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Abstract
Local thermal equilibrium (LTE) is a general presumption ofmany theoretical analyses in
nonequilibrium statistical physics. It describes a situation that although the system is not in global
thermal equilibrium, each small portion of the systemmay still be described approximately by the laws
of thermal equilibrium. The validity of LTE has however seldombeen investigated carefully. Here, by
studying the ensemble velocity distribution and its spatial correlation, we present strong evidences for
the lack of LTE in anomalous heat diffusion processes in one dimensional harmonic lattices and the
Fermi–Pasta–Ulam-β lattices. In particular, clear nonzero excess kurtosis and long range correlations
have been observed, with values scaling linearly with the initial temperature difference. Therefore near
thermal equilibrium is not sufficient to achieve LTE. Some existing studies that are based on the
existence of LTE should be revisited. Using the samemethods, we also show that LTE is still valid in the
f4 lattice, inwhich heat diffuses following Fourier’s law.

1. Introduction

Temperature is the pivotal concept of thermodynamics and statistical physics, which predominantly affects
almost allfields of natural science, ranging frommaterial properties, phase transition, chemical reaction to
weather, climate, as well as our life process. However, From a statistical physics point of view, the definition of
temperature is not applicable tomost of the systems and environment thatwe encounter in both our daily life
and scientific experiments. Since the definition has a solid basis only for systems in thermal equilibrium states [1]
—following the axiomatic zeroth law of thermodynamics—inwhich all properties reaches spatial and temporal
uniform [2].

For a canonical ensemble of classical Hamiltonian systems,H(pi, qi), temperature is the unique external
quantity characterizing the phase space distribution ρ∝e−H/T, knowing as the canonical distribution (we
choose a temperature scale so that kB=1). This in turn leads to the generalized equipartition theorem [2], i.e.
T H cx= á ¶ ñx , where ξ is any canonical coordinate of the system (pi or qi); and cá ñ· denotes the canonical
ensemble average under themeasure ρ. The choice of ξ=pi for any i then gives a formula for the temperature
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commonly referred as the kinetic temperature.
It has long been established that the only possible steady state of a system in contact with heat baths at the

same temperature is a thermal equilibrium state depicted by the canonical distribution, leading to awell defined
temperature for the system.With differing heat bath temperatures, however, the system is nonequilibrium in the
long run and a canonical distribution is no longer achievable, prohibiting a rigorous definition of temperature
for the system [3].
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Todeal with such nonequilibrium systems, the concept of local thermal equilibrium (LTE) is introduced,
with the hope that each small portion of the system can be treated as if it is in a locally thermal equilibrium state
with a local temperature (LT),T(x, t), varying slowly in space and/or in time—so that the existing theories
describing global thermal equilibrium can still be applied approximately to each small region [4]. Based on it,
other slowly varying thermal properties of the system can then be defined locally as well; and various transport
phenomena induce by this thermal nonequilibrium can be studied, such as the diffusion of heat.
Microscopically, LTE also implies that the generalized equipartition is approximately satisfied and LT can still be
obtained using the kinetic temperature definition T pi i

2= á ñwith á ñ· denoting the average over the
nonequilibrium ensemble under study.

Regardless of its ubiquitous applications in studying nonequilibriumphenomena, the validity of LTE has
rarely been investigated from a fundamental basis. Empirically, its validity in three-dimensional bulkmaterials,
as well as the validity of subsequent Fourier’s law, is supported by the repeated experimental [5, 6] and numerical
observations [7, 8]. In the past two decades, the discovery of breakdownof Fourier’s law in one-dimensional
(1D) Fermi–Pasta–Ulam (FPU) lattice [9] has inspired numerous studies and debates on anomalous heat
transport in low-dimensional lattices, both numerically and theoretically [10, 11]. Those studies were typically
setup in nonequilibrium steady statesmaintained by heat baths at different temperatures. For homogeneous
systems, smooth local kinetic temperature profiles were generally observed and the existence of LTEwas not
questioned. An counterexample is the FPU latticewith alternatingmasses—when attached to heat bathswith
different temperatures, the LT profile exhibits oscillation,manifesting the lack of LTE [12].

In this paper, we study numerically the validity of LTE in heat diffusion in 1Dhomogeneous systemswithout
heat baths, starting fromwell prepared nonequilibrium states with LTE and undergoing relaxation towards
equilibrium. These systems are thus in nonequilibrium transient states governed by the Liouvillian dynamics.
Unlike the studies in [12] that the systems are in stationary states, the systems that we shall study are in non-
stationary states. By introducing variesmeasures, we demonstrate that the initial LTE condition is not capable of
ensuring LTE afterwards in anomalous heat diffusion under general settings, even for systemswith homogeneity
and arbitrarily close to thermal equilibrium. For normal heat diffusion obeying Fourier’s law, however, LTE is
plausible.

2.Model and setup

We study 1Dhomogeneous lattices with generalHamiltonian
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where themasses are set to unity without loss of generality,V andU depicts the interparticle interaction and
onsite potential, respectively.We focusmore on the FPU-β lattice withV x x x1

2
2

4
4= + b( ) andU(x)=0. Very

recently, a quantitative dynamical characterization of the degree of equipartition of a givenmicroscopic state has
beenworked out for thismodel with however different parameters [13]. For comparison, we also study a
harmonic lattice withV x x1

2
2=( ) andU(x)=0; and af4 lattice withV x x1

2
2=( ) andU x x x101
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These systems do not exhibit thermal expansion and thusmacroscopic work is absent between adjacent parts,
whichmake usmore concentrated in the subject under study.

We simulate heat diffusion in these lattices in two stages following [14]. Specifically, in thefirst stagewe
prepare the system in a nonequilibrium steady state by attaching a Langevin heat bath at temperatureTi to each
of the particles i. The temperatures follow aGaussian profile:

T T Te . 3i 0
i2

2 2= + D -
s ( )

Throughout the study, wefix the background temperatureT0=1 andσ=4. Such a temperature is far beyond
the equipartition threshold of the FPU-β lattice, whichwould then prohibit the generation of ordered orbits in
stage two (see below) and the systemwill evolve towards thermal equilibrium autonomously [15, 16].

In order tomake sure that the lattice is in its linear response region during the diffusion process, we apply a
small value ofΔT=0.1, unless otherwise stated. Such an 10% relative temperature difference is smaller than
most of the values applied in existing heat conduction and heat diffusion simulations, inwhich LTEwas
commonly presumed.

In this stage, the particles follow Langevin dynamics:

x f f g x¨ , 4i i i i i i1 h g= - + + -+( ) ( ˙ ) ( )

where f V x xi x i i1i
= -¶ --( ) is the interparticle interaction, g U xi x ii

= -¶ ( ) is the interactionwith the
substrate (only exists forf4 lattice), γ is the damping coefficient of the heat baths, ηi is aGaussianwhite noise
satisfying t 0ihá ñ =( ) and t t T t t2i j i ij1 2 1 2h h g d dá ñ = -( ) ( ) ( ). The parameter γ is tuned tomake the kinetic
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temperature distribution of the lattice as close to the target distribution equation (3) as possible. The resulting
initial heat current is generally alsomaximized. Our choice is γ=3, which is typicallymore or less the best.

After a long enoughwarm-up period, the system eventually reaches a nonequilibrium steady state. Thenwe
define time t=0 and start the second stage by removing all the heat baths so that heat starts to diffuse. The
system evolves autonomously towards equilibrium according to Liouvillian dynamics, i.e. equation (4)with the

second bracket removed.We define the local energy and local heat current as E V V U xi
x

i i i2

1

2 1
i
2
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and j x x fi i i i
1

2 1 1= + + +( ˙ ˙ ) , respectively; and in addition the excess energy E t E t Ei i 0D = á ñ -( ) ( ) , where

E Ei c0 = á ñ stands for the average energy density in thermal equilibrium at the background temperatureT0=1
[14].

3. The kurtosis of velocity distribution

The immediate quantity that needs to be checked for a valid LTE state is the distribution of the single particle
velocities. If a part of a system is in a LTE state, then the velocity distribution should beGaussian [12, 17]. A direct
check of the single-particle velocity distributions reveals that they are still in bell shape. The symmetry of the
velocity distributions is guaranteed by the symmetry of the system, leading to a vanishing skewness. A standard
criteria tomeasure the deviation of a symmetric distribution fromGaussian is thus the kurtosisκ:
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Comparing toGaussian distribution, a positiveκ implies a narrower central peak and two fatter tails; and
vice versa.

Kurtosis profiles in the FPU-β lattice forβ=1 at different time t are plotted infigure 1(a). At time t=0, the
kurtosis of the particles are uniformly zero, implying a potential LTE statemaintained by the Langevin heat baths
with close temperatures. Nonvanishing kurtosis at t=0 can be observed only for very largeΔT—a
phenomenon not surprising at all since the large variation of temperature along the lattice is likely to destroy the
precondition of LTE.

During the diffusion process with t>0, however, the kurtosis quickly changes from zero to nonzero and
forms two side peaks that spread from the center. The pictures are partly similar to those for the local excess
energy distributionsΔEi that are plotted infigure 1(b). This can be understood from the theory of nonlinear
fluctuating hydrodynamics which predicts Kardar–Parisi–Zhang [18] like soundmodes and Levy heatmodes,
see [19] and references therein for detail. However, some distinctions betweenΔEi andκ are also clearly
observed. Firstly, the central part of the kurtosis profile forms a deepwell at the beginning and then diminishes
rapidly; in contrast with the slowly decaying central peak of excess energy distribution. In other words, while
energy is still concentrated in the center and gradually spread towards the two ends of the lattice, the velocity of
the particles in the central part approachesGaussianmuch faster. Secondly andmore interestingly, the two side
peaks of the kurtosis profilemoves faster than those of theΔEi . The speed of the heat propagation in a lattice is
determined by the speed of the heat carriers, possible candidates include solitons and renormalized phonons for
the FPU-β lattices. The peak of the energy distribution shouldmove at the sound speed in the lattices. Herewe
see that the information of an upcoming heat diffusion is actually propagated supersonically and outruns the
heat itself. The change in the velocity distribution is thus an herald of heat diffusionwhich can be detected before
the heatwave is reached. As a side effect, we also observe that whenΔEi(t) reaches its localmaximums, the
kurtosisκ crosses zero and changes sign.

To rule out the possibility that the nonzero kurtosis profile ismanifested only because the initial temperature
difference is too large so thatwe are actually in the far-from-equilibrium region, we study the role of the initial
ΔT on the velocity distribution. we simulate heat diffusion for variousΔT and plot the rescaled kurtosis,κ/ΔT,
infigure 1(c). It is clearly seen that the curves forΔT=0.1, 0.3 and 1.0 overlapwith each other, indicating that
κ/ΔT approaches a constant distribution in the smallΔT limit. In otherwords, asΔT approaches zero,κ and
ΔT are infinitesimals of the same order and therefore its deviation fromGaussian distribution is still observable
in the near-equilibrium limit, just as the presence of heat current under the influence of temperature gradient as
described by Fourier’s law.

However, the non-zero kurtosis distribution can be clearly seen only in the largeβ cases when the lattice is
highly nonlinear. In the lownonlinearity case, e.g. whenβ decreases to as low as 0.01, the kurtosis is hardly
distinguishable from the background statistical fluctuations, see figure 1(d). This is because when the
nonlinearity strength is lower than an equipartition threshold, the FPU-β lattice behaves like a harmonic one
[15, 20]; and for harmonic lattice it can be analytically shown that the single-particle velocity distribution
remainsGaussian throughout the diffusion process, yielding an exactly zero kurtosis.
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4. Velocity correlation

Since the kurtosis checking loses its effectiveness in theweak nonlinear cases, we now consider another criterion
for LTE, the long-range correlation of particles’ velocities. It is not surprising that due to the existence of some
conserved quantities the long-range correlation in a system at a nonequilibrium state can be observed. However,
if each small part of the system is in LTE then the correlation should be either vanished or short-ranged. So that
locally thermal equilibrated regions can bewell defined. Therefore, in the next stepwe check the spatial
distribution of velocity correlation in the lattice.

Infigure 2, we plot the heatmap of simultaneous two-particle velocity correlation v t v ti já ñ( ) ( ) for all the
particle pairs in a lattice of lengthN=201. Since the number of unique pairs n=N(N+1)/2 increases rapidly
withN, it is very challenging to further increase the sizeNwith the limited computation power.

Figure 1. (a)Kurtosisκ and (b) excess energy distributionΔEi in the FPU-β lattice at different time t.β=1 andΔT=0.1. Vertical
dashed lines indicate the positions of the peaks ofΔEi in (b), and coincidentlyκ in (a) changes its sign there. (c)Rescaled kurtosisκ/
ΔT in the same FPU-β lattice for three values ofΔT=0.1, 0.3, and 1.0, at a single time point t=120. (d)Kurtosisκ in the FPU-β
lattice for various values ofβ at t=120.
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The light diagonal line from lower-left to upper-right corresponds to each particle’s velocity autocorrelation,
i.e. v ti

2á ñ( ) , which is naturally large positive. IfΔT=0, the system rests in thermal equilibrium so that
v t v t T i j,i j dá ñ =( ) ( ) ( )where δ(i, j) is the Kronecker delta function. In systemswith LTE, long range velocity

correlation is prohibited and v t v ti já ñ( ) ( ) should decay fast as the point (i, j)moves farther away from the

diagonal. It can be observed during the diffusion process, however, some patterns of v t v ti já ñ( ) ( ) emerge and
move along the anti-diagonal direction. Themost noticeable ones are the two dots in yellow and red. This
implies that particles located symmetrically with respect to the center are also inclined to be correlated. It is
because the changes of vi and v−i at the same time t are due to the fluctuation at the center of the lattice at the
same early time.

Infigure 3(a), we plot the velocity correlation v t v ti iá ñ-( ) ( ) at various time t. For t=0, the correlation
displays a δ function shape, which confirms again that no long range velocity correlation exists. This indicates an
LTE description is adoptable for the system at t=0when the system is in contact with the heat baths and rests in
a non-equilibrium steady state. For t>0 however, two side peaks appear andmove outwith a basically constant
speed, the sound speed.

Infigure 3(b)we plot the correlation at the same time t=120 for various values ofβ. The side peaks can be
clearly observed for all cases, even for theβ=0.01 case where the nonzero kurtosis ismerely observable, see
figure 1(d). Again it can be confirmed that such a long range velocity correlation is not a far-from-equilibrium
phenomenon, either. Infigure 3(c)weplot the rescaled correlation v t v t Ti iá ñ D-( ) ( ) for variousΔT. Curves for
ΔT=0.1 and 0.3 overlap perfectly with each other, which implies that v t v ti iá ñ-( ) ( ) is linear withΔT even in the
smallΔT limit. For comparison, we also plot the correlation between each particle and the central particle,
v t v ti 0á ñ( ) ( ) , in figure 3(d).We see that in all cases v t v ti 0á ñ( ) ( ) are localized around the center. It is interesting to
see that although the central particle is not correlatedwith a far-away particle with large i∣ ∣, two farther-away
particles can be correlated.

Is this long range correlation ubiquitous for the heat diffusion in 1D lattices? The answer is no. In thef4

lattice displaying normal heat diffusion and obeying the Fourier’s law, we observe a distinct yet expected
behavior, as shown in figure 4. Therewe see that nonzero correlation only exists in a very narrow strip

Figure 2.Velocity correlation v t v ti já ñ( ) ( ) in the FPU-β lattice,β=0.01, at time t=(a) 10, (b) 20, (c) 40, and (d) 60.ΔT=0.1 and
N=201.
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surrounding the diagonal line. Therefore, the velocity correlation is short-ranged and a locally well-defined
thermal equilibrium state is not prohibited.

So farwe have presented that in the heat diffusion process in the FPU-β lattices, LTE cannot be perfectly
reached. Therefore, an local thermodynamic temperature cannot bewell defined. If one still insists on
defining the LT in terms of the kinetic temperature, i.e. equation (1), something paradoxical appears. In
figures 5(a) and (b)we show the distributions of the local heat current ji and the opposite temperature gradient

T T Ti i i 1- º - - -( ) at various times, respectively. Not surprisingly, for any t>0, ji(t)>0 for i>0 and
ji(t)<0 for i<0.Namely, heat alwaysflows from the center towards the two ends.−∇Ti should also be always
positive and negative in the right and left half of the lattice, respectively. However, we see infigure 5(b) that this is
not always true: at some places the local heat current ji flows against the opposite LT gradient−∇Ti. Such a
phenomenon is not allowed by the second law of thermodynamics.

Figure 3. (a)Velocity correlation v t v ti iá ñ-( ) ( ) in the FPU-β lattice forβ=0.01 and various time point t. The two side peaks that
correspond to the two light balls infigure 2move outwith basically a constant speed. (b) v t v ti iá ñ-( ) ( ) for a single time point t=120
and variousβ=0.1, 0.3 and 1. (c)Rescaled velocity correlation v t v t Ti iá ñ D-( ) ( ) forβ=1, t=120, and variousΔT=0.1, 0.3, and
1. (d) v t v ti 0á ñ( ) ( ) for a single time point t=120 and variousβ=0.1, 0.3, and 1.ΔT=0.1 unless otherwise stated in (c).
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Figure 4.Velocity correlation v t v ti já ñ( ) ( ) in thef4 lattice, at time t=(a) 10, (b) 20, (c) 40, and (d) 60.ΔT=0.1.

Figure 5. (a) Local heat current ji(t) distribution at various time points t. ji(t) is always positive(negative) in the right(left) half of the
lattice, which implies that heat alwaysflow right- (left-)wards. (b)The opposite local kinetic temperature gradient−∇Ti(t)
distribution at various time points t.−∇Ti(t)<0 for i>0 and−∇Ti(t)>0 for i<0 are forbidden by the second thermodynamics
law.However, such phenomena can be observed for all the curves for t>0.
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5. Summary anddiscussion

Wehave investigated the validity of the LTE presumption in heat diffusion processes in a few 1D lattices. It was
observed that the velocity distribution in a nonlinear lattice, e.g. the FPU-β lattice systematically departs from
Gaussian. The kurtosis distribution displays a rapidly decaying central well as well as two slowly decaying side
peaks spreading from the center. Interestingly, the speed of the peaks is even higher than the sound speed in the
lattice. This indicates that the effect from the central heat package reaches a far-away particle before the heat
reaches. By detecting this effect wewould be able to sense in advance the upcoming heat wavewhich transports
at the sound speed.Obvious practical value can be expected. Such a phenomenon does not vanish in the near-
equilibrium limit because the rescaled valueκ/Δt approaches a constant distribution in the smallΔT limit.

Besides kurtosis, velocity correlation between particles is anothermeasure that we used to check the validity
of LTE. For the FPU-β lattice, it was observed that particles at long distances can be correlated in the heat
diffusion process. The profile of v vi iá ñ- , i.e. the velocity correlation between one particle and its symmetric
particle as a function of i, looks alike to the profile of the energy distribution. Similar to the kurtosis, the rescaled
correlation does not vanish but approaches a constant distribution in the smallΔT limit, which demonstrates
that this is also a phenomenon observable for near equilibrium situations.We have also confirmed that the
abovefindings are universal for a series of 1Dnonlinear lattices. Some results are presented in the appendix.

Due to the breakdown of LTE, it would be natural to expect that the local version of Fourier’s law
j(x, t)=−κ(x, t)∇T(x, t), withT the kinetic temperature, is not applicable to the transient states in the
anomalous diffusion process. This conjecturewas confirmed by our intensive numerical simulations. It was
observed that the instantaneous local heat current is not proportional to the instantaneous local kinetic
temperature gradient; though the kinetic temperature profile still remains smooth. In some regions the
directions of these two quantities are even opposite, i.e. the heatflows against the LT drop, which violates the
local version of second thermodynamics law. This fact indicates that although a smooth kinetic temperature
profile is commonly regarded as a good indicator for LTE in a stationary state [12], it loses its effectiveness in
nonstationary anomalous heat diffusion process.

On the other side, when energy diffuses normally as in thef4 lattice, all the abnormal phenomena studies
above disappear and thus LTE is still a good approximation. Being the prototypes of anomalous and normal heat
diffusion/conduction in 1Dnonlinear lattices respectively, we expect that the above conclusions for the FPU-β
lattice and thef4 lattice to be generally valid in 1D lattices.
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Appendix

In this appendixwe present some numerical results for other two different 1Dnonlinear lattices with anomalous
diffusion, the purely quartic lattice and the FPU-αβlattice. TheirHamiltonians take the same form as that in the

equation (2). The detailed interparticle potentials are howeverV x x1

4
4=( ) andV x x x x1

2
2 2

3
3 1

4
4= + +( ) ,

respectively.
Themain conclusion of the paper is that during the anomalous heat diffusion process LTE breaks down and

such a breakdown persists in the near-equilibrium limit. The key evidence is that the kurtosis and the long range
velocity correlation decay as slow as linearly with the strength of perturbationΔT. Infigure A1, the rescaled
kurtosisκ/ΔT and the rescaled velocity correlation v t v t Ti iá ñ D-( ) ( ) for the abovementioned two lattices are
plotted. All the setups of the simulations are the same as thosewe applied for the FPU-β lattice. The overlap
between curves for various perturbation strengthΔT can be clearly observed, in particular in the lowΔT cases.
The above key evidence is therefore also valid for those two lattices. Given the fact that those two lattices are both
quite representative, one is the simplest nonlinear lattice and the other is the simplest onewith asymmetric
interaction, the universality of our conclusion for 1Dnonlinear lattices with anomalous diffusion is thus
confirmed.
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