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Quantum systems are poised to play a large role in the emerging technologies of the near

future. The areas of application are numerous, with major advances being achieved in recent

years in the areas of metrology, sensing, and computing to name just a few. In order for these

technologies to realize their full potential, significant challenges must be overcome in the areas of

classical simulation, error correction, and device characterization.

In this thesis, we explore a number of approaches to tackling these challenges in the simulation

and characterization of driven-dissipative quantum systems. We examine existing techniques for

simulating these systems to make new observations about their properties that have potential

applications in quantum metrology and sensing. We investigate the emergence of a time crystal in

a system of two-level atoms and the conditions under which it arises, as well as the effect of single

particle relaxation on spin squeezing in a similar system. We also propose a novel machine learning

model for estimating physical parameters, with potential applications for detecting crosstalk in

quantum information processors.
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the plane perpendicular to the Bloch vector (black arrow) and θel, the elevation

angle of the Bloch vector measured from the equatorial plane. (b) Evolution of

spin-squeezing, computed with the cumulant expansion for N = 104, Υ = 0.9Υc,

χ/Γ = 0, and γs/Γ = 50. Initial conditions are a coherent spin state in the −ẑ-
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Chapter 1

Introduction

Quantum systems are poised to play a large role in the emerging technologies of the near

future. The areas of application are numerous, with major advances being achieved in recent years

in the areas of metrology, sensing, and computing to name just a few. When Google demonstrated

(with some controversy) quantum supremacy in 2019 [6], an article in Nature likened it to the

Wright brothers first flight [133]. In his keynote address at the Quantum Computing for Business

conference in 2017, Caltech quantum information scientist John Preskill anticipated this, declaring

that the noisy intermediate scale quantum (NISQ) technology era, characterized by computers

in the 50-100 qubit range, was imminent [140]. He also sounded a note of caution, however, as

significant challenges still remain to make these promising technologies a practical reality.

The concept of entanglement at the quantum scale can be a powerful resource. John Bell

demonstrated in 1964 [14] that quantum information is encoded in non-local correlations between

components of a quantum system, something that has no counterpart in a classical system [139].

Making use of this resource, however, presents many challenges. The experimentalist is forced to

confront the fragility of these correlations, as they can easily be destroyed by interactions between

the quantum system and its surrounding environment. For the theorist, the challenge lies in the

curse of dimensionality, as the same complexity that makes a quantum system so potentially useful

also demands computing resources that generally scale exponentially with the system size when

attempting to simulate the system on a classical computer, making a full attempt at simulation

impossible for systems of sizes greater than roughly 10 qubits. Another challenge is the inherently
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stochastic nature of quantum systems, as any measurement made on the system necessarily modifies

it to some degree, and this stochasticity must accounted for in any classical model.

In this thesis, we explore a number of approaches to tackling the challenges in the classical

simulation and characterization of quantum systems. Chapter 2 introduces many of the needed

physical concepts at the level necessary for someone interested in simulating, though not necessarily

building, driven-dissipative quantum systems. Chapters 4 and 5 employ existing techniques for

simulating these systems to make new observations about their properties that have potential

applications in quantum metrology and sensing.

In chapter 3, we introduce the background of a number of machine learning techniques that are

changing the way classical simulation and characterization of quantum systems is being performed.

In chapter 6, we make use of these techniques to propose a novel machine learning approach to the

characterization of quantum systems, in particular the problem of learning how to extract physical

parameters from measurement data. A potential application of this approach is the discovery and

quantification of qubit crosstalk in a quantum information processor, a phenomenon that must be

detected and mitigated as part of quantum error correction. While the application to quantum

systems is both timely and relevant, it is important to note that this approach can be applied to

any system where the goal is to discover the parameters of a stochastic differential equation from

data.

The following chapters are adapted from the indicated publications. Each one is a slightly longer

form that incorporates particularly relevant elements of the supplemental material in the main text,

or is a draft of a manuscript to be submitted for publication:

Chapter 4: K. Tucker, B. Zhu, R. J. Lewis-Swan, J. Marino, F. Jimenez, J. G. Restrepo,

and A. M. Rey. “Shattered time: can a dissipative time crystal survive many-body corre-

lations?” New Journal of Physics, 20(12):123003, (2018)
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Chapter 2

Background - Driven-Dissipative Quantum Systems

In this section, we cover the fundamental physical concepts needed to understand the sub-

sequent chapters of this thesis. This includes the necessary fundamentals of quantum states, the

differential equations describing their dynamics, and common computational approaches for the

classical simulation of open quantum systems that address the curse of dimensionality arising from

the exponential growth of the quantum state with the system size.

2.1 Open Quantum Systems

While the traditional entry point for quantum mechanics states the axioms in terms of a

quantum state for a closed system as an element |ψ⟩ of a Hilbert space, all systems discussed in

this thesis will be open in the sense that they involve interaction with an environment that cannot

be directly modeled or measured, as shown in figure 2.1. We will, therefore, use as a starting point

for a quantum state the density operator ρ and proceed from postulates stated in terms of open

quantum systems, as is done in section 2.4 of [128].

2.1.1 State Representation and Measurement

The state space of a quantum system is a complex Hilbert space H, and the state of the system

is completely described by the density operator ρ, a Hermitian, positive semi-definite operator on

the Hilbert space with trace one. Dynamics of the closed system are governed entirely by unitary
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Figure 2.1: An open quantum system is one in which interactions occur with an environment that
cannot be measured

transformations where

ρ′ = UρU †. (2.1)

This is equivalent to the Schrödinger equation for ρ given by

dρ

dt
= −i[H, ρ] (2.2)

which we have normalized such that the Plank constant ℏ = 1. Here the Hermitian operator H is

the Hamiltonian for the system and [A,B] = AB −BA is the commutator. Dynamics for an open

system, that is a system interacting with an environment, are governed by the Lindblad master

equation to be discussed in section 2.1.3.

Measurements with N possible outcomes correspond to measurement operators {An}Nn=1 such

that
N∑

n=1

A†
nAn = 1. (2.3)

If the system is in state ρ, then the probability of measuring outcome n is given by

P (n) = Tr
[
A†
nAnρ

]
, (2.4)

and the state of the system immediately after measurement is

AnρA
†
n

Tr
[
AnρA

†
n

] . (2.5)
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The set of non-negative operators
{
En ≡ A†

nAn

}N
n=1

is known as a positive operator valued measure

(POVM).

An observable O in quantum mechanics corresponds to a Hermitian operator on the Hilbert

space, with values corresponding to eigenvalues and measurement operators An corresponding to

orthogonal projections onto the eigenspace of each distinct eigenvalue λn. Note that eigenspaces

with distinct eigenvalues will be orthogonal due to the Hermiticity of O. The spectral theorem

gives us

O =
∑

n

λnAn,

so that the expected value of the observable

⟨O⟩ ≡
∑

n

λnTr
[
A†
nAnρ

]
= Tr

[
ρ
∑

n

λnAn

]
= Tr [ρO] , (2.6)

where we have used A†
nAn = An since An is an orthogonal projection.

Finally, the state space for a composite of physical systems is given by the tensor product

of individual state spaces H =
⊗

iHi. A density operator on H that can be written as a convex

combination of tensor products of density operators on the subsystems, i.e.

ρ =
∑

k

pk
⊗

i

ρk,i,

where ρk,i is a density on subsystem i and the pk sum to one, is said to separable. If it cannot be

written this way, it is said to be entangled.

2.1.2 Two Level Atom

The simplest possible quantum system is one with a Hilbert space of dimension two. Such

a system is often referred to as a qubit, and corresponds to the physical system of the two-level

atom. The set of all Hermitian operators on this Hilbert space is spanned by the identity along

with the mutually orthonormal (under the trace inner product ⟨A,B⟩ ≡ Tr
[
A†B

]
) operators

σx =




0 1

1 0


 , σy =




0 −i

i 0


 , σz =




1 0

0 −1


 . (2.7)
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These are referred to as the Pauli matrices. They can also simply be denoted as (X,Y, Z) depending

on the context.

Given that these operators form an orthonormal basis for all Hermitian operators, the density

operator can be written as

ρ =
1

2

(
1 + b⃗ · σ⃗

)
, (2.8)

where σ⃗ = (σx, σy, σz) is an operator valued vector, b⃗ is known as the Bloch vector. The set of all

Bloch vectors of norm one is known as the Bloch sphere, and the set with norm less than one is

known as the Bloch ball. These two sets define all possible states for a two level atom. States on

the sphere are rank one and known as pure states, with states in the interior referred to as mixed

as they cannot be expressed as an outer product of a single state space element with itself, but

rather are given by a statistical mixture. Figure 2.2 shows the Bloch sphere along with the Bloch

vector labeled with its cylindrical components (R,ϕ, s).

Figure 2.2: The Bloch Sphere

The Hamiltonian of a system is the observable corresponding to energy. In the case of a two-

level atom, we can define the difference between the two energy levels of the atom as ℏωa ≡ Ee−Eg,

where Ee is the energy of the excited state and Eg the energy of the ground state. The Hamiltonian

is then the operator with a difference in eigenvalues of ℏωa. By convention, this is often represented
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simply in terms of the Pauli matrix σz as

Ha =
ℏωa

2
σz. (2.9)

This operator has eigenvalues ±ℏωa/2 so that the energies have the desired splitting Ee − Eg

centered at zero. The corresponding eigenvectors are often labeled |e⟩ ≡ |0⟩ and |g⟩ ≡ |1⟩, the

excited and ground state, respectively, and choosing a vector representation of the Hilbert space

where

|e⟩ ≡




1

0


 and |g⟩ ≡




0

1




is common and gives this choice of basis for the state space the name “computational” basis. The

term ωa is known as the atomic transition frequency where the subscript “a” is for “atom.”

2.1.3 Lindblad Master Equation

As discussed above, the density operator is defined as a Hermitian, positive semi-definite

operator with trace one. Any operator that governs the dynamics of a quantum system must,

therefore, preserve these properties. We refer to such an operator as a Completely Positive Trace-

Preserving (CPTP) map. Making a Markov assumption in time, meaning that the state ρ(t+ dt)

can be written in terms of ρ(t) without direct dependence on ρ(s) where s < t, then the most

general differential equation governing the dynamics of the system can be written as

dρ

dt
= −i[H, ρ] +

K∑

k=1

D[Ok](ρ), (2.10)

Each D[Ok](ρ) is a super-operator acting on ρ defined as

D[O](ρ) ≡ OρO† − 1

2

{
O†O, ρ

}
, (2.11)

where {A,B} = AB+BA is the anti-commutator. The D[Ok] are called Lindblad super-operators,

and equation (2.10) is the Lindblad master equation. Note that it is entirely linear in the elements

of ρ, and can therefore be written as

dρ

dt
= Lρ, (2.12)
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where the linear operator L is referred to as the Liouvillian.

Equation (2.10) is an extension of (2.2) that captures the interaction with the environment

in the Lindblad terms. This evolution is mathematically equivalent to allowing a unitary evolution

of the composite system including the physical system and the environment, then performing a

projective measurement on the environment at each time step, but without knowledge of the mea-

surement record. This interpretation will be important when we discuss quantum trajectories in

section 2.4.2.

2.2 Approaches for Classical Simulation

As discussed in section 2.1.1, the density operator ρ for a system of N two-level atoms is

an operator on the 2N -dimensional Hilbert space H =
⊗N

n=1Hn. This means that it takes O(2N )

degrees of freedom to express a full quantum state. This becomes intractable for N around 16 or

so, meaning we must find strategies to work around this limitation if we are to perform simulations

on a classical computer.

This section covers several common approaches to this. The first two, the mean field approx-

imation and cumulant expansion, make assumptions about the limitations of correlations between

qubits in the system. The Dicke basis exploits symmetries in a system to group equivalence classes

of degrees of freedom. Finally, the Monte Carlo Wave Function approach to numerical integration

exploits these symmetries while also employing parallel operations on separate computing threads

to further reduce computation time.

2.2.1 Mean Field Approximation

The mean field approximation makes the simplifying assumption that the density operator

will be separable over all subsystems for all time, i.e. ρ =
⊗N

n=1 ρn. Recall from section 2.1.1

that this corresponds to the case of no entanglement between different elements in the system.

Given observables Oi and Oj on two different subsystems, the second order expectation simplifies
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according to

⟨OiOj⟩ = Tr [ρOi ⊗Oj ] = Tr [ρiOi ⊗ ρjOj ] = Tr [ρiOi] Tr [ρjOj ] = ⟨Oi⟩ ⟨Oj⟩ . (2.13)

When writing the equations of motion, or the set of time derivatives of operators that span the

space of Hermitian operators on the state space, this reduces the set of equations to just those of

first order, or expectations of operators on a single subsystem. This means that the size of the

system will be O(N), which is quite manageable even for very large N . This comes at the cost of

being able to model entanglement, meaning all behavior coming from the mean field model will be

classical.

Nevertheless, many systems can be well approximated in the mean field under the right

conditions, specifically when the correlations between observables are much smaller than the ex-

pectations of the individual observables. It can be shown that this is the case in the limit as N

becomes very large. This makes the mean field a useful tool, especially for understanding dynamics

in the large particle limit.

2.2.2 Cumulant Expansion

The cumulant expansion allows for the expansion of third order operator expectations in

terms of first and second order expectations. It can be thought of as similar to the mean field

expansion, but one order higher. The cumulant expansion follows by assuming that cumulants of

order three and higher are zero, as is the case with the Gaussian distribution. This leads to the

following expansion for a third order expectation:

⟨OiOjOk⟩ = ⟨OiOj⟩ ⟨Ok⟩ + ⟨OjOk⟩ ⟨Oi⟩ + ⟨OiOk⟩ ⟨Oj⟩ − 2 ⟨Oi⟩ ⟨Oj⟩ ⟨Ok⟩ . (2.14)

In a similar fashion to the mean field approximation, this allows us to reduce the dimension

of the equations of motion to include only expectations of second order and lower, which implies

an O(N2) system of ODEs. This allows for the modeling of entanglement without the exponential

scaling of the full solution to the master equation.
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2.2.3 Dicke Basis

When approaching any classical simulation in quantum mechanics, an important first task is

to select a basis for the state space that will determine the representation of Hilbert space elements

and operators. This gives numeric vectors and matrices meaning by anchoring them with respect

to the chosen basis. It is common with systems of many-level atoms to choose the eigenbasis of

sums of angular momentum operators, due to the fact that most observables of interest will be

angular momentum operators for each atom and their sums.

2.2.3.1 Addition of Angular Momentum

Much of the material in this section can be found with more detail in [186]. A triplet of

Hermitian operators {Ji}3i=1 on a Hilbert space is said to satisfy the algebra of angular momentum

if

[Ji, Jj ] = iℏϵijkJk, (2.15)

where ϵijk is the Levi-Civita symbol in three dimensions. We have seen such operators before, as

one-half times the Pauli operators satisfy this algebra. In addition to the above, we define

J± = Jx ± iJy (2.16)

J2 = J2
x + J2

y + J2
z . (2.17)

These operators allow for the following equivalent characterization of the algebra of angular mo-

mentum

[J+, J−] = 2ℏJz (2.18)

[Jz, J±] = ±ℏJ±, (2.19)

together with the statements that J†
± = J∓ and that Jz is Hermitian.

Given the above definitions, it can be shown that J2 and Jz commute, and are therefore

simultaneously diagonalizable. Furthermore, the basis given by the common eigenvectors |j,m⟩
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where

J2 |j,m⟩ = ℏ2j(j + 1) |j,m⟩ (2.20)

Jz |j,m⟩ = ℏm |j,m⟩ (2.21)

are such that the eigenvalues of J2 and Jz uniquely identify each basis vector, making them a

complete set of commuting observables. This basis will be a convenient one for Hilbert space

representations of collective spin systems. The above commutation relations between angular

momentum operators and the raising and lowering operators J± imply that j must be an inte-

ger or half-integer, and for a given j the value of m must range by integers between −j and j,

i.e. m = −j,−j + 1, ..., j − 1, j.

When looking at composite systems, such as a collection of multi-level atoms, it can be

shown that the result of adding operators satisfying the above algebra from two different systems

will satisfy the algebra on the composite system, i.e. if {J (1)
i }3i=1 satisfy (2.15) on Hilbert space H1,

and {J (2)
i }3i=1 satisfy (2.15) on Hilbert space H2, then {Ji ≡ J

(1)
i ⊗ 1 + 1 ⊗ J

(2)
i }3i=1 will satisfy

(2.15) on the composite space H1 ⊗H2. Each of the individual state spaces can be written as an

orthogonal direct sum of their respective total angular momentum multiplets

Hi =
⊕

ji

H(ji)
i where (2.22)

H(ji)
i =

⊕

mi

|ji,mi⟩ . (2.23)

An argument presented in [186] shows how we can write

H(j1)
1 ⊗H(j2)

2 =

j1+j2⊕

j=|j1−j2|

H(j), (2.24)

where H(j) = span {|j,m⟩ : m = j, j − 1, ...,−j} is the jth multiplet of the total angular momentum

sum J2 and z angular momentum sum Jz. The full Hilbert space can now be written in terms of

these multiplets by noting that

H = H1 ⊗H2 =
⊕

j1,j2

H(j1)
1 ⊗H(j2)

2 =
⊕

j1,j2

j1+j2⊕

j=|j1−j2|

H(j). (2.25)
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This result can be repeated to add angular momenta for any number of particles. This process will

be clarified with a specific example in the next section.

2.2.3.2 Exploiting Symmetry

For this section we restrict our attention to a system of N spin-1/2 particles. If such a system

evolves according to a master equation with particle number permutation invariance, i.e. swapping

the index of particles in (2.10) does not change the equation, then it has been shown [46, 10] that

a basis with O(N2) elements is sufficient to represent the quantum state at all times.

To make the discussion more concrete, consider the specific example of the coupled angular

momentum basis for a system of N = 4 spin-1/2 particles. To simplify the notation from the last

section, we introduce the shorthand ji ≡ H(ji)
i . We further suppress the index i when it is clear

from the position of the subspace in a sum. Through repeated application of equation (2.24), we

get the following:

H =
1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= (1 ⊕ 0) ⊗ 1

2
⊗ 1

2

=

((
1 ⊗ 1

2

)
⊕
(

0 ⊗ 1

2

))
⊗ 1

2

=

(
3

2
⊕ 1

2
⊕ 1

2

)
⊗ 1

2

=

(
3

2
⊗ 1

2

)
⊕
(

1

2
⊗ 1

2

)
⊕
(

1

2
⊗ 1

2

)

= (2 ⊕ 1) ⊕ (1 ⊕ 0) ⊕ (1 ⊕ 0)

= 2 ⊕ (1 ⊕ 1 ⊕ 1) ⊕ (0 ⊕ 0).

Summing the dimension of the multiplets, we get dim{H} = 5 + (3 + 3 + 3) + (1 + 1) = 16 = 24

as expected for N = 4. As discussed in [46, 10], this generalizes to any number of particles N with

the number of occurrences of multiplet j satisfying

djN =
N !(2j + 1)

(N/2 − j)!(N/2 + j + 1)!
. (2.26)

When there is particle permutation invariance in the master equation and the initial conditions,

state coefficients will not vary between basis vectors with the same multiplet number j. They can
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therefore be grouped together, with values for only one of them being tracked. Since each multiplet

j is spanned by 2j + 1 orthonormal vectors, the dimension of the reduced basis is (for even N)

N/2∑

j=0

2j + 1 =
N

2

(
N

2
+ 1

)
+
N

2
+ 1 =

1

4
(N + 2)2,

a significant improvement over the 2N dimension of the full state space. When tracking the collective

state of the system |ψC⟩ in this representation, we see in [46] that calculating expectations of

collective spin operators, i.e.

Jk =
N∑

i=1

Ji,k,

where Ji,k is spin operator k for particle i, is equivalent to what one would get if calculating it in

the full exponential computational basis.

This reduced dimensional basis is known as the Dicke basis, or irrep (irreducible representa-

tion) basis, and will allow for the classical simulation of large systems, particularly when combined

with the Monte Carlo Wave Function approach to simulation, discussed in the next section.

2.3 Spin Squeezing

Spin squeezing [93, 175] is a method used to improve accuracy in quantum metrology whereby

a state of a collective spin system is created that reduces uncertainty of collective spin measurement

in a particular direction orthogonal to the collective Bloch vector at the expense of increasing

uncertainty in another direction. This is useful in experiments, for example Ramsey spectroscopy

(see [116, 49] for additional examples), where measurement accuracy relies on spin-up population

differences and uncertainty is driven by uncertainty in the elevation angle on the Bloch sphere.

The goal behind creating a spin squeezed state is to improve accuracy beyond what is known

as the standard quantum limit (SQL). In the context of metrology, the SQL can be seen in the

uncertainties of a coherent spin state (CSS), defined for a system of N spin-1/2 particles as the

state without entanglement or quantum correlations where all N spins are placed in the same state

|θ, ϕ⟩ =
N⊗

i=1

cos
θ

2
|↑i⟩ + eiϕ sin

θ

2
|↓i⟩ , (2.27)
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where θ is the elevation angle on the Bloch sphere and ϕ is the azimuthal angle. If we consider the

specific example of θ = π/2 and ϕ = 0, a convention common in spectroscopy where measurements

are performed in the z direction, this reduces to

|π/2, 0⟩ =
N⊗

i=1

1√
2

(|↑i⟩ + |↓i⟩) .

The collective Bloch vector J = (⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) is simply (N/2, 0, 0), and the uncertainty on, for

example Jz, is

∆Jz =
√

⟨J2
z ⟩ − ⟨Jz⟩2 =

√√√√
N∑

i=1

1

4
1 =

√
N

2
,

and similarly for Jy. Here and for the remainder of this section, we adopt the convention ℏ = 1.

An arbitrary spin operator in the plane orthogonal is given by

Jθ = cos θJz + sin θJy,

where θ in this case can range from [0, 2π). The uncertainty is therefore

(∆Jθ)
2 = ⟨J2

θ ⟩ − ⟨Jθ⟩2 = ⟨J2
θ ⟩ = cos2 θ(∆Jz)

2 + sin2 θ(∆Jy)
2 + cos θ sin θ⟨{JzJy}⟩

=
N

4
+ cos θ sin θ⟨{JzJy}⟩.

The lack of quantum correlations ensures that the second term is zero, as ⟨σzi ⟩ = ⟨σyi ⟩ = 0 for all i,

so that we have

∆Jθ =

√
N

2
,

giving the same uncertainty in all orthogonal directions to the x-axis, otherwise known as an

isotropic quasiprobability distribution [93].

This value also saturates the Heisenberg uncertainty bound, which by the algebra of angular

momentum (2.15) gives

∆Jy∆Jz ≥
∣∣∣∣

1

2i
⟨[Jy, Jz]⟩

∣∣∣∣ =

∣∣∣∣
i

2i
⟨Jx⟩

∣∣∣∣ =
N

4
,

making a CSS a minimum uncertainty state. When performing measurements in the z-direction,

accuracy is limited by the uncertainty in the elevation angle [49]

∆θ =
∆Jz

||⟨J⟩||2
,
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which, in the case of a CSS, becomes

∆θSQL =

√
N/2

N/2
=

1√
N
. (2.28)

This is known as the standard quantum limit (SQL).

We have seen how the SQL arises in uncorrelated spin states. The goal of spin squeezing is

to create correlations in such a way that an orthogonal direction to the Bloch vector has reduced

uncertainty relative to the SQL, thus motivating a metric commonly referred to as the Wineland

criterion [175]

ξ2 = min
n⊥

N(∆Jn⊥)2

||⟨J⟩||22
, (2.29)

where n⊥ is a unit vector orthogonal to the Bloch vector J , Jn⊥ ≡ n⊥ · J is the spin operator

in the direction of n⊥, and the N appearing in the numerator is a normalization factor dividing

the minimum orthogonal uncertainty relative to the Bloch vector length by the standard quantum

limit. A value ξ2 < 1 is called a squeezed state, and as described above indicates correlations

between individual spins, and as such it can be seen as a witness for entanglement.

The original paper proposing spin squeezed states [93] also proposed two Hamiltonian oper-

ators that can be used to generate them, the so-called one-axis twisting Hamiltonian

HOAT = χJ2
z ,

and two-axis countertwisting Hamiltonian

HTAC =
χ

2i
(J2

+ − J2
−),

that reduce the minimum variance orthogonal to the Bloch sphere from N/4 to 1
2(N/6)1/3 and 1/2,

respectively.

2.4 Quantum Trajectories

In this section, we revisit the master equation (2.10) and interpret it as a sequence of mea-

surements being performed at each infinitesimal time interval with an unknown outcome. This
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interpretation allows us to simulate the solution as a series of possible realizations of this sequence

with known measurement records, a collection of quantum trajectories, that can then be aver-

aged to produce the estimated quantum state. We then discuss the topic of weak measurement,

where only partial information about the system is obtained but where the back-action on the state

is reduced, which is modeled by the stochastic master equation.

2.4.1 Quantum Channels and the Master Equation

Consider a situation in which we have performed a quantum measurement with respect to

the measurement operators {An}Nn=1, but we throw away the outcome without looking at it. What

is our knowledge of the state? We know that one of the outcomes

ρn =
AnρA

†
n

Tr
[
AnρA

†
n

]

has occurred, with probability p(n) = Tr [AnρAn]. Given that we do not know which outcome

actually took place, the state as we know it is the statistical mixture

ρ =
N∑

n=1

p(n)ρn =
N∑

n=1

AnρA
†
n ≡ E(ρ). (2.30)

Together with the completeness relation (2.3), this has the form of what is called a quantum

channel, also referred to as a completely positive trace preserving (CPTP) map, and it satisfies

the following properties for all density operators ρ:

• Linearity in ρ : E(aρ1 + bρ2) = aE(ρ1) + bE(ρ2)

• Trace preserving: Due to (2.3), Tr [E(ρ)] = Tr [ρ]

• Hermiticity preserving: E(ρ)† = E(ρ)

• Positivity preserving: λi ≥ 0 for all λi in the spectrum of E(ρ)

Complete positivity means that E preserves positivity even when it is acting on a subsystem of a

larger, composite system.
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With this in mind, as in chapter 3 of [139], we can interpret the master equation (2.10)

as a quantum channel performing measurements on the composite system and environment with

unknown measurement outcomes. In order for the modeling of the dynamics of an open quantum

system in terms of an ordinary differential equation to be possible, we must assume that the

evolution of the quantum system is Markovian. This is clear from the ODE itself, which writes

ρ(t + dt) as a function of ρ(t), but not ρ(s) for any s < t. This assumption holds for a purely

dissipative system, where information can flow from system to environment but not back again.

This is a reasonable model of what is going on as long as the assumption of coarse-graining in time

holds. Coarse-graining is a circumstance in which the time ∆tenv that it takes for the environment

to “forget” information passed to it from the system is small compared to the timescale of our

model ∆t. The example of this given in [55] is that of a hot penny being thrown into a lake, where

the penny is the system and the lake is the environment. After a very short time ∆tenv, the energy

from the penny will dissipate out into the lake, which will effectively be in the exact same state as

it was when the penny was thrown in, given its size relative to the small amount of energy absorbed

from the penny.

As always, modeling via an ODE is only useful if this timescale is small compared to whatever

physical phenomenon we wish to observe, e.g. the timescale over which damping occurs ∆tdamp.

To summarize, the Markovian assumption holds if we can confidently say that

∆tenv ≪ ∆t≪ ∆tdamp.

Fortunately, this is the case for systems such as an atom interacting with a radiation field, which

is the kind of system we are interested in for this thesis.

Given that the Markov assumption holds, consider a situation where we have a composite

system and an environment, and we perform repeated measurements on the system over each time

interval dt without recording the outcomes. This means that the state of the system after the

measurement can be written in terms of a quantum channel

ρ(t+ dt) = E(ρ(t)) =

N∑

n=0

Anρ(t)A†
n. (2.31)
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Note that, without loss of generality, we have chosen a zero-based index for n this time for reasons

that will become clear. In order to arrive at a differential equation, we need this expression to have

the form

ρ(t+ dt) = ρ(t) + O(dt).

Considering only those terms up to O(dt), we can define

A0 = 1 + (−iH +K)dt (2.32)

An =
√
dtLn n = 1, 2, ..., N, (2.33)

where H and K are Hermitian and the separation of A0 into real and imaginary parts is done

to separate out the Hamiltonian evolution from the dissipative. By enforcing the completeness

relation (2.3) we can solve for K in terms of the {Ln}:

K = −1

2

N∑

n=1

L†
nLn. (2.34)

Putting this together with equation (2.31) gives the familiar Lindblad master equation

dρ

dt
= −i[H, ρ] +

N∑

n=1

(
LnρL

†
n −

1

2

{
L†
nLnρ

})
.

We have, therefore, shown that the master equation can be interpreted as a procedure by which we

perform a measurement at each time interval dt, with measurement operators An given by equations

(2.32)-(2.34), and probabilities given in the usual manner according to Tr
[
A†
nAnρ

]
. Note that these

probabilities are proportional to dt for n > 0, but larger for n = 0, making the latter case far more

likely at any given step. The cases where n > 0 are often referred to as “quantum jumps.”

This interpretation is more than just a thought exercise. It has practical importance when

we realize that we can actually approximate solutions to the master equation by simulating the

measurement procedure described above, which we will discuss in the next section.

2.4.2 Monte Carlo Wave Function

Suppose we knew the outcomes of the measurements of the composite system and environment

described in the previous section. If we did, we would have a series of states ρk and the associated
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measurement outcome µk at every time step tk = k∆t. This record of states and measurements is

called a quantum trajectory. This can easily be simulated according to the following algorithm

at each time tk:

• Generate a uniform random number ϵ on I = [0, 1)

• Partition the interval I according to the probabilities pn = Tr
[
A†
nAnρk

]
with each An

given by equations (2.32)-(2.34)

• If ϵ falls in the partition of width p0, we say that there is “no quantum jump”, and we

evolve according to A∗ = A0

• If ϵ falls in pn for n > 0, we say that we perform a “quantum jump” and evolve according

to A∗ = An

• Set ρk+1 = A∗ρkA
†
∗/Tr

[
A∗ρkA

†
∗

]
and advance to tk+1 = tk + ∆t

In the case of no jump, we say that the state evolves according to the effective Hamiltonian H+iK,

which is effective due to the anti-Hermitian part iK, which is there to account for re-normalization

in the event that no jumps occur.

As discussed in the last section, however, we don’t actually have a measurement record, so

our knowledge of the state at each time step is once again a statistical mixture over M simulated

trajectories:

ρ(tk) ≈ ρ̃(tk) ≡
M∑

i=1

p(i)ρi,k =
1

M

M∑

i=1

ρi,k (2.35)

where ρi,k is the simulated state for trajectory i at time step tk and the probability of each trajectory

p(i) = 1/M since all trajectories are equally likely. These sample means at each time point follow the

central limit theorem, meaning that for large M the approximation ρ̃, and operator expectations

derived using its trace, will be Gaussian distributed with means equal to the true values and

standard deviations proportional to the operator standard deviations multiplied by a factor of

1/
√
M .
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This is known as the Monte Carlo Wave Function (MCWF) simulation [122], and it has

several advantages over direct numerical integration of the master equation. First, if we start in a

pure state ρ0 = |ψ0⟩ ⟨ψ0|, then the probabilities and state updates at each tk are given by

pn = ||An |ψk⟩ ||2 and |ψk+1⟩ =
A∗ |ψk⟩

||A∗ |ψk⟩ ||
.

This means that we need only store the pure state |ψk⟩ rather than the full density ρk, which saves

space by a factor of d, where d is the dimension of the state space. A second advantage is that the

quantum trajectories can be simulated independently of one another. Practically speaking, this

allows us to perform the simulation of each trajectory on separate threads, in separate executables,

or even on separate nodes of a cluster, allowing for massive parallelization. Finally, as described

in [184], in certain systems with favorable symmetry, only a single of many irreducible linear

subspaces that comprise the state space will be occupied at any given time by a single trajectory,

further reducing the maximum dimension of the tracked state. All of these advantages will come

into play in chapter 5, where the MCWF method will enable the simulation of systems with tens

of thousands of two level atoms.

2.4.3 Cavity QED

In this section, we provide details on an open quantum system frequently considered in this

thesis, a two-level atom interacting with a single mode of an electromagnetic field in a cavity. More

details can be found in [159]. We have already discussed the Hamiltonian of the two-level atom Ha

in (2.9) in section 2.1.2. This Hamiltonian neglects any momentum the atom may have, so we have

assumed that it is being held in place, for example by an optical lattice.

The Hamiltonian for a single mode of an electromagnetic field in a cavity is given by the

simple harmonic oscillator Hamiltonian

Hf = ℏω
(
a†a+

1

2

)
, (2.36)

where a† (a) is the creation (annihilation) operator for the field mode. The operator a†a is often
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called the field number, and it is indicative of the field photon count. This number will rise and

fall by increments as the field exchanges a photon with the atom.

As always, the atom-field state space is the tensor product of the two-dimensional state space

of the atom and the countably infinite dimensional state space of the field, and operators for each

individual space appearing on their own, such as σz or a, are understood to be in a tensor product

with the identity on the other space, i.e. σz ⊗ 1 and 1 ⊗ a.

The full Hamiltonian for the atom-field system is given by

H = Ha +Hf +Haf , (2.37)

where Haf is the atom-field interaction Hamiltonian

Haf = −d ·E.

The atomic dipole operator d is a vector of operators on the composite space, with entries given by

d = ⟨g|d |e⟩ ⊗ (|g⟩ ⟨e| + |e⟩ ⟨g|) ≡ dge(σ− + σ+), (2.38)

where dge is a 3-D vector of operators on the field space and σ+ ≡ |e⟩ ⟨g| and σ− ≡ |g⟩ ⟨e| are the

atomic raising and lowering operators mapping the ground state of the atom to the excited and

vice-versa.

The 3-D vector of field operators E is given by

E(r⃗) ≡ −
√

ℏω
2ϵ0

(
f(r⃗)a+ f∗(r⃗)a†

)
, (2.39)

where f is called the normalized spatial mode profile, and is a function of the atomic position r⃗.

Since we are assuming that the atom is in a fixed position, we can combine all of this into a constant

g and write

Haf = ℏg (σ− + σ+)
(
a+ a†

)
.

When the magnitude of the detuning between the atom and the cavity |ω − ωa| ≪ ω + ωa, we

can make one more simplifying assumption, called the rotating wave approximation (RWA), where
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terms that don’t conserve energy, such as σ−a and σ+a
†, where both the atom and field lose or

gain a photon respectively, are assumed to be zero. In this case we are left with only the terms

where the atom and field exchange a photon:

Haf = ℏg
(
σ−a

† + σ+a
)
. (2.40)

Adopting the convention of dropping terms in the Hamiltonian proportionate to the identity, since

they do not affect the physical dynamics, and putting it all together, we have what is known as the

Jaynes-Cummings model [87] for a two-level atom interacting with a field:

H = Ha +Hf +Haf =
ℏωa

2
σz + ℏωa†a+ ℏg

(
σ−a

† + σ+a
)
. (2.41)

The generalization to a collection of N atoms in a cavity is straightforward, as we can just sum the

individual atom and interaction Hamiltonian terms

H =
N∑

i=1

ℏωi,a
2

σi,z + ℏωa†a+
N∑

i=1

ℏgi
(
σi,−a

† + σi,+a
)
, (2.42)

where i subscripts indicate the atom index for each operator, and gi now depends on the individual

atomic position. It is often the case that all atomic transition frequencies are identical (ωi,a ≡ ωa),

and that the variations in the gi do not affect the physics, so we can let gi ≡ g. In this case, the

Hamiltonian simplifies to

H =
ℏωa

2
Sz + ℏωa†a+ ℏg

(
S−a

† + S+a
)
, (2.43)

where Sx,y,z =
∑

i σx,y,z and S± =
∑

i σ± = Sx ± iSy are collective spin operators satisfying the

algebra of angular momentum [Si, Sj ] = iϵijkSk as discussed in section 2.2.3.1.

2.4.4 Stochastic Master Equation

A more general form of the master equation can be derived in a similar manner to the

Lindblad form in section 2.1.3 if we generalize the operator in (2.32) to be

A0 = 1 + (−iH +K)dt+ CdW, (2.44)
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where C is an operator and dW is the Itô differential. As was done in [159, 3], we can now proceed

to derive the stochastic master equation (SME) in a manner similar to that of section 2.1.3.

Restricting our attention, for the moment, to the action of just the operator A0 in (2.44),

i.e. considering

ρ(t+ dt) = A0ρA
†
0,

we expand to first order in dt, following the rules of Itô calculus that give dW 2 = dt, resulting in

dρ ≡ ρ(t+ dt) − ρ = −i[H, ρ]dt+ {K, ρ} dt+ CρC†dt+
(
Cρ+ ρC†

)
dW. (2.45)

Taking the ensemble average, or the average over all possible Wiener processes, and invoking the

property of Itô calculus that states ⟨⟨ρdW ⟩⟩ = 0, gives

d⟨⟨ρ⟩⟩ = −i[H, ⟨⟨ρ⟩⟩]dt+ {K, ⟨⟨ρ⟩⟩} dt+ C⟨⟨ρ⟩⟩C†dt. (2.46)

Enforcing that the map must be trace preserving means that

dTr [⟨⟨ρ⟩⟩] = Tr [d⟨⟨ρ⟩⟩] = 0.

Combing this with (2.46) gives

0 = 2Tr [K⟨⟨ρ⟩⟩] dt+ Tr
[
C⟨⟨ρ⟩⟩C†

]
dt

= Tr
[(

2K + C†C
)
⟨⟨ρ⟩⟩

]
dt, (2.47)

where the cyclical permutation property of the trace gives Tr [[A,B]] = 0 and Tr [{A,B}] =

2Tr [AB]. Equation (2.47) only holds for general ⟨⟨ρ⟩⟩ if

K = −C
†C

2
.

Putting this back in (2.45) gives

dρ = −i[H, ρ]dt+ CρC†dt− 1

2

{
C†C, ρ

}
dt+

(
Cρ+ ρC†

)
dW (2.48)

We still aren’t quite finished. While we enforced the trace preserving condition on the equation in

the ensemble average, we have to make sure that it still applies to the full form that includes the
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Itô differential. This time requiring Tr [dρ] = 0 gives

Tr [dρ] = Tr
[
Cρ+ ρC†

]
dW = Tr

[
ρ
(
C + C†

)]
dW =

〈
C + C†

〉
dW = 0.

In [3], this is interpreted as a restriction on the operator C, but in [159] they allow C to be general

and instead modify the differential to explicitly normalize the state at each time step. To first order

in dt, this is equivalent to just subtracting off the trace of dρ from (2.48), resulting in

dρ = −i[H, ρ]dt+

(
CρC† − 1

2

{
C†C, ρ

})
dt+

(
Cρ+ ρC† −

〈
C + C†

〉)
dW. (2.49)

This is the simplest form of the stochastic master equation (SME), where only one operator C

is being measured. Here we see the familiar Lindblad super-operator D[C](ρ) in the dt term,

and a new super-operator H[C](ρ) in the dW term which reflects our knowledge of the weak

measurement record of C. Note that this latter term is non-linear in ρ, which distinguishes the

stochastic master equation from the unconditioned master equation, the name often used in the

context of the SME for the regular Lindblad master equation (2.10). This name derives from the

fact that the unconditioned equation is obtained by taking the SME in the ensemble average, and

is equivalent to what one would know of the dynamics if the measurement record of C is unknown.

The SME can be generalized in two ways. First, we can reintroduce the dissipative terms

{Ln}Nn=1 for which no measurement record is known that appear in the Lindblad master equation.

Second, we can generalize to multiple weak measurement operators {Cm}Mm=1. The full stochastic

master equation is then given by

dρ = −i[H, ρ]dt+
N∑

n=1

D[Ln](ρ)dt+
M∑

m=1

D[Cm](ρ)dt+ H[Cm](ρ)dWm. (2.50)

2.4.5 Photon Detection

A quantum trajectory can be defined as the time evolution of a quantum system conditioned

on known measurement outcomes [176]. The focus of this section is to discuss three ways in

which this can be accomplished, and the master equations associated with each one. These are

direct, homodyne, and heterodyne detection. While the procedure described in section 2.4.2 is a
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way to simulate a quantum trajectory, where each Lindblad operator corresponds to a generalized

measurement that is being performed, this section will describe various detection schemes in terms of

a stochastic master equation, by looking at what happens in the limit of large number of detections.

In this limit, the jump process of section 2.4.2 becomes a Gaussian process and can be described

by an Itô stochastic differential equation.

In the case of homodyne and heterodyne detection, this occurs by combining the output of

the atomic system with a local oscillator in a beam splitter and taking the amplitude of the local

oscillator to infinity. The resulting measurements are often referred to as “weak” measurements,

as only some of the information being collected comes from the system, while the rest is coming

from the local oscillator. Further details of this procedure and the following derivations of the

corresponding stochastic master equations can be found in [159, 176].

2.4.5.1 Direct Detection

Consider the simple case of a single two-level atom where we are interested in detecting

whether or not it emits a photon. In the case of direct detection where the atom is emitting

photons at a rate Γ (units of Hz), the operator corresponding to the generalized measurement is

C =
√

Γσ−, since the impact on the system should a photon be measured is to drop it from the

excited to the ground state, precisely the action of σ−. Furthermore, the average number of photons

detected in an interval of time dt is given by the probability of detecting a photon in a given time

increment times dt:

Tr
[
CρC†

]
dt =

〈
C†C

〉
dt = Γ ⟨σ+σ−⟩ dt.

This corresponds to a generalized measurement operator (A1 in (2.32)) of A1 =
√

Γdtσ−. The

resulting master equation (2.10) or the procedure in section 2.4.2 can be used to simulate a direct

detection quantum trajectory depending on whether or not we want to simulate a measurement

record or just consider dynamics in the ensemble average.
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2.4.5.2 Homodyne Detection

While the case of direct detection described above is one way to measure photons coming

from the atom, a practical concern is that our photo-detector could be subject to background

noise which could interfere with our measurement record. Homodyne detection is a method for

boosting the signal coming from the atom to overcome this noise without sacrificing information

being gleaned from the system.

This is accomplished by combining the output of the system with a local oscillator in the space

of the cavity field, and passing them both through a beam splitter with field reflection coefficient

r ∈ [0, 1].

Analogous to the case of direct detection, the operator corresponding to the generalized

measurement of a photon coming from the local oscillator is Clo =
√

Γa, where a is the photon

count lowering operator for the field of the oscillator. The beam splitter makes it so that the

operator on the composite system being measured is

Cr = rC +
√

1 − r2Clo =
√

Γ
(
rσ− +

√
1 − r2a

)
.

The quantum analog of a classical electromagnetic field with a single frequency is called a coherent

state and denoted by |α⟩ for a photon flux of Γ|α|2, for some complex number α. The important

property for this discussion is that it is an eigenstate of the lowering operator such that a |α⟩ = α |α⟩.

Since the local oscillator is in this state, the action of Cr effectively becomes

Cr =
√

Γ
(
rσ− +

√
1 − r2α

)
.

Defining β ≡ α
√

1 − r2, we are interested in the case where r → 1 and |α| → ∞. The first condition

is because we don’t want to waste energy through the splitter that we are not detecting, and the

latter case is effectively turning up the local oscillator so we can still see it through our highly

reflective beam splitter. This results in Cr → Cβ ≡
√

Γ (σ− + β) and makes the average rate of

photon detection
〈
C†
βCβ

〉
dt = Γ

[
⟨σ+σ−⟩ + ⟨β∗σ− + βσ+⟩ + |β|2

]
dt.
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Ignoring the cross term, we see that our detection rate has been increased by the |β|2 term, this

helps the signal stand out from the noise and is the whole reason for doing homodyne detection.

In accordance with our definition of measurement, whenever a photon is detected our state

changes

ρ→ (σ− + β) ρ (σ+ + β∗)

⟨(σ− + β) (σ+ + β∗)⟩ ,

which is a mixture of what happens in direct detection of a photon plus the unchanged state.

This is due to the fact that we do not know whether the photon came from the atom or the local

oscillator. This uncertainty is why this is sometimes referred to as a “weak” measurement. There

is more uncertainty, but also less direct impact on the state as a result of the measurement.

We now follow the steps in [159] to produce the stochastic master equation by substituting

Cβ into the master equation for direct detection. First, we write it in terms of the counting process

dN which is one if a photon is detected in dt and zero otherwise to account for the state after the

measurement. This modified form is

dρ = −i[H, ρ]dt+ D[
√

Γσ−](ρ)dt+

(
σ−ρσ+
⟨σ+σ−⟩

− ρ

)
dN, (2.51)

where the last term effectively replaces ρ with the state assuming a photon was measured should

dN be one. This occurs with probability

P (dN = 1) = Γ ⟨σ+σ−⟩ dt,

or the probability that a photon is directly measured. The conditioned form of the master equation

in (2.51) assumes we keep the information about the measurement record rather than discarding

it, and is equivalent to the procedure outlined in section 2.4.2 to simulate a single trajectory.

We obtain the stochastic master equation in the form of (2.50) by first letting σ− → Cβ =

σ− + β in (2.51), noting that the unconditioned form, or the form in the ensemble average, must

recover the original unconditioned master equation since the measurement record is not retained

in that case. This leads to the additional replacement

H → H − iΓ

2
(β∗σ− − βσ+)
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in (2.51). In addition, we take |β| → ∞. This amounts to turning up the amplitude of the local

oscillator so that the photon count becomes large, and it allows us to take the large N limit for our

counting process so that, letting µ ≡ ⟨⟨dN/dt⟩⟩ = Γ⟨(σ+ + β∗)(σ− + β)⟩,

dN → µdt+
√
µdW, (2.52)

where dW is the Itô differential. Making the substitutions and simplifying leads to the familiar

form

dρ = −i[H, ρ]dt+ ΓD[σ−e
iϕ](ρ)dt+

√
ΓH[σ−e

iϕ](ρ)dW, (2.53)

where β = |β|e−iϕ and H[C](ρ) is the homodyne super-operator

H[C](ρ) ≡ Cρ+ ρC† −
〈
C + C†

〉
. (2.54)

The current of the photo-detector is given by

I(t) = Qph
dN

dt
,

where Qph is the charge of a photon and dN is given by the SDE in (2.52). Subtracting off the

current of the local oscillator QphΓ|β|2 and keeping only the lowest-order terms in |β|−1 gives the

SDE for the current coming from the atom. Defined to be normalized by Qph|β|, this is

dr = Γ
〈
σ−e

iϕ + σ+e
−iϕ
〉
dt+

√
ΓdW. (2.55)

The value of r(t) can be interpreted as proportional to the total charge accumulated by the photo-

detector, or the total photon count.

2.4.5.3 Heterodyne Detection

The SME for heterodyne detection is a simple modification of the SME for homodyne detec-

tion (2.53). In the derivation of the latter SDE, we assumed that the phase ϕ of the local oscillator

did not vary with time. Physically, this corresponds to the case where the frequency of the oscil-

lator is the same as that diriving the dynamics of the atom. Heterodyne detection allows the two
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frequencies to differ such that ∆ ≡ ωlo − ωa ̸= 0. This amounts to the substitution ϕ → ∆t in

(2.53), giving the SME

dρ = −i[H, ρ]dt+ ΓD[σ−](ρ)dt+
√

ΓH[σ−e
i∆t](ρ)dW, (2.56)

with the corresponding measurement

dr = Γ
〈
σ−e

i∆t + σ+e
−i∆t〉 dt+

√
ΓdW. (2.57)

Note that the ei∆t does not appear in the Lindblad super-operator. This is due to the fact that it

really didn’t appear in (2.53) either since the operator argument of D always appears in conjugate

pairs. It is just presented that way for symmetry by convention in the equation for homodyne

detection.

A motivating example for the use of heterodyne detection is given in section 18.2.7 of [159],

where it is noted that often times in the lab measurement noise is proportionate to 1/ωa, which

motivates using a higher frequency. In addition, by demodulating the measurement, a record for

⟨σ+⟩ can be obtained thus providing information on both ⟨σx⟩ and ⟨σy⟩.



Chapter 3

Background - Machine Learning

Recent years have seen a number of applications for machine learning applied to quantum

systems. Neural networks and generative models have been used to represent scalable quantum

states [37, 42, 145, 41], and for learning parameters in quantum dynamics [65, 97, 68], among

others. In chapter 6, we’ll be presenting a machine learning model for estimating parameters in a

master equation from weak measurement records. This chapter covers the background needed to

understand the components of that model.

3.1 Autoencoders

An autoencoder is a neural network model that learns to produce a copy of its input as its

output [71]. The utility of this lies in the internal structure of the model, where the input vector

x ∈ Rn is mapped to a latent vector z ∈ Rd by an encoder z = fθ(x), before being mapped to the

output y ∈ Rn by a decoder y = gϕ(z) = gϕ(fθ(x)) (see figure 3.1). The vectors θ and ϕ are the

model parameters to be learned during training. This allows the model to learn a representation

of the input space with reduced dimension in the case where d < n, or increased when d > n. It is

also important to note that it is not expected to be a universal identity map on the input space.

It is expected that it will only work for a subset of this space where training data resides, but as

such the latent space will provide useful insights about this type of data.

As with all feed-forward neural networks, each horizontal layer of figure 3.1 represents a

vector of real (or potentially complex) numbers, with the connecting lines representing a linear



32

Figure 3.1: Basic neural network architecture for an autoencoder, with the encoder in green, the
latent variable layer in red, and the decoder in blue

transformation followed by an optional activation function, which may be nonlinear. Formally,

layer i is given by xi ∈ Rni with xi = fi(Wixi−1 + bi), where Wi is a weight matrix, sometimes

called a kernel, bi is a bias vector, and fi is the activation function. Common activation functions

include the sigmoid function

f(x) =
1

1 + e−x

or the rectified linear unit (ReLU) function

f(x) =





x, x ≥ 0

0, x < 0.

These functions are applied to the vectors element-wise.

Training is commonly performed using the mean squared error (MSE) loss function

LMSE(xi, yi) =
1

n

n∑

k=1

|xi,k − yi,k|2 (3.1)

where xi,k is the kth element of xi (and similarly for yi), and the total loss over a training set

{xi}Ni=1 is just the mean over all of the individual training example losses

L =
1

N

N∑

i=1

LMSE(xi, yi) =
1

Nn

N∑

i=1

n∑

k=1

|xi,k − yi,k|2. (3.2)
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Training is typically performed by minimizing the loss via stochastic gradient descent where

batches of training data are randomly selected and used to perform an update on the model

parameters with a configurable learning rate. Each pass through the full training data set is called

an epoch, and training proceeds for a number of epochs until the loss saturates or until the loss on

a separate validation set starts to rise relative to that of the training set. The learning rate is a

scalar multiplied by the negative gradient of the loss with respect to the model parameters when

computing each step, and is typically decreased with each epoch to allow for fine scale optimization

at later epochs. A common practice is to use an exponential decay where

ηk = λkη0, (3.3)

where ηk is the learning rate for epoch k and λ ∈ (0, 1] is a configurable decay rate. A formula such

as (3.3) is referred to as a learning rate schedule.

3.1.1 Denoising Autoencoders

Suppose that the input data for the autoencoder is the result of some stochastic process

with probability density pdata(x) that includes noise. This means that instead of seeing clean data

elements in our training set, we actually have a collection of data elements {x̃i}Ni=1 corrupted by this

noise. We would like to train an autoencoder to remove or to see though this noise to reproduce and

infer properties of the corresponding uncorrepted data elements {xi}Ni=1. This can be accomplished

if we have a training set that provides examples of both corrupted and clean training examples, in

which case we still use the loss function in (3.1), but using the corrupted examples {x̃i} as input

to the autoencoder, i.e.

LMSE(xi, gϕ(fθ(x̃i))) =
1

n

n∑

k=1

|xi,k − gϕ(fθ(x̃i,k))|2, (3.4)

where fθ is the encoder function and gϕ is the decoder. The denoising autoencoder can thus be

seen to be attempting to undo the corruption due to the noise.

As discussed in sections 14.2.2 and 14.5 of [71], the source of the noise could be due to a

corruption process C(x̃|x). If this process is known, samples of uncorrupted data can be used to
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simulate corrupted data for training. In other circumstances, such as the case of quantum tra-

jectories, what is observed is the corrupted data emerging according to a not necessarily known

distribution x̃t ∼ p(x̃t, t|xt) where xt is the measurement sequence in the ensemble average, or the

solution to the unconditioned master equation. This means that uncorrupted data can be approx-

imated by taking the mean over a large number of trajectories. Combined with the trajectories

that comprised the mean, we have the datasets {x̃t,i}i and {xt,i}i needed to train the denoising

autoencoder. Given the large amount of noise that might be present in a single trajectory, it may

be desirable to let each x̃t itself be a mean of trajectories, and to let xt be a mean of means.

A useful interpretation of what is being learned by an autoencoder is provided in section 14.5

of [71]. The output z = fθ(x̃t) can be thought of as a lower dimensional embedding of the data

distribution pdata(xt). The idea is that the training data {xt,i}i actually occupies a manifold of

dimension much smaller than that of the data space, and it is the autoencoder’s job to learn this

manifold. In the case of a denoising autoencoder, it is learning a function r(x̃t) ≡ gϕ(fθ(x̃t)) such

that the reconstruction pointing vector r(x̃t)− x̃t will point in the direction of xt over a fairly large

neighborhood around xt. The function r(x̃t) will therefore have a small gradient near the manifold

of clean data examples, and a large derivative in directions orthogonal to that manifold in order to

kick corrupted data back onto the true manifold.

In the case of estimating the physical parameters of a stochastic master equation, as will be

discussed in chapter 6, the manifold is the set of all solutions to the unconditioned master equation

as parameterized by the physical parameters in the ODE. The autoencoder will learn to map a

noisy trajectory x̃t onto its counterpart xt on the manifold, and in the process it will learn to

output the manifold coordinates of xt, given by the physical parameters of interest.

3.1.2 Variational Autoencoders

In the preceeding section, we were interested in learning deterministic maps fθ and gϕ that

map data points to coordinates of a lower dimensional embedding and back again. Suppose instead

that we are interested in finding a distribution with density p(x) that approximates a data distribu-
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tion pdata(x). If we could do this, then we would be able to sample from p to approximate sampling

from pdata, and we could approximate expected values taken with respect to the data distribution

as a result. Such a model is called a generative model, and it is typically trained to maximize the

log-likelihood of our training data, presumably sampled according to the data distribution, with

respect to our estimated density. Formally, this results in the optimization problem

θ̂ = max
θ

N∑

i=1

log(pθ(xi)), (3.5)

for a training data set {xi}Ni=1, and a parameterized density pθ(x).

In the case of autoencoders, we can generalize the model in section 3.1 by replacing the de-

terministic functions z = fθ(x) and y = gϕ(z) for our encoder and decoder with the distributions

pθ(z|x) and qϕ(y|z), respectively. The latent variable vector z is now a random vector with condi-

tional density pθ(z|x). In practice, we won’t be able to optimize the log-likelihood in (3.5) if z is

not a differentiable function of the parameters in θ. To accomplish this, we employ what is known

as the “reparameterization trick,” whereby we represent z conditional on a data value x as

z = µθ(x) + σθ(x)ϵ,

where µθ(x) and σθ(x) are mean and standard deviation functions given by the encoder, and

typically ϵ ∼ N (0, 1) is a multivariate standard normal.

While a direct maximization of (3.5) is not tractable in general, we can optimize a lower

bound on it, known as the variational lower bound, by using the following loss for a given data

element xi:

Li(θ, ϕ) = −Ez∼pθ(z|xi) [log qϕ(xi|z)] + KL (pθ(z|xi), p(z)) , (3.6)

where KL is the Kullback-Leibler divergence

KL(P (x), Q(x)) =
∑

x

P (x) [logP (x) − logQ(x)] ,

and p(z) is a pre-determined prior distribution on the latent space, commonly chosen to be a

standard normal. The total loss is just taken to be the sum of individual losses

L(θ, ϕ) =
∑

i

Li(θ, ϕ). (3.7)
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The first term on the right-hand side of (3.6) is a direct maximum likelihood estimation of the data

with respect to the latent variable as sampled from the distribution determined by the encoder.

The second term is a regularization term that keeps the latent variable well-behaved according to

a known distribution. Once trained, sampling can be achieved by sampling z ∼ p(z) and then

running it through the decoder to sample x ∼ qϕ(x|z).

This model is directly applicable to quantum systems when we consider that a quantum state

ρ determines the distributions associated with all measurements, and that when certain distribu-

tions are known we can uniquely reconstruct the quantum state. As discussed in [42], a positive

operator valued measure (POVM) {Ea}, as defined in section 2.1.1, is considered informationally

complete if any Hermetian operator on the state space can be represented as a linear combination of

the operators in {Ea}. In this case, the authors show how learning the distribution for this POVM

allows a reconstruction of the state sufficient to infer any expectation of or probability associated

with a local operator. See also [145, 41, 37, 36] for more on using generative models to represent

quantum states.

The following example shows what happens when we train a VAE with a 2D latent space

z ∈ R2 using samples provided by the QuCumber tutorial [141] from the transverse-field Ising

Hamiltonian for qubits on a 1D lattice

H = −J
N−1∑

i=1

ZiZi+1 − h

N∑

i=1

Xi, (3.8)

with N = 10 qubits, and J = h = 1. Training data was obtained by sampling in the computational

basis (measuring the observables {Zi}10i=1) from a system in the ground state of H. Figure 3.2 plots

the values of qϕ(Zi = 1|z) as a square tile for each latent variable (z1, z2) pair in a mosaic over

a range of values for this two dimensional latent space (note that the lower case z is the latent

variable vector, not to be confused with the Pauli operators Zi). In the figure we are manually

feeding a grid of latent variable pairs into the decoder to see what distribution they produce and

how it varies with each latent variable to see if we can interpret what physical trait, if any, each

variable is correlated with. What we see is that the model has learned to correlate the first latent
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dimension with spin direction, where the number of qubits that are spin-up increases as the value

of z1 increases. It has learned to treat the second latent dimension as position on the lattice, where

positions that hold a given spin value swapping from left to right with increasing value.

Figure 3.2: The latent space learned by a VAE trained on data sampled from the ground state of an
Ising Hamiltonian for 10 qubits on a 1D lattice. It can be seen that the horizontal axis represents
spin direction and the vertical axis represents lattice position

This example shows how generative models can learn latent embeddings with physical inter-

pretations from data alone. Note also that the dimension of a VAE will scale polynomially with

the number of qubits in the system, in contrast with the state that grows exponentially. Assuming

they are applied to systems that inhabit a manifold of sufficiently small dimension relative to that

of their state space, this gives generative models the potential to scale to much larger systems than

can be simulated with traditional methods.

3.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a model designed to process sequential data. Commonly,

as will be the case for quantum trajectories, the sequence is in time, but any ordered stream of

data can be processed. An architecture diagram of a standard RNN is shown in figure 3.3. At

each time step t, the input vector xt ∈ Rn is fed into the recursive block R, which provides an



38

output vector for that time ht ∈ Rd, but also provides state information to be used within R for

the next time step. This can be thought of as a recursive loop, as shown on the left side of the

figure, or as a sequence of neural network operations as shown on the right. Critically, the weights

in the recursive block R are learned during training and then held fixed for each element of the

time sequence during prediction. It is the internal state that changes in time, not the trainable

weights.

Figure 3.3: A diagram of an RNN in its recursive representation (left) and unrolled representation
(right)

RNNs can offer performance advantages, as their recursive nature allows for loop optimization

with the same code just operating on different data at each point in time. Training is done using

an algorithm called back-propagation in time, a generalization of standard back-propagation for

neural networks optimized for a sequential architecture. The details of the architecture inside the

recursive block R can vary depending on the type of RNN with three variations having emerged as

the most common [132].

In a basic RNN, the state is simply the same as the output vector ht. The recursive block R

uses a feed-forward neural network to map the input xt and the previous state ht−1 to the output

ht, which is then passed on as the state to the R block for the next time step. Formally, this looks

like

ht = f(xt, ht−1; θ), (3.9)

where θ is the set of trainable parameters that do not vary with t.
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The important thing to note when it comes to applying RNNs to quantum systems, or to

any dynamical system, is that (3.9) is Markovian in the sense that ht can be calculated from ht−1

alone, and is not dependent on hs for s < t − 1 when given ht−1. The state at time t contains

all information about the past, and therefore everything the model uses to move forward. This

limits the utility of a basic RNN if we want to account for non-Markovian dynamics, which is often

precisely what we need a machine learning model for, since physical models such as the master

equation (2.10) can already account for Markovian dynamics. Fortunately, RNN architectures have

been developed to deal precisely with this problem. The two most common examples are the Long

Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures. We will be focusing

on the LSTM for the algorithms discussed in this thesis, but other architectures are available and

can be just as effective.

The LSTM is an alternative design for the recurrent cell R that is designed to allow the RNN

to retain information from the past for longer and to draw upon it to perform updates and produce

output. It accomplishes this through the introduction of a carry state ct that is passed to the next

time step along with the output state ht. A diagram of the standard construction is seen in figure

3.4, which is a zoomed in view of the RNN cell R. The layout is adapted from [132].

The carry state passes through the top of the cell in the diagram. It is updated first, then

used in the update of the output state ht. Each of the sigmoid activated layers serves as a “forget”

gate, as it outputs values that are typically close to zero or one, and it is always element-wise

multiplied by another vector in the LSTM. The first sigmoid layer uses the previous state and

input to determine a forget gate for the carry state. It drops certain elements of the vector, zeroing

them out, while keeping others. The second sigmoid does the same for the output of the tanh layer,

which is the traditional output of a basic RNN. These two states get summed together, before

passing through a tanh activation and one more forget gate, producing the output state ht. The

carry state ct, now updated with a forget gate and information from the input and previous state,

gets passed on to the next time step, along with the new output state.

The architecture is complex, but the key takeaway is that the carry state allows information



40

Figure 3.4: A diagram of the LSTM cell architecture, adpated from [132]. The red border rep-
resents R in figure 3.3. Each rectangular block inside is a neural network layer labeled by its
activation function. Red circles/ellipses represent elemnt-wise operations. Merging black lines are
concatenations, and the external rectangles are the input/output of the cell

from the past to be used directly to update the state independently of the information contained in

the previous state. This enables non-Markovian behavior within an LSTM, which has been shown

to effectively model quantum systems with non-Markovian dynamics [97, 9].

3.3 Neural ODE

If we look closely at what each step of a standard RNN is doing, and (for the moment) ignore

the input xt, we notice it takes a familiar form. Each step can be viewed as updating the state

according to a function that takes the form of a neural network

ht+1 = ht + fθ(ht),

where fθ is a neural network parameterized by θ. This kind of state update in time is very similar

to what is done within a numerical integrator when solving an initial value problem (IVP). A 2018

paper by R. T. Q. Chen et. al [48] proposed a machine learning model to do just that, where a

function f is parameterized by a neural network model and trained through observations of data
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to learn the derivative of the hidden state, which in the limit of infinitessimal time steps gives

dh(t)

dt
= fθ(h(t), t). (3.10)

A 2019 paper by Y. Rubanova et. al [147] took this a step further, incorporating this design into

an RNN architecture and extending it to include the input xt at each time step. The idea is to fill

in the state values at times in between observations with the solution, rather than simply assuming

the state is constant as in the case of a standard RNN. The full state update algorithm for a single

observation time step is therefore

h′k+1 = ODESOLV E(fθ, hk, tk+1, tk),

hk+1 = R(h′k+1, xk+1),

where ODESOLV E is any numerical ODE solver, R is the usual RNN cell update, and the time

is now indexed according to tk since we do not have to assume a regular time spacing. They refer

to this method as ODE RNN, and it has the advantage of allowing larger or irregular time spacing

between observations.

For physical systems, such methods can be very useful as they allow us to learn the equation fθ

governing dynamics in a general, model-free way that isn’t bound to the assumptions of traditional

models such as the master equation (2.10), which assumes both Markovian evolution and linearity.

Note that where a standard RNN simply updates the state at each time step, one of the products

of neural ODE is the derivative function itself. This is useful for obtaining physical insights into

the more complex dynamics of a system, and it also allows us to utilize learned dynamics as a

correction to an a priori physical model to account for shortcomings in the model, as discussed in

chapter 6. This practice of using machine learning models to augment known physical models is

the subject of the next section.

3.4 Discrepancy Modeling

A large amount of progress has been made in recent years combining data-driven techniques

from machine learning with mathematical models developed from first principles within a domain,
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one example of which is the master equation (2.10) derived from first principles to model the dy-

namics of open quantum systems. It is well known that the mathematical models of dynamical

systems are always a simplification of the physical world to a greater or lesser extent, and discrep-

ancy learning is a means to use data-driven techniques to bridge the gap. The motivating principle

is that physical models generally capture the big picture very well, and we just need to correct for

smaller effects that slip through the cracks. While much smaller than the known drivers of the

dynamics, these discrepancies can nevertheless be large enough to significantly impact the utility

of the physical model, for example as a means to make predictions or to estimate the values of

certain internal parameters from data.

While physical models may not fully capture all salient features of the true dynamics, data-

driven techniques have their shortcomings as well. They are typically opaque and difficult to inter-

pret, offering limited physical insight and struggling to extrapolate beyond the boundaries of their

training data sets. Discrepancy modeling attempts to leverage the strength of both approaches,

forcing interpretability on machine learning models by keeping them tightly coupled to their phys-

ically motivated counterparts, while relying on their flexibility to account for real phenomena that

are hard to anticipate with a mathematical model.

In practice, this objective can be accomplished in many different ways. One example is a

2019 paper by Kaheman, Kaiser, Strom, Kutz, and Brunton [89] in which the authors leverage a

machine learning technique known as Sparse Identification of Nonlinear Dynamics (SINDy) [33] to

correct for model discrepancies in a double pendulum on a cart experiment. Due to the chaotic

nature of the dynamics, any deviation between the model and the experiment will be amplified to

the point that prediction and control is no longer possible, but the authors use the ML model to

successfully develop a feed-forward controller for the system.

In another 2019 example from de Silva, Higdon, Brunton, and Kutz [53], SINDy is once

again employed to account for subtle effects in modeling falling objects of different size and mass.

Specifically, measurement errors and complex fluid dynamics that are extremely difficult to account

for are successfully learned using the SINDy model. The premise behind SINDy is to provide a
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library of nonlinear terms that could be present in the derivative function fθ in (3.10) and to learn

from data the coefficients associated with these terms in the actual dynamics. Sparsity of the terms

is enforced via the loss function and gating during training. The result is entirely interpretable,

and gives physical insight into the dynamics while also improving modeling accuracy.

These principles will be leveraged in chapter 6, where we use a neural ODE based model to

correct for dynamics not anticipated in the master equation. This will allow for more accuracy in

predicting known Hamiltonian or Lindblad terms in the presence of unanticipated terms, calibration

errors, or even non-Markovian and nonlinear effects. While not going so far as to leverage SINDy

to determine more specific forms for nonlinear effects, this could be an interesting topic for future

work.



Chapter 4

Time Crystals

This chapter is adapted from the publication

K. Tucker, B. Zhu, R. J. Lewis-Swan, J. Marino, F. Jimenez, J. G. Restrepo, and A. M.

Rey. “Shattered time: can a dissipative time crystal survive many-body correlations?”

New Journal of Physics, 20(12):123003, (2018)

Prologue

In this chapter, we leverage mean field and cumulant methods to explore the properties of

a system of two level atoms that serves as an example of a time crystal. A mean field analysis

will give insight into how the system synchronizes, while simulations using a cumulant expansion

method as well as an exact solver exploiting particle symmetry establish that the system has the

necessary properties to make it a time crystal over a specific region of parameter space.

Abstract

We investigate the emergence of a time crystal in a driven-dissipative many-body spin array.

In this system the interplay between incoherent spin pumping and collective emission stabilizes

a synchronized non-equilibrium steady state which in the thermodynamic limit features a self-

generated time-periodic pattern imposed by collective elastic interactions. In contrast to prior

realizations where the time symmetry is already broken by an external drive, here it is only spon-

taneously broken by the elastic exchange interactions and manifest in the two-time correlation
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spectrum. Employing a combination of exact numerical calculations and a second-order cumu-

lant expansion, we investigate the impact of many-body correlations on the time crystal formation

and establish a connection between the regime where it is stable and a slow growth rate of the

mutual information, signalling that the time crystal studied here is an emergent semi-classical out-

of-equilibrium state of matter. We also confirm the rigidity of the time crystal to single-particle

dephasing. Finally, we discuss an experimental implementation using long-lived dipoles in an optical

cavity.

4.1 Introduction

Nature provides many examples of crystalline structures in our day-to-day lives. From the

salt and sugar in foods that we eat, to snowflakes falling from the sky, this curious phenomenon

is all around us. A crystal is characterized by a spontaneous breaking of spatial symmetry. As

molecules are arranged in a lattice, certain spatial dimensions are given preference over others. This

occurs due to the properties of the solid itself, rather than according to any external design. These

structures also exhibit some amount of robustness to disorder, they do not simply fall apart when

acted on by an outside force. Time crystals have been proposed for uses in precise time keeping,

quantum metrology, and by Microsoft researchers for use in topological quantum computers.

In 2012, Nobel laureate Frank Wilczek proposed that a similar phenomenon can emerge in

time [174]. Specifically, he proposed the existence of phases of quantum matter that spontaneously

break time-translational symmetry, without being forced by an external drive, and that are robust

to disorder. More formally, a time crystal is a many-body system exhibiting synchronization with

an order parameter ϕ(r⃗, t) having a two-time correlation function converging to a periodic function

of time in the thermodynamic limit [173] such that ⟨ϕ(r⃗, t)ϕ(r⃗′, 0)⟩ → f(t), when the distance |r−r′|

is sufficiently large. Since being proposed, time crystals have received a considerable amount of

attention [156, 131, 149, 104, 61, 91, 92, 168, 169, 179, 180, 69, 7], including a 2015 work by

Watanabe et. al [173] showing that time crystals cannot exist in the steady-state, as Wilczek

originally suggested, they are instead non-equilibrium phenomena.
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A blueprint was developed [179] for the experimental realization of time crystals in periodi-

cally driven, interacting many-body quantum systems with spatial disorder, also known as Floquet

time crystals [61, 91, 92, 168, 169, 179], and subsequently realized in trapped ions [181] and sys-

tems leveraging small imperfections in diamonds [50]. In most cases, time-resolved observables

react to the periodic drive to realize subharmonics of the frequency at which they are driven

[32, 2, 173, 61, 77, 62, 101, 146, 137, 136, 183, 23]. However, at the time of publication, we are

not aware of a realization that spontaneously breaks continuous time symmetry in a quantum

many-body system.

In this work, we propose a novel approach that can lead to the first experimental obser-

vation of spontaneous continuous time symmetry breaking in a quantum many-body system, by

considering an array of incoherently driven long lived dipoles in a cavity that are subject to col-

lective dissipative decay (superradiance) and elastic long range interactions (see figure 4.1). While

similar in spirit to recently proposed quantum time crystals with dissipation involving a time pe-

riodic steady state in the thermodynamic limit of an open quantum system [69, 85, 45, 34], our

system differs in that it employs an incoherent drive, thus avoiding the imposition of an external

drive breaking time translational symmetry. Instead, continuous time translational symmetry is

spontaneously broken by the subtle interplay between collective interactions and driving processes.

In addition, the incoherent drive and disorder result in a system that expands beyond the Dicke

subspace of Hilbert space, resulting in certain modeling and simulation challenges but leading to

more complex behavior.

Looking at each property of the system in figure 4.1, we see how each impacts the emergence of

the periodic steady-state giving rise to the time crystal. Collective dissipation prevents the system

from overheating, while the balance between this dissipation and the incoherent drive lead to the

stabalization of a syncrhonized non-equilibrium periodic steady-state [120, 19, 185] that is robust

to imperfections or environmental disturbances assuming the presence of finite but moderate elastic

interactions. The latter interactions are necessary for the formation of the non-equilibrium periodic

steady-state, but can destroy it if they are too strong. Thus there is a window of permissible elsastic
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h�+(t + ⌧)��(t)i
<latexit sha1_base64="9sgJWAMup94O1OCuVtE18rWXPJc=">AAACEnicbVBNTwIxFOziF+IX6tFLIzEBiWQxJuqN6MUjJiIkLJK3pUBDt7tp35oQwn/w4l/x4kGNV0/e/DcW2IOikzSZzsxL+8aPpDDoul9OamFxaXklvZpZW9/Y3Mpu79yaMNaM11goQ93wwXApFK+hQMkbkeYQ+JLX/cHlxK/fc21EqG5wGPFWAD0luoIBWqmdPfQkqJ7k1DOiF8BdMY9FDyEuJPejPBY8PY20szm35E5B/5JyQnIkQbWd/fQ6IYsDrpBJMKZZdiNsjUCjYJKPM15seARsAD3etFRBwE1rNN1pTA+s0qHdUNujkE7VnxMjCIwZBr5NBoB9M+9NxP+8Zozds9ZIqChGrtjsoW4sKYZ0UhDtCM0ZyqElwLSwf6WsDxoY2hoztoTy/Mp/Se24dF5yr09ylYukjTTZI/skT8rklFTIFamSGmHkgTyRF/LqPDrPzpvzPoumnGRml/yC8/ENAMSdLw==</latexit><latexit sha1_base64="9sgJWAMup94O1OCuVtE18rWXPJc=">AAACEnicbVBNTwIxFOziF+IX6tFLIzEBiWQxJuqN6MUjJiIkLJK3pUBDt7tp35oQwn/w4l/x4kGNV0/e/DcW2IOikzSZzsxL+8aPpDDoul9OamFxaXklvZpZW9/Y3Mpu79yaMNaM11goQ93wwXApFK+hQMkbkeYQ+JLX/cHlxK/fc21EqG5wGPFWAD0luoIBWqmdPfQkqJ7k1DOiF8BdMY9FDyEuJPejPBY8PY20szm35E5B/5JyQnIkQbWd/fQ6IYsDrpBJMKZZdiNsjUCjYJKPM15seARsAD3etFRBwE1rNN1pTA+s0qHdUNujkE7VnxMjCIwZBr5NBoB9M+9NxP+8Zozds9ZIqChGrtjsoW4sKYZ0UhDtCM0ZyqElwLSwf6WsDxoY2hoztoTy/Mp/Se24dF5yr09ylYukjTTZI/skT8rklFTIFamSGmHkgTyRF/LqPDrPzpvzPoumnGRml/yC8/ENAMSdLw==</latexit><latexit sha1_base64="9sgJWAMup94O1OCuVtE18rWXPJc=">AAACEnicbVBNTwIxFOziF+IX6tFLIzEBiWQxJuqN6MUjJiIkLJK3pUBDt7tp35oQwn/w4l/x4kGNV0/e/DcW2IOikzSZzsxL+8aPpDDoul9OamFxaXklvZpZW9/Y3Mpu79yaMNaM11goQ93wwXApFK+hQMkbkeYQ+JLX/cHlxK/fc21EqG5wGPFWAD0luoIBWqmdPfQkqJ7k1DOiF8BdMY9FDyEuJPejPBY8PY20szm35E5B/5JyQnIkQbWd/fQ6IYsDrpBJMKZZdiNsjUCjYJKPM15seARsAD3etFRBwE1rNN1pTA+s0qHdUNujkE7VnxMjCIwZBr5NBoB9M+9NxP+8Zozds9ZIqChGrtjsoW4sKYZ0UhDtCM0ZyqElwLSwf6WsDxoY2hoztoTy/Mp/Se24dF5yr09ylYukjTTZI/skT8rklFTIFamSGmHkgTyRF/LqPDrPzpvzPoumnGRml/yC8/ENAMSdLw==</latexit>

�g
<latexit sha1_base64="Q5enSORQ3a5Jz94uMA/nmJeshhs=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oQY8VjC20oUy2m3bpbhJ3N0IJ/RNePKh49fd489+4bXPQ1gcDj/dmmJkXpoJr47rfztLyyuraemmjvLm1vbNb2dt/0EmmKPNpIhLVClEzwWPmG24Ea6WKoQwFa4bD64nffGJK8yS+N6OUBRL7MY84RWOlVucGpUTS71aqbs2dgiwSryBVKNDoVr46vYRmksWGCtS67bmpCXJUhlPBxuVOplmKdIh91rY0Rsl0kE/vHZNjq/RIlChbsSFT9fdEjlLrkQxtp0Qz0PPeRPzPa2cmughyHqeZYTGdLYoyQUxCJs+THleMGjGyBKni9lZCB6iQGhtR2Ybgzb+8SPzT2mXNvTur1q+KNEpwCEdwAh6cQx1uoQE+UBDwDK/w5jw6L8678zFrXXKKmQP4A+fzB9zCj2M=</latexit><latexit sha1_base64="Q5enSORQ3a5Jz94uMA/nmJeshhs=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oQY8VjC20oUy2m3bpbhJ3N0IJ/RNePKh49fd489+4bXPQ1gcDj/dmmJkXpoJr47rfztLyyuraemmjvLm1vbNb2dt/0EmmKPNpIhLVClEzwWPmG24Ea6WKoQwFa4bD64nffGJK8yS+N6OUBRL7MY84RWOlVucGpUTS71aqbs2dgiwSryBVKNDoVr46vYRmksWGCtS67bmpCXJUhlPBxuVOplmKdIh91rY0Rsl0kE/vHZNjq/RIlChbsSFT9fdEjlLrkQxtp0Qz0PPeRPzPa2cmughyHqeZYTGdLYoyQUxCJs+THleMGjGyBKni9lZCB6iQGhtR2Ybgzb+8SPzT2mXNvTur1q+KNEpwCEdwAh6cQx1uoQE+UBDwDK/w5jw6L8678zFrXXKKmQP4A+fzB9zCj2M=</latexit><latexit sha1_base64="Q5enSORQ3a5Jz94uMA/nmJeshhs=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oQY8VjC20oUy2m3bpbhJ3N0IJ/RNePKh49fd489+4bXPQ1gcDj/dmmJkXpoJr47rfztLyyuraemmjvLm1vbNb2dt/0EmmKPNpIhLVClEzwWPmG24Ea6WKoQwFa4bD64nffGJK8yS+N6OUBRL7MY84RWOlVucGpUTS71aqbs2dgiwSryBVKNDoVr46vYRmksWGCtS67bmpCXJUhlPBxuVOplmKdIh91rY0Rsl0kE/vHZNjq/RIlChbsSFT9fdEjlLrkQxtp0Qz0PPeRPzPa2cmughyHqeZYTGdLYoyQUxCJs+THleMGjGyBKni9lZCB6iQGhtR2Ybgzb+8SPzT2mXNvTur1q+KNEpwCEdwAh6cQx1uoQE+UBDwDK/w5jw6L8678zFrXXKKmQP4A+fzB9zCj2M=</latexit>

i
<latexit sha1_base64="20MhR5sHc7vVaUSreREpRZNujxI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWavFepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifPz2gjMA=</latexit><latexit sha1_base64="20MhR5sHc7vVaUSreREpRZNujxI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWavFepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifPz2gjMA=</latexit><latexit sha1_base64="20MhR5sHc7vVaUSreREpRZNujxI=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWavFepujV3BrJMvIJUoUCjV/nq9hOWxSgNE1TrjuemJsipMpwJnJS7mcaUshEdYMdSSWPUQT47dEJOrdInUaJsSUNm6u+JnMZaj+PQdsbUDPWiNxX/8zqZia6CnMs0MyjZfFGUCWISMv2a9LlCZsTYEsoUt7cSNqSKMmOzKdsQvMWXl4l/Xruuuc2Lav2mSKMEx3ACZ+DBJdThDhrgAwOEZ3iFN+fReXHenY9564pTzBzBHzifPz2gjMA=</latexit>

j
<latexit sha1_base64="ugS0+FcrYvwgOvRqAbuDVIYeg70=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx5bMLbQhrLZTtptN5uwuxFK6C/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYuixWMSqHVCNgkv0DDcC24lCGgUCW8H4bua3nlBpHssHM0nQj+hA8pAzaqzUHPXKFbfqzkFWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5L3VRjQtmYDrBjqaQRaj+bHzolZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1ITXfsZlkhqUbLEoTAUxMZl9TfpcITNiYgllittbCRtSRZmx2ZRsCLXll1eJd1G9qbrNy0r9Nk+jCCdwCudQgyuowz00wAMGCM/wCm/OyHlx3p2PRWvByWeO4Q+czx8/I4zB</latexit><latexit sha1_base64="ugS0+FcrYvwgOvRqAbuDVIYeg70=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx5bMLbQhrLZTtptN5uwuxFK6C/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYuixWMSqHVCNgkv0DDcC24lCGgUCW8H4bua3nlBpHssHM0nQj+hA8pAzaqzUHPXKFbfqzkFWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5L3VRjQtmYDrBjqaQRaj+bHzolZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1ITXfsZlkhqUbLEoTAUxMZl9TfpcITNiYgllittbCRtSRZmx2ZRsCLXll1eJd1G9qbrNy0r9Nk+jCCdwCudQgyuowz00wAMGCM/wCm/OyHlx3p2PRWvByWeO4Q+czx8/I4zB</latexit><latexit sha1_base64="ugS0+FcrYvwgOvRqAbuDVIYeg70=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx5bMLbQhrLZTtptN5uwuxFK6C/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYuixWMSqHVCNgkv0DDcC24lCGgUCW8H4bua3nlBpHssHM0nQj+hA8pAzaqzUHPXKFbfqzkFWSS0nFcjR6JW/uv2YpRFKwwTVulNzE+NnVBnOBE5L3VRjQtmYDrBjqaQRaj+bHzolZ1bpkzBWtqQhc/X3REYjrSdRYDsjaoZ62ZuJ/3md1ITXfsZlkhqUbLEoTAUxMZl9TfpcITNiYgllittbCRtSRZmx2ZRsCLXll1eJd1G9qbrNy0r9Nk+jCCdwCudQgyuowz00wAMGCM/wCm/OyHlx3p2PRWvByWeO4Q+czx8/I4zB</latexit>
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i =

p
W�+

i
<latexit sha1_base64="ab73Ozy0drkhgKovuUlfShLQnMU=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFEISSiKAehKoXjxWMKTRp2Gw37dLdJO5uhBLqxb/ixYOKV3+GN/+N2zYHbX0w8Hhvhpl5YcqoVJb1bZTm5hcWl8rLlZXVtfUNc3PrTiaZwMTBCUtEM0SSMBoTR1HFSDMVBPGQETfsX41894EISZP4Vg1S4nPUjWlEMVJaCsydi4C23XNP3guVu0NP0i5H7cOABmbVqlljwFliF6QKCjQC88vrJDjjJFaYISlbtpUqP0dCUczIsOJlkqQI91GXtDSNESfSz8cfDOG+VjowSoSuWMGx+nsiR1zKAQ91J0eqJ6e9kfif18pUdOrnNE4zRWI8WRRlDKoEjuKAHSoIVmygCcKC6lsh7iGBsNKhVXQI9vTLs8Q5qp3VrJvjav2ySKMMdsEeOAA2OAF1cA0awAEYPIJn8ArejCfjxXg3PiatJaOY2QZ/YHz+ALQulpw=</latexit><latexit sha1_base64="ab73Ozy0drkhgKovuUlfShLQnMU=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFEISSiKAehKoXjxWMKTRp2Gw37dLdJO5uhBLqxb/ixYOKV3+GN/+N2zYHbX0w8Hhvhpl5YcqoVJb1bZTm5hcWl8rLlZXVtfUNc3PrTiaZwMTBCUtEM0SSMBoTR1HFSDMVBPGQETfsX41894EISZP4Vg1S4nPUjWlEMVJaCsydi4C23XNP3guVu0NP0i5H7cOABmbVqlljwFliF6QKCjQC88vrJDjjJFaYISlbtpUqP0dCUczIsOJlkqQI91GXtDSNESfSz8cfDOG+VjowSoSuWMGx+nsiR1zKAQ91J0eqJ6e9kfif18pUdOrnNE4zRWI8WRRlDKoEjuKAHSoIVmygCcKC6lsh7iGBsNKhVXQI9vTLs8Q5qp3VrJvjav2ySKMMdsEeOAA2OAF1cA0awAEYPIJn8ArejCfjxXg3PiatJaOY2QZ/YHz+ALQulpw=</latexit><latexit sha1_base64="ab73Ozy0drkhgKovuUlfShLQnMU=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL4tFEISSiKAehKoXjxWMKTRp2Gw37dLdJO5uhBLqxb/ixYOKV3+GN/+N2zYHbX0w8Hhvhpl5YcqoVJb1bZTm5hcWl8rLlZXVtfUNc3PrTiaZwMTBCUtEM0SSMBoTR1HFSDMVBPGQETfsX41894EISZP4Vg1S4nPUjWlEMVJaCsydi4C23XNP3guVu0NP0i5H7cOABmbVqlljwFliF6QKCjQC88vrJDjjJFaYISlbtpUqP0dCUczIsOJlkqQI91GXtDSNESfSz8cfDOG+VjowSoSuWMGx+nsiR1zKAQ91J0eqJ6e9kfif18pUdOrnNE4zRWI8WRRlDKoEjuKAHSoIVmygCcKC6lsh7iGBsNKhVXQI9vTLs8Q5qp3VrJvjav2ySKMMdsEeOAA2OAF1cA0awAEYPIJn8ArejCfjxXg3PiatJaOY2QZ/YHz+ALQulpw=</latexit>
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<latexit sha1_base64="orTlzv22IqsXs3CuEgWvXNpuFfo=">AAACDXicbVA9SwNBEN3zM8avqKXNYgjYGO5EUAshaqFlBGMCucsxt9lLluzenbt7QjjyC2z8KzYWKrb2dv4bNx+FJj4YeLw3w8y8IOFMadv+tubmFxaXlnMr+dW19Y3Nwtb2nYpTSWiNxDyWjQAU5SyiNc00p41EUhABp/Wgdzn06w9UKhZHt7qfUE9AJ2IhI6CN5BdK5z5rhWeuupc6c69ACMDhwFWp8JmrWEdA68BnfqFol+0R8CxxJqSIJqj6hS+3HZNU0EgTDko1HTvRXgZSM8LpIO+miiZAetChTUMjEFR52eidAS4ZpY3DWJqKNB6pvycyEEr1RWA6BeiumvaG4n9eM9XhiZexKEk1jch4UZhyrGM8zAa3maRE874hQCQzt2LSBQlEmwTzJgRn+uVZUjssn5btm6Ni5WKSRg7toj20jxx0jCroGlVRDRH0iJ7RK3qznqwX6936GLfOWZOZHfQH1ucPsKicFg==</latexit><latexit sha1_base64="orTlzv22IqsXs3CuEgWvXNpuFfo=">AAACDXicbVA9SwNBEN3zM8avqKXNYgjYGO5EUAshaqFlBGMCucsxt9lLluzenbt7QjjyC2z8KzYWKrb2dv4bNx+FJj4YeLw3w8y8IOFMadv+tubmFxaXlnMr+dW19Y3Nwtb2nYpTSWiNxDyWjQAU5SyiNc00p41EUhABp/Wgdzn06w9UKhZHt7qfUE9AJ2IhI6CN5BdK5z5rhWeuupc6c69ACMDhwFWp8JmrWEdA68BnfqFol+0R8CxxJqSIJqj6hS+3HZNU0EgTDko1HTvRXgZSM8LpIO+miiZAetChTUMjEFR52eidAS4ZpY3DWJqKNB6pvycyEEr1RWA6BeiumvaG4n9eM9XhiZexKEk1jch4UZhyrGM8zAa3maRE874hQCQzt2LSBQlEmwTzJgRn+uVZUjssn5btm6Ni5WKSRg7toj20jxx0jCroGlVRDRH0iJ7RK3qznqwX6936GLfOWZOZHfQH1ucPsKicFg==</latexit><latexit sha1_base64="orTlzv22IqsXs3CuEgWvXNpuFfo=">AAACDXicbVA9SwNBEN3zM8avqKXNYgjYGO5EUAshaqFlBGMCucsxt9lLluzenbt7QjjyC2z8KzYWKrb2dv4bNx+FJj4YeLw3w8y8IOFMadv+tubmFxaXlnMr+dW19Y3Nwtb2nYpTSWiNxDyWjQAU5SyiNc00p41EUhABp/Wgdzn06w9UKhZHt7qfUE9AJ2IhI6CN5BdK5z5rhWeuupc6c69ACMDhwFWp8JmrWEdA68BnfqFol+0R8CxxJqSIJqj6hS+3HZNU0EgTDko1HTvRXgZSM8LpIO+miiZAetChTUMjEFR52eidAS4ZpY3DWJqKNB6pvycyEEr1RWA6BeiumvaG4n9eM9XhiZexKEk1jch4UZhyrGM8zAa3maRE874hQCQzt2LSBQlEmwTzJgRn+uVZUjssn5btm6Ni5WKSRg7toj20jxx0jCroGlVRDRH0iJ7RK3qznqwX6936GLfOWZOZHfQH1ucPsKicFg==</latexit>

!
<latexit sha1_base64="nKbq4ld48MZm/nRY76Mc3eLbjYk=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrhJ0gHuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wf8RI7u</latexit><latexit sha1_base64="nKbq4ld48MZm/nRY76Mc3eLbjYk=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrhJ0gHuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wf8RI7u</latexit><latexit sha1_base64="nKbq4ld48MZm/nRY76Mc3eLbjYk=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIbhJIljA7mU3GzGOZmRXCkn/w4kHFqx/kzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4dNozJNaEgUV7odY0M5kzS0zHLaTjXFIua0FY9up37riWrDlHyw45RGAg8kSxjB1knNrhJ0gHuVql/zZ0DLJChIFQo0epWvbl+RTFBpCcfGdAI/tVGOtWWE00m5mxmaYjLCA9pxVGJBTZTPrp2gU6f0UaK0K2nRTP09kWNhzFjErlNgOzSL3lT8z+tkNrmKcibTzFJJ5ouSjCOr0PR11GeaEsvHjmCimbsVkSHWmFgXUNmFECy+vEzC89p1zb+/qNZvijRKcAwncAYBXEId7qABIRB4hGd4hTdPeS/eu/cxb13xipkj+APv8wf8RI7u</latexit>
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Figure 4.1: An ensemble of N spin 1/2 particles pumped at rate W , experiencing collective emission
at rate ∝ fΓ and collective spin-exchange interactions (orange), ∝ gΓ, form the basis of the superra-
diant TC. The elastic interactions imprint collective spin oscillations at frequency ω spontaneously
breaking the time translation symmetry (manifested as persistent oscillations in the unequal time
spin-spin correlation function in the thermodynamic limit).

interaction strengths that grows as the square root of the particle number. An additional feature is

that due to the open nature of the quantum system, the time crystal will emerge regardless of the

initial state, in contrast with Hamiltonian systems. Finally, we will show via a spectral analysis

of the Liouvillian how these various parameters impact the emergence of the time crystal and the

growth of mutual information in the transient dynamics.

4.2 Model

We consider an ensemble of N spin-1/2 particles, whose evolution is described by a master

equation for the density matrix ρ̂,

∂ρ̂

∂t
=L[ρ̂] = −i[Ĥ, ρ̂] + D[ρ̂], (4.1)

Ĥ =gΓŜ+Ŝ− +

N∑

i=1

δi
2
σ̂zi , (4.2)
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where Ŝ± ≡ ∑N
i=1 σ̂

±
i and σ̂ai are the Pauli matrices (a = x, y, z) acting on spin i = 1, ..., N . The

first term in the Hamiltonian Ĥ is a collective spin exchange, an ellastic interaction whereby each

particle can exchange a photon with every other one with equivalent rate. We do not normalize

the exchange term by N to remain consistent with other experimental work [129, 108]. The second

term in the Hamiltonian is the disorder to the detuning from the cavity mode. For simplicity, but

without loss of generality, we assume the δi’s are distributed according to a Lorentzian of width ∆

and zero mean.

The dissipator D[ρ̂] = LW (ρ̂) + Lf (ρ̂) encodes two channels via the usual Lindblad super-

operator L[Ô](ρ̂) = Ôρ̂Ô† − 1
2

{
Ô†Ô, ρ̂

}
:

LW (ρ̂) ≡
∑

i

L[ÂWi ](ρ̂)

Lf (ρ̂) ≡
∑

i

L[Âfi ](ρ̂)

where local, incoherent pumping is described by ÂWi =
√
Wσ+i , and collective emission is described

by Âf =
√
fΓŜ−. The parameter Γ sets the scale of the spin-spin interactions, while g and f

are dimensionless parameters characterizing the relative strength of their corresponding elastic and

dissipative part respectively. The use of a master equation [103, 39] to deal with the dissipative

processes is extremely accurate for the experimental systems discussed below [129, 155]. Note that

the dissipative part of (4.1) D[ρ̂] will preserve U(1) phase symmetry, i.e. will be invariant under the

transformation σ̂+j → σ̂+j e
iϕ. In addition, this term will allow for the dynamics to proceed through

different eigenspaces of collective total spin S2 (with eigenvalues S(S+1)), therefore dynamics will

not be restricted to the S = N/2 manifold of the initial state.

We now turn our attention to establishing that the above system has the needed to properties

to be considered a time crystal. To do this, we must establish that it exhibits synchronization, an

oscillation in the non-equilibrium steady-state that is necessarily independent of any external drive

since pumping is incoherent, and robustness to disorder in the system. We begin by an analysis

in the mean-field to establish synchronization before considering quantum correlations to establish

the other properties.
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4.3 Mean-field analysis

In a mean-field approach, we assume that the many-body density matrix of the system can

be factorized as the tensor product of single site density matrices ρ̂ =
⊗N

a=1 ρ̂a. We can derive the

equations of motion for σ̂+a and σ̂za via the master equation (4.1) closing to first order expectations

by noting in this case that ⟨σ̂αa σ̂βb ⟩ = ⟨σ̂αa ⟩⟨σ̂βb ⟩. The components of the single site density matrix

ρ̂a can be visualized as a Bloch vector, S⃗a = {Ra cosϕa, Ra sinϕa, sa} where ⟨σ̂+a ⟩ ≡ Rae
−iϕa and

⟨σ̂za⟩ ≡ sa. This approach results in the system of 3N coupled ordinary differential equations

dsa
dt

= −ΓRa
∑

b ̸=a
Rb [f cos(ϕb − ϕa) + 2g sin(ϕb − ϕa)]

− fΓ

(
1

2
+ sa

)
+W

(
1

2
− sa

)
,

dRa
dt

= −(fΓ +W )

2
Ra + Γsa

∑

b̸=a

Rb [f cos(ϕb − ϕa) + 2g sin(ϕb − ϕa)] ,

dϕa
dt

= −δa +
Γsa
Ra

∑

b ̸=a
Rb [f sin(ϕb − ϕa) − 2g cos(ϕb − ϕa)] .

(4.3)

The equation that determines the evolution of the phase ϕa is remarkably similar to the Kuramoto-

Sakaguchi model for synchronization of phase oscillators [151], which can be written as

dϕa
dt

= δa +
∑

b ̸=a
[f sin(ϕb − ϕa) − g cos(ϕb − ϕa)] . (4.4)

While the evolution of the phases in Eq. (4.3) is coupled to the other dynamical variables, we find

that our model also supports synchronized solutions.

Comparing terms in the mean-field phase equation in (4.3) and the Kuramoto-Sakaguchi

model in (4.4), we see that the collective dissipation term f is associated with the sine term in the

Kuramoto model [100] responsible for synchronization. For synchronization to occur, the coupling

strength per oscillator, here proportional to fΓsi > 0 , must be positive and large enough to

compensate for the dephasing generated by the different single particle frequencies. This condition

is only possible in the presence of incoherent pumping and thus intrinsic to our setup since a

coherent drive does not lead to population inversion in the steady-state [38, 59]. The elastic

interaction term g is associated with the cosine term of the Kuramoto-Sakaguchi model [151] that
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determines the frequency of the collective oscillation. The effective field not only induces a net

collective precession but also favors spin alignment and self-rephasing against the depolarization

induced by the inhomogeneous field as theoretically and experimentally demonstrated in prior

work [60, 144, 54, 95, 119, 129, 28]. Thus we see how both the inelastic and elastic interactions are

responsible for the emergence of the time crystal.

We now demonstrate the existence of a synchronized, periodic steady-state in the mean-field

in the absence of detunings by setting all of the δa values in (4.1) to zero and determining the

properties of the steady-state solution. Later we will restore the detunings and show that this state

is robust to this kind of disorder. We define an order parameter S+ =
∑

aRae
iϕa = NZe−iωMFt and

focus on its normalized magnitude Z and frequency ωMF. The system synchronizes if we can find

a stationary state in the co-rotating frame with frequency ωMF where Z acquires a positive real

value, which is self-consistently determined from the system’s parameters [120, 185]. To show this,

following the analysis in [185], we start with the ansatz ϕa = ωMFt, Ra = R, Ṙ = 0, sa = s, ṡ = 0.

This gives

s =
fΓ +W

2fNΓ
, (4.5)

R =

√
fNΓ(W − fΓ) − (fΓ +W )2√

2fNΓ
, (4.6)

ωMF =
g(fΓ +W )

f
, (4.7)

and, in this case, we have Z = R. The order parameter is nonzero only when fNΓ(W −Γ)− (fΓ +

W )2 > 0, which occurs in the finite range N − 2 −
√
N2 − 8N < 2W/(fΓ) < N − 2 +

√
N2 − 8N .

For N ≫ 1, this simplifies to fΓ < W < fNΓ. In particular, we note that when W < fΓ there

is no positive solution. Thus, only intermediate values of pumping can bring the system to a

synchronized state. There is a synchronized solution (i.e., Z > 0) only if N ≥ 8, corresponding to

an onset at W = 3fΓ.

We can find an optimal pumping value Wopt at which the order parameter achieves a maxi-
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mum. In the thermodynamic (large N) limit, the optimal pumping is given by

Wopt =
fNΓ

2
. (4.8)

At optimal pumping, the oscillation frequency is

ωoptMF =
gNΓ

2
, (4.9)

and the order parameter takes the value Zopt = 1/
√

8. Additional results from the mean-field

analysis including disorder can be found in appendix A.

4.4 Quantum model

To understand how the time crystal emerges when considering effects beyond the mean-field,

we will be interested in analyzing an order parameter given by the two-time correlation function

C(τ) ≡ lim
t→∞

∑N
i=1,j=1⟨σi+(t+ τ)σj

−(t)⟩
N2

. (4.10)

Our analysis is based on an efficient exact numerical solution of the master equation (4.1) that uses

spin permutation symmetry to drastically improve the exponential scaling of the Liouville space

from 4N to O(N3) [67, 178, 154]. C(τ) is computed via the linear quantum regression theorem [39],

⟨σ̂+i (t+ τ)σ̂−j (t)⟩ = Tr
[
σ̂+i e

Lτ [σ̂−j ρ̂(t)]
]
, which is exact for the case of a master equation.

Setting τ = 0 and taking the square-root, we see that

ZQ ≡
√

C(0) =
1

N

√√√√
N∑

i=1,j=1

⟨σi+(t)σj−(t)⟩ =
1

N

√
⟨S+S−⟩

is the analogous value of the order parameter Z from the mean-field analysis allowing for quantum

correlations, as applying the mean-field assumption to this expression reduces it to |S+(t)|/N . Sim-

ilarly to its mean-field counterpart, the value of ZQ is nonzero within a certain window of pumping,

reaching an optimal value ZoptQ ≈ 1/
√

8 at Wopt approximately independent of g corresponding

to maximal synchronization. Looking at C(τ) for τ > 0, we see a dependence on g similar to the

mean-field case in the range 1/N ≲ g/f ≲
√
N , where C(τ) oscillates with the mean-field frequency
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Figure 4.2: (a) Real part of C(τ) as a function of the characteristic time η ≡ fNΓτ at optimal
pumping and g/f = 1/2 for a system of N = 10 (blue), N = 50 (red), and N = 100 (orange) spins
along with the finite size scaling prediction in the thermodynamic limit (purple). (b) Extracted
ratio of the absolute value of C(τ) angular frequency |ω| over its spectral width B vs system size
N and interaction coupling g/f . We also show a frequency contour corresponding to ωoptMF/fΓ ∼ 5
(purple) and a contour of mutual information growth corresponding to fΓ/I ′(η = 0.03) ∼ 80
(yellow). (c) Growth rate of two-particle mutual information at short characteristic times (here we
set η = 0.03) starting from a maximally coherent array ⟨σxi (0)⟩ = 1.

ωoptMF. While these oscialltions decay, they appear to become persistent with constant amplitude

as N increases, thus being consistent with the requirement for a time crystal that there be stable

oscillations in the thermodynamic limit. This can be seen in figure 4.2 (a), where C(τ) is plotted

as a function of the characteristic time η ≡ fNΓτ for N = 10, 50 and N = 100.

In contrast with the mean field, which showed unbounded frequency of oscillations as a

function of N and g, it is known that large many-body correlations can lead to melting of the

time crystal [179, 91]. To consider our time crystal stable, we need to see a non-vanishing number

of oscillations before the decay seen in figure 4.2 (a) can eliminate them. We show this region of

stability in figure 4.2 (b), which plots the ratio of the angular frequency of the C(τ) oscillations ω

to the decay rate, or bandwidth B, defined as the full-width-at-half-max (FWHM) of the discrete

Fourier transform of the numerically determined solution.

We can understand the boundaries of this region by looking at the eigenvalues of the Liouvil-

lian L defining (4.1), which determines the dynamics of C(τ) via the quantum regression formula.

We can see that the eigenvalues with non-zero imaginary part and smallest real part will deter-

mine the oscillatory behavior of the two-time correlator for the stable steady-state solution, while
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modes with larger negative real part will decay away relatively quickly and contribute less to the

dynamics. In our analysis, the details of which can be found in appendix A, for moderate values

of g/f there will exist eigenvalues of L with non-zero imaginary part and small, negative real part

and eigenvectors that are not orthogonal to limt→∞ S−ρ̂(t), the state that eLτ operates on in the

quantum regression theorem. These eigenvalues enable an oscillatory solution and determine its

frequency. As g/f grows, however, so does the negative real part of these eigenvalues, increasing

the decay rate and damping the time crystal.

We can also see a relationship between the stable region of the time crystal and the devel-

opment of many-body correlations during the transient dynamics, seen in the rate of increase of

mutual information IAB ≡ SA + SB − SAB, where Sα = −Tr
[
ρ̂α log[ρ̂α]

]
is the Von Neumann

entropy computed from the reduced density matrix ρ̂α of the subsystem α = A,B,AB (AB is the

joint subsystem).

As seen in detail in appendix A, the same relationship exists between the eigenvalues of L and

the growth rate of IAB for small times in the transient dynamics as was seen above with regard to

damping of the time crystal. Specifically, we find that in the large N limit and short characteristic

times η ≪ 1 (respect to the oscillation period), with η ≡ fNΓτ , the growth rate of the mutual

information approaches dIAB/dτ ∼ fΓ
2

(
1
N + 4g2

Nf2
η
)

and thus remains irrelevant for g/f ≲
√
N .

This parameter regime is consistent with the range of g/f values where we observe that the time

crystal forms. Outside this region, IAB grows rapidly with increasing g/f (see figure 4.2 (c)).

This consistency between many-body correlations and damping is illustrated in figure 4.2

(b), where a contour of figure 4.2 (c) given by g/f ∝
√
N is shown bounding the stability region

from above. We also illustrate a frequency ωoptMF/fΓ contour which corresponds to g/f ∝ 1/N

bounding the region from below as sufficient g/f is needed to sustain oscillations. From these

considerations we can conclude that the superradiant crystal only exists in the parameter regime

where many-body correlations are subdominant and thus it can be regarded as an emergent semi-

classical non-equilibrium state of matter.

Many of the results in this section will prove to be consistent with results employing a second-
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order cumulant expansion [22], discussed in the next section, an approximation which is necessary

to assess the case with disorder ∆ ̸= 0.

4.5 Cumulant expansion analysis

To obtain a model that can capture both many-body correlations and nonzero disorder, we

turn to a second-order cumulant expansion, which assumes joint cumulants of order three and

higher are zero, resulting in the following expansion for third-order expectations:

⟨σ̂αa σ̂βb σ̂γc ⟩ ≈ ⟨σ̂αa σ̂βb ⟩⟨σ̂γc ⟩ + ⟨σ̂βb σ̂γc ⟩⟨σ̂αa ⟩ + ⟨σ̂αa σ̂γc ⟩⟨σ̂βb ⟩ − 2⟨σ̂αa ⟩⟨σ̂βb ⟩⟨σ̂γc ⟩. (4.11)

In this Section, we present the equations of motion that result, obtain results for the homogeneous

system that connect the two-time correlation oscillation frequency to the mean-field frequency,

compare the mean-field and cumulant frequencies for systems with nonzero disorder, and perform

benchmarking of the cumulant model against exact solutions.

The full equations of motion using the cumulant expansion can be found in appendix A,

but they together provide approximate equations of motion as an O(N2) non-linear system of

ODEs. Assuming ∆ = 0, all dependent variables are independent of particle number. This means

expectations in the cumulant equations of motion that differ only by particle indices are equal.
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Taking this into consideration, we arrive at the following system for ⟨σ̂za⟩, ⟨σ̂+a σ̂−b ⟩, and ⟨σ̂zaσ̂zb ⟩:

d⟨σ̂za⟩
dt

= −2Γf(N − 1)Re(⟨σ̂+a σ̂−b ⟩) + 4Γg(N − 1)Im(⟨σ̂+a σ̂−b ⟩) − ⟨σ̂za⟩(Γf +W ) − Γf +W,

(4.12)

d⟨σ̂+a σ̂−b ⟩
dt

=
1

2
Γ(N − 2)(f − i2g)

(
−2⟨σ̂+a ⟩⟨σ̂za⟩⟨σ̂+a ⟩∗ + ⟨σ̂zaσ̂+b ⟩⟨σ̂+a ⟩∗ + ⟨σ̂+a ⟩⟨σ̂zaσ̂+b ⟩∗ + ⟨σ̂+a σ̂−b ⟩∗⟨σ̂za⟩

)

+
1

2
Γ(N − 2)(f + i2g)

(
−2⟨σ̂+a ⟩⟨σ̂za⟩⟨σ̂+a ⟩∗ + ⟨σ̂zaσ̂+b ⟩⟨σ̂+a ⟩∗ + ⟨σ̂+a ⟩⟨σ̂zaσ̂+b ⟩∗ + ⟨σ̂+a σ̂−b ⟩⟨σ̂za⟩

)

+
1

2
Γf(⟨σ̂za⟩ + ⟨σ̂zaσ̂zb ⟩) + ⟨σ̂+a σ̂−b ⟩(−(Γf +W )), (4.13)

d⟨σ̂zaσ̂zb ⟩
dt

= −4Γ(N − 2)Re
(
(f + i2g)

(
−2⟨σ̂+a ⟩⟨σ̂za⟩⟨σ̂+a ⟩∗ + ⟨σ̂zaσ̂+b ⟩⟨σ̂+a ⟩∗ + ⟨σ̂+a ⟩⟨σ̂zaσ̂+b ⟩∗ + ⟨σ̂+a σ̂−b ⟩⟨σ̂za⟩

))

+ 4ΓfRe
(
⟨σ̂+a σ̂−b ⟩

)
+ 2⟨σ̂za⟩(W − Γf) − 2⟨σ̂zaσ̂zb ⟩(Γf +W ). (4.14)

We would like to determine steady state values for the various parameters. Simulations and

exact solutions for small systems motivate the following ansatz:

⟨σ̂+a ⟩ = ⟨σ̂zaσ̂+b ⟩ = ⟨σ̂+a σ̂+b ⟩ = 0, (4.15)

⟨σ̂za⟩ = α, (4.16)

⟨σ̂+a σ̂−b ⟩ = β, (4.17)

⟨σ̂zaσ̂zb ⟩ = γ, (4.18)

where α, β, γ are real and time-independent. The above system then reduces to

0 = −2Γf(N − 1)β − (Γf +W )α− Γf +W, (4.19)

0 = Γf(N − 2)αβ +
1

2
Γf(α+ γ) − (Γf +W )β, (4.20)

0 = −4Γf(N − 2)αβ + 4Γfβ + 2(W − Γf)α− 2(Γf +W )γ. (4.21)

This nonlinear system can be solved, giving the following steady-state values for ⟨σ̂+a σ̂−b ⟩ and ⟨σ̂za⟩:

⟨σ̂+
a σ̂

−
b ⟩SS =

f2Γ2(2 − 3N) + fΓ(N − 5)W −W 2

4f2Γ2(N − 2)(N − 1)

+

√
(f2Γ2(3N − 2) − fΓ(N − 5)W +W 2)

2 − 8f3Γ3(N − 2)(N − 1)(fΓ −W )

4f2Γ2(N − 2)(N − 1)
, (4.22)
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⟨σ̂z
a⟩SS =

f2Γ2(N + 2) + fΓ(N + 1)W +W 2

2fΓ(N − 2)(fΓ +W )

−

√
(f2Γ2(3N − 2) − fΓ(N − 5)W +W 2)

2 − 8f3Γ3(N − 2)(N − 1)(fΓ −W )

2fΓ(N − 2)(fΓ +W )
. (4.23)

Again using the notation W = wN and taking N ≫ 1, Eq. (4.22) simplifies to

⟨σ̂+a σ̂−b ⟩SS = − 1

4Γ2f2
[
w2 − Γfw

]
+

1

4Γ2f2

√
[w2 − Γfw]2

= − 1

4Γ2f2
w (w − Γf) +

1

4Γ2f2
|w| |w − Γf |

=





− 1
2Γ2f2

w (w − Γf) w ∈ [0, Γf ]

0 w > Γf

(4.24)

From here we see that wopt = fΓ/2 and ⟨σ̂+a σ̂−b ⟩opt = 1/8. Note that this is the same value for

optimal pumping seen in the mean-field case in Eq. (4.8) and the same optimal order parameter,

noting that Z2
opt = ⟨σ̂+a σ̂−b ⟩opt = 1/8. Taking N ≫ 1 in Eq. (4.23) gives

⟨σ̂za⟩SS =
1

2fΓ
[(fΓ + w) − |fΓ − w|] =

w

fΓ

where we have assumed w < fΓ in order to be in the synchronized regime according to Eq. (4.24).

If we substitute in wopt, we get ⟨σ̂za⟩SS = 1/2. Note that the steady-state values derived above are

independent of g. This is consistent with numerical solutions of the exact system when ∆ = 0. We

now have a value for optimal pumping and a corresponding steady-state value for ⟨σ̂za⟩, which will

now be used to determine two-time correlation decay rate and frequency.

We can study the analytic properties of C(τ) in the case where ∆ = 0 via a spectral analysis of

the linear equations of motion near the steady-state. Applying the quantum regression theorem to

our equations of motion, and assuming zero disorder and particle symmetry results in the following

equations for the two-time correlation function in the limit t→ ∞:

d

dτ
⟨σ̂+a (t+ τ)σ̂−b (t)⟩ = −Γf +W

2
⟨σ̂+a (t+ τ)σ̂−b (t)⟩ +

Γ

2
(f − i2g)⟨σ̂za(t)⟩⟨σ̂+a (t+ τ)σ̂−a (t)⟩

+
Γ

2
(f − i2g)(N − 2)⟨σ̂za(t)⟩⟨σ̂+a (t+ τ)σ̂−b (t)⟩,

d

dτ
⟨σ̂+a (t+ τ)σ̂−a (t)⟩ = −Γf +W

2
⟨σ̂+a (t+ τ)σ̂−a (t)⟩ +

Γ

2
(f − i2g)(N − 1)⟨σ̂za(t)⟩⟨σ̂+a (t+ τ)σ̂−b (t)⟩,
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where we distinguish between diagonal and off-diagonal correlation functions with the subscripts,

but no longer particle number, so this is simply a linear system of two equations with the matrix




−Γf+W
2 + Γ

2 (f − i2g)(N − 2)⟨σ̂z
a⟩SS

Γ
2 (f − i2g)⟨σ̂z

a⟩SS

Γ
2 (f − i2g)(N − 1)⟨σ̂z

a⟩SS −Γf+W
2


 ,

where we have used limt→∞⟨σ̂za(t)⟩ = ⟨σ̂za⟩SS . Inserting the steady-state value ⟨σ̂za⟩SS = w/Γf , the

eigenvalues are:

λ1 = −w(N + 1) + fΓ

2
+ i

wg

f
,

λ2 = −w + fΓ

2
− i

wg

f
(N − 1).

The real parts of these eigenvalues determine the decay rate of the two-time correlation function.

Note that Re(λ1) is negative and scales linearly with N , so it will cause rapid decay and the

corresponding mode will not contribute meaningfully to oscillations in the thermodynamic limit.

In contrast, the real part of λ2 is independent of N , so oscillation frequency for large N will be

determined by its imaginary part. This will be, for N ≫ 1,

ωC =
wgN

f
,

which agrees with the mean-field estimate to leading order in 1/N . Note also that the real part of

λ2 is proportional to fΓ at optimal pumping, and therefore so is the decay rate. We also notice,

however, that the decay is independent of g. This is not, as we have seen, in agreement with the

exact solution. This constrains the window in g where the cumulant can be applied to small values,

as disparity in decay rate is small in this regime as we will see below. For all numerically derived

results, such as in figure 4.2, spectral width B is used as a proxy for the decay rate given here by

|Re[λ2]|.

Further results comparing the cumulant to the mean-field approximation in the case with

disorder, as well as benchmarking of the approximation against results from simulation of the exact

system in the permutaitionally invariant case, can be found in appendix A.
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Figure 4.3: Finite interactions protect the TC against weak disorder as can be seen in: (a) The
robustness of the averaged C(0), the insensitivity of the time crystal’s (b) frequency, δω(∆), and
(c) spectral width, δB(∆), to weak disorder ∆/(fΓ) for the relevant window of interactions g/f .
All plots are computed using the second order cumulant expansion at optimal pumping Wopt for
N = 100 spins.

4.6 Robustness to disorder

We now investigate the case of inhomogeneous dephasing, δi ̸= 0, to demonstrate the robust-

ness of the time crystal to this form of disorder. We will show that synchronization, frequency,

and decay rate all persist in the presence of weak disorder, and that the interactions g/f provide

a protective effect increasing robustness over the region of stability of the time crystal. For nu-

merical results shown in this section, we will rely on the cumulant expansion discussed in the last

section as exact solvers are not tractable except for small systems where N ≲ 15. Fortunately we

find excellent agreement between the cumulant expansion and the exact solution where results are

accessible for the relevant parameter regimes as shown in appendix A.

Figure 4.3 (a) shows robustness of the synchronization order parameter ZQ ≡
√

C(0) to weak

disorder ∆/fΓ at optimal pumping Wopt over the stable region in g/f . As can be seen, the value

is at or near the optimal over the entire region in g/f for small disorder, with a protective effect

allowing for more disorder as g/f grows larger. One observes that finite elastic interactions protect

the synchronized state against disorder, preserve phase coherence and favor spin alignment. While

similar phase locking effects in the transient dynamics have been experimentally reported in cold

atom experiments [60, 144, 54, 95, 119, 129, 28], the interesting feature observed here is that the

phase locking is achieved in the steady state of a driven dissipative system.
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Figure 4.3 (b) and (c) show robustness in the change of frequency δω(∆) ≡ [ω(∆) − ω(0)] /ω(0)

and bandwidth δB(∆) ≡ [B(∆) −B(0)] /B(0), respectively, of the averaged two-time correlation

function C(τ) as given by the cumulant expansion, where weak disorder induces only a small impact

and once again this impact diminishes with increasing g/f . The observed rigidity of the frequency

also agrees with the simpler mean-field predictions found in appendix A, which allow us to derive

an analytic expression for the protection in the weak disorder limit:

δω(∆) ∼
√

8∆

NΓ
√
f2 + 2g2

,

where we observe the 1/N suppression gained from the collective nature of the elastic and dissipative

interactions.

4.7 Experimental realization and outlook

The superradiant crystal can be directly realized using an array of incoherently pumped

atomic dipoles tightly trapped by a deep optical lattice that is supported by an optical cavity.

The cavity couples two relevant internal states of the atoms, and operates in the bad cavity limit

where the bare atomic linewidth γ is significantly smaller than the cavity linewidth κ. In this

regime the cavity photons do not participate actively in the dynamics but instead mediate collective

dissipative decay (superradiant emission) [73, 120, 19], with fΓ ∝ κ/(4δ2c+κ2), and elastic exchange

interactions, with gΓ ∝ δc/(4δ
2
c +κ2), which can be independently controlled by varying the cavity

detunning δc from the atomic transition. The signature of the TC can then be directly observed in

the spectrum of the light leaked from the cavity [129]. A similar implementation can be realized by

replacing the cavity photons by phonons in an ion crystal [155]. In the case of the cavity, the order

of magnitude for fΓ/2π and gΓ/2π is approximately 10−4 Hz. For typical atom number in the

cavity, N ≈ 105, the TC oscillation frequency approaches ≈ 10 Hz. In the case of the ion crystal,

we have fΓ/2π = gΓ/2π ≈ 6 Hz. In this case the TC oscillation frequency for typical ion number

N ≈ 102 approaches ≈ 103 Hz.

Having demonstrated the rigidity of the TC to dephasing, now we discuss its rigidity to
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variations in the system’s parameters. For the proposed implementation, ωoptMF ∝ Nδc/(4δ
2
c + κ2).

From this expression, one can see ωoptMF is not highly sensitive to variations in the cavity linewidth,

κ, but on the contrary it is linearly sensitive to variations on δc and N . Systematics in the cavity

detuning, nevertheless, can be currently controlled at the subhertz level by locking the cavity to a

state-of-the-art clock laser [18]. Fluctuations in N can be also suppressed by operating the system in

a three dimensional optical lattice in the band or Mott insulator regimes [35] and spectroscopically

selecting a fixed region of the atomic array [118].

In summary, we have proposed and analyzed a novel approach for realizing a time crystal

in a many-body driven dissipative quantum system that spontaneously breaks continuous time

symmetry without a periodic external drive. We have established that it exhibits synchronization,

an oscillatory non-equilibrium steady-state, and robustness to disorder. We have also connected the

emergence of the time crystal to a parameter regime exhibiting minimal many-body correlations,

thus establishing it as an emergent semi-classical non-equilibrium state of matter. Finally, we have

proposed a number of potential platforms via which the time crystal may be realized in experiment.

It is important to emphasize that this system is fundamentally distinct from the prototypical

laser. This can be seen from the fact that the working mechanism of a laser is stimulated emission,

an ingredient absent in our setup. Lasing action is possible even in a single atom system or in the

absence of coupling between the atomic dipoles. The superradiant TC, on the contrary, is a genuine

many-body phenomenon that happens in the bad cavity limit where the mean photon number in

the cavity is less than one. However, even without stimulated emission, superradiance can happen

due to collective interactions in a many-body array of long lived atomic dipoles. The superradiant

TC is thus a genuine many-body phenomenon which can produce spectrally pure light and might

find direct applications in “quantum-interaction enhanced” sensing.
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Chapter 5

Enhanced Spin Squeezing

This chapter is adapted from the publication

K. Tucker, D. Barberena, R. J. Lewis-Swan, J. K Thompson, J. G. Restrepo, A. M. Rey,

”Facilitating spin squeezing generated by collective dynamics with single-particle decoher-

ence”, Phys. Rev. A 102, 051701(R) (2020)

Prologue

In this chapter, we leverage a mean field analysis to establish a phase transition for a system

of two level atoms, dividing regions of phase space where we see different amounts of spin squeezing

in a collective system. We confirm this transition through a cumulant and Monte Carlo wave

function analysis in the Dicke basis, and discover a counter-intuitive relationship between single

particle relaxation and spin squeezing in the transient dynamics that has potential applications in

quantum sensors.

Abstract

We study the generation of spin-squeezing in arrays of long-lived dipoles subject to collective

emission, coherent drive, elastic interactions, and single-particle relaxation. It is found that not

only does single-particle relaxation not necessarily degrade the squeezing generated in the collec-

tive dynamics, but the interplay of single-particle and collective effects can in fact facilitate the

generation of squeezing in a specific parameter regime. This latter behavior is connected to the
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dynamical self-tuning of the system through a dissipative phase transition that is present in the

collective system alone. Our findings will be applicable to next-generation quantum sensors with

an eye towards atomic clocks in cavity-QED set-ups and trapped ion systems.

5.1 Introduction

The preparation of entangled states has become a topic of great interest due to its many appli-

cations in quantum metrology [134] and quantum information [24, 25]. Dissipation can often be an

obstacle to entanglement generation, motivating conventional protocols to generate entanglement

via coherent dynamics and seek to minimize the decoherence induced by couplings to the environ-

ment [110, 80]. Recent work, however, has established that it can be achieved in driven dissipative

systems, where the environment can prove to be a powerful resource for entanglement generation

under the right conditions. For example, it has been shown that an arbitrary entangled pure state

of a system can be reached through Markovian dynamics governed by a master equation if the

appropriate reservoir and system-reservoir couplings are established [98, 56, 51, 90, 99, 112, 138].

These kinds of systems can, in general, exhibit complex physics but they can be difficult to

realize. A convenient platform, however, has emerged in the case of collective spin systems in the

form of ultracold atoms coupled to an optical cavity or trapped ion arrays, where the interplay

between dissipation and a coherent drive can be realized with precision [26, 129, 125, 109, 52, 166,

79, 8, 96, 13, 27, 20, 150, 182, 88, 12]. In fact, these systems have garnered tremendous theoretical

attention for many years [172, 38, 57, 59, 58, 11, 124, 111, 107, 105, 153, 70, 106, 177] given the

emergent new behaviors, critical phenomena, and quantum phases of matter that they can feature.

For example, dynamical phase transitions in collective models, with steady state entanglement in

the form of spin-squeezing [93, 175] near critical points of a transition, have found a broad range of

applications in metrology [153, 70, 106, 177, 11]. Collective spin systems are also convenient from

a modeling perspective as translational symmetry between atoms can be exploited to drastically

reduce the dimension of the Hilbert space [46, 10], while mean-field and cumulant approximations

prove accurate over a broad range of parameter space [11].
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Figure 5.1: (a) Steady-state phase diagram of an ensemble of N spin-1/2 particles subjected to
a coherent drive with Rabi frequency Ω = NΥ/2, collective emission at rate Γ, collective spin-
exchange interactions χ, and single-particle relaxation at rate γs. This system can be engineered
using an optical cavity (b) or trapped ion arrays. The spin-1/2 is encoded in a pair of electronic
states, while the collective dissipation and global spin-spin interactions are mediated by spin-1/2s
exchanging virtual bosons through a common mode. In the absence of single-particle relaxation,
the system undergoes a non-equilibrium phase transition (superradiant to normal) signaled by a
change in the total steady-state atomic inversion, which serves as an order parameter. Approaching
the transition point from the superradiant phase [points (i) and (ii)], the coherent drive (in the
x̂-direction) and collective emission combine to generate spin-squeezing along x̂, as shown in (c)
and (d). In the normal phase no squeezing is observed [point (iii)]. For all three graphs in panel
(c), N = 2000 and all spins are initially polarized along −x̂. Panel (d) explicitly displays the Bloch
sphere overlaid with a squeezed collective spin distribution of the steady-state (pink). Note that
this is for illustrative purposes, and that the actual position and orientation of the squeezing can
vary with parameters. Introducing finite γs allows the system to dynamically traverse the phase-
diagram [red arrow in (a)] and enhances the achievable spin-squeezing in the striped region of panel
(a).

However, a drawback is that such states can take an extremely long time to develop [11, 38].

While much of the previous work has focused on the case of negligible single particle effects, the

general prediction has been that single particle decoherence would prevent any useful entanglement

from developing before the steady-state could be reached making it inaccessible in experiment.
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In this work we demonstrate that, for a system of coherently driven atoms in a cavity un-

dergoing both collective and single particle dissipation, the interplay between single particle and

collective effects accelerates the rate of entanglement generation and improves the overall amount

of transient spin-squeezing, yielding states with more potential metrological utility.

The mechanism driving this phenomenon is the destruction of collective coherence due to

single-particle decoherence, which dynamically reduces the effective particle number, allowing the

system to dynamically traverse the corresponding non-equilibrium phase-diagram [see Fig. 5.1(a)],

and in turn access regimes that may display large transient squeezing. While our analysis of this

phenomenon is framed from a cavity-QED perspective, we note that similar conclusions can be

drawn in more general models including arrays of trapped ions [155, 153, 20, 150] and supercon-

ducting qubits [64, 121].

5.2 Model and definitions

We consider a collection of N atoms in a standing wave optical lattice supported by an

optical cavity, illustrated in Fig. 5.1(b). A single common mode of the cavity is coupled to the

optical transition of the atoms, which encodes a spin-1/2 degree of freedom in the excited |↑⟩ and

ground |↓⟩ states. The cavity is driven by an external coherent field which is tuned resonant to the

atomic transition, and upon adiabatic elimination of the rapidly evolving intracavity field [21] the

dynamics of the atomic degree of freedom can be described by a master equation for the atomic

density operator ρ̂ [11]

∂ρ̂

∂t
= −i[Ĥ, ρ̂] + Lc[ρ̂] + Ls[ρ̂], (5.1)

Ĥ = χĴ+Ĵ− + ΩĴx, (5.2)

where Ĵα =
∑N

i=1
1
2 σ̂

α
i for α = x, y, z, σ̂αi are the Pauli operators on the Hilbert space for spin

i = 1, 2, ..., N , and Ĵ± = Ĵx ± iĴy are collective raising and lowering operators. The first term

in Ĥ corresponds to a collective exchange interaction realized by detuning the cavity from the
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atomic transition and charactized by χ, and the second a coherent drive characterized by Ω. The

dissipative part of (5.1) includes a collective decay term given by Lc[ρ̂] = ΓL(Ĵ−)[ρ̂] that arises

due to leakage of the intracavity field via the mirrors. Both χ and Γ are proportional to the

single-particle co-operativity of the cavity (see appendix B). We also include a single particle re-

laxation due to spontaneous emission or other systematic effects such as light scattering [84] given

by Ls[ρ̂] = γs
∑N

i=1 L(σ̂−i )[ρ̂]. Other types of single-particle decoherence (e.g., dephasing) would

result in similar behavior, though we only consider single-particle relaxation here. The Lindblad

superoperator is given by L(Ô)[ρ̂] = {Ô†Ô, ρ̂}/2 − Ôρ̂Ô† for a given operator Ô.

Note that there is permutational symmetry between different atoms; however, the sponta-

neous emission term does not commute with Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z and, therefore, dynamics are not

restricted to a single eigenspace of Ĵ2 when γs ̸= 0. The translational invariance allows us to solve

for dynamics in the basis corresponding to irreducible representations of the rotation group for the

spin ensemble [46, 10], where exact dynamics can be efficiently simulated using Monte Carlo wave

function methods [184, 123, 135]. In simulations, we restrict our initial states to be coherent spin

states [142], which are eigenstates of Ĵ2 that exhibit the necessary particle symmetry.

5.3 The collective system

Before discussing the effects of single particle relaxation, we review the behavior of the col-

lective system where γs = 0. As the dynamics is entirely described by collective operators, then

the total spin operator Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z is conserved during evolution. For this system, since

our initial state will be a coherent spin state, which is an eigenstate of Ĵ2 with eigenvalue J(J + 1)

with J = N/2, an analytic solution is available for the steady-state density operator ρ̂ss [11, 38].

It has been shown [11, 38] from the resulting collective spin operator expectations that there exists

a second-order non-equilibrium phase transition in the steady state as a function of Υ ≡
(

2Ω/N
)

and for large N , described by an abrupt change in behavior of the order parameter ⟨Ĵz⟩ at a critical

value given by

Υc =
√

Γ2 + 4χ2. (5.3)
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The critical point separates a superradiant phase for Υ < Υc characterized by non-zero

inversion |⟨Ĵz⟩| > 0, and a normal phase for Υ > Υc with zero inversion ⟨Ĵz⟩ = 0 [see Fig. 5.1(a)].

The critical point Υc also delineates two regions with different steady-state behavior. In particular,

there is a change in the steady-state value of the spin-squeezing of the system, defined as [175]

ξ2 = min
n⊥

N∆Ĵ2
n⊥

|⟨Ĵ⟩|2
, (5.4)

where ⟨Ĵ⟩ = (⟨Ĵx⟩, ⟨Ĵy⟩, ⟨Ĵz⟩) is the collective Bloch vector, n⊥ is a unit vector orthogonal to ⟨Ĵ⟩,

and ∆Ĵ2
n⊥

= ⟨(Ĵ · n⊥)2⟩ − ⟨Ĵ · n⊥⟩2 is the variance of the collective spin operator in the direction

of n⊥. A state with a value of ξ2 < 1 indicates the presence of entanglement between the atoms of

the system, and is referred to as a spin squeezed state [158]. It quantifies the utility of the state

for quantum sensing applications [93].

Figure 5.1(c) illustrates that the threshold Υc marks the boundary between a region in which

the steady-state is squeezed and one in which it is not, by plotting the spin-squeezing versus time

on each side of the threshold. In graphs (i) and (ii), on the lower side of the boundary, we see a

squeezed steady-state, with an increase in steady-state squeezing as Υ approaches the threshold at

Υc from below. In graph (iii), where Υ > Υc, we see that there is no longer a squeezed steady-state.

The Υ < Υc side of the critical drive frequency is referred to as the superradiant phase, and the

Υ > Υc side is the normal phase. It should be noted that as Υ approaches the threshold Υc from

below, a careful selection of initial conditions becomes necessary to reach the squeezed steady-state

quickly, and to avoid an oscillatory phase known to exist near the critical point when |χ| > 0 [11].

It is also important to note that the squeezing is predominantly in the azimuthal direction for small

χ/Γ < 1 (see Fig. 5.1(d) and appendix B).

5.4 Effects of single particle relaxation

When γs ̸= 0, Ĵ2 symmetry is broken and the dynamics are no longer confined to a single

manifold of total spin. This means the dynamics are free to explore a larger portion of the full

Hilbert space of 2N states, compared to the limited N + 1 states of the collective model. As a
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Figure 5.2: (a) Squeezing versus time for N = 2000, χ/Γ = 0, Υ/Υc = 0.9, and a range of γs/Γ.
Solid lines indicate squeezing ξ2(t) and dashed lines the corresponding time-dependent effective
system size N eff(t) (matching colors). The horizontal black line corresponds to the critical effective
particle number Nc = 2Ω/Υc for which the transition between superradiant and normal phases
occurs. (b) Squeezing ξ2(t) (solid) and effective system size N eff(t) (dashed) computed from two
individual trajectories of the numerical method with γs/Γ = 4. For each trajectory, N eff(t) crosses
the horizontal line for Nc near the point where its corresponding ξ2(t) reaches a minimum. In each
panel, all spins are initially polarized along −x̂.

result of this increased complexity, an analytic formula for the steady-state is not available in this

case. However, a mean-field analysis can give insight into the steady-state phase diagram of the

system, including the position of critical transitions and transient behavior, and efficient numerical

simulations [184, 123, 135] of the master equation giving the full dynamics of the system can confirm

these properties, and others such as the presence of spin squeezing.

In the mean-field approximation, we derive equations of motion for the expectations of indi-

vidual particle Pauli operators, ∂t⟨σαi (t)⟩ = Tr[σαi ∂tρ̂], from the master equation [Eq. (5.1)]. Due

to the permutational symmetry of the master equation, and assuming the same symmetry applies

to the initial state, these equations will be identical for all particles.

Under the mean-field assumption ρ =
⊗

i ρi, where each ρi is a single particle density, the
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equations can be closed as second-order expectations can be factored as ⟨σαi (t)σβj (t)⟩ = ⟨σαi (t)⟩⟨σβj (t)⟩

when i ̸= j. When i = j, second order expectations can be handled in one of two ways. The first

approach would be to use commutation relations to resolve the product of Pauli operators into a

single operator before taking the expected value, i.e. ⟨σ̂αi σ̂βi ⟩ → δα,β + iϵαβγ⟨σ̂γi ⟩. The second ap-

proach is to factor in the same way as for unlike particles, i.e. ⟨σ̂αi σ̂βi ⟩ → ⟨σ̂αi ⟩⟨σ̂βi ⟩. Previous work

[38] has shown that the former approach aligns with the exact solution when Ĵ2 is not conserved,

and that the latter is accurate otherwise. Since we are interested in the case where γs > 0 and

total spin is not conserved, we factor only unlike particles. Dropping the subscripts due to particle

symmetry and defining ⟨σ+⟩ ≡ reiϕ, and ⟨σz⟩ ≡ z, we arrive at the mean-field equations

ṙ = − Γ + γs
2

r +
Γ

2
(N − 1)z r − Ω

2
z sinϕ (5.5)

ϕ̇ = − χ(N − 1)z − Ω

2r
z cosϕ+ χ (5.6)

ż = − 2Γ(N − 1)r2 − (Γ + γs)(1 + z) + 2Ω r sinϕ. (5.7)

We determine the steady-state at the mean-field level by setting the LHS of Eqs. (5.5)-(5.7)

to zero and solving for (r, ϕ, z). We begin by deriving a steady-state expression for z in terms of

the other variables. From the r equation, we get

0 = −Γ + γs
2

r +
Γ(N − 1)

2
z r − Ω

2
z sinϕ

which implies that

−2(N − 1)Γr2 + 2Ω r sinϕ = −2(Γ + γs)
r2

z
,

where we have assumed z ̸= 0. Plugging this into the z equation gives

0 = − 2(Γ + γs)
r2

z
− (Γ + γs)(1 + z)

⇒ 0 =z2 + z + 2r2,

and subsequently,

z = −1

2
± 1

2

√
1 − 8r2. (5.8)
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Here, we identify that there are two steady-state values of z. A linear stability analysis reveals that

the branch with larger absolute value is stable, while the smaller is unstable. We also see that we

can expect a bifurcation when r passes through 1/
√

8 from below.

We now turn our attention to the steady-state value of r. From the z equation, we see that

4r2Ω2 sin2 ϕ = [2(N − 1)Γ r2 + (Γ + γs)(1 + z)]2, (5.9)

and from the ϕ equation

4r2Ω2 cos2 ϕ =4r2(1 − sin2 ϕ)

=

[
−χ(N − 1)r2 + χ

r2

z

]2
. (5.10)

Combining Eqs. (5.9) and (5.10) we get

4r2Ω2 −
[
2(N − 1)Γ r2 + (Γ + γs)(1 + z)

]2

=

[
−χ(N − 1)r2 + χ

r2

z

]2
, (5.11)

where z is given in terms of r by Eq. (5.8). Note that if we now restrict our attention to leading

order in N , the above implies

4r2Ω2 − 4N2Γ2r4 = N2χ2r4

⇒ r2 =
Ω2

N2(Γ2 + 4χ2)
=

Υ2

4Υ2
c

, (5.12)

a familiar result that shows that we expect an increasing value of r as we increase the Rabi frequency

of the drive Ω. Recall, however, that Eq. (5.8) predicts a phase transition when r = 1/
√

8. This

corresponds to

Υ =
Υc√

2
≡ Υ′

c. (5.13)

Beyond this transition, equation (5.8) predicts complex z, which is not a valid steady-state. Recall,

however, that equation (5.8) assumed z ̸= 0. Numerical simulations confirm that for Υ > Υ′
c the

steady-state value of z is, in fact, zero. This aligns with the transition between superradiant and

normal phases that we were expecting. We will see that this transition exists beyond the mean-field

level when we look at numerical solutions to the cumulant expansion equations below.
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The mean-field analysis indicates that many of the qualitative features of the collective

physics, particularly the steady-state behavior, remain when single-particle relaxation is included.

Specifically, for γs ̸= 0 there is a critical point Υ′
c ≡ Υc/

√
2 delineating superradiant and normal

phases characterized by the long-time limit of collective observables. Moreover, numerical simula-

tions of the full quantum dynamics reveal that Υ′
c also marks the boundary between a squeezed

steady state in the superradiant phase and the absence of long-time squeezing in the normal phase

(see appendix B). This transition is illustrated in Fig. 5.1(a). In the case where Ĵ2 is conserved,

corresponding to the collective system where γs = 0, this transition occurs at Υc, as expected from

the exact solution ρ̂ss [11].

5.5 Enhanced squeezing

We now consider the effects of adding spontaneous emission to the model, i. e. the case where

γs > 0 in Eq. (5.1). In particular, we are interested in how the phase diagram changes and to what

extent spin-squeezing can be achieved. While it might be reasonable to expect that single particle

dissipation prevents the development of any useful squeezing [154], we will see that, in fact, the

phase diagram is split into three regions: one with a minimally squeezed steady-state for Υ < Υ′
c,

one where squeezing does not develop at all for Υ > Υc, and a region in between where an amount

of squeezing develops in the late transient dynamics that exceeds what is seen in the steady-state

when γs = 0. This corresponds to the striped region in Fig. 5.1(a). While the transient dynamics

are qualitatively different in these three regions, the steady-state phase diagram is split in two, just

as in the collective case, with a boundary at Υ′
c rather than Υc between a superradiant phase with

a squeezed steady-state and a normal phase without one.

Figure 5.2(a) illustrates the spin squeezing dynamics in the region where Υ′
c < Υ < Υc for

several values of γs/Γ and in the absence of elastic interactions (χ/Γ = 0). We observe that, as

expected, squeezing does not persist in a steady-state as it does in the purely collective case (γs/Γ

= 0). However, we see that squeezing develops and persists at timescales ∼ 1/γs, and is being

increased in the presence of spontaneous emission over what would be seen in the purely collective
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steady-state for χ = 0 at the same values of Υ/Υc. It can also be seen that the rate at which it

develops scales with γs/Γ, while the amount of achievable squeezing does not change (i.e., γs/Γ

controls the rate at which we dynamically traverse the related collective steady-state phase diagram

– which ultimately sets the bound on the achievable squeezing). We now turn to the question of

how this improved spin squeezing develops.

5.6 Squeezing mechanism

To simulate the exact dynamics when γs > 0, we have used the Monte Carlo Wave Function

(MCWF) method [184, 123, 135]. This method unravels the density matrix into an ensemble of

pure state wave functions that evolve independently of one another in time, where dissipation is

handled by random jumps. The full time evolution of one member of this ensemble is referred

to as a trajectory. The time evolution of the density matrix is recovered by taking the average

of the pure state density matrices at each point in time, resulting in the mixed state solution to

the master equation [Eq. (5.1)]. The advantages of this method are three-fold. First, as shown in

[184], each trajectory will lie within a single eigenspace of total spin at any given time, reducing

the dimensionality to O(N) from O(N2) for the full particle symmetric Dicke basis. Second, the

trajectories evolve in time independently of one another, allowing for the parallel simulation of

different trajectories. Finally, analyzing the time evolution of individual trajectories can provide

insight that is not altogether obvious from the evolution of the density matrix resulting from the

ensemble averages.

Figure 5.2(b) plots squeezing versus time for a number of trajectories where Υ′
c < Υ < Υc and

γs > 0. We notice that the dynamics of the trajectories are qualitatively similar to the ensemble

average, with an increase in squeezing that is abruptly lost. Both panels of the figure also show

the time evolution of the effective system size, motivated as follows. When γs = 0, the value of

⟨Ĵ2⟩ = N/2(N/2 + 1) is conserved. When γs > 0, this value will decay, and we can define the
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Figure 5.3: (a) Minimum transient spin-squeezing (see text for clarification) as a function of nor-
malized drive amplitude Υ/Υc and relaxation rate γs/Γ with χ/Γ = 0. The strip below the main
panel shows a magnified view of the γs/Γ = 0 result for comparison. Note the break in the vertical
axis, which is required since attainable simulation times cannot capture the squeezing behavior oc-
curring on timescales of 1/γs when this value is very large. (b) Minimum transient spin-squeezing
as a function of the interaction strength χ/Γ with fixed Υ/Υc = 0.9 and γs/Γ = 50. Inset: Squeez-
ing versus time for a selection of values of χ/Γ and same Υ, γs as main panel. For (a) and (b)
we compute the dynamics using a truncated cumulant expansion (see appendix B) and N = 104.
Initial conditions in (a) are the coherent spin state (CSS) in the −x̂-direction, and in (b) are taken
to be the CSS in the direction of the mean-field steady-state (for each χ/Γ and Υ) when γs/Γ = 0
to account for the rotations that result from different values of χ/Γ.

effective system size by solving for N

Neff(t) ≡ 2

√
(1/4) + ⟨Ĵ2⟩(t) − 1. (5.14)

This decrease in effective particle number results in a corresponding increase in the effective drive

Υeff(t) ≡ 2Ω/Neff(t). The behavior is similar to the collective case where the particle number is

fixed and Υ is tuned toward the threshold value, as we saw in Fig. 5.1(c), except here one could

view it as the threshold moving while the drive frequency Ω is held fixed. As the distance between

Υeff(t) and Υc decreases, the squeezing increases. Once the effective drive frequency exceeds the

threshold Υc, it is as though the system transitions from the superradiant to the normal phase and

the squeezing is lost.

This process can clearly be seen in the trajectories in Fig. 5.2(b). The critical value of Neff,

where Υeff(t) = Υc, is shown as a black dashed line. For each trajectory, it can be seen that the
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point in time where this threshold is crossed corresponds to the point where squeezing is abruptly

lost. In the aggregate across all trajectories, this results in a mixed state that will exhibit an

improvement in squeezing until a sufficient number of trajectories have crossed into the normal

phase, at which point squeezing will be lost gradually.

Returning to Fig. 5.2(a), we now see that the improvement in squeezing over the collective

steady-state value is a result of the fact that the drive frequency is being pushed closer to the

effective threshold, where squeezing is greater, before crossing the phase boundary. Finally, it

should be mentioned that having a sufficiently strong drive such that Υ > Υ′
c is critical to seeing

this behavior since, on the other side of the phase transition, a stable steady-state is reached before

Neff can drop below the critical threshold, and the steady-state level of squeezing is small.

Figure 5.3(a) plots the minimum squeezing obtained in the transient dynamics for each value

of the normalized drive amplitude Υ and single-particle relaxation rate γs/Γ. Due to the number of

simulations required, results in this figure are computed using a cumulant expansion approximation

that shows close agreement with the exact numerical solution (see appendix B). The introduction of

finite γs/Γ ̸= 0 clearly improves the attainable squeezing within the region of Υ′
c < Υ < Υc relative

to the collective case (γs/Γ = 0, shown in the lower strip). In the case where γs/Γ = 0, there is no

qualitative change in the minimum squeezing when crossing the threshold at Υ′
c, as expected from

previous work. The improvement in squeezing occurs for even relatively small values of γs, although

as γs is increased the best transient squeezing, attained for Υ approaching Υc, gradually degrades.

On the other hand, for Υ < Υ′
c, a stable steady-state is quickly reached and squeezing is not

enhanced by introducing single-particle decoherence. Crossing the threshold eliminates this stable

equilibrium, allowing for the transient enhancement, at the cost of losing the squeezed steady-state

by passing into the normal phase. As the drive approaches Υc, critical slowing down becomes

prominent, preventing the squeezing from developing before dissipative effects make it impossible.

While our qualitative understanding of the mechanism driving squeezing has so far not in-

cluded discussion of the collective exchange interactions, the achievable squeezing does quantita-

tively depend on χ for Υ < Υc. This is demonstrated in Fig. 5.3(b), where we plot the minimum
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transient squeezing as a function of χ/Γ for γs/Γ = 50. It is apparent that increasing the interaction

strength χ leads to an appreciable improvement in the optimal squeezing, particularly in the region

0 < χ/Γ ≲ 2. However, the inset of Fig. 5.3(b) indicates that an increased interaction strength

does not significantly change the qualitative dynamics of the squeezing, beyond the generation of

an earlier transient (absent in the χ = 0 case). This earlier transient that appears at finite χ might

be useful for some platforms, but on the other hand for purely metrological applications might be

not as practical in cases such as the cavity setup discussed below (see appendix B). There, although

feasible, technical challenges come up when quenching χ sufficiently fast to take advantage of the

earlier transient squeezing.

5.7 Experimental realization and outlook

The spin model we have discussed could be realized by coupling an optical cavity to the

narrow linewidth optical clock transitions available in alkaline earth atoms [129, 125]. We require

that κ ≫ g
√
N and κ ≫ γs (bad cavity limit) with 2g the single photon Rabi frequency and

κ the cavity linewidth, to ensure that the intracavity field can be adiabatically eliminated and

thus realize the desired spin model [Eqs. (1) and (2)]. In this limit, spin-spin interactions can

be engineered by detuning the cavity from the atomic transition by ∆c which leads to a tunable

interaction strength χ = 4g2∆c/(4∆2
c+κ2). Similarly, the collective dissipation arises due to photon

leakage and is characterized by Γ = 4g2κ/(4∆2
c + κ2) [129, 130]. To ensure that decoherence is not

too large such that it eliminates any possibility of squeezing, we need to operate in the limit of a

large (effective) collective cooperativity γs ≲ NΓ. This condition together with those for κ in the

preceding paragraph imply we should work in the hierarchy of energy scales γs ≲ NΓ ≪ g
√
N ≪ κ

to generate spin squeezing in the cavity platform. The possibility to operate in this regime has

previously been demonstrated using both the 1S0-
3P0 transition in 87Sr [129, 130] and 1S0-

3P1

transition in 88Sr [125]. The former has a natural linewidth of γ ≈ 2π× 1 mHz and 2g = 2π× 8 Hz

[129]. State-of-the-art AMO experiments have demonstrated coherence of the 1S0-
3P0 transition

of up to 1/γs ≈ 10 s [84] which corresponds to γs/Γ ≈ 200 for ∆c = κ = 2π × 150 kHz and thus
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χ/Γ ≈ 1. For N ∼ 104 atoms, dissipatively enhanced squeezing of ξ2 ≈ 9 dB is then in principle

achievable on timescales t ∼ 2 s.

A similar implementation can also be realized in trapped ion arrays, where a pseudospin-1/2

is encoded in the hyperfine states of the ion. As carefully shown in Ref. [155], it is possible to

engineer in a Penning trap the same collective dissipation that is responsible for superradiance in

cavity QED systems. This is achieved by loading two-types of ions (τ and σ) into a shared trap.

The two species could be, for example, two different elements, or isotopes of the same element.

The τ ions are used to sympathetically cool the normal modes of vibration of the system of ions

and generate an effective phonon loss, analogous to κ in the cavity platform. Further, by Doppler

cooling the τ ions it is possible to introduce couplings between the normal modes, resulting in a

new dressed set of damped normal modes. The σ ions then serve as the effective spins that are

squeezed through interactions mediated by the damped phonon modes. The σ ion-phonon coupling

can be engineered using an optical dipole force generated via pairs of Raman beams. The detuning

of the Raman beams can be set such that predominantly the center of mass (CM) mode is excited

(i.e., other mode remain off-resonant), such that the CM mode plays the role of the common cavity

mode which mediates both elastic[20] and inelastic collective spin interactions between the ions.

Additionally, resonant microwaves can be used to coherently directly drive the spins [150]. As

analyzed in detail in Ref. [155], using 24Mg+ ions as the τ ions and 25Mg+ as the σ ions, it should

be possible to achieve an effective Γ ∼ 2π × Hz in a system of the order of N = 124 σ-ions. In this

implementation the average single-particle decoherence generated by the Raman beams including

effective spontaneous emission, absorption and dephasing is of the order of γ̄s ∼ 2π × Hz. In this

set-up therefore it should be possible to operate in the regime where NΓ/γ̄s ∼ 100 and reach the

conditions required for robust spin squeezing generation.

In summary, we have identified an intriguing and experimentally relevant situation where

spin-squeezing can co-exist with relatively large single-particle decoherence as long as collective

decoherence remains the dominant dissipative process. We expect our results to have immediate

applications for quantum metrology, specifically in the generation of squeezing on long-lived op-
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tical transitions for next-generation optical atomic clocks, whilst also being relevant for quantum

simulation.
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Chapter 6

Parameter Estimation via Machine Learning

This chapter is a draft of a manuscript to be submitted for publication with authors K.

Tucker, A. K. Rege, C. Smith, C. Monteleoni, and T. Albash

Prologue

In this chapter, we broaden our attention beyond the classical simulation of quantum systems

to include estimating system parameters from data. This is done through a novel approach that

combines machine learning with traditional classical simulations like those used in previous chapters.

Specifically, we propose a machine learning model based on a denoising autoencoder to learn a

map from weak measurement input to master equation parameter estimates, then back again to

measurement records in the ensemble average. The physical parameters have thus taken on the

role of latent variables, with physical interpretability enforced by using a classical simulator in the

decoder to map from parameters back to measurement records. This simulator is augmented with

a recurrent neural network to account for dynamics in observed data beyond the ability of the

simulator to model. These limitations could be due to simplifying assumptions on the states, such

as the entanglement limitations entailed in mean field or cumulant expansions, or due to missing

or incorrect terms in the physical model itself.

In this way, the ideas in this chapter represent a fusion of traditional classical simulation

methods and concepts from machine learning intended to correct for the limitations of these meth-

ods. In the field of machine learning, this approach is broadly referred to as discrepancy modeling.
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6.1 Introduction

As the scale, complexity, and availability of quantum devices is expected to grow considerably

over the coming decades [140], the ability to accurately characterize device parameters has become

an urgent need. For example, while great progress has been made in quantum error correction,

non-local errors such as crosstalk threaten to derail these approaches in larger systems [152, 162].

Detection of these unwanted effects is a critical first step in mitigating them, with efforts to do so

complicated by the exponential scaling of the quantum state with system size and the challenges

of modeling increasingly complex systems.

Recent advances in the application of machine learning (ML) tools to quantum systems have

shown promise in overcoming these difficulties. Scalable ML models have been used to represent

quantum states for state tomography [37, 36, 42, 145, 41, 161] and evolution [161, 9], for learning

unknown dynamics [33, 44, 115], as well as for learning device characterization from measurements

[68, 65, 97, 5, 43]. Increasingly, a priori knowledge of a physical system has been combined with ML

models to improve accuracy and interpretability [143]. The model-free nature of many ML solutions

has made them scalable and robust to many of the common pitfalls of physical models, such as

non-Markovian dynamics [68, 65, 97, 9]. There are trade-offs, however, as more abstract models

are generally less interpretable, which limits the physical insights that can be gleaned from them.

Finding a balance between these two competing properties, representability and interpretability,

thus becomes an important challenge.

In this work, we build on recent advances in device characterization applying ML models to

the continuous measurement of qubits [65, 97, 68], with the goal of making this characterization

more scalable and robust to unanticipated dynamics, and to apply it to the specific problem of

detecting two qubit interactions, one possible manifestation of crosstalk in multi-qubit systems.

In contrast with the parameter estimation approach of [68], where a stochastic master equation

is used as a trainable model, our ML model learns a direct map from continuous measurement

input to the system parameters of interest. This approach has two advantages: first, in the case
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where device parameters corresponding to measurement records are known, the model is completely

independent of any state representation, freeing it from the curse of dimensionality that comes from

the exponential scaling of the state size. The requirement is rather that the measurements need to

provide enough information to estimate the parameters of interest, not the complete quantum state,

which in many cases could be less onerous. Second, once the model is trained, parameter estimation

can be performed quickly even for systems not seen during training, and can benefit from noise

correction capabilities learned from many training examples, thus requiring fewer measurements

for estimation.

In the event that device parameters are not provided along with measurement records, an

unsupervised approach comparing input to a measurement record reconstructed from parameter

estimates can be used. This requires a map from parameter estimates to measurement output,

which is accomplished by adding a layer combining an integrator of the physical model with a

recurrent neural network (RNN) to provide a model-free correction at every time step to account

for unanticipated effects, as long as they are consistent and small relative to the dynamics driven

by the parameters of interest. This employs the capabilities of neural ODE found in other works

[48, 74, 9], but enhanced to provide a completely model-free correction not bound by assumptions

of linearity or Markovianity with a projection step to return the corrected state to the manifold

of physical density operators [157]. The output of the model is then the estimated solution to the

unconditioned master equation with learned corrections for effects beyond the master equation,

which can be compared to the measurement records to update model parameters. While this case

is not completely model-free, it also does not make rigid assumptions about the dynamics and

remains capable of accurate parameter estimation in the presence of unanticipated effects that

would otherwise severely impact accuracy. The ML model is not burdened with learning all of

the physics, it just has to correct for lower order effects the model may have missed, an approach

known as discrepancy modeling [89, 53].

The full model can be viewed as a denoising autoencoder [71] where the physical parameters

being estimated take on the role of the latent space, with interpretability enforced by the presence
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of the physical model in the decoder. The encoder is the map from measurement records to

parameters, and is the desired product of the training to be used for fast and accurate parameter

estimation. While the full unsupervised model clearly has applications for parameter estimation

in cases where nothing is known about the parameters of interest, the supervised approach using

just the encoder could still find applications for systems where parameters are known at the time

training data is generated, but a prediction routine is still required in other circumstances, as would

be the case for detecting drift away from device calibration over time.

6.2 Physical System

We consider two qubits with fixed position in a microwave cavity as illustrated in Fig. 6.1(a)(i).

A single common mode of the cavity is coupled to the computational degree of freedom of the qubits,

and they are coherently driven on resonance with a Rabi drive of frequency Ω. A two-qubit inter-

action term is present with magnitude ϵ. A weak measurement tone [86, 29] is applied to the cavity

to probe the qubit state in one of the {X,Y, Z} directions for each qubit, with a measurement

back-action dephasing rate of κ. Upon adiabatic elimination of the cavity mode [21], which we

assume has dynamics evolving at a rate much faster than time scales relevant to the qubits, we can

describe the system with the stochastic master equation (SME) [16, 66]

dρ = −i[H, ρ]dt

+

2∑

i=1

D[Li](ρ)dt+

2∑

i=1

√
η

2
H[Li](ρ)dW

(i)
t , (6.1)

H =

2∑

i=1

Ω

2
Xi + ϵZ1Z2, (6.2)

where {Xi, Yi, Zi} is the set of Pauli operators for qubit i, D[L](ρ) = LρL†− 1
2

{
L†Lρ+ ρL†L

}
is the

Lindblad super-operator, H[L](ρ) = Lρ+ρL†−ρTr
[
ρ
(
L+ L†)] is the measurement super-operator,

η = 0.1469 is the efficiency of the measurement, and Li =
√
κCi, where Ci ∈ {Xi, Yi, Zi} is the

weak measurement operator with κ = 3.326 radians/µs. Here we have adopted the normalization

convention ℏ = 1. Parameter values are selected to be comparable to those used in [68] and to be
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relevant in experiments.

The stochastic differential equations for the measurement records are given by

dri =

√
η

2
Tr
[
ρ
(
Li + L†

i

)]
dt+ dW

(i)
t , (6.3)

where ri(t) is the weak measurement for qubit i and the independent dW
(i)
t are the same appearing

in (6.1). This is comparable to the system in [68], except generalized to two qubits and with the

addition of the two-qubit interaction term in (6.2). Note that results will be examined for cases

where the weak measurement operator Li may be different for each qubit.

6.2.1 Selecting Initial Conditions

Increasing the strength of the weak measurement κ improves signal to noise ratio (SNR) in

the measurement records as it increases the drift function in the weak measurement SDE (6.3).

The trade-off is that the increased measurement backaction leads to faster decoherence in the state

ρ in (6.1) setting up two competing effects on SNR in the full stochastic master equation. The

effects of backaction can be mitigated for our purposes if we select the initial state to align with the

direction of measurement. To see how, we consider the equation of motion in the ensemble average

for the single qubit observable Ci ∈ {Xi, Yi, Zi}

d

dt
⟨Ci⟩ =

d

dt
Tr [ρCi] = Tr

[
dρ

dt
Ci

]

= −iTr [[H, ρ]Ci] + κ
2∑

j=1

Tr [(CjρCj − ρ)Ci]

= −iTr [[H, ρ]Ci] . (6.4)

We use the Pauli relation C2
i = 1 and the invariance of the trace under cyclic permutation to see

that the dissipative term is zero, since when i = j we have

Tr [(CiρCi − ρ)Ci] = Tr [CiρCiCi] − Tr [ρCi]

= ⟨Ci⟩ − ⟨Ci⟩ = 0,
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and when i ̸= j we have

Tr [(CjρCj − ρ)Ci] = Tr [CiCjCjρ] − Tr [ρCi]

= ⟨Ci⟩ − ⟨Ci⟩ = 0

where we have used the fact that operators on different qubits commute. The result is an equation

of motion that has no explicit dependence on measurement backaction, such that all dynamics will

be proportionate to the Hamiltonian parameters Ω and ϵ. It is therefore useful to start with a

maximal value in this direction, so that the Hamiltonian parameters will assert themselves to the

greatest possible extent in the dynamics of the measurement observables, and therefore in the slope

of the measurement record evolving according to (6.3).

6.3 Machine Learning Model

6.3.1 Model Description

The objective is to train a model that can estimate master equation parameters by observing

weak measurement records. Input data is provided for training in the form of weak measurement

trajectories averaged over some number of repeated measurements to reduce the effects of diffusive

noise. The output of the model is either the physical parameters of interest, in the supervised case

where labeled training data is available, or the predicted solution of the measurement SME in the

large trajectory limit, or ensemble average, in the unsupervised case where true parameters are not

available. The former configuration can be thought of as an encoder mapping noisy trajectories to

estimated parameter values, while the latter configuration adds a decoder that takes the estimated

parameters as input and produces a predicted solution to the unconditioned master equation. The

full architecture is shown in figure 6.1(a) and can be viewed as a denoising autoencoder taking

noisy input trajectories and producing output with the noise removed.

The encoder begins with an up-front average pooling layer in the time dimension to further

smooth the trend component of the measurement records, followed by a long short-term memory

(LSTM) layer [78] to process the sequential input data and consolidate information from multiple
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qubits into a single sequence. This precedes a feed-forward neural network of dense layers ending

with the parameter layer.

In the unsupervised case, interpretability of the latent variables as parameters is enforced by

using them directly in an enhanced numerical ODE integrator in the decoder for the unconditioned

master equation. The integrator is implemented as an RNN with a custom cell that combines

a single step of Euler’s method with a correction produced by a standard LSTM cell. This is

shown in figure 6.1(b). The correction term is designed to compensate for calibration errors or

other unanticipated dynamics in the physical model used by the numerical integrator. The design

leverages the concept of neural ODE [48] or ODE-RNN [74, 147], as it uses a neural network to

approximate corrections to the drift function of the unconditioned master equation dρ = f(t, ρ; θ)dt

where:

f (t, ρ; θ) = fmodel (t, ρ; θ) + fLSTM (t, ρ; θ) , (6.5)

θ is a set of ODE parameters, and fLSTM is an LSTM cell and as such is a non-linear, model free

function of the time, state, and parameters.

The carry-state used in the standard LSTM architecture is passed between evaluations of

fLSTM at each time point, which means information from the full history of states is potentially

available, allowing for the modeling of non-Markovian effects. Hermiticity of the state is enforced

by restricting the free parameters in the correction to have a Hermitian form, trace is preserved

by a normalization step, and positivity is preserved by performing an orthogonal projection of the

time-evolved state back onto the state space according to the algorithm presented in [157] at each

time step. In this respect it is analogous to the approach used by the time-dependent variational

principle (TDVP) algorithm [75, 76] for modeling dynamics of matrix product states (MPS).

An additional feature of the correction is that the full drift function f is primarily relying

on a known physical model fmodel and using the ML components in fLSTM only to compensate

for discrepancies between this model and the experimental system, which are assumed to be small

relative to the known dynamics. As such, it could be categorized along with other approaches in
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ML for discrepancy modeling [89, 53] that operate under the principle that small corrections are

easier to learn than the full dynamics. A similar approach is taken to modeling non-Markovian

dynamics via RNN in [9], though our approach differs in that it combines discrepancy modeling

with a completely general, non-linear correction to the state evolution based on neural ODE. In

addition, as suggested in the outlook section of [9], we are investigating the situation where only

a subset of the measurement information necessary for full state reconstruction is available, so

training data volume requirements are substantially reduced.

It should be noted that while the integrator used in the decoder for this work is an Euler in-

tegrator for the unconditioned master equation, this piece is completely modular in the design and

can be replaced with any integrator for simulating quantum dynamics. For example, a TDVP inte-

grator operating on a matrix product state could be used for larger systems that are approximated

well by a MPS ansatz, with the trainable decoder parameters accounting for errors introduced by

this approach.

The output of the decoder is the estimated solution to the unconditioned master equation,

and the loss is calculated as the mean squared error (MSE) between this estimate and provided

approximations of clean measurements used as label values in the case where true parameter esti-

mates are not available. Thus, it is desirable that these labels contain as little noise as possible,

but estimation can still take place with noisy labels, as will be seen in 6.4. Clean label values are

realized by averaging over many input groups sharing the same parameter values and using this

same average for all of the contributing input trajectory groups during training. See 6.3.2 for more

details. In this way the model can be viewed as a denoising autoencoder [71], with de-noised out-

put provided for every noisy input example, and with a latent space corresponding to the physical

parameters being estimated.

This approach to parameter estimation differs from that of [68] in two key respects. First, the

physical parameters we are interested in learning are the output of a machine learning model, rather

than parameters to be learned during training. This enables extremely fast parameter estimation

once the model is trained even when observing systems with parameter sets not included in the
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training data, and it allows us to learn a direct map from measurement input to parameters if labeled

training data is available without the need for a physical model, in which case the estimation model

size scales polynomially with the system size rather than exponentially. The limitation in this case

becomes the amount and type of training data required, which will vary by application and requires

further investigation. It also allows for the possibility of fewer measurements being required for

prediction versus training as the model learns to account for noise in the input data. The second

difference is that when labeled training data is unavailable and a physical decoder is necessary,

the flexible correction scheme in the decoder allows the model to compensate for non-Markovian

or nonlinear dynamics since it is not bound by a Lindblad form, while still being informed by the

master equation for a first order model of the dynamics.

6.3.2 Training and Data

To facilitate training, validation, and testing, N = 32, 000 measurement trajectories are

simulated for T = 4µs using an Euler-Maruyama integrator solving (6.3) for both qubits for each

of 40 values of ϵ evenly spaced on [0, 2) with fixed Ω = 1.395 radians/µs, and the same number of

Ω values evenly spaced on [1, 5) with fixed ϵ = 1.0 radians/µs for a total of K = 80 (Ω, ϵ) pairs.

Half of this collection is used for training, corresponding to every other parameter pair. The other

half, corresponding to parameters midway between training values, is split evenly to be used for

validation and testing. This ensures the training set contains a disjoint set of parameter pairs from

the validation/test set. Two endpoints of the validation/test set are excluded from each end to

ensure that the training data extends slightly beyond the domain of validation/test values.

During training, for each true parameter set θk = (Ωk, ϵk), trajectory groups of a preset

size d are randomly selected from the full training set and their averages are provided as input

values to the model, such that each mini-batch is comprised of M = N/d averaged trajectories

{x̃j,k}Mj=1 where x̃j,k = 1
d

∑
i∈I ri,k, ri,k is measurement record i for parameter set k, and I is a set

of trajectory indices of size d randomly selected from 1, 2, ..., N without replacement until all N

trajectories are used, which defines one epoch of training. In this way, each mini-batch will consist
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Figure 6.1: (a) Diagram of the ML model and physical system. Measurements are taken from the
cavity system (i) producing noisy averaged voltage records (ii), these are sent through a neural
network encoder (iii) producing system parameters as output (iv). These parameters are used
by the flex integrator decoder (v) to produce noise-free voltage estimates (vi). (b) Details of the
decoder RNN cell combining a standard ODE integrator with an LSTM update

of a different set of noisy trajectory groups as input to maximize the diversity of training examples.

For all j = 1, ...,M , the value xk to be used in the loss function is the average over the full training

set of trajectories corresponding to the true parameter set θk, such that xk = 1
N

∑N
i=1 ri,k.

Denoising autoencoders are characterized by a corruption process C(x̃|x) whereby noisy in-

puts x̃ are generated for each uncorrupted training example x [71]. In our case, the full trajectory

means take on the role of x, approximating the solution to the SME in the ensemble average, while

the random selection of much smaller trajectory groups is the process by which the corrupted data
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elements x̃ are generated.

In the supervised case, the loss function is the MSE between predicted parameter sets θ̃k and

the provided true values θk

L =
1

pK

∑

k

∣∣∣
∣∣∣θ̃k − θk

∣∣∣
∣∣∣
2

2
, (6.6)

where p is the dimension of θk, the number of parameters being estimated. In the unsupervised

case, the loss function is the full MSE between each xk and the estimated clean measurement record

L =
1

MKNt

∑

j,k,t

|xk(t) −M(x̃j,k)(t)|2 (6.7)

where M denotes the model, t is the time index, and Nt ≡ T/∆t is the number of time points

excluding the initial condition.

During evaluation, validation and test errors are evaluated in a similar manner to how training

mini-batches are selected, with groups of size d randomly chosen from the full validation and test

sets, followed by the calculation of the MSE. This process is repeated 100 times and the average is

taken as the calculated MSE for each set.

Training is performed for 300 epochs, with a learning rate of 3 × 10−3 and a decay rate of

0.99 per epoch, resetting the learning rate after every 100 epochs, at which point parameter MSE

is computed for the validation and test sets. This entire process is performed 100 times, each with

a different random initialization of the model parameters. The best model is considered to be the

one with the smallest validation loss after the final epoch. Hyperparameter tuning for the model

layer sizes was performed using a grid search for a physical system with parameters distinct from

those in 6.4. A table of hyperparameter values for the models used to derive the results in the

sections below is given in table 6.1.

6.4 Evaluation

To fully assess the performance of the model, we evaluate both the encoder alone to evaluate

the case of labeled training data, and the full model for the case where labels are not available.

We consider a range of trajectory group sizes d as well as noise-free data derived from an Euler
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Encoder LSTM 32

Time distributed dense layers [32, 16]

Encoder dense layers [100, 50]

Decoder LSTM size 16

Table 6.1: Model layer sizes for models used in evaluation sections. Layers are listed in the order in
which they appear in the model. Lists in the second column indicate stacked layers of the indicated
type

integration of the unconditioned master equation. The noise-free case is denoted by ∞ as the

number of trajectories in all tables. For results in this section, training mini-batches are comprised

of half the total number of available groups, meaning there will be two mini-batches per epoch,

except in the case where there is only one total group, e.g. in the noise-free case.

We perform measurements in the X and Y directions for the first and second qubit, re-

spectively. To minimize the impact of the weak measurement back-action via the parameter κ,

in 6.4.1 and 6.4.2, the initial state is chosen to be spin-up in the directions of measurement. A

different configuration is used in 6.4.3, where more diverse measurements are needed to correct for

unanticipated single particle relaxation not explicitly present in the decoder’s physical model.

6.4.1 Supervised Learning

First, we study the impact of noise in the training set and how it helps or hinders the model’s

performance when predicting parameters from noisy data. We do this by performing estimation

with two models, one trained using noise-free measurement values, and another set trained using

eight groups of d = 4, 000 averaged measurement records. Both models are then evaluated on a

test set of noisy, averaged measurement records with the same group size d as the noisy training

set. In both cases, the model with the best validation loss on the noisy data out of 100 randomly

initialized models was used.

Figure 6.2 shows the error of the estimated parameter pair θ̃k compared to truth for each

k = 1, 2, ..., 80. We see that for many specific pairs, and for the overall MSE, the model trained on

the noise-free measurements is producing less accurate estimates than the model trained on noisy
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Figure 6.2: Estimations of the parameter pair θk = (Ωk, ϵk) (top) and the squared error (bottom)
for a model trained on clean data and noisy data, then evaluated on noisy data. Shuffle evaluated
test set MSEs are (6.63e-3, 9.47e-4) and (4.37e-3, 6.26e-4) respectively

data. This is consistent in both the Ω and ϵ errors. This suggests that the model learns to account

for noise, as expected, and training with noise on the level of measurements used for prediction is

beneficial.

Next we examine the impact of the training group size d. Table 6.2 lists test set MSEs for

(Ω, ϵ) for a number of training sets where evaluation is taking place with the same group size d used

for training. The best and median were taken from the list of results sorted according to validation

loss, as this is what would be known in practice during training. Here we see a steady improvement

as the number of trajectories in a group increases, and noise decreases, saturating in the case where

noise-free data is used for training and evaluation. Note that this test differs from the results in

figure 6.2 where the model trained without noise was evaluated on noisy data, as here we consider

only the case where training and test group sizes are equal.

d Best MSE Median MSE Mean MSE

2,000 8.01e-3, 9.50e-4 9.15e-3, 1.09e-3 9.88e-3, 1.16e-3

4,000 4.37e-3, 6.26e-4 6.32e-3, 5.59e-4 5.67e-3, 7.07e-4

8,000 2.46e-3, 3.28e-4 3.12e-3, 5.34e-4 3.30e-3, 4.89e-4

16,000 1.70e-3, 2.45e-4 1.32e-3, 2.20e-4 1.81e-3, 3.24e-4

∞ 7.83e-5, 3.28e-5 2.25e-4, 2.13e-4 4.60e-4, 2.45e-4

Table 6.2: MSE of (Ω, ϵ) estimates on supervised training set using the encoder only
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6.4.2 Unsupervised Learning

We now consider the unsupervised case where labeled training data is not known, but it is

assumed that the physical model in the decoder is correct, i.e. we are still not learning parameters

for the drift function correction fLSTM , as will be considered in 6.4.3. We are therefore using the

measurement record MSE as the loss function as described above.

First we examine how parameter estimate accuracy for a fixed group size d = 4, 000 varies

with the total training set size N . Table 6.3 shows (Ω, ϵ) test set MSEs for the case where Ω is

unknown but fixed at a true value of 1.395 radians/µs and ϵ is allowed to vary, for various training

set sizes N . The same test set containing 16, 000 trajectories is used for each row. From the

table, we see that accuracy improves significantly as the amount of training data increases, even

though the groups being presented to the model for parameter estimation remain the same. This

indicates that a greater diversity of noisy measurement records when training results in models

that can produce more accurate parameter estimates when presented with the same number of

measurements when performing prediction. This motivates using N = 32, 000 going forward.

N Best MSE Median MSE Mean MSE

4,000 6.58e-4, 8.67e-4 8.42e-4, 1.11e-3 8.36e-4, 1.09e-3

8,000 4.69e-4, 7.88e-4 4.95e-4, 9.97e-4 4.52e-4, 8.65e-4

16,000 1.83e-4, 7.49e-4 2.19e-4, 8.43e-4 2.86e-4, 8.32e-4

32,000 7.95e-5, 6.95e-4 1.61e-4, 8.58e-4 1.40e-4, 8.17e-4

Table 6.3: MSE of (Ω, ϵ) when using d = 4, 000 trajectories to estimate parameters for varying
training set sizes N for an unsupervised training set with fixed Ω and varying ϵ. Other model
parameters are assumed to be known exactly

Next, we consider the impact of group size d and measurement record time spacing ∆t on

accuracy. Table 6.4 again shows (Ω, ϵ) test set MSEs for the case where Ω is unknown but fixed

at a true value of 1.395 radians/µs and ϵ is allowed to vary. It illustrates how extremely low test

set MSEs are achievable for Ω in this case, which is expected given the high volume of training

data available for a single value. The accuracy of ϵ estimates depends on both the number of

trajectories used to create each input sequence, as well as the time spacing at which measurements
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are recorded. To evaluate measurement records with varying time spacing, trajectories simulated

with ∆t = 2−8µs are sub-sampled to avoid introducing numerical integration error associated with

simulations with a larger time step.

Table 6.5 shows test set MSEs for the training set where both Ω and ϵ are allowed to vary.

This is a harder task as the model has less training data for each unique Ω value, hence the loss

in accuracy for that parameter. The error in ϵ remains roughly the same or better, however, as

in the fixed Ω case, with a best case root mean-square error of around one percent of the median

test value of the ϵ parameter. Here we see a roughly linear trend in the MSE versus d at smaller

time steps, as doubling the number of trajectories in a group roughly halves the MSE. This trend

breaks down, however, for the ∆t = 2−4µs case, suggesting a permissive time step threshold around

∆t = 2−6µs at or below which the expected trend in accuracy versus input data size is realized.

d ∆t = 2−8 µs 2−6 2−4

2,000 9.60e-5, 1.45e-3 7.99e-5, 1.49e-3 1.05e-4, 2.67e-3

4,000 7.95e-5, 6.95e-4 1.66e-4, 8.32e-4 1.19e-4, 2.09e-3

8,000 1.43e-4, 3.59e-4 1.11e-4, 4.10e-4 8.03e-5, 1.81e-3

16,000 9.99e-5, 1.44e-4 1.31e-4, 2.14e-4 1.19e-4, 1.89e-3

∞ 3.66e-5, 1.21e-5 8.75e-6, 1.03e-4 9.86e-6, 1.66e-3

Table 6.4: MSE of (Ω, ϵ) estimates on unsupervised training set with fixed Ω and varying ϵ. Other
model parameters are assumed to be known exactly

d ∆t = 2−8 µs 2−6 2−4

2,000 1.00e-2, 8.73e-4 1.04e-2, 9.37e-4 1.08e-2, 1.91e-3

4,000 5.71e-3, 4.98e-4 4.64e-3, 5.11e-4 5.38e-3, 1.28e-3

8,000 3.03e-3, 2.58e-4 3.12e-3, 3.35e-4 2.74e-3, 1.02e-3

16,000 1.18e-3, 1.26e-4 9.42e-4, 2.78e-4 1.09e-3, 9.41e-4

∞ 7.25e-4, 1.29e-5 5.53e-4, 5.60e-5 6.37e-4, 7.63e-4

Table 6.5: MSE of (Ω, ϵ) estimates on unsupervised training set with varying Ω and ϵ. Other model
parameters are assumed to be known exactly
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6.4.3 Model Correction

In this section we demonstrate the ability of the decoder to correct for dynamics not explicitly

considered in the physical model (6.1). This is done by enabling training for the decoder LSTM

parameters. For the datasets, we simulate N = 30, 000 trajectories with fixed Ω = 1.395 radians/µs

but with varying ϵ, which is the parameter to be estimated, while adding a dissipative term for

each qubit to (6.1) corresponding to the Lindblad operator D[
√
γsσ

−
i ](ρ), where γs = 0.1 and

σ−i = 1
2(Xi− iYi) is the single particle relaxation operator mapping the excited state to the ground

state.

In this case, we take a more diverse set of measurements, simulating 10,000 trajectories

measuring in each of the X, Y , and Z directions for both qubits, and relaxing κ to one-fourth the

value used in the last section to reduce measurement back-action. Spin-up in the Z direction is the

initial state for each qubit. This more cautious approach to measurement is warranted if completely

unknown effects are expected to be present. More information about the type of phenomenon, but

not necessarily the magnitude, could allow for a more targeted measurement scheme, but here we

keep it general. The trajectory group size used for each input was d = 5, 000, and the best of 20

randomly initialized models was selected for the results in this section.

The results of the parameter estimation with and without the correction are shown in figure

6.3 and table 6.6. Here we see that single particle relaxation has introduced a significant bias to the

estimated ϵ parameters when unaccounted for in the model, but the decoder LSTM has successfully

corrected for the effect, returning the MSE to a value much closer to where it would have been had

the physical model explicitly accounted for it.

Previous work has established that LSTM models are capable of learning dynamics beyond

unknown Lindbladian dissipation [97, 9], and it is an interesting subject of future work to examine

the robustness of our model to the presence of unanticipated non-Markovian and nonlinear dynamics

in the training data.
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Figure 6.3: Estimate of ϵ and P (Yi = 0) when ϵ = 1.7 and measuring X with spin-up in Z as the
initial state for both qubits for training data simulated with single particle relaxation rate γs = 0.1
but a model that does not explicitly account for γs. Results are shown for the physical model alone
and with a correction learned by the decoder LSTM

d γs = 0.1 γs = 0.0 γs = 0.0 + correction

5,000 2.84e-3 0.142 3.82e-3

∞ 1.87e-5 0.145 8.67e-4

Table 6.6: MSE of ϵ estimates using different γs values in the model. The final column shows results
when learning is enabled for the free parameters in the decoder to account for the unanticipated
term γs

6.5 Summary

We have proposed a machine learning model based on a denoising autoencoder capable of

direct estimation of physical parameters in a system modeled by a stochastic master equation from

weak measurement records. The model is capable of learning in a supervised or unsupervised

context, and can accurately predict parameters for systems not seen in the training data. While

leveraging the use of a master equation integrator to enable unsupervised learning, the autoencoder

is robust to unanticipated dynamics not included in its physical model. We have demonstrated this

in the case of unanticipated Lindblad dissipative terms, but it remains an interesting subject of

future work to investigate the impact of other sources of error that cannot be modeled by a master

equation. Another potential subject for future investigation is the ability of the model to estimate

parameters for much larger systems in the supervised context, as in this case it is not subject to

the exponential scaling that often limits other approaches to parameter estimation.
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Summary and Outlook

In summary, we have explored new properties of driven-dissipative quantum systems using

established methods for classical simulation of quantum systems, and we have proposed a novel

approach for learning parameters from data that leverages classical methods to expand the utility

and interpretability of machine learning methods applied to the characterization of such systems.

In chapter 4, we leveraged mean-field and cumulant methods to demonstrate the emergence of

a time crystal through the interplay between incoherent pumping, collective emissions, and elastic

interactions. The computational approaches in this case are based on the common practice of

assuming limits on the amount and type of many-body correlations that can develop within the

system. The same types of assumptions are present, for example, in matrix product state ansatz

that assume area law entanglement and upper bounds on the Schmidt rank of adjacent subsystems

on a one dimensional lattice.

Chapter 5 also makes use of cumulant expansions, although it takes a step further by taking

advantage of permutational particle symmetry to dramatically reduce the dimension of the state

space, thus enabling an exact simulation free of mean-field or cumulant assumptions. It also

leverages the notion of quantum trajectories, allowing for further dimensionality reduction and a

tremendous speed-up through parallel simulation of the trajectories. This allowed us to explore the

effects of single particle relaxation on the development of spin-squeezing in a cavity system, leading

to the counter-intuitive discovery that such dissipative effects can actually improve entanglement in

the transient dynamics. This could have important applications in quantum metrology and sensing.
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Finally, in chapter 6 we proposed a novel approach for employing machine learning to estimate

system parameters from continuous measurement data. This chapter builds on the trajectory

approach of chapter 5 to demonstrate that observed continuous measurement trajectories can be

used to train a machine learning model capable of predicting the parameters of systems not present

in the training data, even when an exact mathematical description of the dynamics of the system

is not precisely known. The methods of this chapter have the potential to scale to large systems

of qubits, or to account for complex dynamics that go beyond the ability of a master equation

to describe. Demonstrating these capabilities remains an interesting area for future work. The

applications of this approach include the detection and quantification of crosstalk in quantum

information processors, an application that is increasingly important as the size of these systems

increases.

Taken together, we hope that the insights and numerical methods explored in this thesis can

be of practical utility in a world of emerging quantum technologies. The fundamentally different

nature of these technologies presents many challenges, and new approaches to modeling will be

vital to realizing their untapped potential.
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F. Piéchon, and P. Rosenbusch. Extended coherence time on the clock transition of optically
trapped rubidium. Phys. Rev. Lett., 106:240801, Jun 2011.

[96] Jonathan Kohler, Nicolas Spethmann, Sydney Schreppler, and Dan M. Stamper-Kurn.
Cavity-assisted measurement and coherent control of collective atomic spin oscillators. Phys.
Rev. Lett., 118:063604, Feb 2017.

[97] G. Koolstra, N. Stevenson, S. Barzili, L. Burns, K. Siva, S. Greenfield, W. Livingston,
A. Hashim, R. K. Naik, J. M. Kreikebaum, K. P. O’Brien, D. I. Santiago, J. Dressel, and
I. Siddiqi. Monitoring fast superconducting qubit dynamics using a neural network. Phys.
Rev. X, 12:031017, Jul 2022.

[98] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. Preparation of
entangled states by quantum markov processes. Phys. Rev. A, 78:042307, Oct 2008.

[99] Hanna Krauter, Christine A. Muschik, Kasper Jensen, Wojciech Wasilewski, Jonas M. Pe-
tersen, J. Ignacio Cirac, and Eugene S. Polzik. Entanglement generated by dissipation and
steady state entanglement of two macroscopic objects. Phys. Rev. Lett., 107:080503, Aug
2011.



104

[100] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Dover books on chemistry.
Dover Publications, 2003.

[101] T. Kuwahara, T. Mori, and K. Saito. Floquet–magnus theory and generic transient dynamics
in periodically driven many-body quantum systems. Annals of Physics, 367:96–124, Apr 2016.

[102] Tim Langen, Thomas Gasenzer, and Jˆrg Schmiedmayer. Prethermalization and universal
dynamics in near-integrable quantum systems. J. Stat. Mech., 2016(6):064009, 2016.

[103] Melvin Lax. The lax–onsager regression ‘theorem’ revisited. Optics Communications,
179(1):463 – 476, 2000.

[104] Achilleas Lazarides and Roderich Moessner. Fate of a discrete time crystal in an open system.
Phys. Rev. B, 95:195135, May 2017.

[105] Tony E. Lee and Ching-Kit Chan. Dissipative transverse-field ising model: Steady-state
correlations and spin squeezing. Phys. Rev. A, 88:063811, Dec 2013.

[106] Tony E. Lee, Ching-Kit Chan, and Susanne F. Yelin. Dissipative phase transitions: Indepen-
dent versus collective decay and spin squeezing. Phys. Rev. A, 90:052109, Nov 2014.

[107] Tony E. Lee, Florentin Reiter, and Nimrod Moiseyev. Entanglement and spin squeezing in
non-hermitian phase transitions. Phys. Rev. Lett., 113:250401, Dec 2014.

[108] A. Lerose, B. Zunkovic, J. Marino, A. Gambassi, and A. Silva. Impact of non-
equilibrium fluctuations on pre-thermal dynamical phase transitions in interacting spin chains.
arXiv:1807.09797, 2018.

[109] Ian D. Leroux, Monika H. Schleier-Smith, and Vladan Vuletić. Implementation of cavity
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Appendix A

Time Crystals

This appendix lists additional results associated with chapter 4.

A.1 Introduction

The dynamics of the system described in the main text are given by the following master equation

for the density operator ρ̂:

dρ̂

dt
= i

∑

a

[
δa
2
σ̂za, ρ̂] − iΓ

∑

a̸=b

g[σ̂+a σ̂
−
b , ρ̂]

−Γ

2

∑

a,b

f({σ̂+a σ̂−b , ρ̂} − 2σ̂−b ρ̂σ̂
+
a ) − W

2

∑

a

({σ̂−a σ̂+a , ρ̂} − 2σ̂+a ρ̂σ̂
−
a ). (A.1)

Here we have dropped self-interaction in the second sum because it gives rise to a negligible single

particle term that can be removed by moving to an appropriate rotating frame. Equations of

motion for the expectation of a particular observable Ω̂ can be derived from the master equation

according to the expression

d

dt
⟨Ω̂⟩ =

d

dt
Tr
[
Ω̂ρ̂
]

= Tr

[
Ω̂
dρ̂

dt

]
,

assuming Ω̂ has no explicit time dependence. The density operator ρ̂ in the above is a 2N × 2N

complex valued matrix. The exponential scaling of the size of the density matrix with the number

of particles makes exact solutions to the master equation inaccessible for N ≳ 16. In what follows,

we examine the various approaches we have taken to address this issue and also provide detailed

derivations of results mentioned in the main text.



111

We first examine the mean-field approximation and associated results. Next, we look beyond

the mean-field to a second order cumulant expansion that allows for the modeling of both disorder

and many-body correlations. Finally, we derive results for mutual information growth and explore

its relationship with eigenvalues of the Liouvillian operator in the master equation.

A.2 Mean-field analysis

This section includes results for the mean-field analysis with disorder that were referenced in

the main text.

A.2.1 Disorder

In this section we consider the effect of a heterogeneous frequency distribution on the time

crystal. In particular, we are interested in the robustness of the oscillation frequency. To this end,

we first rewrite Eqs. (4.3) in terms of the order parameter Zeiψ =
∑

aRae
iϕa/N , assuming N ≫ 1:

ṡa = −fNΓRaZ cos(ψ − ϕa) − 2gNΓRaZ sin(ψ − ϕa) +W

(
1

2
− sa

)
− fΓ

(
1

2
+ sa

)
, (A.2)

Ṙa = −(W + fΓ)

2
Ra + fNsaΓZ cos(ψ − ϕa) + 2gNsaΓZ sin(ψ − ϕa), (A.3)

ϕ̇a = −δa −
2sagNZΓ

Ra
cos(ψ − ϕa) +

safNZΓ

Ra
sin(ψ − ϕa). (A.4)

Now we look for steady rotating solutions of Eqs. (4.3) of the form ϕa = ψ − θa, with Ra, sa, and

θa constant, and ψ̇ = ωMF. Inserting this Ansatz in Eqs. (A.2), solving for Ra, sa, and θa, and

requiring the self-consistent conditions

Z =
∑

a

Ra cos(θa), (A.5)

0 =
∑

a

Ra sin(θa), (A.6)

we obtain

Z =
1

N

N∑

a=1

ZΓ(W − Γf)(Nf(Γf +W ) − 4Ng(δa + ωMF))

(Γf +W ) [4(δa + ωMF)2 + Γ2 (2N2f2Z2 + 8N2g2Z2 + f2) +W 2 + 2ΓW ]
, (A.7)

0 =
1

N

N∑

a=1

−Z(W − Γf)(2Ng(Γf +W ) + 2Nf(δa + ωMF))

(Γf +W ) [4(δa + ωMF)2 + Γ2 (2N2f2Z2 + 8N2g2Z2 + f2) +W 2 + 2ΓW ]
. (A.8)
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When N ≫ 1, we can approximate the sums by integrals over the distribution of frequencies. Given

a distribution of frequencies, the integrals can be evaluated numerically and Z and ωMF can be

obtained using root-finding methods. For simplicity, however, we consider a Lorenzian distribution

H(δ) = ∆
π(∆2+δ2)

. In this case the integrals can be evaluated by contour integration, and we find

that the order parameter Z is obtained from the implicit equation

Z =
ZΓNf(W − Γf)

√
Γ2 (2N2f2Z2 + 8N2g2Z2 + f2) +W 2 + 2ΓfW

[2Γ2N2f2Z2 + (W + Γf)2]
(

2∆ +
√

Γ2 (2N2f2Z2 + 8N2g2Z2 + f2) +W 2 + 2ΓfW
) , (A.9)

while the frequency is given by

ωMF =
g(Γf +W )

(
2∆ +

√
Γ2 (2N2f2Z2 + 8N2g2Z2 + f2) + 2ΓfW +W 2

)

2f
√

Γ2 (2N2f2Z2 + 8N2g2Z2 + f2) + 2ΓfW +W 2
. (A.10)

While implicit Eq. (A.9) is cumbersome, it can easily be solved with root finding methods. A

simplification can be made by considering the N ≫ 1 limit. In this case, for a given pumping

W = wN , we obtain, to leading order in 1/N ,

ωMF =
wgN

f

(
1 +

fΓ

wN
+

2∆

N
√
w2 + 2f2Z2Γ2 + 8g2Z2Γ2

)
, (A.11)

showing that in the thermodynamic limit the time crystal frequency is robust to heterogeneity

in the oscillator detunings. If we substitute optimal order parameter Zopt = 1/
√

8 and optimal

pumping wopt = fΓ/2 into (A.11), we obtain

ωoptMF =
wgN

f

(
1 +

fΓ

wN
+

√
8∆

NΓ
√
f2 + 2g2

)
. (A.12)

From here we can easily see that δω(∆) ∼
√
8∆

NΓ
√
f2+2g2

at optimal pumping as discussed in the main

text. In the next Section, we will compare this expression with numerically determined values from

the cumulant expansion and see that there is close agreement.

Finally, we note that although here we solved for stationary rotating solutions, there can be

other types of solutions, including quasiperiodic or chaotic solutions. These other possible solutions,

and the bifurcations leading to them, will be explored in future research.
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A.3 Cumulant expansion analysis

A second-order cumulant expansion assumes joint cumulants of order three and higher are

zero, resulting in the following expansion for third-order expectations:

⟨σ̂αa σ̂βb σ̂γc ⟩ ≈ ⟨σ̂αa σ̂βb ⟩⟨σ̂γc ⟩ + ⟨σ̂βb σ̂γc ⟩⟨σ̂αa ⟩ + ⟨σ̂αa σ̂γc ⟩⟨σ̂βb ⟩ − 2⟨σ̂αa ⟩⟨σ̂βb ⟩⟨σ̂γc ⟩. (A.13)

In this section, we present the equations of motion that result, compare the mean-field and cumulant

frequencies for systems with nonzero disorder, and perform benchmarking of the cumulant model

against exact solutions.

A.3.1 Equations

The relevant equations of motion can be derived as:

d⟨σ̂+a ⟩
dt

= −iδa⟨σ̂+a ⟩ −
Γf +W

2
⟨σ̂+a ⟩ +

Γ

2

∑

a̸=b

(f − i2g)⟨σ̂zaσ̂+b ⟩, (A.14)

d⟨σ̂zaσ̂+b ⟩
dt

= −
(
iδb +

3Γf + 3W

2

)
⟨σ̂zaσ̂+b ⟩ − (Γf −W )⟨σ̂+b ⟩ −

Γ

2
(f + i2g)⟨σ̂+a ⟩ − Γf⟨σ̂+a σ̂zb ⟩

+
Γ

2

∑

j ̸=a,b
(fbj − i2gbj)⟨σ̂zaσ̂zb σ̂+j ⟩ − Γ

∑

j ̸=a,b
(faj + i2gaj)⟨σ̂+a σ̂+b σ̂−j ⟩ − Γ

∑

j ̸=a,b
(faj − i2gaj)⟨σ̂−a σ̂+b σ̂+j ⟩,(A.15)

d⟨σ̂za⟩
dt

= −iΓ
∑

a̸=b

2g(⟨σ̂+a σ̂−b ⟩ − ⟨σ̂−a σ̂+b ⟩) − Γ
∑

b ̸=a
f(⟨σ̂+a σ̂−b ⟩ + ⟨σ̂−a σ̂+b ⟩) − (Γf +W )⟨σ̂za⟩ + (W − Γf),(A.16)

d⟨σ̂+a σ̂−b ⟩
dt

= −i(δa − δb)⟨σ̂+a σ̂−b ⟩ −
iΓ

2
g(⟨σ̂za⟩ − ⟨σ̂zb ⟩) +

Γ

2

∑

j ̸=a,b
(faj − i2gaj)⟨σ̂zaσ̂−b σ̂+j ⟩

+
Γ

2

∑

j ̸=a,b
(fbj + i2gbj)⟨σ̂zb σ̂+a σ̂−j ⟩ +

Γ

2
f

(
⟨σ̂zaσ̂zb ⟩ +

⟨σ̂za⟩ + ⟨σ̂zb ⟩
2

)
− (Γf +W )⟨σ̂+a σ̂−b ⟩, (A.17)

d⟨σ̂zaσ̂zb ⟩
dt

= −iΓ
∑

j ̸=a,b
2gaj [⟨σ̂+a σ̂zb σ̂−j ⟩ − ⟨σ̂−a σ̂zb σ̂+j ⟩] − iΓ

∑

j ̸=a,b
2gbj [⟨σ̂+b σ̂zaσ̂−j ⟩ − ⟨σ̂−b σ̂zaσ̂+j ⟩]

−Γ
∑

j ̸=a,b
faj [⟨σ̂+a σ̂zb σ̂−j ⟩ + ⟨σ̂−a σ̂zb σ̂+j ⟩] − Γ

∑

j ̸=a,b
fbj [⟨σ̂+b σ̂zaσ̂−j ⟩ + ⟨σ̂−b σ̂zaσ̂+j ⟩]

+(W − Γf)(⟨σ̂za⟩ + ⟨σ̂zb ⟩) − 2(Γf +W )⟨σ̂zaσ̂zb ⟩ + 2Γf [⟨σ̂+a σ̂−b ⟩ + ⟨σ̂−a σ̂+b ⟩], (A.18)

d⟨σ̂+a σ̂+b ⟩
dt

= −i(δa + δb)⟨σ̂+a σ̂+b ⟩ +
Γ

2

∑

j ̸=a̸=b
(faj − i2gaj)⟨σ̂zaσ̂+b σ̂+j ⟩ +

Γ

2

∑

j ̸=a̸=b
(fbj − i2gbj)⟨σ̂zb σ̂+a σ̂+j ⟩

−(Γf +W )⟨σ̂+a σ̂+b ⟩. (A.19)
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In these equations, a ̸= b. Applying the cumulant expansion (A.13), the above equations become

closed and can be solved to obtain the dynamics. Note that this a system of equations with a size

that grows as O(N2).

A.3.2 Disorder

Allowing ∆ > 0, we can solve for the two-time correlation function numerically and examine

its frequency. Fig. A.1 compares this frequency to the derived mean-field value seen in Eq. (A.12)

where pumping and synchronization are assumed to be optimal and N = 100. As can be seen,

there is close agreement, and the two values remain close as ∆ increases. It should be noted that

for our simulations, we take the {δa}Na=1 to be spaced at intervals of equal probability according to

the Lorentzian probability density function to ensure a zero mean.

Figure A.1: Comparison of numerically determined cumulant two-time correlation frequency (sym-
bols) and predicted mean-field frequency (solid lines) at optimal pumping when N = 100

A.3.3 Benchmarking

Fig. A.2 compares the cumulant expansion solution to that of the exact solver in two cases

where the exact solution is accessible. In the left panel, we compare the order parameter ZQ of

the synchronized system in the case where the number of particles is small. In the right panel,

we compare the real part of the two-time correlation function C(τ) for a larger system without
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disorder. In both cases, we see close agreement between the cumulant expansion and the exact

solution.

Figure A.2: Comparing the cumulant expansion solution against the exact solver for the order
parameter when N = 5, f = 1, g = 0.5, ∆ = 1 for a range of W/fΓ (left panel) and for Re[C(τ)]
where N = 100, f = 1, g = 0.5, ∆ = 0, and optimal W (right panel)

A.4 Mutual Information

To gain insight into the growth of mutual information in the transient dynamics, we derive

an expression for the derivative of the two particle mutual information for zero disorder at small

times up to first-order in t. To do this, we write each of the necessary density operators, ρ̂AB, ρ̂A,

and ρ̂B, in the Pauli basis according to

ρ̂ =
1

2M

∑

α⃗

cα⃗ρ̂α⃗, ρ̂α⃗ ≡
M⊗

j=1

σ̂αj ,

where σ̂αj ∈ {1, σ̂+, σ̂−, σ̂z} and M is the number of particles in the subsystem, e.g. M = 2 in

the case of ρ̂AB. Note that cα⃗ = Tr[ρ̂ρ̂α⃗] = ⟨ρ̂α⃗⟩, thus we can write ρ̂AB in terms of second-order

expectations of Pauli operators, and ρ̂A and ρ̂B in terms of first-order expectations. We then

expand each density operator to second order in t according to,

ρ̂(t) ≈ ρ̂
∣∣∣
t=0

+ t∂tρ̂
∣∣∣
t=0

+
t2

2
∂ttρ̂

∣∣∣
t=0

, (A.20)

using the cumulant equations when ∆ = 0 to expand the derivatives of expectations of Pauli

operators to be in terms of the expectations of the operators themselves. This allows for evaluation
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at t = 0. Eigenvalues can then be determined using first-order perturbation theory. Note that

particle symmetry when ∆ = 0 ensures that expressions derived for eigenvalues of ρ̂AB, ρ̂A, and

ρ̂B are the same for any choice of A and B. The initial condition is taken such that all particles

are spin up in the x̂-direction at t = 0. This approach results in the following expression for the

mutual information derivative at small times:

dIAB
dt

=
1

4
[−2(fΓ +W ) log [t(fΓ +W )] + (2fΓ +W ) log [t(2fΓ +W )] +W log(tW )]

+

[
Γ2

2

(
−2f2 − 4g2

)
+W log (tW ) (fΓ(N + 2) − 3W )

+ log [t (fΓ +W )]
(
Γ2
(
f2
(
−
(
N2 − 2

))
− 4g2(N − 1)

)
+ 2fΓNW +W 2

)

+ log [t (2fΓ +W )]
(
Γ2
(
f2
(
N2 − 5

)
+ 4g2(N − 2)

)
− fΓ(3N + 4)W +W 2

)

+
1

2

(
Γ2
(
3f2 + 4g2

)
+ 2fΓW +W 2

)
log
[
t2
(
Γ2
(
3f2 + 4g2

)
+ 2fΓW +W 2

)]] t
4

+ O(t2).

(A.21)

Note that the t in the arguments of the logarithms will cancel and they are in the above expression

only for dimensional consistency. The approximation for the density operators in (A.20) will have

an error term that is to the same order in t and N . This imposes the restriction fΓt≪ 1/N . This

works well for our purposes, since we are interested in characteristic time scales of the time crystal

oscillations which, as we have seen from ωMF and ωC, have a frequency that grows linearly with

N to leading order. Using the change of variables η ≡ fNΓt where η ≪ 1, going to first order in

time, and expanding to leading order for large N , Eq. (A.21) becomes

dIAB
dt

≈ f2Γ2

4Nw
+

(
−3f3Γ3

8Nw2
+

5f2Γ2

4Nw
− 9fΓ

4N
+
g2Γ2

Nw
+

(fΓ − 2w)2

4w

)
η + O

(
1

N2

)
. (A.22)

Note that this vanishes in the thermodynamic limit only when pumping is optimal, i.e. w = fΓ/2.

At this value of pumping, we get

dIAB
dt

≈ fΓ

2

(
1

N
+

(
4g2

f2
− 5

2

)
η

N

)
+ O

(
1

N2

)
,

thus leading to constant dIAB/dt contours of g/f ≲
√
N as noted in the main text. Using optimal

pumping, Γ = f = 1, η = 0.03, and plotting 1/I ′AB(η) over a range of g and N produces the
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contour plot found in Fig. 2 of the main text. Large values correspond to regions of slow growth

in mutual information while small values indicate rapid growth on time scales characteristic of the

time crystal oscillations. Extending our analysis using second order perturbation theory produces

a result that is very similar at optimal pumping, but includes a correction term on the order of

η log(η)/N with a coefficient of the same order in g. This reduces the error of the approximation

with increasing g to a point where it is very small over the parameter regime of interest without

changing the broader analysis given above.

For a small system, we can draw a connection between the growth of mutual information

and the eigenvalues of the Liouvillian L given by the master equation (A.1) which has the form

∂tρ̂ = L[ρ̂]. To examine frequencies, we restrict our attention to the lowest lying eigenvalues of

L with nonzero imaginary part. Also, since we are looking for contributors to two-time correla-

tion frequency, we consider only those eigenvalues with eigenvectors that are not orthogonal to

limt→∞ S−ρ̂(t), which is what the operator eLτ operates on in the quantum regression formula.

Fig. A.3 plots the imaginary part of these eigenvalues for a system at optimal pumping where

N = 5. The blue line is a linear fit of the numerically determined frequency of the two-time

correlation function C(τ). As expected, the imaginary parts of the eigenvalues align closely with

this frequency, particularly for small g/f . In panel (a), the color gives the magnitude of the real

part of the Liouvillian eigenvalues, which determines the decay rate of C(τ) for the corresponding

frequency mode. As can be seen, this decay is gradual for small g/f and increases with this pa-

rameter. In panel (b), the color gives the derivative of two particle mutual information at η = 0.03

in the transient dynamics starting at spin up in the x̂-direction. Note that the increase in decay

rate aligns closely with the increase in mutual information as we vary g/f .
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Figure A.3: Imaginary part of the Liouvillian eigenvalue versus g/f plotted with a linear fit of the
numerically determined frequency of C(τ) (blue). In panel (a), color corresponds to the magnitude
of the eigenvalue real part and in panel (b) it corresponds to the mutual information derivative at
η = 0.03 in the transient dynamics



Appendix B

Enhanced Spin Squeezing

This appendix lists additional results associated with chapter 5.

B.1 Cumulant Expansion

To obtain a model that can be numerically integrated efficiently but also allows for quantum

correlations, we turn our attention to a cumulant expansion approximation. Specifically, we extend

the mean-field analysis by computing equations of motion for expectation values of products of

two Pauli operators, e.g., ∂t⟨σ̂αi σ̂βj ⟩ = Tr[σ̂αi σ̂
β
j ∂tρ̂], in addition to the equations of motion for the

expectations of individual Pauli operators. Together these form a hierarchy of equations which we

truncate by assuming that third order expectations can be factorized into products of lower-order

Figure B.1: (a) Minimum squeezing attained from cumulant model after tmin = 0.003 where N =
2000 and γs/Γ = 20 with the phase boundaries Υ′

c/Γ (blue) and Υc/Γ (red). (b)-(g) Comparison
of squeezing dynamics between cumulant (blue) and MCWF (red) where χ/Γ and 2Ω/NΓ values
are shown in red in panel (a)
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terms. Specifically, we assume they factorize according to

⟨σ̂αa σ̂βb σ̂γc ⟩ ≈ ⟨σ̂αa σ̂βb ⟩⟨σ̂γc ⟩ + ⟨σ̂βb σ̂γc ⟩⟨σ̂αa ⟩ + ⟨σ̂αa σ̂γc ⟩⟨σ̂βb ⟩

−2⟨σ̂αa ⟩⟨σ̂βb ⟩⟨σ̂γc ⟩, (B.1)

in the case where a, b and c are distinct. Operator products for the same particle are resolved using

the usual Pauli relations. Combining this factorization with the particle symmetry present in the

master equation, and assuming all particles start with the same initial conditions, this results in a

closed system of six complex ordinary differential equations:

d⟨σ̂+a ⟩
dt

= −Γ + γs
2

⟨σ̂+a ⟩ +
1

2
(N − 1)(Γ − i2χ)⟨σ̂zaσ̂+b ⟩ − i

Ω

2
⟨σza⟩ + iχ⟨σ+a ⟩, (B.2)

d⟨σ̂zaσ̂+b ⟩
dt

= −3

2
(Γ + γs)⟨σ̂zaσ̂+b ⟩ − (Γ + γs)⟨σ̂+b ⟩ −

1

2
(Γ + i2χ)⟨σ̂+a ⟩ − Γ⟨σ̂+a σ̂zb ⟩

+
1

2
(N − 2)(Γ − i2χ)⟨σ̂zaσ̂zb σ̂+j ⟩ − (N − 2)(Γ + i2χ)⟨σ̂+a σ̂+b σ̂−j ⟩ − (N − 2)(Γ − i2χ)⟨σ̂−a σ̂+b σ̂+j ⟩

−iΩ
2

(2(⟨σaσ+⟩b+ − ⟨σaσ−⟩b+) + ⟨σaσz⟩bz) + iχ⟨σaσz⟩b+, (B.3)

d⟨σ̂za⟩
dt

= −2iχ(N − 1)(⟨σ̂+a σ̂−b ⟩ − ⟨σ̂−a σ̂+b ⟩) − Γ(N − 1)(⟨σ̂+a σ̂−b ⟩ + ⟨σ̂−a σ̂+b ⟩) − (Γ + γs)(⟨σ̂za⟩ + 1)

+2ΩIm[⟨σ+a ⟩], (B.4)

d⟨σ̂+a σ̂−b ⟩
dt

=
1

2
(N − 2)(Γ − i2χ)⟨σ̂zaσ̂−b σ̂+j ⟩ +

1

2
(N − 2)(Γ + i2χ)⟨σ̂zb σ̂+a σ̂−j ⟩ +

Γ

2
(⟨σ̂zaσ̂zb ⟩ + ⟨σ̂za⟩)

−(Γ + γs)⟨σ̂+a σ̂−b ⟩ − ΩIm[⟨σaσz⟩b+], (B.5)

d⟨σ̂zaσ̂zb ⟩
dt

= −i(N − 2)2χ[⟨σ̂+a σ̂zb σ̂−j ⟩ − ⟨σ̂−a σ̂zb σ̂+j ⟩] − i(N − 2)2χ[⟨σ̂+b σ̂zaσ̂−j ⟩ − ⟨σ̂−b σ̂zaσ̂+j ⟩]

−(N − 2)Γ[⟨σ̂+a σ̂zb σ̂−j ⟩ + ⟨σ̂−a σ̂zb σ̂+j ⟩] − (N − 2)Γ[⟨σ̂+b σ̂zaσ̂−j ⟩ + ⟨σ̂−b σ̂zaσ̂+j ⟩]

−2(Γ + γs)⟨σ̂za⟩ − 2(Γ + γs)⟨σ̂zaσ̂zb ⟩ + 4ΓRe[[⟨σ̂+a σ̂−b ⟩] + 4ΩIm[⟨σaσz⟩b+], (B.6)

d⟨σ̂+a σ̂+b ⟩
dt

= (N − 2)(Γ − i2χ)⟨σ̂zaσ̂+b σ̂+j ⟩ − (Γ + γs)⟨σ̂+a σ̂+b ⟩ − iΩ⟨σaσz⟩b+ + 2iχ⟨σaσ+⟩b+. (B.7)

We numerically integrate these cumulant equations to obtain the dynamics of the driven-

dissipative system with γs > 0. In Fig. B.1(a) we plot the best squeezing attained after a given

threshold timescale (related to the early transient collective squeezing), for a range of χ/Γ and

2Ω/NΓ values with N = 2000 and γs/Γ = 20 Note that minimum values greater than zero have

been cut off at zero so as to avoid saturating the color plot. The two phase boundaries Ωc and
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Ω′
c are clearly visible, bracketing the region where single-particle relaxation enhanced squeezing is

allowed to develop.

Panels (b)-(e) of Fig. B.1 show a comparison of results from the cumulant expansion along

with those from the MCWF method (which is numerically exact in the limit of infinite trajectories,

and further discussed in the following section). It can be seen that there is close agreement up

to the crossing of the dynamical phase transition, making the result obtained from the cumulant

equations a reasonable indicator of the true extent and timing of maximum squeezing.

B.2 Exact Solver

While the cumulant approximation is attractive as it allows us to obtain numerical results rapidly

for a large system, there are also other numerical methods to solve the full quantum dynamics

of the system in a reasonably efficient manner. In particular, Ref. [184] recently demonstrated

that a Monte Carlo wavefunction approach can be implemented to efficiently solve the dissipative

dynamics of spin systems exhibiting permutational symmetry for N ∼ O(103) and even up to

N ∼ O(105) in special cases. While we point the interested reader to Ref. [184] for full details of

the numerical method, we summarize here the key aspects and advantages.

The MCWF method unravels the density matrix into an ensemble of pure state wave functions

that evolve independently of one another in time, where dissipation is handled by random jumps.

The full time evolution of one member of this ensemble is referred to as a trajectory. The time

evolution of the density matrix is recovered by taking the average of the pure state density matrices

at each point in time, resulting in the mixed state solution to the master equation [Eq. (2.10)].

The advantages of this method are three-fold. First, as shown in [184], even though single-

particle relaxation breaks the Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z symmetry in the master equation, each quantum

trajectory lies within a single eigenspace of total spin at any given time. This means that each

trajectory can be efficiently integrated, as the dimensionality of the Hilbert space in which it exists

is only O(N). Second, the trajectories evolve in time independently of one another, allowing for the

parallel simulation of different trajectories and thus rapid evaluation of ensemble averages. Finally,
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analyzing the time evolution of individual trajectories can provide insight that is not altogether

obvious from the evolution of the density matrix resulting from the ensemble averages, as was

discussed in the main text.

Following the discussion in the main text, in Fig. B.2 we plot an example of the squeezing and

effective particle number versus time from the ensemble average and also individual trajectories. We

observe that the squeezing improves until enough trajectories approach the critical Neff threshold.

After a sufficient number of trajectories cross the threshold and lose their squeezing, the overall

squeezed state is then quickly lost. This critical number of trajectories can be reached even before

the ensemble average Neff crosses the critical threshold, as is the case in the figure.

Figure B.2: Spin-squeezing and effective particle number versus time for the full state (red) and a
number of individual trajectories (grey) where N = 2000, Ω/Γ = 2000, χ/Γ = 1, and γs/Γ = 2.
Initial conditions are the coherent spin state in the −x-direction. The black horizontal line indicates

the critical Neff where Υeff
c = Υ and the red vertical line is the point in time where it is crossed

B.3 Technical details of implementation in a cavity-QED platform

In this section we discuss some technical details relevant to a potential realization of our

scheme in an optical cavity experiment. Specifically, we discuss some details of the generated
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squeezed state which have practical consequences, such as the fact that the dynamically prepared

state is phase-squeezed.

B.3.1 Connection between model parameters and cavity co-operativity

As outlined in the manuscript, the spin model we have discussed could be realized by coupling

an optical cavity to the narrow linewidth optical clock transitions available in alkaline earth atoms

[129, 125]. We require that κ ≫ g
√
N and κ ≫ γs (bad cavity limit) with 2g the single photon

Rabi frequency and κ the cavity linewidth, to ensure that the intracavity field can be adiabatically

eliminated and thus realize the desired spin model [Eqs. (1) and (2)]. Microscopically, the spin-spin

interactions can be engineered by detuning the cavity from the atomic transition by ∆c which leads

to a tunable interaction strength χ = 4g2∆c/(4∆2
c + κ2). Similarly, the collective dissipation arises

due to photon leakage and is characterized by Γ = 4g2κ/(4∆2
c + κ2) [129, 130].

It is useful to show that χ and Γ can also be related to the single-particle co-operativity

C = 4g2/(κγ) and spontaneous emission rate γ:

χ =
Cγ∆̃c

4∆̃2
c + 1

, (B.8)

Γ =
Cγ

4∆̃2
c + 1

, (B.9)

with ∆̃c = ∆c/κ. As the single-particle co-operativity depends on the technical details of the optical

cavity, Eqs. (B.8) and (B.9) demonstrate that the collective parameters can be tuned independently

of the single-particle spontaneous emission rate γ.

B.3.2 Direction of Spin-Squeezing

Figure B.3 illustrates the direction of the collective Bloch vector (with elevation angle above

the equator denoted θel) and the direction of the minimum variance (∆Ĵn⊥)2 in the plane perpen-

dicular to the Bloch vector (denoted ϕmin) as a function of time for the case where χ/Γ = 0. The

initial state was chosen to be in the −ẑ-direction. We see that the Bloch vector moves from the

south pole toward the positive ŷ-axis as squeezing builds. The direction of squeezing is parallel to
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the equatorial plane throughout the evolution.

B.3.3 Effects of Interaction Strength and Selection of the Initial State

Figure B.4 illustrates how the squeezing generated in the transient dynamics depends on

the initial coherent spin state and the presence of elastic interactions. In panel (a), we see that

when χ/Γ = 0 the selection of the initial state has a minimal impact on the amount of squeezing

generated. Furthermore, we see negligible buildup of spin-squeezing in the early dynamics. The

only significant squeezing is attained later where we see the interplay between collective and single

particle dissipation.

In panel (b), by contrast, we see a buildup in spin-squeezing early in the dynamics when

χ/Γ is nonzero; however, the level of squeezing attained is heavily dependent upon the initial state.

We also see that certain initial conditions lead to an almost immediate loss of squeezing, behavior

consistent with the findings in [11].

B.3.4 Practical utility of the squeezed state

The results of Secs. B.3.2 and B.3.3 for χ/Γ = 0 have important practical implications

for using the generated squeezing in realistic metrological protocols. Specifically, the important

outcome is that an initial coherent spin state prepared along −ẑ subject to the dissipative dynamics

leads to a phase-squeezed state that lies almost perfectly on the equatorial plane. This eliminates

the need for any prior characterization of the squeezed state and/or remedial rotations to place the

state along the equator in preparation for a Ramsey sequence that can be used to sense rotations

about ẑ. Rotations are a key source of technical error in realistic experiments, particularly those

using optical transitions, as small errors can easily couple the anti-squeezed quadrature into the

squeezed, quickly eliminating the metrological enhancement of the generated state.

Lastly, we make one further comment on the potential role of interactions in realistic ex-

periments. The most promising candidate for implementation of our protocol is an optical cavity

experiment. In this system, one must be mindful that the strength of the interactions χ is controlled
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by the detuning ∆c of the coupled cavity mode from the atomic transition, χ = 4g2∆c/(4∆2
c +κ2).

This detuning cannot be rapidly quenched on the relevant time-scales of the dynamics, which means

that interactions used to generate the squeezed state would contaminate any subsequent Ramsey

sequence to measure rotations. As they cannot be echoed out of the Ramsey protocol, for any

practical implementation in an optical cavity one must always use χ = 0.

For completeness, we note that, in contrast, superradiant decay ∝ ΓN can be effectively

turned off independent of the cavity detuning. Specifically, this can be achieved by the following

steps [[129]]: i) rapidly dephasing the entangled ensemble with random energy shifts hj applied via

Ĥdephase ∝
∑

j hj σ̂
z
j , ii) letting the system evolve freely during the interrogation period with Ĥrot.

Note that during that time superradiant emission is suppressed given the incoherent nature of the

dephased state and iii) rephasing the ensemble via −Ĥdephase. As the dephasing Ĥdephase commutes

with the rotation Ĥrot ∝ Ĵz it does not degrade the sensitivity of the squeezed state.

However, the χ ̸= 0 results studied in this work remain of fundamental interest, not only in

the context of understanding the interplay of collective and single-particle effects in the dynamical

generation of entanglement, but as it is still relevant for trapped-ion arrays, wherein the spin-spin

interactions can be rapidly reversed on relevant experimental time-scales.
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Figure B.3: (a) Diagram illustrating the definition of the angle ϕmin of minimum (∆Ĵn⊥)2 in the
plane perpendicular to the Bloch vector (black arrow) and θel, the elevation angle of the Bloch
vector measured from the equatorial plane. (b) Evolution of spin-squeezing, computed with the
cumulant expansion for N = 104, Υ = 0.9Υc, χ/Γ = 0, and γs/Γ = 50. Initial conditions are a
coherent spin state in the −ẑ-direction (c) ϕmin (top) and θel (bottom) in radians. (d)-(e) The
Bloch vector (black) and direction of minimum variance (green)/(blue) at the minimum squeezing
in the early/late transient dynamics

Figure B.4: Spin-squeezing versus time simulated using the cumulant expansion for N = 104,
Υ = 0.9Υc, and γs/Γ = 50 with (a) χ/Γ = 0 and (b) χ/Γ = 1 for various initial conditions
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