y = kly, are the normalized distances in the x,y directions.
If now we denote the average axial electric field on the k-th wire due to the
current on the j-th wire as Ekj’ we obtain from (1) and (4), together with
the addition theorem of Bessel functions, the following exéression:

' k I.
Eys = ———lexpclk 02)34(eA)J (EA) (& H(”[gccn P ©;-,) 2%

- efig s mo? + 0 0071« P vr, 0 -D))

Q(a;Hj-+Hk, D, ~Dj)} (7)

where A. = k.a., H.=kh., and D, = k.d.. It is worth noting that if
17 I J 17

j =k, then (7) should be modified by replacing the first Hankel function

term in the curly bracket by Hél)(CAk)/JO(CAk) since the axial electric

field E is uniformly distributed in this case.

kk
Thus, within the framework of a thin-wire approximation, a modal
equation is found by setting the average axial electric field on the k-th

wire to be equal to the axial surface impedance times the total axial current

on the wire, i.e.,

JZ EkJ(a) =2, ()T, for k=1,2,..,m (8)
If now we define
Mkj = —4[Ekj/1j-zj5ki]/(k1nl) (9)

so that [M] is a m x m matrix with elcments Mkj’ we have from (8) and (9)

the following matrix equation

[MI[I] = o (10)
where [I] is the m x 1 column matrix with elements Ij. Thus in order for
this to have a non-trivial solution (i.e. some ij:O), the determinant of [M]
must be zero, therefore the resulting modal equation is

M(a) = det [M] = 0 (11)



III. PROPAGATION MODES ON A DUAL-LINE

In the special case of two identical bare wires of equal height (H1==H2),
the modal equation can be factored %o obtain two solutions: the monofilar
one where I1 = 12, and the bifilar one where Il = -1,. The two independent

modal equations are

0 = Mi (@) = Jg,(cA){gz[Hé”(;A)/JO(CA) -H(()l)(z;zm] +P(0;2H,0)-Q(a;2H,0)}
e 30 @yie’ i @) -u @Ry vpes ez} a2)
where
3
A=A =A, H=H =H, dD=|p -], R=[@D?+D?]

~ We note that the Bessel function JO(CA) is onlf important in the behavior
of M(a) for large ¢ . For the purpose of finding the roots of M(a),
the term JO(CA) may be approximated by unity under the thin wire assumption
that A << 1.

The method we adopt in this report to find the zeros of M (@) is an
iterative scheme similar to the well-known Newton's method. To use this method

the derivative of M(®) with respect to o is needed. This is given by
M, (@) = {-ZOL[H(gl)(gA)—H(El)(CZH)] . ag[AHl(”(cA) - ZHI(I)(?;ZH)]

+P'(@;2H,0) - Q'@;2H,0)

+ Lza[né”(co) -Hél).(gR)] + oztj,[DHl(]‘)(CD) -RHl(l)[r,R)]

+ P{@;2H,D) - Q'(@;2H,D)} (13)

where
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P'(a;X,Y) = -2 f i exp(-u,X - iAY)dA : 14)
e im uluz(u1+u2) Xpl-yy (14)

© 2 2 )
a” (u,+n"u,) exp (-u, X - iAY
20 2 1 2 : 1
i3 f [2u) ~o&X - (om2a ) ] L2 dA (15)
o u, (u, n u1 ul(u2 n ul)

Q' (o;X,Y)

The (j+1)-th approximation to the root aj+1 is then obtained from the

previous approximation aj using the equation

aj+1 = aj - Mt(aj)/Mi(aj), (G 2 0) (16)

where % is an initial guess to the root, and the iteration is stopped when
]M(ai)l < ¢ (where € is the desired accuracy of the root). Obviously the
iteration converges only if the initial ghess is close enough to the actual
root. The method uged in this report to iocate the rootg is to find one for
a particular set of parameters (by trial and error or from previously known results
and then vary the parameters by small increments, finding the root at each step
until the desired set of parameters is reached. At each step the initial guess
% is the root of the previous set of parameters.

The integrals P and Q and their derivatives as given in (5), (6),‘(14),
and (15), in principle may be evaluated numerically, however it is more
efficient to find approximate expressions initially in order to avoid excessive

computation in the complex a-plane. In the following section, we shall discuss

various approximations valid for different ranges of parameters involved.



Iv. APPROXIMATIONS FOR THE INTEGRALS

P(a;X,Y) and Q(a;X,Y)

Using methods similar to those employed by Olsen and Chang [20], the
integrals P and Q can be approximated in terms of known fuﬁctions for
the common case where the wire height above the ground is greater than fhe
skin-depth of the ground, that is, [n| H>> 1. The integral P as given

in (5) can be written as

xyy =2 .
P{a;X,Y) = - TANZ/ (ul~u2)exp(-u1X - iAY)dA (17)
where
N = (n2 - 1)% ; 0 <arg N<m/4

In most cases, we expect the useful solutions to the modal equation
Mi(a) = 0 to be located near o = 1. This means that T is small so the
integrand of (17) decays as exp(-X|A|) away from the point A = 0. The
major contribution to the integral is then from the region A ® 0. We

therefore expand u, in a Taylor series about A = 0 to obtain

2
a2 4
. iA iA
u, = -if_ + =— + (18)
2 n ch sCi

This series converges only wﬂen IAI <|§n], however the integrand of (17)
will have decayed by the factor exp(—XlCnl) outside these limits. Therefore
an approximation based on the first few terms of (18) appears to be valid for
ICn'Z >> ICIZ and lCnIX >> 1. By using the first term of (18), we may

rewrite (17) as

i)

P(a;X,Y) ——g—-‘[[u1-+i§n]exp(—ulx -iAY)da

i'nNz-Oo
2 [ iy v ;
+ i“Nz J [-1Cn uz]exp( 11X iAY)d (19)

PoX,Y) + €
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Neglecting € pg> We obtain a first order approximation to P as

P(a;X,Y) = Po(a;X,Y)

2 2,..2 e
{[3°/3x" - ir_38/9X] [exp(-u,X - iAY)/u, JdA
Y. n [Lﬁ pl-u; }uy

N et @Ryt X/ + o v RS

2.2
& rHu @y o)
2, 2.t . : »
where R = (X" + Y") . In deriving (19) the following identltybhas been used.
1 PSS | i
HO (zR) = (im) [exp(-ulx —1KY)/u1]dA (21

An upper bound for the absolute error in this approximation is found in

Appendix A to be

a[2+28% + 8°x% + §%3/3] 2

lepyl <
PO MICHERE

where 5
0 (Re Z < 0) |

§ = o1
Re 2297 Re % > 0)

From this expression it is apparent that the error is small if
1n3]x3 >> 8/m and if ]nzl >>463/(3ﬂ) . For example say n=5.3 + 1.95

and Re z? < .04, then the error for h=.1I\ 1is less than 9 ><1O—3 and

for h=.5\ the error is less than 7 ><10-5 . These error estimates are
conservative and as will be shown in a later section, the results obtained
using this approximation are generally much better than what is indicated by
the error bound. For the interested reader, we have also included in

Appendix A higher order approximations and their error estimates.
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Following a similar procedure, we now rearrange the integral Q as

@ 2
2a2n2 ul-uzln
Q(a;X,Y) = 7] 3 exp(-u, X -iAY)d) (23)
imn -1) “©  A“-A
. P
where
2, ,~2.%
A = (C°-1/n ; 0<Larg A <
p ( /n7) g p
~ 2‘ 1 ~
n= (n"+1)2 ; 0 <argn < w/4 .

Since the integrand of (23) has a pair of poles at ikp, it is more convenient

to expand u, around A = Ap instead of around A = 0, so that

2
2 1% i0%2) S
_ -1n P p
u = v + + + e e . (24)
2 n 2 6
2n 8n

2020 £ u+i/i F -i/f - uy/n’
Q(a;X,Y) = -—~—Z~—'{ Jf —5———7—-exp(7ulx - 1AY)dA + Jf 7 exp(-UIX—iAY)dA}
ir(m®-1) o A% -2A Yo AC LA
p P
= Q (a;X,Y) + €Qo (25)
where
2.2 ~ exp(-u. X - ixY)
Q sx, 1) = X f e 4
im(n -1) -~ 1
and 2@2 > exp(-ulx - 1AY)
€ = T T4 . f 27 A dA
ir(n"-1) “o u2—in /n

We note that the integrand of Q0 contains a pair of poles at A = % Ap’

whereas the integrand of ¢ does not. According to Olsen and Chang [20]

Qo
this pole will cause a singularity in Q where Ap =0 (i.e. at az =1 -l/ﬁz).
Since er

may neglect it to obtain the first order approximation

is small compared to Q_  and has a nonsingular integrand, we
o
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)

Q(e3X,Y) = Q_(a;X,Y)

Qo
exp(~ulX-iAY)

22 2
2a"n . ~
[exp(-u,X - iAY)/u]dA +i/n e dr )
ir(*_1) {lz P . 1: vy () -2/n)

22 2 2
= EQEB__. Hél)(CR) + EQ_%__fr W(a;X,Y) (26a)
(n'-1) m(n -1)n

where W(®;X,Y) can be written as

exp (-iAY)d A

W(o;X,Y)

o lexp(-X(u,- 1/R))-1]
exp(-iX/n) {J —
Coo ul(ul—l/n)

. fexp(—i)\Y) dr |}
- ul(ul—i/ﬁ)

fi

exp(-ix/ﬁ){wx(a;k,Y):+ wo(a;Y)} (26b)

We note that the integrand of Wx has a pair of branch cuts in the
complex A-plane due to the definition of U, but does not have any poles.
According to Olsen and Chang [20] this results in a pair of branch cuts in the
Q-plane due to the motion of the branch points of u, (at A = ) crossing the
real axis in the X plane. The branch points in the a-plane are at g = + 1
and the cut is defined by those points where ¢ 1is a real number.

The integrand of WO has, in addition, two poles at A = tkp. Again we
know from the work of Olsen and Chang [20] that these poles can cause branch
cuts in the @-plane whenever they cross the real axis in the A-plane because
of the discontinuity in the residue calculation at tAp. These branch cuts
in the g-plane are located at o= * (1-82— l/ﬁz)% where S is any real

number.
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An expression for WO(Q;Y) 1s derived in Appendix B. One form of the

expression is

WolasY) = (Z/Ap)cos (ApY)[Zn(g) -gn(1/h -iAp)]—(ﬂ/Ap)sin(ApY)

Y
en/0n) [ sinh (-) 1S @y as 27)
0 ‘

where the principal values of the logarithms are chosen. A series expansion
for the finite integral used above is given as
o (A )" .
GV2) | —r— [expEa ) - (D" exp(ir X)J1, (0Y) (28)
m=0 )
where Im(CY) is expressed in terms of known functions in equations (B.14),

(B.15), and (B.16).

An expressionfor W _(@;X,Y) is found in Appendix C to be

X 1
W (@;X,Y) = -in qg exp(is/MHSH [¢ (s2ev?) *as | (29)

A series representation of this integral can be shown to be

o fm(C,Xz/Z-fYZ)x2m+l

W (a;X,Y) = X
X
m=0

— Im(ix/ﬁ) (30)

where fm and Im are again expressed in terms of known functions in
Appendix C. We note that such a series does not converge well when Y small
compared to X. In order to find an expression that is good in this region,

W(2;X,Y) can be rearranged as

00

W(a;X,Y) = f —
Zeo ul(ul—i/n)

exp(-ulX)cos(KY)
dA (31)
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An expression for (31) is found in Appendix D by expanding the cosine
term into a Taylor series, and integrating this series term by term. The

result is repeated here as

w( . - . 5 bt ('l)mYzm .
0;X,Y) = cos(A_Y)W(a;X,0) - im ) LR (a;X) - (32)
p m=1 (2m)! n
where . v
W(a;X,0) = exp(-ix/ﬁ) {—iﬂ.jiexp(is/ﬁ)Hél)(;s)ds

0
+ (2/A)[2n(r) - n(1/n - ix )]},
P P
Explicit expressions for W(a;X,0) can be found in Appendix B and will not be
repeated here. The terms Rm are expressed in terms of known functions in

(D.4), and a series expansion for the finite integral is given as

S Gx/m"y
mZO 0 I, (EX) (33)

where Im(CX) is again given‘in (B.14), (B.15), and (B.16). It should be
noted that the series in (32) converges only if Y <X, so in computing W
we.use (32) if X2 > 2Y2, otherwise we use (27), (28), and (30) inserted
into (26b).

In the preceding approximations on the integral Q, it is assumed that
in summing each of the series enough terms can be included to obtain any
desired accuracy. As evident from (25), the term ng is omitted in the

derivation. An upper bound for the error due to neglecting EQo is found

in Appendix E to be

2 .
4 | a'n (1 +6X)
lg l < = (34)
Qo i (n4—1)n2 X
where 0 (Re CZ <0) ,

§=% ‘
Re 2 (Re % > 0)
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From this expression it is apparent that the error is small if
lnSIX >> 4/m  and lnsl >> 46/m. For example say n=5.3+1i.95 and
Real 62 < .04, then the error for h=0.1A 1is less than 3><10-4 and for
h==0.5A' the error is less than 6 XlO—S. We also note that Q 1is of the
order l/nz, so the relative error is of the order l/n3. This error
estiméte is again conservative and the results we obtain in the following
section will show that the error is usuallybless'than indicated by these
estimates. Similar to the evaluation of P(0) we have also included in
Appendix E higher order approximations and their error estimates. It should
be noted the series for P and Q, generated by including the higher order
terms of u, are only asymptotic, so in general one does not necessarily

2

improve the accuracy by including more terms.
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V. NUMERICAL RESULTS

We have developed a computer program to compute the roots of the dual-
line modal equation (12) using the first‘order approximations to the Sommerfeld
integrals P(a;X,Y) and Q(o;X,Y). To test the accuracy of these approxi-
mations we compared the values of the propagation constants found using the
first order approximations, to the values found using a numerical integration
of the Sommerfeld integrals. Typical results given in Table 1 show that the
accuracy of the approximations.is quite good (on the order of 10—4 or less),
even for the case of a poorly conducting earth with [nl * 5.4 considered

here. It is assumed that subsequent values obtained using the approximate
modal equation are of the same order of accuracy as the values in Table 1.
In Fig. 2 the Toots of the modal equation are plotted for several
values of the wire spacing d, with the wire height h = 0.2A, radius
a = .005\ , and refractive index n = 5.3 + i0.95. As expected for large
spacings there are monofilar andbifilar modes with propagation constants
close to the values of the single wire modes. As the spacing is decreased
the attenuation of the '"quasi TEM' monofilar mode increased until the spacing
is approximately equal to the wire height. After this point the propagation
éonstant approaches that of a single wire of radius equal to the geometric
mean of a and d. This can be shown directly from the modal equation.
The "earth-attached" monofilar mode is relatively insensitive to the spacing
of the wires. The "quasi TEM" bifilar mode is affected less by the carth
as the spécing decreases, because the fields are concentrated between the
two wires. It should be noted that the '"earth-attached'" monofilar mode

is less attenuated than the ''quasi TEM" bifilar mode for spacings larger than
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Fig. 2: Mode trajectories as a function of wire spacing (h =0.2X)
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the wire height; however for very small spacings the bifilar mode has the
lower attenuation. The fourth mode, an "earth-attached" bifilar mode, can
exist for large wire spacings only. This mode disappears into the improper
Riemann,§heet'at spacings of 1.5 to 2.0 wavelengths for wire heights of 0.1
to 0.4 wavelengths. "The disappearance of this mode is due to the cancelling
of the singular portions of Q(o;2H,0) and Q(o;2H,D) in the modal equation
(12). Nofe that it is possible for the '"earth-attached" bifilar mode to have
a lower attenuation than the '"quasi TEM" bifilar mode.

Figure 3 shows a similar plot of the roots of the modal equation for a
height of h=0.3A. The movement of the monofilar mode is similar to that
of Fig. 2; however the bifilar mode which disappears and the one which
becomes TEM as the spacing is decreased seem to have been interchanged. This
indicates that there must be a degeneracy between the two bifilar modes at
some height between 0.15X and 0.3x .

Figure 4 of the bifilar modes is a plot for several heights between
0.15A and 0.3A and for various wire spacings. This figure shows that the
degeneracy occurs at a wire height between 0.25\ and 0.3)\ and at a wire
spacing of about 2.5\ . This degeneracy makes it difficult to label the
modes as being either '"earth-attached" or ''quasi TEM", because these modes
can be transformed continuously into each other by varying the spacing and
height of the wires.

Figure 5 is a plot of the modes for changing heights at several fixed
spacings, This shows that the bifilar mode that exists for small spacings
is transformed into a TEM type mode as the height is increased. One sct of
monofilar modes moves from the branch point at Opp = n/n to o =1 as the

height is increased. The other set of monofilar modes moves toward the branch

point as the height is increased.
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'VI. CONCLUSION

In this report, we have investiga?ed the modes of propagation along a
two-wire line parallel to and above the surface of a finitely ;onducting
earth. Due to interaction between the two wires as well as between the
wires and the earth, the mode structure is more complex than that which
would be found in the case of a perfectly conducting ground - a single
monofilar and a single bifilar mode. Moreover, the existence of modal
degeneration, similar to that discovered in [1] for the single-wire line,
has been demonstrated.

SYstematic analytic approximations have been derived for the Sommerfeld
integrals which enter into the modal equation, as well as rigorous error
bounds for them. These expressions allow a great savings in the computer

time required to numerically determine the modal propagatidn constants.
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APPENDIX A

In this Appendix the higher order terms of P are derived and error
. bounds for these are found. An (M+l)th order approximation is obtained
by extracting the first M+l terms in the expansion of uz»in (18) from u,

in (17). P can then be written as

M
P(asX;Y) = I P (a;X;Y) + ¢ (A.D)
PM
k=0
where PO is given in (20),and for k>0
2ig _
P (XY) = —2 ¢ 2% T (a3X;Y) \ (A.2)
k 2 n kk
Nk!
and where
1 1 3 3
C, = (E) (-E) -3) - . .(5— k) (A.3)
and
Zk
Ik(a;X;Y) = (1n) exp(-u k-lAY)dX

(iw)"l{[~a /aY ] [- B/BX]‘/‘[exp( ~-u_ X- 1AY)/u l1dx}

{1-02/0v21% x(xBy?®) % (1’[c<x2+Y2>51} (A.4)

with the use of the identity given in (21). In particular, for the

2-terms expansion

Pl(a;X;Y) = (i/Nzcn){(CX/RS)H(i)(CR) [6Y2~2X2 ngszl + (CZXZ/RA)H(I)(CR)[X -3y ]}

(A.5)

Combining (A.5) and (19) we obtain the following expression for P(c;X;Y):

{ & (l)(cR)[x -Y +1c kR + EE (6Y 2x2 CZYZRZ)]
R3 2 R2

P X3Y) =

a0 @) x+ —E @av? - D 4.6)
° ZCnR

|
a o =)
36 - [\ 8]
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An error bound to the first order approximation to P{@;X;Y) can

Be obtained as follows:

leogl = | 2 (-u,-iZ Dexp(-u X-iAY)dA]
Y iﬂN2 l; 2 "m° 1
< A f T——TAZ exp [-X Re(u,)]dr (A.7)
Let |
0 [Re (z?) < 0ol, .
=19 (A.8)
e 2% [Re(zH > 0l,

then it can be shown that

0 (A <.8),

%

Re(u) = Re’-zH)? >

0Zsh®  aze.

Now ()\2—62)li >A -6, if A 28. So it follows that

0 (A< &), | -
Re(u,) > ‘
e (A.9)

Now u2 and -icn are in the same quadrant for all real values of A ,

S0 luz—icnl z.lcnl .. Using these relations, (A.7) becomes

|

e .
lod < —— (j’ A 2ax+ f)\zexp[—X()\—(S)]d?\J
o 8

)
L Cn' \
o 4[2428% + 62%% + 8°%°/3]
- 2 3 ) 14 (A.lO)
[N r,nlx ‘ :

Similarly the error in the second order approximation to P(a;X;Y) is
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Y A2
lepll = 1. 5 jr (-u,-ig + 3 )exp( -u X—1XY)dX|
inN [s] n
2 f exp (—XRe ul) dA
nIN i o Izc (u,-iZ ) 2|
) 6
< —— 2 3 {_[ ATdd + '[ N exp [-x(A-6) 1aA}
'WIN o)
2024 + 248X + 126%%% + 463x3 + 5% + §9%%/5]
nlN E lx

By comparing (A.10) with (A.11), one can see that the error in P

: 2
is decreased by adding the second term if Inzlx > 6.

(A.11)
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APPENDIX B

In this Appendix an expression for woﬂi;Y) is derived. 'Woou;Y) as
given in (26) can be manipulated as follows

o0

, f exp(-iA¥)dA
ul(ul—i/ﬁ)

W, (@;¥) =

-0

f’ e CUNA |, 55 f"‘éxp(-ixy)dx

2 2 .2
ATy Sy 051
= Wy sY) + i/f Wy, (@;¥) (B.1)

WOI(U.;Y)' is found by deforming the contour into the lower half plane and
evaluating the residue to obtain

W (mev) = TE ;
"61(“"() = .)\p exP(lxpy) (B.2)

where 0<arg AP <7 . On the other hand we can rearrange w02 to obtain

. 1 exp (-iXY)dA i exp(-ixy)dA

-0

o {1 @y) - ()] (8.3)
p

The integral I1 ‘can be written as

Aexp[-iv (-2 )]1-1)
) = . p dx .
Il (a3Y ) €xXp ('lle) {[m u]_ (A~ Ap) d) * '—j-{oo ul (}\—Ap) }

Y ® o
-i A

exp(—i)‘pY){ —ifexp(isl ) f 28 (uls)‘)- dxds + Ap f ._d_T_Z_
b P o 1 “e up 520



i
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I,{@,Y) = exp(-ir Y){w Yexp(isl )H(l)(cs)ds + A j;n———JQL———} (B.4) .
1 P fo pTo P, ul(xz-xlz)) |

Similarly I, can be written as

2
. Y . - :
v . . 1) dA ‘
I,(.¥) = exp(iA ¥ - a [ —2 :
1) = e D Jexetisan, (Go2de -2, fw o) } (8.5)

By replacihg these expressions for I1 and I2 into (B.3), we obtain
f )
Wy, oY) = (-'n/mp) f sm[;\p(y-s)]no (Cs)ds
o

+ cos (APY)woz(a;O) |  (B.6)

where

[os)

WOZ (a;0) = f

-0

dA
2.2
ul(k -Ap)

An expression for W, ,(a,0) was found by Olsen and Chang [20] in
which the contour is deformed around the branch cut, and to this integration

was added the residue of the pole at Ap. The resulting expression is

Woz(a;o) = (ﬁ/ixp){Z[Qn(g)—ln(l/ﬁ—ixp)] - im} (B.7)

The principal value of the logarithms are chosen. The substitution of

(B.Z),A(B.6), and (B.7) into (B.1l) then yields
AWOGI;Y) = (2/Ap)005(le) [¢n(Z) - Ln(1/n -ilé)]f— (ﬂ/Xp)sin(ApY)
+ Ws(a,Y) | (B.8)

where ¥

Coge - iy | s (l)r ‘ X
WylasY) = (T/A ) fo‘51n[>\p(Y—s)}Ho (Zs)ds (B.9)
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This can also‘be written as
W3(G;Y) = (ﬂilzkpﬁ){eXP(file)WA(C,Y,iAp)

- exp(i)\PY)WA(C,Y,—iAp)} _ | AA (B.10)
where

Y
WA(Q,Y,t) = ¢£ exp(ts)Ho(Cs)ds ‘B.ll)

This integral can be evaluated by expanding the exponential into a power

-series and integrating the series term by tern. The resulting expression

is
. ’ _ e (tY)mY
W4(C,Y,t) = mﬁﬂ —"ajf—'lm(EY) (B.12)
where C 1
Im(CY) = .J smﬁgl)(CYs)ds ~ (B.13)
0

These integrals can be found from the recursion relation for m > 2

r@n = @ P + enen P e - @nienT e
(B.14)

Io and Il can be expressed in closed form as
I (2 = (l)(CY) + @/ is,@on® o - s @ en) (8.15)
Here Sj(x) is the Struve function of order j, and
L (@) = @0~ mE®P @) + 21/ () (8.16)

These results were obtained from Olsen and Chang [20].



-32-

APPENDIX C

In this Appendix an expression for wx(a;x;Y) is derived. Wx(a;X;Y)

-as given in (26) can be written as

X o .
Wx(a;X;Y) = - ./- exp(is/n) j’ [exp(—sul-ikY)/ul] dAds
o - Q0
X . | |
= -if .l. exp(is/ﬁ)Hél) [C(32+Y2)6]ds (C.1)
0 _

.In the case that Y 0, this can be expressed as

Wx(a;X;O) -i"W4(C,X,i/n)

where an expansion for W4 is given in Appendix B, in equation (B.12) through
(.16).

An expansion for Wx is the region Y large compared to X is found as
follows.  Consider the function £(6) defined by £(0) = Hél)(CB%). This can
be expanded into a Taylor series around ec as |

w iy )

£(8) = % < (p-g )" (c.2)
m=0 1199 C .

The derivatives of f with respect to 60, are given by the recursion formula

for m > 2

| AU ,
el oy = —o7 L1 Yoy + /i Heoy)

[

where

5

£1(0) = (-z/20Hu o

Now, the substitution of 8 = s2 + Y2 and GC = X2/2 + Y2 yields

oo nﬂ 2 2
i pe2h)? -z £Ra/a) (2,2, (c.3)

m=0
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By insé:ting (C.3) into (C.1) we have

Ill
~im Z 2 ’Z*Y Y e I_(ix/h) €.4)

‘ﬂwmﬂ)

where

L, = jacs -1/2) exp(ts)ds o €.s)

- The integrals Im(t) can be expressed in terms of known functions through

the use of the recursion formula for m2>2

"™ exp(t) ~(-1)P] - n/t) [21 exp ()]

n
rT

I,(t)

with

1,(t) [exP(t) - 1]/t

1,(8) = {exp(®) - (2/v)lexp(e) - I (©)1}/e - 1 (8)/2

However for large m ‘and small t this method leads to a large
amount of roundoff error because of the large number of cancellations. A
better method for calculating Im for large m and small t is to expand

the exponential into a Taylor series around zero to obtain

P I ¢3) ,
L= 1 g Ky (€.7)
k=1
where 1 :
- 2 m k
Km,k = f(s -1/2) s ds
(s
which can .be computed from the recursion formula for m>1
27" - mK
K m-1,k (C.8)

m,k  k+2m+1



~34-

with

Ko K= 1/ (k+1)

b 4
We note that Im(t) is not a function of o or Y, so these can be
computed once for finding several roots with constant n and X.
We dlso note that the series for WX given in (C.4)-éonverges

similarly to the series

o ‘ X2 m
z 2 2
=0 \ X + 2Y

This series converges for all Y > 0, even though the rate of convergence

decreases for small Y.
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APPENDIX D

In this Appendix an expression for W(o;X;Y) is found that is good
in the region Y smaller than X. The cosine term in (31) is expanded

into a power series of Y, and this series is integrated term by term

>

to obtain

S O G
W(G;X;Y) = I *——-(T):—

I (a;X) - (D.D1)
m=0 m

where
a’lzmexp(—ulx)
I (a;X) = j. —TA dA
m J ul(ul i/A)

= [3%/05%+2%1™ W(x;X,0)

where
Z exp (—ulX)

W(a;X,0) = ~m';;?5;:17ﬁy dA

An expression for W(a;X,0) is found by setting Y = 0 in (27) and

(29), and inserting these into (26) to obtain

X ‘
W(a;X,0) = exp(-iX/a){-in .[‘ exp(is/ﬁ)Hél)(Cs)ds
o
+ (Z/Ap)[ln(C) - En(l/ﬁ-ikp)]} (D.2)

A series expansion for the finite integral above is given in Appendix

B, in equations (B.1ll) through (B.16). Let Im be written as
2 ,
I_(;%) = Ame(a,x,O) - 1R _(a;X) (D.3)

A recursion relation for Rm is found, to be for m>1
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. 2 2 ;
Rm(a,x) = (AP +z )Rm__l(a,x) + fm_l(a,x) (D.4) .

where
£ (%) = (773%™ [3/0x - 1/a18° (x)

and ‘

ko(a;x) =

Inserting (D.3) into (D.l) one obtains

™"

W(@3X;Y) = cos (A DW(@;X,0) - in I~

R (a;X) (D.5)
m=1 m

We note thatlfor small CX the function fm is asymptotic to
(-1) (Zm) /(X )H(l)(gx) This implies that the series in (D.5) converges

similarly to the series

‘; (x/x0 2"
(2m)(2m-1)

This series converges if and only if Y < X, so we can infer that the series

in (D.5) converges in the region Y <X.
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APPENDIX E

“ In this Appendix higher order terms in the apﬁroximation of Q will
be derived and error bounds for the first few terms will be found. As
with P an (Mtl)th order'approximation to Q is found by extracting the

first M+l terms in the expansion of u, in (24) from u, in (23). Q is

2 2

then written as

=

- Q(a;X,Y) = kEO -Qk(a;X,Y) + EQM ' (E.1)"

where Qk is the portion due to the kth term in the expansion of uy. Qo

is given in- (25), and for k> 0

-2ia2n2Ck a 2k ’
[ (n —l)ﬁk! n . :
L where
v .
= A3 3 _
and ‘

o0

2 .2, k-1

I, (03X,Y) = (inj‘l_]‘(x A Fexp (~u ¥-ikT) )

-00

a2 [*BIBX]41;[exp(-ulX—ikY)/ul]dk}

= am N % ax%a kL

2. .1

2]k’lcx(xzw ) ﬁHfl)[:;(xzwz)%]}

= ([o%/ax%4s™

In particular, Qlis found to be
[

. 2A
Q, (@;x,v) = TABEE (D) g, | | E.3)
(n ~1)n"R _

&3
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The error in approximating Q by Qo is given by

Z_AZ
P

2 © exp[-XRe(u.)]
o] “f 1

2; o
lego! = 71

A exp(—ulX—ilY)dkl
't (n-1)

- . A

2]« : '
A .,,l dA (E.4)

4 : ZA
(n -1) - !uz-in /nl
2 2 . 2,n . '
If Iﬁ(“ ) f.Im(n ), then both u, and -in" /A are in the fourth quadrant
. . . 2 .
in the complex plane. This implies that |u2—in2/ﬁ|_z |n /ﬁl . Using the

bounds on Re(ul) given in Appendix A, the error bound on Qo becomes

2

4, ao'n (1+8X)

e ol < =l l (E.5)
Qo' — o (nA_l)nZ X

where

2 2

| ®ezH? e > 0),
¢ § = : 2 )
-~ 0 (Re” < 03.
’i Similarly the error in approximating Q by Q°+Ql is bounded by

2, a'h . I)‘Z'AZl

leg | 2 3=l f 5 exp[-XRe(u,)]dA (E.6)
1 (n =-1)n L luz—in /n|

Using the same inequalities used in obtaining (E.5), then (E.6)

reduces to

2.3 (2425 %46 246X/ 3 +|A§lx2(6x+l)]

3 (E.7)

|
<=

=RIN
iR

le |
Q (@*-1)n® X

By comparing (E.7) with(E‘S) it is evident that the error is decreased
by including Q, if la2x% > 1.



