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Abstract 
 

Ballent, Jean Wendy (M.S., Structural Engineering, Department of Civil, Environmental, and 

Architectural Engineering) 

 

Dempster-Shafer Theory Applications in Structural Damage Assessment and Social Vulnerability 

Ranking 

 

Thesis directed by Professor Ross B. Corotis 

 

 This thesis explores the different mathematical frameworks that have been used in risk 

assessment, with an emphasis on Dempster-Shafer Evidence Theory and the applicability in cases of post-

seismic structural damage assessments and social vulnerability ranking. Evidence Theory allows the 

combination of multiple expert beliefs while considering uncertainties that are often inherent in such 

evaluations. In cases such as seismic hazards, for which structural vulnerability and structural damage are 

evaluated in a case-by-case scenario, subjective assessments are not only useful but necessary. The results 

of experimentation and survey distribution suggest that probability may not be the most natural 

framework in which to quantitatively incorporate the involved uncertainty. Ignorance and evidence-based 

assessments may be better represented using Evidence Theory. 
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1. Introduction 
 

Risk assessment is an integral component of modern engineering and hazard mitigation, but presents 

a mathematical obstacle due to the inherent uncertainties involved in such evaluations. The field of civil 

engineering often requires assessments that are inherently subjective in nature, as no structure or location 

is exactly the same. At any given project, a limited number of experts may be available to provide their 

risk evaluations using varying amounts of evidence and information. Similarly, the study of social 

vulnerability deals with great amounts of uncertainty and yet is often determined using rigid frameworks 

and objective census data. A variety of frameworks should be considered when handling such 

uncertainties. Probability often provides a reliable structure in such situations, where an educated guess 

can be made based on the outcome of previous similar occurrences and professional judgment. There are 

many circumstances, however, in which probability is not optimal. Such circumstances include ignorance 

(when there is limited amount of data), varying degrees and sources of confidence, and situations that are 

not repetitive enough to use previous data or frequentist probability.  

The “subjectivists” offered another interpretation of probabilities as a “degree of belief;” the 

probability of an uncertain event as a measure of one’s belief about its occurrence (Vick 2002). As stated 

in Structural Reliability Analysis and Prediction, “a subjective probability estimate reflects the degree of 

ignorance about the phenomenon under consideration” (Melchers 1999). The class of subjective 

probabilities, or Bayesian degrees of belief, allows for a broader context of probability theory, justified 

not necessarily by the objective or frequentist basis but to single occurrence events in the form of a 

measure of one’s uncertainty about a particular event. As such, judgments manifested in the form of 

subjective probabilities can be manipulated with the axioms of probability theory. Although this offers a 

powerful framework for systematically incorporating uncertainty into almost any problem, subjective 

probabilities cannot distinguish between known equal outcomes and complete ignorance. Further, in cases 

with little or partial knowledge, judgments treated with a probabilistic model suggest there is precise 

information not only about the event itself, but also its contrary. These realizations inspired research into 
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a broader conception of uncertainty, exploring important facets of uncertainty that are not probabilistic in 

nature. These other forms of characterizing uncertainty have received very limited attention in the area of 

structural risk and vulnerability, and it is now apparent that a complete paradigm shift in embodying 

uncertainty is needed for more robust and resilient theories of structural and community vulnerability 

(Corotis 2015). 

There has been a significant amount of research that explores the relevance and applicability of other 

mathematical theories dedicated to the treatment of uncertainty, but many of these methods remain only 

partially developed and not investigated in terms of their applicability to engineering and social studies. 

The research presented in this thesis examines the characteristics of uncertainty beyond traditional 

probabilistic modeling, and is motivated by these primary objectives: (i) introducing appropriate roles for 

uncertainty theories beyond probability theory and their associated relevance, (ii) developing a deeper 

awareness and understanding of uncertainty’s role within civil engineering, and (iii) creating a new 

comprehensive uncertainty model for future research in this field. The motivation for new approaches is 

not intended to challenge the fundamentals of probability theory, but to present different mathematical 

models, which may be relevant in a variety of contexts.  
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2. Literature Review 
 

2.1 Uncertainties in Risk Assessment 
 

In 1976, Glenn Shafer presented his work and the work of his mentor, Arthur Dempster, in “A 

Mathematical Theory of Evidence” (Beynon, Curry, and Morgan 2000). This work features a theory of 

evidence in which belief functions can be formalized from a degree of belief based on available evidence, 

termed beliefs and plausibilities (Yager and Liu 2008). As the works became known to the artificial 

intelligence community, the theory fell under the name of the Dempster-Shafer Theory (DST) of 

evidence, or commonly, Evidence Theory (Shafer 1976). Since Evidence Theory’s origination, it has been 

evaluated as a potential alternative to classical, frequentist, and subjective probability. Classical and 

frequentist probabilities are the number of outcomes resulting in the specified event over the total number 

of outcomes and the number of times the specified event occurs if the situation were repeated, 

respectively, while subjective is entirely on the assigner’s degree of belief (Aven et al. 2014). As Aven et 

al. (2014) state in Uncertainty in Risk Assessment, “in looking for a general framework for treating 

uncertainties in risk assessment, we started with the probabilistic treatment of uncertainties, recognizing 

its merits and limitations, and thus ventured beyond probability to describe uncertainties in a risk 

assessment context whose setting demands an extension of concepts and methods". There is a clear 

demand in the world of science and engineering for a method of risk assessment that addresses the 

inevitable uncertainties of the field (Cooke 1991).  

Ang and Tang (2007) write in Probability Concepts in Engineering that "sources of uncertainty 

may be classified into two broad types: (1) those that are associated with natural randomness; and (2) 

those that are associated with inaccuracies in our prediction and estimation of reality. The former may be 

called the aleatory type, whereas the latter the epistemic type." (Ang and Tang 2007). Aleatory represents 

that the randomness of the circumstance – an uncertainty that cannot be eliminated but can be reduced 

with more information. Epistemic, on the other hand, is the uncertainty within the model itself. While the 

distinction between aleatory and epistemic uncertainty brings our understanding of sources of uncertainty 
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into clearer focus, they still are subject to the axioms of probability theory. Aven et al (2014) introduce 

hybrid approaches for propagating uncertainty that combine probabilistic and possibilistic theories. 

Recent theories that extend beyond probability include imprecise probabilities, probability-bound 

analysis, Possibility Theory, and Evidence Theory. Motivated by the emergence of various mathematical 

models for handling uncertainty and partial information of different types, a new area of study termed 

Generalized Information Theory (GIT) was formally introduced in the early 1990s (Ayyub 1998; Klir 

2006; Ross 2010). This area of study is aimed at formally recognizing and systematically dealing with the 

nature and scope of uncertainty and its association with partial knowledge. In other words, GIT is 

concerned with the development of uncertainty theories. 

2.2 Monotone Measures 
 

Generalized Information Theory (GIT) expands probability theory in two dimensions by 

including non-additive probability measures and fuzzy sets (rather than classical set theory) (Klir 2006). 

This section focuses on the latter, specifically the generalization of the uncertainty associated with the 

assignment of an element. This area of study falls under the theory of monotone measures (Klir and Smith 

2001; Wang and Klir 2009).  

Monotone measures broaden the mathematical framework of probability theory. There are several 

classes of monotone measures that generalize the notion of uncertainty in the assignment of an element 

(x), to a particular set (A). Measures include possibility/necessity measures, Sugeno λ-measures, 

belief/plausibility measures, interval-valued probability distributions and imprecise probabilities (general 

lower and upper probabilities). Of these, possibility/necessity measures, belief/plausibility measures, and 

imprecise probabilities are among the most promising for the evaluation of uncertainty in a structural or 

community risk, reliability, vulnerability, and resilience context. In the context of classical probability, 

the assignment of an element x, to the set A is typically interpreted as a matter of likelihood or chance, or 

in the context of subjective probabilities, as a degree of certainty. Monotone measures generalize this 

interpretation, typically associating notions of incomplete information with ‘evidence’ pertaining to x. 
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From this perspective, likelihood in the context of monotone measures can be viewed as a specific form 

of evidence.  

Mathematically, a monotone measure---denoted g(A)---is a mapping to the power set (a set of 

beliefs on any available event or event combination) on the unit interval. The value assigned to g(A) is an 

expression of the degree of evidence that supports the belief that an element x belongs to a given crisp 

subset A (Ross 2010). The two axioms for monotone measures are: 

(g1) g() = 0, g(X) = 1 

(g2) g(A) ≤ g(B), for all A, B  P(X) if A  B 

(1) 

The first requirement (g1) establishes the boundary conditions for any monotone measure: where 

g() = 0 signifies no evidence or degree of support in the null set and g(X) = 1 indicates complete 

evidence for the entire universe. The second requirement (g2), states that the evidence supporting B must 

be at least as great as the evidence assigned to A, when A is completely contained in B, the statement of 

monotonicity. This requires that all monotone measures satisfy the inequalities in Equation (2) for A, B, 

and A  B. 

g(A  B) ≤ min[g(A), g(B)] 

g(A  B) ≥ max[g(A), g(B)] 

(2) 

Probability theory satisfies the axioms of monotone measures, but in addition must satisfy the 

additivity requirement), which is a critical restriction for the use of expert opinions. As demonstrated in 

Uncertainty and Information (Klir 2006), additivity describes the circumstance in which probability 

measures can be obtained from subsets of X if bound within the disjoint set as shown below: 

    𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)            (3) 

2.3 Possibility/Necessity Measures 
 

Possibility theory differs from probability theory in that it explicitly recognizes the case when 

evidence or judgments support the possibility of one event, but does not necessarily implicate evidence 

regarding the contrary event (Dubois 2006; Dubois and Prade 1988). In probability theory, uncertainty is 



6 

 

represented by a single probability measure. If either the probability of an event or the probability of its 

negation (or complement) is known, the additivity requirement guarantees that the probabilities of both 

are known. In possibility theory, by comparison, to characterize fully the uncertainty of an event A, 

uncertainty is represented by dual measures, termed possibility and necessity measures as shown below 

(Ayyub and Klir 2006): 

𝑃𝑜𝑠𝐸({𝑥} = {
1 𝑤ℎ𝑒𝑛 𝑥 ∈ 𝐸
0 𝑤ℎ𝑒𝑛 𝑥 ∈  𝐸̅

    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋                                 (4) 

𝑁𝑒𝑐(𝐸𝑖) = 1 − 𝑃𝑜𝑠(𝐸𝑖̅)                                                              (5) 

where all alternatives in set E are possible, and where 𝐸𝑖̅ is the complement of E. As shown, the 

Possibility measure is 1 when x is within E, and 0 when x is within anything other than E. The Necessity 

measure is then calculated by subtracting the possibility measure for anything other than E from 1. 

These measures are founded on the basic concepts of possibility theory. Possibility theory 

provides a mathematical framework to represent ignorance explicitly (Ross 2010). In this context, pairs of 

necessity and possibility measures are linked to the mathematical framework of Evidence Theory. 

2.4 Belief/Plausibility Measures in Evidence Theory 
 

Evidence Theory is based on a measure of degree of belief, called a belief measure, Bel(A), 

which expresses a degree of belief that the correct or true alternative belongs to the set A, from which a 

basic assignment or Mobius Measure, m(x), can be calculated. Mobius Measures are related to the 

previously discussed belief and plausibility measures, and provide “an assessment of the likelihood of 

each set in a family of sets identified by the analyst” (Ayyub and Klir 2006). In other words, Mobius 

Measures are the evidence that is compiled for each event. Belief and plausibility measures are calculated 

as follows (Aven et al. 2014): 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)                                                            𝐵⊆𝐴    (6) 

𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵∩𝐴≠∅                                                        (7) 

in which the belief in A is the sum of all Mobius measures relating to B in which B is fully contained 

within or equal to A. The plausibility measure is then the sum of all Mobius measures relating to B in 
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which A and B have no commonality. The plausibility measure Pl(A) represents not only the evidence 

represented by the belief Bel(A), but also the evidence associated with any sets which overlap with A. 

Hence, at a minimum, the plausibility will be as strong as indicated by a belief. From these equations, it is 

clear that the relationship between plausibilities and belief measures are related through the following 

(Ayyub and Klir 2006): 

𝑃𝑙(𝐴̅) = 1 − 𝐵𝑒𝑙(𝐴)                                                            (8) 

𝑃𝑙(𝐴) ≥ 𝐵𝑒𝑙(𝐴)                                                              (9) 

A degree of belief or evidential support of A, Bel(A), does not implicate disbelief of A̅. For this 

reason, Evidence Theory differs from classical probability theory in that it provides a natural framework 

for modeling ignorance (Shafer 1976), which is  the difference between one and the sum of the belief and 

the belief of the complement (Ross 2010): 

Ignorance = 1 – [Bel(A) + Bel(A̅)]  

        

(10) 

2.5 Belief Combination using Evidence Theory 
 

Another facet of Evidence Theory is the ability to combine information from multiple sources, 

which can be thought of as a joint message, or a joint evidence assignment of the two pieces of evidence 

(Shafer 1987). Combining beliefs using the Dempster-Shafer theory (or Dempster’s Rule of Combination) 

can be done by using Eq.11 below: 

𝑚1,2(𝐴) =
∑ 𝑚1(𝐵)∙𝑚2(𝐶)𝐵∩𝐶=𝐴

1−𝑐
          (11) 

Where the denominator is calculated using Eq.12 below:  

𝑐 = ∑ 𝑚1(𝐵) ∙ 𝑚2(𝐶)𝐵∩𝐶=⊘                    (12)   

  The numerator is determined by multiplying the belief in every event or event 

combination in which the only commonality is the event in question. Every combination is summed. The 

denominator is then determined by multiplying the belief in every event or event combination that has 

nothing in common, and summing the results. The results vary based on the evidence provided for the 
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other events, as well as the amount of belief in a combination of events as opposed to single events (i.e., 

the belief in the occurrence of either A and/or B versus the belief in A or B singly). As stated in 

Elicitation of Expert Opinions for Uncertainty and Risks (Ayyub 2001), “Probability Theory can be 

treated as a special case of the Theory of Evidence. For cases in which all focal elements for a given basic 

assignment, m are singletons, the associated belief measure and plausibility measure collapse into a single 

measure, a classical probability measure”.  

The concepts of combining judgment from multiple experts in a mathematically-founded 

framework could be very powerful in combining engineering judgment with quantitatively- and 

qualitatively-based risk calculations. Field judgment in damage assessment and building vulnerability has 

great potential to take advantage of Evidence Theory combinations of belief and necessity, as is 

demonstrated with a damage assessment survey presented in chapter 4.  

2.6 Conflict among Expert Beliefs 
 

Conflicting belief has been a noted weak point of Evidence Theory (Xin, Xiao, and You 2005). 

Ayyub and Klir (2006) discuss Yager’s Rule of Combination which introduces a ground probability mass 

function (q1,2) to assign contradiction to the universal ‘X’. The term c, the conflict variable, is removed 

from the denominator in Eq. 11 (making the denominator unity), and each term in Eq. 12 is added to the 

corresponding numerator term in Eq. 11 (where the conflict exists). This correctly renormalizes the sum 

of all terms in Eq. 11, and places the conflict within each term. This process is detailed below in equations 

13-15. 

𝑞1,2(𝐴𝑖) = ∑ 𝑚1(𝐴𝑗)𝑚2(𝐴𝑘)𝑎𝑙𝑙 𝐴𝑗∩𝐴𝑘=𝐴𝑖
                                               (13) 

𝑚1,2(𝐴𝑖) = 𝑞1,2(𝐴𝑖)      𝑓𝑜𝑟 𝐴𝑖 ≠ ∅  𝑎𝑛𝑑 𝐴𝑖 ≠ 𝑋                                         (14) 

𝑚1,2(𝑋) = 𝑞1,2(𝑋) + 𝑞1,2(∅)                                                      (15) 

Uncertainty Modeling and Analysis in Engineering and the Sciences also presents Inagaki’s Rule 

of Combination (Ayyub and Klir 2006), which is primarily based on Dempster’s rule of Combination but 
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allows for Yager’s rule in such cases when a combination parameter, k, is set equal to the values below 

(Ayyub and Klir 2006): 

𝑘 = 0            [use Yager’s rule of Combination] 

𝑘 =  
1

1−𝑞(∅)
       [use Dempster’s rule of Combination]                                  (16) 

where q is the ground probability mass function defined in equation 13. This k value is then integrated 

into Yager’s Rule of Combination by the following (Ayyub and Klir 2006): 

𝑚1,2(𝐴𝑖) = [1 + 𝑘𝑞1,2(∅)]𝑞1,2(𝐴𝑖)     𝑓𝑜𝑟 𝐴𝑖 ≠ ∅   𝑎𝑛𝑑 𝐴𝑖 ≠ 𝑋                          (17) 

𝑚1,2(𝑋) = [1 + 𝑘𝑞1,2(∅)]𝑞1,2(𝑋) + [1 + 𝑘𝑞1,2(∅) − 𝑘]𝑞1,2(∅)                         (18) 

𝑚1,2(∅) = 0                                                                   (19) 

While these approaches have been shown to produce reasonable results, the differences are minor 

unless there is significant conflict among the experts, and it lacks the straightforward interpretation 

behind Eqs. 11 and 12. Therefore, it has not been adopted in the seismic damage data analysis in this 

thesis. 

2.7 Imprecise Probabilities  
 

 Walley (1991) introduced the idea of imprecise probabilities as a generalization of probability 

theory which follows the principles of probability theory but does not require precise probability 

assignments (Ayyub and Klir 2006). As discussed previously, a main goal of this theory analysis is to 

determine how to best represent uncertainty in risk assessments. Providing upper and lower bound 

probabilities is one way to demonstrate some uncertainty of a model output in a quantifiable way. The 

lower bound probabilities are related to the previously discussed Mobius measures by the following 

(Ayyub and Klir 2006): 

𝑚(𝐴) = ∑ (−1)|𝐴−𝐵|𝑃(𝐵)𝑎𝑙𝑙 𝐵 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐵⊆𝐴                                                (20) 

𝑃(𝐵) =  ∑ 𝑚(𝐴)𝑎𝑙𝑙 𝐵 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐵⊆𝐴                                                       (21) 

where 𝑃  is lower bound probability. Upper bound probabilities can be calculated from lower bound 

probabilities with the following (Ayyub and Klir 2006): 
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𝑃(𝐴) = 1 − 𝑃(𝐴)                                                                       (22) 

where 𝑃 is upper bound probability of A and 𝐴 is the complement of A. Probability bounds are used in 

line with Dempster Shafer Theory to analyze data in Chapter 4 of this thesis. 

2.8  Social Vulnerability 

 As Dempster-Shafer Theory is evaluated in multiple capacities in this thesis, including as an 

analysis tool for social vulnerability, a short review of this topic is necessary as well. A community’s 

vulnerability to a hazard is often thought of in physical terms; their infrastructure, environmental 

surroundings/global location, etc. Social vulnerability is the inter-personal counterpart – the vulnerability 

one might experience due to factors such as income disparity, class, gender, age, disability, health, living 

situation, income, or race/ethnicity (Thomas et al. 2013). One current method of determining a 

community’s social vulnerability is called the Social Vulnerability Index (SVI), and is dependent on 15 

census data variables: percent of people below poverty, unemployment, per capita income, possession of 

a high school degree, age (above 65 or below 17), disability, single parenthood, minority status, speaking 

English “well”, vehicle access, and housing (multi-unit structure, mobile home, group quarters, over-

crowding) (Flanagan et al. 2011). These variables are ranked among all census tracts in the United States 

and the top 10% most vulnerable receive a “flag” that indicates a vulnerability (Flanagan et al. 2011). 

These variables are grouped into four themes: socioeconomic status, household composition/disability, 

minority status/language, and housing/transportation (Flanagan et al. 2011). If the census tract is in the 

top 10% within any of these themes, that indicates another flag. Finally, all 15 variables are summed and 

if that value is in the top 10% when compared to all other tracts, another flag is recorded (Flanagan et al. 

2011). Due to the fairly limited scope, this method might not reflect all the factors that influence one’s 

true social vulnerability. More in-depth methods have been proposed, such as the one presented in Social 

Vulnerability to Environmental Hazards in which 42 independent variables were used to compile 11 

factors: personal wealth, age, density of built environment, single-sector economic dependence, housing 

stock and tenancy, race – African American, race – Hispanic, race – Native American, race – Asian, 
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occupation, and infrastructure dependence (Cutter, Boruff, and Shirley 2003). Another proposed method 

involves combining the SVI with hazard event frequency and economic loss data to determine what 

factors influence large dollar losses (Cutter, Boruff, and Shirley 2003). As Cutter et al. state, “there is no 

consensus within the social science community about social vulnerability or it correlates” (Cutter, Boruff, 

and Shirley 2003).  Given the many uncertainties and nuances involved in social vulnerability, using a 

belief-based analysis tool like Dempster-Shafer Theory has the potential to provide a more 

comprehensive evaluation of social vulnerability. While the variables above may indicate that 

vulnerability is more or less likely to be present, the ability of a community to recover after a disaster is 

influenced by much more. For example, Community Resilience as a Metaphor, Theory, Set of Capacities, 

and Strategy for Disaster Readiness discusses the importance of community bonds such as those 

established by town-wide participation in common activities: church, school, self-help groups, or 

neighborhood watch committees (Pfefferbaum et al. 2007). These types of values cannot be quantified in 

the current indexing method of social vulnerability, but may be represented by a more subjective 

framework like Dempster-Shafer Theory. 

2.9 Literature Review Conclusion 
 

Aven et al. (2014) write that "Evidence Theory provides an alternative to the traditional manner 

in which probability theory is used to represent uncertainty by means of the specification of two degrees 

of likelihood, belief and plausibility, for each event under consideration." By using a model that accounts 

for the uncertainty in the incoming data, it is possible to achieve a more reliable output. While the work 

above reinforces the idea that uncertainty is, perhaps, not being given the appropriate consideration in risk 

assessment, the alternatives to frequentist probability need to now be evaluated in authentic scenarios. 

Thus, this work aims to analyze the applications of Evidence Theory in the field of civil engineering and 

hazard mitigation, specifically in post-seismic structural damage assessments and social vulnerability, to 

determine how such uncertainties can be acknowledged. 
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3. Program Testing 
 

Since its origination, Dempster-Shafer theory has undergone a fairly small amount of exploration. 

Much of the available literature provides Equations 11 and 12 along with a short example using two or 

three power sets. As a main goal of this thesis was to determine how DST could practically be put to use, 

a comprehensive set of tests was performed to determine trends and behavior. These tests include 

combining: 

 different sets of beliefs 

 identical sets of beliefs 

 power sets that having missing information 

 power sets with extra confidence in combined events 

 power sets that have varying amounts of ignorance 

 power sets with strongly conflicting beliefs. 

3.1 Combining Beliefs 
 

Dempster-Shafter Evidence Theory can be used to combine the beliefs of multiple experts to 

achieve a combined Mobius measure, which can then be used to calculate a combined belief value. When 

experts provide a full power set of information, or their belief for any single event and any combination of 

events, then the belief in single events along with any extra belief they have in combinations of events is 

redistributed to the event with the most information. As an example, five different expert opinions are 

shown below in Table 1.  

Table 1. Combined Power Sets 

Event m1 bel1 m2 bel2 m3 bel3 m4 bel4 m5 bel5 
m 

combined 

bel 

combined 

A 0.05 0.05 0.15 0.15 0 0 0.3 0.3 0.1 0.1 0.40 0.40 

B 0 0 0 0 0 0 0 0 0.2 0.2 0.17 0.17 

C 0.05 0.05 0.05 0.05 0 0 0.1 0.1 0.3 0.3 0.38 0.38 

AB 0.15 0.2 0.05 0.2 0.4 0.4 0.2 0.5 0 0.3 0.02 0.59 

AC 0.1 0.2 0.2 0.4 0.1 0.1 0.2 0.6 0.2 0.6 0.01 0.79 

BC 0.05 0.1 0.05 0.1 0.5 0.5 0.2 0.3 0 0.5 0.02 0.57 

ABC 0.6 1 0.5 1 0 1 0 1 0.2 1 0.00 1.00 

Note: m is Mobius measure, bel is belief 
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Events “AB”, “AC”, “BC”, and “ABC” signify an either/or relationship. All beliefs in “ABC”, 

then, are equal to 1 because that is the belief that either A, B, or C will happen. As these are the only 

options, one of them must occur. The Mobius measure and belief value are shown for each expert, 

denoted as “m1” and “bel1” for expert 1 and so on. Recall that the belief value is what is provided by the 

expert, and the m value, or Mobius Measure/evidence, is what is calculated from the belief. The combined 

values of m and belief can then be seen on the right side of the table. By looking at the initial beliefs for 

each event and then the combined belief, it is evident that the combined belief and Mobius measures are 

dependent on several factors. It is important to look at the starting individual event values, but also the 

amount of extra information provided with the belief in combined events. The added certainty that one 

may have in a combination of events without having to associate it with any individual event is filtered 

back to the single events. For example, examine event A. Each expert provides a belief value for the 

single event of A, but their beliefs for any combined event involving A (“AB” or “AC”) is almost always 

higher than simply the combination of those individual event beliefs. When these beliefs are combined, a 

higher combined belief and Mobius measure for the single event of A are produced. Through this process, 

experts are allowed to express uncertainty or ignorance on their belief of any single event without 

ignoring evidence they may have on combined events. 

3.2 Combining Identical Beliefs 
 

An interesting result of this calculation occurs when people with identical beliefs are combined. 

Rather than resulting in the combined expert belief equaling the identical individual beliefs, the combined 

belief is redistributed based on the strength of the original beliefs. The belief is distributed with priority 

on the events with the strongest starting belief and with the 

most amount of extra certainty from joint events. To 

illustrate this point, one set of beliefs was chosen and then 

duplicated to calculate the combined belief as if several 

Event Mobius Measure Belief 

A 0.15 0.15 

B 0.00 0.00 

C 0.05 0.05 

AB 0.05 0.20 

AC 0.20 0.40 

BC 0.05 0.10 

ABC 0.50 1.00 

Table 2. Sample Power Set 
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experts had the exact same belief. The starting beliefs are shown in Table 2. 

This test was performed with the use of a computer program written in Matlab that combines 

expert beliefs using Dempster-Shafter Evidence Theory based on the number of experts. It should be 

noted that the program written for this purpose allows the combination of up to five experts. However, the 

results are continuous in that combining two sets of two experts will yield the same result as combining 4 

experts of the same beliefs (Note: combining one set of two experts with one set of three experts does not 

yield the same result as combining five experts, as this weights the beliefs differently). This was verified 

via preliminary testing on the program. Using this, up to 20 experts were combined to analyze the trends. 

There are gaps at 7, 11, 13, 14, 17, and 19 experts, as these numbers are not divisible by the available 1-5 

expert combinations. The resulting Mobius measures and belief values of combining several experts with 

the identical belief shown above can be seen in Figure 1.  

 
Figure 1. Belief and Mobius Measure of Combined Experts with Identical Beliefs 

 

Although the original power set of beliefs provides extra confidence in every double event 

beyond the confidence of any single event, the A event acquires the most combined evidence (Mobius 

Measure) with every added expert. While A starts out with the highest single event belief in the power set 

in Table 2, it also gains the most from the extra belief associated with the combined events of AB and 

AC. Since every expert has more overall belief in event A than he or she does in B or C, the evidence for 

A will accumulate with each added expert, therefore the combined evidence value for A will continue to 
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approach 1 and all other values will approach 0. The belief plot on the left is slightly different in that the 

belief in any event involving A will approach 1, while any event absent of A will approach 0. This is 

expected, as the more evidence there is for A, the higher the belief is that any event where A is an option 

will occur. 

3.3 Dealing with “Missing Information” 
 

The reason to consider how missing information is treated is that asking an expert for his or her 

belief in any combination of events might not be practical. For example, if an expert is assessing a 

structure and A is light damage, B is moderate damage, and C is extreme damage, asking for one’s belief 

in light or extreme damage but not moderate damage does not make sense. This leaves the question of 

how to fill in the missing information of one’s belief in A or C. Several ways of handling this missing 

information were considered. A sample data set of five different experts’ beliefs was used, with the value 

of the belief in A or C being calculated differently each time. These beliefs were then combined to see 

how the different treatments of AC affected the trend of combined Mobius measures and beliefs. 

The initial test was done with full power sets to provide base combined values for comparison. 

That is, the belief values of AC were provided by the experts. For this particular data set, every expert’s 

belief in AC is more than just the sum of the beliefs in A and C, signifying that each expert has increased 

confidence in either one of those events occurring. 

The first attempt at filling the missing AC information was simply setting the belief in A or C 

equal to 0. The idea behind this theory was that, as asking for one’s belief in either A or C is not a logical 

question to ask, the expert’s belief would be 0. The results yielded several negative values. It can be 

concluded that since the beliefs in A and C are not 0 individually, their combined belief cannot be less 

than the sum. 

Based on the results of the previous test, the next attempt was to set the combined belief of A and 

C equal to the sum of the individual beliefs in A and C. Using the idea of common probability, the belief 

in A or C should simply be the sum of the beliefs in A and C. However, since Evidence Theory allows for 
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extra belief in combined events rather than just the combination of single events, we need to consider that 

the combined belief in A and C might be more than just the combined belief in the individual events. If 

extra information is provided for AB and BC, but AC is simply the sum of the individual beliefs in A and 

C, the combined beliefs for A and C will be negatively affected even if that is not the true belief of the 

experts. Since the provided beliefs for AC in the original power set did have extra information, the 

combined Mobius measures and beliefs were strongly influenced by the lack of extra information in this 

treatment. 

The next test was setting the combined belief of A and C equal to the belief in A, B, or C minus 

the belief of B alone (theoretically leaving behind the belief of A or C). Again, this follows the general 

rule of probability in that one’s beliefs must add to 1. Therefore, the belief in 2 of 3 events should be 1 

minus the belief of the third event. Since evidence theory allows ignorance on the part of the single events 

and does not require these beliefs to sum to 1 (but can be no larger than 1), the calculated values of the 

belief in AC turned out much higher than the expert-provided beliefs. This led to overly inflated values of 

combined Mobius measures and beliefs. 

The final test was calculating a value of the belief in A or C based on the provided individual 

values of A and C while also taking into account the provided extra information in AB and BC. The belief 

value of AC was calculated by summing the individual A and C belief values, then adding half of the 

extra belief assigned to AB and BC, with the assumption that half of the extra belief for AB was for A, 

and half of the extra belief for BC was for C. This is shown below in Eq. 23.  

𝐵𝑒𝑙(𝐴 ∩ 𝐶) = 𝐵𝑒𝑙(𝐴) + 𝐵𝑒𝑙(𝐶) +
[𝐵𝑒𝑙(𝐴∩𝐵)−𝐵𝑒𝑙(𝐴)−𝐵𝑒𝑙(𝐵)]+[𝐵𝑒𝑙(𝐵∩𝐶)−𝐵𝑒𝑙(𝐵)−𝐵𝑒𝑙(𝐶)]

2
               (23)  

While the true amount of expert belief associated with the individual events is dependent on each unique 

assessment, this method produced combined Mobius measures and beliefs that were the closest to the 

values calculated with the full expert-provided power set. A potential problem arises when the individual 

A and C beliefs combined with the calculated added information are large enough that this calculation 
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leads to an AC belief greater than 100. If this is the case, the calculated belief in AC should logically be 

capped at 100. 

3.4 The Effects of Extra Confidence 
 

As stated, Evidence Theory allows experts to acknowledge that they have ignorance about 

individual events, but be more confident in combined events. The effects of this extra confidence was 

tested to determine how having low individual beliefs but significant extra beliefs in combined events 

might weigh against having high individual beliefs with no extra confidence in combined events. To test 

this, three different power sets of information were evaluated by repeatedly combining them to analyze 

trends.  

The first power set gives event A a starting belief of 40%, and B and C comparatively low beliefs 

of 10%. In this first set, the belief in the double events is the sum of the single events; there is no added 

confidence. As expected, the combined belief in A, AB, and AC continued to grow while the belief in 

events B, C, and BC trended towards 0. The results of this test can be seen below in Table 3 and Figure 2. 

Table 3. No Extra Confidence 

# of Experts 1 2 3 4 5 6 8 9 10 

  Combined Beliefs 

A 0.4 0.585 0.707 0.794 0.859 0.905 0.959 0.974 0.983 

B 0.1 0.110 0.096 0.076 0.057 0.040 0.019 0.012 0.008 

C 0.1 0.110 0.096 0.076 0.057 0.040 0.019 0.012 0.008 

AB 0.5 0.695 0.803 0.871 0.916 0.945 0.978 0.986 0.991 

AC 0.5 0.695 0.803 0.871 0.916 0.945 0.978 0.986 0.991 

BC 0.2 0.220 0.192 0.153 0.114 0.081 0.037 0.025 0.016 

ABC 1 1 1 1 1 1 1 1 1 

  Combined Mobius Measures 

A 0.4 0.585 0.707 0.794 0.859 0.905 0.959 0.974 0.983 

B 0.1 0.110 0.096 0.076 0.057 0.040 0.019 0.012 0.008 

C 0.1 0.110 0.096 0.076 0.057 0.040 0.019 0.012 0.008 

AB 0 0 0 0 0 0 0 0 0 

AC 0 0 0 0 0 0 0 0 0 

BC 0 0 0 0 0 0 0 0 0 

ABC 0.4 0.195 0.101 0.053 0.028 0.014 0.004 0.002 0.001 
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Figure 2. No Extra Confidence in Combined Events 

 

The second power set had the same individual event beliefs, but the extra confidence in the 

combined event of BC was increased by 10%. The results are similar to the original test, suggesting that 

10% in added belief in BC was not significant enough to diminish the higher starting belief in event A. 

The results of this test can be seen below in Table 4 and Figure 3. 

Table 4. Extra Confidence of 10% 

# of Experts 1 2 3 4 5 6 8 9 10 

  Combined Beliefs 

A 0.4 0.541 0.630 0.700 0.760 0.812 0.890 0.917 0.939 

B 0.1 0.122 0.122 0.111 0.096 0.080 0.050 0.038 0.029 

C 0.1 0.122 0.122 0.111 0.096 0.080 0.050 0.038 0.029 

AB 0.5 0.662 0.751 0.811 0.857 0.892 0.940 0.956 0.968 

AC 0.5 0.662 0.751 0.811 0.857 0.892 0.940 0.956 0.968 

BC 0.3 0.338 0.317 0.276 0.229 0.183 0.110 0.082 0.061 

ABC 1 1 1 1 1 1 1 1 1 

  Combined Mobius Measures 

A 0.4 0.541 0.630 0.700 0.760 0.812 0.890 0.917 0.939 

B 0.1 0.122 0.122 0.111 0.096 0.080 0.050 0.038 0.029 

C 0.1 0.122 0.122 0.111 0.096 0.080 0.050 0.038 0.029 

AB 0 0 0 0 0 0 0 0 0 

AC 0 0 0 0 0 0 0 0 0 

BC 0.1 0.095 0.074 0.053 0.036 0.023 0.009 0.006 0.003 

ABC 0.3 0.122 0.054 0.024 0.011 0.005 0.001 0.000 0.000 
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Figure 3. 10% Extra Confidence in Combined Events 

 

The third power set added another increment of 10% belief to BC, making the belief in event A 

and the belief in BC are equal. However, the combined belief in A still trended toward 1, while the belief 

in B and C briefly increased and then trended back down towards 0. This is still expected, as the 

beginning beliefs in AB and AC are still greater than the belief in BC. The results of this test can be seen 

below in Table 5 and Figure 4. 

Table 5. Extra Confidence of 20% 

# of Experts 1 2 3 4 5  6 8 9 10 

   Combined Beliefs 

A 0.4 0.485 0.528 0.563 0.597  0.632 0.701 0.734 0.766 

B 0.1 0.136 0.155 0.162 0.162  0.156 0.136 0.123 0.110 

C 0.1 0.136 0.155 0.162 0.162  0.156 0.136 0.123 0.110 

AB 0.5 0.621 0.683 0.725 0.759  0.788 0.837 0.858 0.876 

AC 0.5 0.621 0.683 0.725 0.759  0.788 0.837 0.858 0.876 

BC 0.4 0.455 0.452 0.430 0.401  0.367 0.299 0.266 0.234 

ABC 1 1 1 1 1  1 1 1 1 

   Combined Mobius Measures 

A 0.4 0.485 0.528 0.563 0.597  0.632 0.701 0.734 0.766 

B 0.1 0.136 0.155 0.162 0.162  0.156 0.136 0.123 0.110 

C 0.1 0.136 0.155 0.162 0.162  0.156 0.136 0.123 0.110 

AB 0 0 0 0 0  0 0 0 0 

AC 0 0 0 0 0  0 0 0 0 

BC 0.2 0.182 0.142 0.106 0.077  0.055 0.027 0.019 0.013 

ABC 0.2 0.061 0.020 0.007 0.003  0.001 0.000 0 0 
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Figure 4. 20% Extra Confidence in Combined Events 

 

The fourth power set increased the belief in BC by another 10% to a total of 50%. While the 

belief in B and C remain at 10%, the belief in BC now matched the beliefs in AB and AC. The trends 

were not clear after combining 10 experts with identical beliefs, so the test was extended through 20 

experts. The beliefs in A, B, and C all trend towards 33%, with the belief in double events trending 

towards 67%.  The results of this extra belief are significant because even though A had a significantly 

higher starting belief than B and C, and the beliefs in AB, AC, and BC were all identical, B and C trended 

upwards while A trended down. This proved that this extra belief in BC is the turning point in extra 

confidence overtaking individual starting belief. However, these results are interesting because the added 

belief in BC does not necessarily give enough belief to B and C individually to have this effect. Since the 

belief in AB and AC are solely the sum of the individual beliefs in A and B, and A and C respectively, it 

makes sense to split the extra belief in B and C and add it back to the starting beliefs of B and C. 

Following this theory, the starting beliefs of B and C would each gain 15%, putting them both at 25% and 

still less than the starting belief of A. This suggests that extra confidence in combined events is handled 

differently, and potentially more seriously, than starting beliefs in individual events. These results can be 

seen below in Table 6 and Figure 5. 
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Table 6. Extra Confidence of 30% 

# of 

Experts 
1 2 3 4 5 6 8 9 10 12 15 16 18 20 

  Combined Beliefs 

A 0.4 0.41 0.40 0.39 0.37 0.37 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.33 

B 0.1 0.16 0.20 0.23 0.25 0.27 0.29 0.30 0.31 0.32 0.33 0.33 0.33 0.33 

C 0.1 0.16 0.20 0.23 0.25 0.27 0.29 0.30 0.31 0.32 0.33 0.33 0.33 0.33 

AB 0.5 0.57 0.60 0.61 0.63 0.63 0.65 0.65 0.65 0.66 0.66 0.66 0.66 0.67 

AC 0.5 0.57 0.60 0.61 0.63 0.63 0.65 0.65 0.65 0.66 0.66 0.66 0.66 0.67 

BC 0.5 0.57 0.60 0.61 0.63 0.63 0.65 0.65 0.65 0.66 0.66 0.66 0.66 0.67 

ABC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  Combined Mobius Measures 

A 0.4 0.41 0.40 0.39 0.37 0.37 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.33 

B 0.1 0.16 0.20 0.23 0.25 0.27 0.29 0.30 0.31 0.32 0.33 0.33 0.33 0.33 

C 0.1 0.16 0.20 0.23 0.25 0.27 0.29 0.30 0.31 0.32 0.33 0.33 0.33 0.33 

AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BC 0.3 0.26 0.20 0.16 0.12 0.10 0.06 0.05 0.04 0.02 0.01 0.01 0.01 0 

ABC 0.1 0.02 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
Figure 5. 30% Extra Confidence in Combined Events 

 

The final power set increased the starting belief in BC to 60%. Again, the individual belief in B 

and C remain low, but the belief in BC is now higher than AB or AC. The combined belief in A trended 

quickly towards 0, while the beliefs in B, C, and BC trended significantly upwards. The belief in AB and 

AC stayed at 50%. Based on the previous test results, it was expected that B and C would outweigh the 

belief in A with this extra belief in BC. The results of this test can be seen below in Table 7 and Figure 6. 
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Table 7. Extra Confidence of 40% 

# of Experts 1 2 3 4 5 6 8 9 10 

  Combined Beliefs 

A 0.4 0.320 0.256 0.205 0.164 0.131 0.084 0.067 0.054 

B 0.1 0.180 0.244 0.295 0.336 0.369 0.416 0.433 0.446 

C 0.1 0.180 0.244 0.295 0.336 0.369 0.416 0.433 0.446 

AB 0.5 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

AC 0.5 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

BC 0.6 0.680 0.744 0.795 0.836 0.869 0.916 0.933 0.946 

ABC 1 1 1 1 1 1 1 1 1 

  Combined Mobius Measures 

A 0.4 0.320 0.250 0.205 0.164 0.131 0.084 0.067 0.054 

B 0.1 0.180 0.244 0.295 0.336 0.369 0.416 0.433 0.446 

C 0.1 0.180 0.244 0.295 0.336 0.369 0.416 0.433 0.446 

AB 0 0 0 0 0 0 0 0 0 

AC 0 0 0 0 0 0 0 0 0 

BC 0.4 0.320 0.256 0.205 0.164 0.131 0.084 0.067 0.054 

ABC 0 0 0 0 0 0 0 0 0 

 

 
Figure 6. 40% Extra Confidence in Combined Events 

 

The purpose of this test was to examine how Evidence Theory handles the extra confidence that 

one may have in the belief of either one of two options, rather than choosing between the two. The results 

are interesting in that the extra confidence in combined events appears to be more heavily weighted than 

the belief in single events. On one hand, this seems counterintuitive since the expert was not confident 

enough to assign any of the extra belief to the individual events, only to the chance of their either/or 
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occurrence. On the other hand, this makes sense in that the expert is confident enough that one of the two 

will occur, but might be equally split between the individual events and is uncomfortable choosing to 

assign more belief to either of the two.  

3.5 Varying Amounts of Ignorance 
 

A key difference between Evidence Theory and Probability is that Evidence Theory does not 

require one to assign all of their belief to any individual or combination of events. Ignorance is allowed 

and, accordingly, the sum of one’s beliefs is often less than unity. The impact of the amount of ignorance 

one can have was tested to determine how combining experts with relatively low beliefs might differ from 

combining experts with higher, though proportional, beliefs. For the purposes of identifying trends, one 

set of beliefs was repeatedly combined until the combined expert belief no longer had any ignorance, or 

all 100% of the belief was accounted for between the 3 single events. 

 The first test uses a set of beliefs that has a large amount of ignorance. There was only 10% belief 

for the single events and 20% for the double events (the sum of their respective single events with no 

extra confidence). This leaves 70% of one’s belief unassigned. As stated previously, the belief in A, B, or 

C must always be 100% as there are no other events that may occur. This set of beliefs was combined 20 

times to reach a point when the belief of the individual events did sum to 100% (with a belief of ~33% for 

each individual event) and there was no longer any ignorance, as probability would require. The 

combined beliefs can be seen below in Table 8.  
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Table 8. Ignorance of 70% 

 

 The next tested power set has proportional starting values, but with less ignorance. Each 

individual event was assigned a belief of 20% with the double events again being the sum of their 

respective individual events (40%), leaving 40% of the belief unassigned. This set of beliefs was 

combined 8 times to reach a combined belief with no ignorance.  This can be seen below in Table 9. 

Table 9. Ignorance of 40% 

# of Experts 1 2 3 4 5 6 8 

Combined Beliefs 

A 0.2 0.263 0.292 0.308 0.317 0.323 0.329 

B 0.2 0.263 0.292 0.308 0.317 0.323 0.329 

C 0.2 0.263 0.292 0.308 0.317 0.323 0.329 

AB 0.4 0.526 0.585 0.616 0.635 0.646 0.658 

AC 0.4 0.526 0.585 0.616 0.635 0.646 0.658 

BC 0.4 0.526 0.585 0.616 0.635 0.646 0.658 

ABC 1 1 1 1 1 1 1 

  Combined Mobius Measures 

A 0.2 0.263 0.292 0.308 0.317 0.323 0.329 

B 0.2 0.263 0.292 0.308 0.317 0.323 0.329 

C 0.2 0.263 0.292 0.308 0.317 0.323 0.329 

AB 0 0 0 0 0 0 0 

AC 0 0 0 0 0 0 0 

BC 0 0 0 0 0 0 0 

ABC 0.4 0.211 0.123 0.076 0.048 0.031 0.013 

 

# of 

Experts 
1 2 3 4 5 6 8 9 10 12 15 16 18 20 

  Combined Beliefs 

A 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 

B 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 

C 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 

AB 0.2 0.32 0.40 0.45 0.49 0.52 0.57 0.58 0.60 0.61 0.63 0.63 0.65 0.65 

AC 0.2 0.32 0.40 0.45 0.49 0.52 0.57 0.58 0.60 0.61 0.63 0.63 0.65 0.65 

BC 0.2 0.32 0.40 0.45 0.49 0.52 0.57 0.58 0.60 0.61 0.63 0.63 0.65 0.65 

ABC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  Combined Mobius Measures 

A 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 

B 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 

C 0.1 0.16 0.20 0.23 0.25 0.26 0.28 0.29 0.30 0.31 0.32 0.32 0.32 0.33 

AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ABC 0.7 0.52 0.40 0.32 0.26 0.21 0.15 0.13 0.11 0.08 0.05 0.05 0.03 0.02 
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 The final test had starting beliefs with almost no ignorance. Each starting individual event belief 

was 30%, and each double event was assigned a belief of 60%. Only 10% of the belief was left 

unassigned. This relatively high power set only had to be combined 2 times to reach a combined belief 

with no remaining ignorance. These test results can be seen below in Table 10. 

Table 10. Ignorance of 10% 

# of Experts 1 2 

  Combined Beliefs 

A 0.3 0.326 

B 0.3 0.326 

C 0.3 0.326 

AB 0.6 0.652 

AC 0.6 0.652 

BC 0.6 0.652 

ABC 1 1 

  Combined Mobius Measures 

A 0.3 0.326 

B 0.3 0.326 

C 0.3 0.326 

AB 0 0 

AC 0 0 

BC 0 0 

ABC 0.1 0.022 

 

 Understanding how this theory handles ignorance is important due to the fact that allowing 

ignorance is a key component of Evidence Theory that makes it a contending alternative to probability. 

The tests above suggest that the ignorance provided by experts is retained in their combined belief until 

enough evidence is provided to allow otherwise. When there is substantial ignorance in the starting 

beliefs, many experts are required to contribute their belief to reach a combined belief that no longer has 

ignorance. As shown in Figures 7 and 8 below, the higher the starting beliefs, the lower the number of 

experts are required to reach a full combined belief power set with no ignorance. 
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Figure 7. Number of Experts Required to Reach Stability 

 

 
Figure 8. Effects of Varying Starting Beliefs 

 

3.6 Conflicting Expert Opinion 
 

 As discussed in Chapter 2.6: Conflict among Expert Beliefs, Dempster Shafer Theory might be 

inadequate when strongly conflicting beliefs are present. To determine how the equations outlined in this 

paper handle conflicting opinion, a series of basic tests were performed. 

 The first test assigned absolute belief in event A to one expert and absolute belief in event B to a 

second. The belief in combined events is the sum of the individuals. In such cases of 100% conflicting 
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belief, this theory is not able to compute a joint belief as there is no commonality between the two 

experts, from which the numerator in Eq. 11 originates.  

 The second test assigns near absolute belief to the same events as the first, but with 1% 

ignorance. In this case, Evidence Theory essentially takes the average of the provided beliefs as there is 

nearly no commonality between the experts, but both admit some small ignorance. Since probability 

would handle these beliefs in a similar method, this seems like a natural result. The results are outlined in 

Table 11 below. 

Table 11. 1% Ignorance in Combined Beliefs 

Event Expert 1 Belief Expert 2 Belief Combined Belief 

A 99.0% 0.0% 49.8% 

B 0.0% 99.0% 49.8% 

C 0.0% 0.0% 0.0% 

AB 99.0% 99.0% 99.5% 

AC 99.0% 0.0% 49.8% 

BC 0.0% 99.0% 49.8% 

ABC 100.0% 100.0% 100.0% 

 

 A third test was carried out by assigning three experts 50% belief in different events. Rather than 

producing an average combined belief, the result was a 25% joint belief in each individual event (larger 

than the 16.67% that an average would yield) and a 50% belief in each combined event, as seen below in 

Table 12. This result reflects a notable difference in how probability and Evidence Theory deal with 

multiple inputs and significant ignorance. 

Table 12. 50% Ignorance in Combined Beliefs 

Event 
Expert 1 

Belief 

Expert 2 

Belief 

Expert 3 

Belief 

Combined 

Belief 

A 50% 0% 0% 25% 

B 0% 50% 0% 25% 

C 0% 0% 50% 25% 

AB 50% 50% 0% 50% 

AC 50% 0% 50% 50% 

BC 0% 50% 50% 50% 

ABC 100% 100% 100% 100% 
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 In order to analyze how larger quantities of conflicting beliefs are handled, one expert (Expert 4) 

was assigned absolute belief in event C, which was combined with multiple experts that had strong belief 

in A. This test is of significant interest because even though it seems there is more belief in event A, the 

fourth expert’s absolute belief in C allows no ignorance or commonality, and therefore trumps the less-

than-absolute that the other three experts had in event A. Again, the idea of ignorance plays a significant 

role in Evidence Theory that probability would ignore. The results of this test can be seen below in Table 

13. 

Table 13. Ignorance Effect on Combined Belief 

Event 
Expert 1 

Belief 

Expert 2 

Belief 

Expert 3 

Belief 

Expert 4 

Belief 

Combined 

Belief 

A 90% 90% 90% 0% 0% 

B 0% 0% 0% 0% 0% 

C 0% 0% 0% 100% 100% 

AB 90% 90% 90% 0% 0% 

AC 90% 90% 90% 100% 100% 

BC 0% 0% 0% 100% 100% 

ABC 100% 100% 100% 100% 100% 

 

 A fourth test was performed to determine at what level of confidence expert 4’s belief in event C 

gives way to the other three experts’ belief in event A. Keeping the first three experts’ belief in event A at 

90%, the confidence that expert 4 has in C was varied from 90% to 100%. As shown in Figure 9 below, 

when expert 4’s confidence drops below around 99.5%, the combined belief shifts towards event A. Any 

belief above 99.5% does not leave enough ignorance to allow for the first three expert’s beliefs to 

influence the combined belief.  
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Figure 9. Effects of Varying Amounts of Confidence 

 

This last test demonstrates how different belief measures are from probability. Belief measures represent 

one’s confidence in a certain outcome. When this confidence is near 100%, this is taken almost as fact of 

what will happen, rather than just an estimate. The remaining ignorance is so small that other beliefs less 

than 100% are considered negligible or not likely enough to occur. 

3.7 Summary of Program Testing Results 
 

 The series of tests performed on the MatLab programs helped determine how Evidence Theory 

behaves in specified situations and in which scenarios it might be applicable. Several key outcomes were 

determined throughout this testing, many of which highlighted the contrast between this theory and basic 

probability. Combining expert beliefs using Evidence Theory yields a significantly different result than 

simple averaging; as more and more beliefs are contributed, one event will eventually reach a joint belief 

of 100%, while all other single events will have 0%. Several other aspects influence the joint belief, 

including any amount of ignorance the experts may have (a total belief less than 100%), how much extra 

belief he or she has in the joint events versus the single events, and how conflicting the contributing 

beliefs are. The ignorance allowed in beliefs less than 100% act as a sort of weighting measure – experts 

with more ignorance do not influence the joint belief as strongly as experts who assign 100% of their 

belief. The confidence level of the contributing experts influences how many experts are required to reach 
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total belief in a definitive answer. For example, a small number of very confident experts with similar 

beliefs might have a joint belief of 100% in one event, while a larger group of less certain experts may 

yield a more ambivalent result. When contributing beliefs are strongly conflicting, the amount of 

ignorance present plays a key role. One expert that very strongly believes in event A (little to no 

ignorance) combined with another expert who has a moderately high belief in event B (slightly more 

ignorance), will yield a joint belief that strongly backs event A, even though the contributing beliefs in A 

and B are both high. Another key outcome of conflicting belief testing is that when there is no possible 

overlap, for example if one expert has 100% belief in A and one has 100% belief in B, Evidence Theory 

is not capable of calculating a joint belief.  

 Overall, these results were able to provide a general foundation for the behavior and trends of 

Dempster Shafer Theory under several conditions. This basis allows for further real-world testing in 

practical risk situations, such as the survey instrument in the next chapter. 
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4. Survey 
 

 A structural damage assessment survey was constructed to test one of the real-life applications of 

this program. The survey includes 5 different aerial images of Port-au-Prince, Haiti, taken shortly after the 

2010 earthquake there. A damage scale is provided giving examples of images that have damage ranges 

of 0 - 20%, 20 - 40%, 40 - 60%, 60 - 80%, and 80 - 100%. The participants are asked to evaluate each 

image and assign their belief that the image has a damage in the ranges of 0 - 33%, 34 - 66%, and 67 - 

100%. They are also asked to assign their belief that the damage is within the ranges of 0-66% and 34 – 

100%, with the provided explanation that they may have more confidence in the larger ranges than simply 

the sum of the smaller ranges. The participants were not asked for their belief in [0 - 33% + 67 - 100%] 

(the combination of the two outer ranges), as this is not a commonsense question in terms of damage 

assessment. Since the belief in this combined event is necessary to calculate the total combined belief, the 

missing value was calculated using the provided beliefs. The individual beliefs in 0 - 33% and 67 - 100% 

were summed along with half of the extra belief in 0 - 66% and 34 - 100%, as this method proved to be 

the most apt at approximating the missing information that the damage might be 0 - 33% + 67 - 100% 

(see Chapter 3.3). The full survey is provided in Appendix A.  

4.1 Survey Delivery 
 

 The survey was delivered by hand to selected structural-focused engineering classes at both the 

undergraduate and graduate level. Professors with a similar focus were also offered the survey either in 

person or via email. The survey results were recorded and each participants’ beliefs were combined to 

achieve combined damage beliefs in each of the five images. 

4.2 Survey Results 
 

 A total of 46 surveys were filled out and returned. If any questions were filled out not in 

accordance to the specified rules, namely if the provided belief exceeded 100%, the individual question 

was not considered in the results. Each of the five survey questions produced at least 40 correctly filled 

out beliefs.  
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4.2.1 Evaluating Survey Results using Evidence Theory 
 

 The results for each question were calculated in two different ways. The first combines five 

groups of eight experts each, with the idea that many real life damage assessments will not have 40 

available experts to provide their beliefs. The second combines all 40 available surveys to analyze the 

result of large quantities of opinions. The results can be seen below in Table 14.  

Table 14. Combined Belief Results Using Evidence Theory 

  Damage Range (%) Group 1 Group 2 Group 3 Group 4 Group 5 All 40 

Q
u

es
ti

o
n

 1
 

0 - 33 98.5% 97.4% 54.7% 98.2% 100.0% 100.0% 

34 - 66 0.4% 0.3% 12.9% 0.5% 0.0% 0.0% 

67 - 100 0.7% 1.9% 29.7% 0.7% 0.0% 0.0% 

0 - 66 99.0% 97.7% 67.6% 98.7% 100.0% 100.0% 

0-33 + 67-100 99.6% 99.7% 87.1% 99.5% 100.0% 100.0% 

34-100 1.1% 2.1% 42.6% 1.2% 0.0% 0.0% 

0 - 100 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Q
u

es
ti

o
n

 2
 

0 - 33 100.0% 79.2% 58.4% 99.2% 100.0% 100.0% 

34 - 66 0.0% 2.4% 4.7% 0.2% 0.0% 0.0% 

67 - 100 0.0% 17.1% 35.6% 0.6% 0.0% 0.0% 

0 - 66 100.0% 81.5% 63.1% 99.3% 100.0% 100.0% 

0-33 + 67-100 100.0% 97.6% 95.2% 99.8% 100.0% 100.0% 

34-100 0.0% 19.5% 40.3% 0.7% 0.0% 0.0% 

0 - 100 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Q
u

es
ti

o
n

 3
 

0 - 33 1.0% 2.4% 0.0% 2.8% 5.2% 0.0% 

34 - 66 0.5% 0.2% 1.0% 1.6% 1.0% 0.0% 

67 - 100 98.0% 97.1% 97.9% 94.9% 92.1% 100.0% 

0 - 66 1.5% 2.5% 1.1% 4.4% 6.2% 0.0% 

0-33 + 67-100 99.6% 99.8% 99.0% 98.4% 99.0% 100.0% 

34-100 98.5% 97.3% 99.9% 96.5% 93.0% 100.0% 

0 - 100 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Q
u

es
ti

o
n

 4
 

0 - 33 91.3% 89.5% 92.9% 99.4% 92.4% 100.0% 

34 - 66 3.0% 0.4% 1.1% 0.1% 2.0% 0.0% 

67 - 100 3.6% 9.1% 5.2% 0.4% 4.6% 0.0% 

0 - 66 94.3% 89.8% 94.0% 99.6% 94.4% 100.0% 

0-33 + 67-100 97.0% 99.6% 98.8% 99.9% 98.0% 100.0% 

34-100 6.5% 9.5% 6.3% 0.5% 6.6% 0.0% 

0 - 100 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Q
u

es
ti

o
n

 5
 

0 - 33 23.4% 2.4% 0.0% 0.0% 0.2% 0.0% 

34 - 66 1.2% 0.2% 0.0% 0.0% 0.0% 0.0% 

67 - 100 73.6% 97.0% 100.0% 100.0% 99.7% 100.0% 

0 - 66 24.6% 2.6% 0.0% 0.0% 0.2% 0.0% 

0-33 + 67-100 97.7% 99.8% 100.0% 100.0% 100.0% 100.0% 

34-100 74.8% 97.1% 100.0% 10.0% 99.7% 100.0% 

0 - 100 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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Two observations are evident when examining the results above. One; when all 40 experts are 

combined, the beliefs either reach 0% or 100%. Regardless of the individual beliefs, there is enough 

provided evidence among the 40 experts to fully support one single event. Second, the smaller groups of 

experts provide combined beliefs that vary heavily based on the individual beliefs. For example, consider 

the results of Question 1. Groups 1, 2, 4, and 5 strongly back 0-33% damage. The group 5 experts 

supported this damage range so strongly that just combining those 8 experts’ beliefs produced 100% 

belief in 0-33% damage. Group 3, on the other hand, had enough varied individual beliefs that the 

combined belief was still fairly scattered. Regardless, when combining all 5 groups of experts, Group 3’s 

split belief became negligible and the total combined belief supported 0-33%.  

4.2.1.1 Secondary Survey Results 

 

A second version of the survey was constructed and distributed to a separate civil engineering 

undergraduate class. In this version, the same images were used but the participants were asked to assign 

their beliefs to larger damage groups first, and then based on how confident they were on the damage 

rating, to assign their beliefs to the smaller ranges. One question from this survey is included in Appendix 

B for reference on how the question was asked differently. The purpose of this version was to see if 

participants responded better to this question progression, as this concept might be difficult to understand 

outside of the axioms of probability. The survey was distributed to approximately 130 students, 25 of 

whom had taken the first survey. Only about 35 responses were filled out correctly for each question (30 

new participants, five repeat participants). The most common reason that a question was thrown out was 

due to a participant assigning more belief to single events than to the combined event. For example, 

assigning 35% belief to light damage and 25% belief to moderate damage, but only assigning 50% to 

belief and/or moderate damage. This suggests that asking the participant to assign whatever belief they 

are confident in to smaller ranges, and then asking if they have any extra belief in a wider range makes 

sense to a larger population than asking for any belief in a wide range and then asking to narrow it down 

into small ranges. For the correctly filled-out surveys, the value of light and/or severe damage (0%-33% + 
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67%-100%) was calculated the same way as the 

original survey. Again, the results were scaled so 

that the sum of all belief (the belief in the 

individual events plus the extra belief in the 

combined events) did not exceed 100%. The 30 

new participants were combined as one group and 

the five repeat participants were combined in one 

group. The results of this secondary survey can be 

seen in Table 15 to the left. 

While this survey did not return as many 

successful responses as the first round, these 

results do support the initial survey results. The 

combined belief between the 30 new participants 

and the five repeat participants both support the 

same damage range for all five questions, which 

also agree with the original survey responses. The 

comparison between the group of 30 new 

participants and five repeat participants also 

highlights some of the conclusions made from the 

first round; combining 30 results yielded enough 

evidence to completely or nearly completely 

support one damage range, while combining just five results did not have enough evidence for any one 

damage range to produce 100% joint belief in any one range.  

A primary purpose of this second survey was to understand how Evidence Theory can best be 

conveyed to potential users in terms of using one’s belief outside the axioms of probability, while still 

Damage Range 

(%)

30 New 

Participants

5 Repeat 

Participants

0 - 33 100.0% 79.7%

34 - 66 0.0% 3.0%

67 - 100 0.0% 13.7%

0 - 66 100.0% 82.7%

0-33 + 67-100 100.0% 97.0%

34-100 0.0% 16.7%

0 - 100 100.0% 100.0%

0 - 33 89.0% 74.0%

34 - 66 0.0% 2.6%

67 - 100 11.0% 20.0%

0 - 66 89.0% 76.6%

0-33 + 67-100 100.0% 97.4%

34-100 11.0% 22.6%

0 - 100 100.0% 100.0%

0 - 33 0.1% 36.8%

34 - 66 0.0% 8.2%

67 - 100 100.0% 53.9%

0 - 66 0.1% 45.0%

0-33 + 67-100 100.0% 91.9%

34-100 100.0% 62.1%

0 - 100 100.0% 100.0%

0 - 33 94.0% 83.9%

34 - 66 0.0% 1.3%

67 - 100 6.1% 12.8%

0 - 66 94.0% 85.2%

0-33 + 67-100 100.0% 98.8%

34-100 6.1% 14.1%

0 - 100 100.0% 100.0%

0 - 33 0.0% 21.6%

34 - 66 0.0% 6.4%

67 - 100 100.0% 69.1%

0 - 66 0.0% 28.0%

0-33 + 67-100 100.0% 93.6%

34-100 100.0% 75.5%

0 - 100 100.0% 100.0%

Q
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Table 15. Secondary Survey Results 
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understanding the mathematical restrictions within Evidence Theory. Since the first round of surveys 

returned many more usable results, those results are further analyzed in the rest of this thesis.  

4.2.2 Computing Probabilities from Combined Beliefs 
 

 The combined beliefs from the original survey instrument were used to compute probabilities, 

including upper and lower bound probabilities. Only the smaller groups of experts were used to calculate 

probabilities, as the full groups of 40 experts produced “all or nothing” results that would produce 

identical probabilities. It is also important to note the difference in how probability and Evidence Theory 

handle multiple events. In Evidence Theory, experts are able to have belief in combined events without 

being forced to allocate all of that belief to the individual events comprising it. Probability simply sums 

the individual event probabilities to obtain the probability in disjoint combined events. The results for the 

first survey question are outlined in Table 16 below, and the results for all five questions are available in 

Appendix B. 

Table 16. Probabilities Computed from Combined Beliefs 

 
Note: “LB” = Lower Bound, “UP” = Upper Bound, “P” = Probability 

 

There are several notable observations to be made from the results above. First, examine Group 5. 

As expected, the calculated probabilities are identical to the combined beliefs since there was enough 

combined belief from the experts in Group 5 to produce either 100% belief or none at all. Groups 1, 2, 

and 4 all produced very similar results; the calculated probability for each event in these groups was 

nearly identical to the calculated beliefs. Since almost all of the combined belief was in the 0% - 33% 

damage range, the probability bounds are very tight. There is less than one percent difference between the 

LB P1 UP LB P2 UB LB P3 UB LB P4 UB LB P5 UB

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0 - 33 98.5 98.5 98.9 97.4 97.4 97.9 54.7 54.7 57.4 98.2 98.2 98.8 100 100 100

34 - 66 0.4 0.4 0.4 0.3 0.3 0.3 12.9 12.9 12.9 0.5 0.5 0.5 0 0 0

67 - 100 0.7 1.1 1 1.9 2.3 2.3 29.7 32.4 32.4 0.7 1.3 1.3 0 0 0

0 - 66 99 98.9 99.3 97.7 97.7 98.1 67.6 67.6 70.3 97.8 98.7 99.3 100 100 100

0-33 +

 67-100

34-100 1.1 1.5 1.5 2.1 2.6 2.6 42.6 45.3 45.3 1.2 1.8 1.8 0 0 0

0 - 100 100% 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 10087.1 87.1 87.1 99.5 99.5 99.599.6 99.6 99.6 99.7 99.7 99.7

Damage 

Range (%)

Group 1 Group 2 Group 3 Group 4 Group 5
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upper and lower bounds for all damage ranges in these three groups. Group 3 probabilities display slightly 

larger upper and lower bounds of up to 3% in range. Larger bounds are expected with this group as the 

combined belief is more diverse.  

To further examine how combined belief affects probability bounds, the 20 surveys with the 

largest extra belief in combined events were analyzed and the probability bounds were determined.  As 

expected, the bounds for this group of respondents were significantly wider with an average bounds range 

of 3.8%, compared to an average range of 0.5% for the results in Table 14. Since more belief was 

allocated to a range of events, rather than one single event, the probability of single events is less 

absolute. In some cases for the results above, the lower bounds exceed the middle probability or the upper 

bounds undercut the middle probability by a very small percent. Since the bounds in these cases are so 

tight, this is apparently due to rounding error. 

4.2.3 Further Evaluation of Survey Results by Averaging 

 

 For further comparison, the individual beliefs provided by the surveys were combined to 

approximate probability, rather than using Eqs. 11-12. For each of the small damage ranges seen in Table 

14, the additional belief from the associated larger range(s) was allocated according to the fraction of 

belief for the smaller ranges. The results were normalized to ensure the results summed to unity. Although 

the survey respondents were not asked to think in terms of probability, this method provides a way to 

logically convert their individual beliefs to the laws of probability. The results of this can be seen below 

in Table 17. 

Table 17. Combined Belief Results Using Averaging 

Survey Results: Probability 

Damage 

Rating (%) 

Question 

1 

Question 

2 

Question 

3 

Question 

4 

Question 

5 

0 - 33 41.6% 39.1% 4.0% 37.2% 5.9% 

34 - 66 48.5% 42.7% 33.7% 44.0% 29.6% 

67 - 100 10.0% 18.1% 62.3% 18.8% 64.5% 
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The difference between these results and the results using Evidence Theory are significant. Most 

noticeable is the effect of combining many experts. When combining more and more expert opinions, 

Evidence Theory will continuously weight single events until they reach 100% or 0%, as shown by the 

results of combining all 40 expert beliefs using Evidence Theory in Table 14. Outliers and small amounts 

of contradicting opinion are eventually considered negligible as more and more beliefs are combined. 

Averaging, however, will continue to incorporate all individual responses. Outliers here will have a more 

significant impact on the combined belief. While the results above do have favored damage ranges for 

each question, the highest combined belief is 64.5%. Even though 40 individual beliefs were combined to 

obtain these values, the results are varied and arguably inconclusive. The most strongly supported damage 

range in questions 1, 2, and 4 is 34-66% damage, while the results for those three questions in Table 14 

strongly support the 0-33% range. Although these results are not strictly probability-based, it is clear that 

the influence of ignorance and conflicting opinion in Evidence Theory is significant.  

4.2.4 Actual Damage Results 

 The actual damage state for each image on the survey is provided in the table below. Whichever 

range the majority of buildings in that image fell into is the range shown. The most strongly supported 

damage range calculated from the survey results using both Dempster Shafer Theory and 

averaging/Probability are also shown for comparison. 

Table 18. Actual Damage Results - Comparison 

Survey 

Question 

Actual 

Damage 

DST 

Results 

Averaging 

Results 

1 0-33 0-33 34-66 

2 0-33 0-33 34-66 

3 33-66 67-100 67-100 

4 0-33 0-33 34-66 

5 67-100 67-100 67-100 

 

This table provides valuable insight on how a different framework can produce significantly different 

results from the same data. The Dempster-Shafer results correctly matched four of the five actual damage 

ranges, while the results from averaging correctly matched one. This not only reinforces the idea that a 
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framework that allows the user to have some uncertainties changes the output, but it suggests that this 

framework could produce a more accurate output. 
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5. Dempster Shafer Theory Applications in Social Vulnerability 

5.1 Introduction to Social Vulnerability 
 

 Social vulnerability is an aspect of hazard management that is often hard to quantify. This type of 

vulnerability might be defined as how well someone is able to recover after experiencing a disaster, such 

as an earthquake, hurricane, or heat wave. One’s ability to respond in such a scenario could depend on 

such factors as whether they own a vehicle, if they have children/dependents, if they are native in the 

local language, their income, etc. These aspects are all founded in the “differential social relations among 

groups in a given society” (Thomas et al. 2013). The current method of analyzing social vulnerability 

relies on percentiles in 15 different census variables that are separated into 4 themes as shown below 

(Flanagan et al. 2011): 

Socioeconomic Status 

 Percent individuals below poverty 

 Percent civilians unemployed 

 Per capita income 

 Percent persons with no high school diploma 

Household Composition/Disability 

 Percent persons 65 years of age or older 

 Percent persons 17 years of age or younger 

 Percent persons more than 5 years old with a disability 

 Percent single parent with child under 18 years old 

Minority Status/Language 

 Percent minority 

 Percent persons 5 years or old who speak English less than “well” 

Housing/Transportation 

 Percent multi-unit structure (10 or more units in structure) 
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 Percent mobile homes  

 Crowding (more people than rooms at household level) 

 No vehicle available 

 Percent of persons in group quarters (nursing homes, dorms, military quarters) 

 A Social Vulnerability Index for Disaster Management outlines how these variables are analyzed; 

“To construct the SVI, each of the 15 census variables, except per capita income, was ranked from highest 

to lowest across all census tracts in the United States with a non-zero population. Per capita income was 

ranked from lowest to highest because, unlike the other variables, a higher value indicates less 

vulnerability” (Flanagan et al. 2011).  If the percentile is 90% or higher (inverse for “Per capita income”), 

the town is flagged. These percentiles are also summed within each of the four themes. If the group 

percentile is 90% or higher, this symbolizes another flag. Finally, the percentiles for all 15 variables are 

summed, and if the overall percentile is 90% or higher, the town receives another flag. The number of 

total flags is reviewed on a variable level, theme level, and overall level. The number of received flags 

indicates the level of social vulnerability within the town (Flanagan et al. 2011).  

     5.2 Rethinking Social Vulnerability Indexing 
 

 There are several potential issues with the current method of ranking. The most simplistic one is 

that being in or out of the 90+ percentile does not necessarily mean this group is or is not socially 

vulnerable. It also assigns an “all or nothing” ranking – those with an 89th percentile ranking would not 

receive a flag but are nearly just as vulnerable as those in the 90th percentile. Along the same lines, 

ranking in the 90th percentile or above may not actually indicate a vulnerability. For example, those living 

in group quarters such as a dorm might experience a benefit of having close-knit groups, or they may 

have predetermined recovery plans laid out by the school. Another aspect to consider is that the 15 

variables are not split evenly among the four themes. Since the groups have the potential to be assigned 

one flag, and there are differing numbers of variables within each group, then each variable does not carry 

equal weight. For example, not having access to a vehicle is in a group with four other variables, while 
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being under the age of 17 is in a group with three other variables. This means that being under the age of 

17 carries more weight than not having a vehicle. The ability to escape or recover from a disaster may or 

may not rely more on a method of travel than age. Finally, consider the result if one group is in the 90th+ 

percentile in a few variables but ranked very low in all other categories. This group would register as two 

or three flags. Compare this to a group that is ranked in the 60th or 70th percentile in nearly every category. 

They would receive zero flags, and be ranked as less vulnerable than the first group.  

     5.3 Dempster-Shafer Theory in Social Vulnerability 
 
 Using Dempster-Shafer Theory offers a new perspective on social vulnerability. Two potential 

methods of using DST are presented here: 

1)  If, instead of assigning percentiles to these categories, analysts are asked to rank towns on 

their likelihood of being vulnerable for each of the 15 variables. For example, one is asked to 

assign their belief that a town is either A) not vulnerable, B) moderately vulnerable, or C) very 

vulnerable in each of the 15 categories. The axioms of DST do not require that these add to 

100%, so uncertainty of the level of social vulnerability does not count for or against the group. 

DST also allows extra belief to be allotted to combined groups, so that an analyst may say they 

are 100% certain the group is either moderately or very vulnerable, but does not have to distribute 

all 100% to the moderately and very vulnerable ranges. These beliefs can then be combined using 

Dempster-Shafer Theory to determine a social vulnerability “likelihood” that the town is either 

not vulnerable, moderately vulnerable, or very vulnerable. This can be evaluated within each of 

the 4 groups, or as an overall combined percentage.  

 This option has many advantages. As discussed previously, qualifying in the 90th 

percentile or higher in any one of the 15 variables does not necessary signify vulnerability. While 

the analysts will have access to this census data, they can consider a wider range of contributing 

factors, such as surrounding resources and the type of hazard that is likely in that area. Further, if 

this analysis is performed by local analysts, the type of subjective data that could be used is 
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invaluable. A main issue in social vulnerability is the quantification of the valuable contributions 

made by communities despite their measured vulnerabilities (Thomas et al. 2013). Local analysts 

would be able to use this intimate knowledge of the community in their analysis when assigning 

their beliefs to each vulnerability ranking, rather than being restricted to the census data. 

2)  The second proposed method involves combining the provided census data using DST 

rather than summing and ranking. The census percentage for each variable is assigned to C) very 

vulnerable. The rest of the population is assigned to A) not vulnerable and B) moderately 

vulnerable. For example, if 30% of a town is below poverty, that category is marked as 30% very 

vulnerable, and the remaining 70% is assigned to not vulnerable and/or moderately vulnerable. 

How this 70% is split between A and B can be determined by a standard rule or by more 

subjective means depending on the analyst.  These values can then be combined with the other 

variables within their theme, and with the other 14 categories to determine a combined percentage 

for “not vulnerable”, “moderately vulnerable”, and “very vulnerable”.  

5.3.1 Testing Dempster-Shafer Theory 

 

 The second method was tested using the available 2016 census data for three census tracts of 

varying social vulnerability (1, 4, and 9 flags using the existing methodology) in Denver, Colorado. The 

census percentage for each of the 15 variables was assigned to C (very vulnerable). The rest of the 

population was assign to AB (not vulnerable and/or moderately vulnerable). The individual values for A 

and B were varied between 0% and 25% (at 5% increments) of the remaining population that was not 

assigned to C. The combined values for AC and BC were the sum of the individual percentages for A and 

C, and B and C, respectively. The results using values of A and B as 15% of the population that was not 

assigned to C are outlined below in Table 19. The 15% value was chosen for 2 reasons. First, since the 

census data pertain to the “very vulnerable” population of each variable, it is difficult to confidently 

assign the rest of the population to one or the other. Second, this method was tried with values of 0%, 5%, 

10%, 15%, 20%, and 25%. The effect on the percentage of “very vulnerable” from changing the 
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percentage assigned to A and B was small or nonexistent. Since the 15% value is somewhat arbitrary at 

this point (ideally it would be based off of more in-depth census data), the observations made from these 

results should only be considered satisfactory for this level of analysis. Note that the “very vulnerable” 

percentages highlighted in red indicate that this variable was flagged using the 90th percentile rule. Also 

note that the Per Capita Income was calculated based on inverse percentile (the lowest per capita income 

was in the highest percentile so that it counted as the most vulnerable). See Table 20 for reference on the 

Vulnerability Ranking. 

Table 19. Social Vulnerability Calculated Using Dempster-Shafer Theory 

 

Table 20. Legend for Table 19 
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There are several observations to be made about the results above: 

  The total vulnerability of all 15 variables is identical for each tract; nearly 50% not 

vulnerable, 50% moderately vulnerable, and 0% very vulnerable. There are several reasons for 

this. First, consider that the most number of flags a tract could receive is 15 (one for each 

variable). The most vulnerable tract observed here has 9, which is 60% of the maximum. The 

overall low vulnerability of these tracts correlates to relatively low percentages of “very 

vulnerable” population. As the variable percentages are combined using DTS, the low percentage 

of vulnerable population is damped out by the overwhelming evidence that most of the population 

is “not/moderately vulnerable”. Second, since the values for A and B were determined by taking 

an identical specified percentage of the population (15% of the remaining population that wasn’t 

assigned to C), it makes sense that their values are equal, and nearly exhaustive. Note that they do 

not add to 100%, which DST allows as the percentages assigned to A, B, and C for each variable 

do not include the entire tract population.  

 The practical implications of this result deserve some consideration. On one hand, the 

third tract evaluated in this thesis is one of the most vulnerable tracts in the Denver area even 

though it is only 60% of the maximum vulnerability on the currently used scale, so if this small 

group is surrounded by largely “not vulnerable” tracts with resources, then perhaps it really is not 

very vulnerable. On the other hand, it is unreasonable to look at the total combined vulnerability 

and consider all three tracts to have the same amount of vulnerability. While this method provides 

valuable insight within the four themes, it loses this subtlety when all 15 variables are combined 

into a final vulnerability ranking. Using more in-depth census data to appropriately assign values 

to A and B may affect the final combined results, but in general it is recommended that further 

studies be done to evaluate how analyzing these 15 individual variables as a whole relates to the 

actual vulnerability experienced by a census tract, and how the surrounding tracts may influence 

this value. 
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  Compare the number of overall flags each tract received to the vulnerability ranking for 

each theme. The sum of the “very vulnerable” percentage for the 4 themes is 0.17%, 19.8%, and 

81.5% for tracts 1, 2, and 3, respectively. This corresponds positively with the number of flags 

(being 1, 4, and 9 for tracts 1, 2, and 3, respectively). While the ranking is slightly different 

(81.5% very vulnerable compared to 60% of the possible flags), it might provide different insight 

on the type and range of vulnerability experienced by each tract, as explained in the next bullet 

point. 

  Note which variables were flagged compared to which ones were not, and which of those 

contributed to the high vulnerability calculated by DST. For example, look at the Socioeconomic 

Status Theme for the second tract. 29.8% of this tract does not have a high school diploma, which 

received a flag for ranking in the 90th percentile or higher of all tracts in this variable. However, 

this tract is also in the 79.9th percentile for low per capita income, and did not receive a flag for 

this variable. This means that this tract was flagged as “vulnerable” for about 30% of the 

population not having a high school diploma but was not flagged for having a lower per capita 

income than almost 80% of all other tracts, and since these variables are in the same theme, they 

count for the same weight. By using DST, both of these factors influence the vulnerability output 

of this tract with the amount of influence being respective of their weight, not as a yes-or-no flag. 

  The Housing/Transportation theme (blue) has a combined percent of 0 for “very 

vulnerable” for each tract. Note that none of the population in any of these tracts resides in mobile 

homes. Due to this factor, and the low vulnerable percentages in the other variables in this theme, 

there is a 0% very vulnerable ranking for this group in all 3 tracts. 

  The most vulnerable output is the Minority/Language Theme (purple) for the third tract. 

This makes sense, as there are only 2 variables in this theme, and the minority percentage is 

comparatively very high (67%). Even though the minority percentage for the second tract is even 
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higher at 68%, the percentage of people who speak English “less than well” is only at 8.3% for 

the second tract, compared to 14.8% for the third.   

5.4 Social Vulnerability Conclusion 

 

 It is clear that using Dempster Shafer Theory to analyze social vulnerability produces different 

results when compared to the method of indexing, and also compared to standard probability. Rather than 

ranking each group and taking the top 10%, or averaging each variable, DST analyzes the evidence for or 

against each vulnerability ranking. If not all of the population has been assigned to a specific vulnerability 

ranking, then the output will have some ignorance factor. As stated above, ideally the vulnerability 

ranking would be based off more in-depth census data rather than just the percentage of the population 

under or over a certain standard. For example, the per capita income, age, disability type, and language 

variables could all be ranked on a scale rather than as a “yes or no” output. These types of data would 

provide a far more comprehensive look at the vulnerability of individual tracts and their overall 

communities/towns. The first method presented in this chapter has the potential to offer an even more 

comprehensive analysis of social vulnerability, captivating the subjective nuances present in this type of 

vulnerability. Since this method requires analysts familiar or local to every area being analyzed, there are 

potential obstacles such as availability and making sure every analyst is operating on the same scale. Both 

methods offer solutions to some of the problems with the current indexing method, but may have their 

own shortcomings. The results of combining all 15 variables using DST clearly presented an issue when 

the results put all three tracts at the same vulnerability ranking. On a theme level, however, the results 

offer more detail and insight into the type and range of vulnerability when compared to the current 

indexing method. By gaining a more comprehensive understanding of the vulnerability scale, it is 

possible to prepare or mitigate hazards in areas that currently do not register as vulnerable.  

6. Conclusion 
 

 A primary goal of this thesis was to further understand the role of uncertainty in civil engineering 

and analyze potential frameworks with which this uncertainty might be captured. While a variety of 
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frameworks have been presented in previous publications, the testing program that was executed and 

analyzed in this thesis offers a more comprehensive understanding of Dempster Shafer Theory and how 

such a theory would react if used in damage assessments. Evidence Theory provides significantly 

different results in subjective cases when compared to the frequentist alternative of probability. Such 

results often provide a much more definitive and involved joint belief that takes into account aspects such 

as what confidence levels the experts have, any extra belief there may be in a wider range of events, and 

how conflicting the contributing beliefs are. Using a method that contains these nuances could yield 

significantly different results in damage assessments when compared to probability. In such cases of post-

seismic structural analysis, a limited number of experts may be available to visit the site and provide an 

evaluation. Combining these valuable subjective individual beliefs to obtain a result requires 

consideration of those factors that make this assessment subjective, such as ignorance or confidence in a 

wider range of damage as opposed to a more specific range. Further, as each expert provides more or less 

evidence (or their belief) of an event, the combined belief will increase or decrease support for one event, 

rather than averaging each added belief. The rules of probability, namely additivity, handle a potential 

doubt, or lack of belief, in an event as evidence to its contrary. Many of the tests performed in this thesis 

involved some level of ignorance, and its influence was not insignificant. By using a framework that 

acknowledges such a lack of belief as ignorance, rather than belief of the contrary, it is possible to achieve 

more meaningful results. The results discussed in this thesis suggest that Evidence Theory is a viable, if 

not preferential, treatment of post-seismic structural assessments.  

 A secondary goal of this thesis was to investigate the applications of Dempster-Shafer Theory in 

social vulnerability ranking. While the current indexing method provides an objective analysis using 

readily available data for every census tract in the United States, the output ignores many key factors that 

play into a community’s ability to deal with a disaster. Dempster-Shafer theory was tested using the same 

census data to determine of this framework would provide a more in-depth analysis. The theme-level 

output offered a more detailed analysis of a tract’s vulnerability, but combining all 15 variables produced 

an illogical result. Another method for using DST in this capacity was presented (ranking tracts or 
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communities on a belief basis, rather than relying solely on census data), and further testing is 

recommended to pursue this possibility. 

 This program was put through several trials in this thesis to determine general trends and 

behaviors, but many unknowns remain. The particular equation analyzed here showed some limitations, 

such as with strongly conflicting beliefs that have no commonality. The adjustment to the equation 

presented in the conflicting beliefs section might provide an ideal solution to such situations, and should 

be investigated further. In addition, while the survey employed in this thesis yielded a variety of results, 

the participants were mostly students. Structural engineers in real post-seismic analysis scenarios might 

have different confidence trends when evaluating damage. Due to these reasons, further testing is 

recommended. 

 The main applications of Evidence Theory explored in this thesis are post-seismic structural 

damage analysis and social vulnerability indexing, but the possibilities extend far beyond that. Subjective 

investigations and assessments are unavoidable in many civil engineering and social science operations, 

as no two locations, projects, communities, and environments are exactly the same. The fields of civil 

engineering and social science are challenged with recognizing and accounting for these uncertainties. A 

mathematical framework such as Evidence Theory that allows for this uncertainty has the potential to 

change the outcome of infrastructure and hazard management decisions on a large scale.  
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Appendix A: Original Damage Assessment Survey 
 

Damage Assessment Survey 
 
This survey provides 5 different images of Port-au-Prince, Haiti after an earthquake. You are asked to 

evaluate the percent of damage in each image. A damage scale is provided for your reference in 

evaluating the pictures. 

 

After each image, you are asked to indicate your belief that the damage in the image falls within certain 

ranges. The first 3 ranges are 0%-33%, 34%-66%, and 67%-100%. The latter 2 ranges are 0%-66%, and 

34%-100%. The images are fuzzy, and you will likely not be confident enough about the amount of 

damage to assign all 100% of your belief to the first 3 smaller, more specific ranges. The larger ranges are 

provided in case you feel more confident in assigning your belief to a larger range. The beliefs you assign 

for all 5 ranges do not have to sum to 100%, but cannot exceed it.  

 

An example is provided below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is your belief that the damage in the image above is in the following ranges? 

        0% to 33%                               34% to 66%                                67%-100% 

 

 

 

 

 

  

 

If you are not confident in assigning all your belief to the smaller ranges above, you can put your 

remaining belief into the larger ranges below. Remember that the sum of these 5 boxes cannot exceed 

100%. 
                            0%-66%?                                                              34%-100%?  

 

 

 

 

40 0 20 

15 10 
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Please use the damage scale below as a reference for evaluating further pictures. 
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QUESTION 1 of 5 

 

 

 

 
 

What is your belief that the damage in the image above is in the following ranges? 

 

        0% to 33%                                     34% to 66%                                    67%-100% 

 

 

 

  

 

 

 

If you are not confident in assigning all your belief to the smaller ranges above, you can put your 

remaining belief into the larger ranges below. Remember that the sum of these 5 boxes cannot exceed 

100%. 

 

                               0%-66%?                                                                     34%-100%?  
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QUESTION 2 of 5 

 

 

 

 
 

 

 

What is your belief that the damage in the image above is in the following ranges? 

 

        0% to 33%                                     34% to 66%                                     67%-100% 

 

 

 

 

  

 

If you are not confident in assigning all your belief to the smaller ranges above, you can put your 

remaining belief into the larger ranges below. Remember that the sum of these 5 boxes cannot exceed 

100%. 

 

                               0%-66%?                                                                      34%-100%?  
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QUESTION 3 of 5 

 

 

 

 
 

 

What is your belief that the damage in the image above is in the following ranges? 

 

        0% to 33%                                      34% to 66%                                   67%-100% 

 

 

 

 

 

 

  

If you are not confident in assigning all your belief to the smaller ranges above, you can put your 

remaining belief into the larger ranges below. Remember that the sum of these 5 boxes cannot exceed 

100%. 

 

                              0%-66%?                                                                      34%-100%?  
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QUESTION 4 of 5 

 

 

 

 
 

 

What is your belief that the damage in the image above is in the following ranges? 

 

        0% to 33%                                      34% to 66%                                     67%-100% 

 

 

 

 

  

 

If you are not confident in assigning all your belief to the smaller ranges above, you can put your 

remaining belief into the larger ranges below. Remember that the sum of these 5 boxes cannot exceed 

100%. 

 

                                0%-66%?                                                                     34%-100%?  
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QUESTION 5 of 5 

 

 

 

 
 

 

What is your belief that the damage in the image above is in the following ranges? 

 

        0% to 33%                                      34% to 66%                                     67%-100% 

 

 

 

 

 

  

If you are not confident in assigning all your belief to the smaller ranges above, you can put your 

remaining belief into the larger ranges below. Remember that the sum of these 5 boxes cannot exceed 

100%. 

 

                              0%-66%?                                                                      34%-100%?  
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Appendix B: Secondary Damage Assessment Survey  
 

QUESTION 1 of 5 

 

 

 

What is your belief that the damage in the image above is in the following ranges?  

You can have up to 100% in either range. 

                            0%-66%?                                                              34%-100%?  

 

 

 

Using the amount of belief you assigned to the large ranges above, split that into the smaller ranges 

below. If you are not as confident in the smaller ranges, you can assign less belief, but you cannot have 

more confidence in the smaller ranges than you do in the larger ones (e.g., belief for 0%-33% plus belief 

for 34%-66% cannot be greater than the belief you assigned above for 0%-66%). The sum of these 3 

boxes cannot exceed 100%. 

        0% to 33%                               34% to 66%                                67%-100% 
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Appendix C: Probability Bounds for Original Survey Groups

 

Lower 

Bound
P1

Upper 

Bound

Lower 

Bound
P2

Upper 

Bound

Lower 

Bound
P3

Upper 

Bound

Lower 

Bound
P4

Upper 

Bound

Lower 

Bound
P5

Upper 

Bound

0 - 33 98.5% 98.5% 98.9% 97.4% 97.4% 97.9% 54.7% 54.7% 57.4% 98.2% 98.2% 98.8% 100% 100% 100%

34 - 66 0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 12.9% 12.9% 12.9% 0.5% 0.5% 0.5% 0.0% 0.0% 0.0%

67 - 100 0.7% 1.1% 1.0% 1.9% 2.3% 2.3% 29.7% 32.4% 32.4% 0.7% 1.3% 1.3% 0.0% 0.0% 0.0%

0 - 66 99.0% 98.9% 99.3% 97.7% 97.7% 98.1% 67.6% 67.6% 70.3% 97.8% 98.7% 99.3% 100% 100% 100%

0-33 +

 67-100
99.6% 99.6% 99.6% 99.7% 99.7% 99.7% 87.1% 87.1% 87.1% 99.5% 99.5% 99.5% 100% 100% 100%

34-100 1.1% 1.5% 1.5% 2.1% 2.6% 2.6% 42.6% 45.3% 45.3% 1.2% 1.8% 1.8% 0.0% 0.0% 0.0%

0 - 100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

0 - 33 100% 100% 100% 79.2% 79.2% 80.5% 58.4% 58.4% 59.7% 99.2% 99.2% 99.3% 100% 100% 100%

34 - 66 0.0% 0.0% 0.0% 2.4% 2.4% 2.4% 4.7% 4.8% 4.8% 0.2% 0.2% 0.2% 0.0% 0.0% 0.0%

67 - 100 0.0% 0.0% 0.0% 17.1% 18.4% 18.5% 35.6% 36.8% 36.9% 0.6% 0.6% 0.7% 0.0% 0.0% 0.0%

0 - 66 100% 100% 100% 81.5% 81.6% 82.9% 63.1% 63.2% 64.4% 99.3% 99.4% 99.4% 100% 100% 100%

0-33 +

 67-100
100% 100% 100% 97.6% 97.6% 97.6% 95.2% 95.2% 95.3% 99.8% 99.8% 99.8% 100% 100% 100%

34-100 0.0% 0.0% 0.0% 19.5% 20.8% 20.8% 40.3% 41.6% 41.6% 0.7% 0.8% 0.8% 0.0% 0.0% 0.0%

0 - 100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

0 - 33 1.0% 1.6% 1.5% 2.4% 2.7% 2.7% 0.0% 0.1% 0.1% 2.8% 3.5% 3.5% 5.2% 6.9% 7.0%

34 - 66 0.5% 0.4% 0.4% 0.2% 0.2% 0.2% 1.0% 2.0% 1.0% 1.6% 1.6% 1.6% 1.0% 1.0% 1.0%

67 - 100 98.0% 98.0% 98.5% 97.1% 97.1% 97.5% 97.9% 97.9% 98.9% 94.9% 94.9% 95.6% 92.1% 92.1% 93.8%

0 - 66 1.5% 2.0% 2.0% 2.5% 2.9% 2.9% 1.1% 2.1% 2.1% 4.4% 5.1% 5.1% 6.2% 7.9% 7.9%

0-33 +

 67-100
99.6% 99.6% 99.5% 99.8% 99.8% 99.8% 99.0% 98.0% 99.0% 98.4% 98.4% 98.4% 99.0% 99.0% 99.0%

34-100 98.5% 98.4% 99.0% 97.3% 97.3% 97.6% 99.9% 99.9% 100% 96.5% 96.5% 97.2% 93.0% 93.1% 94.8%

0 - 100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

0 - 33 91.3% 91.3% 93.5% 89.5% 89.5% 90.5% 92.9% 92.9% 93.7% 99.4% 99.4% 99.5% 92.4% 92.4% 93.4%

34 - 66 3.0% 3.0% 3.0% 0.4% 0.4% 0.4% 1.1% 1.2% 1.2% 0.1% 0.1% 0.1% 2.0% 2.0% 2.0%

67 - 100 3.6% 5.7% 5.7% 9.1% 10.1% 10.2% 5.2% 5.9% 6.0% 0.5% 0.5% 0.4% 4.6% 5.6% 5.6%

0 - 66 94.3% 94.3% 96.4% 89.8% 89.9% 90.9% 94.0% 94.1% 94.8% 99.6% 99.5% 99.5% 94.4% 94.4% 95.4%

0-33 +

 67-100
97.0% 97.0% 97.0% 99.6% 99.6% 99.6% 98.8% 98.8% 98.9% 99.9% 99.9% 99.9% 98.0% 98.0% 98.0%

34-100 6.5% 8.7% 8.7% 9.5% 10.5% 10.5% 6.3% 7.1% 7.1% 0.5% 0.6% 0.6% 6.6% 7.6% 7.6%

0 - 100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

0 - 33 23.4% 24.1% 25.2% 2.4% 2.8% 2.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.3% 0.3%

34 - 66 1.2% 2.3% 2.3% 0.2% 0.2% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

67 - 100 73.6% 73.6% 75.4% 97.0% 97.0% 97.4% 100% 100% 100% 100% 100% 100% 99.7% 99.7% 99.8%

0 - 66 24.6% 26.4% 26.4% 2.6% 3.0% 3.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.3% 0.3%

0-33 +

 67-100
97.7% 97.7% 98.8% 99.8% 99.8% 99.8% 100% 100% 100% 100% 100% 100% 100% 100% 100%

34-100 74.8% 75.9% 76.6% 97.1% 97.2% 97.6% 100% 100% 100% 100% 100% 100% 99.7% 99.7% 99.8%

0 - 100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Combined Expert Damage Probabilities
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