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ABSTRACT

The notion of a partial 2-structure ( p2s for short ), is introduced ; it gen-
eralizes the notion of a 2-structure discussed in [ ER1 | . Partial 2-structures
may be considered to be edge-labeled graphs satisfying certain conditions .
Then partial 2-structures on sets are considered where an edge between sets is
labeled by the ordered symmetric difference of the sets. Such partial
2-structures arise in the study of state spaces of concurrent systems ; this con-

nection is studied in more detail in Part 2 of this paper .

The main problem studied in this part of the paper is when a p2s structure

can be represented as a partial set 2-structure.
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INTRODUCTION

The notion of a 2-structure ( 2s for short ) is a generalization of the notion
of a ( directed ) graph ; it was introduced in [ ER1 | where also the basic
theory of 2-structures was developed . We have demonstrated in [ ER2 | that
each 2s is build-up in a unique way from 3 basic "building blocks" : primitive 2-
structures, linear 2-structures and complete 2-structures . As an application one
gets that each graph can be uniquely constructed from ( decomposed into )

primitive , linear and complete graphs .

In this paper we turn into a different area of applications of the theory of
2-structures . We consider state spaces of concurrent systems and in particular
case graphs of various types of Petri nets , like , e. g. , condition /event systems
and elementary net systems ( see , e . e. [ R | and [ RT |, also in Part 2 of this

paper we briefly recall some of these notions ) .

A very basic assumption of the theory of Petri nets is that the extent of
change caused by the occurrence of an event is independent of the ( global)
state at which it occurs ( this assumption is often referred to as the aziom of
extensionality ) . As a matter of fact in condition /even systems or in elemen-
tary net systems this change is characterized by the characteristic pair of an
event e : the set of conditions that cease to hold whenever e occurs ( this set is
denoted by ‘e and the set of conditions that begin to hold whenever e occurs

( this set is denoted by e* ). Thus given a global state C, ( also referred



as a case ) of a system on occurrence of e leads to a state

—'e) u e . One may say that one gets a transition between C,
and C, labeled by the ordered symmetric difference of C, and C, (ie., by
—C, ) =("e,e")) - where the label denotes the amount of
change "caused by" the given transition . We refer the reader to | GLT | where

some properties of edge-labeled graphs obtained in this way are discussed .

Edge-labeled graphs obtained in this way "almost" lead to 2-structures with
sets as their domains . "Almost" , because one gets "partial graphs” in the

sense that there does not have to be an edge between each pair of nodes .

Hence it is natural to consider partial 2-structures ( where some edges may
be omitted ) and in particular to partial 2-structures with sets as their domains
and with ordered symmetric differences as labels of the edges - such partial

2-structures are referred to as partial set 2-structures .
This is Part 1 of a paper consisting of two parts.

In Part 1 we investigate partial 2-structures and partial set 2-structures
and in particular the main problem studied is when a partial 2-structure can be

represented by ( "isomorphically” mapped onto ) a partial set 2-structure .

In Part 2 we will present applications of results from Part 1 to the study of

state spaces of concurrent systems .
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1. PRELIMINARIES

We assume the reader to be familiar with the rudiments of edge-labeled
graphs .
@ denotes the empty set , and for a set X , [X[ denotes its cardinality

and 2% the set of all subsets of X . In this paper we deal with finite sets only .

A total partition of a set X is a family P of elements from X @ such

that P = X and P, nP, = @ for all P, ,P, € P such that
P

P e

P, # P,. We will write x P y for x , y € X whenever thereisa P € P
such that x ,y € P.

Foraset X ,Ey(X)={(x,y):x,y € X and x # y }; elements
of E,( X ) are called 2-edges of X .

For sets X , Y the ordered symmetric difference of X and Y is the pair of

sets (X — Y,Y — X).
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2. PARTIAL 2-STRUCTURES

In this section we introduce and illustrate by examples, the notions of a
partial 2-structure and structural homomorphisms of them. Also, at the end of
the section, an important notion of a region of a partial 2-structure is intro-

duced.

Definition 2.1 A partial 2-structure ( p2s for short ) is a system
g%(D,F, P, L, ) where
D is a nonempty finite set ( called the domain of g ),
F C E,(D) ( called the set of 2 -edges of g )
P is a total partition of F ( called the partition of g ) such that,
forallx,y,z,t € D ,
if (x,y),(z,t),(y,x),(t,2z) € F and (x,y)P(z,1),
then (y , x) P (¢t , z) ,
L is a finite set ( called the alphabet of g ), and
1 is a total injective function from P into L ( called the labeling function

ofg).0O

For a p2s g we will use Dg, F P

R Lg, L/)g to denote the domain, the

set of 2-edges, the partition, the alphabet, and the labeling function of g ,

respectively . Also we use P2S to denote the class of all partial 2-structures .

Definition 2.2 . Let ¢ € P2S.

(i) A label A € L, is applicable iff there exists a P € P, such that



L(P) = A.

(1) g is label minimal iff every A € Lg is applicable . O
Remark 2.1 .

(1) If for a p2s g we have F_ = E2(Dg) - hence F, consists of all 2-edges
over Dg - then we may skip Fg from the specification of g and g becomes a
2-structure ( 2s for short ) in the sense of [ ER1 | . In this way 2-structures are
a special case of partial 2-structures ; the class of all 2-structures will be
denoted by 2S . Thus, one can say that each p2s is obtained from a 2s h by

deleting some of the 2-edges of h .

(2) For a p2s structures g one may consider wg to be the function labeling
elements of Fg : simply every e belonging to a class P of Pg is labeled by
d?g( P ). This is a very convenient way of specifying (the labeling functions of )
p2s systems. As a matter of fact in this way one may view p2s systems as edge
labeled graphs satisfying certain conditions (for a discussion of the relationship
between 2s systems and edge labeled graphs the reader is referred to [ ER1 ] ).

In the sequel of this paper we will sometimes specify p2s systems through the

usual graphical representation of edge labeled graphs .

(3) In the view of the above discussed relationship between edge labeled
graphs and p2s systems, we will in the sequel replace the term "2-edge" by the

term "edge" . 0O
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By deleting some edges from a 2s one gets a p2s . By deleting some nodes

and edges from a p2s h one gets a partial substructure of h .

Definition 2.3 . Let g, h € P2S . We say that g is a partial substructure
of h iff

D, € D,

F.CF,

o
I

{PnF,: P €P and PaF, # @ },
L, CL,,and
for every P € P, ¥, (P) =y P') , where P’ is the element of P, such that

PCP . O

Remark 2.2 . The notion of a substructure of a 2s was discussed in [ ERI |
. In terms of this notion we can say that each p2s h is obtained from a 2s g by
possibly removing some elements of D, (together with all adjacent edges)

obtaining a substructure g’ of g, and then by removing some edges from g' one

obtains h . O

Structural homomorphisms of partial 2-structures play the crucial role in

this paper . They are formally defined as follows .

Definition 2.4 . Let g, h € P2S . A mapping &: Dg — D, is a struc-
tural homomorphism from g into h iff forallx,y,z,t € Dg such that
(x,y),(z,t) € Fand (x,y)P, (z,1t),

(i) if «(z)= o(y),then a(z) = x(t), and
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(i) if (z) # (y),then(Az),(y)),(Az),t)) € F,
and (o(z), oy)) P, (o(z),0t)).
Moreover, if « is a bijection, then « is a structural tsomorphism from ;

ontoh . O

If g, h € P2S are such that there exists a structural homomorphism
(structural isomorphism) from g into h , then we write g shom h ( g sisom h
respectively) . If Lg = L, and there exists a structural isomorphism
o : D, — Dy such that for all (x,y) € F, with a(z) # ofy) we have
b ((x,¥)) =4, ((e(z), a(y))), then we write g isom h and call & an 1s0-
morphism from g onto h ; in this case we may use unambiguously (although
somewhat informally) the notation a(g) to denote h . (Note that in the above
we have used the convention from the last remark allowing to specify the label-

ing function of a p2s system on its set of edges) .
Ezample 2.1 .

The following edge labeled graph :

Figure 2.1

does not represent a p2s because of the C-loop . ( When we represent a p2s g

by and edge-labeled graph , we assume that g is label minimal ) .



By removing this loop we get an edge-labeled graph :

Figure 2.2

which represents a p2s but it does not represent a 2s , because we have pairs of

different nodes with no edges between them .

By adding one labeled edge we get the following edge labeled graph :

Figure 2.3

This graph does not represent a p2s, because the label A does not have a unique

i "
inverse !

By modifying this edge-labeled graph as follows :

Figure 2.4

we get a representation of a p2s . 0O

Remark 2.3 . The above example illustrates some situations when an
edge-labeled graph does not represent a p2s system. From the definition of a
p2s system it directly follows that

(1) an edge-labeled graph g represents a p2s system iff
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(i) g has no loops ,

(ii) between any two nodes of g there exists at most one edge, and

(iii) each label of g has a unique inverse if an inverse exits, meaning that : if
V), Ve, Vs, V, are nodes of g such that (Vi Ve )s (Vysvy)s (v, v,) and
(v, v,) are edges of g where (v, , v,) and (v, , v,) are labeled by a label A and

(v, , v,) is labeled by a label B , then (v, , v,) is labeled by B .

It is also clear that :
(2) an edge-labeled graph g represents a 2s system iff conditions (i) and (iii)
above are satisfied and the condition (ii) is changed into :

(ii') there is precisely one edge between any two nodes of g . O

Ezample 2.2 .

Consider the following g, € P2S:

Figure 2.5

It is easily seen that g, is a partial substructure of the following

h1 € 2S:

Figure 2.6
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Now let g, € P2S be as follows:

Figure 2.7

Then g, shom g, , because the mapping o : Dgl — Dgz defined by :
ofl)=0(4)=8,a(3)=7,and o(2) =9, is a structural homomorphism of

g, onto g, .

For the following g, € 2S:

Figure 2.8

we have g, shom g, , because the mapping 3 Dg — Dga defined by
8(1) = 3(3) =1and 3(2) = 3(4) =2, is a structural homomorphism of g,
onto g, .

If we now change g, to the following g,/ € 28 :

Figure 2.9

then this & is not a structural homomorphism of g, into g's ; the reason is that

B(1)=1,62)=2,and ¢, ((1,2)) =1, ((2,1)), while

L((B(1), 6(2) #+ »((3(2),31)). O
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Example 2.3 .

Consider the following g € 28 :

Figure 2.10

For the following h € P2S:

Figure 2.11

we have g shom h , because the mapping o : Dg — D, defined by :
o1)=o2)=5and o(3) =(4) =6, is a structural homomorphism of g

intoh . O

The following notion will be very crucial in the proof of our main result in

Section 4.

Definition 2.5 . Let g € P2S. A subset R C D isa region of g) iff for all
(x,y),(z,t) € nguchthat(x,y) Pg(z,t),
()ifx € Randy ¢ R,thenz € Randt ¢ R, and

(ii)ifx ¢ Randy € R,thenz ¢ Randt € R.O

We will use Rg to denote the set of all nonempty regions of g, and for an

x € D,, R,(x) denotes theset {R € R,:x € R}. Foran R € R, and
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an e = (x,y) € Fg,we say that e is crossing R iff

(x eR if y €R).
Ezample 2.4 .

Consider the following p2s g :

Figure 2.12

Then R, = {1,3,6}is a region of g : all A -labeled edges are leaving R , all
B -labeled edges are coming into R , and all edges crossing R either way are

labeled by either A or B.

On the other hand R, = R, u {5} is not a region because the edge (1 , 4)

labeled by A is crossing R, while the edge (3 , 5) labeled by A is inside R, . O

Remark 2.4 . It is instructive to notice that , for a p2s g, ¢ and Dg are
regions of g . As a matter of fact, it is easily seen that if R € Rg then

(D, — R) € R,.0O

g
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3. PARTIAL SET 2-STRUCTURES

In this section we will consider partial 2-structures the nodes of which are
sets (each of which is a subset of a certain common base set) and the edges of
which are labeled by ordered symmetric differences of sets they connect. Such
partial 2-structures have very natural applications in the theory of concurrent
systems ; e.g. , state spaces of condition /event systems (see , e.g. , [R]) and
state spaces of elementary net systems ( see , e.g. , [ RT | ) are partial
2-structures of this kind . Moreover spaces of sets where a transition from a set
to a set is labeled by the ordered symmetric difference of these sets are

mathematically natural objects to consider .
Such partial 2-structures are defined as follows .

Definition 3.1 .
(i) Let X be a nonempty set .
The 2-structureg=(2X,F, P, L, ) such that
(1)forallx,y,z,t € 2
x,y)P(z,t) ff Px — y=2z — tandy — x=t — z,
2QL={(y,z) :y,2 € X andynz= 0 }, and
(3)forallx,y € 2X,?/)((x,y))=(x - y,y — x)
is the 2-structure of X denoted by S2S (X) .
(i) A g € 28 is called a set 2-structure ( s2s for short ) if g = S25(X) for a

nonempty set X . A partial substructure of a set 2-structure is called a partial



-15-

set 2-structure ( ps2s for short ) . O

Note that a ps2s g is asymmetric in the sense that :

if (x,y) € Fg and (y,x) € Fg,then u’)g((x,y)) #* 1/Jg((y,x)).

For a given nonempty set X we use PS2S (X) to denote the set of all par-
tial substructures of $25 (X) . We use S2S and PS2S to denote the class of all

set 2-structures and the class of all partial set 2-structures .

In this paper we will be especially interested in the class
{g €P2S: there exists an h € PS28S such that g sisom h b

this subclass of P2S is denoted by P2S .

Definition 3.2 . Let g € PS2S. The base of g, denoted base(g), is the
minimal (w.r.t. the set-theoretic inclusion) nonempty X such that

g € PS28(X). O

Remark 3.1 . Note that for each g &€ PS2S there exists the unique
minimal X such that g € PS2S(X) - thus the notion of the base of g is well

defined. Note also that base( S25(X))=X. O

Often one may wish to remove certain elements from the base of a ps2s

system - this leads to a ps2s system defined as follows .

Definition 3.3 . Let X be a nonempty set , Y C X and let

g € PS2S(X). The Y- restriction of g , denoted by g lY , is the partial
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2-structure (D ,F, P, L, 1) such that:
(D={znY:2€ D},
({@HF={(unY,znY): (u,z) €EF,},
(iii) forallx ,u,z,t € D,
(x,u) P (z,t)iff (x —u)=(z — t)and(u — x)=(t — z),
(VL={(unY,znY): (u,z) €L},

(v)foralu,z € D,9¥((u,z))=(u — 2,z — u). O

Remark 3.2 . It is easily seen that , in the notation as above |,

g|Y € PS2S(X ) and base(g|Y )=base(g) nY . O

Each Y-restriction of a ps2s system g can be expressed through a structural

homomorphism as follows .

Lemma 3.1 . Let X be a nonempty set , Y C X and let g € PS25(X).
Then the mapping o : Dg — Dg | Y defined by : &(z) =12 n Y for all

z € Dg , is a structural homomorphism of g onto g l y. o

The structural homomorphism « above is referred to as the Y- restricting
mapping of g and denoted by restg Y
Remark 3.3 . Note that if g € P2S,h € PS2S, and o is a structural
homomorphism from g onto h , then h is uniquely determined by g and «.

Hence in this case we will use the notation a(g) = h . In particular in view of

the above lemma we write (in the notation as above) restg‘Y(g) to denote
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glY.O

Ezample 3.1.
Let X={1,2}.

Then 525 (X) is as follows :

Figure 3.1

Let g € PS2S (X) be as follows:
Figure 3.2
Then, for Y ={2 }, g|Y is as follows :
Figure 3.3

and restgIY is defined by :

restg’Y({ 1})= ¢ ,restg’Y({2 })=restg‘Y({ 1,2)={2}.0

It may happen that the base of a ps2s g is very large w.r.t. the number of
elements of Dg and Fg . We will demonstrate now that one can always find a

subset Y of Dg which is of polynomial (actually quadratic) size in Dg and Fg
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such that g sisom g | Y .

Theorem 3.1 . Let g € PS2S and let X = base(g) . There exists a
Y C X suchthat |Y| < 8|Fg}2 +2{Dg 12 and g sisom g | Y.

Proof .

The idea in constructing g IY is to choose Y in such a way that it will
contain elements from Dg which will guarantee that :
(i) whenever z , t are distinct elements of Dg ,then znY # ¢t nY ( this will be
our set Y, ) and
(ii) whenever (u, v ), (z,t ) are distinct elements of Fg differently labeled by
¥, , then (unY,vnY ),(2znY,tnY ) are distinct elements of Fg]Y

differently labeled by L/)g Y ( this will be our set Y, ).

Such a set Y is constructed as follows .

Let (z,t) € Ep ; clearly we have at most | D, |2 such elements .
g

Ifz — t # @ ,then we choose an arbitrary but fixed element of z — t, and
ift — z # ¢ , then we choose an arbitrary but fixed element of t — z .

The set of the so chosen ( at most 2 elements ) is denoted by v ((z,t)).

Let Y, = U Y({(z,t)).

(z,t) € EDg
Clearly | Y, | < 2| D, ]2 .

Lete=(u,v), d={(z,t) bea pair of distinct edges from F; clearly

we have at most | F, |2 of such pairs (e, d ). Let
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Wi((e,d)={u — v, v —u},Wy((e,d))={z —t,t — z } and
let Z((e,d)) ={(r,w):r € W, andw € W, };

clearly |Z((e,d)) | < 4 . Nowforeach(r,w) € Z((e,d)) we deter-
mine Y(( r, w )) in the same way that v (( z , t )) was determined above ;
clearly each v ((r, w )) has at most 2 elements .

Let Y, = U U AWlrsw))

(ed) € Bp (rw) € Z((ed))
Clearly IYZI < 8[Fg}2.

Nowlet Y = Y, uY, ; hence |Y| < 8‘Fgl2 +2!Dg[2.

Consider now restg v
Since Y, C Y, if 2 ;é t forz,t EDg,thenz nY % t n Y andso
restle(z) # restgiY(‘o).
Since Y, CY ,if (u,v),(z,t)isa pair of distinct edges from Fg such
thati/)g((u,v)) #L{)g((z,t))a

theni/)g‘Y((unY,va)) + zbg‘Y((an,va)).

Also by Lemma 3.1, 7res1‘gI v is onto .

Consequently g stsom g IY . g

In this paper we are interested in the problem when an arbitrary p2s sys-
tem is in PS2S (we refer to this problem as "the (P2S , PS2S) -membership

problem” ) . As an immediate corollary of the above theorem we get the fol-



lowing result.

Corollary 3.1 . The ( P2S , PS2S ) -membership problem is decidable . O

In the next section of this paper we will discuss a specific procedure for

solving the ( P2S , PS2S ) -membership problem .

It is convenient to deal with elements of PS2S which do not have "redun-
dancies" in their bases . We will demonstrate that this is always possible ; first

however we formalize the notion of a "nonredundant ps2 system."

Definition 3.4 . Let g € PS2S and let X = base (g) . We say that g is
tight iff foralla,b € X the following holds :

if (foreveryy € D,,a €y if b€ y),thena=>b. O

Ezample 3.2 .

The following g € PS2S:

Figure 3.4

is not tight because 2 and 3 are "indistinguishable" here. On the other hand ,

g } { 2,5 } which is as follows :

Figure 3.5
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is tight . 0O

Lemma 3.2 . Let ¢ € PS2S and let X = base(g) . There exists a

Y C X such that g|Y is tight and g sisom g |Y .

Proof .

Let ~y be the equivalence relation on X defined by :

foralla,b € X, a ~ b iff for each z EDg, a €z iff b € 1z.

Then let Y to be a subset of X such that Y contains exactly one element from

each equivalence class of ~ g

It is easily seen that g ] Y satisfies the conclusions of the lemma . O

We use tight(g) to denote the set of all h € PS2S obtained from g by

different choices of Y as above .
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4. REPRESENTING P2S BY PS2S

In this section we will consider in more detail the
( P2S, PS2S ) -membership problem . That is , we will be interested in the
problem of when a g € P2S isin PS2S and ifg € PS2S we will provide a

"canonical” g’ in PS2S such that g sisom g’ .

The notion of a region of a ps2s system will play the crucial role in our

considerations . We use this notion as follows .

Definition 4.1 . Let g € PS2S .

(i) The regional g-mapping , denoted reg, is the function from Dg into 233

defined by :

foreveryz € D, reg(z) =R,[(z) .

(ii) The regional version of g , denoted rev(g), is the system

(D,F, P,L,vY ) € PS2S such that

D={R,(x):x €D},

forall X,Y € D,

(X,Y) € F iff X # Y and thereexist (x,y) € F, such that
X=R,((x)and Y =R, (y), and

L={(u,v): thereexistsa (X,Y) € F such that
u=X — Yandv=Y — X},

forall (X,Y) € F,

H(X,Y)=(X = Y,Y - X).0O
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Remark 4.1 . Tt is instructive to notice that , for a ps2s g, rev(g) is label

minimal . O

Ezample 4.1 .

Consider the following p2s g:

Figure 4.1

Here are all elements of Rg :

R, ={1,2,3,4,5,6,7,8},R, = ¢,

R, ={1,4,5,8} , R, ={2,3,6,7},
R, ={1,3,5} , R, ={2,4,6,7,8},
R, ={1,2,3,5,7} R, ={4,6,8},

R, ={1,3,4,5,6,8} yR, ={2,7},

R, ={1,2,4} ,R,=1{3,5,6,7,8},
R, ={1,2,3,4,6} ,Ry ={5,7,8},

R, ={1,2,4,5,7,8} ,R, ={3,6}.

Then we have :

R(1)={R,,R,,R,,R;, R, ,R; , Ry, R, },
R(2)={R,,R, ,R,, Ry, R, ,R; , Ry, R, },
R(3)={Ry,R ,R,, Ry, R, Ry, Ry, R, },
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R (4)={R,,R,,R,, Ry, R, , Ry, Ry, Ry },
R,(5) ={R,, R, R,, Ry, R, R,,R;, R, },
Rg(ﬁ)z{Ro,E_{l,ﬁz,ﬁs,R4,f_{5,R6,§7},
R(7)={Ry,R ,R,,R;, R, , Ry, Ry, R; } , and

R(8)={R0’R17E2’ﬁ3’R4’§55R—6’R7}°

Consequently rev( g ) is as follows :

Figure 4.2

where

d, =({R,, Ry, R, },{R, Ry, R, }),
d, =({R1’Rs’R7}’{E1’E5’§7})’
ds =({§1’§3’§4}’{R1’§3’R4 1)
d, =({E1»R6’§4}’{ Rl’*ayR,; 1)

dg =({§5’ﬁe}’{R57Rs})' 0

Theorem 4.1 . Let ¢ € PS2S . Then reg, is a structural homomorphism
from g onto rev(g) .

Proof .

Assume that (x,y),(z,t) € F, aresuchthat(x,y)Pg(z,t).

(1) Assume that there exists a R € ( reg (x) — reg (y) ).
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Hence x €R and y ¢ R and therefore , because ( x , y )P( z , t), the
definition of a region implies that z € R andt ¢ R .

Thus R € (reg,(z) — reg(t)).

(2) Similarly if we assume that there exists a R € (reg (y) — reg,(x)) then we

arrive at the conclusion that R € (reg(t) — reg,(z)) .

From ( 1) and ( 2 ) above it immediately follows that reg, is a structural
homomorphism from g into rev( g ). But, by the definition of rev( g ) it fol-

lows immediately that g is onto. O

We are ready now to prove the main result of this paper . First , however

we need a definition and a lemmas, .

Definition 4.1 . Let g € PS2S . Foreach x € base(yg),

D(x)={u € D,:x € u}. O

Lemma 4.1 . Let g € PS2S and let X = base(g) . For each
x € X, D(x) € R,.

Proof .

Consider D (x) foran x € X.

Let (u,v),(z,t) € F, be such that (u, v )P (z,t).
(1) If uw € D(x)and y ¢ D (x), then wg((u,v))::(A,B)is such
that x € A and x ¢ B. Since(u,v)Pg(z,t),xbg((z,t))=(A,B)
implying that z € D,(x)and t & D,(x).

(2) Similarly we prove that if u ¢ Dg(x Jand y € Dg(x) ,
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then z ¢ D (x)and y € D,(x). O

Theorem 4.2 . For every g € P2S, g € PS2S iff reg, is a struec-

tural isomorphism .
Proof .

If reg, is a structural isomorphism , then for h = rev(g) we have

h € PS2S and g sisom h, hence g € PS2S.
To prove the reverse implication we proceed as follows .

Assume that there exists an A € PS2S such that g sisom h;let o be
a structural isomorphism from g onto h . By Lemma 3.2 we may assume that h

is tight . Leth=(D,F, P ,L, 7 )and let X = base(h).

We will use the following notation : for each x € X, G, = Dg(x) , and

G ={G, :x €X}.

X
Clatm 4.1. For each x € X,G_ € R, and moreover , for each

x,y € X, G, # Gy whenever x # y.
Proof .

Directly from Lemma 4.1 and from the fact that h is tight . O

The mapping o is a structural isomorphism of h onto g and , for each

A

x € X, ot maps the region G_ of h into the region G of g.
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Leté={€}xzx€X}.

The situation may be illustrated as follows :

Figure 4.3

Hence , for an a € éx , the element regg(a) contains éx, (among other

regions) - see Claim 4.1 .

The situation may be illustrated as follows (where we set g’ = rev(g)):

Figure 4.4

Now we consider g’ ] G . By Lemma 3.1 , rest _ is an onto structural
g|G

homomorphism.
On the other hand if in g’ | G we replace each element (A}K of the base set

by x then we induce an obvious structural isomorphism [ of g'|G onto h .

Let ~ be the composition of rest ~ and [ .
g|G

The situation my be illustrated as follows :

Figure 4.5
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Since v is a composition of an onto structural homomorphism rest _ and
g G

a structural isomorphism 8 , 7 is a structural homomorphism of g’ onto h .

On the other hand the composition of reg, and 7y yields o ' which is a struc-

tural isomorphism - hence both v and reg, must be structural isomorphisms .

This proves the reverse implication .

Hence the theorem holds . O

Actually studying the proof above we notice that there exists a very
specific relationship between rev(g) and h . In order to express this relationship

we need the following notion .
Definition 4.2. Let X be a nonempty set and let ¢ € PS25( X ). Let 8
be a total function on X . Let v be the function on Dg defined by : for all
z € D, ,Wz)={B(t):t € z}. Wesay that vis induced by 7,
denoted by ~ = z‘ndﬁ and we call v a renaming of g ; if [ is injective
( bijective ) then we call v an injective ( respectively bijective ) renaming of

g. O

Forg,h €& PS2S we write g bren h iff there exists a bijective renam-
ing of g onto h .
From our proof of Theorem 4.2 it is clear that we were using a bijective

renaming to get h from ¢’ | G. As a matter of fact Theorem 4.2 together with

its proof yields the following corollary .
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Corollary 4.1 . Let g € PS2S and let h = rev(g) . For every tight label
minimal g € PS2S , such that g sisom g’ , there exists a Z C base(h) and

and nd 3
F

an injective §: Z — base(g') such that the composition of rest, 1z

is an isomorphism of h onto g’ . O

Theorem 4.2 gives us algorithm for deciding whether an arbitrary
g € P2S is in PS2S. Given a g € P2S we construct reg(g) and then
check whether or not reg, is a structural isomorphism . If it is then
g € PS2S and moreover reg(g) is an element of PS2S such that
g sisom reg(g) .

By Remark 2.3 we can extend this algorithm to an algorithm deciding

whether or not an arbitrary edge-labeled graph represents a p2s system .
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DISCUSSION

In this part of the paper we have presented the basic theory of p2s and

ps2s systems centered around the problem of represents p2s systems in PS2S .

Our main theorem ( Theorem 4.2 ) gives a characterization of PS2S ,

while Corollary 4.1 tells us more about the structure of mappings involved .

This part of the paper provides enough mathematical background for an
attempt to solve the "state-space synthesis problem" for various kinds of Petri
nets . The problem is : "given an edge-labeled graph , construct , whenever pos-
sible , a Petri net of a specific type the state space ( case graph ) of which is
isomorphic to the given graph". Since elements of P2S( PS2S ) corresponding
to specific types of Petri nets will have to satisfy quite a number of specific con-
ditions, there is still some work to be done before the problem is solved . Our

solution is presented in Part 2 of this paper .
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