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Abstract
Spatiotemporal uncertainty in NH3 emissions in the US hinders prediction of environmental
effects of atmospheric NH3. We conducted 4D-Var inversions using CrIS remote-sensing
observations and GEOS-Chem to estimate monthly NH3 emissions over the contiguous US at the
0.25

◦× 0.3125
◦
resolution in 2014, finding they are 33% higher than the prior emissions which

likely underestimated most agricultural emissions, especially intense springtime fertilizer and
livestock sources over the Central US. However, decreases were found in the Central Valley,
southern Minnesota, northern Iowa and southeastern North Carolina during warm months. These
updates increased the correlation coefficient between modeled monthly mean NH3 and surface
observations from 0.53 to 0.84, and reduced the normalized mean bias of annual mean simulated
NH3 and wet NH

+
4 by a factor of 1.3 to 12.7. Our satellite-based inversion approach thus holds

promise for improving estimates of PM2.5 and reactive nitrogen deposition throughout the world
where NH3 measurements are scarce.

1. Introduction

As the primary alkaline gas in the atmosphere,
ammonia (NH3) is an important precursor to fine
particulate matter (PM2.5), and it has effects on soil
acidification, ecosystem stability, aerosol acidity, and
climate change (Krupa 2003,Myhre et al 2009, Behera
et al 2013, Nah et al 2018, Sutton et al 2011). NH3

emissions are a key factor in PM2.5 formation and
its reduction has been reported as a cost-effective
way to mitigate air pollution (Pinder et al 2007, Wu
et al 2016). Additionally, as the increasingly domin-
ant formof reactive nitrogen (Nr) (Du et al 2014, Ellis
et al 2013, Li et al 2016), NH3 plays a significant role
in excessive NH3 and NH

+
4 deposition that can harm

10 Current address: TNO, Department of Climate, Air and Sus-
tainability, Utrecht, The Netherlands.

regional eco-biodiversity through eutrophication and
acidification (Erisman et al 2013). To better under-
stand and mitigate the environmental effects of NH3,
accurate and up-to-date NH3 emission estimates are
required.

Agricultural emissions are the main source of
atmospheric NH3 at national scales (Huang et al
2012, EEA 2017, U.S. EPA 2018), although loc-
ally non-agricultural sources can dominate (Felix
et al 2014, Fenn et al 2018, Berner et al 2020). In
the US, agricultural practices (livestock and fertil-
izer use) account for ~ 80% of national NH3 emis-
sions, followed by biomass burning, transportation,
industrial activities, residential activities, and other
emissions (U.S. EPA 2018). Table 1 shows anthropo-
genic NH3 emission inventories for the contiguous
US in 2005 to 2014 ranging from 2.4 to 3.40 Tg N
a−1 (European CommissionEuropean Commission
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2011, Paulot et al 2014, Janssens-Maenhout et al
2015, Crippa et al 2018, Hoesly et al 2018). This large
uncertainty in NH3 emission inventories is due to
scarce measurements of locally representative emis-
sion factors and out-of-date activity data (Beusen et al
2008, Holt et al 2017).

Alternatively, observations of NH3 and its reac-
tion products (i.e. NH+

4 ) can provide top-down
constraints on NH3 sources. In-situ wet deposition
measurements were first used to constrain the sea-
sonal cycle and magnitude of US NH3 emissions by
Gilliland et al (2003), which inspired similar sub-
sequent studies (Pinder et al 2006, Henze et al 2009,
Zhang et al 2012, Paulot et al 2014). Challenges with
these approaches are limited in-situ observations
and model uncertainties in precipitation and aerosol
formation.

Satellite-based NH3 observations can provide
timely and spatially comprehensive constraints on
NH3 sources (Zhu et al 2013, Schiferl et al 2016,
Zhang et al 2018, Van Damme et al 2018, Dammers
et al 2019, Clarisse et al 2019). Atmospheric NH3

is monitored from space by infrared spectromet-
ers onboard the satellites TES, IASI, AIRS and CrIS
(Shephard et al 2011, Van Damme et al 2014, Warner
et al 2016, Shephard et al 2015). Zhu et al (2013) and
Zhang et al (2018) derived NH3 emissions from TES
NH3 observations for the globe and China, respect-
ively, and found that bottom-up inventories generally
underestimated agricultural NH3 emissions during
warm months. Schiferl et al (2016) used summer-
time IASI NH3 columns to constrain interannual
variability of modeled NH3 over the contiguous US
and explored the drivers of interannual variability.
Most recently, VanDamme et al (2018) andDammers
et al (2019) derived NH3 emissions from large point-
sources using IASI and CrIS observations via a rela-
tionship between lifetime, atmospheric column con-
centrations and emissions, finding that the HTAP v2
inventory underestimates NH3 emissions from large
point-sources over North America by a factor of 2.9
(Dammers et al 2019). To accurately estimate high-
resolution gridded NH3 emissions using CrIS in an
inversion, Li et al (2019) showed using pseudo obser-
vations that 4D-Var methods are needed to capture
the impact of transport and the spatially variable role
ofHNO3 andH2SO4 on NH3 lifetime. Thus, variabil-
ity or uncertainty in NOx and SO2 emissions needs to
be accounted for in top-down estimates of NH3 emis-
sions (Yu et al 2018, Liu et al 2018).

Here we conduct the first 4D-Var inversions with
CrIS NH3 observations. Here we focus on 2014, as
this is the first period for which a complete year of
CrIS NH3 retrievals were available. We use daytime
CrIS NH3 vertical profiles with GEOS-Chem and
its adjoint (Henze et al 2007) to estimate gridded
monthly NH3 emissions over the contiguous US in
2014. CrIS NH3 combines extensive spatial coverage,
low noise and fine spatial resolution (Shephard et al

2015); it has greater spatial coverage than TES,
with global coverage similar to IASI and AIRS,
and lower signal noise compared to other sensors
(Zavyalov et al 2013), which improves sensitivity in
the boundary layer. Our CrIS-derived NH3 emis-
sions are evaluated using surface NH3 measurements
from the AMoN (http://nadp.sws.uiuc.edu/AMoN/)
and SEARCH (Hansen et al 2003) networks, and
NH+

4 wet deposition measurements from the
NADP network (http://nadp.slh.wisc.edu/ntn/) in
2014.

2. CrIS NH3 observations

CrIS is an infrared sounder onboard the Sun-
synchronous satellite Suomi National Polar-orbiting
Partnership (SNPP) (Tobin 2012) launched in Octo-
ber 2011 (used in this study) and the NOAA-20
launched in November 2017 (Glumb et al 2018). The
first CrIS has a cross-track scanning swath width of
2200 km and a nadir spatial resolution of 14 km,
which enables CrIS to achieves global coverage twice
a day with daytime and nighttime overpasses at 13:30
local time (LT) and at 01:30 LT, respectively. NH3

profile observations are retrieved through the CrIS
Fast Physical Retrieval algorithm (CFPR), whichmin-
imizes the difference between measured and simu-
lated spectral radiance in the NH3 spectral feature
around 967 cm−1 (Shephard et al 2015). The CFPR
algorithm uses three a priori NH3 profiles, repres-
entative of polluted, moderately polluted, and clear
conditions. For each NH3 retrieval, one a priori pro-
file is selected based on estimated NH3 signal (Shep-
hard et al 2015). Pixel-specific a priori profiles and
averaging kernels comprise the observation operator
(H), which is essential for comparison between satel-
lite retrievals and model simulations. We used high-
quality (QF = 5) daytime CrIS v1.5 NH3 observa-
tions (Shephard et al 2020) over the North America
domain [127

◦
-65

◦
W, 22

◦
-57

◦
N]. Daytime CrIS NH3

observations have been validated by and show good
agreement with ground-based and aircraft observa-
tions collected in select regions (Shephard et al 2015,
Dammers et al 2017).

Figure 1 shows the spatial and seasonal variab-
ility of CrIS surface NH3 concentrations in 2014.
Higher NH3 concentrations are found in warmer
months over agricultural areas (like the central US,
the Central Valley, southeastern Washington and
southern Idaho), consistent with AIRS-based ana-
lysis of Warner et al (2017). CrIS detects a spring-
time peak over the north central US (South Dakota,
Nebraska, western Iowa, northern Kansas), which
is also detected by AIRS in March during 2014 to
2016 (Warner et al 2017) and is mainly caused by
enhanced emissions from intense fertilizer use (Cao
et al 2018), followed by minor contributions from
temperature-driven increases in emissions. In con-
trast, summertime peaks over the Central Valley, the

2
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Table 1. NH3 emission estimates (Tg N a−1) for the contiguous US.

Literature Target year Anthropogenic NH3 emissions

Bottom-up
NEI2008 2006 3.1
Paulot et al (2014) 2005-2008 2.4a

EDGAR v4.2 2008 2.9
EDGAR v4.3.2 2010 3.40c

HTAP v2 2010 2.95
CEDS_2018 2014 3.05
Top-down
Zhang et al (2012) 2006-2008 2.3
Paulot et al (2014) 2005-2008 2.8b

Dammers2019 2013-2017 1.07d (2.9 times HTAP v2)
This study 2014 3.91
aBottom-up anthropogenic NH3 emissions, with agricultural emissions taken fromMASAGE inventory.
bTotal NH3 emission (anthropogenic+ biomass burning+ natural sources) estimate derived from NADP wet NH+

4 deposition

measurements.
cIncluding NH3 emissions from agricultural soils (AGS), agricultural waste burning (AWB), manure management (MNM), chemical

processes (CHE), power industry (ENE), combustion for manufacturing (IND), non-metallic minerals production (NMM), energy for

buildings (RCO), oil refineries and transformation industry (REF_TRF), solid waste incineration (SWD_INC), solid waste landfills

(SWD_LDf), shipping (TNR_Ship), railways,pipelines, off-road transport (TNR_Other), Road transportation (TRO), waste water

handling (WWT) (Crippa et al 2018).
dOnly NH3 emissions from 48 large point-sources (mainly industrial and agricultural sources) over North America.

south central US (North Texas and western Kan-
sas), southeastern Washington and southern Idaho
are likely caused by temperature-driven increases
in emission factors of both livestock and fertil-
izer (Mikkelsen et al 2009, McQuilling and Adams
2015).

3. GEOS-Chem adjoint and 4D-Var
inversion

The GEOS-Chem adjoint v35m, which is based on
v8 of the forward model with updates through
v9, is driven by Goddard Earth Observing System
(GEOS-FP) assimilated meteorological fields with a
horizontal resolution of 0.25

◦
latitude × 0.312 5

◦

longitude and 47 vertical levels over a domain of
127

◦
-65

◦
W and 22

◦
-57

◦
N. Global 2

◦
latitude ×

2.5
◦
longitude simulations are used for boundary

conditions.
As NHx is not directly involved in other gas-

phase chemical reactions inGEOS-Chem (hereinafter
referred to as GC), we construct an offline NHx sim-
ulation to reduce the computational cost of 4D-Var
inversion at high resolution (0.25

◦
latitude× 0.312 5

◦

longitude) following Paulot et al (2014) and Zhang
et al (2018). This simulation includes emissions, wet
deposition (Liu et al 2001, Wang et al 2011, Amos et
al 2012) and dry deposition (Wesely 1989, Wang et al
1998, Zhang et al 2001), transport of NH3 and NH

+
4 ,

and NHx partitioning (Binkowski and Roselle 2003,
Park et al 2004) driven by archived hourly SO2−

4 ,
HNO3, and NO−

3 concentrations from the stand-
ard O3-NOx-VOC-aerosol simulation (hereinafter
referred to as fullchem). We reduce the simulated

high-biased HNO3 (Zhang et al 2012, Heald et al
2012) by 15% at each time step (10 minutes) fol-
lowing Heald et al (2012). The difference between
monthly mean offline-simulated surface NH3 and
fullchem-simulated surface NH3 in July is within
0.1% across the contiguous US.

We used NH3 emissions in 2010 from HTAP v2
(Janssens-Maenhout et al 2015) as the prior anthro-
pogenic emissions for global and regional simula-
tions. NH3 emissions for the contiguous US in HTAP
v2 are from the NEI2008 emission inventory, on the
lower end (2.95 Tg N a−1) of the range of previous
estimates (table 1). No significant trend is found in
NH3 emissions from 2010 to 2014 in the US (But-
ler et al 2016). Changes in emissions of SOx and
NOx can affect NH3 column concentrations (Liu et al
2018, Yu et al 2018). Here we reduce SO2 and NOx

emissions over the US from HTAP v2 (originally for
the year 2010) by 37.6% and 15.1%, respectively, as
the emissions for the year 2014, according to EPA-
based emission trends from 2010 to 2014 (Yu et al
2018).

Diurnal variability in NH3 emissions and con-
centrations is a potential source of uncertainty in
satellite-based emission estimates Dammers et al
(2019) since there is only a single daytime overpass

(13:30 LT for CrIS). We thus updated the standard
GC simulation (driven by static monthly emissions,

referred to as the GC default) to include diurnal vari-
ability of livestock NH3 emissions following Zhu et al

(2015), which enables GC (referred to as GC prior) to
better reproduce the diurnal variability of the hourly

surface NH3 measurements from SEARCH (figure
S1).
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Figure 1.Monthly mean surface NH3 concentrations from CrIS((a), (d), (g), (j)), simulation driven by prior emissions ((b), (e),
(h), (k)), simulation driven by posterior emissions ((c), (f), (i), (l)), respectively, in January, April, July, and September in 2014.

We apply this updated GC model and its adjoint
(Henze et al 2007) to our 4D-Var inversion, which
iteratively minimizes the cost function J:

J=γ(x− xa)
TS−1

a (x− xa)

+ (H(x)− yo)
TS−1

o (H(x)− yo), (1)

J is the mismatch between the observations (yo) and
themodel (H(x)) plus the deviation of adjusted emis-
sion scaling factors (x, the ratio of adjusted emissions
to prior emissions) from their initial values (xa). So
is the observation error covariance matrix from the
CrIS v1.5 retrieval product. Here we apply the CrIS
linear averaging kernel (derived from the CrIS log-
arithmic averaging kernel) to the model simulation
to convert the simulated NH3 to observation space.
The lower and upper bounds of x are set to be 0.5 and
5.0, respectively. We assume the diagonal elements of
the prior emission error covariance matrix (Sa) are
100% and the correlation length is 100 km in latit-
udinal and longitudinal directions. γ is a regulation
parameter introduced to balance the observation and
penalty terms, determined to be 100 through an L-
curve approach (Hansen et al 1999). The minimiza-
tion of equation (1) is found iteratively using the L-
BFGS-B algorithm (Byrd et al 1995). The optimiza-
tion is considered converged when the change across
iterations of the cost function is less than 10−4.

4. Results

Figure 1 and table S1 (stacks.iop.org/ERL/15/104082/
mmedia) compare GC surface NH3 concentrations
driven by prior and posterior emissions (hereafter
referred to as GC prior and GC posterior, respect-
ively) to surface-level concentrations from CrIS NH3

profiles for different months of 2014. With higher
concentrations found over the central US and the
Central Valley in warm months, GC prior gener-
ally captures the spatial pattern (R between 0.82
to 0.94 throughout the whole year except Decem-
ber, see table S1) and seasonal variability of sur-
face NH3 observed by CrIS, but has a year-round
low bias across most of the contiguous US with
monthly domain NMB between -8% to -26% (table
S1), indicating broad underestimation of emissions
in the prior inventory. Meanwhile, high biases are
found over the Central Valley, South Minnesota and
North Iowa, as well as southeast North Carolina
during warm months. Compared to GC prior, GC
posterior better reproduces the magnitude, season-
ality, and spatial variability in surface NH3 concen-
tration from the CrIS profiles across most of the
domain (especially over the centralUSduringwarmer
months), with slightly improved R and significantly
decreased NMB (between -0.02 to -0.12, see table
S1) during most of the year, with the exception
of November, December and January likely owing

4

https://stacks.iop.org/ERL/15/104082/mmedia
https://stacks.iop.org/ERL/15/104082/mmedia


Environ. Res. Lett. 15 (2020) 104082 H Cao et al

to smaller satellite instrument sensitivity to smaller
surface concentrations in cold months. GC posterior
also reduced the gap between modeled and observed
vertical profiles most notably during warm months
(figure S2) compared to GC prior.

Figures 2(a) and (b) show the prior and posterior
annual anthropogenic NH3 emissions, respectively.
They have similar spatial patterns, but the posterior
emissions are 33% higher than the prior annual emis-
sions. Figure 2(c) shows increases across most of the
contiguous US, especially over the central and north-
west US (dominated by concentrated livestock opera-
tions and crop farming), while there were small-scale
decreases (< 40%) in the Central Valley, South Min-
nesota and North Iowa, as well as southeast North
Carolina.

Figure 2(d) shows that total posterior anthropo-
genic NH3 emissions peak in summer and have a
similar seasonal pattern as the prior emissions, but
increased significantly throughout the whole year by
a factor of 1.1 to 1.6, especially during warmmonths,
despite small-scale decreases (figure S3) in the Cent-
ral Valley and southeast North Carolina, as well as
in Northwest Iowa and southwest Minnesota from
March to October. The largest percentage increase
(about 64%) was found in May, strongly suggest-
ing large underestimates in agricultural activities and
emission factors.

Combining spatial distributions of NH3 emission
from different animal types based on Carnegie Mel-
lon University’s livestock emission model (U.S. EPA
2018) and spatial and temporal distribution of fertil-
izer application rate from Cao et al (2018), as well as
figure 2(c) and figure S3, we can roughly conclude
which sources of NH3 emissions might be biased
in the prior inventory. The substantial underestim-
ates over the central US (South Dakota, Nebraska,
southwestern Kansas, northern Texas, and southern
Wisconsin) and the northwestern US in spring are
most likely due to underestimate of fertilizer use and
manure application. The underestimate in northeast-
ern Colorado and northern Texas during most of the
year is likely caused by underestimated cattle emis-
sions, consistent with previous studies (Battye et al
2016, Kille et al 2017) based on aircraft, ground, and
satellite measurements. The moderate underestim-
ate over most of the southeastern US is more likely
due to poultry emissions, whereas the underestimate
over southeastern North Carolina is more likely due
to swine emissions. For southeastern Pennsylvania,
the underestimate might be due to an underestim-
ate of both livestock (swine and poultry) and fer-
tilizer emissions during warm months. For the Del-
marva peninsula area, the year-round underestimate
ismore likely caused by low emission factors of broiler
chicken emissions (Russ and Schaeffer 2017).

While increases in NH3 emissions occur over
most of the domain, persistent decreases are found
during warm months in a few areas (e.g. the Central

Valley, northwest Iowa and southwest Minnesota, as
well as Clinton and Duplin) with the densest cattle or
swine population. These heterogeneous adjustments
of NH3 emissions might be caused by 1) biased emis-
sion factors due to lack of differentiation in animal
size and age, pasture and feedlot cattle, and manure
management techniques (Battye et al 2019), and 2)
the potential underestimation of CrIS NH3 over very
high-emission areas (Dammers et al 2017).

Table 1 compares our posterior NH3 emissions
for the contiguous US in 2014 to previous bottom-
up (EuropeanCommission 2011, Janssens-Maenhout
et al 2015, Hoesly et al 2018, Crippa et al 2018) and
top-down (Zhang et al 2012, Paulot et al 2014, Dam-
mers et al 2019) studies. Our CrIS-derived annual
NH3 emission estimate is 3.91 Tg N a−1, consistently
higher than previous bottom-up estimates ranging
from 2.4 to 3.40 Tg N a−1 and ground-based meas-
urement derived estimates between 2.3 and 2.8 Tg
N a−1. The generally higher estimates derived from
satellite observations are likely due to 1) its greater
spatial coverage and detection of elevated concentra-
tions above surface level in the NH3 profiles, and 2)
the high bias (< 5% for most values, but > 30% for
small values) in CrIS NH3 concentrations (Dammers
et al 2017). The difference between our estimate (1.3
times higher than HTAP v2 estimate) and that also
derived fromCrIS byDammers et al (2019) (2.9 times
higher than HTAP v2 estimate), might be due to the
fact that Dammers et al (2019) used time-constant
emission profiles for large point sources, targeted the
years 2013 to 2017 while we only target the year 2014
which has lower CrIS NH3 concentrations compared
to other years (Shephard et al 2020), used several
estimated constant lifetimes (average of 2.35 h), and
did not remove the influence of the CrIS retrieval a
priori NH3 information. With proper diurnal emis-
sion profiles, top-down estimate from Dammers et al
(2019) could be reduced by a factor of 2.0, which is
1.45 times higher than HTAP v2 estimate and much
closer to our top-down estimate (1.3 times higher
than HTAP v2 estimate) (Dammers 2020). For our
4D-Var inversion, application of averaging kernels has
a larger impact on top-down NH3 emissions than
diurnal variability of livestock emissions (see figure
S5(a)).

Compared to previous top-down (Gilliland et al
2006, Henze et al 2009, Zhang et al 2012, Zhu et al
2013, Paulot et al 2014) and bottom-up (Pinder
et al 2006, Cooter et al 2012, Paulot et al 2014,
Janssens-Maenhout et al 2015) estimates, our pos-
terior monthly emissions have similar summer-
/winter contrast, but generally higher magnitudes
during most of the year except April, May and July.
Our posterior estimates formid-late spring (April and
May) and July are lower than those from Gilliland
et al (2006) based on NADP wet NH+

4 , and Zhu et al
(2013) based on TES NH3, respectively. The largest
difference among these monthly estimates lies in the
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Figure 2. Spatial distribution of prior (a) and posterior (b) annual anthropogenic NH3 emissions; (c) difference between
posterior and prior annual anthropogenic NH3 emissions; (d) prior (red solid) and posterior (green solid) monthly
anthropogenic NH3 emission for contiguous US, ratio of posterior/prior (blue dotted line).

spring/summer contrast. Wet NH+
4 -based emissions

(Gilliland et al 2006, Pinder et al 2006, Paulot et al
2014) are generally higher in spring than in summer
likely due to most of the NADP-wet NH+

4 monit-
oring sites being more representative of agricultural
land cover (Bigelow et al 2001) where fertilizer use
and manure application peak in spring, while satel-
liteNH3-based estimates, such as Zhu et al (2013) and
our study, are always higher in summer likely due
to the satellite’s more uniform spatial coverage that
captures the agricultural emission increases (both
in livestock and fertilizer use) driven by increasing
ambient temperature throughout the domain (fig-
ures 1(d) and (g)). Meanwhile, in-situ measurement-
based inversions are prone to underestimating small
but widespread NH3 emissions due to the sparsity of
monitoring sites. The data filtering (retaining only
pixels with Quality Flag of 5) in our inversion and
the averaged 15% high bias in CrIS NH3 retrieval
over the US compared to AMoN measurements
(Kharol et al 2018) might also contribute to our
generally higher posterior NH3 emissions, especially
over the East US.

To further evaluate our CrIS-derived NH3 emis-
sions, we next compare prior and posterior sim-
ulated surface NH3 and wet NH+

4 concentrations
against measurements from the AMoN, NADP, and
SEARCH monitoring networks. For AMoN sites, we
filtered out those sites withmonthlymean beyond the
monthly domain average by three times the standard
deviation.

Correlation coefficients between time series of
monthlymeanGC surface concentrations andAMoN
NH3 measurements in 2014 for each site before and

after emission optimization, respectively, are shown
in figures 3(a) and (b). GC prior generally cap-
tures the spatial pattern (R between 0.51 and 0.81
throughout the whole year except February, figure S4)
and seasonal variability in AMoN NH3, but only 11
out of 65 sites had a correlation coefficient greater
than 0.6. Ten sites (AZ98, FL11, GA40, GA41, MD99,
NS01, NY96, OH02, SC05, WV18) have R less than
-0.1. Most of these ten sites are located where NH3

emissions are small (less than 5 kgNha−1 a−1, see fig-
ure 2(a)). Emission optimization enables the model
to better reproduce the observed seasonal variability,
increasing the number of sites with R greater than 0.6
to 30 and further leading to amoderate increase (from
0.53 to 0.84) in R between domain average monthly
mean GC and AMoN measurements.

Figures 3(c) and (d) show the normalized mean
bias of annual mean GC surface NH3 relative to
AMoN NH3 measurements for each site. Low bias
is found in the annual mean GC prior at most sites.
36 of 65 sites have NMB magnitude greater than 0.4.
Emission optimization largely reduces the lowbias for
most sites at the annual scale, leading to an approx-
imately three-fold decrease in domain NMB (from -
0.45 to -0.16) at the annual scale. The number of sites
with NMB magnitude greater than 0.4 is reduced to
28. Moreover, the magnitude of posterior monthly
domain NMB is also reduced by a factor between 1.4
and 12.7 throughout the year except November (see
figure S4).

Similar but less significant improvement is found
in comparison with domain average monthly mean
NADP wet deposition of NH+

4 in 2014 (figure 3(e)).
GC-simulated NH+

4 wet deposition consists of wet
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Figure 3. (a) Correlation coefficient between prior monthly mean GC surface NH3 and monthly mean AMoN NH3

measurements; (b) posterior correlation coefficient; (c) normalized mean bias of prior annual mean GC surface NH3 relative to
annual mean AMoN NH3 measurements; (d) posterior normalized mean bias; (e) Boxplot of monthly mean of GC prior and GC
posterior NH+

4 wet deposition, as well as NADP NH+
4 wet deposition; (f) Boxplot of hourly mean of GC prior and GC posterior

surface NH3, as well as SEARCH NH3 in June.

deposition of aerosol-phase NH+
4 and gas-phase

NH3. To remove the bias caused by the difference
between measured and simulated precipitation, we
scaled themeasuredwetNH+

4 by the ratio ofmodeled
and measured precipitation, NADP wet NH+

4 ×
(Pmodel/PNADP)0.6, following Paulot et al (2014). We
only compared simulated wet NH+

4 to measurements
with Pmodel/PNADP between 0.25 and 4.0 (Paulot
et al 2014). NADP-measured NH+

4 wet deposition is
higher in warm months and peaks in spring, likely
due to intense fertilizer and manure application. GC
prior can capture the general summer/winter contrast
but underestimates the magnitude during most of
the year, especially in spring. Our CrIS-derived NH3

emissions improve the overall ability of the model
to reproduce NADP wet measurements with a slight

increase in R (from 0.76 to 0.79) and a slight decrease
inNMBmagnitude (from -0.13 to 0.10), althoughGC
posterior still misses the springtime peak. The max-
imum percentage increase in anthropogenic emis-
sions in the spring (figure 2(d)) is consistent with the
higher springtime emissions reflected by NADP wet
NH+

4 .
Figure 3(f) shows another evaluationusing hourly

measurements of surface NH3 collected from five
SEARCH sites (BHM, CTR, JST, OLF, YRK) in June
2014. While having a similar diurnal cycle as GC
prior, GC posterior better reproduces the magnitude
of monthly-averaged hourly SEARCHNH3, reducing
the NMB from −0.44 to 0.17 in June. A substantial
decrease from -0.38 to 0.03 in NMB is found at the
annual scale.

7
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5. Discussion and conclusions

This study presents the first 4D-Var inversion of NH3

using CrIS measurements. CrIS-derived monthly
NH3 emissions are higher than HTAP v2 emissions
across most of the contiguous US and throughout
most of the year, despite occasional small decreases
(< 40%), revealing a substantial underestimate of
NH3 emissions from springtime fertilizer andmanure
application over the central US and widespread
underestimation of total agricultural NH3 emissions
(fertilizer + manure) associated with warm temper-
ature.

New CrIS observations since 2018 (Glumb et al
2018) could help future studies constrain long-term
NH3 trends. We also emphasize that use of an obser-
vation operator (which contains critical information
about the instrument’s sensitivity to NH3) is crit-
ical for making comparisons between model simula-
tions and CrIS NH3 profiles. For example, without
consideration of the observation operator the dif-
ference between simulations and CrIS observations
at surface level over polluted areas in July 2014 is
three times higher than when using the observation
operator (see figure S5 (a)), and commensurate dif-
ferences could be expected in top-down emission
estimates.

Given the critical role of NH3 in PM2.5 form-
ation and excessive deposition of Nr, evaluation of
NH3 emission is important for environmental policy.
A series of NH3 emission control policies have been
implemented in Europe (Giannakis et al 2019). How-
ever, NH3 emissions in the US have not been regu-
lated for multiple reasons, one of which is the diffi-
culty of emission monitoring (United States Depart-
ment of Agriculture 2014). Top-downNH3 emissions
at high spatial resolution (0.25◦ × 0.3125◦) derived
from CrIS observations may provide future policy
makers quantitative support for monitoring changes
in NH3 emissions.
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