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Abstract

The Fourier transform on Rn has many useful properties that prove to be useful in studying major problems
arising in analysis—such as those arising in the study of differential equations. One can also develop the
Fourier transform for abelian or compact locally compact Hausdorff groups, which shares many of the same
remarkable properties of the Fourier transform on Rn. Even further, the Fourier transform can be defined
on homogeneous spaces X = G/K where G is a connected noncompact semisimple Lie group with finite
center and K is a maximal compact subgroup. The purpose of this paper is to survey the major properties
and features of the Fourier transforms on these spaces, at the level of a student familiar with real analysis.
We also explore how one can define and study pseudo-differential operators on such homogeneous spaces
X = G/K.
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Chapter 1

Fourier transforms on Rn and on
topological groups

The Fourier transform on the Euclidean space Rn is an immensely powerful tool used to study a variety of
problems arising in areas of mathematical analysis, particularly in partial differential equations and harmonic
analysis. In fact, there exists a generalization of the Fourier transform which can be defined for any locally
compact group—and in the case that the locally compact group is abelian or compact the Fourier theory is
well-behaved. The purpose of this chapter is to recall the basic properties of the Fourier transform on Rn as
well as give a cursory discussion of the Fourier transform theory for locally compact groups.

Since the notion of a Fourier transform on a smooth manifold is not defined in general, our purpose in
this chapter is to identify the so-called generic features of the Fourier transform on Rn (and on any locally
compact group that is abelian or compact) which we ought to expect of any integral transform on a smooth
manifold which generalizes or extends the Fourier transform to that manifold in a suitable sense. In Chapters
2 and 3 we will describe a type of integral transform which can be defined on a certain class of manifolds
which captures these generic features very well and thus arguably provides a “correct” generalization of the
Fourier transform to those particular manifolds.

In Section 1.1, we shall provide a non-exhaustive overview of the Fourier transform on Rn; covering
the theory of the Fourier transform on L1(Rn), L2(Rn), the space of test functions C∞c (Rn), the Schwartz
functions S(Rn), and on the space of tempered distributions S ′(Rn). We shall for the most part provide all
the necessary proofs for they are often concise and often they highlight techniques that are used later in this
thesis—although in certain cases we omit a few proofs. In Section 1.2, we then discuss the Fourier transform
on locally compact groups that are abelian or compact. Here we shall provide fewer proofs in the interest
of length and readability. Finally, in Section 1.3 we very briefly highlight some properties of the Fourier
transform on certain compact Lie groups, namely on the torus T and on compact semisimple Lie groups.
There the Fourier transform interacts quite nicely with differential operators on the group as does the Fourier
transform on Rn.

Preliminaries and notation

The symbols R, C, N, N0, and Z denote the space of real numbers, complex numbers, the positive integers,
the nonnegative integers, and the integers respectively. We also write R+ = {x ∈ R : x > 0} for the
multiplicative group of positive real numbers. By a multi-index α on Rn we mean an element α ∈ Nn

0 .
If α is a multi-index we employ the notation that xα := xα1

1 · · ·xαnn if x ∈ Rn and that the symbol ∂α

denotes the differential operator ∂α1
1 · · · ∂αnn . The order or absolute value of a multi-index α is the number

|α| = |α1|+ · · ·+ |αn|.
Recall that for 1 ≤ p < ∞ the space Lp(Rn) is the set of measurable functions f on Rn satisfying

‖f‖p =
[∫

Rn |f(x)|p dx
]1/p

<∞ where dx is the Lebesgue measure. The Lp(Rn) spaces are Banach spaces
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and the norm on these spaces is denoted by ‖·‖p. On L1(Rn) we can define a multiplication called convolution
where for each f, g ∈ L1(Rn) their convolution f ∗ g is defined by

f ∗ g(x) =

∫
Rn

f(y)g(x− y) dy .

That this function is also integrable comes from the estimate ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 which in fact shows
that convolution on L1(Rn) is continuous. This turns L1(Rn) into a commutative Banach algebra under
convolution. We can add an involution on L1(Rn) where the involution of an integrable function f is defined
by f∗(x) = f(−x). Together with these operations, L1(Rn) becomes what we call a Banach *-algebra. We
also have the space L∞(Rn) which is the space of essentially bounded functions on Rn. This space is too a
Banach space with norm denoted by ‖·‖∞.

The spaces C∞c (Rn) = D(Rn) and C∞(Rn) = E(Rn) will denote the sets of compactly supported smooth
functions and the smooth functions on Rn, respectively. We shall use the notations C∞c (Rn) and D(Rn)
(as well as C∞(Rn) and E(Rn)) which denote the same respective spaces and we shall use those notations
interchangeably. The space Cm(Rn) will denote the space of functions with continuous derivatives up to
order m and the space C0(Rn) will denote the space of continuous functions which vanish at infinity.

1.1 Fourier transform on Rn

The Fourier transform on Rn is defined for any integrable function by the following formula.

Definition 1.1.1. For f ∈ L1(Rn) define the Fourier transform of f as the function f̂ on Rn which is given
by the following formula

f̂(ξ) =

∫
Rn

f(x)e−i〈x,ξ〉 dx . (1.1.1)

Here, the bracket 〈·, ·〉 is the Euclidean inner product (dot product) on Rn. We note that the integral in
(1.1.1) converges everywhere since f ∈ L1(Rn) and so that the Fourier transform of an integrable function is

well-defined. We will sometimes write F to denote the map f 7→ f̂ . Correspondingly, we have the so-called
inverse Fourier transform which is defined as follows.

Definition 1.1.2. For f ∈ L1(Rn) define the inverse Fourier transform of f by

F−1f(x) = qf(x) =
1

(2π)n

∫
Rn

f(ξ)ei〈x,ξ〉 dξ =
1

(2π)n
Ff(−x). (1.1.2)

There are several properties of the Fourier transform that we will find quite useful which are contained in
the following proposition.

Proposition 1.1.1. Suppose that f, g ∈ L1(Rn).

1. ‖f̂‖∞ ≤ ‖f‖1.

2. If f ∈ Cm(Rn) and ∂αf ∈ C0(Rn) ∩ L1(Rn) for |α| ≤ m − 1 and ∂αf ∈ L1(Rn) for |α| = m, then

∂̂αf = (iξ)αf̂(ξ).

3. If xαf(x) ∈ L1(Rn), then ∂αf̂(ξ) = F ((−ix)αf(x))(ξ).

4.
∫
Rn f̂(x)g(x) dx =

∫
Rn f(x)ĝ(x) dx.

5. If y ∈ Rn and we put τyf(x) = f(x + y), then τ̂yf(ξ) = ei〈y,ξ〉f̂(ξ). Also the Fourier transform of

x 7→ ei〈x,η〉f(x) is f̂(ξ − η).
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Proof. (1) follows from the elementary estimate |f̂(ξ)| ≤
∫
Rn |f(x)| dx = ‖f‖1. For (2) if |α| = 1, then by

integration by parts∫
Rn

∂αf(x)e−i〈x,ξ〉 dx = f(x)e−i〈x,ξ〉
∣∣∣∞
−∞
−
∫
Rn

(−iξ)αf(x)e−i〈x,ξ〉 dx = (iξ)αf̂(ξ).

By induction we obtain the result for |α| ≤ m as well. For (3), this is a case of differentiation under the
integral sign using the dominated convergence theorem. Finally for (4) note that both integrals are equal to∫

Rn

∫
Rn

f(x)g(y)e−i〈x,y〉 dx dy,

by Fubini’s theorem. Lastly for (5), the first part follows easily by a standard change of variables in the
integral defining the Fourier transform and second part is obvious.

In essence, if xαf ∈ L1(Rn) for large orders of |α| the more smooth the Fourier transform f̂ is. Conversely,

the more smooth f is (along with a certain decay conditions on its derivatives at infinity), the quicker f̂ decays

in ξ. Indeed, assuming (2) in the previous theorem we obtain that |f̂(ξ)| ≤ |ξα|−1‖∂αf‖1 for ξ away from
zero. Thus the greater the order of α, the faster f decays as |ξ| → ∞. Next we shall prove the well-known
Fourier inversion theorem but first we prove a statement about the Gaussian functions and Gaussian integrals
on Rn.

Lemma 1.1.2. If a > 0 and x ∈ Rn, then the Gaussian function f(x) = e−a
2|x|2 has integral:

∫
Rn f(x) dx =

(π/a2)n/2. Moreover, f̂(ξ) = (π/a2)n/2e−|ξ|
2/4a2 .

Proof. The first assertion is a familiar proof from a course in advanced calculus. For the second proof first
suppose that n = 1. Then

(f̂)′(ξ) =

∫
Rn

−ixe−a
2x2

e−ixξ dx =
i

2a2
f̂ ′(ξ) = − ξ

2a2
f̂(ξ).

In particular, we have that

d

dξ

(
eξ

2/4a2 f̂(ξ)
)

=
ξ

2a2
eξ

2/4a2 f̂(ξ) + eξ
2/4a2(f̂)′(ξ) = 0.

Thus the function eξ
2/4a2 f̂(ξ) is constant. Evaluating at ξ = 0 we find that this constant is equal to

f̂(0) = (π/a2)1/2. So f̂(ξ) = (π/a2)1/2e−ξ
2/4a2 . For the arbitrary n-dimensional case we put fj(x) = e−a

2x2
j

so that f =
∏n
j=1 fj . Then we can verify

f̂(ξ) =

n∏
j=1

f̂j(ξj) =
( π
a2

)n/2
e−|ξ|

2/4a2 .

Now if g ∈ L1(Rn), put gt(x) = t−ng(x/t) for t > 0 and set c =
∫
g. Then the convolution φ∗gt converges

to cφ in Lp as t→ 0 for each φ ∈ Lp(Rn) (1 ≤ p <∞), see [8, Thm. 8.14] for a short proof of this fact. In

particular for the function g(x) = e−|x|
2/4 we have that the Fourier transform of the function

ψt(z) = exp
(
i〈x, z〉 − t2|z|2

)
is the function ψ̂t(y) = (π)n/2gt(x− y). We are now in the position to prove the celebrated Fourier inversion
theorem.

Theorem 1.1.3 (Fourier inversion theorem). If f, f̂ ∈ L1(Rn), then f = F−1Ff = FF−1f almost
everywhere.
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Proof. Let ψt and gt be as above and observe that by Proposition 1.1.1. Property (4)∫
Rn

ψt(ξ)f̂(ξ) dξ =

∫
Rn

ψ̂t(y)f(y) dy = (π)n/2f ∗ gt(x).

Now as t→ 0, by the dominated convergence theorem the left-most integral above converges to∫
Rn

f̂(ξ)ei〈x,ξ〉 dξ .

While by Lemma 1.1.2 and the discussion preceding this theorem, the right-most integral converges to
(2π)nf(x) for almost every x ∈ Rn. Thus,

f(x) =
1

(2π)n

∫
Rn

f̂(ξ)ei〈x,ξ〉 dξ

holds almost everywhere. Thus, f = F−1Ff and that f = FF−1f follows from the relations F−1f(ξ) =

(2π)−nf̂(−ξ) and Ff(ξ) = (2π)nF−1(−ξ).

Our primary concern will be to study how the Fourier transform behaves when applied to various function
spaces—of which the primary spaces that we will be concerned with are L1(Rn), L2(Rn), C∞c (Rn), and
the “Schwartz space” S(Rn) which we define later. We will also investigate the Fourier transform for the
topological dual of S(Rn).

1.1.1 Images of classical function spaces

We shall first begin our discussion with the characterization of the image of F on L1(Rn).

Lemma 1.1.4 (Riemann-Lebesgue lemma). If f ∈ L1(Rn), then f̂ ∈ C0(Rn).

Proof. The smooth compactly supported functions are dense in L1(Rn) and clearly by Proposition 1.1.1
Property (2), F (C∞c (Rn)) ⊂ C0(Rn). Since C0(Rn) is complete and F is continuous (it is bounded) by
Proposition 1.1.1 Property (1), the result is immediate since C∞c (Rn) ⊂ L1(Rn) is dense in L1(Rn).

Interestingly this is the best description of the image of the Fourier transform on L1(Rn). In particular,
the Fourier transform does not map L1(Rn) surjectively onto C0(Rn). There seems to be no other useful
description of functions in F (L1(Rn)) other than to say that they are elements of F (L1(Rn)). Moving on,
we combine our previous results into the following theorem.

Theorem 1.1.5. The Fourier transform is a continuous ∗-homomorphism of L1(Rn) into a dense subalgebra
of C0(Rn). That is the Fourier transform maps L1(Rn) into C0(Rn) and satisfies

Ff∗ = Ff,

F (f ∗ g) = (Ff)(Fg).

Proof. First we verify that (f ∗ g)̂ = f̂ ĝ and that f̂∗ = f̂ for f, g ∈ L1(Rn). So first note by a routine
application of Fubini’s theorem:

(f ∗ g)̂ (ξ) =

∫
Rn

(f ∗ g)(x)e−i〈x,ξ〉 dx =

∫
Rn

∫
Rn

f(y)g(x− y)e−i〈x,ξ〉 dx dy

=

∫
Rn

∫
Rn

f(y)g(x)e−i〈x+y,ξ〉 dx dy =

∫
Rn

f(y)e−i〈y,ξ〉 dy ·
∫
Rn

g(x)e−i〈x,ξ〉 dx = f̂(ξ)ĝ(ξ).

It is also obvious f̂∗ = f̂ . Hence F is a continuous ∗-homomorphism (continuity is given by Proposition 1.1.1
Property (1)).
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To see that F (L1(Rn)) is a subalgebra dense in C0(Rn), we note that F (L1(Rn)) is a subalgebra since

if f̂ , ĝ ∈ F (L1(Rn)), then f̂ ĝ = (f ∗ g)̂ ∈ F (L1(Rn)). It also separates points since if ξ, η ∈ Rn were such

that f̂(ξ) = f̂(η) for all f ∈ L1(Rn), then e−i〈x,ξ〉 = e−i〈x,η〉 for all x ∈ Rn so that ξ = η. As we have seen,
F (L1(Rn)) is closed under complex conjugation, therefore by the Stone-Weierstrass theorem F (L1(Rn)) is
a dense subalgebra of C0(Rn).

Although the Fourier transform is only defined on L1(Rn) we can extend its definition to L2(Rn). In
particular, we can extend F continuously to L2(Rn) so that F is an isometry of L2(Rn) onto the Hilbert space
L2(Rn; (2π)−ndx). For this part of the section we will write L2(Rn; dx) and L2(Rn; (2π)−ndx) corresponding
to the L2 spaces on Rn arising from the measures dx and (2π)−ndx.

Theorem 1.1.6 (Plancherel theorem). If f ∈ L1 ∩ L2, then f̂ ∈ L2 and F defined on L1 ∩ L2 extends
continuously to a unitary isomorphism of L2(Rn; dx) onto L2(Rn; (2π)−ndx).

Proof. Put W = {f ∈ L1(Rn) : f̂ ∈ L1(Rn)}. Since for f ∈ W we have ‖f‖∞ < ∞ and thus by an

interpolation inequality (cf. [8, Prop. 6.10]): ‖f‖2 ≤ ‖f‖1/21 ‖f‖
1/2
∞ so that W ⊂ L1(Rn) ∩ L2(Rn). In

particular, since W contains C∞c (Rn) we have that W is dense in L2(Rn).
Now for f, g ∈W we then have by the inversion formula and Fubini’s theorem∫

Rn

f(x)g(x) dx =
1

(2π)n

∫
Rn

f(x)

{∫
Rn

ĝ(y)e−i〈x,y〉 dy

}
dx =

1

(2π)n

∫
Rn

f̂(y)ĝ(y) dy .

Thus, the restriction of F to W is an isometry of W into L2(Rn; (2π)−ndx). What this means is that if

X = L2(Rn; dx) and Y = L2(Rn; (2π)−ndx), then for f, g ∈W we have 〈f, g〉X = 〈f̂ , ĝ〉Y . In particular we

see that if f ∈W , then also f̂ ∈ L2(Rn).
By the inversion theorem we have F (W ) = W . Thus if we extend F uniquely and continuously to

L2(Rn) we obtain a unitary isomorphism from L2(Rn; dx) onto L2(Rn; (2π)−ndx). That is if f ∈ L2(Rn)

we define f̂ = limn→∞ f̂n (a limit which is interpreted in the sense of L2) for a sequence {fn}n∈N ⊂W which
converges to f in the L2 norm. For the time being, denote this extension by Fe.

We finally conclude the proof by showing that Fe = F on L1(Rn) ∩ L2(Rn). To this end, if we put

g(x) = e−π|x|
2

, then for f ∈ L1(Rn) ∩ L2(Rn) we have f ∗ gt ∈ L1(Rn) by the Riesz-Thorin interpolation
theorem and

(f ∗ gt)̂ (ξ) = f̂(ξ)ĝt(ξ) = e−t
2|ξ|2/4π f̂(ξ) ∈ L1(Rn).

Thus, f ∗ gt ∈ W and as t → 0 we have f ∗ gt → f in both L1(Rn) and L2(Rn). So (f ∗ gt)̂ → f̂
uniformly as continuous functions and (f ∗ gt)̂ → Fe(f) in L2 by definition. Thus it follows that Fe(f)(ξ) =

limt→0(f ∗ gt)̂ (ξ) = f̂(ξ) on L1(Rn)∩L2(Rn) as required. Moreover, by this conclusion we have proved that

f̂ ∈ L2(Rn) whenever f ∈ L1(Rn) ∩ L2(Rn).

We observe that in the formula for the definition of the Fourier transform of a function f ∈ L1(Rn) that

it may sometimes make sense to define f̂ on Cn by complexification of the Fourier variable. Thus, for an
integrable function f we define its so-called complex Fourier transform by the formula

f̂(z) =

∫
Rn

f(x)e−i〈x,z〉 dx

where 〈x, z〉 = 〈x,Re z〉+ i〈x, Im z〉. There is however an issue of convergence since it is not clear whether the
integrand above is integrable since |e−i〈x,z〉| = e〈x,Im z〉 has exponential growth. Thus to study the complex
Fourier transform it is necessary to restrict our attention to a smaller class of functions. For instance, if f is
integrable and compactly supported, then the function f̂(z) is well-defined for all z ∈ Cn. In fact, by the
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dominated convergence theorem we can differentiate underneath the integral, and we determine that f̂ is
holomorphic.

Typical function spaces that we may wish to study under the complex Fourier transform are Cc(R
n) or

Cmc (Rn) for m ∈ N, since functions belonging to such spaces have well-defined complex Fourier transforms.
For our purposes, we will study C∞c (Rn) since the complex Fourier transform enjoys many features unique
to this space. To characterize the image of C∞c (Rn) under the complex Fourier transform we first require a
definition.

Definition 1.1.3. For a holomorphic function f on Cn, we say that f is of uniform exponential type A > 0
if for all N ∈ N

sup
z∈Cn

|f(z)(1 + |z|)Ne−A| Im z|| <∞.

For A > 0 let HA(Cn) denote the space of holomorphic functions of exponential type A and set H (Cn) =⋃
A>0 HA(Cn).

Now we state our main theorem which links the spaces C∞c (Rn) and H (Cn) via the complex Fourier
transform.

Theorem 1.1.7 (Paley-Wiener theorem). The complex Fourier transform is a bijection of C∞c (Rn) onto
H (Cn).

Proof. If f ∈ C∞c (Rn) has its support in the ball of radius R, then elementary estimations on the integrand

shows that f̂ is a holomorphic function of uniform exponential type R. Conversely, if ψ ∈ H (Cn) is of
uniform exponential type A > 0, we define the function

h(x) =

∫
Rn

ψ(ξ)ei〈x,ξ〉 dξ .

Using the Cauchy integral formula we can shift the contour of integration so that

h(x) =

∫
Rn

ψ(ξ + iη)ei〈x,ξ+iη〉 dξ

where η ∈ Rn. Now if |x| > A,

|h(x)| ≤
∫
Rn

|ψ(ξ + iη)|e−〈x,η〉 dξ ≤ CNe−〈x,η〉+A|η|
∫
Rn

(1 + |ξ|)−N dξ ≤ C̃Ne−〈x,η〉+A|η|,

where CN and C̃N are positive constants and N is chosen to be suitably large. If we put η = tx where t > 0,
then the right hand side becomes C̃Ne

−t|x|2+At|x| = C̃Ne
t|x|(A−|x|). Taking t→∞ we have that h(x) = 0 for

all |x| > A. Thus, supph ⊂ BA(0) and it is clear that h is a smooth function. By Fourier inversion ĥ = ψ
and so we are done.

We note that the Fourier transform maps C∞c (Rn) into a class of functions that does not contain C∞c (Rn).

Indeed, if f ∈ C∞c (Rn) then f̂ is analytic and thus cannot be compactly supported unless f ≡ 0. A sensible
question becomes whether or not there exists a class of functions on which the Fourier transform is a
homeomorphism to itself. The answer is affirmative and is provided by the Schwartz space defined as follows.

Definition 1.1.4. Define the space of functions

S(Rn) =

{
f ∈ C∞(Rn) : να,k(f) = sup

x∈Rn

|∂αf(x)(1 + |x|)k| <∞, k ∈ N, α ∈ Nn

}
.

We topologize S(Rn) by means of the seminorms να,k from which S(Rn) becomes a Fréchet space. The space
S(Rn) is called the Schwartz space.
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Theorem 1.1.8. The Fourier transform on S(Rn) is a linear isomorphism onto itself.

Proof. This is more or less trivial by Proposition 1.1.1 and the Fourier inversion formula. The only possible
nontrivial fact is that the Fourier transform is continuous on S(Rn). This can be proven as follows. If

f ∈ S(Rn), then there exists for each seminorm η on S(Rn) another seminorm γ such that η(f̂) ≤ γ(f).
This can be seen via the estimate

|(iξ)α∂β f̂(ξ)| ≤
∫
Rn

|xβ∂αf(x)| dx ≤
∫
Rn

(1 + |x|)|β||∂αf(x)| dx

=

∫
Rn

(1 + |x|)m−m(1 + |x|)|β||∂αf(x)| ≤ c0να,m+|β|(f)

where m is a positive integer and c0 is the constant

c0 =

∫
Rn

(1 + |x|)−m dx .

By an appropriate choice of m, we can select c0 ≤ 1 so that the result follows. Conversely, the inverse Fourier
transform is continuous essentially by the same argument whence F is a homeomorphism of S(Rn) onto
itself.

The Plancherel theorem, the Paley-Wiener theorem, and Theorem 1.1.5 are each important in various
respects which we shall not endeavor to discuss in depth. Briefly, the Plancherel theorem plays a significant
role in the theory of partial differential equations and is pivotal in defining the most important Sobolev spaces
Hs(Rn). The Paley-Wiener theorem on the other hand gives us a crucial link between smooth compactly
supported functions and the decay of the complex Fourier transforms. This characterization later becomes
particularly important in the area of microlocal analysis and the definition of wave front sets of distributions
(see [14, Ch. 8] for more details). Theorem 1.1.5 on the other hand is important since it is somewhat “generic”
which we will discuss in Section 1.2.

We now turn our attention to the so-called distributions which can be envisaged as “generalized” functions.
Our main goal will be to define the various spaces of distributions and most importantly extend the Fourier
transform to these spaces of distributions in a suitable manner.

1.1.2 Distributions

We recall that if U ⊂ Rn is an open set of Rn, then the space C∞c (U) is the space of smooth functions on
Rn with compact support contained in U and the space C∞(U) is the space of smooth functions defined
on U . We shall write D(U) = C∞c (U) and E(U) = C∞(U) in this subsection which is the notation used by
Laurent Schwartz, and we shall call D(U) the space of test functions on U . Before we begin, let us discuss
the topology typically imposed on D(U) and E(U).

The topology on E(U) is quite simple to describe. For f ∈ E(U) and each compact subset K ⊂ U , we
define the seminorms

να,K(f) = sup
x∈K
|∂αf(x)|,

where α is a multi-index and ∂α is the corresponding differential operator. Then, E(U) is topologized by the
means of the seminorms να,K which is to say that a sequence {fj}j∈J ⊂ E(U) converges to f ∈ E(U) if and
only if να,K(fj − f)→ 0 for each multi-index α and each compact set K ⊂ U . With this topology, E(U) is a
Fréchet space. We define E ′(U) to be the topological dual of E(U). We shall discuss the topology on E ′(U)
later.

The topology of D(U) is slightly more delicate however. First, if K ⊂ U is a compact set then we put
D(K;U) to denote the space of compactly supported smooth functions on U with support in K. We then
topologize D(K;U) by the seminorms κα(f) = supx∈K |∂αf(x)| for f ∈ D(K;U) and α a multi-index as
before. Then we say that a sequence {fn}n∈N ⊂ D(U) converges to f ∈ D(U) if and only if
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1. There is a compact set K ′ ⊂ U such that fn, f ∈ D(K ′;U) for all n ∈ N.

2. And fn → f in the topology of D(K ′;U).

With this topology D(U) is not a Fréchet space but is of course a locally convex topological vector space.
In fact it is not even a sequential space but such sophisticated considerations of the topology of D(U) are
unimportant for our purposes.

Definition 1.1.5. We say a linear functional T : D(U)→ C is continuous if for each compact set K ⊂ U ,
the restriction T |D(K;U) : D(K;U)→ C is continuous. We then define the space of distributions on U to be

the space of all continuous linear functionals on D(U). We denote this space by D′(U).

If T ∈ D′(U) is a distribution, we shall often write T (f) = 〈T, f〉 for f ∈ D(U) and call this the pairing
of T and f . There is a wealth of examples of distributions. Perhaps the most famous example is the Dirac
delta function with point mass at x ∈ U , denoted δx, which defines a distribution by 〈δx, f〉 = f(x) where
f ∈ D(U). Any continuous function g on U defines a distribution by the rule

〈g, f〉 =

∫
Rn

g(x)f(x) dx .

In fact, if g ∈ Lp where p ≥ 1, then 〈g, f〉 =
∫
Rn g(x)f(x) dx is well-defined by Hölder’s inequality and is

continuous by virtue of the fact that |〈g, f〉| ≤ Sf‖g‖p‖f‖∞ where Sf is the measure of the support of f .
More generally, if g ∈ L1

loc(U) is any locally integrable function the pairing, 〈g, f〉 =
∫
Rn g(x)f(x) dx defines

a distribution and we thus have an inclusion L1
loc(U) ↪→ D′(U).

This large class of distributions which is given by integrating test functions against other functions
motivates a useful, but not necessarily rigorous, notation

〈T, f〉 =

∫
Rn

T (x)f(x) dx,

where in this equality we think of T as a function so that the pairing 〈T, f〉 is thought of as arising from
integration against T as a “function.” This perspective allows us to carry many of the familiar operations
on functions, such as differentiation to distributions by so-called duality. Which heuristically means that
operations defined for D(U) are extended to D′(U) by means of an adjoint with respect to the bilinear form
(f, g) =

∫
Rn f(x)g(x) dx. To typify what we mean by this let us define the derivative of a distribution. If

f, g ∈ D(U), then by integration by parts

〈∂αg, f〉 =

∫
Rn

∂αg(x)f(x) dx = (−1)|α|
∫
Rn

g(x)∂αf(x) dx . (1.1.3)

In particular (−1)|α|∂α is the adjoint of ∂α with respect to the bilinear form (f, g) defined on D(U). Thus
we extend the derivative “by duality” to distributions by the following definition.

Definition 1.1.6. If T ∈ D′(U) we define the derivative ∂αT by 〈∂αT, f〉 = (−1)|α|〈T, ∂αf〉.

Thus when T is a smooth function, then our definition agrees with the standard result by integration by
parts. In this setup a distribution is smooth since any test function is smooth.

Now if we recall, the support of a function g is the complement of the largest open set on which g vanishes.
So if g ∈ L1

loc(U) and f ∈ D(U) is such that supp g ∩ supp f = ∅, then

〈g, f〉 =

∫
Rn

f(x)g(x) dx = 0.

This motivates a way of defining the support of a distribution as a set of points in U rather than a set of
functions in D(U) in the following way.
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Definition 1.1.7. If V ⊂ U is an open set, then we say a distribution T ∈ D′(U) vanishes on V if 〈T, f〉 = 0
for each f ∈ D(U) with supp f ⊂ V . We define the support of T , denoted by suppT , to be the complement
of the largest open set of U on which T vanishes.

Note that by the method of partition of unity, if T vanishes on open sets Uα ⊂ U for α ∈ A, then T
also vanishes on

⋃
α∈A Uα. Thus, the concept of the “largest open set” on which T vanishes makes sense.

If suppT is compact, in fact T defines an element T ′ ∈ E ′(U) where we define T ′ by T ′(f) = T (χf) where
f ∈ E(U) and χ ∈ D(U) is any smooth function with χ = 1 on suppT . Clearly, T ′ does not depend on the
choice of χ and so T ′ is well defined. Furthermore, T ′ is continuous on E ′(U) since T |D(suppχ;U) is continuous.

Thus any compactly supported distribution defines an element of E ′(U). Interestingly, if S ∈ E ′(U), then S
defines a distribution with compact support. This follows from the fact that since S is continuous on E(U)
we can find finitely many seminorms ναj ,Kj , j = 1, 2, . . . ,m such that

|S(f)| ≤
m∑
j=1

cjναj ,Kj (f), for all f ∈ E(U)

for some choice of constants cj ≥ 0. If f ∈ D(U) is such that supp f ∩Kj = ∅ for each j, then S(f) = 0 so
that suppS ⊂

⋃m
j=1Kj . Thus S is a distribution of compact support. In summary, we have the following

result.

Proposition 1.1.9. We identify the space E ′(U) with the space of compactly supported distributions in
D′(U).

Another operation that is defined for test functions is convolution. Recall that if f, g ∈ D(U), then their
convolution f ∗ g is a compactly supported smooth function defined by

f ∗ g(x) =

∫
Rn

f(y)g(x− y) dy . (1.1.4)

The support of f ∗ g is contained in supp f + supp g and so f ∗ g ∈ D(U + U) (here the sum of two subsets
X and Y of Rn is the set X + Y = {x+ y : x ∈ X, y ∈ Y }). Analogously if x ∈ Rn, and if T ∈ D′(U) and
f ∈ D(x − U), we define the convolution of T and f by T ∗ f(x) = 〈Ty, f(x − y)〉. Here Ty denotes the
distribution T acting on the y-variable of the function y 7→ f(x− y) on U . Using our integration notation,
this is simply

T ∗ f(x) =

∫
Rn

T (y)f(x− y) dy .

If T ∈ D′(Rn) and if f ∈ D(Rn), then the convolution T ∗ f is defined on all of Rn. In fact, T ∗ f is smooth
as a function on Rn by the following proposition.

Proposition 1.1.10. Let f ∈ D(Rn) and T ∈ D′(Rn), then the convolution x 7→ T ∗ f(x) is a smooth
function on Rn with ∂α(T ∗ f) = (∂αT ) ∗ f = T ∗ (∂αf).

Proof. Let {ej}nj=1 denote the standard basis vectors of Rn. Note that if φ ∈ D(U), then for each j the
difference quotient

φjh(x) =
φ(x+ hej)− φ(x)

h

converges uniformly to ∂jφ(x) as h→ 0 by Taylor’s theorem. Thus, we have by continuity

∂j(T ∗ f)(x) = lim
h→0
〈Ty, f jh(x− y)〉 = 〈Ty, ∂jf(x− y)〉.

But also by definition and the chain rule 〈Ty, ∂jf(x− y)〉 = 〈∂jTy, f(x− y)〉. Thus, the result holds for
any differential operator ∂α by induction.
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One can extend further the convolution between distributions and functions to the convolution of certain
well-behaved distributions. First, if T ∈ D′(Rn) and f ∈ C∞c (Rn), then in view of the proof of Proposition
1.1.10, the function φ(x) = 〈Ty, f(x + y)〉 is a smooth function on Rn. It is not necessarily compactly
supported and so does not define an element of D(Rn) (but does define such an element if T ∈ E ′(Rn)).
However, for S ∈ E ′(Rn) the assignment 〈S, φ〉 is well-defined. Now if f, g, h ∈ D(Rn), then we observe an
identity

〈f ∗ g, h〉 =

∫
Rn

f ∗ g(y)h(y) dy =

∫
Rn

∫
Rn

f(x)g(y)h(x+ y) dy dx .

This motivates us to define the convolution of the distributions T ∈ D′(Rn) and S ∈ E ′(Rn) by 〈S ∗
T, f〉 = 〈Sy, 〈Tx, f(x+ y)〉〉 which defines a distribution on D(Rn). Using Proposition 1.1.10, we also have
∂α(S ∗ T ) = (∂αS) ∗ T = S ∗ (∂αT ) for any differential operator ∂α.

There are other operations on distributions one may be interested in, such as multiplication of distributions,
however for our purposes the operations of differentiation and convolution highlight the most important
operations on distributions for this thesis. Indeed, as in the situation for functions, the Fourier transform
interacts nicely with the convolution and differentiation of functions in the same spirit as of Proposition 1.1.1.
As we shall see shortly, we shall extend the notion of the Fourier transform to distributions (to a particular
subset of distributions to be precise), and we shall study the familiar properties of the Fourier transform
as it interacts with the convolution and differentiation of those distributions. But first, we shall make a
short interlude into discussing the topologies on D′(U) that we have neglected in our study of the space of
distributions D′(U).

Topologies on E ′(U), D′(U), and S ′(Rn)

We can consider the topological dual of S(Rn) to obtain S ′(Rn) which we call the tempered distributions. As
can be easily seen, these are in fact distributions in themselves and thus S ′(Rn) ⊂ D′(U) for any open U ⊂ Rn.
Note that, however a tempered distribution is not necessarily compactly supported (nor do they even define
a linear functional on E(U)). So we have the following (strict!) inclusions E ′(U) ↪→ S ′(Rn) ↪→ D′(U). Now,
there are two topologies that we can endow on E ′(U), S ′(Rn), and D′(U). These are the weak* topologies
and the strong topologies which we define by convergence of nets.

Definition 1.1.8. Let X be E(U), S(Rn), or D(U) and X ′ denote the respective space of distributions. The
weak*-topology on X ′ is the topology of pointwise convergence. That is to say a net Tα in X ′ converges to T
if for each f in X we have Tα(f)→ T (f) as a net.

Definition 1.1.9. Let X be E(U), S(Rn), or D(U) and X ′ denote the respective space of distributions. The
strong topology on X ′ is the topology of uniform convergence. That is to say a sequence Tα in X ′ converges
to T if for each bounded set B in X we have supf∈B |Tα(f)− T (f)| → 0 as a net.

The strong topology is quite literally stronger than the weak*-topology, which is to say that if τs and τ∗
are the strong and weak* topologies, then τ∗ ⊂ τs. However, when we speak of convergences of sequences,
then a sequence converges strongly if and only if it converges weakly (see [25, Ch. 28]). There are many
different reasons why one would choose one topology over the other. The weak*-topology is certainly much
easier to understand and characterize. Under the weak*-topology we have the following density result.

Theorem 1.1.11. Recall that we have the canonical inclusion D(U) ↪→ D′(U). This inclusion is dense in
the weak*-topology.

See [8, Prop. 9.5] for a proof. Considering sequences converge in the strong topology if and only if
they converge in the weak*-topology we have that the above theorem provides a sequence of test functions
φk ∈ D(U) to each distribution T ∈ D′(U) such that φk → T in the strong topology of D′(U). Characterizing
convergence in D′(U) using sequences is certainly more preferable than using nets and so we shall often
impose the strong topology on D′(U) (as well as on E ′(U) and S ′(Rn)). Since when using sequences we
obtain essentially the same convergences as for the weak*-topology.
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Using the strong topology is also preferable since when endowed with the strong topology we have the
following theorem of Laurent Schwartz (see A.2.4).

Theorem 1.1.12 (Schwartz kernel theorem). Suppose that U and V are open subsets of Rn and let
L(D(U),D′(V )) be the space of continuous linear operators from D(U) into D′(V ) where D′(V ) and
L(D(U),D′(V )) are given the strong topology. Then L(D(U),D′(V )) ∼= D′(U × V ) is an isomorphism
of topological vector spaces where D′(U × V ) is given the strong topology.

This isomorphism is given by the map A 7→ KA where KA ∈ D′(U × V ) is defined by

〈Af, g〉 = 〈KA, f ⊗ g〉

where f ∈ D(U), g ∈ D(V ) and f ⊗ g(x, y) = f(x)g(y). We call KA the Schwartz kernel of A.

Essentially, the Schwartz kernel theorem tells us that if A : D(U)→ D(V ) is a continuous linear operator,
then we can find a unique distribution KA on D(U ×V ) which completely characterizes A. This is useful since
we can bring the power of distribution theory to bear to study continuous linear operators which enlarges
our toolkit of techniques to study such objects. The Schwartz kernel theorem also holds for the compactly
supported and tempered distributions as well, meaning that we have the following topological isomorphisms:

L(S(Rn),S ′(Rn)) ∼= S ′(Rn ×Rn),

L(E(U), E ′(V )) ∼= E ′(U × V )

where each dual space is given the strong topology.

Fourier transform of tempered distributions

Much like how we used duality to define the differentiation and convolution of distributions we can similarly
define the Fourier transform of distributions by duality. By Proposition 1.1.1 Property (4) we have that
whenever f, g ∈ L1(Rn) that ∫

Rn

f(x)ĝ(x) dx =

∫
Rn

f̂(x)g(x) dx .

Thus, if T ∈ D′(Rn), we may be tempted to define the Fourier transform of T by 〈T̂ , f〉 = 〈T, f̂〉 where

f ∈ D(Rn). However, this in fact does not make sense since by the Paley-Wiener theorem f̂ is not even

compactly supported. However, if we take T ∈ S ′(Rn), then defining T̂ in this way is well-defined by Theorem
1.1.8. Thus we propose the following definition.

Definition 1.1.10. If T ∈ S ′(Rn) is a tempered distribution we define the Fourier transform of T by duality:

〈T̂ , f〉 = 〈T, f̂〉.

We first have an important theorem which characterizes the Fourier transform of a compactly supported
distribution.

Theorem 1.1.13. If T ∈ E(Rn), then T̂ is a holomorphic function given by y 7→ 〈Tx, e−i〈x,y〉〉.

Proof. What we mean by T̂ being a holomorphic function is that T̂ agrees with y 7→ 〈Tx, e−i〈x,y〉〉 as

distributions (elements of D′(Rn)). Thus, if φ ∈ D(Rn), then T̂ is a well-defined element of D′(Rn) and

〈T̂ , φ(x)〉 = 〈Tx,
∫
Rn

φ(y)e−i〈x,y〉 dy〉.

Now the function y 7→ φ(y)e−i〈x,y〉 is a compactly supported function from Rn into E(Rn). In fact it is an
instructive exercise to prove that this map is continuous from Rn to E(Rn). Thus, by Theorem A.2.2 we can
commute Tx with the integral to obtain

〈T̂ , φ(x)〉 = 〈Tx,
∫
Rn

φ(y)e−i〈x,y〉 dy〉 =

∫
Rn

φ(y)Tx(e−i〈x,y〉) dy .
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Thus T̂ and y 7→ 〈Tx, e−i〈x,y〉〉 agree as distributions. That y 7→ 〈Tx, e−i〈x,y〉〉 is smooth follows as in the
proof of Proposition 1.1.10 and if we complexify y, then we see that the Cauchy-Riemann equations hold so
that y 7→ 〈Tx, e−i〈x,y〉〉 is a holomorphic function.

Now returning to the general study of Fourier transforms of distributions we have the following analogues
of Proposition 1.1.1 Property (2) and the convolution theorem of Theorem 1.1.5 for distributions. First a
definition.

Definition 1.1.11. If T ∈ D′(U) and φ ∈ E(U), then we define φT ∈ D′(U) by 〈φT, f〉 = 〈T, φf〉.

Now if T ∈ S ′(Rn) and S ∈ E ′(Rn), then in the previous section we have defined the convolution S ∗ T .
We can also define the convolution T ∗ S by the rule: T ∗ S(f) = 〈Ty, 〈Sx, f(x+ y)〉〉. That this indeed gives
rise to a tempered distribution T ∗ S ∈ S ′(Rn) stems from the fact that the function y 7→ 〈Sx, f(x+ y)〉 is
also a Schwartz function. We leave the verification of this claim to the reader. Now for the result of our
interest.

Theorem 1.1.14. If T ∈ S ′(Rn), then (∂αT )̂ (y) = (iy)α∂αT̂ (y). And if S ∈ E ′(Rn), then T ∗ S belongs to

S ′(Rn) and the Fourier transform satisfies (T ∗ S)̂ = T̂ Ŝ.

Proof. By definition, the first statement means that 〈(∂αT )̂ , f〉 = 〈(iy)α∂αy T, f(y)〉 = 〈∂αTy, (iy)αf(y)〉.
Thus the first statement follows immediately by Proposition 1.1.1. That T ∗ S ∈ S ′(Rn) follows from the
fact that if φ ∈ S(Rn), then 〈Sx, φ(x+ y)〉 is a Schwartz function as discussed above. Now if f ∈ D(Rn), we

write Ŝ(y) = Sx(e−i〈x,y〉) and observe

〈(T ∗ S)̂ , f〉 = 〈Ty, 〈Sx, f̂(x+ y)〉〉.

Since

〈Sx, f̂(x+ y)〉 =

∫
Rn

f(z)Ŝ(z)e−i〈y,z〉 dz

we have 〈Ty, 〈Sx, f̂(x+ y)〉〉 = 〈Ty, (Ŝf )̂ (y)〉 = T̂ (Ŝf). This proves the statement.

Similarly, we can define the inverse Fourier transform of a tempered distribution T by 〈 qT , f〉 = 〈T, qf〉
which once again stems from duality. We similarly have (T̂ )q = ( qT )̂ as in the case of ordinary functions.
There are many more useful topics that we can explore by studying Fourier analysis on distributions more
closely and carefully. However, for our purposes, particularly the convolution theorem shall prove sufficient
motivation when we come to Chapter 3. The main point is that the standard Fourier analysis for functions
extends in a natural way to distributions with the caveat that we must restrict ourselves to Schwartz functions
and tempered distributions. This highlights another important feature of the Schwartz space which plays a
pivotal role in our discussion in Chapter 3.

1.2 Extensions to topological groups

The Fourier transform on Rn can in fact be extended to any locally compact Hausdorff topological group.
However it is only for the abelian and compact groups does there exist a “good” Fourier transform theory (at
least at the moment). By good Fourier transform theory we mean inversion and Plancherel type theorems in
analogy to the Euclidean case. To get a good idea of how we can generalize the Fourier transform let us
recall that the Fourier transform of a function f ∈ L1(Rn) is defined by

f̂(ξ) =

∫
Rn

f(x)e−i〈x,ξ〉 dx .

As we have seen the complex exponentials eξ(x) = ei〈x,ξ〉 have played a key role in our Fourier analysis on
Rn. For instance, they are eigenfunctions for all constant coefficient differential operators with ∂jeξ = iξjeξ.
However these functions play a far more basic role as reflected in the following proposition.
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Proposition 1.2.1. Let f : Rn → C be a continuous function such that for each x, y ∈ Rn we have
f(x+ y) = f(x)f(y) and |f(x)| = 1. Then f ∈ C∞(Rn) and there exists ξ ∈ Rn such that f(x) = ei〈x,ξ〉.

Proof. Choose a function g ∈ C∞c (Rn) with the property that
∫
Rn f(y)g(y) dy = 1. Then we have

f(x) =

∫
Rn

f(x)f(y)g(y) dy =

∫
Rn

f(x+ y)g(y) dy =

∫
Rn

f(y)g(x+ y) dy .

By the dominated convergence theorem, f ∈ C∞(Rn) and f(0) = 1. Let ej be the basis vector of Rn with
zeros in all its entries except for a one in the jth position. Then computing the partial derivative of f :

∂jf(x) = lim
h→0

f(x+ hej)− f(x)

h
= f(x) lim

h→0

f(hej)− 1

h
= f(x)∂jf(0).

Put fj(t) = f(tej) for t ∈ R, then f(x) =
∏n
j=1 fj(xj). Moreover f ′j(t) = fj(t)∂jf(0) so that if we put

zj = ∂jf(0) we have fj(xj) = ezjxj . Note that |fj | = 1 so each zj = iξj for some ξj ∈ R. So if ξ = (ξ1, . . . , ξn)
we have f(x) = ei〈x,ξ〉.

The importance of this fact is that the complex exponential functions determine all the continuous
homomorphisms from Rn to the torus T = {z ∈ C : |z| = 1}. More importantly, the complex exponentials
are examples of (one-dimensional) representations of Rn. As we are hinting at, the representation theory of
the group becomes enormously important in the theory of the Fourier transform.

We shall only give a survey of the Fourier transform theory for a locally compact Hausdorff (compact or
abelian) group.

1.2.1 Representations of topological groups

Throughout this section we denote by G a locally compact Hausdorff topological group and we shall refer to
such groups as locally compact (without the qualifier Hausdorff).

Definition 1.2.1. Let V be a topological vector space and let EndV denote the set of continuous endo-
morphisms of V . A representation of G on V is a homomorphism π : G → EndV such that the mapping
(x, v) 7→ π(x)v from G× V into V is continuous. We shall call the pair (π, V ) a representation of G. The
dimension of π, which we denote by dπ, is the dimension of V .

We shall be more or less be concerned with unitary representations. We say a representation π of G on a
Hilbert space H is unitary if π(x) is a unitary operator on H for all x ∈ G. To motivate an example of a
unitary representation first we recall that if G is a locally compact group, we know that there exists a left
Haar measure dx on G. That is a Radon measure on G characterized by∫

G

f(yx) dx =

∫
G

f(x) dx

for all y ∈ G.

Example 1.2.2. The most obvious representation of G on a Hilbert space H is when we take H = L2(G)
and [π(x)f ](y) = f(x−1y) = Lxf(y). We leave these details as an exercise to the reader (see [9, Ch. 3] for
those details). This representation is called the left-regular representation of G.

Example 1.2.3. The exponential functions eξ(x) : Rn → C, x 7→ ei〈x,ξ〉 are unitary representations of Rn

on C.

As one may surmise, representations can be determined “up to an equivalence” in the following manner.

Definition 1.2.2. If (π, V ) and (δ,W ) are two unitary representations of G, an intertwining operator T of
(π, V ) and (δ,W ) is a continuous linear map T : V → W such that Tπ(x) = δ(x)T for all x ∈ G. We say
that π and δ are unitarily equivalent if there exists a unitary intertwining operator U : V →W of (π, V ) and
(δ,W ).

16



If (π, V ) is a representation and if X ⊂ V is a subspace, we say that X is invariant under π if the orbit
π(G)X = {π(x)v : x ∈ X, v ∈ X} is contained in X. In the case that X is a closed invariant subspace, the
restriction of π to X determines a subrepresentation (π|X , X). We say that the representation (π, V ) is
irreducible if π has no nontrivial subrepresentations (i.e. X 6= V or X 6= {0}).

Definition 1.2.3. We denote Ĝ to be the set of all unitary irreducible representations on G modulo unitary
equivalence. We call Ĝ the dual object of G.

If G is an abelian group, then it turns out by Schur’s lemma that any irreducible unitary representation is
one-dimensional by Schur’s lemma [9, Thm. 3.5]. In particular if (π, V ) is a unitary irreducible representation,
then V ∼= C, and for x ∈ G and z ∈ C, we have that there is a complex number wx such that π(x)z = wxz
for all z ∈ C. Thus we can identify π with a continuous complex valued function χπ ∈ C(G). Since π is

unitary it follows that |χπ| = 1, in particular χπ is the character of π. In fact, since the elements of Ĝ in

this case are just functions of complex modulus 1, we can turn Ĝ into an abelian group via the operation
of pointwise multiplication of these characters. In this situation, we call Ĝ the dual group of G. We can
topologize the dual group with the topology of locally uniform convergence (the same topology as on C(G)),

and with this topology, Ĝ becomes a locally compact abelian group.

Example 1.2.4. If G = Rn, then the unitary irreducible representations of Rn are the functions R̂n =

{eξ : Rn → C : eξ(x) = ei〈x,ξ〉, ξ ∈ Rn}. In this case R̂n is isomorphic to Rn itself.

Example 1.2.5. If G = Tn, the n-dimensional torus, then the unitary irreducible representations are the

functions T̂n = {eκ : Tn : C : eκ(x) = ei〈x,κ〉, κ ∈ Zn}. In this situation we have the identification T̂n ∼= Zn.
Conversely, the integers Zn is also a locally compact abelian group whose dual group is isomorphic to Tn,
here its characters are the functions of the form: eiθ(κ) := eiθ1κ1 · · · eiθnκn where (eiθ1 , . . . , eiθn) ∈ Tn and
κ ∈ Zn.

Remark 1. Technically the elements of the dual groups above are equivalence classes. However the characters of
irreducible unitary representations from the same equivalence class are the same.

If G is not abelian, then it becomes slightly more difficult to characterize Ĝ. However if G is compact,
then any unitary irreducible representation is finite dimensional [9, Thm. 5.2]. So one can identify elements of

Ĝ with matrices (after a choice of basis), of varying dimension. In this situation there is no (at least obvious

or canonical) way to turn Ĝ into a group. Nevertheless, there exists a canonical topology on Ĝ (here G need
not be compact or abelian) called the Fell topology (see [9, Sec. 7.2] for a definition). If G is abelian, then

with the Fell topology Ĝ has the topology that we have described just earlier. If G is compact, then the Fell
topology is the discrete topology on Ĝ. Conversely, if G is a discrete group, then with the Fell topology Ĝ
becomes a compact space.

Turning now to the Fourier transform we focus our attention to the space L1(G). We recall that L1(G) is
a Banach *-algebra with multiplication given by the convolution

f ∗ g(x) =

∫
G

f(y)g(y−1x) dx

and involution given by f(x) = δ(x−1)f(x−1) where δ : G→ R+ is the modular function. We refer the
reader to Section A.2.1 for the definition of a Banach *-algebra and to Section A.1 for the definitions of
convolution and the modular function and their essential properties. It is interesting to note that G is abelian
if and only if L1(G) is commutative and that if G is abelian, then δ ≡ 1.

Now if (π, V ) is a unitary representation on a Hilbert space of a locally compact group G, we obtain a
representation on L1(G) defined by

π(f) =

∫
G

f(x)π(x) dx ∈ EndV,
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where f ∈ L1(G) and dx is the left Haar measure on G. This is an “operator valued” integral where if v ∈ V ,
we interpret π(f)v in the sense of weak integrals. That is to say

〈π(f)v, u〉V =

∫
G

f(x)〈π(x)v, u〉V dx

where 〈·, ·〉V is the Hilbert space norm on V . Since 〈π(f)v, u〉V is a continuous linear functional on V , by the
Riesz representation theorem π(f)v exists. The operator norm satisfies ‖π(f)‖op ≤ ‖f‖1 and so we can see
that f 7→ π(f) is a representation on L1(G). The basic properties of the mapping f 7→ π(f) are summarized
by the following proposition.

Proposition 1.2.6. If f, g ∈ L1(G), then π(Lxf) = π(x)π(f) and π(f ∗ g) = π(f)π(g).

Proof. The equality π(Lxf) = π(x)π(f) is easily verified. And

π(f ∗ g) =

∫
G

f ∗ g(x)π(x) dx =

∫
G

{∫
G

f(y)g(y−1x) dy

}
π(x) dx

=

∫
G

∫
G

f(y)g(x)π(yx) dy dx =

∫
G

∫
G

f(y)g(x)π(y)π(x) dx dy = π(f)π(g).

Of course, one must ask if our manipulations are valid since the above integrals are actually weak integrals.
Indeed, one is really trying to check that for all v ∈ V that π(f ∗ g)v = π(f)π(g)v. To this end, we see

〈π(f ∗ g)u, v〉V =

∫
G

f ∗ g(x)〈π(x)u, v〉V dx =

∫
G

∫
G

f(y)g(x)〈π(y)π(x)u, v〉V dx dy .

Since ∫
G

f(y)g(x)〈π(y)π(x)u, v〉V dx =

〈
f(y)π(y)

{∫
G

g(x)π(x)u dx

}
, v

〉
V

= f(y)〈π(y)π(g)u, v〉V

we have

〈π(f ∗ g)u, v〉V =

∫
G

f(y)〈π(y)π(g)u, v〉V dy = 〈π(f)π(g)u, v〉V ,

and we are done.

1.2.2 Fourier transform for abelian and compact groups

Abelian groups

If we assume G is an abelian group, we note that Ĝ is an abelian group as well. And if [π] ∈ Ĝ is an
equivalence class, then the characters of each element in [π] are all the same. In our following definition of
the Fourier transform our definition does not depend on a particular choice of representative. So throughout
this section we shall have already chosen one representative from each equivalence class in Ĝ and shall use
the shorthand π to denote the equivalence class [π] ∈ Ĝ.

Definition 1.2.4. If f ∈ L1(G), we define its Fourier transform to be the map f̂ : Ĝ→ C defined by

f̂(π) =

∫
G

f(x)χπ(x−1) dx =

∫
G

f(x)χπ(x) dx . (1.2.1)

Here χπ is the complex conjugate of the character χπ. We will also write f̂(χπ) = f̂(π). In the Euclidean
case where G = Rn, this definition agrees precisely with the ordinary Fourier transform through the

identification Rn ∼= R̂n. We shall now state some of the critical theorems which characterize the Fourier
transform for locally compact abelian groups.
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Theorem 1.2.7. The Fourier transform is a continuous ∗-homomorphism from L1(G) into C0(Ĝ).

Proof. In view of Proposition 1.2.6, we have that (f ∗ g)̂ = f̂ ĝ for f, g ∈ L1(G). Furthermore,

f̂∗(χπ) =

∫
G

f(x−1)χπ(x) dx =

∫
G

f(x)χπ(x) dx = f̂(χπ)

so that the Fourier transform preserves the involution.
We can in fact prove the rest of this theorem all in one go via Gelfand theory which is a statement about

commutative Banach algebras (see A.2.1 for the relevant theorems and definitions). Namely, we wish to show
that the Fourier transform coincides with the Gelfand transform when G is abelian.

Our work reduces to showing that the spectrum of L1(G) is identified with the characters in Ĝ. If χπ is

a character on Ĝ, then it induces a nonzero multiplicative linear functional by χπ(f) = f̂(χπ). Conversely,
if T is a multiplicative linear functional, then we have by ordinary duality considerations that there exists
φ ∈ L∞(G) such that T (f) =

∫
G
f(x)φ(x) dx. Now for f, g ∈ L1(G)∫

G

T (f)φ(x)g(x) dx = T (f)T (g) = T (f ∗ g) =

∫
G

∫
G

f(y)g(y−1x)φ(x) dy dx

=

∫
G

∫
G

f(y−1x)g(y)φ(x) dy dx =

∫
G

T (Lyf)g(y) dy .

Therefore T (f)φ(x) = T (Lxf) almost everywhere on G. Since y 7→ Lyf is a continuous map from G into
L1(G) we have that if we choose T (f) 6= 0, that φ is almost everywhere equal to a continuous function and so
we may assume that φ is continuous. Also T (f)φ(xy) = T (Lxyf) = T (LxLyf) = φ(x)T (Lyf) = φ(x)φ(y)T (f)
so that φ(xy) = φ(x)φ(y). Lastly φ(xn) = φ(x)n and φ(x−n) = φ(x)−n. Since φ is bounded on G we must

have |φ(x)| = 1 for all x ∈ G. Thus, φ is infact a character of G and can be regarded as an element of Ĝ.

What we have shown is that the set of nonzero multiplicative linear functionals can be identified with Ĝ.
Thus Ĝ = σ(L1(G)) as sets. These in fact also coincide topologically by Theorem 3.31 of [9]. Thus it follows

that Ĝ coincides with σ(L1(G)) as topological spaces.
Therefore the Gelfand transform coincides with the Fourier transform and so by Gelfand theory we have

that the image of L1(G) under the Fourier transform is a subset of C0(Ĝ) ∼= C0(σ(L1(G))) (which is in fact

dense in C0(Ĝ) by the Stone-Weierstrass theorem).
We can see the continuity of the Fourier transform without appealing to the Gelfand theory by virtue of

the estimate ‖f̂‖∞ ≤ ‖f‖1.

Turning our attention to the issue of inversion of the Fourier transform we recall that on Rn we have that

if f, f̂ ∈ L1(Rn), then the Fourier transform of f can be inverted by f(x) = (2π)−n
̂̂
f(x−1). We have the

analogous theorem for locally compact abelian groups as well.

Theorem 1.2.8 (Fourier inversion formula). There exists a Haar measure dχπ on Ĝ so that if f ∈ L1(G)

and f̂ ∈ L1(Ĝ, dχπ), then

f(x) =

∫
Ĝ

f̂(χπ)χπ(x) dχπ =

∫
Ĝ

f ∗ χπ(x) dχπ, (1.2.2)

for almost every x ∈ G. Since the right-hand side is a continuous function of x, it follows that if f is
continuous, then the above formula holds for all x ∈ G.

A proof can be found in [9, Thm. 4.33]. The above theorem provides us a key statement that there

is a Haar measure on Ĝ so that the above formula holds (almost everywhere) for each f ∈ L1(G). This

measure on Ĝ is known as the Plancherel measure and is quite important for the harmonic analysis on locally
compact groups. In the case of Rn, if we choose our characters to be the functions x 7→ ei〈x,ξ〉, then the

corresponding Plancherel measure on R̂n ∼= Rn is (2π)−ndx. However if we choose our characters to be the
functions x 7→ e2πi〈x,ξ〉, then the corresponding Plancherel measure is merely dx.
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Example 1.2.9. If f : T→ C is a continuous periodic function, then its Fourier transform is defined by

f̂(n) =
1

2π

∫ 2π

0

f(eiθ)e−inθ dθ

where n ∈ Z. Since T̂ = Z is discrete, then a Haar measure Z is a multiple of the counting measure. In fact,
in this case the Plancherel measure is the counting measure. In particular, for g ∈ L1(Z) we have∫

Z

g(n) dn =

∞∑
n=−∞

g(n).

If we assume that
∑∞
n=−∞ |f̂(n)| < ∞, then by the Fourier inversion formula we have that f is almost

everywhere equal to its Fourier series:

f(eiθ) =

∞∑
n=−∞

f̂(n)einθ.

In our two examples of Fourier transforms on Rn and on T we note that the inversion formula also uses
characters of the corresponding dual group which is to say, that the functions ξ 7→ ei〈x,ξ〉 and n 7→ einθ

are also characters on R̂n and Z. In fact, if Ĝ is the dual group of an abelian group G, then the function
χπ 7→ χπ(x) for some fixed x ∈ G is also a character of Ĝ. This phenomenon is encoded by the Pontryagin
duality (see [9, Sec. 4.3]).

Theorem 1.2.10 (Pontryagin Duality Theorem). The mapping Λ: G 7→ ̂̂
G given by x 7→ (χπ 7→ χπ(x)) is

an isomorphism of topological groups.

Using this duality, we note that the Fourier transform on Ĝ takes the form of

(FĜf)(x) =

∫
Ĝ

f(χπ)(χπ)−1(x) dχπ =

∫
Ĝ

f(χπ)χπ(x) dχπ .

where dχπ is the Haar measure on Ĝ. If we let FG and FĜ denote the Fourier transforms on G and Ĝ
respectively, then the Fourier inversion theorem states that there exists a constant c0 so for all f ∈ L1(G)

and FGf ∈ L1(Ĝ) we have

f(x) = c0FĜFGf(x−1)

almost everywhere.
The other important theorem for us is the Plancherel theorem. In the Euclidean case, the Plancherel

theorem stated that the Fourier transform extends from L1(Rn) ∩ L2(Rn) to a isometric isomorphism of
L2(Rn) and L2(Rn, (2π)−ndx). In the locally compact abelian group case we have the same result.

Theorem 1.2.11 (Plancherel Theorem). The Fourier transform on L1(G) ∩ L2(G) extends to a unitary

isomorphism from L2(G) to L2(Ĝ) where Ĝ is endowed with the Plancherel measure.

Theorem 1.2.7, the Fourier inversion formula, and the Plancherel theorem are the bread and butter of
harmonic analysis and encapsulate all the theorems relating to the Fourier transform on Rn without any
reference to a differential structure (i.e. Paley-Wiener theorem, Schwartz space, etc.). One could wonder
what happens if G becomes an abelian Lie group and in this instance one may ask how does the Fourier
transform interact with the differential operators on G. We shall carry out a short discussion of this for
compact Lie groups however at the moment we shall briefly cover the abstract Fourier transform theory for a
compact group.
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Compact groups

For an abelian group G we have defined the Fourier transform as a function on Ĝ which is the set of irreducible
unitary representations which is identified with the set of all continuous characters of G. If G is not abelian,
then its unitary irreducible representations can become quite complicated however when G is compact, all of
its unitary irreducible representations are finite dimensional. We define the Fourier transform on a compact
group G as follows.

Definition 1.2.5. If f ∈ L1(G) and π is the chosen representative of the equivalence class [π] ∈ Ĝ, then we
define the π-Fourier coefficient by

f̂(π) =

∫
G

f(x)π(x−1) dx . (1.2.3)

We note that f̂(π) ∈ EndVπ. If we choose to represent π as a dπ × dπ matrix over C where we identify

Vπ ∼= Cdπ , then we have that f̂(π) ∈Mdπ (C). Clearly a draw back to this definition of a Fourier transform
is that it is now operator valued (or really matrix valued).

Since G is compact, we have by Hölder’s inequality that Lp(G) ⊂ L1(G) for p ≥ 1 where we are using the
Haar measure dx which is normalized so that

∫
G

1 dx = 1. If f ∈ L2(G), then we have an inversion formula
given by the Peter-Weyl theorem.

Theorem 1.2.12 (Peter-Weyl). If f ∈ L2(G), then

f(x) =
∑

[π]∈Ĝ

dπ Tr
(
f̂(π)π(x)

)
(1.2.4)

which converges to f in L2(G) and to f pointwise for almost every x ∈ G. If χπ(x) = Tr(π(x)), then this can
be rewritten as

f(x) =
∑

[π]∈Ĝ

dπf ∗ χπ(x). (1.2.5)

As usual, a proof is provided in Folland [9, Sec. 5.2]. Since G is compact, Ĝ is discrete. So if we choose

the weighted counting measure on Ĝ defined by µ(A) =
∑

[π]∈A dπ where A ⊂ Ĝ, then we have the “integral”
formula

f(x) =

∫
Ĝ

Tr
(
f̂(π)π(x)

)
dµ([π]),

for f ∈ L2(G). To state the Plancherel theorem we require a definition.

Definition 1.2.6. Define the space L2(Ĝ) as the space of all functions f on Ĝ which satisfy:

1. f([π]) ∈ EndVπ whenever [π] ∈ Ĝ.

2. And

‖f‖2
L2(Ĝ)

=
∑

[π]∈Ĝ

dπ Tr(f([π])f([π])∗) <∞.

Here, f([π])∗ denotes the adjoint operator of f([π]).

With the assignment f 7→ ‖f‖L2(Ĝ) defines a norm on L2(Ĝ) under which L2(Ĝ) becomes a complex

Hilbert space with the respect to the inner product

〈f, g〉L2(Ĝ) =
∑

[π]∈Ĝ

dπ Tr(f([π])g([π])∗).

Then the Plancherel theorem reads as follows.
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Theorem 1.2.13 ( [20, Thm. 7.6.13]). The Fourier transform defines a unitary isometric isomorphism from

L2(G) onto L2(Ĝ).

There is some noticeable degeneracy to the Fourier transform theory on a compact group. Unlike in the
abelian group case there is no easy analogue of a Riemann-Lebesgue lemma. In fact, such a lemma makes no
sense since C0(Ĝ) = C(Ĝ) consists of scalar-valued functions while the Fourier transform is operator valued.
Thus any appropriate formulation of a Riemann-Lebesgue lemma must incorporate such types of functions
and also ought to propose a logical topology on them.

To close our remarks on the abstract Fourier transform theory for locally compact abelian and compact
groups we summarize the so-called “generic” results that we have obtained. If G is abelian or compact,
we have that the Fourier transform diagonalizes convolution on L1(G), that is it turns the convolution of
functions into products of functions (or composition of operators). We also have that there is a Plancherel

theorem which establishes unitary isomorphisms between L2(G) and L2(Ĝ) where the isomorphism is provided
by an extension of the Fourier transform. We also have a Fourier inversion formula which holds for certain
classes integrable functions in G. When G is abelian we can say much more. In particular, we obtain an
analogue of the Riemann-Lebesgue.

We can also seek to provide analogues for the Schwartz space theory as in Theorem 1.1.8. In the case
that G is abelian, this theory is provided by the Schwartz-Bruhat spaces which can be defined for any locally
compact abelian group. In particular, if Sb(G) denotes the Schwartz-Bruhat space of an abelian group, then

the Fourier transform establishes a homeomorphism between Sb(G) and Sb(Ĝ). In the case that G = Rn,
then Sb(Rn) = S(Rn). Schwartz-Bruhat spaces are a bit tricky to define so we provide a reference [19].
Intuitively, Schwartz-Bruhat spaces are characterized as satisfying a certain decay condition on functions and
their so-called “generalized derivatives.” In the following section however, we can provide an analogue of the
Schwartz space theory rather explicitly.

1.3 Some compact Lie groups

1.3.1 The torus T

The torus T is of course a compact abelian Lie group. If we identify T with the unit circle in C, we use
the standard angular coordinates θ 7→ eiθ for θ ∈ R. So in particular, the functions T are identified the 2π
periodic functions on R. As usual if f ∈ L1(T), we write

F (f)(n) = f̂(n) =
1

2π

∫ 2π

0

f(θ)e−inθ dθ

and for g ∈ L1(Z) we put

F−1(g)(θ) = qg(θ) =
∑
n∈Z

g(n)einθ.

Using the angular coordinates one can show that any smooth differential operator D on T is of the form

D =
∑n
j=1 aj(x) d

j

dθj (aj ∈ C∞(T)) defined globally on T (see [18, pp. 176]).

Now if f ∈ Ck(T) and j ≤ k, then putting f (j) = dj

dθj f we have that the Fourier transform on the circle
satisfies a variant of Property (2) in Proposition 1.1.1 in the sense that

f̂ (j)(n) = (in)j f̂(n)

by integration by parts and the periodicity of f and its derivatives. So in particular, the Fourier transform
on T interacts just as nicely with constant coefficient differential operators as it does on Rn. In particular, if
f ∈ Ck(T) for k ≥ 2, then the Fourier series

∞∑
n=−∞

f̂(n)einθ
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converges absolutely. By the Fourier inversion theorem for abelian groups, f is equal almost everywhere to its
Fourier series but by the absolute convergence of its Fourier series it follows by the dominated convergence
theorem that f equals its Fourier series everywhere. And by the dominated convergence theorem again we
can differentiate f by differentiating the Fourier series of f term by term.

It is interesting to note that if f ∈ C∞(T), then the Fourier transform of f satisfies a Schwartz-like
estimate:

sup
n∈Z
|(1 + |n|)kf̂(n)| <∞

for all k ∈ N. This motivates a definition of the Schwartz space S(Z) on Z defined to be the set of all
functions g : Z → C which satisfy νk(g) = supn∈Z |(1 + |n|)kg(n)| < ∞ for all k ∈ N. The space S(Z) is
topologized by the seminorms νk. We now have Schwartz’s isomorphism theorem for the torus.

Theorem 1.3.1. The Fourier transform F : C∞(T)→ S(Z) is a topological isomorphism of C∞(T) onto
S(Z).

Proof. It is clear that F (C∞(T)) ⊂ S(Z). If g ∈ S(Z), then the function f(θ) =
∑
n∈Z g(n)einθ is easily

seen to be smooth by term by term differentiation which is justified by the dominated convergence theorem.
And by the Fourier inversion theorem we determine that the Fourier transform is a bijection of C∞(T) onto
S(Z).

To show that the Fourier transform is a homeomorphism we first remark that the topology of C∞(T) is
induced by the seminorms, γj(f) = supθ∈T |f (j)(θ)| , f ∈ C∞(T), j ∈ N. Now if f ∈ C∞(T), then

νk(f̂) = sup
n∈Z

1

2π

∣∣∣∣∫ 2π

0

(1 + |n|)kf(θ)e−inθ dθ

∣∣∣∣ ≤ k∑
j=1

(
k

j

)
γj(f).

So that F : C∞(T) → S(Z) is continuous. The inverse F−1 : S(Z) → C∞(T) is also continuous since for
g ∈ S(Z) we have

γj(qg) ≤
∑
n∈Z

|njg(n)| ≤ νj+2(g)
∑
n∈Z

|n|j

(1 + |n|)j+2
≤ c0νj+2(g).

Here c0 is a constant independent of g. Correspondingly, F−1 is continuous as well so that F is a
homeomorphism.

The same type of results hold for the n-torus Tn with the associated Schwartz space on Zn defined by

S(Zn) =

{
g : Zn → C : sup

m∈Zn
(1 + |m|)kg(n)| <∞, k ∈ N

}
where |m| =

√
m2

1 + · · ·+m2
n if m = (m1, . . . ,mn) ∈ Zn.

Remark 2. In allusion to the “Schwartz-Bruhat spaces” discussed in the previous section, the Schwartz-Bruhat spaces
on Tn and on Zn are Sb(Tn) = C∞(Tn) and Sb(Zn) = S(Zn).

1.3.2 Compact semisimple Lie groups

In this subsection we summarize some analogous properties of the Fourier transform for compact semisimple
Lie groups which hold for the torus. In particular we explain how the Fourier transform and irreducible
unitary representations interact with differential operators on the group.

Suppose that π : G→ EndVπ is a representation of a Lie group G on a Banach space Vπ. We say that a
vector u ∈ Vπ is smooth if the function g 7→ π(g)u is smooth as a function from G into Vπ. Here the definition
of the smoothness of vector valued functions is as follows.
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Definition 1.3.1. Let f : R→ V where V is a Banach space. We say that f is differentiable if the difference
quotient

lim
h→0

f(x+ h)− f(x)

h

exists in V for each x ∈ Rn. Likewise, f : Rn → V is partially differentiable in the jth coordinate if it is
differentiable in the jth coordinate holding all other coordinates fixed. We say that f : Rn → V is smooth if
for all constant coefficient differential operators D, that Df exists in V .

Extending the definition of smoothness of Banach space valued functions f on a smooth manifold M is
obvious: f is smooth if and only if the function f ◦ φ−1 is smooth for all coordinate systems (U, φ) on M .

Now given a unitary representation (π, Vπ) of a Lie group, we say that a vector v ∈ Vπ is smooth if the
function g 7→ π(g)v is a smooth map. Denote the space of smooth vectors in Vπ with respect to π by C∞(π).
We can identify a subspace G(π) ⊂ C∞(π) where G(π) is generated by all vectors of the form π(f)u where
f ∈ C∞c (G) and u ∈ Vπ. We have the following result.

Proposition 1.3.2. If f ∈ C∞c (G), then π(f)u (u ∈ Vπ) is a smooth vector. Moreover, G(π) is dense in Vπ
and G(π) = Vπ if Vπ is finite dimensional.

Proof. Indeed, the vector π(f)u (f ∈ C∞c (G), u ∈ Vπ) is smooth since π(x)π(f)u = π(Lxf)u where
Lxf(y) = f(x−1y). From this observation it is not too difficult to verify that π(Lxf)u is smooth (use
local coordinates). In particular, G(π) is dense (and thus C∞(π)) in Vπ since if {ψα}α∈A is any system of
mollifiers (see Appendix A.1.4), then π(ψα)u → u for any vector u ∈ Vπ. Thus if Vπ is finite-dimensional,
then C∞(π) = Vπ (finite dimensional subspaces are closed). The significance of this statement is that if Vπ is
finite-dimensional and taking Vπ = Cdπ , the matrix components πij : G→ C of π are smooth functions.

Remark 3. The space G(π) is called the G̊arding space of π.

The Laplacian on a compact semisimple Lie group

Recall that if G is a Lie group, then the Lie algebra g is identified with the tangent space at the identity of
G. Concretely speaking, g is the space of all left-invariant vector fields on G. If X ∈ g, then the associated
vector field, also denoted by X, acts on E(G) by

Xf(g) =

{
d

dt
f(g exp tX)

}
t=0

where exp g → G is the exponential map and g ∈ G. The universal enveloping algebra of G is the space
U(g) which is roughly speaking the algebra generated by all vector fields X ∈ g via composition (also see
Definition 3.1.6). That is to say that an element of D ∈ U(g) is a finite sum of compositions of vector fields
of the form X1 ◦X2 ◦ · · · ◦Xm where X1, . . . , Xm ∈ g. Elements of U(g) act in the obvious way where if
X1 ◦X2 ◦ · · · ◦Xm is a finite composition of vector fields as before, then

(X1 ◦X2 ◦ · · · ◦Xm)f(g) =

{
∂m

∂t1∂t2 . . . ∂tm
f(g(exp tmXm) · · · (exp t2X2)(exp t1X1))

}
t1=t2=···=tm=0

Intuitively speaking, U(g) gives all the higher-order left-invariant differential operators on G.

Definition 1.3.2. The adjoint representation ad: g→ g is defined by ad(X)(Y ) = [X,Y ]. The Killing form
is given by (X,Y ) 7→ B(X,Y ) = Tr(ad(X) ◦ ad(Y )). The Killing form is bilinear and symmetric. We say that
g is semisimple if the Killing form B is non-degenerate which is to say that the mapping X 7→ (Y 7→ B(X,Y ))
is an isomorphism of g onto the dual space g∗.

We say a Lie group G is semisimple if g is semisimple. We shall now restrict our attention to the semisimple
compact groups. If {X1, . . . , Xn} ⊂ g is a basis for g, then we denote {X1, . . . , Xn} to be the dual basis with
respect to B (i.e. B(Xi, X

j) = δij). This basis exists due to the semisimplicity of g (i.e. the non-degeneracy
of B).
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Definition 1.3.3. The Casimir operator with respect to the Killing form is the element Ω ∈ U(g) given by

Ω =

n∑
j=1

Xj ◦Xj .

We list some basic facts about the Killing form Ω. First, our definition of Ω is independent of our
choice of basis for g. Second, Ω lies within the center of U(g) which means that for each D ∈ U(g) we have
D ◦ Ω = Ω ◦D (see [20, Thm. 8.3.43]). Third, Ω is in fact bi-invariant which is to say that it commutes
with both left and right translation in the Lie group G. We shall write ∆G := Ω and call ∆G the Laplacian
of G. The reason for this naming convention is that when G is equipped with a bi-invariant Riemannian
metric (which is just a constant multiple of the Killing form B in this case), then ∆G coincides with the
corresponding Laplace-Beltrami operator. Now we have an important theorem characterizing the relationship
between irreducible unitary representations and the Laplacian ∆G.

Theorem 1.3.3. Suppose [π] ∈ Ĝ and let π be a representation of [π]. Then if πij : G→ C are the matrix
coefficients of π where we have represented π in some basis, then there is λ ∈ C such that ∆Gπij = λπij for
all 1 ≤ i, j ≤ dπ.

For the proof of Theorem 1.3.3 see [20, Th. 8.3.47]. This theorem provides us with the analogue of the
fact that the exponential functions x 7→ eξ(x) = ei〈x,ξ〉 are eigenfunctions of the Laplacian on Rn (with
eigenvalue −|ξ|2). Armed with this theorem we shall be able to state the main result on how the Fourier
transform on G interacts with smooth functions on G.

Fourier transform and the Schwartz space S(Ĝ)

Once and for all we choose a representative π from each equivalence class [π] ∈ Ĝ and simply refer to the
equivalence class [π] by π. We put |π| =

√
|λπ| where λπ is the eigenvalue of ∆G for a matrix component

of π (which does not depend on the choice of matrix component by Theorem 1.3.3). Finally, if T is an
endomorphism of a Hilbert space, then ‖T‖HS =

√
Tr(T ∗T ) is the Hilbert-Schmidt norm of T (here T ∗ is

the adjoint of T ).

The Schwartz space S(Ĝ) is defined as follows.

Definition 1.3.4. Let S(Ĝ) be the set of functions F satisfying the following conditions:

1. F (π) ∈ EndVπ.

2. νk(F ) = supπ∈Ĝ(1 + |π|)k‖F (π)‖HS <∞ for each k ∈ N.

We call S(Ĝ) the Schwartz space of Ĝ and we topologize S(Ĝ) with respect to the seminorms νk. With these

seminorms S(Ĝ) is a Fréchet space.

The natural Schwartz space on G is quite clearly C∞(G) itself. This is because any notion of decay at
“infinity” in the group is moot since G is compact and C∞(G) is topologized by the uniform seminorms:

νD(f) = sup
x∈G
|Df(x)|

for each differential operator D. The analogy of Theorem 1.1.8 is the following.

Theorem 1.3.4. The Fourier transform F on G is a topological isomorphism from C∞(G) onto S(Ĝ).

We do not provide a proof here for it requires a bit more machinery than we are willing or in a position
to furnish, although a complete proof can be found in Sugiura’s paper [22, Thm. 4]. The first part of the

theorem is quite simple to see however. Since by virtue of integration by parts we have ∆̂Gf(π) = λπ f̂(π).

So it follows that for each n ∈ N, there is a constant Cn ≥ 0 such that ‖f̂(π)‖HS ≤ Cn(1 + |π|2)−n for all
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π ∈ Ĝ. So we see f̂ satisfies a form of rapid decay. Of course the more trickier direction is proving that the
inverse Fourier transform maps S(Ĝ) onto C∞(G).

There is an alternative proof which can be obtained in Ruzhansky-Turunen [20, Sec. 10.3]. There, the

Schwartz space S(Ĝ) is defined differently than the definition given by Definition 1.3.4 which is a definition
provided by Sugiura [22, pp. 44].

1.4 Remarks

The main purpose of this chapter was to provide us with a sufficient motivation and background for the Fourier
transform theory on Rn as well as for a locally compact topological group. In Section 1.1 we highlighted the
major theorems, particularly the Plancherel and Fourier inversion theorems—as well as characterized the
images of the standard function spaces which arise in real analysis. As we have hoped to highlight in our
short survey on the harmonic analysis of abelian and compact topological groups, the Plancherel and Fourier
inversion theorems are in fact quite generic features and are valid for those groups as well under suitable
formulations.

On Rn, we have also studied the Fourier transform as it acts on various spaces of smooth functions. The
main result provided by Theorem 1.1.8 states that the Fourier transform is a topological isomorphism of
S(Rn) onto itself. In the extension of the Fourier transform to Lie groups, Theorem 1.3.4 suggests that a
“Schwartz-type isomorphism” theorem is also a generic feature of the Fourier transform and should also exist
naturally for the Fourier transforms on Lie groups as well.

Furthermore, although we have not stated any results for the extension of the Fourier transform to
distributions on Lie groups one can imagine that the same type of results should hold in a similar sense
as to the theory developed in Section 1.1. The main point is that we would wish to extend the Fourier
transform and its related results to “arbitrary” Lie groups (not necessarily abelian or compact). However,
the Fourier transform theory for noncompact nonabelian groups is far more difficult to study. Firstly, the
representation theory of a nonabelian noncompact group is already quite complicated for there are irreducible
unitary representations of infinite dimension—which for instance creates complications in conjuring up a
hypothetical inversion formula.

Nevertheless, our discussions in this chapter suggest that a reasonable formulation of the Fourier transform
for a nonabelian and noncompact group G should also feature analogues to the Plancherel and Fourier
inversion theorems. Moreover, if G is a Lie group, there should be some description of how the Fourier
transform interacts with differential operators such as the Laplacian in view of Theorem 1.3.3. Additionally,
analogues of the Schwartz spaces should exist for this group G under which the analogues of Theorems 1.1.8
and 1.3.4 hold as well.

In the next chapter these analogies shall be established in a particular setting for the group G = SU(1, 1),
which is a nonabelian noncompact group. As we will see, the Fourier transform theory which we shall
formulate behaves beautifully for those functions f which are invariant under right translation by the
subgroup K = SO(2). In particular, the presentation of the Fourier transform theory for G can be done
without explicit reference to its representation theory and even more importantly the Fourier transform which
we shall present takes scalar-valued functions to scalar-valued functions unlike the operator-valued Fourier
transform of nonabelian compact groups.
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Chapter 2

Harmonic analysis on H2

In this chapter we shall extend our Fourier transform theory to the hyperbolic plane H2. Here the Fourier
transform enjoys analogous generic properties which we have discussed at length in Chapter 1; such as the
Riemann-Lebesgue lemma, Plancherel, and Paley-Wiener theorems. The style of proofs of these theorems is
quite analogous to the proofs presented in Chapter 1 yet they are not entirely the same. In particular, the
techniques that we shall use in Chapter 2 are largely tied to the unique geometric structure of H2.

We finally remark that in developing our Fourier transform we must take care since H2 is not a group
but rather a homogeneous space of the nonabelian noncompact Lie group SU(1, 1). Thus applying the
representation theoretic approach of Section 1.2 to developing the Fourier transform theory on H2 becomes
much more difficult. So in order to motivate our definition of the Fourier transform on H2 we take the
approach of Helgason which melds aspects of the geometry of H2 and the group structure of SU(1, 1).

2.1 Preliminaries

Consider the open unit disk D = {x ∈ C : |x| < 1} which is naturally an open two dimensional smooth
submanifold of R2. That is a complex number x ∈ D is regarded as an element of R2 by the pair (Rex, Imx).
The reason for regarding D as a subset of C is so that we can take advantage of some of the geometric
properties afforded by complex multiplication.

Definition 2.1.1. We define a Riemannian metric g on D by

gx(u, v) = 〈u, v〉x =
u · v

(1− |x|2)2
(2.1.1)

where x ∈ D, u, v ∈ TxD are tangent vectors, and u · v denotes the standard Euclidean inner product (again
regarding u, v ∈ R2).

The norm of a tangent vector v ∈ TpD is denoted by |v| = gp(v, v)1/2. We shall not verify it here, however
the Riemannian curvature determined by the above metric g is constant and equal to −4.

Definition 2.1.2. We call D with the metric g the hyperbolic plane and it is notated as H2 and this
particular definition of H2 is called the Poincaré disk model for the hyperbolic plane. Moreover, we denote
the origin in D by o.

Let γ : [a, b]→ H2 (a ≤ b) be a differentiable curve, then the arc length of γ is defined as

L(γ) =

∫ b

a

|γ′(t)| dt . (2.1.2)
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We define a metric on H2 (as on any Riemannian manifold) by d(x, y) = infγ L(γ) where the infimum is taken
over all differentiable curves γ connecting x to y. Let x be a point on the x-axis in D. If γ is a differentiable
curve on [a, b] connecting o to x, then if we write γ in the standard coordinates γ(t) = (x(t), y(t)), we note
that in D

x′(t)2

(1− x(t)2)2
≤ x′(t)2 + y′(t)2

(1− x(t)2 − y(t)2)2
(2.1.3)

so that the arc length of any curve connecting o to x is bounded below by the length of any straight line
segment connecting o to x. Thus if x(t) = tx (0 ≤ t ≤ 1), then

d(o, x) = L(x) =

∫ 1

0

|x|
1− t2x2

dt =
1

2
log

1 + |x|
1− |x|

= atanh |x| (2.1.4)

where atanh is the inverse hyperbolic tangent.

Definition 2.1.3. For x ∈ H2 will write x = tanh reiθ where r = d(o, (|x|, 0)) = atanh |x|. These coordinates
on H2 are called the geodesic coordinates.

The geodesic coordinates yield a kind of polar coordinate representation. We will show in a moment that
indeed for arbitrary x ∈ H2, that d(o, x) = r. By elementary complex analysis the subgroup G of the group
of Möbius transformations on C defined by

G =

{(
a b
b̄ ā

)
: |a|2 − |b|2 = 1, a, b ∈ C

}
= SU(1, 1) (2.1.5)

acts on H2 by means of the transformations

g · x =
ax+ b

b̄x+ ā
where x ∈ H2, g =

(
a b
b̄ ā

)
. (2.1.6)

This action is a transitive group action and is obviously smooth. The subgroup fixing o is the subgroup

K =

{(
a 0
0 ā

)
: |a|2 = 1, a ∈ C

}
= SO(2) (2.1.7)

which is compact in G. Thus we can regard H2 as the homogeneous space H2 = G/K and by [18], H2 is
diffeomorphic to G/K given its canonical smooth structure. Furthermore, G leaves the Riemannian metric
on H2 invariant as evidenced by the following proposition.

Proposition 2.1.1. For g ∈ G, we let τg : H2 → H2 be the map τg(x) = g · x. Then for tangent vectors
u, v ∈ TxH2 we have 〈d(τg)xu, d(τg)xv〉g·x = 〈u, v〉x.

Proof. To see this let g be as in (2.1.6). Put u, v ∈ TxH2 with corresponding smooth curves γu, γv : I → R
(I an open interval containing 0) where γu(0) = x = γv(0) and γ′u(0) = u, γ′v(0) = v, then the differential
of τg applied to u is d(τg)xu = (g · γu)′(0) = u(b̄x+ ā)−2 and likewise for (dτg)xv. Although these vectors
appear to be complex, we are interpreting them as points in R2 in the obvious way. Now we have

〈d(τg)xu, d(τg)xv〉g·x = (u · v)|b̄x+ ā|−4(1− |g · x|2)−2 = (u · v)(|b̄x− ā|2 − |ax+ b|2)−2.

We leave it to the reader to verify that |b̄x− ā|2 − |ax+ b|2 = 1− |x|2 (compute it in polar coordinates), and
so we find 〈d(τg)xu, d(τg)xv〉g·x = (u · v)(1− |x|2)−2 = 〈u, v〉x.

It follows that for each g ∈ G, τg is a isometry of H2 for all g ∈ G. Consequently if x ∈ H2 and k ∈ K is
a rotation sending x to (|x|, 0), then d(o, x) = d(o, (|x|, 0)) which fully justifies the coordinate representation
x = tanh reiθ as discussed earlier.
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From (2.1.1), we find that in standard coordinates the matricial entries of the Riemannian metric are
given by gij = (1− |x|2)−2δij so that the Riemannian volume form becomes

dx =
√

det g dx1 dx2 = (1− |x|2)−2 dx1 dx2 (2.1.8)

where x = (x1, x2) = x1 + ix2 and the Laplace-Beltrami operator becomes

∆H2 =
1√

det g
∂j(g

ij
√

det g∂i) = (1− x2
1 − x2

2)2(∂2
x1

+ ∂2
x2

). (2.1.9)

Here we use Einstein’s summation convention and have let gij to denote the components of the inverse matrix
of g. These objects are invariant under isometries and so are invariant under the action by G, that is dx is a
G-invariant volume form which gives rise to a G-invariant Riemannian measure and ∆H2 ◦ τg = τg ◦∆H2 for
all g ∈ G. By Theorem A.1.5, this gives rise to a Haar measure dg on G such that∫

H2

f(x) dx =

∫
G

f(g · o) dg (f ∈ L1(H2)) (2.1.10)

which will become indispensable to our analysis in the future.

Horocycles and plane waves

To motivate our candidate for the Fourier transform on H2 it is useful to consider the Fourier transform on
Rn. Recall that the Fourier transform defined for functions in L1(Rn) is given by

f̂(ξ) =

∫
Rn

f(x)e−i〈x,ξ〉 dx,

where 〈·, ·〉 is the Euclidean inner product. The exponentials appearing above x 7→ ei〈x,ξ〉 (ξ ∈ Rn) can be
considered in the polar form where we write ξ = r ·ω (r ≥ 0, ω ∈ Sn−1) so that ei〈x,ξ〉 = eir〈x,ω〉 = er,ω(x). In
this form two facts become readily apparent. First, we have that for the Laplacian ∆ that ∆er,ω = −r2er,ω
so that er,ω is an eigenfunction of ∆ with eigenvalue −r2. Secondly, er,ω is constant on every hyperplane

with normal vector ω, that is, it is a plane wave. Furthermore, writing f̂ in these polar coordinates and using
the hyperplanar measure from Theorem A.3.1:

f̂(r · ω) =

∫
R

∫
〈x,ω〉=p

f(x)e−irp dσ(x) dp (2.1.11)

which is simply the one-dimensional Fourier transform of the Radon transform of f at the angle ω. Analogously
for the hyperbolic plane H2 a candidate for a Fourier transform of a reasonable function f could be a certain
one-dimensional Fourier transform of a Radon transform of f about some generalization of an angle. Here a
Radon transform on H2 should integrate functions on some analogue of a hyperplane (say a one dimensional
submanifold) and a one-dimensional Fourier transform should integrate the Radon transform against an
eigenfunction of ∆H2 which is constant on each “hyperplane.”

The correct notion of a hyperplane for H2 in this case is a horocycle.

Definition 2.1.4. Let B = {x ∈ C : |x| = 1} so that D = D ∪ B. Then a horocycle ξ ⊂ D in H2 with
normal b ∈ B is the set of points such that ξ ∪ {b} is a circle in D.

We will denote the space of horocycles on H2 by Ξ. We state without proof that if x ∈ H2 and b ∈ B,
then there is a unique horocycle, denoted by ξ(x, b), which contains x and has normal b. Clearly a horocycle
in H2 = D together with its normal on B determines a circle contained within the disk D which intersects
the boundary B tangentially (see Fig. 2.1).
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x

ξ(x, b)

b

1

B

ξ(o, 1)

H2

Figure 2.1: The unique horocycle through x and b.

Definition 2.1.5. The distance of a horocycle ξ to the origin o is the shortest distance from o to a point
x ∈ ξ. If p ≥ 0 is the distance between a horocycle ξ and o, then the signed distance between ξ and o is
the quantity σ(ξ)p where σ(ξ) = 1 if o lies outside the horocycle ξ (regarding ξ as a circle in D) and is −1
otherwise.

In analogy to the inner product on Rn giving the signed distance between the hyperplane containing a
point and a given normal we have the following definition of the non-Euclidean product.

Definition 2.1.6. Define the bracket 〈·, ·〉 : H2 × B → R by 〈x, b〉 = “signed distance between o and the
horocycle ξ(x, b)”.

We can in fact compute 〈x, b〉 explicitly.

Lemma 2.1.2. For x ∈ H2 and b ∈ B we have that

〈x, b〉 =
1

2
log

1− |x|2

|x− b|2
. (2.1.12)

Proof. Suppose that o is outside the horocycle. Let y be the point on the horocycle through x and b closest
to o so that 〈x, b〉 = atanh |y|. Thus it suffices to compute |y| which can be found via the law of cosines.
Let (x, o, b) denote the triangle with vertices x, o, and b, similarly we have the triangle (x, c, b) where c is
the center of the horocycle. Let xob denote the angle formed by the line segments adjoining xo and ob; and
likewise for xoc. Then by the law of cosines

cos(xob) =
|x|2 + 1− |x− b|2

2|x|
=
|x|2 + ( 1

2 (1 + |y|))2 − ( 1
2 (1− |y|))2

|x|(1 + |y|)
= cos(xoc)

we find

|y| = |x|
2 + |x− b|2 − 1

|x|2 − |x− b|2 − 1

so that we obtain the desired relation by using (2.1.4). If o is inside the horocycle, then the above becomes

cos(xob) =
|x|2 + 1− |x− b|2

2|x|
=
|x|2 + ( 1

2 (1− |y|))2 − ( 1
2 (1 + |y|))2

|x|(1− |y|)
= cos(xoc)
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so that

|y| = −|x|
2 + |x− b|2 − 1

|x|2 − |x− b|2 − 1
.

Hence using (2.1.4) again we obtain the above relation as well.

By Lemma 1.1 we have that for the plane wave x 7→ ew〈x,b〉 (where w ∈ C), then

ew〈x,b〉 =

(
1− |x|2

|x− b|2

)w
2

. (2.1.13)

Now using (2.1.9) we can easily compute

∆H2ew〈x,b〉 = w(w − 2)ew〈x,b〉 (2.1.14)

so that the functions x 7→ ew〈x,b〉 are eigenfunctions of ∆H2 with eigenvalue w(w − 2). These “plane waves”
will become the building blocks of our Fourier transform on H2 in the same way the complex exponential
functions are the underpinnings of the Fourier transform on Rn.

We note that for g ∈ G and a horocycle ξ with normal b, then g · ξ also determines a horocycle with
normal g · b. This is because for a circle C in the disk D, then g · C is also a circle in D and G maps the
circle B to itself. Thus, g · ξ is a circle in D with one point of intersection at the boundary B at the point
g · b. Now consider the subgroups A and N of G defined by

A =

{
at =

(
cosh t sinh t
sinh t cosh t

)
: t ∈ R

}
, (2.1.15)

N =

{
ns =

(
1 + is −is
is 1− is

)
: s ∈ R

}
. (2.1.16)

Geometrically speaking if we consider the orbit A · o, then this corresponds to the geodesic through b0 = 1
and o (i.e. the straight line). Additionally, the orbit N · o corresponds to the horocycle ξ(o, 1). This can be
seen by virtue of the fact that the equations

sin(θ) =
−2s

1 + s2
, cos(θ) =

s2 − 1

1 + s2

has a solution for each θ ∈ (0, 2π).
Now, for at ∈ A we have that the horocycle atN · o has signed distance t and normal b0. Since every

point x ∈ H2 lies on some horocycle of the form aN · o we have that for g ∈ G, the point g · o lies on some
horocycle aN · o (a ∈ A). Since A normalizes N we obtain that gK = naK. Therefore g = nak for some
n ∈ N , a ∈ A, and k ∈ K which exhibits G in an Iwasawa decomposition G = NAK = KAN . We also
have the Cartan decomposition of G = KA+K where A+ = {at : t ≥ 0}. This decomposition is easy to see
geometrically since any point x ∈ H2 can be parametrized by its geodesic distance from o and an angle θ
with the positive x-axis. Thus, x = katK where t = d(o, x) and for some unique k ∈ K. We can introduce
the coordinates (s, t) 7→ nsat · o on H2 so that

x1 + ix2 =
sinh t− ise−t

cosh t− ise−t
. (2.1.17)

Thus the Riemannian measure dx with respect to the element ds dt becomes

dx = e−2t dt ds .
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Therefore, integration of functions on H2 takes the form∫
H2

f(x) dx =

∫
R

∫
R

f(nsat · o)e−2t dt ds .

In analogy to the measure (A.3.1), we put dσt = e−2tds as the measure on the horocycle Nat · o. If we put
ξt(b0) = ξ(at · o, b0), then the above integral becomes∫

H2

f(x) dx =

∫
R

∫
ξt(b0)

f(x) dσt(x) dt

where we integrate f over the space of horocycles ξt(b0) with normal b0. Since the measure dx is K-invariant
we can rotate by an angle θ so that by our above analysis the integral finally becomes∫

H2

f(x) dx =

∫
R

∫
ξ(tanh teiθ,eiθ)

f(x) dσt(x) dt . (2.1.18)

This exhibits the integral of f as the integral of its Radon transform on the space of “parallel” horocycles
through the point eiθ ∈ B. The Radon transform of a function f ∈ Cc(H2) is defined as follows.

Definition 2.1.7. For f ∈ Cc(H2) the Radon transform of f is the function f̂ : Ξ→ C defined by

f̂(ξ(tanh teiθ, eiθ)) =

∫
ξ(tanh teiθ,eiθ)

f(x) dσt(x) .

We can extend the Radon transform to L1(H2) by the same formula however we must take care since by

(2.1.18) we only obtain that for integrable f the Radon transform f̂(ξ(tanh teiθ, eiθ)) exists for almost every
t ∈ R.

Remark 4. In fact, the measures dt and ds determine Haar measures da and dn on A and N respectively such that
for f ∈ L1(A) and g ∈ L1(N) we have ∫

A

f(a) da =

∫
R

f(at) dt,∫
N

g(n) dn =

∫
R

g(ns) ds .

Thus, we now have three ways of integrating a function f ∈ L1(H2) illustrated below:∫
H2

f(x) dx =

∫
G

f(g · o) dg =

∫
AN

f(na · o)e−2 log a da dn .

Where we have defined log by:

Definition 2.1.8. Define the map log : A→ R by log at = t. This is a homomorphic homeomorphism (in
fact a diffeomorphism) of abelian Lie groups.

Integral formulas

Before we close this subsection we shall discuss some integral formulas which will simplify our work and give
us some new integration techniques. Recall that for any f ∈ Cc(H2), that we have the following integration
scheme: ∫

H2

f(x) dx =

∫
G

f(g · o) dg =

∫
N

∫
A

f(na · o)e−2 log a da dn .

It is a fact that G is a unimodular group, so put F (g) = f(g−1 · o), then by the unimodularity of dg we have∫
G

f(g · o) dg =

∫
G

F (g) dg =

∫
H2

∫
K

F (hk) dk d(hK) .
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Here d(hK) = dx is the Riemannian measure on H2 (see Section A.1.2). However by our previous formula:∫
N

∫
A

∫
K

F (nak)e−2 log a dk da dn =

∫
N

∫
A

∫
K

f(k−1a−1n−1 · o)e−2 log a dk da dn .

Now K is unimodular because it is compact, A is unimodular because it is abelian, and N is unimodular
because it is nilpotent. Thus, making the transformations k 7→ k−1, a 7→ a−1, and n 7→ n−1 we have∫

G

f(g · o) dg =

∫
N

∫
A

∫
K

f(kan · o)e2 log a dk da dn =

∫
K×A×N

f(kan · o)e2 log a dk da dn .

Also, we can write ∫
N

f(na · o) dn = e2 log a

∫
N

f(an · o) dn .

That this can be done is due to the fact that∫
N

f(na · o) dn =

∫
R

f(nsat · o) ds =

∫
R

f(at(a
−1
t nsat)a

−1
t at · o) ds =

∫
R

f(atnse−2t · o) ds .

Making the transformation s 7→ se2t, which has Jacobian Φ(s) = e2t, we have∫
R

f(nsat · o) ds =

∫
R

f(atns · o)e2t ds = e2 log a

∫
N

f(an · o) dn .

Hence we have obtained the following integral formulas for f ∈ Cc(H2):∫
H2

f(x) dx =

∫
G

f(g · o) dg =

∫
K×A×N

f(kan · o)e2 log a dk da dn =

∫
K×A×N

f(kna · o) dk da dn (2.1.19)

=

∫
N×A

f(na · o)e−2 log a dn da =

∫
A×N

f(an · o) dn da . (2.1.20)

The same statements hold for f ∈ L1(H2) as well by Fubini’s theorem. Thus, we can write the Radon
transform of Definition 2.1.7 in the following group theoretic formulation:

f̂(ξ(tanh teiθ, eiθ) =

∫
N

f(kan · o) dn = f̂(ka · ξ0)

where k ∈ K corresponds to the rotation by eiθ, a ∈ A corresponds to the dilation by tanh t, and ξ0 = ξ(o, b0).
So in particular, we have that the integral of f over H2 can be expressed as∫

H2

f(x) dx =

∫
A

f̂(ka · ξ0) da

for each k ∈ K. Compare this formula to the integral formula of Theorem A.3.1. This group theoretic version
of the Radon transform will become very useful later. We also define the modified Radon transform as follows.

Definition 2.1.9. For f ∈ Cc(H2), define the modified Radon transform of f by

Rf(ka · ξ0) = elog a

∫
N

f(kan · o) dn .

That is Rf(ka · ξ0) = elog af̂(ka · ξ0).
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2.2 Spherical functions and the spherical transform

We shall first consider the Fourier transform of radial functions on H2. That is functions that depend only
on the geodesic distance from o which is equivalent to being K-invariant, i.e. a function is K-invariant if
f(k · x) = f(x) for all k ∈ K and x ∈ H2. On R2 using the polar coordinates (x, y) = (λ cosφ, λ sinφ) and
formula (A.3.3), the Fourier transform of a radial function f is

f̂(λ, φ) = f̂((λ cosφ, λ sinφ)) =

∫
R2

f(x)e−iλ〈x,(cosφ,sinφ)〉 dx =
1

2π

∫ ∞
0

∫ 2π

0

f(r)e−irλ cos(θ−φ)r dr dθ .

Recall that the Bessel function J0(r) is the solution to the differential equation

r2 d
2f

dr2
+ r

df

dr
+ r2f = 0. (2.2.1)

In other words, it is a radial function on Rn that satisfies ∆J0(r) = −J0(r) and if we put J0(λr), then it
satisfies ∆J0(λr) = −λ2J0(λr). Furthermore J0 has the following integral representation

J0(r) =
1

2π

∫ 2π

0

eir cos θ dθ .

Hence the Euclidean Fourier transform of a radial function is also a radial function and is written

f̂(λ) =

∫ ∞
0

f(r)J0(−rλ)r dr . (2.2.2)

Thus the Fourier transform of a radial function is given by integration against radial eigenfunctions of the
Laplacian and it satisfies (∆f )̂ (λ) = −λ2f̂(λ). This situation for R2 motivates a Fourier transform of radial
functions on H2 which practically should be given by integration against radial eigenfunctions of ∆2

H.

Definition 2.2.1. A spherical function on H2 is a radial eigenfunction of ∆H2 .

If we write a point x = tanh reiθ in geodesic coordinates, then we can rewrite the Laplacian ∆H2 in these
coordinates as

∆H2 = ∂2
r + 2 coth 2r∂r + 4 sinh−2(2r)∂2

θ . (2.2.3)

Therefore a spherical function φ satisfies the differential equation

∂2
rφ+ 2 coth 2r∂rφ = −λ2φ. (2.2.4)

The choice of the eigenvalue above is for technical reasons. It is a fact that any two radial eigenfunctions of
∆H2 with the same eigenvalue are proportional as illustrated by the following proposition.

Proposition 2.2.1. The radial eigenfunctions of ∆H2 with the same eigenvalue are proportional.

Proof. The differential equation

∂2
rφ+ 2 coth 2r∂rφ = −λφ

is solvable by Frobenius’ method by using the substitution of w = sinh 2r. So expanding φ in a power series
of sinh 2r, φ(r) =

∑∞
m=0 am(sinh 2r)m we have

∞∑
m=1

4amm(sinh 2r)m + cosh2(2r)

∞∑
m=2

4amm(m− 1)(sinh 2r)m−2 + cosh2(2r)

∞∑
m=1

4amm(sinh 2r)m−2

+λ

∞∑
m=0

am(sinh 2r)m = 0.

Using cosh2(2r) = 1 + sinh2(2r) and comparing the coefficients we find that the coefficients are completely
determined by the value of a0 ∈ C. Hence all radial eigenfunctions are proportional.
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Remark 5. That φ can be expanded into a power series of the type described above follows from the fact that φ is an
analytic function on H2. That φ is analytic follows from the fact that since φ satisfies (2.2.4) which is a second-order
differential equation with analytic coefficients.

For technical reasons, we will be interested in radial eigenfunctions with eigenvalue −(λ2 + 1). Since the
function eλ,b(x) = e(iλ+1)〈x,b〉 is an eigenfunction with eigenvalue −(λ2 + 1), then integrating eλ,b over b we
have that the function

φλ(x) =

∫
B

eλ,b(x) db (2.2.5)

is a radial eigenfunction of ∆H2 with eigenvalue −(λ2 + 1) (db is the standard circular measure on B = S1).
In particular, using formula (2.1.13) and putting x = tanh reiφ and b = eiθ, then

φλ(ar · o) = φλ(tanh r) =
1

2π

∫ π

−π
(cosh 2r − sinh 2r cos θ)−(iλ+1)/2 dθ . (2.2.6)

Now if g ∈ G, k ∈ K, we have that the function

F (x) =

∫
K

φλ(gk · x) dk

is also a radial eigenfunction of ∆H2 with eigenvalue −(λ2 + 1) by passing the derivative under the integral
via the dominated convergence theorem. Hence is proportional to φλ and the constant of proportionality is
φλ(g · o). Thus the spherical function satisfies an analogue of the mean value formula∫

K

φλ(gk · x) dk = φλ(g · o)φλ(x). (2.2.7)

Definition 2.2.2. For a radial function f ∈ Cc(H2) we define its spherical transform by

f̃(λ) =

∫
H2

f(x)φ−λ(x) dx . (2.2.8)

Let DK(H2) denote the smooth compactly supported K-invariant functions. We now state our main
results for the spherical transform.

Theorem 2.2.2 (Inversion formula). For f ∈ DK(H2), the spherical transform f̃ is inverted by the formula

f(x) =

∫
R

f̃(λ)φλ(x) dµ(λ) =

∫
R

f ∗ φλ(x) dµ(λ) . (2.2.9)

for some Radon measure dµ(λ) on R called the Plancherel measure.

Theorem 2.2.3 (Plancherel identity). Furthermore for f ∈ DK(H2) we have∫
H2

|f(x)|2 dx =

∫
R

|f̃(λ)|2 dµ(λ) . (2.2.10)

Now, to prove Theorem 1.3 we must first investigate the Plancherel measure dµ(λ). The work of Harish-
Chandra showed that the measure dµ(λ) is given by c0|c(λ)|−2 dλ where c is a certain meromorphic function
on C, c0 a constant, and dλ is the ordinary Lebesgue measure on R. The function c is called Harish-Chandra’s
c-function.

Theorem 2.2.4. If Re(iλ) > 0, then

c(λ) = lim
r→∞

e(iλ+1)rφλ(ar · o) (2.2.11)

exists and equals

c(λ) = π−1/2 Γ( 1
2 iλ)

Γ( 1
2 (iλ+ 1))

.

35



Proof. Note that φλ = φ−λ by Proposition 2.2.1. Since d(o, g · o) = d(o, g−1 · o) as the action of G on H2 are
isometries and a−1

r = a−r we have that φλ(ar · o) = φλ(a−r · o). Thus combining these facts and using the
substitution u = tanh θ/2 we have that the integral in (2.2.6) becomes

φλ(ar · o) =
1

π

∫ ∞
−∞

(
cosh 2r − (sinh 2r)

1− u2

1 + u2

)(iλ−1)/2

(1 + u2)−1 du .

Using the identities cosh t+ sinh t = et and cosh t− sinh t = e−t the integrand simplifies to

φλ(ar · o) =
e(iλ−1)r

π

∫ ∞
−∞

(1 + e−4ru2)(iλ−1)/2(1 + u2)−(iλ+1)/2 du .

Assume that Re(iλ) > 0. Set λ = ξ + iη and choose ε < 1/2 small enough so that 1 + 2εη > 0. Then
estimating the integrand leads to

(1 + e−4ru2)−(η+1)/2(1 + u2)(η−1)/2 ≤ (1 + u2)−η/2+εη(1 + u2)(η−1)/2

= (1 + u2)εη−1/2.

The last expression is integrable on R since η < 0, therefore by the dominated convergence theorem we can
commute the limit and the integral:

lim
r→∞

e−(iλ−1)rφλ(ar · o) =
2

π

∫ ∞
0

(1 + u2)−(iλ+1)/2 du = c(λ).

Using the substitution t = (1 + u2)−1 and the formula for the beta function:

c(λ) =
1

π

∫ 1

0

t(iλ+1)/2t−3/2(1− t)−1/2 dt = π−1/2 Γ( 1
2 iλ)

Γ( 1
2 (iλ+ 1))

and we are done.

We are now in a position to prove Theorem 1.3. Suppose that f is a radial function and set x = tanh seiθ so
that f(x) = f(tanh s). Define a function F : [1,∞)→ C by F ((cosh s)2) = f(tanh s). Then by the chain rule,
F ′((cosh s)2) = f ′(tanh s)(2(sinh s)(cosh3 s))−1. A radial function g on R has derivative g′(w) = −g′(−w)
and so it must follow that g′(0) = 0. So in particular, f ′(o) = 0 and thus the limit limu→1 F

′(u) exists by
L’Hospital’s theorem. Now by our integral formulas

f̃(λ) =

∫
R

e−iλt−t
∫
R

f(npat · o) dp dt =

∫
R

e−iλt−t
∫
R

F ((cosh t)2 + p2e−2t) dp dt

=

∫
R

e−iλt
∫
R

F ((cosh t)2 + y2) dy dt

where we have made the substitution y = pe−t. For u ≥ 1, the equation

φ(u) =

∫
R

F (u+ y2) dy

can be solved in the following manner:∫
R

φ′(u+ x2) dx =

∫
R

∫
R

F ′(u+ x2 + y2) dx dy = 2π

∫ ∞
0

F ′(u+ r2)r dr

= π

∫ ∞
0

F ′(u+ q) dq .
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By the fundamental theorem of calculus we conclude that

−πF (u) =

∫
R

φ′(u+ x2) dx

since limq→0 F (u+ q) exists and limq→∞ F (u+ q) = 0 as f ∈ D(H2). Therefore we have that

f(o) = F (1) = − 1

π

∫
R

φ′(1 + x2) dx = − 1

π

∫
R

φ′(cosh2 x) coshx dx .

Since

f̃(λ) =

∫
R

φ(cosh2 t)e−iλt dt

we have by the ordinary Fourier inversion formula on R

φ(cosh2 t) =
1

2π

∫
R

f̃(λ)eiλt dλ =

∫
R

f̃(λ) cos(λt) dλ

since f̃ is symmetric in λ due to the fact that φλ = φ−λ. Since f̃ decays faster than any polynomial in λ at
infinity (since f ∈ D(H2)), we can differentiate φ, and under the integral sign to get

−φ′(cosh2 t)2 cosh(t) sinh(t) =
1

2π

∫
R

f̃(λ)λ sinλt dλ . (2.2.12)

Dividing through by sinh t and using the formula∫ ∞
0

sinλt

sinh t
dt =

π

2
tanh

(
πλ

2

)
and integrating (2.2.12) in t over [0,∞) we obtain

f(o) =
1

2π2

∫
R

f̃(λ)
λπ

2
tanh

(
πλ

2

)
dλ . (2.2.13)

But if λ ∈ R we have that |c(λ)|−2 = (λπ/2) tanh(λπ/2) whence

f(o) =
1

2π2

∫
R

f̃(λ)|c(λ)|−2 dλ . (2.2.14)

Now let g ∈ G and set

F (x) =

∫
K

f(gk · x) dk .

Using elementary properties of the measures dk and dx and the spherical function φλ:

F̃ (λ) =

∫
K

∫
H2

f(gk · x)φ−λ(x) dx dk =

∫
K

∫
H2

f(g · x)φ−λ(k−1 · x) dx dk

=

∫
H2

f(g · x)φ−λ(x) dx =

∫
H2

f(x)φ−λ(g−1 · x) dx =

∫
K

∫
H

f(k · x)φ−λ(g−1k · x) dx dk

=

∫
H2

f(x)

(∫
K

φ−λ(g−1k · o) dk
)
dx = φ−λ(g−1 · o)

∫
H2

f(x)φ−λ(x) dx = φλ(g · o)f̃(λ).
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(The fact that φ−λ(g−1 · o) = φλ(g · o) is a consequence of formula (2.3.4) which we prove later). Thus
applying the result of (2.2.14) to F we obtain

f(g · o) = F (o) =
1

2π2

∫
R

F̃ (λ)|c(λ)|−2 dλ =
1

2π2

∫
R

f̃(λ)φλ(g · o)|c(λ|−2 dλ . (2.2.15)

Thus Theorem 1.3 is proved and the measure dµ(λ) is equal to (2π2)−1|c(λ)|−2 dλ. Additionally f ∗ φλ is
radial and so integrating it over K we obtain

f ∗ φλ(g · o) =

∫
K

∫
G

f(h · o)φλ(h−1kg · o) dh dk =

∫
G

f(h · o)φ−λ(h · o)φλ(g · o) dh

= f̃(λ)φλ(g · o)

so that

f(x) =
1

2π2

∫
R

f ∗ φλ(x)|c(λ)|−2 dλ .

To prove Theorem 1.4 we apply (2.2.14) to the function

F (g · o) =

∫
H2

f(g · x)f(x) dx .

So the spherical transform of F is

F̃ (λ) =

∫
G

∫
G

f(gh · o)f(h · o)φ−λ(g · o) dg dh =

∫
G

∫
G

f(g · o)f(h · o)φ−λ(gh · o) dg dh

=

∫
G

f(g · o)f(h · o)φ−λ(g · o)φ−λ(h · o) dg dh = |f̃(λ)|2.

So we conclude

F (o) =

∫
H2

|f(x)|2 dx =
1

2π2

∫
R

|f̃(λ)|2|c(λ)|−2 dλ .

Thus we have obtained the Plancherel identity for radial functions f ∈ DK(H2).

2.3 The Fourier transform

In this section we will extend our spherical transform from K-invariant functions to more arbitrary functions.
The extension of the spherical transform will of course be the Fourier transform on H2. Before we define our
more general Fourier transform, we start with two preliminary lemmas.

Lemma 2.3.1. For g ∈ G and x ∈ H2 we have the fundamental identity

〈g · x, g · b〉 = 〈x, b〉+ 〈g · o, g · b〉. (2.3.1)

Proof. We provide a more general proof in Proposition 3.1.7. Geometrically speaking since G acts on H2 by
isometries the distance between the horocycles ξ(x, b) and ξ(o, b0) is the same as the distance between the
horocycles ξ(g · o, g · b) and ξ(g · x, g · b) (here b0 = 1).

So writing the horocycle ξ(x, b) = kaN · o for some k ∈ K and a ∈ A we can multiply this horocycle by
k−1 to get ξ(k−1 · x, k−1b) = aN · o where k−1b = b0. Writing g = k1a1n1 for k1 ∈ K, a1 ∈ A and n1 ∈ N
using the Iwasawa decomposition G = KAN we see that

gξ(k−1 · x, k−1b) = ξ(gk−1 · ox, gk−1b) = k1a1n1aN · o = k1a1aN · o
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since A normalizes N . Thus, 〈gk−1 · x, gk−1b〉 = log(a1a) = log(a1) + log(a). Now we easily see that
log(a) = 〈k−1 · x, k−1b〉 and log(a1) = 〈g · o, g(k−1b)〉. Thus,

〈gk−1 · x, gk−1b〉 = 〈k−1 · x, k−1b〉+ 〈g · o, g(k−1b)〉.

Replacing g by gk we obtain

〈g · x, g · b〉 = 〈k−1 · x, k−1b〉+ 〈g · o, g · b〉.

On the other hand ξ(k−1 · x, k−1b) = aN · o and ξ(x, b) = kaN · o. So 〈k−1 · x, k−1b〉 = log(a) = 〈x, b〉.

This geometric identity is our analogue of the well known inner product identities on Rn. Next, we have
a lemma which relates how the Haar measure db transforms under translation by elements in G.

Lemma 2.3.2. Consider the Haar measure db on B. Then if g ∈ G, we have d(g · b) = e−2〈g·o,g·b〉db.

Proof. Note that if x ∈ H2, we can write the action of g ∈ G on x in the form g · x = k · (x+ z)/(z̄x+ 1)
where z ∈ C and |z| < 1 and k ∈ K is a rotation. In fact if

g =

(
α β
β̄ ᾱ

)
,

then z = β/α and k =

(
eit 0
0 e−it

)
where α = |α|eit. Let db = dθ where dθ is usual angular measure on B

induced by the Lebesgue measure on R and write

eiψ(θ) = e2it

(
eiθ + z

z̄eiθ + 1

)
,

then the measure of interest is dψ = ψ′(θ)dθ. However a straightforward calculation shows that

ψ′(θ) =
1− |z|2

|eiθ − z|2
= e2〈g−1·o,eiθ〉 = e−2〈g·o,g·eiθ〉

since g−1 · o = −z and by (2.1.13).

Remark 6. Thus if dk is the Haar measure on K, then d(g · k) = e−2〈g·o,gk·b0〉dk for g ∈ G. If g ∈ K, then naturally
d(g · k) = dk since 〈g · o, gk · b0〉 = 0 which agrees with the fact that dk is a Haar measure on K.

Definition 2.3.1. We define the Fourier transform of a function f ∈ Cc(H2) by the formula

f̃(λ, b) =

∫
H2

f(x)e(−iλ+1)〈x,b〉 dx . (2.3.2)

To prove a type of inversion formula for the Fourier transform we require another lemma.

Lemma 2.3.3. If f ∈ Cc(H2), then

f ∗ φλ(g · o) =

∫
B

f̃(λ, b)e(iλ+1)〈g·o,b〉 db .

Proof. Since f has compact support we can appeal to Fubini’s theorem to obtain:

f ∗ φλ(g · o) =

∫
G

f(h · o)φλ(h−1g · o) dh =

∫
B

∫
G

f(h · o)e(iλ+1)〈h−1g·o,b〉 dh db

=

∫
B

∫
G

f(h · o)e(−iλ+1)〈h·o,b〉e(iλ+1)〈g·o,b〉 dh db =

∫
B

f̃(λ, b)e(iλ+1)〈g·o,b〉 db .
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Here we have used the following identity by applying the geometric identity (2.3.1):

〈h−1g · o, b〉 = 〈g · o, h · b〉+ 〈h−1 · o, b〉 = 〈g · o, h · b〉 − 〈h · o, h · b〉. (2.3.3)

So that

φλ(h−1g · o) =

∫
B

e(iλ+1)〈h−1g·o,b〉 db =

∫
B

e(iλ+1)(〈g·o,h·b〉−〈h·o,h·b〉) db = (2.3.4)∫
B

e(iλ+1)〈g·o,b〉e−(iλ+1)〈h·o,b〉e2〈h·o,b〉 db =

∫
B

e(iλ+1)〈g·o,b〉e(−iλ+1)〈h·o,b〉 db . (2.3.5)

In the second line above we have made the substitution b 7→ h−1b and used the previous lemma.

Theorem 2.3.4. If f ∈ Cc(H2), then we have the following inversion formula:

f(x) =

∫
R

∫
B

f̃(λ, b)e(iλ+1)〈x,b〉 dµ(λ) db (2.3.6)

Proof. To prove the inversion formula for the Fourier transform for f ∈ Cc(H2), let g ∈ G and consider the
K-invariant function: F (x) =

∫
K
f(gk · x) dk. By the inversion formula for the spherical transform we have

F (x) =
∫
R
F̃ (λ)φλ(x) dµ(λ) and

F̃ (λ) =

∫
G

∫
K

f(gkh · o)φ−λ(h · o) dk dh =

∫
G

f(gh · o)φ−λ(h · o) dh

=

∫
G

f(h · o)φ−λ(g−1h · o) dh = f ∗ φλ(g · o).

Hence,

f(g · o) = F (o) =

∫
R

F̃ (λ) dµ(λ) =

∫
R

f ∗ φλ(g · o) dµ(λ)

=

∫
R

∫
B

f̃(λ, b)e(iλ+1)〈g·o,b〉 dµ(λ) db .

Thus we have established the Fourier inversion theorem for Cc(H
2).

It is easy to check that the restriction of the Fourier transform to Cc(H
2)K (the K-invariant compactly

supported continuous functions) reduces to the spherical transform defined in the previous section. So in
fact, the Fourier transform is an extension of the spherical transform to functions lacking the condition
of K-invariance on the left. If f, g ∈ Cc(H2)K , then we have (f ∗ g)̃ = f̃ · g̃. However, this is not true
for the Fourier transform for arbitrary functions in Cc(H

2). Indeed, the convolution algebra Cc(H
2) is

noncommutative (which we will take for granted) which automatically prohibits the Fourier transform from
converting convolution on H2 to multiplication of functions on the space R × B due to considerations of
taking the inverse Fourier transform.

This does lead us to conclude that the convolution algebra Cc(H
2)K is indeed commutative. This is in

fact a special case of a result of Harish-Chandra. However, we do have a suitable statement of the convolution
theorem for the general Fourier transform on H2.

Theorem 2.3.5 (Convolution theorem). Suppose that f, g ∈ Cc(H
2) and that g is K-invariant, then

(f ∗ g)̃ = f̃ · g̃.

Proof. First note that g̃(λ, b) = g̃(λ) since the Fourier transform of g is constant in b by K-invariance of g.
This fact follows by the observation that if k ∈ K and b ∈ B, then

g̃(λ, k · b) =

∫
G

g(x · o)e(−iλ+1)〈x·o,k·b〉 dx =

∫
G

g(kx · o)e(−iλ+1)〈x·o,b〉 dx = g̃(λ, b).
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Thus g̃ is constant in b and integrating the Fourier transform of g over B yields the spherical transform of g.
Now a simple calculation shows (in what follows dx and dy are the same Haar measure on G):∫

G

(∫
G

f(y · o)g(y−1x · o) dy
)
e(−iλ+1)〈x·o,b〉 dx =

∫
G

∫
G

f(y · o)g(y−1x · o)e(−iλ+1)〈x·o,b〉 dy dx

=

∫
G

∫
G

f(y · o)g(x · o)e(−iλ+1)〈yx·o,b〉 dy dx =

∫
G

∫
G

f(y · o)g(x · o)e(−iλ+1)(〈x,y−1b〉+〈y,b〉) dy dx

=

∫
G

f(y · o)g̃(λ, y−1b)e(−iλ+1)〈y,b〉 dy = f̃(λ, b)g̃(λ).

In analogy to the relationship of the Radon transform to the Fourier transform on Rn on H2 we have the
following connection. Since ∫

H2

f(x) dx =

∫
AN

f(an · o) da dn

we have

f̃(λ, k · b0) =

∫
H2

f(x)e(−iλ+1)〈x,k·b0〉 dx =

∫
H2

f(k · x)e(−iλ+1)〈x,b0〉 dx

=

∫
AN

f(kan · o)e(−iλ+1) log a da dn =

∫
A

f̂(ka · ξ0)e(−iλ+1) log a da .

Thus the Fourier transform of f ∈ Cc(H2) takes the form of the Euclidean Fourier transform of the Radon
transform of f (note that A is group theoretically isomorphic to the Euclidean space R with log : A→ R
being the group isomorphism). In fact, from this representation we can deduce many of the same theorems
that hold for the Fourier transform on Rn to H2 using elements of the real variable Fourier transform theory.
We discuss these topics in the next section.

2.3.1 Plancherel and Paley-Wiener theorems

Definition 2.3.2 (Simplicity criterion). We say that λ ∈ C is simple if the map T : L2(B)→ C∞(H2) given
by

Tf(x) =

∫
B

e(iλ+1)〈x,b〉f(b) db

is injective, i.e. kerT = {0}.

Proposition 2.3.6. The nonsimple points in C are the elements of the form λ = i(1 + 2k), k ∈ Z+.

Proof. Represent x ∈ H2 in the geodesic coordinates x = (tanh r)eiφ and put b = eiθ, then using formula
(2.1.13) and the standard angular measure db = (2π)−1dθ we have

Tf(x) =
1

2π

∫ 2π

0

[
1− tanh2 r

|(tanh r)eiφ − eiθ|2

]−(iλ+1)/2

f(eiθ) dθ =
1

2π

∫ 2π

0

[
1− tanh2 r

| tanh r − eiθ|2

]−(iλ+1)/2

f(ei(θ+φ)) dθ

=
1

2π

∫ 2π

0

[
sech2 r

(tanh r − cos θ)2 + sin2 θ

]−(iλ+1)/2

f(ei(θ+φ)) dθ

=
1

2π

∫ 2π

0

[
1

sinh2 r − sinh r cosh r cos θ + 1

]−(iλ+1)/2

f(ei(θ+φ)) dθ

=
1

2π

∫ 2π

0

(cosh 2r − sinh 2r cos θ)−(iλ+1)/2f(ei(θ+φ)) dθ .
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Thus, if λ = i(1 + 2k), then letting fk(eiθ) = ei(k+1)θ, then one can verify that

Tfk(x) =
1

2π

∫ 2π

0

(cosh 2r − sinh 2r cos θ)kei(k+1)(θ+φ) dθ = 0.

To see this, note that by a symmetry argument ImTfk = 0. Investigating ReTfk we expand (cosh 2r −
sinh 2r cos θ)k into a sum by the binomial theorem and we obtain a finite some of integrals of the form

cn
∫ 2π

0
cosn θ cos(k + 1)θ dθ where 0 ≤ n ≤ k and cn ∈ R. By the product to sum formula we obtain that the

integral ∫ 2π

0

cosn(θ) cos(k + 1)θ dθ =
1

2n+1

∑
α∈{1,−1}n+1

∫ 2π

0

cos

θ( n∑
j=1

αj + αn+1(k + 1))

 dθ .
Here α = (α1, . . . , αn+1). The sum

∑n
j=1 αj + αn(k + 1) 6= 0 for n ≤ k, thus each integral appearing in the

sum above vanishes. Hence Tfk ≡ 0 and so λ is not simple. To study those λ such that λ 6= i(1 + 2k) where
k ∈ Z+ we require a lemma.

Lemma 2.3.7. Let f ∈ L1([0, 2π]) and put

H(t) =

∫ 2π

0

(cosh t− sinh t cos θ)−sf(θ) dθ .

Then if −s 6∈ Z+, then H = 0 implies that
∫ 2π

0
cosn(θ)f(θ) dθ = 0 for each n ∈ N.

Proof. We proceed by induction on n. Observe

dn

dtn
(cosh t− sinh t cos θ)−s =

n∑
j=1

αnj (cosh t− sinh t cos θ)−s−j(sinh t− cosh t cos θ)j

for some choice of constants αnj ∈ N. In particular αnn = (−1)ns(s+ 1) · · · (s+n− 1) which is always nonzero

if s is not a negative integer. So if H = 0, then H(n) = 0 and so by commuting the derivative with the

integral and setting t = 0 we conclude that for each n ∈ N that
∫ 2π

0
cosn(θ)f(θ) dθ = 0.

Returning to the proof of the proposition we have that if λ 6= i(1+2k) for k ∈ Z+, then −s = −1/2(iλ+1) 6∈
Z+ and so by the conclusion of our lemma we have that if Tf = 0, then for all n ∈ N,∫ 2π

0

cosn(θ)f(ei(θ+φ)) dθ = 0. (2.3.7)

Expanding f into its L2 Fourier series we have f(ei(θ+φ)) =
∑
m∈Z ame

imθeimφ, then by (2.3.7) and by the

product to sum formula we have ane
inφ = −a−ne−inφ for all φ ∈ [0, 2π]. Thus the terms of the Fourier series

for f cancel and so f = 0. This concludes the proof.

Proposition 2.3.8. If −λ is simple, then the space of functions {f̃(λ, ·) : f ∈ D(H2)} is dense in L2(B).

Proof. If this were not the case, then there exists some g ∈ L2(B) such that 〈f̃(λ, ·), g〉 = 0 for all f ∈ D(H2)
by Proposition A.3.1. Hence we have∫

B

f̃(λ, b)g(b) db =

∫
B

∫
H2

f(x)g(b)e(−iλ+1)〈x,b〉 dx db =

∫
H2

f(x)

∫
B

g(b)e(−iλ+1)〈x,b〉 db dx = 0.

By the density of D(H2) in L1(H2) we conclude that∫
B

g(b)e(−iλ+1)〈x,b〉 db = 0

for all x ∈ H2 which contradicts the simplicity of −λ.
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Now we arrive at the Plancherel theorem.

Theorem 2.3.9 (Plancherel Theorem). The Fourier transform F : f 7→ f̃ extends to an isometry of L2(H2)
onto L2(B ×R+; 2 dµ(λ, b)). Here dµ(λ, b) = dµ(λ) db.

Proof. We first show that ‖f‖L2(H2) = ‖f̃‖L2(B×R+) for f ∈ D(H2). Then extending the Fourier transform
by continuity to all of L2(H2) we obtain that the Fourier transform is an isometry of L2(H2) into L2(B ×
R+; 2 dµ(λ, b)). Afterwards we prove surjectivity.

So if f ∈ D(H2) and we have that if λ ∈ R, then λ is simple. Furthermore we have the elementary identity∫
H2

f ∗ φλ(x)f(x) dx =

∫
B

|f̃(λ, b)|2 db

so that after integrating this identity over R+ with the measure (π2)−1|c(λ)|−2dλ we have

‖f̃‖2L2(B×R+) =
1

2π2

∫
R

∫
H2

f ∗ φλ(x)f(x) dx |c(λ)|−2 dλ =
1

2π2

∫
H2

f(x)

{∫
R

f ∗ φλ(x)|c(λ)|−2 dλ

}
dx

=

∫
H2

|f(x)|2 dx = ‖f‖2L2(H2).

Note that in the transition from the third to the fourth equality we have used the Fourier inversion formula
and we have used the symmetry of f ∗ φλ over R. We extend the Fourier transform to all of L2(H2) by

setting f̃ = limn→∞ f̃n where fn → f in L2(H2) and each fn ∈ D(H2). Although it is elementary, we remark
that this extension is well-defined since the Fourier transform is an isometry on a dense subspace of L2(H2).

To prove surjectivity of the Fourier transform we note that it is sufficient to prove that the image of the
subspace X = D(H2) ↪→ L2(H2) under the Fourier transform is dense in L2(B ×R+). This is because the
range of a linear isometry between Banach spaces is always closed. By way of contradiction suppose that
there is F ∈ L2(B ×R+) so that F ∈ X̃⊥.

Consider the subspace X̃K = DK(H2) ↪→ L2(H2). Then we have that X̃K forms an algebra under

multiplication (since if f1, f2 ∈ DK(H2), we have (f1 ∗ f2)̃ (λ) = f̃1(λ) · f̃2(λ)) and is closed under complex

conjugation since
¯̃
f(λ) = ˜̄f(−λ) = ˜̄f(λ) since φλ = φ−λ. Next, the elements of X̃K , regarded as continuous

functions on R, vanish at infinity since we note that

f̃(λ) =

∫
A

f̂(a · ξ0)e(−iλ+1) log a da

and thus by the standard Riemann-Lebesgue Lemma on R, f̃(λ) → 0 as |λ| → ∞. Finally, the algebra

X̃K separates points on R+ since if f̃(λ1) = f̃(λ2) for all f ∈ DK(H2), then by density we have φλ1
= φλ2

.
But applying the Laplacian ∆H2 to φλj for j = 1, 2 we find λ2

1 = λ2
2 so that λ1 = λ2. Thus, by the

Stone-Weierstrass theorem for locally compact Hausdorff spaces we find that X̃K is a dense subalgebra of
C0(R+).

So if F ∈ X̃⊥, then for a fixed f ∈ D(H2) and ψ ∈ DK(H2) we have∫
R+

ψ̃(λ)

{∫
B

F (λ, b)f̃(λ, b) db

}
dµ(λ) =

∫
B×R+

(f ∗ ψ)̃ (λ, b)F (λ, b) dµ(λ, b) = 0.

Thus by density considerations we have that the function

Pf : λ 7→
∫
B

F (λ, b)f̃(λ, b) db

vanishes almost everywhere. Let Nf be the nullset for which Pf is nonzero. For each n ∈ N, let φn ∈ D(H2)
be a smooth characteristic function of the ball Bn(o) = {x ∈ H2 : d(o, x) < n}. Writing x = a+ ib ∈ H2, let

43



V denote the vector space generated by all functions of the form φn(x)P (a, b) where P is a polynomial of a
and b with rational coefficients. Thus, we remark that V is a countable subspace of D(H2).

So in particular, if we put N =
⋃
f∈V Nf , then N being the countable union of nullsets is a Lebesgue

nullset of R+. Choosing a sequence fk ∈ V which converges to f uniformly, we conclude that

lim
k→∞

∫
B

F (λ, b)f̃k(λ, b) db =

∫
B

F (λ, b)f̃(λ, b) db = 0,

for all λ ∈ R+ \N . Thus, for each λ ∈ R+ \N , f ∈ D(H2), we have Pf (λ) = 0. Thus by the simplicity of
λ ∈ R+ \ N , and Proposition 2.3.8, the function b 7→ F (λ, b) = 0 for all λ ∈ R+ \ N . Hence F (λ, b) = 0

almost everywhere. So by Proposition A.2.1, X̃ is dense in L2(R+ ×B). Whence the Fourier transform F is
surjective on L2(H2) which finishes the proof.

Definition 2.3.3. Let N > 0 be a real number. We say a smooth function F : C× B → C, is of uniform
exponential type N if F is holomorphic in the variable λ and for each m ∈ N

sup
λ∈C,b∈B

|F (λ, b)(1 + |λ|)me−N | Imλ|| <∞. (2.3.8)

Denote the set of functions on C×B of uniform exponential type N by HN and put H0 =
⋃
N>0 HN .

Finally, let H denote the subspace of H0 to be the set of elements which satisfy the following symmetry
condition ∫

B

ψ(λ, b)e(iλ+1)〈x,b〉 db =

∫
B

ψ(−λ, b)e(−iλ+1)〈x,b〉 db

for all x ∈ H2.

Theorem 2.3.10 (Paley-Wiener theorem). The Fourier transform F is a bijection of D(H2) onto H .

The proof of this theorem is quite long for the purposes of this thesis and we shall not furnish the entire
proof. However, we find it more fruitful to cover the basic idea of the proof instead. First, it is clear that if
f ∈ D(H2) has support in the ball BN (o), then for the Fourier transform

f̃(λ, b) =

∫
H2

f(x)e(−iλ+1)〈x,b〉 dx

we can complexify λ and differentiate in λ directly on the integral. Furthermore, since b 7→ 〈x, b〉 is smooth we

determine that f̃(λ, b) is a smooth function that is holomorphic in λ. Furthermore by elementary estimates
we observe

|(1 + |λ|2)mf̃(λ, b)| ≤ ‖∆mf‖1 sup
x∈supp f

e| Imλ|〈x,b〉 ≤ ‖∆mf‖1eN | Imλ|,

which leads us to conclude that f̃ ∈HN . To see that f̃ satisfies the aforementioned symmetry condition we
note that the spherical functions satisfy φλ = φ−λ, thus for x ∈ H2

f ∗ φλ(x) =

∫
B

f̃(λ, b)e(iλ+1)〈x,b〉 db =

∫
B

f̃(−λ, b)e(−iλ+1)〈x,b〉 db = f ∗ φ−λ(x)

as needed. The converse is far more complicated and contains the bulk of the proof. Essentially, the major
difficulty is proving the inverse Fourier transform F−1 maps H into D(H2).

Recall that for the torus T and any function f ∈ C∞(T) we have the Fourier series expansion

f(eiθ) =
∑
n∈Z

f̂(n)einθ
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which converges to f absolutely on T. In particular, for K = SO(2), the irreducible unitary representations
are precisely the functions χn(eiθ) = einθ where n ∈ Z, i.e. T = K. So for ψ ∈H if we consider the smooth
function

Ψ(x) =

∫
R×B

ψ(λ, b)e(iλ+1)〈x,b〉 dµ(λ, b) (2.3.9)

we can consider the (absolutely convergent) Fourier series expansion of the function γ 7→ Ψ(eiγx) evaluated
at γ = 0, to obtain

Ψ(x) =
1

2π

∑
m∈Z

∫ 2π

0

Ψ(eiθx)χm(e−iθ) dθ . (2.3.10)

Inserting the formula for ψ into the sum above we obtain:

Ψ(x) =
∑
m∈Z

1

2π

∫
R×B

ψ(λ, b)

{∫ 2π

0

e(iλ+1)〈x,e−iθb〉χm(e−iθ) dθ

}
dµ(λ, b)

=
∑
m∈Z

1

(2π)2

∫ 2π

0

∫
R

ψ(λ, eiφ)

{∫ 2π

0

e(iλ+1)〈x,ei(φ−θ)〉χm(e−iθ) dθ

}
|c(λ)|−2(2π2)−1 dλ dφ

=
∑
m∈Z

1

(2π)2

∫ 2π

0

∫
R

ψ(λ, eiφ)e−imφ
{∫ 2π

0

e(iλ+1)〈x,eiθ〉χm(eiθ) dθ

}
|c(λ)|−2(2π2)−1 dλ dφ .

We now expand ψ(λ, eiφ) into its own absolutely convergent Fourier series ψ(λ, eiφ) =
∑
k∈Z ψk(λ)eikφ where

the Fourier coefficients ψk(λ) are given by

ψk(λ) =
1

2π

∫ 2π

0

ψ(λ, eiφ)χk(e−iφ) dφ .

Substituting the Fourier series for ψ(λ, eiφ) into our integrals we obtain

Ψ(x) =
∑
m∈Z

1

(2π)2

∫ 2π

0

∫
R

ψ(λ, eiφ)e−imφ
{∫ 2π

0

e(iλ+1)〈x,eiθ〉χm(eiθ) dθ

}
|c(λ)|−2(2π2)−1 dλ dφ

=
∑
m∈Z

1

2π

∫
R

ψm(λ)

{∫ 2π

0

e(iλ+1)〈x,eiθ〉χm(eiθ) dθ

}
|c(λ)|−2(2π2)−1 dλ .

Definition 2.3.4. For m ∈ Z and λ ∈ C, define the Eisenstein integral (also called the generalized spherical
function) by

Φλ,m(x) =
1

2π

∫ 2π

0

e(iλ+1)〈x,eiθ〉χm(eiθ) dθ . (2.3.11)

Clearly Φλ,m is smooth on H2.

Thus, our final expression for Ψ becomes

Ψ(x) =
1

2π2

∑
m∈Z

∫
R

ψm(λ)Φλ,m(x) dµ(λ) . (2.3.12)

We trust the reader to verify that all the exchanges of the integrals that we have made are valid due to
the rapid decay of ψ and by the absolute convergence of the respective Fourier series expansions. To prove
the Paley-Wiener theorem we shall need to show that Ψ has compact support and that Ψ̃ = ψ so that the
assignment ψ 7→ Ψ is an inverse to the Fourier transform.
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As one may expect, if ψ ∈HN , then supp Ψ ⊂ BN (o). This will be done by showing that
∫
R
ψm(λ)Φλ,m(x) dµ(λ)

vanishes for x 6∈ BN (o). This is not necessarily any easier to do from our present position. We will outline
those steps.

Step 1: Let Ψm(x) =
∫
R
ψm(λ)Φλ,m(x) dµ(λ). If d(o, x) > N , then we wish to show that Ψm(x) = 0. In

fact it is actually sufficient to prove that Ψm(tanh r) = 0 for r > N since Ψm(eiθx) = eimθΨ(x).
To this end, we must carefully study the Eisenstein integral. In order to simplify our study, we determine

a special series expansion for the Eisenstein integrals for which the series’ terms have a simpler asymptotic
behavior. The particular series expression for the Eisenstein integrals is given by the following proposition.

Proposition 2.3.11. For iλ 6∈ 2Z, the Eisenstein integral Φλ,m has the following series expansion:

Φλ,m(tanh r) = c(λ)

∞∑
n=0

Γn(λ)e(iλ−1−2n)r + c(−λ)
pm(iλ)

pm(−iλ)

∞∑
n=0

Γn(−λ)e(−iλ−1−2n)r (2.3.13)

where the gamma coefficients satisfy for each ε > 0 the estimate supn∈N |Γn(λ)|eεn < ∞ and pm is the
polynomial

pm(y) =

|m|−1∏
j=0

(
1

2
(y + 1) + j

)
.

Step 2: Using the series expansion for the Eisenstein integrals, in the integral defining Ψm we expand
Φλ,m into its series and study the integral by integrating termwise. In order to do this we must be certain
that we can commute the sum and integral. This guarantee is provided by application of the following two
lemmas.

Lemma 2.3.12. For λ ∈ R and n ∈ N, there exists uniform constants c, d > 0 (independent of λ and n)
such that |Γn(λ)| ≤ c(1 + nd).

Lemma 2.3.13. The following relation holds: ψm(λ) = ψm(−λ)pm(−iλ)pm(iλ)−1.

Thus if r > N , then inserting the series representation for Φλ,m we obtain two integrals∫
R

c(λ)|c(λ)|−2
∞∑
n=0

Γn(λ)e(iλ−1−2n)rψm(λ) dλ

and ∫
R

c(−λ)
pm(iλ)

pm(−iλ)
|c(λ)|−2

∞∑
n=0

Γn(−λ)e(−iλ−1−2n)rψm(λ) dλ .

Thus using Lemma 2.3.12 we can estimate on the integrand and determine that the series
∑∞
n=0 |Γn(±λ)|e(−1−2n)r

converges. So the first integral is dominated by

I = A

∫
R

|c(λ)|−1|ψm(λ)| dλ (2.3.14)

for some finite constant A > 0 while using Lemma 2.3.13 and the relation c(λ)c(−λ) = |c(λ)|2, the second
integral is also dominated by I. The integral I is finite due to the fact that |c(λ)|−1 has polynomial growth
and the rapid decay of ψm.

Therefore by Fubini’s theorem we can interchange the sum and integral to obtain for Ψm and using
Lemma 2.3.12 again we get

Ψm(tanh r) = (2π2)−12

∞∑
n=0

e−(1+2n)r

∫
R

c(−λ)−1Γn(λ)ψm(λ)eiλr dλ .
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Step 3: The last few steps are to show that

Q(r) =

∫
R

c(−λ)−1Γn(λ)ψm(λ)eiλr dλ = 0

when r > N . This is proved in a similar fashion to the classical Paley-Wiener theorem for Rn by using the
Cauchy integral theorem. The necessary augmentation is that when shifting the contour of integration, we
must be mindful since Γn and c both have poles. However, there exists a region of the half plane where
the contour of integration may shifted while maintaining a holomorphic integrand. From this, we apply a
modified argument of the classical Paley-Wiener theorem to obtain that Q(r) = 0 when r > N . Thus Ψm ≡ 0
and Ψ ≡ 0 when r > N .

Therefore, the assignment ψ 7→ Ψ maps H into D(H2). The final step is to prove that Ψ̃ = ψ. Proving

this will give both the surjectivity and injectivity of the Fourier transform. To this end put F = Ψ̃− ψ, then
by the Fourier inversion formula

Y (x) =

∫
R

{∫
B

F (λ, b)e(iλ+1)〈x,b〉 db

}
dµ(λ, b) = 0.

In particular we see that by using the symmetry condition that F satisfies∫
R+

{∫
B

F (−λ, b)e(−iλ+1)〈x,b〉 db

}
dµ(λ, b) = 0.

If we let f ∈ D(H2) and we multiply by the above integral by f , integrate over H2, and use Fubini’s theorem
we have ∫

R+×B
F (−λ, b)f̃(λ, b) dµ(λ, b) = 0.

Recall that as the functions b 7→ f̃(λ, b) (f ∈ D(H2)) are a dense subset of L2(B) we must conclude that
F (−λ, b) ≡ 0 on R+ ×B. But again since∫

B

F (λ, b)e(iλ+1)〈x,b〉 db =

∫
B

F (−λ, b)e(−iλ+1)〈x,b〉 db = 0, λ ∈ R+

we find that by the simplicity of λ that F (λ, b) ≡ 0 on R+×B as well. Thus F ≡ 0 or in other words, Ψ̃ = ψ
and so we are done.

The Fourier transform on L1(H2)

So far we have treated the Fourier transform on the classical function spaces D(H2) and L2(H2). In the case
of D(H2), the Fourier transform is defined explicitly whereas for L2(H2) the Fourier transform is defined
indirectly by extending the Fourier transform by continuity from D(H2) ↪→ L2(H2) to all of L2(H2). The
obvious question is if whether one can define the Fourier transform for L1(H2) since the classical Fourier
transform theory for a locally compact (abelian or compact) group G permits the Fourier transform to be
well-defined on the group algebra L1(G).

The major obstacle for us it would seem is that if f ∈ L1(H2), then the integral

f̃(λ, b) =

∫
H2

f(x)e(−iλ+1)〈x,b〉 dx (2.3.15)

may not converge due to the exponential growth of e〈x,b〉 as x→ b. As it turns out we can in fact obviate
this issue quite satisfactorily by the following lemma.

Lemma 2.3.14 (Riemann-Lebesgue Lemma). Let f ∈ L1(H2). Then there exists a subset B′ ⊂ B with
B \B′ having db-measure zero such that for b ∈ B′,

47



1. The Fourier transform f̃(λ, b) defined by formula (2.3.15) exists for each λ in the tube
T = {λ ∈ C : | Imλ| ≤ 1} and is holomorphic in its interior.

2. lim|Reλ|→∞ f̃(λ, b) = 0 uniformly for | Imλ| ≤ 1.

To prove the Riemann-Lebesgue lemma we require an intermediate lemma.

Lemma 2.3.15. The spherical function φλ is bounded if | Imλ| ≤ 1.

Proof. Let f ∈ L1
K(H2) (the K-invariant integrable functions) and suppose | Imλ| ≤ 1, then since f is radial,

the modified Radon transform Rf(at · ξ0) is even in t. Thus∫
H2

|f(x)||φλ(x)| dx ≤
∫
H2

|f(x)|φi Imλ(x) dx =

∫
A

R|f |(a · ξ0)e(Imλ) log a da

=

∫
R

R|f |(at · ξ0)e(Imλ)t dt =

∫ ∞
0

(e−(Imλ)t + e(Imλ)t)R|f |(at · ξ0) dt ≤ 2

∫ ∞
0

e−tR|f |(at · ξ0) dt ≤ ‖f‖1.

Thus the pairing 〈f, φλ〉 is continuous, so φλ ∈ L∞K (H2) by duality considerations.

We remark that a stronger result exists which states that φλ is bounded if and only if | Imλ| ≤ 1. However
we will not require the converse for the proof of the Riemann-Lebesgue lemma on the hyperbolic plane.

Proof of the Riemann-Lebesgue lemma. Let f ∈ L1(H2), then∫
B

|f̃(λ, b)| db ≤
∫
B

∫
H2

|f(x)|e(Imλ+1)〈x,b〉 dx db =

∫
H2

|f(x)|φi Imλ(x) dx ≤ ‖f‖1.

Thus f̃(λ, b) exists for almost every b and so there is a nullset B′λ for which f̃(λ, b) exists on Bλ = B \B′λ.
Put B′ = Bi ∩B−i and write λ = ξ + iη (|η| ≤ 1). For b ∈ B′ we have that the Fourier integral

f̃(ξ + iη, b) =

∫
H2

f(x)e−iξ〈x,b〉e(η+1)〈x,b〉 dx,

can be majorized uniformly in λ = ξ+iη. In particular, set H2
+ = {x ∈ H2 : 〈x, b〉 ≥ 0} and put H2

− = H2\H2
+.

Then the following majorization holds:

|f̃(ξ + iη, b)| ≤
∫
H2

+

|f(x)|e2〈x,b〉 dx+

∫
H2
−

|f(x)| dx ≤ |̃f |(i, b) + |̃f |(−i, b).

So for fixed b ∈ B′, f̃(λ, b) is uniformly bounded on T and is continuous in λ by the dominated convergence
theorem. Hence if γ is a closed C1 curve on the interior of T , then using Fubini’s theorem∫

γ

f̃(λ, b) dλ =

∫
γ

∫
H2

f(x)e(−iλ+1)〈x,b〉 dx dλ =

∫
H2

f(x)

{∫
γ

e(−iλ+1)〈x,b〉 dλ

}
dx = 0.

So f̃(λ, b) is holomorphic on the interior of T by Morera’s theorem (note f̃(λ, b) is continuous in λ by the
dominated convergence theorem). Since B \B′ has measure zero we obtain the result of (1).

To prove (2) we note that if f ∈ L1(H2), then its Radon transform

f̂(ka · ξ0) =

∫
N

f(ka · n) dn

exists for almost all k ∈ K and a ∈ A. Indeed, this fact is true because∫
H2

|f(x)| dx =

∫
G

|f(g · o)| dg =

∫
K×A×N

|f(kan)|e2 log a dk da dn =

∫
K

∫
A

|̂f |(ka · ξ0)e2 log a dk da <∞.
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Now we can shrink B′ so that f̂(ka · ξ0) exists for almost every a ∈ A for each k · b0 ∈ B′ and so that B′ still
has complement measure zero. Now note that if we put λ = ξ + iη, then

|̃f |(λ, k · b0) =

∫
X

|f(k · x)|e(−iλ+1)〈x,b0〉 dx =

∫
AN

|f(kan · o)|e(−iλ+1) log a da dn

=

∫
A

{
|̂f |(ka · ξ0)e(η+1) log a

}
e−iξ log a da .

So if ξ = 0, then we see that for each |η| ≤ 1 that f̂(kat · ξ0)e(η+1)t ∈ L1(R) and so has a Euclidean Fourier
transform. Moreover,

f̃(ξ + iη, k · b0) =

∫
A

{
f̂(ka · ξ0)e(η+1) log a

}
e−iξ log a da =

∫
R

{
f̂(kat · ξ0)e(η+1)t

}
e−iξt dt

which is the Fourier transform of f̂(kat · ξ0)e(η+1)t at ξ. So by the ordinary Riemann-Lebesgue lemma on

Rn, we see that f̃(ξ + iη, b)→ 0 as |ξ| → ∞. To show that this holds uniformly for |η| ≤ 1 we consider the
following function on H2 defined by Ψ(an ·o) = e2 log a+ 1. And for fixed k · b0 ∈ B′ we put Ψ′(x) = Ψ(k−1 ·x)
(and observe f ·Ψ′ ∈ L1(H2) as we have previously shown). Let fN ∈ D(H2) so that∫

H2

|f(x)− fN (x)|Ψ′(x) dx→ 0

as N →∞. Put gN = f − fN and we now have

|g̃N (ξ + iη, k · b0)| ≤
∫
AN

|f(kan · o)− fN (kan · o)|e(η+1) log a da dn

≤
∫
N

∫ ∞
0

|f(katn · o)− fN (katn · o)|e2t dt dn+

∫
N

∫ 0

−∞
|f(katn · o)− fN (katn · o)| dt dn

≤
∫
H2

|f(k · x)− fN (k · x)|Ψ(x) dx =

∫
H2

|f(x)− fN (x)|Ψ′(x) dx .

So choosing N large enough we have |g̃(ξ+ iη, k · b0)| < ε/2 for all |η| ≤ 1. Now by the Paley-Wiener theorem

|f̃N (ξ+ iη, k · b0)| ≤ ε/2 for |ξ| > M where M is some positive constant (and here |η| ≤ 1). Since f̃ = g̃N + f̃N
we obtain |f̃(ξ + iη, b)| ≤ ε for all |ξ| > M and |η| ≤ 1. Thus we have (2).

We can now prove a type of inversion formula for functions in L1(H2) with absolutely integrable Fourier
transforms.

Theorem 2.3.16. The Fourier transform is injective on L1(H2). Furthermore, if f ∈ L1(H2) and f̃ ∈
L1(R×B), then

f(x) =

∫
R×B

f̃(λ, b)e(iλ+1)〈x,b〉 dµ(λ, b)

almost everywhere on H2.

Proof. Let ψr be a family of K bi-invariant mollifiers on L1(G) (see A.1.4) and let f ∈ L1(H2). Now we have
by the Fubini theorem ∫

R×B
f̃(λ, b)ψ̃r(λ)e(iλ+1)〈h·o,b〉 dµ(λ, b) =

∫
R

f ∗ φλ(h · o)ψ̃r(λ) dµ(λ)

=

∫
R

{∫
G

f(g · o)φλ(g−1h · o) dg
}
ψ̃r(λ) dµ(λ) =

∫
G

{∫
R

ψ̃r(λ)φλ(g−1h · o) dµ(λ)

}
f(g · o) dg

= f ∗ ψr(h · o).
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Thus if f̃ ≡ 0, then f ∗ ψr ≡ 0 and as r → 0 we have f ∗ ψr → f in L1 so that f ≡ 0. Thus the kernel
of the Fourier transform is trivial and so the Fourier transform is injective on L1(H2). If we assume that

f̃ ∈ L1(R×B, dµ(λ) db), then the function (λ, b) 7→ f̃(λ, b)e(iλ+1)〈x,b〉 is also in L1(R×B, dµ(λ) db). Moreover,
we have

lim
r→∞

ψ̃r(λ) = lim
r→∞

∫
H2

ψr(x)φ−λ(x) dx = 1

since ∣∣∣∣∫
H2

ψr(x)[φ−λ(x)− 1] dx

∣∣∣∣ ≤ sup
x∈suppψr

|φ−λ(x)− 1| → 0

as r →∞. Thus, since f ∗ψr → f in L1 we can choose a subsequence so that f ∗ψrj → f almost everywhere
and applying the dominated convergence theorem:

f(x) = lim
j→∞

f ∗ ψrj (x) = lim
j→∞

∫
R×B

f̃(λ, b)ψ̃rj (λ)e(iλ+1)〈x,b〉 dµ(λ, b) =

∫
R×B

f̃(λ, b)e(iλ+1)〈x,b〉 dµ(λ, b)

for almost every x ∈ H2.

2.4 Remarks

In summary, the Fourier transform that we have defined on the hyperbolic plane H2 shares many of the
same useful properties of the Fourier transforms on Rn and on locally compact groups. The keynote results:
the Plancherel theorem, Fourier inversion formula, and the Riemann-Lebesgue Lemma hold analogously for
the Fourier transform on H2 just as they do for locally compact abelian groups. What is more is that this
Fourier transform also interacts nicely with the smooth structure of H2 much like how the Euclidean Fourier
transform behaves on Rn or the Fourier transform behaves on T.

For instance if ∆H2 is Laplacian on H2, then by Green’s identities

(∆H2f )̃ (λ, b) =

∫
H2

{∆H2f(x)} e(−iλ+1)〈x,b〉 dx =

∫
H2

f(x)
{

∆H2e(−iλ+1)〈x,b〉
}
dx = −(λ2 + 1)f̃(λ, b),

which is an instance of Proposition 1.1.1 Property (2). This type of estimate led us to the Paley-Wiener
theorem for C∞c (H2). What is lacking from our discussion in this chapter is a discussion of the hypothesized
Schwartz space S(H2) for which a version of Theorem 1.1.8 holds. We shall discuss the Schwartz spaces in
the next chapter.

There are unfortunately a few defects to this Fourier transform which we have encountered in our discussion.
One of the issues that we are faced with is that since L1(H2) as a convolution is noncommutative, then the

Fourier transform does not satisfy (f ∗ g)̃ = f̃ g̃ in general if g is not K-invariant. This seemingly minor
obstacle will actually cause several large problems that we will encounter in Chapter 3. Another issue is
that the Fourier transform does not behave nicely with respect to translation by G on H2. In particular if
τgf(x) = f(g · x) for g ∈ G, then it is not necessarily true that

(τgf )̃ (λ, b) = e(−iλ+1)〈g·o,b〉f̃(λ, b)

on H2 in comparison to the result of Proposition 1.2.6. What is true is that

(τgf )̃ (λ, b) = e(−iλ+ρ)〈g−1·o,b〉f̃(λ, g · b)

which complicates things slightly due to the term f̃(λ, g ·b) which depends also on g. However for the spherical
transform we have that if f is K-invariant, then

(τgf )̃ (λ) =

∫
H2

f(x)φ−λ(g−1x) dx =

∫
K

∫
H2

f(kx)φ−λ(g−1kx) dx =

∫
H2

f(x)φ−λ(g−1 · o)φ−λ(x) dx

= φ−λ(g−1 · o)f̃(λ) = φλ(g · o)f̃ .
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where we have applied (2.2.7). Again, while this will seem minor, this type of obstacle provides us technical
difficulties which we shall encounter as we attempt to study objects called pseudo-differential operators—and
in many situations we will find that the spherical transform is much more well-behaved and more convenient
to work with.
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Chapter 3

Fourier transforms for homogeneous
spaces of connected semisimple Lie
groups

3.1 Preliminaries

3.1.1 Cartan and Iwasawa decompositions of semisimple Lie groups

Suppose that g is a finite-dimensional real Lie algebra. Recall that the Killing form B : g × g → R is the
map defined by B(X,Y ) = Tr(ad(X) ◦ ad(Y )) where for each X ∈ g the map ad(X) : g → g is defined by
ad(X)(Y ) = [X,Y ] where [·, ·] is the Lie bracket on g. We say that g is semisimple if the Killing form B is
non-degenerate, which is to say that the map from g to g∗ given by Y 7→ (X 7→ B(X,Y )) is an isomorphism.
From now on, we shall assume that g is semisimple.

If θ : g→ g is an involutive Lie algebra automorphism of g (i.e. θ is an automorphism, θ[X,Y ] = [θX, θY ]
for all X,Y ∈ g, and θ2 = id), then we say that θ is a Cartan involution of g if the bilinear form
Bθ(X,Y ) = −B(X, θY ) is positive definite. If θ is a Cartan involution of g, then being an involution over R,
it is diagonalizable and so we can obtain an eigenspace decomposition of g according to θ given by

g = k + p

where k is the eigenspace corresponding to the eigenvalue +1 of θ, and p is the eigenspace corresponding to the
eigenvalue −1 of θ. This type of decomposition is called the Cartan decomposition of g and it is a fact that any
semisimple Lie algebra has a Cartan involution and thus has a Cartan decomposition (see [16, Prop. 6.14]).
In this decomposition k is a Lie subalgebra (since [k, k] ⊂ k) whereas p is an ordinary vector space. Let a ⊂ p
be a maximal abelian subspace of p. All maximal abelian subspaces in p have the same dimension [16, Thm.
6.51]. For each α ∈ a∗ we put

gα = {X ∈ g : ad(H)(X) = α(H)X, for all H ∈ a}.

If α 6= 0 and gα is nontrivial, then we call α a root (or restricted root) of the pair (g, a) and gα the root space
of α. Let Σ denote the set of roots corresponding to the pair (g, a). It is known that for each X ∈ p, that
ad(X) : g→ g is diagonalizable (see [12, Ch. VI, Lemma 1.2]). In fact by the Jacobi identity the set of maps
{adH : H ∈ a} form a commuting set of linear transformations of g and so this family can be simultaneously
diagonalized. This then yields a joint eigenspace decomposition of g by

g = g0 +
∑
α∈Σ

gα,
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where g0 = a + m and where m is the centralizer of a in k. In particular there are only finitely many distinct
roots for (g, a).

Turning our attention to the subspace a we shall call a point H ∈ a regular if α(H) 6= 0 for all α ∈ Σ,
otherwise it is called a singular point. We put Hα = {H ∈ a : α(H) = 0} and call Hα the hyperplane at
α. The subset of regular elements a′ ⊂ a is thus the complement a′ = a \

⋃
α∈ΣHα. Imposing upon a the

standard Euclidean topology, the hyperplanes Hα divide a into finitely many connected components and we
shall thus call a Weyl chamber in a to be a connected component of a′.

Fix a Weyl chamber a+ of a. We shall say a root α is positive if α|a+ is positive valued. And we say a
positive root is simple if it is not the sum of two positive roots. Then we can describe the Weyl chamber
a+ by a+ = {H ∈ a : α(H) > 0, α ∈ Σ′} where Σ′ ⊂ Σ is the set of simple roots. Let Σ+ denote the set of
positive roots (corresponding to a+) and put n =

∑
α∈Σ+ gα.

Then n is a Lie subalgebra of g by the following simple observation that if α, β ∈ Σ+, then [gα, gβ ] ⊂ gα+β

which follows by using the Jacobi identity of the Lie bracket. Since the sum of two positive roots is also
positive, it follows that n is a Lie subalgebra. In fact n is nilpotent (its lower central series terminates) due to
the fact that the set of positive roots is finite. We thus obtain the so-called Iwasawa decomposition of g via
the following theorem.

Theorem 3.1.1. If k, a, and n are as given above, then we have the direct sum decomposition

g = k + a + n,

which is called the Iwasawa decomposition of g.

Now we turn our attention to Lie groups; recall that we say a Lie group G is semisimple if its Lie algebra g
is semisimple. Suppose that G is a connected semisimple Lie group. Given a Cartan decomposition g = k + p
and a corresponding Iwasawa decomposition g = k+a+n of its Lie algebra, then there exists unique connected
Lie subgroups K, A, and N corresponding to the subalgebras k, a, and n. Let a+ denote the closure of a+ in
a and put A+ = exp a+, then we have the following group theoretic decompositions of G.

Theorem 3.1.2. If G and K, A, and N are as above, then we have the Cartan decomposition

G = KA+K. (3.1.1)

Here, each g ∈ G can be uniquely decomposed as g = k1(expH)k2 for unique k1, k2 ∈ K and H ∈ a+. We
also have the Iwasawa decomposition

G = KAN. (3.1.2)

The connected subgroups A, and N are abelian and nilpotent respectively. Moreover the map (k, a, n) 7→ kan
is a diffeomorphism from K ×A×N onto G. Furthermore, K contains the center of G and is compact if and
only if the center of G is finite. Finally, the groups K, A, and N are all unimodular and G is unimodular.

The proofs of these theorems can be found in [12, Ch. VI and Ch. IX]. The real rank of G is then defined
to be the dimension of a. Now given a Lie subgroup K ⊂ G of a semisimple Lie group G one would be
interested to know whether or not the corresponding decomposition g = k + p is a Cartan decomposition.
Since for the rest of this chapter we shall only be interested in semisimple Lie groups with finite center we
shall answer this question for these groups only.

Theorem 3.1.3. Let G be a connected semisimple Lie group with finite center and K ⊂ G be a maximal
compact subgroup. Then, there exists a Cartan decomposition g = k + p such that the Lie algebra of K is k.

This theorem is a consequence of combining the results of [16, Thm. 6.31] and Theorems 1.1 and 2.2
of Chapter VI [12]. Finishing up this section, we note that if G is a connected semisimple Lie group with
Iwasawa decomposition g = k + a + n so that G = KAN , then by Theorem 3.1.2 for each g ∈ G we can
write g uniquely as g = k1a1n1 = n2a2k2 for unique k1, k2 ∈ K, a1, a2 ∈ A, and n1, n2 ∈ N . Using this
decomposition we have the following definition.
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Definition 3.1.1. Let G be a connected semisimple Lie group with corresponding Iwasawa decomposition
g = k + a + n so that G = KAN = NAK. We define the functions A : G→ a and H : G→ a by

g = k1 expH(g)n1 = n2 expA(g)k2, (3.1.3)

where k1, k2 ∈ K and n1, n2 ∈ N . Since the Iwasawa decomposition is unique, the functions g 7→ A(g)
and g 7→ H(g) are well defined and are smooth from G onto a. The definitions of A and H imply that
H(g) = −A(g−1).

Remark 7. We will often be explicit enough so that there is no confusion between the function A : G → a and
the subgroup A = exp a. The choice of notation seems to be more or less standard and it is the notation used by
Helgason [11–13].

Since a is an abelian subalgebra, the connected abelian subgroup A = exp a is diffeomorphic to a via the
exponential map exp: a→ A. We let log : A→ a be the inverse of exp: a→ A. In terms of the functions A
and H above we have log a = A(a) = H(a) for all a ∈ A.

Example 3.1.4 (The group SU(1, 1)). In Chapter 2, we considered the group SU(1, 1) which we will shall
take for granted as being semisimple. If we put

L =

(
1 0
0 −1

)
,

then we can consider the function Φ: GL(2,C) → M2(C) where Φ(A) = A∗LA and A∗ is the conjugate
transpose. If we consider the group G = Φ−1(L), the Lie subgroup SU(1, 1) ⊂ G is the set of matrices
SU(1, 1) = {A ∈ G : detA = 1}. The Lie algebra of SU(1, 1), denoted su(1, 1), is then given by su(1, 1) =
{X ∈ g : exp tX ∈ SU(1, 1), for all t ∈ R}. For exp tX ∈ SU(1, 1) for all t ∈ R, we require that
det exp tX = 1 which is equivalent to exp tTrX = 1. This only happens when TrX = 0. Furthermore, the
Lie algebra of G is calculated as g = ker dIΦ = {X ∈ M2(C) : X∗L + LX = 0}. Thus, su(1, 1) = {X ∈
M2(C) : X∗L+ LX = 0,TrX = 0}. This has a more concrete description as the collection of matrices

su(1, 1) =

{(
ia b

b −ia

)
: a ∈ R, b ∈ C

}
.

Correspondingly, the group SO(2) is a maximal compact subgroup of SU(1, 1) and has the Lie algebra

so(2) = R

(
i 0
0 −i

)
.

We thus have the Cartan decomposition su(1, 1) = so(2) + p. Moreover, the vector space p admits the
decomposition p = a + n where

a = R

(
0 1
1 0

)
, n = R

(
i −i
i −i

)
.

Since a ⊂ p is a maximal abelian subspace, this determines an Iwasawa decomposition of g. Since n is a
one-dimensional vector space there is only one positive root α ∈ a∗ corresponding to the Weyl chamber a+ =

{H ∈ a : α(H) > 0} and this root can be verified to be determined by α

(
0 1
1 0

)
= 2. If X =

(
0 x
x 0

)
∈ a for

some x ∈ R, then we have expX =

( ∑∞
n=0

x2n

(2n)!

∑∞
n=0

x2n+1

(2n+1)!∑∞
n=0

x2n+1

(2n+1)!

∑∞
n=0

x2n

(2n)!

)
=

(
coshx sinhx
sinhx coshx

)
. Thus, exp a = A

as in 2.1.15. Finally if Y =

(
iy −iy
iy −iy

)
∈ n for y ∈ R, then we easily compute expY =

(
1 + iy −iy
iy 1− iy

)
.

Thus, exp n = N as well just as in 2.1.16. Theorem 3.1.2 then gives us that SU(1, 1) = KAN , the
Iwasawa decomposition described in Chapter 2. Using the Weyl chamber a+ the set A+ is then A+ ={(

coshx sinhx
sinhx coshx

)
: x ≥ 0

}
. So we also have the Cartan decomposition SU(1, 1) = KA+K as well.
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We conclude this subsection by introducing a norm on the dual space a∗. The Killing form restricted to
a× a is known to be positive definite and so defines a non-degenerate bilinear form on a. If we complexify
the vector spaces a and a∗, obtaining ac and a∗c , we also obtain an extension of B to ac to a complex
non-degenerate bilinear form which we also denote by B. Thus it follows that to each λ ∈ a∗c there exists a
unique Hλ ∈ ac such that λ(H) = B(Hλ, H) for all H ∈ ac.

Definition 3.1.2. For λ, µ ∈ a∗c define their inner product by 〈λ, µ〉 = B(Hλ, Hµ) where Hλ and Hµ are
defined above. Also put |λ| = 〈λ, λ〉1/2. With this complex bilinear form 〈·, ·〉, a∗c becomes a complex Hilbert
space.

3.1.2 The homogeneous space X = G/K and the horocycle space Ξ = G/MN

Let G be a connected semisimple Lie group with finite center and let K ⊂ G be a maximal compact subgroup.
Let g = k + a + n = k + p be Iwasawa decompositions and Cartan decompositions of g respectively so that we
can write G = KAN . Finally let M = {k ∈ K : ka = ak, for all a ∈ A} be the centralizer of A in K.

We can form the homogeneous space X = G/K which we endow with the quotient topology via the
quotient map q : G → G/K, g 7→ gK. The homogeneous space X carries a unique smooth structure such
that q is a smooth submersion. We let o = eK ∈ X and call o the origin of X. The quotient map q has the
property that deq : g 7→ ToX maps g onto ToX and that k ⊂ ker deq and deq maps p bijectively to ToX. We
can further give X a Riemannian structure invariant under G (see [12, Ch. II, Section 4] or [18, Thm. 21.17]
for further details and constructions). This G-invariant Riemannian metric then gives rise to a G-invariant
Radon measure, dx, induced from the Riemannian volume form (also see A.1.2).

Henceforth, we assume that X is given the quotient topology and the unique smooth structure discussed
above; in addition to a G-invariant Riemannian structure and denote its corresponding G-invariant Riemannian
measure by dx.

Definition 3.1.3. Let X = G/K be the homogeneous space discussed above. A horocycle ξ in X is a set of
points in X of the form ξ = gNg−1 · o, where g ∈ G. We denote the space of horocycles in X by Ξ.

Here we summarize by a theorem a few useful facts about horocycles which we will need.

Theorem 3.1.5 ( [13, Ch. II, Prop. 1.4] and [13, Ch. II, Thm. 1.1]). The map (kM, a) 7→ kaMN · o is a
bijection from K/M × A onto Ξ, hence any horocycle ξ ∈ Ξ is of the form ξ = kaMN · o for some unique
kM ∈ K/M and a ∈ A. Moreover, the group G acts transitively on the space of horocycles Ξ via the map
g 7→ g · ξ where ξ ∈ Ξ, and the subgroup fixing the horocycle MN · o is MN .

This result then implies that Ξ can then be identified with the homogeneous space G/MN ; so there is
no ambiguity in writing Ξ = G/MN . We shall thus call a point kM ∈ K/M the normal of the horocycle
ξ = kaMN · o.

Definition 3.1.4. The composite distance of a horocycle ξ = kaMN · o ∈ Ξ to the origin is defined to be
the vector log a ∈ a.

Proposition 3.1.6. For each x ∈ X and kM ∈ K/M , there exists a unique horocycle containing x with
normal kM . We denote this horocycle by ξ(x, kM).

Proof. Write x = gK for some g ∈ G. Using the Iwasawa decomposition G = NAK write

k−1g = n(expA(k−1g))k,

then k−1gK ∈MN(expA(k−1g)) · o = (expA(k−1g))MN · o (the group A normalizes N and remember M
centralizes A). So k(expA(k−1g))MN · o is the unique horocycle containing x = gK with normal kM .

If x ∈ X and kM ∈ K/M , then we denote the composite distance of ξ(x, kM) to o by A(x, kM). By the
proof of Proposition 3.1.6 we see that A(x, kM) = A(k−1g) where x = gK. Let κ : G→ K and u : G→ K be
the functions defined by g = κ(g) expH(g)n1 = n2 expA(g)u(g) where n1, n2 ∈ N . We then put kg = κ(gk)
and g(kM) = kgM—which defines a group action of G on K/M .
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Proposition 3.1.7. For g ∈ G, x ∈ X, and kM ∈ K/M we have

A(g · x, g(kM)) = A(x, kM) +A(g · o, g(kM)). (3.1.4)

Proof. We shall prove A(g · x, kM) = A(x, g−1(kM)) +A(g · o, kM). Writing x = hK put

k−1gh = n1 expA(k−1g)u(k−1g)h = n2 expA(k−1gh)k2,

where of course n1, n2 ∈ N and k1, k2 ∈ K. As A normalizes N we have for some n′1, n
′
2 ∈ N that

n′1u(k−1g)h = n′2 exp
(
A(k−1gh)−A(k−1g)

)
k2.

Thus A(u(k−1g)h) = A(k−1gh)−A(k−1g). Since u(k−1g) = κ(g−1k)−1 we obtain the result.

Example 3.1.8. Recall that the group SU(1, 1) acts on the hyperbolic plane H2 by means of the Möbius
transformations

g · x 7→ ax+ b

bx+ a
, g =

(
a b

b a

)
∈ SU(1, 1), x ∈ H2. (3.1.5)

As elaborated on in Chapter 2, the hyperbolic plane is the homogeneous space H2 = SU(1, 1)/SO(2). Let
K = SO(2), A, and N be as defined as in Example 3.1.4 (or Chapter 2). The center of SU(1, 1) is of course
readily computed to be Z = {I,−I} and the centralizer of A in K is M = Z. According to the theory we have
developed, the horocycles in H2 are given by kaMN · o for k ∈ K and a ∈ A. We also have the identification

K/M =

{(
eiθ 0
0 e−iθ

)
: θ ∈ [0, π]

}
. (3.1.6)

Now we remark that outright K ∼= B where B = {|x|2 = 1: x ∈ C} as topological groups. However in Chapter
2, K acts on the closed disk D = {x ∈ C : |x| ≤ 1} by (using the action prescribed by Möbius transformations)

k · x 7→ e2iθx, k =

(
eiθ 0
0 e−iθ

)
, θ ∈ [0, 2π]. (3.1.7)

So in particular the action defined in (3.1.7) when restricted to B is a transitive group action and the isotropy
group of any point with respect to this action is M . We thus have, with respect to the action of (3.1.7), the
homogeneous space identification K/M ∼= B. Finally if b = kM , then we have that the “inner product” in
Definition 2.1.6 is precisely 〈x, b〉 = A(x, kM).

Remark 8. It might be confusing to the reader because one would expect that the group K = SO(2) to act on B by
means of the maps

k · x 7→ eiθx, k =

(
eiθ 0

0 e−iθ

)
, θ ∈ [0, 2π]

where x ∈ B, whence the isotropy group of any point with respect to this action is trivial. But in actuality the action
of K on B employed in Chapter 2 is defined by means of the Möbius transformations which is consistent with the
action defined in (3.1.5) in which case we obtain the group action of (3.1.7).

We now fix a bit of notation. Since G acts on functions on X by the map τ(g)f(x) = f(g · x), then if F is
some function space on X and H ⊂ G is a set, we let FH denote the space of elements f ∈ F which satisfy
τ(h)f = f for all h ∈ H. We call the elements of FH the H-invariant F functions. Note that FH = F〈H〉
where 〈H〉 is the subgroup generated by H. For instance, we let L1

K(X), EK(X), and DK(X) denote the
K-invariant integrable functions, smooth functions, and compactly supported smooth functions respectively.

Also, if φ, ψ ∈ L1(X), then the convolution (φ ∗ ψ)(x) is defined as (φq ∗ ψq)(g · o) (and likewise for ψq)
where φq = φ ◦ q and x = gK. Thus to convolve on X we lift to functions on L1(G) and convolve in G.
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3.1.3 Some integral formulas

Here we introduce several integration formulas, similar to the ones derived in Section 2.1, for a connected
semisimple Lie group. Let G be a connected semisimple Lie group, and g = k+a+n an Iwasawa decomposition
of g. For a predetermined Weyl chamber a+ ⊂ a, let Σ+ be the corresponding system of positive roots and
set ρ = 1

2

∑
α∈Σ+(dim gα)α. As usual, let K, A, and N denote the Lie subgroups corresponding to the Lie

subalgebras k, a, and n so that we have the Iwasawa decomposition G = KAN and the Cartan decomposition
G = KA+K. If dg is a fixed Haar measure on G, we would like to decompose dg into the product of Haar
measures dk, da, and dn on K, A, and N respectively.

For f ∈ L1(G) and given Haar measures dk, da, and dn on K, A, and N respectively we can normalize
the Haar measure dg on G so that we have the following integration formulas:∫

G

f(g) dg =

∫
K×A×N

f(kan)e2ρ(log a) dk da dn . (3.1.8)

Hence, we have the decomposition dg = e2ρ log a dk da dn. For suitable f defined on AN , say f ∈ Cc(AN), we
have ∫

N

f(an) dn = e−2ρ(log a)

∫
N

f(na) dn . (3.1.9)

Thus we also have that for f ∈ L1(G) that∫
G

f(g) dg =

∫
K×A×N

f(kna) dk da dn =

∫
K×A×N

f(ank) dk da dn . (3.1.10)

Now considering X = G/K the homogeneous space of the previous section where dx is the Riemannian
measure on x, then Theorem A.1.5 implies that the Haar measure dg can be normalized so that for any
f ∈ L1(X) we have

∫
X
f(x) dx =

∫
G
f(gK) dg.

3.1.4 Differential operators

Let V be a finite-dimensional vector space over a field K = R or C. The symmetric algebra of V , denoted by
S(V ), is the unital associative commutative K-algebra given by the quotient T (V )/I where T (V ) is the tensor
algebra over V and I is the two-sided ideal generated by elements of the form v ⊗ u− u⊗ v. If λ : V → A is
a linear map between V and a unital associative commutative C-algebra A and ι : V → S(V ) is the canonical
inclusion map, then there exists a unique unital algebra homomorphism Λ: S(V )→ A so that the diagram

S(V )

V A

Λ

λ

ι (3.1.11)

commutes.
When K = R, then clearly V carries the structure of a smooth manifold diffeomorphic to RdimV . An

element v ∈ V determines an element v ∈ S(V ) which then determines a differential operator ∂(v) acting on
smooth functions. In this case if f : V → C is a smooth function, then the operator ∂(v) is defined by

∂(v)f(x) =
d

dt
(f(x+ tv))|t=0, t ∈ R. (3.1.12)

We then extend this definition in the obvious way so that each u ∈ S(V ) defines a differential operator which
we denote by ∂(u). For example if u = v1 · · · vn ∈ S(V ) for vi ∈ V then ∂(u) = ∂(v1) · · · ∂(vn); and c ∈ S(V )
is a constant, then ∂(c)f = cf if f ∈ C∞(V ). The assignment u 7→ ∂(u) is then a well-defined algebra
homomorphism by the chain and product rules from calculus. With this understanding, if Dr(V ) is the
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algebra of constant real coefficient differential operators on V , then it is canonically algebraically isomorphic
to S(V ). We can consider the complexification of the symmetric algebra S(V ), defined by Sc(V ) = C⊗S(V ).
In this case, if f : V → C is smooth, then for z ∈ C and u ∈ S(V ), we define the element ∂(z⊗u) := ∂(z)∂(u)
where ∂(z)f = zf . This sets up an identification between Sc(V ) and D(V ), the algebra of all constant
complex coefficient differential operators on V .

Consequently, if λ is as in (3.1.11), then there exists a unique complex linear extension Λ′ : Sc(V )→ C of
Λ so that λ = Λ′ ◦ ι. Here Λ′ is of course defined by Λ′(z ⊗ u) = Re(z)Λ(u) + i Im(z)Λ(u), z ∈ C, u ∈ S(V ).
We shall write Λ for Λ′ without any confusion.

Definition 3.1.5. Let D ∈ D(V ) be a differential operator on V and regard D ∈ Sc(V ). For λ a
complex-valued linear map define D 7→ D(λ) by D(λ) = Λ(D) where Λ: Sc(V )→ C is the unique algebra
homomorphism described above.

Remark 9. If V is a complex finite-dimensional vector space, then the elements u ∈ S(V ) define holomorphic differential
operators acting on holomorphic functions; where of course we define the holomorphic derivative

∂(v)f(x) =
d

dz
(f(x+ zv))|z=0

where z ∈ C, v ∈ V , and f a holomorphic function—and then extend this definition to all of S(V ).

Example 3.1.9. The symmetric algebra S(Rn) is the space of polynomials with real coefficients in n real
variables. If λ is a linear complex-valued function on Rn and ∂α = ∂α1

1 · · · ∂αnn is a differential operator, then

∂αeλ(x) = ∂α(λ)eλ(x).

Turning our attention to Lie groups, let G be a Lie group and let g denote its Lie algebra. For each
g ∈ G there corresponds left and right translation operators l(g) and r(g) which act on smooth functions.
These operators act on smooth functions f by the formulas l(g)f(x) = f(g−1x) and r(g)f(x) = f(xg). A
differential operator D : C∞(G)→ C∞(G) is defined to be a linear map which does not enlarge the support of
a smooth function, i.e. suppDf ⊂ supp f . We say that a differential operator D is left (resp. right) invariant
if l(g)D = Dl(g) (resp. r(g)D = Dr(g)) for all g ∈ G and say that D is invariant or G-invariant if it is both
left and right invariant.

Definition 3.1.6. The universal enveloping algebra of a Lie group G with Lie algebra g is the object
U(g) = T (g)/J where J is the two-sided ideal generated by the elements X⊗Y −Y ⊗X− [X,Y ] for X,Y ∈ g.

The elements of the universal enveloping algebra U(g) correspond to both the algebras of left and right
invariant differential operators with real coefficients via the identifications

∂l(X)f(g) =
d

dt
(f(g exp tX))|t=0, (3.1.13)

∂r(X)f(g) =
d

dt
(f((exp tX)g))|t=0 (3.1.14)

where X ∈ g. Thus ∂l(X) and ∂r(X) define the corresponding left and right invariant differential operators
corresponding to X. We shall typically regard U(g) as corresponding to the algebra of left-invariant differential
operators with real coefficients. The center Z(g) ⊂ U(g) is then identified with the algebra of the G-invariant
differential operators with real coefficients. We let D(G) denote the algebra of left-invariant differential
operators on G (with complex coefficients) which we then identify with U(gc) (the universal enveloping
algebra of the complexification of g). In the particular case that g is abelian (which happens for instance
when its underlying Lie group is abelian), then U(g) = S(g). Nevertheless, we can identify the S(g) with
U(g) by the following theorem below.

Theorem 3.1.10 (cf. [11, Ch. II, Thm. 4.3] or [16, Prop. 3.23]). Let G be any Lie group with Lie algebra g.
The map σ : S(g)→ U(g) where σ is defined by

σ(X1 · · ·Xn) =
1

n!

∑
s∈Sn

Xs(1) · · ·Xs(n),

is an isomorphism of vector spaces. Here Sn is the symmetric group on n letters.
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The map σ : S(g)→ U(g) is called the symmetrization map. Finally, if G is a Lie group and H ⊂ G is a
closed subgroup, then regarding a G/H as a smooth manifold we say a differential operator D on G/H is
G-invariant if for all g ∈ G we have τ(g)D = Dτ(g) where τ(g)f(x) = f(g · x), f ∈ C∞(G/H). We denote
the algebra of all G-invariant differential operators by D(G/H).

3.2 The Fourier transform on X = G/K

Let G be a connected noncompact semisimple Lie group with finite center and let K ⊂ G be a maximal
compact subgroup. Let g = k + a + n, G = KAN , be an Iwasawa decomposition of G according to a Weyl
chamber a+ ⊂ a. Let Σ+ be the set of positive roots and put ρ = 1

2

∑
α∈Σ+(dim gα)α.

Definition 3.2.1. Let M and M ′ denote respectively the centralizer and normalizer of A in K. Then the
coset space W = M ′/M is a group and we call W the Weyl group of G.

The Weyl group is known to be finite. The Weyl group acts on a via the linear transformations
(kM)H = Ad(k)H (kM ∈ W , H ∈ a, with k ∈ M ′) and acts on the linear dual space a∗ via the linear
transformations (kM)λ = λ ◦ Ad(k−1) (where λ ∈ a∗). We shall thus regard the Weyl group as acting
naturally on a and on a∗, and consequently W acts on the complexifications ac and a∗c in the obvious way.

Let D(A) denote the algebra of left-invariant differential operators on A which we naturally identify
with U(ac). Then using symmetrization map σ of Theorem 3.1.10 we have that D(A) is identified with the
(complexified) symmetric algebra Sc(a). Since W acts on ac, we can extend this to an action of W on Sc(a)
defined by s(v1 · · · vn) = s(v1) · · · s(vn) where vi ∈ ac, s ∈ W . The subalgebra I(a) ⊂ Sc(a) consists of the
W -invariant polynomial members of Sc(a). Under the symmetrization map the subalgebra I(a) corresponds
to a subalgebra of U(gc) which we then identify with a subalgebra DW (A) ⊂ D(A). Let X = G/K be the
corresponding homogeneous space and let D(X) be the algebra of G-invariant differential operators.

Theorem 3.2.1 (cf. [11, Ch. II, Thm. 3.6] and [11, pp. 266]). The submanifolds Ny and A · o satisfy for
each y ∈ A · o the transversality condition

TyX = Ty(Ny)⊕ Ty(A · o).

Moreover, for each D on X there is a unique differential operator ∆N (D) on A such that for each N -invariant
function f ∈ C∞(X),

Df(a · o) = ∆N (D)f†(a)

where f† = f |A·o.

The differential operator ∆N (D) on A, which is defined for each differential operator D on X, is called
the radial part or the transversal part of D. We finally can state the following theorem.

Theorem 3.2.2 (cf. [11, Ch. II, Cor. 5.19]). Let eρ denote the smooth function on A defined by eρ(a) = eρ log a;
we also regard eρ as an operator on C∞(A) by the assignment eρ : f 7→ eρf . Then the mapping

Γ: D 7→ e−ρ∆N (D) ◦ eρ (3.2.1)

is an isomorphism from D(X) onto DW (A).

We shall now introduce the plane waves for the space X. In Chapter 2, we defined the function x 7→ ew〈x,b〉

where x ∈ H2, b ∈ B, and w ∈ C. This function was seen to be constant on each horocycle with normal b and
a joint eigenfunction of G-invariant differential operators on H2 (the only invariant differential operators were
operators that are polynomials in the Laplace-Beltrami operator on H2). In the case for X = G/K, the plane
waves take the form x 7→ ewA(x,kM) where x ∈ X, kM ∈ K/M , and w ∈ a∗c . These functions are smooth

since we can express each plane wave as a function on G, by g 7→ ewA(k−1g) which is smooth since g 7→ k−1g
is smooth, and the function h 7→ A(h) is a smooth map from G onto a. Furthermore, these functions are
constant on each horocycle with normal kM . The plane waves are eigenfunctions of all operators in D(X)
which is provided by the following lemma.
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Proposition 3.2.3. For w ∈ a∗c and each normal kM ∈ K/M , the functions x 7→ ewA(x,kM) are joint
eigenfunctions of each differential operator D ∈ D(X).

Proof. First consider the function ew(x) = ewA(x,eM). Using the fact that A normalizes N and Theorem
3.1.5 we have that ew is N -invariant. Thus, if D ∈ D(X), then by Theorems 3.2.1 and 3.2.2

Dew(a · o) = ∆N (D)ew(a · o) = (eρΓ(D) ◦ e−ρ)ew log a

= eρΓ(D)e(w−ρ) log a = Γ(D)(w − ρ)ew(a · o)

(cf. Example 3.2.4). Since the operator D and the functions ew are N -invariant it thus follows that Dew(x) =
Γ(D)(w−ρ)ew(x) for all x ∈ X. Now if we consider the function ewA(x,kM) for arbitrary kM ∈ K/M , then we
have ew(k−1 ·x) = ewA(x,kM). So by the G-invariance of D we also have Dew(k−1 ·x) = Γ(D)(w−ρ)ew(k−1 ·x)
and so we are done.

Example 3.2.4. Let X = SU(1, 1)/SO(2) = H2 and L be the Laplace-Beltrami operator on X given by
(2.1.9) which is an element of D(X). In this case the element ρ is identified with the constant 1 (since by
Example 3.1.4, the positive root α = 2 so ρ = 1

2α = 1). Regarding the submanifold A ·o as being diffeomorphic
to R and with the aid of [11, Ch. II, Prop. 3.8] (and after a normalization coefficient) we find that the radial
part of L is given by

∆N (L) = et
d2

dt2
◦ e−t − 1,

where the Laplacian LA on the manifold A · o is d2/dt2. Then Γ(L) = d2/dt2 − 1. In particular, since we can
identify a∗c

∼= C we have that for λ ∈ C, that

Le(iλ+1)〈x,b〉 = Γ(L)(iλ)e(iλ+1)〈x,b〉.

Then Γ(L)(iλ) = (d2/dt2 − 1)(iλ) = (iλ)2 − 1 = −(λ2 + 1), (cf. formula (2.1.14)).

Spherical functions and the spherical transform

Now, in much the same way that we have defined spherical functions on H2 as K-invariant joint eigenfunctions
of D(H2) we define spherical functions on the space X as the following:

Definition 3.2.2. A spherical function on X is a function φ ∈ C∞(X) such that it is K-invariant (i.e.
φ(k · x) = φ(x) for all k ∈ K), and is an eigenfunction for each element of D(X).

Developing the properties of the spherical functions on the homogeneous space X is not necessarily easy
and so we shall not provide the details. The important facts are summarized by the following result.

Theorem 3.2.5. Any two spherical functions which have the same eigenvalues for each operator D ∈ D(X)
are equal. Each spherical function is a constant multiple of a function of the form

φλ(x) =

∫
K

e(iλ+ρ)A(x,kM) dk, (3.2.2)

where λ ∈ a∗c . Also if ν, λ ∈ a∗c , then φν = φλ if and only if ν = sλ for some s ∈W . The spherical function
φλ is bounded if and only if λ lies in a∗ + iC(ρ) where C(ρ) is the convex hull of the points {sρ : s ∈ W}.
Finally, the spherical functions φλ satisfy the following mean value property,

φλ(h · o)φλ(g · o) =

∫
K

φλ(hkg · o) dk, g, h ∈ G. (3.2.3)

The proof of Theorem 3.2.5 is contained in Corollary 2.3 and Theorems 4.3 and 8.1 of Chapter IV in [11].
Consider the following example for the hyperbolic plane.
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Example 3.2.6. We have H2 = SU(1, 1)/SO(2). Using the standard Iwasawa decomposition SU(1, 1) =
KAN where K, A, and N are as in Example (3.1.4) we have that the centralizer of A in K is M = {I,−I}

while the normalizer of A in K is the group M ′ = {I,−I, S,−S} where S =

(
i 0
0 −i

)
. The Weyl group is

then W = M ′/M ∼= Z2. If sM ∈W is the non-identity element, then we have that

s

(
coshx sinhx
sinhx coshx

)
s−1 =

(
coshx − sinhx
− sinhx coshx

)
.

It then follows that the Weyl group acts on the Lie algebra a via the two maps H 7→ H and H 7→ −H, and
consequently acts on a∗c via the maps λ 7→ λ and λ 7→ −λ. Theorem 3.2.5 then implies that for the spherical
functions on the hyperbolic plane that φλ = φ−λ. Furthermore, the spherical functions φλ are bounded if
and only if λ ∈ {x+ iy : x ∈ R, |y| ≤ 1}. Compare this to the results of Proposition 2.2.1 and Lemma 2.3.15.

Another important formula is Harish-Chandra’s formula.

Lemma 3.2.7 ( [11, Ch. IV, Lemma 4.4]). The spherical functions φλ satisfy

φλ(h−1g · o) =

∫
K

e(−iλ+ρ)A(k−1h)e(iλ+ρ)A(k−1g) dk . (3.2.4)

In particular the spherical functions satisfy φλ(g−1 · o) = φ−λ(g · o).

Definition 3.2.3. For a K-invariant function f we define its spherical transform by

f̃(λ) =

∫
X

f(x)φ−λ(x) dx (3.2.5)

for all λ ∈ a∗c for which (3.2.5) exists.

By Theorem 3.2.5 we have that the spherical transform is defined on L1
K(X) for each λ ∈ a∗. If λn → λ in

the Hilbert space topology of a∗c , then the functions φλn → φλ pointwise. In particular, by an application of
the dominated convergence theorem (and an augmentation of the argument of the proof Riemann-Lebesgue
Lemma of Chapter 2) we see that the spherical transforms of functions in L1

K(X) are continuous on a∗+ iC(ρ)
(and for functions in Cc(X) they are continuous on a∗c). In view of the boundedness of the spherical functions
due to Theorem 3.2.5 we have the following result.

Proposition 3.2.8. For f ∈ L1
K(X), the function f̃ is holomorphic on the interior of a∗ + iC(ρ).

Proof. The proof is completely analogous to the proof of the Riemann-Lebesgue Lemma of Chapter 2. Here, we

note that for f ∈ L1
K(X), we have |f̃(λ)| ≤ |̃f |(−i Imλ) and so the integral

∫
X
|f(x)φ−λ(x)| dx ≤ |̃f |(−i Imλ)

is uniformly bounded on compact sets on the interior of a∗ + iC(ρ). Hence we can see that we can apply

Morera’s theorem and use the holomorphicity of the function λ 7→ φλ(x) to determine that f̃ is holomorphic
on the interior of a∗ + iC(ρ).

To state the familiar inversion formula of Theorem 2.2.2 we shall need to introduce Harish-Chandra’s
c-function in our present setting.

Definition 3.2.4. Harish-Chandra’s c-function is defined on a∗ by

λ 7→ c(λ) = lim
t→∞

e(−iλ+ρ)(tH)φλ(exp tH · o), (3.2.6)

where H is an arbitrary element of the Weyl chamber a+.

The c-function is actually defined by formula (3.2.6) on a connected open dense set in a∗c and is holomorphic
there (see [11, Ch. IV, Sec. 6]), and it is meromorphic on all of a∗c . The c-function is well-behaved on a∗ with
all the derivatives of the function c(λ)−1 being bounded by polynomials in λ.

Finally, the inversion formula—stated for functions which are K-invariant, compactly supported, and
smooth for the moment, is given as follows.
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Theorem 3.2.9. For functions f ∈ DK(X), the spherical transform is inverted by

f(x) = c0

∫
a∗
f̃(λ)φλ(x)|c(λ)|−2 dλ (3.2.7)

where c0 is a constant independent of f and dλ is the Lebesgue measure on a∗.

We shall write dµ(λ) = c0|c(λ)|−2 dλ henceforth. The spherical transform will of course be generalized to
functions that are not K-invariant by Helgason’s Fourier transform which we investigate next.

The Fourier transform

Definition 3.2.5. For a function f we define its Fourier transform by

f̃(kM, λ) =

∫
X

f(x)e(−iλ+ρ)A(x,kM) dx (3.2.8)

for all kM ∈ K/M and λ ∈ a∗c for which (3.2.8) exists.

Since the subgroup A is diffeomorphic to its Lie algebra, we can regard it as a vector space over R. Thus,
for functions f ∈ L1(A) where the Haar measure on A is induced from the Lebesgue measure on a we have
that its Fourier transform from Definition 1.1.1 is given by

f̂(λ) =

∫
A

f(x)e−iλ log a da .

Remark 10. Here the Fourier transform on A is defined on the dual space a∗ but is of course defined on a since the
linear functionals on a∗ is parametrized by a via the isomorphism (Y 7→ (X 7→ B(X,Y )) from a to a∗.

The Fourier transform of a function f on X is related to the standard Fourier transform on A as follows.

Definition 3.2.6. For a function f we define its modified Radon transform by

Rf(kaMN · o) = eρ log a

∫
N

f(kan · o) dn,

whenever this integral exists.

Then using formula (3.1.10) we have the expression

f̃(kM, λ) =

∫
X

f(k · x)e(−iλ+ρ)A(x,eM) dx =

∫
AN

f(kan · o)e(−iλ+ρ) log a da dn

=

∫
A

Rf(kaMN · o)e−iλ log a da .

Hence the Fourier transform of a function on X is given by the standard (Euclidean) Fourier transform over
A of its modified Radon transform. Of course, if f is a K-invariant function, then integrating the function
f̃(kM, λ) over K—which is necessarily constant for each kM ∈ K/M , yields the spherical transform of f .
We summarize the significant properties of the Fourier transform in the following proposition.

Proposition 3.2.10. Suppose that f1 ∈ Cc(X) and that f2 ∈ Cc(X) is K-invariant.

1. We have (f1 ∗ f2)̃ = f̃1f̃2.

2. Let f
τ(g)
1 (x) = f1(g · x), then

(f
τ(g)
1 )̃ (kM, λ) = e(−iλ+ρ)A(g−1·o,kM)f̃(g(kM), λ). (3.2.9)
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3. If f1 is smooth, then for each operator D ∈ D(X), we have (Df )̃ = Γ(D)(iλ)f̃ .

4. The Fourier transform of f obeys the following symmetry condition for all x ∈ X and s ∈W :∫
K

f̃(kM, λ)e(iλ+ρ)A(x,kM) dk =

∫
K

f̃(kM, sλ)e(isλ+ρ)A(x,kM) dk . (3.2.10)

Proof. To prove (1) simply adapt the argument of Theorem 2.3.5. For (2), we have using Proposition 3.1.7

(f
τ(g)
1 )̃ (kM, λ) =

∫
X

f(x)e(−iλ+ρ)A(g−1x,kM) dx =

∫
X

f(x)e(−iλ+ρ)[A(x,g(kM))+A(g−1·o,kM)] dx

= e(−iλ+ρ)A(g−1·o,kM)f̃(g(kM), λ).

In particular, if f1 was K-invariant, then integrating the previous formula yields (f
τ(g)
1 )̃ (λ) = φλ(g · o)f̃(λ).

For (3), we write

(Df )̃ (kM, λ) =

∫
X

Df(x)e(−iλ+ρ)A(x,kM) dx =

∫
X

f(x)(D∗e(−iλ+ρ)A(x,kM)) dx

= Γ(D∗)(−iλ)f̃(kM, λ).

Here D∗ is the adjoint of D with respect to the bilinear form (u, v) 7→
∫
X
u(x)v(x) dx (cf. the discussion of

Section 3.3.1 in the preliminary subsection). It is actually the case that Γ(D∗) = Γ(D)∗ (cf. [11, Ch. II,
Lemma 5.21]), then using Example 3.3.3 one calculates Γ(D∗)(−iλ) = Γ(D)(iλ). Finally for (4) we have with
g, h ∈ G and using Harish-Chandra’s formula

f ∗ φλ(g · o) =

∫
G

f(h · o)φλ(h−1g · o) dh =

∫
G

∫
K

f(h · o)e(−iλ+ρ)A(k−1h)e(iλ+ρ)A(k−1g) dk dh (3.2.11)

=

∫
K

f̃(kM, λ)e(iλ+ρ)A(k−1g) dk . (3.2.12)

The result then follows from the fact that φsλ = φλ for all s ∈W .

Remark 11. It should be noted that the convolution result in (1) of the above proposition only behaves nicely due
to the same reasons outlined in Chapter 2. In particular, the convolution algebra L1(X) is noncommutative and by
the Fourier inversion result which we will state later, the Fourier transform cannot be a homomorphism from Cc(X)
onto its image, since otherwise the inverse Fourier transform will also be a homomorphism and thus Cc(X) will be a
commutative convolution algebra, whence L1(X) is a commutative convolution algebra—a contradiction. However,
when restricting to L1

K(X), this convolution algebra is commutative and so the result may follow through.
The result of (3) gives the familiar result from H2 and Rn, whereby the action of invariant differential operators

against functions on X corresponds to multiplication by polynomials in λ on the Fourier transform side.
The symmetry condition in (4) is also special since it imposes certain restrictions on the image of the Fourier

transform. In the most simplest case for G = SU(1, 1) we recall that the image of D(H2) is the space H consisting
of the entire functions of uniform exponential type on K/M × a∗c = B ×C satisfying the relation (4) from above.
This is a strict subset of the space H ′ which are the entire functions of uniform exponential type (not necessarily
satisfying (4)). For instance, if (kM, λ) 7→ F (kM, λ) is an entire function of uniform exponential type constant in b,
then F ∈H if and only if F is an even function of λ.

We shall now state the familiar Paley-Wiener, Plancherel, and inversion theorems as well as the Riemann-
Lebesgue Lemma in the setting for the homogeneous space X = G/K. To begin, note that K/M is a compact
homogeneous space so we let dkM denote the unique K-invariant Radon measure normalized so that the
measure of K/M against this measure is 1. We then set dµ(kM, λ) = dµ(λ) dkM .
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Definition 3.2.7. For a measurable function ψ on K/M × a∗ (with respect to the measure dµ(kM, λ)), we
shall define the inverse Fourier transform of ψ by

F−1ψ(x) =

∫
K/M

∫
a∗
ψ(kM, λ)e(iλ+ρ)A(x,kM) dµ(kM, λ), (3.2.13)

for each x ∈ X for which this integral converges.

Theorem 3.2.11 (Inversion theorem). For f ∈ D(X), the Fourier transform is inverted by

f(x) = (F−1f̃)(x) =

∫
K/M

∫
a∗
f̃(kM, λ)e(iλ+ρ)A(x,kM) dµ(kM, λ), (3.2.14)

which holds for all x ∈ X. More generally, if f ∈ L1(X), then there exists a subset B ⊂ K/M such that
(K/M) \ B has measure 0 and that the Fourier transform of f exists for all kM ∈ B and λ ∈ a∗ + iC(ρ)

where C(ρ) is the convex hull of {sρ : s ∈ W}. The assignment λ 7→ f̃(kM, λ) (for kM ∈ B fixed) defines
a holomorphic function on the interior of a∗ + iC(ρ) and (3.2.14) holds for almost every x ∈ X when

f̃ ∈ L1(K/M × a∗).

The proof of the inversion theorem for functions of class f ∈ D(X) is proved using similar arguments to
those developed in Chapter 2. In particular, if f ∈ D(X), then if we fix g ∈ G, then the function

F (h) =

∫
K

f(gkh · o) dk (3.2.15)

defines an element of DK(X). The spherical transform of F is then given by

F̃ (λ) =

∫
G

∫
K

f(gkh · o)φ−λ(h · o) dk dh =

∫
G

f(gh · o)φ−λ(h · o) dh (3.2.16)

=

∫
G

f(h · o)φλ(h−1g · o) dh = f ∗ φλ(g · o). (3.2.17)

Then using (3.2.12) and the spherical inversion formula on F :

f(g · o) = F (e) =

∫
a∗
F̃ (λ) dµ(λ) =

∫
a∗

∫
K

f̃(kM, λ)e(iλ+ρ)A(k−1g) dk dµ(λ)

=

∫
K/M

∫
a∗
f̃(kM, λ)e(iλ+ρ)A(g·o,kM) dµ(kM, λ) .

To prove the inversion formula for f ∈ L1(X) one requires techniques similar to the ones employed in Chapter
2, (see [13, Ch. III, Thm. 1.8 and Thm. 1.9] for a proof). Now the Riemann-Lebesgue Lemma formulated for
f ∈ L1(X) is given as follows.

Theorem 3.2.12 (Riemann-Lebesgue Lemma). Let f ∈ L1(X) and B ⊂ K/M be the subset as in the
statement of Theorem 3.2.11. Then we have

lim
|ξ|→∞

f̃(kM, ξ + iη) = 0 (3.2.18)

uniformly in η where ξ ∈ a∗ and η ∈ C(ρ).

Moving on to the Plancherel theorem put a∗+ = {λ ∈ a∗ : Hλ ∈ a+} where Hλ is the unique vector such
that λ(H) = B(Hλ, H) for all H ∈ a∗. In the case of the group G = SU(1, 1) with the Weyl chamber being
defined in Example 3.1.4, then a∗+ = R+. Since the Fourier transform is defined on Cc(X), we can extend it
continuously to all of L2(X). Then the Plancherel theorem is formulated as follows.
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Theorem 3.2.13 (Plancherel Theorem). The Fourier transform extends continuously to an isometric
isomorphism of L2(X; dx) onto L2(K/M × a∗+; |W | dµ(λ) dkM ).

Here |W | denotes the order of the Weyl group. The proof the Plancherel theorem is similar (and is just as
complicated) to the proof of the Plancherel theorem specialized in Chapter 2—the proof of the above result
is contained in [13, Ch. III, Thm. 1.5]. Specifically, one needs to work out the so-called simplicity criterion
for λ ∈ a∗c which generalizes the statement of Definition 2.3.2 to work towards a complete proof.

Finally, we say a smooth function ψ on K/M × a∗c is a holomorphic of uniform exponential type A > 0 if

1. The mapping λ→ ψ(kM, λ) is holomorphic for each kM ∈ K/M .

2. And F satisfies the estimates

sup
(kM,λ)∈K/M×a∗c

|(1 + |λ|)Ne−A| Imλ|ψ(kM, λ)| <∞,

for all N ∈ N.

The space of holomorphic functions of uniform exponential type A > 0 will then be denoted by HA and we
put H =

⋃
A>0 HA. We then intersect H with the space of all smooth functions ψ satisfying the symmetry

condition: ∫
K

ψ(kM, λ)e(iλ+ρ)A(x,kM) dk =

∫
K

ψ(kM, sλ)e(isλ+ρ)A(x,kM) dk (3.2.19)

for all x ∈ X and s ∈W . We let HW denote the space of functions obtained from this intersection. Then
the Paley-Wiener theorem is stated as follows.

Theorem 3.2.14 (Paley-Wiener). The Fourier transform is a bijection of D(X) onto HW .

The proof is quite long and can be found in [13, Ch. III, Sec. 3], although we remark that the style of the
proof for the general homogeneous space X is quite analogous to the proof of the Paley-Wiener theorem for
the hyperbolic plane.

3.3 The Harish-Chandra Schwartz space

We now come to the promised discussion of the Schwartz space on X = G/K and the Fourier transform
on this space. First, we recall that G admits the Cartan decomposition G = KA+K = KAK so that each
g ∈ G can be written as g = k1ak2 for some k1, k2 ∈ K and a ∈ A. We introduce a “norm” on G by defining
|g| = | log a|. This norm is K-bi-invariant and also satisfies |gh| ≤ |g||h| for all g, h ∈ G which is merely a
consequence of the Ad-invariance of the Killing form on g.

Let D1, D2 ∈ U(g), then these elements give rise to left-invariant and right-invariant differential operators
∂l(D1) and ∂r(D2) on G (cf. 3.1.13). We put Ξ(g) = φ0(g · o), where φ0(x) is the spherical function with
λ = 0. If f ∈ C∞(G), then we define for N ∈ N, D1, D2 ∈ U(gc)

νN,D1,D2(f) = sup
g∈G
|(1 + |g|)NΞ(g)−1∂l(D1)∂r(D2)f(g)|.

Definition 3.3.1. The Harish-Chandra Schwartz space on G is the space

S(G) = {f ∈ C∞(G) : νN,D1,D2
(f) <∞, for all N ∈ N, D1, D2 ∈ U(g)}. (3.3.1)

The space S(G) is topologized by the means of the seminorms νN,D1,D2 which turns S(G) into a Fréchet space.
The Schwartz space on X, denoted by S(X), is the closed subspace of S(G) consisting of those functions
which are right invariant under K. The Schwartz space J (X) is the subspace of K-bi-invariant members of
S(G).
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Remark 12. One can define equivalently define the space J (X) as the space of smooth K-bi-invariant functions such
that for each operator D ∈ D(G), the seminorms

ωN,D(f) = sup
g∈G
|(1 + |g|)NΞ(g)−1Df(g)|

where N ∈ N, are finite. Under this definition we still have J (X) ⊂ S(X) and the topology induced by these
seminorms is the same as the topology subspace topology which J (X) inherits from S(X).

The definition of the Schwartz space on X is quite familiar to the ordinary definition of the Schwartz
space on Rn with the key difference that we introduce the factor Ξ(g)−1 in the definitions of the seminorms
νN,D1,D2 . The reason for this is so that the Fourier transform on S(X) is well-behaved (i.e. exists on
K/M × a∗)—we shall not go deeper into this however. From the estimates, alone for a function f ∈ S(X) it
need not be true that f ∈ L1(X) (although it is true that the space S(X) ∩ L1(X) is dense in L1(X) for
it contains D(X)). What is true is that S(X) ⊂ L2(X) and is dense there. Furthermore, D(X) is dense in
S(X) with respect to the Schwartz topology (see [10, Sec. 9]).

We shall also define the Schwartz spaces S(K/M × a∗) and S(a∗) as follows.

Definition 3.3.2. For a smooth function f ∈ C∞(K/M × a∗) let N ∈ N, v ∈ S(a∗), and p ∈ U(k), where
S(a∗) is the symmetric algebra of a∗ and k is the Lie algebra of K. Then we define the function

ηN,v,p(f) = sup
(kM,λ)∈K/M×a∗)

|(1 + |λ|)N∂r(p)∂(v)f(kM, λ)|.

Then S(K/M × a∗) = {f ∈ C∞(K/M × a∗) : ηN,v,p(f) < ∞, for all N ∈ N, v ∈ S(a∗), p ∈ U(k)}. This
space is then topologized by the means of the seminorms ηN,v,p. Since a∗ is a normed finite-dimensional vector
space, S(a∗) is then the ordinary Schwartz space on a∗ which is identified as a subspace of S(K/M × a∗).

Finally, we let SW (K/M × a∗) denote the subspace of functions satisfying the symmetry condition (3.2.19)
and SW (a∗) is the subspace of W -invariant Schwartz functions in S(a∗). We can now state the version of the
Schwartz isomorphism theorem for the homogeneous space X.

Theorem 3.3.1. The Fourier transform of a function f ∈ S(X) exists everywhere on K/M × a∗. The
Fourier transform is a homeomorphism from S(X) onto SW (K/M × a∗), while the spherical transform is a
homeomorphism from J (X) onto SW (a∗).

Proofs of the fact that the spherical transform is a homeomorphism of J (X) onto SW (a∗) have been
simplified over the years. Notably, Anker produced an elementary and elegant argument for this claim in [1]
(the proof is also found in [13, Ch. III, Thm. 1.17]). The proof of the fact that the Fourier transform is a
homeomorphism from S(X) onto SW (K/M × a∗) is far more difficult and is the topic of Eguchi’s paper [6].
It appears that adapting Anker’s simplified proof to Eguchi’s result for the general Schwartz space S(X) is
not possible (see [3]). One of the first consequences of this theorem is the following result.

Proposition 3.3.2. The spaces J (X) and S(X) are nuclear.

Proof. Since SW (a∗) is a subspace of a nuclear space (i.e. the Schwartz space S(a∗), it is nuclear. Since J (X)
is homeomorphic to SW (a∗), then J (X) is also nuclear.

Now the space S(K/M × a∗) is a nuclear space since it may be realized as the injective tensor product
S(K/M×a∗) = C∞(K/M)⊗̂S(a∗) which can be proved in a similar fashion by adapting the proof of [25, Thm.
51.6]. So S(K/M × a∗) is nuclear as it is the tensor product of nuclear spaces. Since S(X) is homeomorphic
to a subspace of S(K/M × a∗) it also follows that S(X) is nuclear.

The definition of nuclear spaces is a bit involved (see [25, Sec. 39]). However, all that we have used here
in this paper is that any subspace of a nuclear space is nuclear and the injective tensor product (or projective
tensor product) of nuclear spaces is nuclear as well.
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3.3.1 Tempered distributions

Preliminaries

If S ⊂ Rn is an open set, then we recall that the topology on C∞(S) = E(S) is the topology induced by the
seminorms σα,K(f) = supx∈K |∂αf(x)| as α runs through all multi-indices of length n and K runs through
all compact subsets of S.

If M is a smooth manifold of dimension n, then if (U, φ) is a local coordinate system, then we define
a differential operator on U to be a linear map D : E(U)→ E(U) which does not enlarge supports, that is
suppDf ⊂ supp f . By Peetre’s theorem, each differential operator on U can be written, for some N ∈ N, as

Df(x) =
∑
|α|≤N

aα(x)∂α(f ◦ φ−1)(φ(x)) (3.3.2)

for each x ∈ V where V is a relatively compact open subset of U and where the operators ∂α are the standard
differential operators on Rn and aα ∈ E(V ) (cf. [11, Ch. II, Lemma 1.5] for a proof). Then we define the
topology of E(U) to be the topology induced by the seminorms σD,K(f) = supx∈K |Df(x)| as D runs through
all differential operators on U and K runs through all compact subsets of U . In particular, a sequence
{fn} ⊂ E(U) converges to f ∈ E(U) if and only if fn ◦ φ−1 → f ◦ φ−1 in E(φ(U)).

The topology of E(M) is then defined to be the weakest topology so that the restriction maps ρU : E(M)→
E(U), ρU : f 7→ f |U are continuous as (U, φ) runs through all local coordinate systems on M . In particular a
sequence {fn} ⊂ E(M) converges to f if and only if for each differential operator D on M , the sequence Dfn
converges locally uniformly to Df . With this topology E(M) is a Fréchet space.

Now if K ⊂ M is a compact set, then D(K) denotes the space of all smooth functions with support
contained in K. The space D(K) is given the subspace topology when regarded as a subspace of E(M).
The space D(M) of all compactly supported smooth functions is then given the inductive limit topology
corresponding to the family of spaces D(K) as K varies over the compact subsets of M . In particular a
sequence {fn} ⊂ D(M) converges to f ∈ D(M) if and only if for some m > 0 there is a compact set K ′ such
that f, fn ∈ D(K ′) for all n ≥ m and {fn}∞n=m converges to f in D(K ′). Since M is σ-compact, we can write
M as a countable union of increasing compact sets and we thus see that D(M) is dense in E(M).

We then let E ′(M) and D′(M) denote the linear topological duals of E(M) and D(M), the latter of
which is called the space of distributions, and impose upon these spaces the strong topology (namely so that
Schwartz’s kernel theorem holds). The support of a distribution is defined in precisely the same way as in
Definition 1.1.7, namely a distribution T vanishes on an open set V if T (f) = 0 for all smooth functions f
with compact support contained in V—whence we define the support of a distribution T to be the complement
of the largest open set on which T vanishes.

One important fact is that we have the continuous inclusion E ′(M) ↪→ D′(M) and identify E ′(M) with
the distributions of compact support (cf. [11, Ch. II, Prop. 2.1]).

We shall now restrict our attention to unimodular Lie groups although we remark that some of our
constructions that follow can be appropriately generalized to any manifold. Let G be a unimodular Lie group
with Haar measure dx induced from a left-invariant n-form and let T ∈ D(G) be a distribution. If f ∈ D(G),
we will use the notation

T (f) = 〈T, f〉 =

∫
G

T (x)f(x) dx . (3.3.3)

If D is a differential operator, then we let D∗ denote the adjoint of D with respect to the bilinear form
(u, v) =

∫
uv on D(G) with respect to the Haar measure. That is (Du, v) = (u,D∗v) and it is known that the

adjoint D∗ exists and defines a differential operator (cf. [11, Ch. II, Sec. 2.3]). Therefore if D is a differential
operator we define the distribution DT by DT (f) = T (D∗f). One can easily verify that the adjoint of a left
(resp. right) invariant differential operator is also a left (resp. right) invariant differential operator.

Example 3.3.3. In the particular case that D = X is a left-invariant (or right-invariant) vector field, then
the adjoint can be calculated quite easily. In particular, we have if X ∈ g and if we let X also denote the
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corresponding vector field, then for f ∈ D(G)∫
G

d

dt
f(y exp tX) dy =

d

dt

∫
G

f(y exp tX) dy =
d

dt

∫
G

f(y) dy = 0. (3.3.4)

So
∫
G
Xf = 0. Then by the product rule, 0 =

∫
G
X(uv) =

∫
G

(Xu)v+
∫
G
u(Xv) for u, v ∈ D(G) so X∗ = −X.

If T is a distribution and f is a smooth function, and at least one of T or f has compact support, then
we define the convolutions T ∗ f and f ∗ T by

T ∗ f(x) =

∫
G

T (y)f(y−1x) dy = 〈Ty, f(y−1x)〉, (3.3.5)

f ∗ T (x) =

∫
G

T (y)f(xy−1) dy = 〈Ty, f(xy−1)〉. (3.3.6)

Here Ty denotes the distribution acting on the variable y which we shall also sometimes write as T (y). Under
the given hypotheses for T and f , the convolutions T ∗ f and f ∗ T both define smooth functions which can
be proved by similar methods to the proof used in Proposition 1.1.10. Finally, the convolution of distributions
T and S, one of which has compact support, is the distribution defined by

(T ∗ S)(f) =

∫
G

∫
G

T (x)S(y)f(xy) dx dy = 〈Sy, 〈Tx, f(xy)〉〉. (3.3.7)

Remark 13. There is a result known as the Fubini theorem for distributions (cf. [17, Thm. B.20]) which states that if X
and Y are smooth manifolds, and if T ∈ E ′(X) and S ∈ E ′(Y ), we can define a unique distribution T ⊗ S ∈ E ′(X × Y )
which satisfies:

1. If f ∈ E(X) and g ∈ E(Y ), then for (f ⊗ g)(x, y) = f(x)g(y), we have (T ⊗ S)(f ⊗ g) = T (f)S(g).

2. If f ∈ E(X × Y ), then T ⊗ S has the property

(T ⊗ S)(f) = 〈Tx, 〈Sy, f(x, y)〉〉 = 〈Sy, 〈Tx, f(x, y)〉〉.

We call T ⊗ S the tensor product of T and S.

Tempered distributions

We return to the case for the homogeneous space X = G/K where G is a connected semisimple Lie group
with finite center and K is a maximal compact subroup.

Definition 3.3.3. A tempered distribution on X is a continuous linear functional u ∈ S ′(X). We impose the
strong topology upon S ′(X).

Note that we naturally have the chain of inclusions E ′(X) ↪→ S ′(X) ↪→ D(X). On Rn, we defined the

Fourier transform of a tempered distribution by the duality û(f) = u(f̂) using the observation that for
f, g ∈ S(Rn) that the integral identity∫

Rn

f̂(x)g(x) dx =

∫
Rn

f(x)ĝ(x) dx (3.3.8)

holds (cf. Proposition 1.1.1). To motivate the Fourier transform of tempered distributions u ∈ S ′(X) we
state a similar integral identity.

Proposition 3.3.4. Let φ ∈ S(X) and ψ ∈ SW (K/M × a∗). We have the identity∫
K/M×a∗

φ̃(kM, λ)ψ(kM,−λ) dµ(kM, λ) =

∫
X

φ(x)(F−1ψ)(x) dx . (3.3.9)

Conveyed using bracket notation for the pairing of distributions this is merely

〈Fφ, ψ〉K/M×a∗ = 〈φ,F−1(ι ◦ ψ)〉X , (3.3.10)

where (ι ◦ ψ)(kM, λ) = ψ(kM,−λ).
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Proof. The fact that φ ∈ S(X) and ψ ∈ SW (K/M × a∗) permits one to interchange the integral in the
variable (kM, λ) with the integral defining the Fourier transform of φ by Fubini’s theorem. Thus, checking
the expression under the double integral leads to the result.

Remark 14. In the expression (3.3.10), the notations 〈·, ·〉K/M×a∗ and 〈·, ·〉X denote the bilinear forms (u, v) 7→∫
K/M×a∗ uv and (f, g) 7→

∫
X
fg on SW (K/M × a∗) and S(X) respectively, with respect to integration against the

measures dµ(kM, λ) and dx.

It seems to us to be unclear that if ψ ∈ SW (K/M × a∗), then F−1(ι ◦ ψ) defines an element of the
Schwartz space S(X). However it is easy to see that it defines a smooth function. Another point is that if
f ∈ SW (K/M × a∗), then ι ◦ f ∈ SW (K/M × a∗) if and only if f ∈ SW (K/M × a∗). However, it is true that
if f ∈ SW (a∗), then ι ◦ f ∈ SW (a∗).

Thus using (3.3.10) we define the Fourier transform of a compactly supported distribution as follows.

Definition 3.3.4. For u ∈ E ′(X) define the distribution the Fourier transform ũ ∈ S ′W (K/M × a∗) by
ũ(ψ) = u(F−1(ι ◦ ψ)).

Definition 3.3.5. It is clear that if v ∈ S ′(K/M × a∗), then we can define the inverse Fourier transform of
v as the tempered distribution F−1v ∈ S ′(X) by F−1v(φ) = v(ι ◦ (Fφ)) where φ ∈ S(X).

Let E ′K(X) ⊂ E ′(X) denote the subspace of compactly supported distributions satisfying T (τ(k)f) = T (f)
for all k ∈ K and f ∈ E(X). We call E ′K(X) the space of K-invariant compactly supported distributions.

Theorem 3.3.5. For u ∈ E ′(X), we can identify ũ with the smooth function

ũ(kM, λ) = 〈u, e(−iλ+ρ)A(x,kM)〉 (3.3.11)

in the sense of distributions, which is to say that for φ ∈ D(K/M × a∗) we have

ũ(φ) =

∫
K/M×a∗

φ(kM, λ)ũ(kM, λ) dµ(kM, λ) .

Proof. We shall give two different proofs of fact (1). If φ ∈ D(K/M × a∗), then the integral∫
K/M×a∗

φ(kM, λ)e(iλ+ρ)A(x,kM) dµ(kM, λ)

exists as a E(X) valued integral and the maps x 7→ φ(kM, λ)e(iλ+ρ)A(k−1x) are obviously smooth and so the
above integral can also be interpreted as a E(X) valued weak integral. In fact, the map F : K/M × a∗ → E(X)

defined by (kM, λ) 7→ φ(kM, λ)e(iλ+ρ)A(k−1x) is a compactly supported continuous function from K/M × a∗

to the Fréchet space E(X) so that Theorem A.2.2 can be applied. Therefore for φ ∈ D(K/M × a∗) we have

〈ũ, φ〉 = 〈u,F−1(ι ◦ φ)〉 = 〈u,
∫
K/M×a∗

φ(kM, λ)e(−iλ+ρ)A(k−1x) dµ(kM, λ)〉 (3.3.12)

=

∫
K/M×a∗

φ(kM, λ)〈u, e(−iλ+ρ)A(k−1x)〉 dµ(kM, λ) . (3.3.13)

So the distributions ũ and 〈u, e(−iλ+ρ)A(k−1x)〉 agree as distributions.

Alternatively, this can be proven by noting that 〈ũ, φ〉 = (ux ⊗ φkM,λ)(e(−iλ+ρ)A(k−1x)) regarding u =

ux ∈ E ′(X), φ = φkM,λ ∈ E ′(K/M ×λ), and e(−iλ+ρ)A(k−1x) ∈ E(K/M × a∗×X). By the Fubini theorem for

distributions we have (ux ⊗ φkM,λ)(e(−iλ+ρ)A(k−1x)) = (φkM,λ ⊗ ux)(e(−iλ+ρ)A(k−1x)). This implies formula
(3.3.13).
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We let J ′(X) denote the space of tempered distributions on K-invariant Schwartz functions. We shall
simply call these functionals tempered distributions when there is no ambiguity. Since SW (a∗) is closed under
the involution ι we can define the spherical transform (Fourier transform) on all J ′(X) as follows.

Definition 3.3.6. If u ∈ J ′(X), then we define the spherical transform by ũ(ψ) = u(F−1(ι ◦ ψ) where
ψ ∈ SW (a∗). This determines a distribution in S ′W (a∗).

Correspondingly, the inverse Fourier transform of a distribution v ∈ S ′W (a∗) is determined by F−1v(φ) =
v(ι ◦ (Fφ)) for φ ∈ J (X). This determines a distribution in J ′(X).

Since the maps ι : SW (a∗)→ SW (a∗) and F : J (X)→ SW (a∗) are homeomorphisms we easily obtain the
following result.

Proposition 3.3.6. The spherical transform F is a homeomorphism of J ′(X) onto S ′W (a∗) when these
spaces are given the weak*-topology.

The spherical transform of a compactly supported distribution u can be verified along the lines of Theorem
3.3.5 to be given by the function

ũ(λ) = u(φ−λ(x)). (3.3.14)

Now if u ∈ E ′K(X) is regarded as a distribution u ∈ E ′(X), then the Fourier transform of u coincides with the
spherical transform of u. Indeed first note the following lemma.

Lemma 3.3.7 ( [7, Prop. 4] or [10, Sec. 5]). If f ∈ E(X), then the mapping k 7→
∫
K
f(k · x) dk is a

continuous mapping of K into E(X).

Now using the K-invariance of u we have that by Theorem A.2.2 and the above lemma:

ũ(kM, λ) =

∫
K

ũ(kM, λ) dk = 〈u,
∫
K

e(−iλ+ρ)A(x,kM) dk〉 = 〈u, φ−λ(x)〉 = ũ(λ). (3.3.15)

Remark 15. We note that the way we have defined the Fourier transform of distributions in E ′(X) coincides with [13, Ch.
III]. And although we have defined the spherical transform for all of J ′(X) we have not defined the Fourier transform
on all of S ′(X). One can suggest a definition for a Fourier transform on all of S ′(X) by understanding that the
homeomorphism F : S(X) → SW (K/M × a∗) gives rise to the transpose F ∗ : S ′W (K/M × a∗) → S ′(X) which is
a homeomorphism when both S ′(X) and S ′W (K/M × a∗) are given the weak*-topologies. Here F ∗v = v ◦ F ,
v ∈ SW (K/M × a∗).

Thus one could define the Fourier transform of a distribution u ∈ S(X) as ũ = (F ∗)−1u = (F−1)∗u. However in
this case one finds that the Fourier transform of a distribution u ∈ E ′(X) is the function ũ(kM, λ) = 〈u, e(iλ+ρ)A(x,kM)〉
which disagrees with our original definition by −λ. Even worse, this definition does not respect the integral identity
established in Proposition 3.3.4 when u ∈ S(X).

If u ∈ E ′(X), then we can characterize the Fourier transform ũ(kM, λ) in the following way. We say a
smooth function F on K/M × a∗c is a slowly increasing holomorphic function of uniform exponential type
A ≥ 0 if F is holomorphic for λ ∈ a∗c and if for all N ∈ N, we have

sup
(kM,λ)∈K/M×a∗c

|(1 + |λ|)−Ne−A| Imλ|F (kM, λ)| <∞. (3.3.16)

We let K A(K/M × a∗c) denote the space of slowly increasing holomorphic functions of uniform exponential
type A ≥ 0 and put K (K/M × a∗c) =

⋃
A≥0 K A(K/M × a∗c). We then let KW (K/M × a∗c) denote the space

of elements in K (K/M × a∗c) satisfying the symmetry condition of (3.2.19). We also let KW (a∗c) denote the
subspace of functions in KW (K/M × a∗c) which are W -invariant and constant in kM . Then we have the
Paley-Wiener theorem for compactly supported distributions.

Theorem 3.3.8 ( [13, Ch. III, Cor. 5.9]). The Fourier transform F : E ′(X)→ KW (K/M×a∗c) is a bijection.
In particular, if BA(o) is the open ball centered at o with radius A > 0, then suppu ⊂ BA(o) if and only if
ũ ∈ K A(K/M × a∗c).

One also has that the spherical transform is a bijection of E ′K(X) onto KW (a∗c).
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In analogy to the result that if u ∈ E ′(X), then suppu ⊂ BA(o) if and only if ũ ∈ K A(K/M × a∗c), there
is a similar statement which holds for the singular support of a compactly supported distribution under
certain conditions (see [5]). We now close this section with the following theorem.

Theorem 3.3.9. Let T, S ∈ E ′(X) and suppose that S is K-invariant, then the following statements hold.

1. The Fourier transform of T ∗ S satisfies (T ∗ S)̃ (kM, λ) = T̃ (kM, λ)S̃(λ).

2. If f ∈ DK(X), then (S ∗ f )̃ = S̃f̃ . More generally if f ∈ J (X), then (S ∗ f )̃ = S̃f̃ and

S ∗ f(x) =

∫
a∗
f̃(λ)S̃(λ)φλ(x) dµ(λ) . (3.3.17)

Proof. We first prove (1). We can extend a distribution U on X to a distribution U ′ on G by the formula

U ′(f) = 〈UgK ,
∫
K

f(gk) dk〉,

where f ∈ D(G) (or f ∈ E(G))—the assignment U 7→ U ′ is injective. Now, we extend the convolution of
distributions on X by defining (T ∗ S)(f) = T ′ ∗ S′(fq) where fq(g) = f ◦ q(g) = f(g · o). Here q : G→ G/K
is the projection map. In particular, we have

(T ∗ S)̃ (kM, λ) =

∫
G

∫
G

T ′(g)S′(h)e(−iλ+ρ)A(gh·o,kM) dg dh

=

∫
G

∫
G

T ′(g)S′(h)e(−iλ+ρ)(A(h·o,g−1(kM)+A(g·o,kM)) dg dh

=

∫
G

T ′(g)Sx(e(−iλ+ρ)A(x,g−1(kM)))e(−iλ+ρ)A(g·o,kM) dg

= T̃ (kM, λ)S̃(λ).

If we had considered the convolution S ∗ T , then this defines a K-invariant distribution thus we can not have
(S ∗ T )̃ = S̃T̃ as T is not K-invariant. We now prove (2). Since S and f are both compactly supported,
their convolution S ∗ f is also a compactly supported smooth function. Let B = (suppS ∗ f)∪ supp f and for
each λ ∈ a∗ define the distribution Φλ by

Φλ(ψ) =

∫
B

ψ(x)φ−λ(x) dx .

Then the spherical transform of S ∗ f is given by

(S ∗ f )̃ (λ) =

∫
X

S ∗ f(x)φ−λ(x) dx = 〈Φ′λ(g)⊗ S′(h), f(h−1g · o)〉.

Using Fubini’s theorem for distributions on manifolds, we have

〈Φ′λ(g)⊗ S′(h), f(h−1g · o)〉 = 〈S′(h)⊗ Φ′λ(g), f(h−1g · o)〉.

Thus,

〈Φ′λ(g), f(h−1g · o)〉 =

∫
G

f(g · o)φ−λ(hg · o) dg = φ−λ(h · o)f̃(λ).

Thus, we have 〈Φ′λ(g)⊗ S′(h), f(h−1g · o)〉 = 〈S, φ−λ〉f̃(λ) = S̃(λ)f̃(λ). Now if f ∈ J (X) and S ∗ f ∈ J (X)
we note that if {fn} ⊂ J (X) is a sequence of compactly supported functions which converge to f (cf. [13, Ch.
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III, Lemma 1.21]), then we have S ∗ fn → S ∗ f pointwise and so by the inversion formula

S ∗ f(x) = lim
n→∞

S ∗ fn(x) = lim
n→∞

∫
a∗
f̃n(λ)S̃(λ)φλ(x) dµ(λ) =

∫
a∗

lim
n→∞

f̃n(λ)S̃(λ)φλ(x) dµ(λ)

=

∫
a∗
f̃(λ)S̃(λ)φλ(x) dµ(λ) .

The fact that we could commute the limit with the integral follows from the dominated convergence theorem

in which we used the slow growth of S̃ and the fact that f̃n → f̃ in the topology of SW (a∗).

3.4 Towards pseudo-differential operators

We shall now attempt to mimic a theory of “pseudo-differential operators” on the homogeneous space
X = G/K, reminiscent to the theory of pseudo-differential operators on Rn, using the Fourier transform.
Unfortunately, due to some technical limitations this theory does not appear to yield a symbol calculus,
although we investigate some alternatives.

3.4.1 Pseudo-differential operators on Rn

If D is a constant coefficient differential operator and f ∈ S(Rn), then using the Fourier inversion formula
one can represent the function Df(x) as the Fourier integral:

Df(x) =
1

(2π)n

∫
Rn

f̂(ξ)D(iξ)ei〈x,ξ〉 dξ . (3.4.1)

Here D(iξ) is defined as in Definition 3.1.5 where we identify iξ with the linear functional x 7→ i〈x, ξ〉. Many
other types of operators can be represented as Fourier integrals as in (3.4.1) such as translation operators or
convolution operators which are types of Fourier multipliers. We can generalize this a bit further by realizing
that for a nicely behaved smooth function a(x, ξ) ∈ C∞(Rn ×Rn) (say of compact support or of at most

polynomial growth), then the operator Af(x) = (2π)−n
∫
Rn f̂(ξ)a(x, ξ)ei〈x,ξ〉 dξ is continuous from S(Rn) to

itself. We shall call a the symbol of A. We restrict our focus to those operators whose symbols belong to the
so-called symbol classes Sm(Rn ×Rn).

Definition 3.4.1. Let m ∈ Rn. We define the symbol class Sm(Rn ×Rn) to be the space of all smooth
functions a which satisfies the estimate

|∂αξ ∂βxa(x, ξ)| ≤ Cα,β(1 + |ξ|)m (3.4.2)

for some finite constant Cα,β > 0 and for all multi-indices α, β ∈ Nn. If a ∈ Sm(Rn×Rn), then we associate
to it an operator, denoted by Op(a) (and also commonly denoted by a(x,D)), by

Op(a)f(x) =
1

(2π)n

∫
Rn

f̂(ξ)a(x, ξ)ei〈x,ξ〉 dξ, (3.4.3)

where f ∈ S(Rn). As a shorthand we will write Sm = Sm(Rn ×Rn).

Clearly, if a ∈ Sm, then Op(a) defines a continuous endomorphism of S(Rn).

Example 3.4.1. If D is a constant coefficient differential operator and r is its order, then the symbol D(iξ)
is a polynomial of order r. In particular, one can easily see that D(iξ) ∈ Sr(Rn ×Rn).

Example 3.4.2. If g ∈ S(Rn), then the convolution operator Gf(x) = f ∗g(x) has symbol ĝ(ξ). The symbol
of the operator G is then an element of Sm(Rn ×Rn) for all m ∈ R.
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We shall thus say that an operator A : S(Rn)→ S(Rn) is a pseudo-differential operator if it is realized as
A = Op(a) for some a belonging to one of the symbol classes. One can interpret pseudo-differential operators
in the sense of distributions as follows. Let a ∈ Sm and we formally write

Op(a)f(x) =
1

(2π)n

∫
Rn

{∫
Rn

f(y)e−i〈y,ξ〉 dy

}
a(x, ξ)ei〈x,ξ〉 dξ =

1

(2π)n

∫
Rn

∫
Rn

f(y)a(x, ξ)ei〈x−y,ξ〉 dy dξ

= f ∗ qax(x).

Here qaz(x) is the object (2π)−n
∫
Rn a(z, ξ)ei〈x,ξ〉 dξ which we interpret as the inverse Fourier transform of the

symbol regarded as a distribution a(z, ξ) = az(ξ) ∈ S ′(Rn). Thus, interpreting f ∗ qax(x) in the distributional
sense leads us to

f ∗ qax(x) = 〈(qax)(y), f(x− y)〉 =

〈
ax(ξ),

1

(2π)n

∫
Rn

f(x− y)ei〈y,ξ〉 dy

〉
= 〈ax(ξ), (2π)−nei〈x,ξ〉f̂(ξ)〉 =

1

(2π)n

∫
Rn

f̂(ξ)a(x, ξ)ei〈x,ξ〉 dξ

= Op(a)f(x).

Hence, the operator Op(a) can be realized as a particular convolution along a family of distributions qax
parametrized by x ∈ Rn. In fact, all that we have done here is write Op(a) in terms of its Schwartz kernel
Ka(x, y) ∈ S ′(Rn ×Rn) where

Op(a)f(x) =

∫
Rn

Ka(x, y)f(y) dy =

∫
Rn

qax(x− y)f(y) dy, (3.4.4)

so that Ka(x, y) = qax(x− y). Moreover, the Fourier transform of qax is trivially equal to a(x, ξ) in the sense
of distributions. This realization of a pseudo-differential operator as a particular convolution operator will
become very important in Section 3.4.3.

Our primary object of study is to answer the question of what happens when one composes two pseudo-
differential operators. One would like that given two pseudo-differential operators, that their composition is
also a pseudo-differential operator. The answer to this question is “yes” and we shall outline the proof for the
cases when the symbols of the pseudo-differential operators are of compact support.

Suppose that a and b are symbols of compact support and let f be a Schwartz function. We put

Op(b)f(y) =
1

(2π)n

∫
f̂(ξ)b(y, ξ)ei〈y,ξ〉 dξ

and then calculate the Fourier transform of Op(b)f as

(Op(b)f )̂ (ω) =
1

(2π)n

∫ ∫
f̂(ξ)b(y, ξ)ei〈y,ξ−ω〉 dξ dy .

We note that the double integral above can be integrated in any order since b is compactly supported and f
is a Schwartz function. Then we calculate Op(a) Op(b)f(x) as

Op(a) Op(b)f(x) =
1

(2π)n

∫
(Op(b)f )̂ (ω)a(x, ω)ei〈x,ω〉 dω

=
1

(2π)2n

∫ ∫ ∫
f̂(ξ)b(y, ξ)a(x, ω)ei〈y,ξ−ω〉ei〈x,ω〉 dξ dy dω .

Then multiplying the integrand by ei〈x,ξ〉e−i〈x,ξ〉 = 1 we have

Op(a) Op(b)f(x) =
1

(2π)n

∫
f̂(ξ)ei〈x,ξ〉

{
1

(2π)n

∫ ∫
b(y, ξ)a(x, ω)ei〈y−x,ξ−ω〉 dy dω

}
dξ .
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Again the interchange of all these integrals is justified by using Fubini’s theorem and the fact that a and b
are compactly supported. Hence the symbol of Op(a) Op(b) is the smooth function

c(x, ξ) =
1

(2π)n

∫ ∫
b(y, ξ)a(x, ω)ei〈y−x,ξ−ω〉 dy dω

=
1

(2π)n

∫
b̂(ω, ξ)a(x, ω + ξ)ei〈x,ω〉 dω .

From here it is clear that c defines a symbol belonging to one of the symbol classes since a is of compact
support and |∂αξ b̂(ω, ξ)| <∞ for all differential operators ∂αξ . So Op(c) = Op(a) Op(b). Now, one can expand
a(x, ω + ξ) into the Taylor polynomial

a(x, ω + ξ) =
∑
|α|≤N

ωα

α!
∂αξ a(x, ξ) + rN (x, ω, ξ)

where rN (x, ω, ξ) is the Taylor remainder term. Thus, we have

c(x, ξ) =
∑
|α|≤N

1

(2π)nα!

∫
b̂(ω, ξ)ωα∂αξ a(x, ξ)ei〈x,ω〉 dω+RN (x, ξ) (3.4.5)

=
1

(2π)n

∑
|α|≤N

i−|α|

α!
∂αξ a(x, ξ)∂αx b(x, ξ) +RN (x, ξ), (3.4.6)

here

RN (x, ξ) =
1

(2π)n

∫
b̂(ω, ξ)rN (x, ω, ξ)ei〈x,ω〉 dω .

Näıvely, this suggests that the symbol of the composition of Op(a) and Op(b) is the symbol c which has the
asymptotic “formula”

c(x, ξ) ∼ 1

(2π)n

∑
α

i−|α|

α!
∂αξ a(x, ξ)∂αx b(x, ξ). (3.4.7)

This observation holds analogously for symbols not necessarily of compact support by the following
theorem.

Theorem 3.4.3 ( [21, Ch. VI, Sec. 3]). Let a ∈ Sm1 and b ∈ Sm2 , then there is a symbol c ∈ Sm1+m2 such
that Op(c) = Op(a) Op(b). Moreover, c is given by the formula

c(x, ξ) =
∑
|α|<N

i−|α|

α!
∂αξ a(x, ξ)∂αx b(x, ξ) mod Sm1+m2−N , (3.4.8)

for all N ∈ N.

The composition formula of the theorem defines what is commonly referred to as the “symbol calculus.”
There are certainly many other types of operations on pseudo-differential operators one can study and [15,21,23]
are very good references for further information. However, we shall restrict our attention to investigating the
issue of a “composition formula” of (3.4.8) in the next two sections.

Taylor expansions of distributions

If T ∈ D′(Rn) and f ∈ D(Rn), then the modified convolution T × f defined by

T × f(x) =

∫
Rn

T (y)f(x+ y) dy =

∫
Rn

T (x+ y)f(y) dy .
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is a smooth function on Rn. We can expand f(x+ y) into its Taylor polynomial to obtain

f(x+ y) =
∑
|α|<N

1

α!
xα(∂αf)(y) + fN (x, y)

where fN (x, y) is the Taylor remainder. Then inserting the formula for the Taylor polynomial into the
expression defining T × f we have

T × f(x) =
∑
|α|<N

1

α!
xα
∫
Rn

T (y)∂αf(y) dy+

∫
Rn

T (y)fN (x, y) dy . (3.4.9)

The assignment f(y) 7→ fN (·, y) is continuous on D(Rn) and so this gives rise to a distribution

f 7→
∫
Rn

TN (x, y)f(y) dy =

∫
Rn

T (y)fN (x, y) dy,

which also defines a smooth function in x. Thus, we can interpret (3.4.9) as giving the Taylor formula of
T (x+ y) by

T (x+ y) =
∑
|α|<N

(−1)|α|

α!
xα∂αT (y) + TN (x, y), (3.4.10)

where TN (x, y) is a distribution that plays the role of the Taylor remainder in the Taylor expansion of T (x+y).
More generally, if A : D(Rn)→ D(Rn) is a continuous operator, then by the Schwartz kernel theorem there is
a distribution K ∈ D′(Rn ×Rn) such that for f, g ∈ D(Rn) we have 〈Af(x), g(x)〉 = 〈K(x, y), (f ⊗ g)(x, y)〉
where (f ⊗ g)(x, y) = f(y)g(x). Informally we can write

Af(x) =

∫
Rn

K(x, y)f(y) dy . (3.4.11)

If D is a differential operator with constant coefficients and D∗ is its adjoint, then

〈DAf(x), g(x)〉 = 〈Af(x), D∗g(x)〉 = 〈K(x, y), D∗x(f ⊗ g)(x, y)〉 = 〈DxK(x, y), (f ⊗ g)(x, y)〉.

Thus, we are justified in writing

DAf(x) =

∫
Rn

DxK(x, y)f(y) dy .

Using this and the preceding discussion we can expand K(x+ z, y) into its Taylor polynomial

K(x+ z, y) =
∑
|α|<N

1

α!
zα∂αxK(x, y) +KN (x, z, y). (3.4.12)

Here, the distribution KN (x, z, y) ∈ D′(Rn ×Rn) is defined by∫
Rn×Rn

KN (x, z, y)f(y)g(x) dy dx = 〈(Af)N (z, x), g(x)〉.

One can also consider Taylor expansions of tempered or of compactly supported distributions (or of
Schwartz kernels). Also one can consider Taylor polynomials of Schwartz kernels of continuous operators
A : F → F ′ where F is D(Rn), E(Rn), or S(Rn). We leave it to the reader to work out the details.
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3.4.2 As symbols in the classes Sm(K/M × a∗ ×X) and Sm
K (a∗ ×X)

We shall now attempt to investigate analogues of pseudo-differential operators on the homogeneous space
X = G/K via the Fourier transform. We shall follow two approaches, each with varying success. Namely, we
shall use the method of studying pseudo-differential operators as particular convolution operators in Section
3.4.3 as well as pseudo-differential operators defined in terms of symbols in this section.

Mimicking the formula defining a pseudo-differential operator on Rn, one would expect a pseudo-differential
operator on S(X) to be a continuous endomorphism of S(X) of the form

Af(x) =

∫
K/M×a∗

f̃(kM, λ)a(kM, λ, x)e(iλ+ρ)A(x,kM) dµ(kM, λ) . (3.4.13)

where (kM, λ, x) 7→ a(kM, λ, x) is a nicely behaved smooth function. In this case one would call a the symbol
of A. Also, if f ∈ J (X), one would like to consider symbols that are invariant in kM and K-invariant in x
so that we can obtain operators B : J (X)→ J (X) such that

Bf(x) =

∫
a∗
f̃(λ)b(λ, x)φλ(x) dµ(λ) . (3.4.14)

We define the symbol classes as follows.

Definition 3.4.2. Let m ∈ R, we define the symbol class Sm(K/M × a∗ × X) as the space of smooth
functions a on K/M × a∗ ×X such that for each p ∈ U(k), v ∈ S(a∗), D1, D2 ∈ U(g) we have

|∂r(p)∂l(D1)∂r(D2)∂(v)a(kM, λ, x)| ≤ C(1 + |λ|)m (3.4.15)

where C is some finite constant, perhaps depending on the elements p, v, D1, and D2. Furthermore, we impose
that

∫
K
a(kM, λ, x)e(iλ+ρ)A(y,kM) dk =

∫
K
a(kM, sλ, x)e(isλ+ρ)A(y,kM) dk for all y ∈ X and s ∈W . We also

define the symbol class SmK (a∗ ×X) as the space of all smooth functions on a∗ ×X that are K-invariant
which satisfy the estimates

|∂l(D1)∂r(D2)∂(v)a(kM, λ, x)| ≤ C(1 + |λ|)m

where as usual C is some constant and v ∈ S(a∗) and D1, D2 ∈ U(g). Furthermore, we impose that the
elements of SmK (a∗ ×X) are W -invariant in λ.

If a ∈ Sm(K/M × a∗ ×X), then we define the operator Op(a) acting on S(X) by formula (3.4.13) where
we take Op(a) = A. Similarly if b ∈ SmK (a∗ ×X), then Op(b) is defined by formula (3.4.14) where of course
we take Op(b) = B.

Theorem 3.4.4. If b ∈ SmK (a∗ ×X), then Op(b) is a continuous endomorphism of the Schwartz space of
K-invariant functions J (X).

Proof sketch. If b ∈ SmK (a∗ ×X) and f ∈ J (X), then if D ∈ D(G) we obtain

DOp(b)f(x) =

∫
a∗
f̃(λ)D(b(λ, x)φλ(x)) dµ(λ) .

Using the product rule we write D(b(λ, x)φλ(x)) =
∑n
j=1Dja(λ, x)Ejφλ(x) where Dj , Ej ∈ D(G) are suitable

differential operators. Now for all j we can estimate Ejφλ(x) by

|Ejφλ(x)| ≤ c0(1 + |λ|)sφ0(x)

where s and c0 are some positive constants (cf. [13, Ch. III, Lemma 1.18]). Given N ∈ N, there is some
suitable constant s′

|(1 + |g|)NΞ(g)−1DOp(b)f(g · o)| ≤ c0(1 + |g|)N
∫
a∗
|f̃(λ)|(1 + |λ|)s

′
dµ(λ) . (3.4.16)

Now following the argument of [13, Ch. III, Lemma 1.20] we can show that the integral of (3.4.16) is
dominated (in g) by c1σ(f) where c1 > 0 is a constant and σ is a seminorm on J (X). Thus, we see that
Op(b)f is a Schwartz function that is K-invariant and defines a continuous endomorphism of J (X).
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We expect that if a ∈ Sm(K/M × a∗ × X), then Op(a) defines a continuous endomorphism of S(X).
However to prove this one needs to understand the details of proving the continuity of the inverse Fourier
transform on SW (K/M × a∗) into S(X)—the details of which can be found [6]. This is hard (for the author
at least) and we are not so confident on the details themselves to warrant stating it as a theorem outright.

Example 3.4.5. If D ∈ D(X), then it has the symbol ξ(λ) = D(iλ) and ξ ∈ Sm(K/M × a∗ ×X) where m
is the order of D.

Example 3.4.6. If ψ ∈ J (X) and f ∈ S(X), then the convolution f ∗ψ(g ·o) exists. Indeed, crude estimates
show that ∫

G

|f(h · o)||ψ(h−1g · o)| dh ≤ c0
∫
G

(1 + |h|)−NΞ(h)2 dh

which is known to converge for N large enough (cf. [13, pp. 214-215]). Note that the existence of f ∗ ψ
does not require ψ to be K-invariant. One can then consider the Fourier transform (f ∗ ψ)̃ and verify that
one is permitted to use Fubini’s theorem in the integral defining the Fourier transform of f ∗ ψ to obtain
(f ∗ ψ)̃ = f̃ ψ̃. Thus, (f ∗ ψ)̃ ∈ SW (K/M × a∗) and so by Fourier inversion we see that f ∗ ψ ∈ S(X) and

the symbol of the convolution operator Ψ(f) = f ∗ ψ is ψ̃. This symbol belongs to Sm(K/M × a∗ ×X) for
all m ∈ R.

If a ∈ SmK (a∗×X), then for fixed x the function λ→ a(x, λ), which we denote by ax(λ), defines a tempered
distribution in S ′(a∗). We can represent the associated operator Op(a) : J (X)→ J (X) as the convolution
operator f 7→ f ∗ (F−1ax)(x). Indeed we have

〈(F−1ax)(y), f(xy−1)〉X = 〈ax, ι ◦ (Fyf(xy−1)〉a∗ = 〈ax, f ∗ φλ(x)〉a∗

=

∫
a∗
f̃(λ)a(x, λ)φλ(x) dµ(λ) .

So that Op(a)f(x) = f ∗ (F−1ax)(x)—this observation will be explored further in the next section. Now,
one would like to obtain a composition formula for operators defined from their symbols from SmK (a∗ ×X) or
Sm(K/M × a∗ ×X). If we try to mimic our approach of Section 3.4.1, we can see that we encounter some
difficulties. Specifically, suppose that a, b ∈ SmK (a∗ ×X) are compactly supported. Then we wish to study
the composition Op(a) Op(b) on J (X). So we calculate

(Op(b)f )̃ (ω) =

∫
X

∫
a∗
f̃(λ)b(λ, y)φλ(y)φ−ω(y) dµ(λ) dy .

Then,

Op(a) Op(b)f(x) =

∫
a∗

∫
X

∫
a∗
f̃(λ)b(λ, y)a(ω, x)φλ(y)φ−ω(y)φω(x) dµ(λ) dy dµ(ω)

=

∫
a∗
f̃(λ)φλ(x)

{∫
X

∫
a∗
b(λ, y)a(ω, x)φλ(y)φ−ω(y)φω(x)φλ(x)−1 dy dµ(ω)

}
dµ(λ) .

The interchange of all these integrals is valid due to the property that a and b are of compact support. Now,
arguably we have that the symbol of Op(a) Op(b) is given by

c(λ, x) =

∫
X

∫
a∗
b(λ, y)a(ω, x)φλ(y)φ−ω(y)φω(x)φλ(x)−1 dy dµ(ω) .

So clearly c(λ, x) is a smooth function on a∗ ×X. What is not clear is how a composition formula can be
extracted from c such as in Theorem 3.4.8. We can simplify our formula defining c by using that for g, h ∈ G∫

K

φω(g−1kh · o) dk = φω(g−1 · o)φω(h · o), and

φ−ω(g · o) = φω(g−1 · o).
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Then we have

c(λ, h · o) =

∫
K

∫
G

∫
a∗
b(λ, g · o)a(ω, h · o)φω(g−1kh · o)φω(h · o)φλ(h · o)−1 dg dµ(ω)

=

∫
G

∫
a∗
b(λ, g · o)a(ω, h · o)φω(g−1h · o)φω(h · o)φλ(h · o)−1 dg dµ(ω) .

This takes care of the factor φλ(y)φ−ω(y). However the factor involving φω(x)φλ(x)−1 does not appear to
be easily handled. One issue is that φλ(x)−1 is no longer a spherical function. Moreover, there is no useful
formula describing the product of two spherical functions φωφλ where λ 6= ω. Thus the techniques used
in Section 3.4.1 seem to be inapplicable to our situation. Perhaps a more serious problem is the fact that
there is no intrinsic notion of a Taylor expansion on X (or G). In the theory for studying the composition of
pseudo-differential operators on Rn (cf. [15, 21, 23]) or on a compact Lie group (cf. [20]) one makes heavy
use of Taylor series expansions to obtain composition formulas of symbols arising from the composition of
pseudo-differential operators. It is therefore quite unclear how one proceeds to develop a “symbol calculus”
from the symbol classes we have given in Definition 3.4.2. So if there is a symbolic calculus using the symbol
classes that we have defined, then new techniques are required.

In the next section we shall take an alternative approach of considering operators that arise as a convolution
of functions in J (X) with a family of distributions. There we shall make the assumption that we can in fact
perform Taylor expansions of smooth functions which we shall outline next.

3.4.3 As convolution operators with K-invariant kernels

A word on Taylor expansions

Let X be a smooth manifold (without boundary) and let f ∈ C∞(X). We shall be interested in a type of
Taylor expansion of f such that for a given point x0 ∈ X we have the approximation

f(x) =
∑
|α|≤n

1

α!
γα(x)∂αf(x0) + rn(x, x0), (3.4.17)

where ∂α is a particular derivative of f , γα are smooth functions taking the role of the monomials x 7→ xα

on Rn, and rn is a remainder term satisfying some estimates. This is achieved by using a system of local
coordinates and then transporting back to the manifold to obtain the desired approximation. To this end, let
(U, φ) be a coordinate system about a point x0 ∈ U . Then the representation function f̂ = f ◦ φ−1 defines a

smooth function f̂ : φ(U)→ C. Consequently, about any point y0 in the domain of φ(U) we can perform a
Taylor expansion

f̂(y) =
∑
|α|≤n

1

α!
yα∂αf̂(y0) + r̂n(y, y0). (3.4.18)

Now since there is an isomorphism between C∞(U) and C∞(φ(U)) (given by the pullback of φ) we can define
smooth functions γα : U → R such that γ̂α(y) = yα on φ(U). Thus, we can transport terms of the expression
(3.4.18) to smooth functions on U to obtain expression (3.4.17). This gives, at least locally, a Taylor expansion
of a smooth function on each coordinate system. A bit of a drawback to this approach is that this Taylor
formula depends on a choice of local coordinates in addition to the fact it is a local expression.

Obtaining Taylor expansions for which expressions such as (3.4.17) hold globally is an interesting
proposition. In Ruzhansky and Turunen’s text [20, Sec. 10.6] they show that Taylor expansions can be
obtained for any compact Lie group. There, the approach used relies on the fact that any compact Lie group
G is isomorphic to some subgroup of U(n) for some n ∈ N. Using this identification one can embed G as a
closed submanifold of Rn×n. Then using a particular open neighborhood U ⊃ G in Rn one “extends” smooth
functions on G to smooth functions on U where one can perform Taylor expansions on U and then restrict
these expansions back to G. The end result is that one can express smooth functions in a Taylor polynomial
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as in (3.4.17) globally on the Lie group G, although the Taylor expansion that is obtained will depend on the
embedding of G into Rn×n as well as the coordinates used. Global Taylor expansions can also be obtained
on compact manifolds without boundary (see [4, Ch. 3]) using techniques that generalize the approach of
Ruzhansky and Turunen.

The question of global Taylor expansions on noncompact manifolds or Lie groups seems to be more
nebulous—and we do not consider how one can obtain such as expansions in this thesis. However we will be
forthright and say that in the next section that we assume that global Taylor expansions exist on noncompact
semisimple Lie groups G.

Convolution calculus

Let G be a Lie group and let T : E(G) → E(G) be a linear continuous operator. By the Schwartz kernel
theorem we can associate to T the Schwartz kernel KT ∈ E ′(G×G). We can thus informally write

Tf(x) =

∫
G

KT (x, y)f(y) dy

for precisely the same reasons as in (3.4.11). We define the right-convolution kernel of T to be the distribution
RT ∈ E ′(G × G) which is defined by the relation KT (x, y) = RT (x, y−1x) so that using the standard
distributional interpretation ∫

G

KT (x, y)f(y) dy =

∫
G

RT (x, y)f(xy−1) dx .

In particular by a change of variables we have RT (x, y) = KT (x, xy−1).
Returning to our study of pseudo-differential operators on J (X) we shall restrict ourselves to a family of

operators A, where for each A ∈ A the operator A : J (G)→ J (G) is such that the left convolution kernel of
A, satisfies RA ∈ E ′K(G×G) where we lift RA from E ′K(X ×X) to E ′K(G×G) as in Theorem 3.3.1. That is
the kernel RA(x, y) is assumed to be K-bi-invariant in the variables x, y ∈ G. In our work that ensues we
closely mirror the techniques used in [20,24].

Since for each y, the distribution RA(x, y) is K-bi-invariant we shall define the symbol of the operator A
by

σA(x, λ) =

∫
G

RA(x, y)φ−λ(y) dy (3.4.19)

where of course φλ is the spherical function and this has a distributional interpretation. For any concerns
arising from our manipulation of distributions we refer the reader to [20, Ch. 10].

Theorem 3.4.7 (Quantization of operators). If A ∈ A, let σA denote its symbol. Then

Af(x) =

∫
a∗
f̃(λ)σA(x, λ)φλ(x) dµ(λ), (3.4.20)

for all f ∈ J (G) and x ∈ G.

Proof. First suppose that f ∈ DK(X) and fix x0 ∈ G. Then write Ax0f(x) = f ∗ Rx0

A (x) where Rx0

A is the
distribution defined by

f ∗Rx0

A (x) =

∫
G

RA(x0, y)f(xy−1) dy .

Now adapting the proof of Theorem 3.3.1 we find that (f ∗Rx0

A )̃ (λ) = σA(x0, λ)f̃(λ). Thus as for each fixed
x we have Af(x) = Axf(x) so that we have obtained formula (3.4.20) for functions f ∈ DK(X). If f ∈ J (G)
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and {fn}n∈N ⊂ DK(X) is a sequence of functions such that fn → f in the topology of J (G) (cf. [13, Ch. III,
Lemma 1.21]) we have by the continuity of A and the Fourier transform so that pointwise

Af(x) = lim
n→∞

Afn(x) = lim
n→∞

∫
a∗
f̃n(λ)σA(x, λ)φλ(x) dµ(λ) =

∫
G

lim
n→∞

f̃n(λ)σA(x, λ)φλ(x) dµ(x) (3.4.21)

=

∫
a∗
f̃(λ)σA(x, λ)φλ(x) dµ(λ) . (3.4.22)

So we are done.

The proof given above is essentially the same as the proof contained in [20, Thm. 10.44]. Thus by formula
(3.4.20) we are at least legitimate to think that these also realize a class of “pseudo-differential operators” in
analogy to the Euclidean case.

Example 3.4.8. If g ∈ DK(X), then the operator G : f 7→ f ∗ g is an element of A. The symbol of G is of
course σG(x, λ) = g̃(λ) since in particular RG(x, y) = g(y).

Example 3.4.9. We have that D(X) ⊂ A. Indeed, these operators can be expressed as derivatives of the
Dirac delta distribution δ with point mass at the origin o by Df = (Df) ∗ δ = f ∗ (Dδ) (cf. [11, Ch. II, Sec.
5]). So in particular, the right convolution kernel of D is RD(x, y) = Dδ(y). The symbol of D is then

σD(x, λ) =

∫
G

δ(y)D∗φ−λ(y) dy = Γ(D)(iλ).

Combining this fact and using Theorem 3.4.7 we have the expression

Df(x) =

∫
G

f̃(λ)Γ(D)(iλ)φλ(x) dx, (3.4.23)

which would have been obtained ordinarily by commuting the operator D with the Fourier integral.

To understand the symbol of a composition of operators A,B ∈ A we first obviously should verify that
AB ∈ A. This is afforded by the following lemma.

Lemma 3.4.10. The space of operators A is closed under composition and thus forms an algebra.

Proof. If A,B ∈ A, this amounts to showing that the right convolution kernel of RAB(x, y) of AB also lies in
E ′K(G × G) in which it is only necessary to verify that RAB(x, y) is K-bi-invariant. We can calculate the
convolution kernel explicitly as follows:

ABf(x) =

∫
G

RAB(x, y)f(xy−1) dy =

∫
G

RA(x, y)Bf(xy−1) dy

=

∫
G

{∫
G

RA(x, y−1)RB(xy, zy) dy

}
f(xz−1) dz .

Thus the right convolution kernel of AB is given by (in the distributional sense)

RAB(x, z) =

∫
G

RA(x, y−1)RB(xy, zy) dy . (3.4.24)

In particular, this expression of the kernel gives us that the kernel RAB is also K-bi-invariant in each variable
as a distribution restricted to J (X).

Turning our attention to the question of the symbol of the composition we shall assume that there is a
given global Taylor expansion with remainder valid for a smooth function on C∞(G). In this case, we shall
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assume that for a function f ∈ C∞(G) that for each point x ∈ G it admits a Taylor expansion about a point
x as

f(y) =
∑
|α|≤N

1

α!
γα(x−1y)∂αf(x) + rN (x, y), (3.4.25)

for all x, y ∈ G, where the objects ∂α correspond to certain differential operators on G, and the functions
γα : G→ R are smooth. We shall put ζα(y) = (α!)−1γα(y−1). Using formula (3.4.24) we compute the symbol
σAB(x, λ) as follows. The idea is to use the Taylor expansion to expand the convolution kernel RAB in such
a way so that

ABf(x) =
∑

1≤i≤n

f ∗ (axi ∗ bxi )(x) + f ∗ (Rn)x(x) = f ∗ (RxAB)(x). (3.4.26)

Then in view of Theorem 3.3.1 the symbol of AB is of the form

σAB(x, λ) =
∑

1≤i≤

σbi(x, λ)σai(x, λ) + σRn(x, λ).

In this way, Rn should be a “remainder term” while the distributions axi and bxi should be related to the
right convolution kernels RA(x, y) and RB(x, y), respectively, in some way. So first, we note that

ABf(x) =

∫
G

∫
G

RA(x, y−1x)RB(y, z−1y)f(z) dz dy . (3.4.27)

On the other hand, if we fix RxA(y) = RA(x, y) and RxB(z) = RB(x, z), then by definition of the convolution
of distributions

f ∗ (RxB ∗RxA)(x) =

∫
G

∫
G

RA(x, y)RB(x, z)f(xy−1z−1) dz dy

=

∫
G

∫
G

RA(x, y−1x)RB(x, z)f(yz−1) dz dy

=

∫
G

∫
G

RA(x, y−1x)RB(x, z−1y)f(z) dz dy .

In particular, if we take the Taylor expansion of RB(y, z−1y) with remainder as

RB(y, z−1y) =
∑
|α|≤N

ζα(y−1x)∂αxRB(x, z−1y) + RN (x, y, z−1y). (3.4.28)

Confer to Section 3.4.1 for the analogous meaning of the Taylor expansion of a distribution; also see [24, Ch.
I, No. 1.34] and [20, Thm. 10.7.8]. Now we can rewrite (3.4.27) as

ABf(x) =
∑
|α|≤N

f ∗ (bxα ∗ aαx)(x) + f ∗ (RxN )(x). (3.4.29)

Here, bsα, aαs , and RsN are respectively the distributions which are determined by

u ∗ bsα(x) =

∫
G

∂αRB(s, z−1x)u(z) dz, (3.4.30)

u ∗ aαx(x) =

∫
G

RA(x, y−1x)ζα(y−1s)u(y) dy, (3.4.31)

u ∗ (RsN )(x) =

∫
G

∫
G

RA(x, y−1x)RN (s, y, z−1y)u(z) dz dy, (3.4.32)
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where u is a smooth function. Of course, the distributions bxα, aαx , and RxN all define operators Aα, Bα, and
R′N respectively in A since the convolution operators RA and RB are K-bi-invariant in each variable. Hence,
the symbol of AB is then given by

σAB(x, λ) =
∑
|α|≤N

σAα(x, λ)σBα(x, λ) + σR′N (x, λ).

To summarize our result, we have the “composition formula”.

Theorem 3.4.11. If A,B ∈ A, then the symbol of AB can be expanded as

σAB(x, λ) =
∑
|α|≤N

σAα(x, λ)σBα(x, λ) + σR′N (x, λ). (3.4.33)

Here, the operators Aα, Bα and R′N are defined by the relations (3.4.30-3.4.32).

3.5 Remarks

As we have surveyed, the Fourier transform on the homogeneous space X = G/K is certainly a good
generalization of the classical Fourier transform on Rn or on topological groups. It is has the advantage of
being a scalar-valued function, rather than an operator-valued function as are the Fourier transforms on
nonabelian groups. This feature allows the Fourier transform on X to serve as a useful tool to study certain
differential equations on X. For an insight into how this can be done see [13, Ch. V]. In particular, Helgason
proves that for any D ∈ D(X), then if f ∈ C∞(X) there exists u ∈ C∞(X) such that Du = f on all of X.

The pseudo-differential operator theory that we have developed closely follows the work of [20, 24]. Most
of the content of Sections 3.4.2 and 3.4.3 was investigated by myself and Dr. Mitsuru Wilson. In particular,
M. Wilson introduced me to the symbolic calculus discussed in [20]. There we realized that the “symbol
calculus” works best when pseudo-differential operators are realized as convolution operators and one obtains a
“convolution calculus”. In [20], pseudo-differential operators on compact Lie groups are obtained from Fourier
transforms of the right-convolution kernels of continuous linear operators. Indeed, if A : C∞(G)→ C∞(G)
is a continuous linear operator, then it admits a right convolution kernel RA ∈ E ′(G×G) by the Schwartz
kernel theorem. One then defines the symbol of A to be

σA(x, ξ) =

∫
G

RA(x, y)ξ(y−1) dy

where ξ ∈ Ĝ. That is, the symbol of the operator A is the Fourier transform of the distribution RA(x, y)
“frozen” at the variable x. In this case, the symbol σ(x, ξ) ∈ EndVξ where Vξ is the representation space of ξ.
By using the Peter-Weyl theorem, one can show that the operator A can be expressed as

Af(x) =
∑
ξ∈Ĝ

dξ Tr
(
ξ(x)σA(x, ξ)f̂(ξ)

)
,

which holds for all x ∈ G and f ∈ C∞(G) [20, Thm. 10.4.4] which is a result that is analogous to Theorem
3.4.7. In this way one thinks of any continuous linear endomorphism A of C∞(G) as being a pseudo-differential
operators via their symbols. Questions such as the composition formula are settled by appealing to Taylor
expansions on G in precisely the same way that we have used Taylor expansions in the previous section.

In our case, we had to be more careful with the operators that we have considered for developing a
“symbol calculus.” In particular, one of the cruxes in the proof of the composition formula in [20, Thm.

10.7.8] is that when k1, k2 ∈ E ′(G) are distributions, one has (k1 ∗ k2)̂ = k̂2k̂1 (note the reversed order).
Then by means of the Taylor expansion one can write the composition of two pseudo-differential operators
in the form of (3.4.26), and using that (k1 ∗ k2)̂ = k̂2k̂1 one obtains a composition formula similar to the
one obtained in Theorem 3.4.11. Hence in following this approach we required that the Fourier transform of
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compactly supported distributions on X = G/K satisfies (T ∗S )̃ = T̃ S̃, however by Theorem 3.3.9 this really

only happens if both T and S are K-invariant. In addition to the fact that (T ∗ f )̃ = T̃ f̃ when f ∈ J (X)
and T ∈ E ′K(X), we are naturally led to consider operators A : J (X)→ J (X) whose Schwartz kernels are
elements of E ′K(X ×X). Thus the lack of a good convolution theorem for distributions of compact support
that are not necessarily K-invariant, imposes a limitation on what kinds of “pseudo-differential operators”
we can easily study—at least when we try to follow the techniques of [20,24].
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Appendix A

Topological groups and functional
analysis

A.1 Topological groups and Homogeneous spaces

A topological group G is a group with a topology such that multiplication and inversion in G are continuous
operations. By a locally compact group we mean a topological group that is locally compact and Hausdorff.
A Lie group is a topological group (and a topological manifold) equipped with a smooth structure making
multiplication and inversion in G smooth operations. Since all topological manifolds are locally compact and
Hausdorff, every Lie group is locally compact.

A.1.1 Topological groups

An important property of locally compact groups and Lie groups is that they all possess an essentially unique
left-invariant measure. In the case for arbitrary locally compact groups a left-invariant measure is a Radon
measure µ with the property that for any Borel set E ⊂ G we have µ(xE) = µ(E) (a right-invariant measure
is defined analogously). We have the following theorem for locally compact groups.

Theorem A.1.1. Let G be a locally compact group. There is a left (resp. right) invariant Radon measure
on G and any two left (resp. right) invariant measures are positive multiples of each other.

We call such left (resp. right) invariant Radon measures a left (resp. right) Haar measure. We often work
with left Haar measures and so we simply call them Haar measures. Fix a left Haar measure µ and an element
x ∈ G. An important question is what we can say about the measure µx(E) = µ(Ex). The measure µx is
also a left Haar measure and so is equal to µ differing by a positive factor δ(x). So we can define the function
δ : G→ R+ where x 7→ δ(x) which in view of Theorem A.1.1 is independent of our choice of Haar measure.
The function δ is called the modular function of G and is a continuous group homomorphism from G into
the multiplicative group R+ = {x ∈ R : x > 0}. A group is said be unimodular if δ ≡ 1, that is µx = µ for
all x ∈ G and so the left Haar measure is also a right Haar measure. For instance, any compact group is
unimodular since R+ has only one compact subgroup and it is the singleton {1}. In this case, for compact
groups the normalized Haar measure is the unique Haar measure dx such that

∫
G
dx = 1. If G a topological

group and H is a subgroup of G, then δG and δH denote the modular functions on G and H respectively (in
general it is not true that δG|H = δH).

Our primary focus will be on Lie groups. As Lie groups are topological manifolds, they are σ-compact
and thus when equipped with a Haar measure (or any Radon measure), they become σ-finite measure spaces.
These spaces are particularly important since several of the heavy lifting theorems of integration theory, such
as Fubini’s theorem, apply to such spaces.
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The existence of a Haar measure and the modular function have importance for the integration theory
that we will need. The σ-algebra of measurable sets on G will always be taken to be BG, the Borel sets of G.
If dx is a Haar measure and y ∈ G and f an integrable function, then we have the following results:∫

G

f(yx) dx =

∫
G

f(x) dx, (A.1.1)∫
G

f(xy) dx =

∫
G

f(x)δ(y−1) dx, . (A.1.2)∫
G

f(x−1) dx =

∫
G

f(x)δ(x−1) dx . (A.1.3)

We remark that (A.1.2) hints at a proof of the continuity of the modular function for if f ∈ Cc(G), the
function y → f(xy) is continuous from G to Cc(G) and so y 7→

∫
G
f(xy) dx is continuous and since inversion

is continuous we quickly establish the continuity of δ (cf. [9, pp. 38]). Equation (A.1.1) follows immediately
from the G-invariance of the Haar measure and for (A.1.3) confer to [9, Prop. 2.31].

Since in this thesis we are interested in connected semisimple Lie groups, we provide the following useful
result.

Proposition A.1.2. If G is a connected semisimple Lie group, then it is unimodular.

Proof. As G is semisimple and connected, then it is known that G = [G,G]. So in particular G/[G,G] is a
compact space. More generally, if G is a topological group with the property that G/[G,G] is compact, then
G is unimodular. To see this, let D : G/[G,G] → R× be the map D(x[G,G]) = δ(x) which is well-defined
since δ|[G,G] = 1 since R× is abelian. By the characteristic property of quotient maps, D is continuous and

δ(G) = D(G/[G,G]) = 1 since D(G/[G,G]) is compact.

We close this section with an interesting result that determines when a Haar measure on a group
decomposes into a product of Haar measures on its subgroups.

Proposition A.1.3. Let G be a locally compact topological group and let H,K ⊂ G be topological subgroups
of G such that G = KH and that K normalizes H, i.e. kH = Hk for each k ∈ K. Additionally suppose that
H and K are both second countable. Then if dk and dh are Haar measures on K and H respectively, then
the Haar measure on G is the product measure dh dk.

Proof. The second countability condition on H and K means that the product measure dh dk is a Radon
measure. Let dk and dh be as above and define the positive linear functional φ on Cc(G) by

φ(f) =

∫
K

∫
H

f(kh) dh dk .

Now, let g ∈ G and let g = k1h1 = h2k2 and observe

φ(τgf) =

∫
K

∫
H

f(k1h1kh) dh dk =

∫
K

∫
H

f(h2k2kh) dh dk =

∫
K

∫
H

f(h2kh) dh dk

=

∫
K

∫
H

f(kh3h) dh dk =

∫
K

∫
H

f(kh) dh dk = φ(f)

where h2k = kh3 and h3 ∈ H. By the Riesz representation theorem dh dk defines a left invariant Haar
measure on G.

In the event that H and K are not second countable it may be the case that dh dk does not completely
determine the Haar measure on H and K. But rather, the product measure dh dk and the Haar measure on
G agree when integrating Cc(G) functions.
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A.1.2 Homogeneous spaces

For our purposes a homogeneous space X is a locally compact Hausdorff topological space equipped with a
transitive, continuous action by a locally compact group G. If we fix a point o ∈ X, then X is the orbit of o
under the action of G. If we let K be the stabilizer of o, then we can identify X with the coset space G/K
by a continuous bijective map Φ: G/K → X where Φ(gK) = g · o. The selection of the point o is arbitrary,
but when such a choice has been made and the corresponding identifications of X with G/K have been fixed,
we call o the origin of X. The topology on G/K is the quotient topology derived from the natural map
q : G→ G/K.

When G is σ-compact the map Φ is in fact a homeomorphism and so this identification is topological.
In fact if X is a smooth manifold, G a Lie group and the action of G on X is smooth and transitive, then
the map Φ so defined is a diffeomorphism (cf. [18, Thm. 21.18]). In these situations there is no difference,
topological or differentiable, in doing our analysis on the space X or the space G/K and so we make no
distinction between the two spaces structurally speaking, but often keep some level of distinction in mind out
of notational convenience.

Remark 16. In particular if φ : G→ H is a surjective continuous group homomorphism between topological groups,
then it is not always true that G/ kerφ ∼= H as topological spaces.

Now suppose that X possesses a G-invariant Radon measure dx. An interesting question is if whether
there is a way to normalize the Haar measure dg on G in such a way so that∫

X

f(x) dx =

∫
G

f(g · o) dg, f ∈ Cc(X) (A.1.4)

so that integration on X becomes integration on G which in certain situations is more convenient. If we
assume for a minute that X = G/K, then by [9, Thm. 2.51] all the G-invariant Radon measures on G/K are
positive multiples of each other. For f ∈ Cc(G) define the average of f over the orbit gK by

f [(gK) =

∫
K

f(gk) dk .

The assignment [ maps Cc(G) onto Cc(G/K) see [2, pp. 30] or [9, Prop. 2.50]. By the Riesz representation
theorem, we can find a unique Haar measure on G which satisfies∫

G

f(g) dg =

∫
G/K

f [(x) dx .

Furthermore if we assume that for f ∈ Cc(G/K) that f ◦ q ∈ Cc(G) with
∫
K

1 dk = 1, then we have the
desired relation in (A.1.4). A sufficient condition to ensure that when f ∈ Cc(G/K) that f ◦ q ∈ Cc(G) is that
K is compact since for F ⊂ G/K compact there exists E ⊂ G compact such that q(E) = F , and that the
saturation of E is the set q−1(q(E)) = q−1(F ) = EK which is compact if K is compact. Even more bluntly,
assuming

∫
K

1 dk = 1 automatically makes K compact. In the more general situation where we distinguish X
and G/K it is natural to try and identify functions in Cc(G/K) with functions in Cc(X) and vice versa. The
most logical identification is the map ξ : f 7→ f ◦ Φ, f ∈ Cc(X) which maps Cc(X) into Cc(G/K) when Φ is
proper and this map is a bijection when Φ−1 is continuous, that is when Φ is a homeomorphism. Truly the
most convenient setup is that X is a homeomorphic to G/K in which case there is a natural correspondence
between their spaces of Radon measures and their functions of compact support. In summary we have the
following result.

Proposition A.1.4. Let X be a locally compact Hausdorff space that is a homogeneous space for the locally
compact group G and identify X with the coset space G/K. Suppose that dx is a G-invariant Radon measure
on X, then if K is compact and the map Φ: G/K → X is a homeomorphism, then there exists a unique Haar
measure dg on G such that ∫

X

f(x) dx =

∫
G

f(g · o) dg, (f ∈ Cc(X)).
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Owing to the fact the measure dx in the proposition is a Radon measure we have that Cc(X) is dense in
L1(X) from which it follows the above proposition holds for functions of class L1(X) as well. The content of
this is of the following theorem, the proof is straightforward.

Theorem A.1.5. With the assumptions of the above proposition we have for f ∈ L1(X) that∫
X

f(x) dx =

∫
G

f(g · o) dg . (A.1.5)

Proof. Let f ∈ L1(X) and let fn ∈ Cc(X) be such that fn → f in L1. Passing to a subsequence fm that
converges to f almost everywhere we have

∫
X
f(x) dx = lim

∫
X
fm(x) dx = lim

∫
G
fm(g · o) dg. The functions

{fm ◦ q} are a Cauchy sequence in L1(G) and so converges in L1 to a function φ ∈ L1(G) (and we may assume
this convergence is almost everywhere, cf. [8, Thm. 2.30]). Since this convergence is almost everywhere, we
have φ = f ◦ q almost everywhere and thus∫

X

f(x) dx = lim

∫
X

fm(x) dx = lim

∫
G

fm(g · o) dg =

∫
G

φ(g) dg =

∫
G

f(g · o) dg

as needed.

In particular if dµ = dx and dλ = dg, then if the above is satisfied we have that for any Borel set E ⊂ X
that µ(E) = λ(q−1(E)) = λ{g ∈ G : g · o ∈ E}. Thus Theorem A.1.5 provides conditions for when the Haar
measure on G can be induced from a G-invariant measure on X via the quotient map. The case when
K is compact and dk is the normalized Haar measure on K, the function f [ for f ∈ Cc(G) is called the
orbital mean of f . It is useful to note Theorem A.1.5 is often applicable to Lie groups since all topological
manifolds are σ-compact and thus Φ is always a homeomorphism. From now on, we will assume that X is
homeomorphic (or diffeomorphic when needed) to G/K and that K is compact and we will simply write
X = G/K. For convenience, we will sometimes write fq = f ◦ q when f is a complex valued function on X.

A.1.3 Convolutions

Let G be a locally compact group with a Haar measure dy. For complex valued functions f and g on G, their
convolution is defined as

(f ∗ g)(x) =

∫
G

f(y)g(y−1x) dy . (A.1.6)

Convolution is not commutative in general although it is commutative if and only if G is abelian, for instance
it is commutative on Rn under addition. The support of f ∗ g is contained in the closure of (supp f)(supp g)
since if x 6∈ (supp f)(supp g), then y−1x 6∈ supp g for y ∈ supp f . Hence if f and g are of compact support,
then so is their convolution.

If X = G/K is a homogeneous space and o ∈ X is the origin, then the convolution for functions f and g
on X is defined as

(f ∗ g)(x) =

∫
G

f(h · o)g(h−1 · x) dh, x ∈ X (A.1.7)

where dh is the Haar measure on G as in Theorem A.1.5. As would be expected the convolution of two
L1(X) functions is defined almost everywhere, is associative, but is not in general commutative, for these
are consequences of convolution in L1(G). With this convolution product L1(X) becomes a Banach algebra.
Furthermore, it is clear that f ∗ g are supported in the set q(AB) where A = supp fq and B = supp gq (note
that when K is compact, q is a closed map for the product of any closed set with a compact set is closed).

Proposition A.1.6. If f ∈ L1(X) and g ∈ L∞(X), then f ∗ g ∈ C(X). More generally if f ∈ Lp(X) and
g ∈ Lq(X) where q is the conjugate exponent to p, then f ∗ g ∈ C(X).
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Proof. Note that as a consequence of Theorem A.1.5, we have g ∈ L∞(X) implies gq ∈ L∞(G). By the
characteristic property of surjective quotient maps we only need to prove that (f ∗ g)q is continuous but this
readily follows from the observation that for z ∈ G:

‖Lz(f ∗ g)q − (f ∗ g)q‖sup ≤ ‖Lzfq − fq‖1‖gq‖∞, (A.1.8)

so that (f ∗ g)q is left uniformly continuous (here Lzf(x) = f(z−1x)). The second assertion follows from
Hölder’s inequality.

Now suppose that X is a smooth manifold and G acts smoothly on X = G/K.

Proposition A.1.7. Let f ∈ Lp(X), ψ ∈ C∞c (X), and D be a differential operator, then

D(f ∗ ψ)(x) =

∫
G

f(g · o)D(Lgψ(x)) dg .

In particular if D is a G-invariant differential operator, then D(f ∗ ψ) = f ∗ (Dψ).

Proof. For a fixed x ∈ X let C be a compact neighborhood of x which is contained in a coordinate system
(U, φ). Suppose that D = ∂j on a neighborhood of C contained in U where ∂j is a coordinate vector
corresponding to the local coordinates induced by (U, φ). Note that the function (x, g) 7→ (DxLgψ)(x) is
smooth on X × G since it is the composition of the mappings (x, g) 7→ g−1x 7→ ψ(g−1x) which is then
composed with the differential operator Dx (Dx is the operator D acting on the variable x). By an application
of Peetre’s theorem, there exists a compact set C ′ ⊂ G such that for each x ∈ C the function g 7→ DxLgψ(x)
has support in C ′. It follows that there is a positive number M such that |DxLgψ(x)| ≤M uniformly for all
x ∈ C and g ∈ G. Therefore by the dominated convergence theorem we can commute the operator D with
the integral to get

D(f ∗ ψ)(x) = D

∫
G

f(g · o)ψ(g−1x) dg =

∫
G

f(g · o)D(Lgψ(x)) dg . (A.1.9)

If D is any coefficient differential operator, then it can be written locally as a composition of first order
differential operators. So the result follows by applying the result for first order differential operators obtained
above. Finally if D is G-invariant, then D(Lgψ(x)) = LgDψ(x) for all g ∈ G so that D(f ∗ ψ) = f ∗Dψ.

If X is a Riemannian manifold on which G acts by isometries and dx a G-invariant measure on X, then
when we convolve a function f with a radial function φ(x) = ψ(d(o, x)) (and suppose that f and φ are
sufficiently regular for f ∗ φ to exist) the convolution becomes

f ∗ φ(y) =

∫
X

f(x)ψ(d(x, y)) dx (A.1.10)

analogous to the convolution of radial functions in the Euclidean setting.

A.1.4 Mollifiers on Lie groups

In this subsection G always denotes a Lie group. We say a function f : G → C is inversion invariant if
f ◦ inv = f . Inversion invariant functions are quite easy to come by since one can take any function f on
G and set f + f ◦ inv which is an inversion invariant function. In particular, since each neighborhood U of
the identity contains a compact symmetric neighborhood we have that the inversion invariant functions in
C∞c (U) is nonempty.

Proposition A.1.8. Let {Uα} be a system of neighborhoods of the identity in G such that Uα → {e}. Let
{φα} be a family of smooth functions satisfying the following properties:
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1. φα ∈ C∞c (Uα).

2. φα ≥ 0 and
∫
φα = 1.

3. φα is inversion invariant.

Then if f ∈ Lp(G), then ‖f ∗ φα − f‖p → 0 and f ∗ φα ∈ C∞(G). If in addition f ∈ C(G), then f ∗ φα → f
uniformly on compact subsets.

Proof. The statement and proof is the content of Proposition 2.44 in Folland. The smoothness of the
convolution f ∗ ψα is trivial when one checks the claim in local coordinate systems.

Mollifiers on homogeneous spaces

We now turn our attention to homogeneous spaces. We first prove a few results concerning when mollifiers on
G extend to mollifiers on the homogeneous space X = G/K.

Proposition A.1.9. Let φ ∈ C∞(G), then φ[ ∈ C∞(X).

Proof. By working in local coordinate systems in G it is clear that φ[ ◦ q is smooth in G. Since q : G→ G/K
is a surjective smooth submersion by [18, Thm. 21.17] it follows by the characteristic property of surjective
smooth submersions [18, Thm. 4.29] that the function φ[ is also smooth.

Lemma A.1.10. The map [ extends to a surjective bounded linear operator from Lp(G) to Lp(X).

Proof. Evidently [ is linear from its definition and is surjective by Theorem A.1.5. Now for f ∈ Cc(G)
using [9, Thm. 2.51] and Hölder’s inequality:

‖f [‖pLp(X) =

∫
G/K

|f [(x)|p dx ≤
∫
G/K

∫
K

|f(gk)|p dk d(gK) = ‖f‖pLp(G) (A.1.11)

so that [ is bounded on Cc(G). We extend [ to all of Lp(G) in the usual way by setting f [ = limfn→f f
[
n (for

fn ∈ Cc(G) convergent to f in L1(G)) which is well defined by (A.1.11). So in particular [ is continuous on
Lp(G) and one can easily check that the operator norm satisfies ‖[‖op ≤ 1.

We now prove that Lp(X) has a set of mollifiers {ψα} ⊂ C∞c (X). We find a set of right approximate
identities, for this sake let φα be the mollifiers defined earlier. Then we have ψα := φ[α is smooth and that for
f ∈ Lp(X) by Fubini’s theorem

(f ∗ ψα)(h · o) =

∫
G

f(g · o)ψα(g−1h · o) dg =

∫
G

f(g · o)
∫
K

φα(g−1hk) dk dg

=

∫
K

∫
G

f(g · o)φα(g−1hk) dg dk = (fq ∗ φα)[(h · o)

Hence

‖f ∗ ψα − f‖Lp(X) = ‖(fq ∗ φα)[ − (fq)[‖Lp(X) = ‖(fq ∗ φα − fq)[‖Lp(X) ≤ ‖fq ∗ φα − fq‖Lp(G). (A.1.12)

Choosing α appropriately we find that Lp(X) has a right approximate identity of consisting of smooth
functions which we call mollifiers. The functions f ∗ ψα are smooth so that one finds that C∞c (X) is dense in
Lp(X).

One can also require that the functions ψα be radial functions on X. Let Cc(X)K be the space the
space of K-invariant continuous complex-valued functions of compact support on X and we write DK(X) for
C∞c (X)∩Cc(X)K . We can emulate the map [ above by introducing the map \ : Cc(G)→ Cc(X)K defined by

f \(gK) =

∫
K

∫
K

f(k′gk) dk dk′ . (A.1.13)
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Then using the fact that δG|K = 1 we observe:

(f ∗ φ\α)(h · o) =

∫
G

f(g · o)
∫
K

∫
K

φα(k′g−1hk) dk dk′ dg =

∫
K

∫
K

∫
G

f(g · o)φα(k′g−1hk) dg dk dk′

=

∫
K

∫
K

∫
G

f(gk′ · o)φα(g−1hk)δG(k′)−1 dg dk dk′ =

∫
K

∫
G

f(g · o)φα(g−1hk) dg dk

= (fq ∗ φα)[(h · o)

and we thus obtain that the functions {φ\α}α∈A ∈ D\(X) yield the same approximation properties as the
family {ψα}α∈A ⊂ C∞c (X). The above theorems provide a generic way of defining mollifiers on any Lie group
and any homogeneous space of the form X = G/K, however in these next few examples we will be explicit.

Example A.1.11. Suppose X = G/K is a connected complete Riemannian manifold with distance function
d compatible with its quotient topology for which the translation operators τg : x 7→ g · x (g ∈ G) act as
isometries. Then for r > 0 we can consider the family of smooth functions {ψr}r>0 defined by ψr(x) =
nr · η(d(o, x)2/r) = ηr(x). Here we choose r sufficiently small so that ψr is smooth and η ∈ C∞(R) is the
function

η(x) =

{
C exp

(
1

|x|2−1

)
if x < 1,

0 if x ≥ 1,
(A.1.14)

with C and nr chosen so that
∫
X
ηr =

∫
R
η = 1. We see that ηr ∈ C∞c (X) and by property of the metric d

the function ηqr is inversion invariant. Now observe that the sets q−1(Br≥0(o)) may be factored into the form
ArK where Ar → {e} as r → 0. Then for f ∈ Lp(X) we have by the Minkowski integral inequality:

‖f ∗ ηr − f‖Lp(X) ≤ sup
y∈q−1(Br(o))

‖Ryfq − fq‖Lp(G) = sup
ak∈ArK

‖Rakfq − fq‖Lp(G) (A.1.15)

= sup
a∈Ar
‖Rafq − fq‖Lp(G). (A.1.16)

So that we readily see the functions ηr are approximations to the identity in Lp(X) and it is easy enough to
check that the convolution f ∗ ηr is smooth for any f ∈ Lp(X).

Example A.1.12. More generally, if {ψα}α∈A ⊂ C∞c (X) is any family of functions corresponding to the
system of neighborhoods of the origin {Uα}α∈A (e.g. suppψα ⊂ Uα) with the property that ψqα is inversion
invariant, then this family defines a set of mollifiers for X.

Remark 17. As a quick remark we roughly sketch how one can extend the theory of convolutions to Riemannian
manifolds. If M is a Riemannian manifold, then it is well-known that the set of isometries of M , denoted Iso(M), is a
Lie group. If G = Iso(M) acts on M transitively, then so does the connected component Go of the identity (which is
necessarily a subgroup) act transitively on M . If we assume that Go acts on M transitively and properly, then by
picking a point x ∈M we have that M is diffeomorphic to the homogeneous space Go/Gx where Gx is the stabilizer
of x in Go. Thus M can be regarded as a homogeneous space for a Lie group G and the convolution in G descends to
convolution on M .

A.2 Functional analysis

We state a simple result about Hilbert spaces which we reference once in this thesis.

Proposition A.2.1. Let H be a Hilbert space and E ⊂ H a subspace, then E is dense in H if and only if
E⊥ = {0}.

Proof. If E is dense, then continuity of the inner product implies that E⊥ = {0}; and if E⊥ = {0}, then
E = (E⊥)⊥ = H.
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Vector-valued integration

Definition A.2.1. Let V be a topological vector space. We say that V separates points if for each u, v ∈ V
there exists a linear functional ϕ ∈ V ∗ such that ϕ(u) 6= ϕ(v).

For example, every normed vector space separates points by the Hahn-Banach theorem.

Definition A.2.2 (Weak integration). See [9, Thm. A.20]. Let (X,M, µ) be a measure space and V be
a topological vector space that separates points. Let f : X → V be a function. We say that f is weakly
integrable if for each ϕ ∈ V ∗ the function ϕ ◦ f is integrable and that there exists v ∈ V such that for all
ϕ ∈ V ∗ we have

ϕ(v) =

∫
X

ϕ ◦ f(x) dx . (A.2.1)

We define the weak integral of f to be ∫
X

f(x) dx = v.

Since V separates points, the definition of the weak integral of a vector valued function is well-defined.
Unlike in the classical criterion for the integration of a scalar valued function it is far more difficult to
verify the weak integrability for a vector valued function. However, we do have a sufficient condition for the
integrability of a compactly supported continuous function into a Fréchet space.

Theorem A.2.2. If V is a Fréchet space and µ a Radon measure on the locally compact Hausdorff space X,
and if F : X → V is continuous and compactly supported, then

∫
F dµ exists and belongs to the closed linear

span of the range F . If V is a Banach space, then

‖
∫
F dµ‖ ≤

∫
‖F‖ dµ .

Proposition A.2.3. Let (W,M, µ) be a measure space and X and Y be two topological vector spaces which
separate points and let T : X → Y be a continuous linear map. Suppose that f : W → X is a weakly integrable
function, then T ◦ f is weakly integrable and

T

∫
W

f(w) dµ(w) =

∫
W

T ◦ f(w) dµ(w)

Proof. Let ϕ ∈ Y ∗, then ϕ ◦ T ∈ X∗ and so it follows that T ◦ f is weakly integrable. From this same
observation we have that if v =

∫
W
f(w) dµ(w), then we have the obvious equalities

ϕ(T (v)) = (ϕ ◦ T )(v) =

∫
W

(ϕ ◦ T )(f)(w) dµ(w) =

∫
W

ϕ(T ◦ f)(w) dµ(w) .

Thus the weak integral of T ◦ f is T (v).

The Schwartz kernel theorem

Defining topological tensor products and the condition for a locally convex vector space to be nuclear is too
involved so we refer the reader to [25, Sec. 39]. If X and Y are

Theorem A.2.4 (Abstract kernel theorem). Let X and Y be two Fréchet spaces with at least one of which
is nuclear and let X∗ and Y ∗ be their strong duals. Then we have the following isomorphism

X∗⊗̂Y ∗ ∼= (X⊗̂Y )∗ ∼= L(X,Y ∗). (A.2.2)

Here X⊗̂Y denotes the topological tensor product of X and Y .
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The proof is contained in [25, Prop. 50.1], although the proof that Trèves supplies only covers the case
where X and Y are both nuclear as the argument there is easier.

Corollary A.2.5 (Classical Schwartz kernel theorem). Let X and Y be open sets in Rn, then for each
continuous operator A : D(X) → D′(Y ), there exists a unique distribution KA ∈ D′(X × Y ) such that for
ψ ∈ D(X) and φ ∈ D(Y ) we have

〈Aψ, φ〉 = 〈KA, ψ ⊗ φ〉. (A.2.3)

We call KA the Schwartz kernel of the operator A.

The utility of nuclear spaces is that these are the vector spaces for which the analogue of the Schwartz
kernel theorem holds. Nuclear spaces were introduced by Grothendieck as he investigated generalizations to
Schwartz’s 1952 result on the Schwartz kernel theorem originally formulated for test functions on Rn.

A.2.1 Gelfand theory

Gelfand theory roughly relates the structure of commutative unital C∗-algebras to the space of continuous
functions on its spectrum, given a canonical topology. We shall quickly define what all these concepts mean
in this section.

Definition A.2.3. A complex Banach algebra X is a complex Banach space that is also an algebra over the
complex numbers which satisfies ‖xy‖ ≤ ‖x‖‖y‖ so that multiplication is continuous in X. Here ‖·‖ is the
norm on X.

We say that X is unital if as an algebra X is unital and that X is commutative if as an algebra X is
commutative. An involution on X is a map ∗ : X → X (we write ∗(x) = x∗) which is antilinear and satisfies
(xy)∗ = y∗x∗ and x∗∗ = x for all x, y ∈ X. If X is a Banach algebra with an involution which also satisfies
‖x∗x‖ = ‖x‖2, then we say that X is a C∗-algebra.

We have the usual notion of homomorphism for Banach algebras and C∗-algebras. A homomorphism
φ : X → Y of Banach algebras X and Y is a continuous linear map which satisfies φ(xy) = φ(x)φ(y) for all
x, y ∈ X. If X and Y are Banach algebras with involution, then a ∗-involution φ : X → Y is a homomorphism
of Banach algebras which also satisfies ∗Y ◦ φ = φ ◦ ∗X (where ∗Y and ∗X are the involutions on X and Y
respectively).

If X is a Banach algebra by a multiplicative functional φ : X → C, we mean a continuous function φ ∈ X∗
which as expected must satisfy φ(xy) = φ(x)φ(y) for all x, y ∈ X. From now on we shall assume that X is a
commutative Banach algebra.

Definition A.2.4. Let X be a commutative Banach algebra. The spectrum of X, denoted by σ(X), is the
set of all nonzero multiplicative functionals on X.

The spectrum σ(X) of a Banach algebra X is a subset of the closed unit ball of X∗ in the weak*-topology.
We topologize σ(X) by imposing the weak∗-topology when regarded as a subset of X∗ (the topology of
pointwise convergence). For each x ∈ X we can define a continuous function x̂ : σ(X) → C given by
x̂(φ) = φ(x).

Definition A.2.5. The Gelfand transform or Gelfand representation Γ on X is the map Γ: X → C(σ(X))
given by Γ(x) = x̂.

We have now the terminology to state the essential theorem, the proof of which can be in [9, Sec. 1.3].

Theorem A.2.6. Suppose that X is a nonunital commutative Banach algebra. Then the following facts hold.

1. If x ∈ X, then the function x̂ vanishes at infinity so that x̂ ∈ C0(σ(X)).

2. The Gelfand transform Γ: X → C0(σ(X)) is a continuous homomorphism of Banach algebras.
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A.3 The Radon transform

For fun, we shall explain how one can construct the Radon transform on Rn. Let mn be the Lebesgue
measure on Rn with the convention m = m1. Integrating with respect to the polar coordinate system on Rn

is simple to understand. Essentially, to integrate a function f on Rn we can instead integrate f over the
spheres Sr(0) = {x ∈ Rn : |x| = r} (r > 0) with respect to a specific measure on the spheres Sr. Intuitively
this is a reasonable idea since the spheres are all disjoint and “fill out” Rn in a nice way. This same idea
works for hyperplanes, in that given ω ∈ Sn−1 to integrate a function on Rn we can instead integrate f
over the hyperplanes ξ(p, ω) (p ∈ R) with respect to a particular “hyperplanar measure.” To define the
hyperplanar measure we essentially mirror the construction of the spherical measure.

Fix ω ∈ Sn−1 and let ξd = ξ(ω, d). We can map Rn continuously and bijectively into the space R× ξd via
the map Φ(x) = (〈x, ω〉 − d, x+ (d− 〈x, ω〉)ω). Φ merely records the signed distance of the hyperplane Hx

containing x parallel to ξd and records the point x′ which is the intersection point on ξd of the line perpendicular
to Hx passing through x. Clearly, this map is continuous and so is its inverse Φ−1(p, z) = z+ (p− d)ω. Hence
we define the measure on R× ξd to be the induced measure µ(E) = mn(Φ−1(E)) (E ⊂ R× ξd Borel). It is
easy enough to check that we may decompose µ into the product measure µ = m× σ where σ is a unique
surface measure (called the hyperplanar measure) on ξd. And from this we can deduce the following theorem.

Theorem A.3.1. There is a unique Borel measure σ on ξd such that µ = m× σ. Moreover if f is Lebesgue
measurable on Rn and integrable and or positive, we have∫

Rn

f(x) dx =

∫
R

∫
ξd

f(x+ (p− d)ω) dσ(x) dp . (A.3.1)

Proof sketch. The above theorem is proved in precisely the same way as that of [8, Thm. 2.49] and thus we
refer to the reader to retrace the necessary steps. The only necessary modification is that for E ⊂ ξd Borel we
define σ(E) = m(E1) where E1 = Φ−1([0, 1]×E) and the map E 7→ E1 takes Borel sets to Borel sets since Φ
is a homeomorphism and commutes with unions, intersections, and complements so that σ is a Borel measure
on ξd. Moreover let T (ω) = o be an orthogonal transformation where o is the north pole of Sn−1 then

µ([a, b]× E) = mn(Φ−1([a, b]× E)) = mn(T ◦ Φ−1([a, b]× E)) = (b− a)mn−1(T (E)) = (b− a)σ(E)

= (m× σ)([a, b]× E).

What we mean by T (E) is the factor A in the Borel set T (E1) = [a, b]×A and thus the section T (E) = A is
Borel, hence mn−1-measurable. The rest of the proof follows as in [8, Thm. 2.49]. Completing µ and σ gives
the desired measures satisfying property (A.3.1) for all Lebesgue measurable sets E ∈ Ln.

We will also write the integral∫
R

∫
ξ(p,ω)

f(x) dσ(x) dp =

∫
R

∫
ξd

f(x+ (p− d)ω) dσ(x) dp . (A.3.2)

It is also easy to check that if E ⊂ ξd is measurable then∫
ξd

χE(x) dσ(x) =

∫
ξ0

χE(x+ dω) dσ(x),

and thus the above holds for general integrable functions f by ordinary approximation arguments. Let Ξ
be the set of all hyperplanes in Rn. The Radon transform of a function that is integrable on each hyperplane
in Ξ is the function Rf : Ξ→ C defined by

Rf(ξ) =

∫
ξ

f(x) dσ(x) .
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Since any hyperplane is of the form ξ(p, ω) we can simply consider Rf to be a function on R× Sn−1 instead.
Note that integrals over Rn are simply integrals of the Radon transform over R at a fixed angle ω. If
f ∈ L1(Rn), we can write the Fourier transform of f in polar coordinates and using formula (A.3.1) we find

f̂(λω) =

∫
Rn

f(x)e−iλ〈x,ω〉 dx =

∫
R

e−iλp

[∫
ξ(ω,p)

f(x) dσ(x)

]
dp = (Rωf )̂ (λ) (A.3.3)

where Rωf(p) = Rf(p, ω).

Remark 18. The use of orthogonal transformations in the sketch of the proof in Theorem A.3.1 leads to a straightforward
check of the intuitive fact that ∫

ξ(ω,p)

f(x) dσ(x) =

∫
Rn−1

f ◦ T (y, p) dy

where T is any orthogonal transformation mapping the hyperplane Rn−1 × {p} into ξ(ω, p), i.e. T (o) = ω. Using this
representation one finds for instance that if f ∈ C∞c (Rn), that Rωf ∈ C∞c (R) for each ω ∈ Sn−1.
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analysis and advanced topics.

[21] Elias M. Stein. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals,
volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the
assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

[22] Mitsuo Sugiura. Fourier series of smooth functions on compact Lie groups. Osaka Math. J., 8:33–47,
1971.

[23] Michael E. Taylor. Pseudodifferential Operators, volume 34 of Princeton Mathematical Series. Princeton
University Press, Princeton, N.J., 1981.

[24] Michael E. Taylor. Noncommutative microlocal analysis. I. Mem. Amer. Math. Soc., 52(313):iv+182,
1984.
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