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Abstract

The problem of propagating modes supported by a horizontal
wWire in the presence of a conducting earth, is investigated.
In addition to the commonly-known transmission-line mode, a new
solution is found which can be identified as a fast-wave mode
and has a substantially lessattenuation along the propagation
‘direction. The existence of such a mode is shown to be a direct
consequence of the well-known poles in the Sommerfeld integral

representation. Characteristics of both modes are then presented.



l.1. Introduction
The problem of electromagnetic wave propagation on a
horizontal wire of infinite length above an air-earth inter—
face is of considerable interest. The earliest attempt to
solve this problem was that of Carson in 1025, [1] Carson
solved the problem in terms of distributed parameters under
several low frequency approximations. Later Kikuchi[2'3]
showed that as the frequency becomes very high the surface
impedance of the wire becomes important and that the wave
Propagating along the wire is a surface wave bound to the
wire. More recently Chang[4], in solving the problem of an
infinitely long horizontal antenna with a delta function
voltage excitation, obtained an approximate modal equation
valid for low frequencies and found an expression for the
propagation constant of a single propagating mode. His results
were consistent with those of Carson and Kikuchiu”zl. This
mode reduces to the TEM mode of a two-wire transmission line
when the conductivify of the earth becomes infinite. Thus, it

can be referred to as the transmission-line mode. Recently,

Wait! 5] has reformulated the problem and presented an exact
modal equation in terms of the well-known integrals. However,
only an approximate solution similar to the previous one was
repbrted. Measurements of attenuation of waves propagating along
the wire have been performed by dos Santos[6] and Knight[7].

In Carson's and Kikuchi's formulation, the propagation con-

stant of the wire is obtained by using a perturbation teqhnique.



In the perturbation term the phase velocity of wave propagation
along the wire is assumed to be that of free space. This
assumption is a valid one at the low frequencies considered

by Carson. It leads to simple expressons for the distributed
circuit parameteré of the transmission system. For high fre-
gquencies however the perturbation term which can become domi-
nant in séme regions, is extremely sensitive to the nature of
this approximation and incorrect results were obtained.

[5]

dos Santos realized the mathematical problems with the
approximation used by Carson and Kikuchi. Using the exact
modal equation with the thin wire approximation he argued, in .
addition 'to the transmission line mode mentioned previously,

the existence of a so-called "improper" mode which violates the
radiation condition. He then used this mode to explain the
behavior of this wave propagating structure at high frequencies.
It is shown in this work that the "improper' mode is not
necessarily adequate to explain the high frequency behavior

of the structure. K Instead a new mode is found which does
satisfy the radiation condition and can be shown to be im-
portant for the high frequency case. This new’mode is
characterized by a phase wvelocity greater than that of free
space; a phenomenon which is in direct contrast to that of

the transmission mode. Also it is attenuated at a substantially
smaller rate than is the transmiséion mode. Fihally, the
propagation constant of the second mode is less sensitive

to the radius of the wire than is the propagation constant of

the transmission line mode.



The existence of the transmission line mode and the second
mode can be shown directly from the'eXaet modal equatioh. How-
ever, for ease of computation, an approximate modal equation

valid over a wide range of earth parameters and structure
dimensions , is derived. The resultant equation is particu-
larly useful in demonstrating explicitly the existence of both
modes, as well as providing some simple explanation as to why
the previous approximation made by Carson and others does not

yield correct results at high-frequencies.

1.2. Modal characteristic equation

Consider an infinitely long thin wire of radius a (meters)
located at a height d (meters) over a plane interface be-
tween two half-spacesof electrical constants €qrHy and €1
Uyr0y respectively? The current distribution on the wire
is assumed to be of the form I exp(iklax - iwt) where a
is the yet undefined propagation constant relative to that of
region 1 and w isethe angular frequency of the fields.
Figure 1.1 illustrates the problem under study. Following
Wait[S], an equation can be written which represents the axial

electric field in the region 2z > 0 for a filament of current

at z=4d, y =0 .

2.2
Elx = kl; Hl' (1.1)

The medium in the upper half-space usually represents the alr,
and the lower half-space, the earth.
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and ¢ =A(l-a2); I, is the x-component

[5]

2 v
where kl = elulw

of the electric Hertz potential and can be shown to be

1

-z I 1 1
M) = gp> exotiax) I (e ol (z-) 24y?1%) - 1Y (01 (z+a) 24921
1

2
a

2 fi 1 .
+ [ - o— expl[-(z+d)k.,u,lexp(-i)k,y)dxr}
iﬂ;z u& ul+u2 u2+(k2/kl) uy 171 1

(1.2)

Thé argument of ¢ ié defined as 0 < arg ¢ < m in
order that the electromagnetic field satisfies the radiation
conditioh at » . It has been assumed that Uy = Uy = Hgi
i.e. the permeability of free space. In addition,

Hél)(x) is the Hankel function of the first kind of

order zero; u; = (AZ-CZ)Z, u, = (A2+ az

- 2,3 |
(ky /K1) %) where
Re(ul), Re(uz) > 0 so that the integral converges everywhere

in the complex A plane; kg = kin2 where n is the re-

1
fractive index of medium 2, i.e. n = [52(l+i6)/eo]2 with -
8 (loss tangent) given as o,/(we,), 0 < argn < n/4;

2 2
m
Z, = J;é is the intrinsic impedance of free space. The
o

first term of eg. 1.2 is the direct contribution due to current
on the wire in free-space. The second is the contribution

of the image of the wire over a perfectly-conducting plane and
the integral is the correction due to the finite conductivitj

of the lower half-space.



The other components of the field can be shown as

aﬂl 3n1*~ ST an;
= iok,—> + iu,u—= 3 = -iok,—= + i 1
Bip = 10k =7 + 107 Byy = 7ok —g T oiNgw 53
. (1.3)

_ Bﬂl* anl - anl anl

Hyp =710k + 189y ¢ Hyy = -iek o - €Y 32
2.2 %
Hig = kpomy

where

® lexp (-iXk.ylexp[-u.k, (z+d) ]
0z) 1 11 ar .

L 2
(u2+ n ul) (ul+ u2)

2
'IT* = :_[P"_g_r}._g_]:L exp(lk

1
2ﬁle

1

(1.4)

A modal equation for this structure can be found by
requiring the average axial electric field to be zero on the
assumed perfectly conducting wire. By neglecting proximity
effects around the wire, the following modal equation ig

obtained.

M = it s g - v 20001 4 pee) - 0w = 0 (1.5)

where
2 ‘”exp(-ZEul)

P(a) = ai (l.5a)

imw J uy + u, _

2 © 2xp(-2Du.)

o) = 2% | L ax (1.5b)

ﬂ»u2+ n ul,
and A = kla, D = kld . JO(AE) in the first term of (1.5)

results from the fact that the current source is assumed to be

distributed over the radius of the wire. It is apparent that



JO(A;) is important only in the asymptotic behavior of
M(a) where the primary term is dominant. For most appli-
cations however, we can approximate the term JO(AC) by.
unity under a thin wire assumption that kla << 1.

Solutions to the modal equation (1.5) represent the
natural propagating modes of the structure. Note that it
is only necessary to find the values of o for which Ima >0
since o enter the modal equation only as uz. As mentioned
earlier two solutions, one representing the transmission line
mode, and the other,a fast-wave mode can be found. Although
the existence of these modes is independent of the subsequent
approximations in the derivation, the location of the solu-
tions in the complex o plane can be more convenientlj
described when certain approximations are made with the assump-
tion of a conducting earth. Thus the question concerning the
solution to the modal equation will be deferred and approxi-
mations to P(a) and Q(a) will be discussed.

1.3. Approximate expression of functions P(a) and Q(a)
The integral function P(a) can be expressed in terms of

known functions if the integral is approximated in the follow-

ing manner. Multiplyiné the numerator of (l1l.5a) by uy=u,,
an alternate form of P(a) is obtained as
oo \‘\
P(a) = —2—— [ [u;-u,] exp(-2Du,)dr . (1.6)
. 2 1 2 1
im(n™-1), J_

Due to the exponential-decaying behavior of the integrand,



it is clear that major contribution to the integral comes

mainly from small A . Specifically, we can write
A< g A, = LG+ ot (L.7)

Thus, if |n| is large, the term u, in (1.6) can be

written as

2, 2
= -in{l - A—i%—} (1.8)

2n

b

The second term in the series expansion can be further

neglected if

Ai+a2
<< 1 .

21'12

Under these conditions, u, can be approximated by -in and

consequéntly,

2
iﬂ(nz—l)

2 o) 1
2 3 s Q_) e
o {( 5 in & f S d

rntod) oo w=2D

P(a) = j’(u1+ in)exp(—ZDul)dx

- YZE%I; {gH{l)(ZD;)[E% - in] - “vlt 2po)y .
(1.9)

In deriving (1.9), the following identity has been used.

(1) TN 1 P —aul -ib) a
H (/g +b%r) = (Ig)j'e e EI (1.10)



It is worth noting that the above approximation is good for
large values of the refractive index provided d is not too
small or o too large. As it will become clear later in the
derivation, the valuesof d, of interest are not generally
very large and d must be very small to be an important

[91]

factor in the approximation . Thus, if 2D > 1 this approxi-

mation appears to be valid for

1
2|n|?

<< 1 | \ (1.11)

and if 2p < 1 then the approximation is wvalid for

1

> << 1. (1.12)
2(2D)“n

2
When the lower medium is highly conducting, eq. (1.12) is
equivalent to the physical condition that the wire height
must be larger than a skin depth in that medium.

To illustrate .the degree of accuracy involved for small
d, Fig. 1.2 is a comparison of a numerical integration of
the exact form of P(a) with eqg. 1.9 for points in a complex
plane near the branch point o = 1. In this example, the
refractive index of the earth is 5.52 + i 4.53. This corre-
sponds to an earth with conductivity 2.7 memhos/m and a relative
permittivity of 10 at 1 MHz. As expected, the approximation
becomes less accurate as 2D|n| becomes small. A comparison‘
of the exact and approximate forms of P(yn) for other regions of -

the o- plane of interest yields similar results.
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If now a similar approximation is used in Q(a), we

obtain from (1.5) the following expression

z exp (-2Du )
2

Qo) = L ax (1.13)
u,- i/n
_ 2a§' ® exp(;ZDu o 4 _}f exp (- fiji)dk}
iTn 2 1
2 2
=2 g opy + 2y .
2 o} 3
n ™h

Where W(o) can be written as

‘ ¢ [exp[-2D(u;-i/n)]-1] i ax 1
W) = exp(-i2D/n) 'f u; (u =1/m) o+ j~ul(ul—i/n)f

~00

(1.14)
= [Wd(a) + Wo(a)] exp[-i2D/n]

It should be noted that although the replacement of u, by

-in can be shown to be valid over a wide range of n, the
value of Q(@) could be more sensitive in some cases to this
approximation than P(o) because of the presence of a pair of
zeros in the denominator of the integrand. A comparison of
(L.5b) and (1.13) clearly indicates that the location of the
zeros has moved from i[cz—l/(l+n2)]% in the exact expression,
to + [;2— l/nZ]% in the approximate one. Thus, it appears
that a better approximation to Q(a ) is to replace u, by
in2/(l+n2)%, instead of in. However, when the lower half-

space represents a conducting earth, the difference in the
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two cases is negligible for all practical purposes. It is
further noted that the approximate form of the integral can

be obtained exactly by replacing the earth.with an impedance
surface and then deriving a modal equation in a manner identi-
cal to the one used here.+[8’12]. Thus, the mathematical
approximation presented here is indeed equivalent‘to the
widely used surface-impedance concept.

The integral Wo(a) will be studied first and will be
evaluated by deforming its contourlof integration in the
upper half of the complex ) plane. Thus it is necessary to
study the singularities of the integrand of Wo(a) in the
upper half A-plane carefully for all o of interest.

From (1.14), it is apparent that there is a pair of poles

at the locations

ap =t (P amhE L (1.15)

These are "real' poles in the ) plane on the proper Riemann
sheet defined by Re(u;) > 0 for all values of «.
In addition to the poles there is a pair of branch

points located at

Ag =t (1.16)

As o ‘moves, the locations of the poles and branch
cuts in the ) plane change. Accordingly in figure 1.3 the
motion of the poles (1 and 2) is traced as o traverses the

patlks o = 1 + Szel¢, -mT< ¢ <mw R =a,b. (fig. 1.4).

+In reference [12], if we jassign the transverse admittance Y with L
a value equal to n(so/uOF and the transverse impedance Zl equalvto:1¢

(l/n)(uo/e.o)2 instead of the exact ones given by Wait, expressions’ :.;
similar to (1.9) and (1.13) for P(a) and Q(a) are obtained. o
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It is seen that on the path £ = a the two poles travel
around the paths A, +Aq and AyrA, and remain on their respective
sides of the real A axis throughout the traverse. However,
on the path & = b, the poles traverse the paths Bl,Cl,Dl,
El,B2 and ‘B2,CZ,D2,E2,B1 respectively. Thus, at point D
on the traverse, pole 1 is in the upper half plane and is
captured in the evaluation of Wo(a). At point E pole 2
is captured. Since the residues at point D,y and at point E,
in the A plane are different, the function Wo(a) becomes
discontinuous as o moves from D to E along path £ = b.
In general, the discontinuity in Wo(a) occurs for all those
values of o such that the pole in the ) plane is located
on the real axis. The locus of these points in the complex

o-plane then can be shown to satisfy the following equation:

1 |
o =+ (1-1/m?-s%)% (1.17)

where s 1is a real number, varying from 0 to » . This
locus is indicated by the solid line in figure 4. Here, we
should emphasize that our conclusion, i.e., the traverse in
the o plane ¢ = a does not cross the real axis while the
traverse 2 = b does, is not dependent upon the nature of
our approximation. Therefore a similar locus, slightly
shifted, should also occur even if the exact form of Q (o)
is retained.

Figure 1.5 is a sequence of plots showing the relative

movement of the pole and branch point in the upper-half
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X plane as o is varied along a path such as the £ =Db
path of fig. 1l.4. This sequence illustrates the fact that
the pole does not cross the bfanch cut and disappear. This
is to be expected since the pole stays on the same Riemann
sheet for all o. |
An expression for WO(G) which is valid over the entire g

plane is now derived (Appendix A). The expression is

2mi 2

> - {enll/n - i(z2-1/n%)2] = 4n ¢ + in)
Ap (z°=1/n

)2

Wo(a) - 2

(1.18)

where Im AP, Im(cz—l/nz)% > 0 and the principal value in
each ofvthe two logarithmic terms is chosen. It follows that
the first term has a square root singularity at the branch
point o = (l~l/n2)%= % The second term however has only
a logarithmic singularity associated with the branch point
o = 1.

The finite integral Wd(a) is evaluated in Appendix B,

and the result is fepeated here as

e M
Wd(a) = -in } —

I_(2D,z) (1.19)
m=0 (n )m! m

where Im(ZD,s) can be expressed in terms of known functions.
It is of interest to note that Wd(a) is an analytic function
of o which has only a branch singularity of the kind (l-azﬁ
at o=+ 1. Figure 1.6 is a plot of the exact value of Q

based upon the numerical evaluation of (1.5b) and the approxi-

mate value of Q(d) based upon (1.14). An examination of the
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exact and approximate Q(a) for small values of d reveals
that the agreement between the two is indeed satisfactory for

‘the cases studied.

In the remainder of this work the approximate forms of
the integrals are only used for values of the parameters such
that accurate fesults can be obtained. 1In other cases a numer-

ical integration of the exact form is used.

1.3.1 Some Discussion on The Approximation
In assessing the approximations made it is necessary to
point out again that the problem concerned with the location
of the zero in the denominator of the integrand of Q(%) is
very important. Specifically, the denominator is of the form

_ 2 . _
£(r) = u, + n up (1.20)

This function has a zero in the ) plane at

¢

1
Ay = 1 - o - 1/ %+ 132 | (1.21)

The branch point of Q(a) in the g plane occurs at the point
where Ap equals zero. Atthis point Q(g) exhibits an in-

verse square root singularity (in the g-plane) and is the

dominant part in the evaluation of M(a). Thus a correct
expression for Ap as a function of o is quite critical

to the evaluation of Q(g). In the approximation we made earlier,a

term of the order l/n4 is dropped so that

LX)
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2

2,13 |
A= (1 - o° - 1/n")?% ., (1.22)

P

This has the effect of slightly moving the branch point (aB)
in the ¢ plane (Ap(aB) = 0). However, the inverse square
root singularity at the branch point is preserved.

[2] the

In the perturbation theory presented by Kikuchi
substitution of o by unity in P(a) and Q(a) and thus in
the expression for Ap(u) is made. Physically this appears to
be a valid assumption but under this approximation the location
of Ap can be drastically altered as is evident from (1.20).
Since Xp is now not a function of o, Q(o) no longer
exhibits the inverse square root singularity in the complex
c-plane. Thus the approximation can lead to a total dis-
appearance of discontinuous behavior in Wo(a) mentioned above.

It should also be mentioned that because of our substitution
u, = in, Q(a) no longer exhibits a branch point at
2 az)% .

A= (n Thus, the entire integration on both sides

0 in the

of the branch cut specified by the line Re u,
upper half of the complex A-plane has been ignored. However,
for the practical situation of a conducting earth, such omission
results in the region |a| ~ 1 only an error térm of the order
exp(-2dni) where n. is the imaginary part of the refractive

index n.
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l.4. Discrete Solutions to the Modal Equation
The modal equation for this wave guiding structure can

now be written in its approximate form.
we) = 2P @ans @an - 8P @nr+e (@ -0 (@ =0 (1.23

where P (@) and Q (@) are defined in equations 1.9 , 1.13,
1.14, 1.18, and B.3 - B.6. From the ﬁreceding analysis it
is know that M(®) has branch points at @ = 1 and at

1
o = (l—l/n2)2 = O The singularity at © = 0 is due to

B* B
Q(%) and is an inverse square root singularity. Thus, near
this singularity, Q(%) 1is the dominant part of M(oa).

The zero of M(a) will now be located and identified as
propagating modes of this wave guiding structure. Two
special cases which provide some insight into the locations of
the zeros are presented. In the first case, a zero can be
found approximately by assuming a large n and a small d,

so that Q(a) can be neglected. Thus, if we retain only

the dominant term of P(0), the following expression is

obtained:
_=2i 2 4 _ )
M(a) = 5 © &n 2D/A + DT 0 » (1.24) |
and
1

Gy, =1+ i [2Dn fn 2D/A]° (1.25)

It can be verified that at the location uPl’

Q(a) 1is indeed very small compared to P(0d),., This zero is

the value of

then identical to the one presented by Chang[4] and by Carson[l]
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It is therefore not surprising that Carson's work leads to a
correct result for low frequencies. We should further note
that this zero represents a slow wave mode since it has a phase
velocity smaller than the speed of light in free space. It
is designated the transmission line mode or gquasi-TEM mode
since as n + « this mode becomes the TEM mode known to exist
for a perfectly conducting wire over a perfectly conducting half
space. Although (1.25) is an expression for the special case
of small *d and large n, the pole can be found under
general conditions by using a numerical root search routine
on the modal equation (1.5) where P(o) and Q(o) may either
be evaluated numerically or expressed in their approximate
forms. Figure 1.7 is a cohtour plot of constant energy den-
sity for this mode. For this highly conducting half-space it
can be seen that the field structure approaches what would
be expected of a TEM mode.

The existence of the second zero of M(a) 1is now discussed.
As mentioned earlier, the value of Q(a) is generally very small
except in the vicinity of the branch point a = op where it
has an inverse square root singularity. Since the trans-
mission-line mode is located in a region where Q(a) is
negligible, it is therefore stiéulated that a new mode, differ-
ent from the transmission-line mode, might exist in the region
where the influence of Q(a) is more dominant. To investigate
this possibility, we again take the special case of a large n
and small d for consideration. Expansion of M(a) at

a = o yields the following
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— . 3 - 1
M(a) = QZ(—%i #n 2D/A) A A2 02
i n

By setting ng = -1 + A or ;2 = (1—2A)/n2 we now have an

approximate modal equation of the form

— 1 1 v 1
M(q) = (~§£ )Rn 2p/a + 2o - A o; g = (22 i,
n T

(1.26)

where Im(R) > 0. Thus, the location of the second zero of

M(a), i.e. o_ , can be given as

)
o = o + A/n2
p, B !
where
21 1 1

Although for a more general case, a numerical root-finding
subroutine is again needed to locate this zero, it is however
apparent from the above derivation that the solution of this type
is less sensitive to the radius of the wire than that of the
transmission-line mode. It also has a phase velocity greater
than the speed of light and is thus termed a fast-wave mode.

To illustrate the difference between this mode and that of the
transmission-line mode, the contours of constant enerqgy density

is shown in Fig. 1.8 using the same physical parameters.
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As mentioned earlier the locations of the two zeros
cannot be obtained from 1.25 and 1.27 in general. Accurate
results however can be obtained from the approximate modal
equation given by 1.23,1.9,1.13,I.14,1.14,1.18 and B.3-B.6. Only
the first three terms in the expansion of Wd(a) were normally
used. The numerical root searching scheme is based upon the
winding-number of a function along a closed contour in the
complex o~plane. The zeros were found to a tolerance of 10-5.
To indicate the kind of accuracy involved in the approximate
modal equation given in (1.22), we have compared in Table 1.1, the
computed zeros of (1.22) with those obtained from the exact

modal equation, where the integrals P(oa), Q(a) are evaluated

numerically.

TABLE 1.1
Transmission line mode numericél 1.00109 + i 5.508 x lO_3
approximate 1.00112 + i 5.537 X 10-'3
Fast wave mode numerical .999072 + i 1.15 x 10_3‘
, 3

approximate  .999062 + i 1.11 x 10

n=7.43 +1i 6.73
d = .65X

a= .01

Figure 1.9 shows the location of the zero corresponding
to the transmission-line mode and that of the fast wave mode
as a function of height d/A . The refractive index in this

case is chosen as n = 7.43 + i6.73. For a typical earth of
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relative permittivity = 10 and conductivity = 10“2 mhos/m,

this value of n corresponds to an operating frequency of

1.8 Mhz. It is of particular significance that the attenuation
constant of the fast-wave mode is consistently less than that
of the transmission-line mode. From all cases studiéd, it
appears that the upper-bound of the attenuation constant for

this new mode can be given by

)__<_ Im(—"z" ) ’ (1.28)

i.e. the one predicted by the Zenneck's fast-wave in the

[13] It must be stressed how-

absence of the horizontal wire.
ever that our analysis has no bearing on the existence of a

Zenneck's wave.

5. Concluding Remarks

The problem of propagating modes supported by a horizon-
tal wire in the presence of a conducting earth is investigated.
In addition to the .commonly known transmission-line mode, a
new solution which can be identified as a fast-wave mode, is found.
The existence of such a mode is shown to be a direct consequence of
the well-known pole in the Sommerfeld integral representation.’
Attenuation of this mode along the propagation direction appears

to be substantially less than that of the transmission-line mode;

an interesting feature which may have strong engineering implication.

Since each of the two modes individually satisfies the boundary
conditions at the air-earth interface and the radiation condition
at infinity, itgﬁd&loWs that the field distribution of two modes:-

ﬁ?eé%utually_orthogonal, i.e.,, o
| e @

-«
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H' a, - (B, X Hy, - Ey x Hj)ds =0 , (1.29)

where S is integrated over the entire transverse plane.

In principle, the new fast-wave mode can be excited independent
of either the transmission-line mode or any other mode in the
continuous spectrum. As it will be shown in Part II, the
admittance of an infinitely-long horizontal antenna is strongly

dictated by this mode at some heights above the earth at higher

frequencies.
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APPENDIX A

An expression will now be derived for Wo(a) which
is valid over the entire o plane. Consider first the special
case in which n has an imaginary part which is vanishingly
small. In this case Wo(a) will adopt different forms for thev
four points shown in figure A.l. The four results will then
be used to find a single expression which is valid over the

entire o plane.

Wy (o) = f—iii—"—— + L f (A.1)
| J A% - Ap . (A %-2p?)
- i ,
WOl is found by deforming the contour and evaluating the
residue.
_mi
W l(oc) = (A.2)

where Ap is the pole which is found in the upper half of

the A plane.



Expressions will now be found for W.,(a) at the

02
four points. At point A arg ¢ = T and the branch cuts in

~the A plane are those of figure 1.5 (k). The integral Woz(u)
can be evaluated by deforming its contour around the branch

cut and adding to that integration the residue of the pole

2

1
at Ap. Using the substitution n = —i(kz— z“)? for the

branch cut integration W,,(0) can be written as

02

WOZ(OL) = B(a) + R(a) - (A.3)
where
| [o(nz—cz)z (n®-1/n2)

and R (the residue at A = Ap) is

R(a) = %ﬁ

(A.5)

1 1
2)2 = 1 (n2-¢2)2 =

In these calculations (Cz— n A. Thus the
sign of the square root is determined from the values of A
along the branch cut in the X plane. The integral B can

be treated as the sum of 3 parts (Bl + B2 + B3) as suggested

by the integration contour in fig. A.2. The pole at 1/n occufs 
to the right of -¢ since at the point A in the o plane

nz| < 1.
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The first part of B is the integration from 0 to -r .

-z .
B, = -i2 dn = 10T (A.6)

t 0 (%=n?) (n2-1/n2) (1/n°- %)

where the square root is positive since the integrand is positive.
P 1
(Re(l/n? - Cz)2 2 0 as a consequence of Im A > 0).

The second part of B 1is the principal value of the integral

from -z to « . Setting n = -f cosht the integral becomes
_ .2 > dt drt
By=n f ng cosh t+1 * f 1-ng coshrt (A.7)
0 0

Since the integrand is real, the integral must be real.

Using this fact, B, can be shown to be

2 2.1
1 ) znl/n +(1/n“-¢%)

B, =n T
(1/n%-2%) 2 " 1/m-(1/m2-72) 2

(A.8)

where the principal value of the ¢n is chosen. The last part
of the integration is the half residue at n = 1/n which
can be shown to be

inm
1
(1/n°-z2) 2

(A.9)

where the positive square root is again chosen in order to
be consistent with the integration path in the A plane. Thus,
at point A in the o plane then WOA(d) is obtained from

(A- 1_2,6,8-9) .

: : 2 .2 3
Wop (0) = 211 + 21 1 o L/n + (1/n2—C2)1‘
Pro@m®-t5)?  1/m - (1/m%-1?)?2
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The evaluation of Woz(a) at point B is different
because the branch cuts in the A plane are those of fig. 1.5 (a)
This difference appears only as a reversal of the sign of the

term B,. The expression for Wog(a) is then

1

. _ 2 3
1 Lon l/n+(l/n 4 )T~ (A.11)
2.1 2,

(1/n®-c?) 2™ 1 (1/m2-,

WOB(a)

For points C and D the integration can be performed in a

similar manner. In these two cases the pole at 1/n on the
contour occurs between 0 and -f because at points C and D
in the o plane Inz|> 1. The result for points C and D can

be written as

- i 1
Woe () =% 2T 22|§~ i [1/n-1](c%-1/0%) 2| 1= gn ¢} .
5 ]Apl | (z“-1/n%)
The absolute value signs emphasize that in the third part of
1 .
the branch integration Im(cz-nz)2 > 0 on the integration
path for both C and D. WOA and WOB can be rewritten as
. . -, 2_ 2.1
_ 2wi i2 1/n+(1/n“-¢%)
Woa = % * RN R
P (1/n“-¢%)2 |z |
(A.13)
and 2 2. 117
W _ i2 2 [;/n+(l/n -z ZJ
0B 2_2.3 *n .
(1/n“-c%) [z
A single expression valid at all four points is now
written as
. r 1
Wyla) = 2IL _ 2 s [L/n=i (t*-1/0%)2] - tn £ + im}(a.15)
Ap (c —l/n
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where Im gp, ]Zm(;z-l/nz):21 2 0 and the principal value of
each of the n terms is chosen. Since there are no other
singularities in the upper half of the o plane this expression
is then valid for the entire half plane. Using physical con-
tinuity arguments it is also to be expected that (A.1l5) is

valid for complex n. Further justification of these state-
ments will come in a later section where a numerical comparison
is made with the numerical evaluation of the exact integral

form of the expression. The first term of (A.15) has a branch
point in the o plane at ng = -1. The branch cut associated
with it corresponds to the line of discontinuity of figure 1.

An examination of the integrations reveals that the first term
is precisely the residue of the pole of the integrand of Wo(a).
Thus the branch point at ng = -1 is a direct consequence of
the existence of the pole. In order to emphasize this, we

have used Xp in the first term of (A.15) instead of (gz—l/nz)é.
The second term can be shown not to have a branch point at

ng = -1 and to be  finite there. Thus at ng = -1 the function
Wo(a) only has an inverse square root singularity. However,
Wo(a) also has branch points at o = + 1 due to the &n ¢ in

the 2nd term of (A.15).
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The finite integral Wd(a) is now evaluated. The
first significant fact is that the integrand has no pole at
Ap since the numerator has a zero which cancels the zero of
the denominator at Ap‘ Since in the case of Wo(a) the pole
led to the branch point in the o plane at ng = -1 it is

expected that Wj(a) has no similar branch point. If now .

we recast Wd(a) in the form of

38

2D !
Wgla) = - f exp(iw/n)f o a dw
0 ~00
2D (1)
= - iﬂ‘[ exp (iW/n)H,™’ (wg)dw . (B.1)
0

When use is made of the identity given in (1.10) the inte-

gral may be analyzed as follows:

o ..M o
exp(iW/m) = J (B.2)
. A M=0 (n) "M!
Thus,
o .M 2D
. (i) (1)
Wo(a) = —im § &L Wi Y (we) aw (B.3)
d MEO (n) My fo 0
Consider the general integral
2D
IM(ZD,z;) = [ W Hél) (Wz) aw (B.4)
0

It is possible to write a recursion relation as follows.
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: ‘ | .2
Hl(l) (2Dg) + @_4_-%_) (2D)M'1Hél)(2Dc)——(-M—%l~' Iy—o (2D, 1)

g z

(2p) ™

(B.5)
where IO(ZD,C) and Il(ZD,g ) can be expressed in closed
form:

2D (1)
I,(2D,t) =f Hy™' (Wg) =
0 .

_ (1) 2DT (1) ey (1) '
= 2D Hy™" (2DZ) + —E—-[}SIO(ZD;)Hl (2Dg) - |s|l(2Dg)q), (29;{]
(B.6)
Here, [S,j(x) is the Struve function of order j ; [10]
I.(2D,¢) = L {2Dg H(l)(ZDC) ¢ 21, (B.7)
1 €2 1 Ll
For the case (2D(;)2 << 1, an alternate approximation to
Wd(a) is obtained. It is done by substituting the small
argument expansion of the Hankel function
(1) L 12 2-iw ncwW
Hy™' (Wg) = W{—-——z totn = 4y
then Wd(a) can be written as
Wd(a) = =7n exp(iZD/n)Hél)(ZD;) - iZn[El(—iZD/n) - n ng/2]
(B.8)

where El(x) is the exponential integral of order 1.

Equation B.8 agrees with the one previously obtained by

Chang.[4]
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