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Vaudrin, Cody Vogel (PhD)

New Observational and Modeling Techniques for Multistatic Specular Meteor Radar

Thesis directed by Professor Scott E. Palo

This dissertation presents details of new techniques in specular meteor radar data acquisition, modeling

and determining the fundamental specular meteor radar echo signal parameters. One goal of Multistatic

Meteor Wind Radar (MMWR) is increasing the spatial and temporal resolution of the upper-atmospheric

windfield estimate by distributing a network of synchronized interferometers over large spatial regions on

the order of 100’s of [km]. Modern theories of meteor trail diffusion are placed in the context of modeling

the ground illumination pattern created when an arbitrarily placed meteor trail scatters VHF radio waves

originating from an arbitrarily located transmitter. The ground illumination pattern shows how meteor trail

scatter can be observed by receivers located over large spatial regions on Earth’s surface.

MMWR is enabled with the Colorado Software Radar (CoSRad), a software-defined radar remote

sensing transceiver system developed at the University of Colorado’s ARSENL laboratory. Various specular

meteor trail echoes observed using CoSRad configured to drive existing radars highlight CoSRad’s potential

for reconfigurability. A set of long-baseline multistatic observations taken using a prototype system deploy-

ment in Australia demonstrates the MMWR measurement principle and the ground illumination pattern

model.

Unexpected issues encountered when processing the prototype MMWR data using traditional interfer-

ometry methods motivated the development of a new technique to solve the parameter estimation problem

of specular meteor radar interferometry on the complex plane. One benefit of the complex plane interfer-

ometry solution technique is the formation of a parameter covariance matrix, representing the precision of

the measured trail location, Doppler and diffusion signal parameters. The determination of fundamental

measurement parameter precision is important, as it lays the groundwork for calculating the precision of

the derived multistatic windfield. This dissertation presents modern techniques in modeling and observing

specular scatter from meteor trails and estimating the fundamental signal parameters of spatial location,

Doppler frequency and diffusion coefficient from the specular radar echoes.
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Chapter 1

Introduction

“Enter here the timeless fellowship of the human spirit” - Dr. George Norlin, former president of the

University of Colorado

1.1 Dissertation Overview

The field of Remote Sensing is broadly defined as the science of determining properties of an object

or diffuse medium at a some distance by measuring aspects of its interactions with the electromagnetic

spectrum. The interacting field may be supplied actively by an illuminating device, as is the case with radar

and lidar, or its origin may be external in nature, such as a star. The following discussions concern the radar

class of remote sensing instrumentation. All modern radar systems may be divided into two subsystems,

the illumination hardware of which the primary devices are the antennas and a transmitter, and the data

acquisition and signal processing systems which record and analyze the scattered field. Multistatic Meteor

Wind Radar (MMWR) represents one class of modern radar remote sensing system. This dissertation covers

topics concerning multistatic specular meteor wind radar, and specifically addresses the state-of-the-art

in receiver hardware design, specular meteor trail scatter modeling and processing of the received specular

meteor trail signal in a rigorous statistical sense for quantification of instrumentally-driven uncertainty in the

fundamental measurement parameters. Aspiring radar engineers and scientists may use this dissertation as a

reference for the current state of specular meteor radar observational techniques and meteor trail modeling.
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Recent advances in electronics technology have enabled the development of a new class of radio

transceiver known as ‘Software Defined Radio’ (SDR). Traditional radio receivers isolate frequencies of in-

terest from a broad band of frequencies presented to the input using banks of analog filters. As a result,

traditional receivers are limited to predefined applications by static analog and digital signal processing hard-

ware. The SDR concept relies on moving the analog-to-digital converter (ADC) closer to the antenna along

the receiving chain, thus enabling reconfigurable software-defined signal processing as shown in Figure 1.1.

A software defined receiver implements signal processing in the digital domain and consequently is limited

in bandwidth by the sampling frequency as depicted in Figure 1.2. For example, a wideband digital receiver

can record a large band of frequencies, and process information contained over smaller bands of interest

during later processing. A universal software defined radar transceiver designed for use with a wide range

of radar remote sensing systems has been developed at the University of Colorado’s Active Remote Sens-

ing Laboratory (ARSENL). The Colorado Software Radar (CoSRad) described in Chapter 3 is capable of

data acquisition over an expansive range of applications, however, the receiver has been primarily developed

for use as a multistatic specular meteor radar controller and data acquisition system. Consistent with the

goals outlined by both the National Science Foundation’s Coupling and Energetic Dynamics of Atmospheric

Regions (CEDAR) strategic vision of 2011 [16] and the Distributed Arrays of Small Instruments (DASI)

initiative [29], CoSRad represents the current state-of-the-art in multistatic scientific radar remote sensing

data acquisition, a claim supported in detail throughout this dissertation.

!"#"$%&

'()*"+#%&)

,-#."/"-#"#+)

012),-#345*"-#

6"+#%&)75-,4**"#+8)

(790)-5)+4#45%&)

:;5:-*4),-$:;/45)<<==<=<=<==<=

!
"

Figure 1.1: Basic illustration of SDR where the ADC is placed closer to the antennas along the receiver
chain as compared to traditional analog receivers. SDR-based data acquisition captures a band defined by
the sampling frequency fs where all subsequent signal processing is performed using digital devices.

Before diving into the technical details of CoSRad, the reader is encouraged to explore the compelling

field of meteor trail physics and modeling described in Chapter 2. Chapter 2 describes the physics governing
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R2 R3 R4 R5R1

Bandwidth window (    )

Carrier frequency (    ) [MHz]

R6

10.7 30.35 32.55 35.24 46.3 49.9

Figure 1.2: The software configurable digital bandwidth window can slide along the analog input bandwidth
to select regions of interest. Both the bandwidth window width fs and center frequency fo are software
configurable. The vertical arrows in the figure are labeled with Rx indicating the center frequencies listed
in Table 3.3 where CoSRad has been successfully configured for specular meteor trail radar observations.

classical meteor trail formation from the perspective of specular meteor radar remote sensing. In Chapter

2, diffusion of the charged meteor trail into the neutral atmosphere is explored and a first-principles model

of trail diffusion formulated by Dimant and Oppenheim [26] is discussed. Numerical simulations of specular

meteor trail scatter based on Tinin’s formulations [126] are presented and provide deep insight into the ob-

servation of specular meteor trail scattering from Earth’s surface. Technical details of CoSRad are discussed

in Chapter 3 and placed in the context of observing the modeled specular scatter discussed in Chapter 2.

Chapter 4 describes the most modern work in voltage-level specular meteor radar signal processing. In

Chapter 4, an elegant solution to the problem of meteor radar interferometry is presented and cast on the

complex plane. The entire set of fundamental meteor radar parameters are solved under an arbitrary antenna

geometry using statistical nonlinear least-squares estimation of the physical model parameters described in

Chapter 2. Finally, the statistical precision of all the estimated parameters is characterized by calculation of

the full covariance matrix. Similar techniques have been used for Incoherent Scatter Radar (ISR) parameter

estimation [83, 66] and in satellite orbit determination [116], however, Chapter 4 describes a first application

of these statistical signal processing techniques to the field of specular meteor radar. The dissertation reaches

a denouement in Chapter 4 with a new approach for specular meteor radar low-level signal processing and

statistical array calibration.
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This work aims to reduce uncertainties in specular meteor radar remote sensing measurements by

providing a universal data acquisition and radar control platform in addition to developing the MMWR

technique enabled by CoSRad’s multistatic phase synchronous capabilities. Three primary advancements in

the field of specular meteor radar are described in this dissertation:

(1) Numerical modeling of the ground illumination pattern generated by specular scatter of

radar pulses from meteor trails with arbitrary receiver/transmitter geometry strongly

motivates the development and deployment of multistatic specular meteor radar.

(2) A universal software-defined radar transceiver, the Colorado Software Radar (CoSRad)

has proven the fundamental viability of the multistatic specular meteor radar measure-

ment technique. First of their kind specular meteor trail observations are presented in

Chapter 3.

(3) In Chapter 4, the problem of meteor radar interferometry and statistical uncertainty is

elegantly solved by casting the relevant equations onto the complex plane and perform-

ing a global search for the objective function minimum using a nonlinear least squares

(NLS) iterative technique.

.
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1.2 Background

“If I have seen further than others, it is by standing upon the shoulders of giants” -Isaac Newton

Earth’s middle atmosphere at a height range of 80-110 [km] has historically been a challenging mea-

surement domain as the region’s altitude is too high for sounding balloons and too low for satellite mea-

surements. Observations [112] and modeling [45] suggest that anthropogenic climate change will cause large

observable changes in the mesospheric region, motivating the development of better observational tools for

this region of the atmosphere. Various rocket campaigns [85] have measured the wind and chemistry with

limited spatial and temporal coverage, whereas passive optical measurements are limited to specific emission

layers only visible at night. Specular meteor radars transmit in the lower-VHF band (typically 20-60 [MHz])

and have been used for many years to measure mesospheric winds. Since 1929, meteors have been a serious

topic of study in radio science when Nagaoka [99] first suggested that meteors entering Earth’s atmosphere

caused disturbances in atmospheric ionization capable of modifying the propagation of radio waves. Since

that time, radar remote sensing has developed into an expansive field concerning the study of Earth’s various

atmospheric regions through their interactions with radio waves, of which the study of meteors and related

phenomenon is one component. Meteoric studies encompass a wide range of topics including meteoric origins,

ablation, plasma processes and upper atmospheric winds. During ablation in Earth’s atmosphere, meteors

deposit trails of temporary ionization which are advected with the background flow [123, 95]. When probed

with a Meteor Wind Radar (MWR) measurement system, the trail can reveal details in the structure of the

upper atmospheric wind field. The canonical all-sky MWR statistically combines a number of individual

meteor trail position and velocity measurements over some height window producing a vector estimate of

the windfield spatially and temporally averaged over some time period, typically 30-60 [minutes] [23].

The Colorado Software Radar (CoSRad) addresses a number of issues with traditional meteor wind

radar systems, in addition to enabling new types of measurements based on the multistatic radar topology

outlined in Chapter 2. Capable of direct-convert sampling over the VHF band, CoSRad has the ability to
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replace the large variety of currently operating systems with a single common data acquisition and control

solution. CoSRad is fundamentally a data acquisition system with extensive timing and control capabilities

specifically designed for integration with existing specular meteor radar remote sensing systems. After data

acquisition, any latency tolerant signal processing algorithms may be implemented. When configured for

VHF data acquisition, no intermediate frequencies are necessary thereby solving the problem of imbalances

between the I and Q channels of traditional receivers, and when configured for phase-synchronous multistatic

operation, a geographically distributed network of CoSRad receivers has the capability to measure common-

volume winds solving the problem of windfield homogeneity endemic to all monostatic MWR systems [122].

Furthermore, a multistatic network of inexpensive receivers enables mesoscale windfield monitoring systems

capable of covering large geographical areas. Most directly applicable to this dissertation, the CoSRad

multistatic radar facilitates implementation of common volume meteor wind experiments by exploiting the

forward-scatter specular meteor trail signal.

Primarily studied in the context of long distance communication links, meteor trail forward-scatter

has received little attention from the radar remote sensing scientific community until recently. Primarily

due to complex system designs, the Doppler information contained in the forward-scatter specular meteor

trail echo has not been incorporated into any statistical wind estimation procedures. Older specular meteor

radar systems did not have the phase coherence capability to extract reasonable Doppler information, how-

ever, accurate GPS-synchronous receivers such as CoSRad have removed this limitation. One comprehensive

theory on oblique meteor trail scattering has been formulated by Jones [76]. Jones’ theory is an extension

of Poulter and Baggaley’s full-wave backscatter case [107] of which considerable experimental evidence does

exist, however, little experimental work has been done in support of the full-wave forward-scatter theory.

Using the “classical” forward-scatter theory, one can calculate the power from a trail with constraints on

the geometry (see Section 2.1), however, the calculation of a ground illumination footprint using the classic

forward-scatter radar equation as given by McKinley [95] is troublesome because the formulation assumes

the trail is tangent to an ellipse with foci at the receiver and transmitter locations. Recently, Tinin [126]

has combined the classic theory with first-order perturbation analysis containing a term for arbitrary cross-
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sectional electron density profiles enabling straightforward ground illumination pattern calculations from

meteors having arbitrary geometry with respect to the receiver and transmitter. The numerical Ground

Illumination Pattern (GIP) simulations in Chapter 2 based on this work suggest that specular scatter from

meteor trails using a single transmitter should be detectable by receivers distributed over a large geograph-

ical area. In Chapter 3, the first phase-synchronous forward-scatter observations of their kind using two

geographically separated CoSRad receivers configured for multistatic specular meteor trail observations are

presented.

In addition to enabling new insights into meteor physics, a multistatic network of receivers has the

potential to measure winds in a common volume using a larger angular measurement diversity, eliminating

the need for the homogeneous windfield assumption which is commonly used in monostatic meteor wind

inversion techniques. Current monostatic MWR systems measure the radial component of the wind velocity

using two nearly orthogonal look angles from a single point on the earth, and fit the observed radial velocities

to the meridional and zonal wind components assuming wind homogeneity over the radar’s field of view.

Geographically distributed interferometric receivers enable the identification of a common volume as seen

by both antenna arrays, where the wind is assumed constant in the volume thereby increasing the spatial

resolution as compared to the monostatic MWR as is illustrated in Figure 1.3. With traditional monostatic

specular meteor radar, a single wind vector estimate û(ri) is generated which represents the spatially aver-

aged wind in some height and time window. In the general multistatic case, a vector field representing the

windfield is generated which represents the wind with an arbitrary spatial and temporal resolution û(ri)

over some desired hight and time window. The general form of the multistatic specular meteor wind radar

vector field equation including the instrument precision terms of Chapter 4 is described in Section 4.6.1.

A universal software defined data acquisition system brings a number of technical and scientific ad-

vances to the field of radar remote sensing. A lack of ground-based instrumentation enabling mesoscale and

common-volume, multifrequency studies is identified by the DASI initiative [29] and Mathews [93] as current

challenges in providing experimental evidence for various aspects of meteor physics and for continued char-
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Figure 1.3: Conceptual illustration adapted from [101] of how multistatic meteor wind radar can increase
the spatial resolution and spatial extent of the mesospheric wind estimate. Temporal resolution is improved
through increased trail detection rates. For multistatic meteor wind radar, the receiver stations are dis-
tributed over length scales of 100’s of km as opposed to 10’s of km for meteor orbit determination radars
such as SAAMER-OS [69] or AMOR [92].
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acterization of the overall geospace environment. Furthermore, CEDAR’s strategic vision of 2011 identifies

the “development of observational and instrumental strategies for geospace systems studies” as a strategic

impetus for the coming decade. With respect to radar remote sensing, these needs are directly addressed

with CoSRad, a phase synchronous, multistatic and reconfigurable data acquisition system and radar con-

troller. Efforts to configure the Advanced Meteor Orbit Radar (AMOR) as a MWR [92] (see Section 1.3.1)

provides an interesting case study in the potential benefits of implementing CoSRad-based data acquisition

and demonstrate how straightforward implementation of mesoscale and macroscale networks of MWR are

enabled through the deployment of CoSRad with existing radar facilities. Capable of direct-convert sampling

over the VHF band, CoSRad could replace nearly every currently operating specular meteor radar receiver

with a well-characterized, common data acquisition and control system. Assorted and often proprietary

algorithms used to interpret observations from different systems has historically been a source of measure-

ment uncertainty as is currently the case with the Jicamarca All Sky Meteor Radar (JASMET) located at

the Jicamarca Radio Observatory (JRO) [48] near Lima, Peru. Additionally, CoSRad has the capability to

operate as a universal radar receiver over many radar topologies as demonstrated by collaborations with

Dr. Christopher Williams [136] in the development of a Linear Frequency Modulation Continuous Wave

(LFMCW) tropospheric boundary layer radar. From a scientific standpoint, CoSRad enables straightfor-

ward phase-synchronous, multistatic, multifrequency studies of meteor phenomenology. Common-volume

wind measurements enabled by multistatic MWR can remove the assumption of all-sky wind homogeneity

(see Section 1.3.2) thereby increasing the spatial resolution and enabling the study of gradients within the

windfield [122].

A number of measurement campaigns demonstrate CoSRad’s capabilities. Specular meteor trail echoes

observed by configuring CoSRad for use with both the JASMET array and the Colorado Obninsk Radar

(COBRA) [38] array located in Platteville, CO exemplify CoSRad’s potential for reconfigurability. A mul-

tistatic observation campaign conducted in Dec, 2014 in South Australia showcase the first major results

of their kind using software defined remote sensing radar configured for multistatic meteor wind radar ob-

servations. Specular meteor trail scatter originating from a transmitter located in Delamere, Australia was
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observed at a co-located Jones [74] interferometer and at a phase-synchronous forward-scatter station located

86 [km] away in Adelaide, Australia.

1.2.1 Meteor Science

The early experimentation in meteor radar science is interesting and provides a valuable historical

perspective on the current state of meteor wind radar. The casual observer may consult Buderi [14] for

a general historical overview of radar. Perhaps the first suggestion that E-region disturbances caused by

meteors could modify the propagation of radio waves was provided by Nagaoka in 1929 [99]. By this time,

the existence of the ionized E and F layers was known along with their predictable solar-induced ionization

cycles. During the International Polar Year of 1932, various observations of irregularities in nighttime E-

region ionization lead to Appleton and Naismith’s conclusion that “Either the recombination of ions is

prevented or there is some ionizing agent present which can influence the dark side of the earth” [2]. Only a

few years later in 1935, the first conclusive experimental evidence that sudden transient increases in E-region

ionization were caused by ablating meteors was presented by Skellett [120] who correlated radio meteor

echoes from the Leonid shower using a primitive ranging radar with visual meteors. Humorously, his first

attempt at such a measurement campaign was unsuccessful due to a mysterious “magnetic disturbance,”

with no additional information provided. By this time, the existence of the ionospheric E and F regions was

well established [1] placing a rough lower bound on the electron density of meteoric ionization. Daytime

E-region electron number density is on the order of 105 [cm−3] having a critical frequency of 3 [MHz] as given

by Eq 2.4. Only waves with frequencies below the critical frequency are reflected by a plasma, therefore

observed meteoric ionization must have an electron density above that of the E-layer to be observed at

frequencies higher than the known E-layer critical frequency thereby placing a lower limit on the ionization.

At this time, the idea of a meteor trail as an ‘elongated plasma inhomogeneity’ was still forming, and the

available observations did not support conclusions on ionization geometry beyond that of transient, spatially

diffuse cloud-like irregularities in E-region ionization coincident with meteor showers. At this time, meteoric
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ionization had only been directly associated with visible showers, however, a constant background of sporadic

“ionization-bursts,” similar to those recorded from visible meteors had been observed with a diurnal and

seasonal variability. The “ionization-bursts” were suspected to be meteoric in origin, and the first compelling

evidence supporting a constant influx of meteoric dust into Earth’s atmosphere was provided by Appleton

[3]. After the existence of E-region ionization of meteoric origin was confirmed, [53], controversy in attempts

to mathematically describe the phenomenon began to emerge.

The first measurement suggesting bulk motion of transient E layer ionization shown in Figure 1.4 was

recorded by Eckersley and Farmer [33] who observed phase changes in the scattered wave using a primitive

interferometer thereby suggesting motions of a coherent scattering center. In an extraordinary example of

how interpretations of observations in the absence of developed theory can lead to erroneous conclusions, the

authors used the result in Figure 1.4 as an argument against ionization of meteoric origin. They reasoned

“that the scattered echoes could not be due to single clouds but to a number of centers distributed widely

in the E region or to a shower of particles entering the atmosphere-and hence that their origin could not

arise from meteoric ionization.” Incredibly, the authors go on to identify the mechanism of motion (wind):

“with some certainty that the echoes are of such a nature as to be inexplicable in terms of single clouds in

the ionosphere, unless these are assumed to move during their lifetime with enormous and random velocities;

and other considerations make this supposition very unlikely.”

Figure 1.4: First measurement of the phase changes in a meteor trail echo at fo = 7.6 MHz suggesting
motion of the scattering center. Originally reasoned as evidence against meteoric ionization, this may be the
first Doppler measurement of the radial velocity component of a drifting meteor trail.

By 1948 the idea of meteor trails consisting of elongated clouds of ionization had been gaining popu-

larity through antenna aspect sensitivity studies. Prentice and Lovell observed the vast majority of echoes
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from showers when the antenna beam was pointed normal to the meteor trajectory [109], a phenomenon

explained by the idea that meteors deposit long columns of ionization. Meteor observations had now reached

the level of sophistication needed to test the three theories of meteor trail scattering at the time. Built on

work done by Blackett [13], theories proposed by Eckersley [32], Pierce [106] and Lovell [89] were tested

using observations interpreted under with Herlofson’s [88] theory suggesting that electron diffusion, and not

recombination was the primary factor in determining echo duration, an assumption recently called into ques-

tion under some circumstances [139]. Evidence at the time supported Herlofson’s two primary claims that a

diffusion dominated echo duration should strongly depend on the radar wavelength by a factor of λ2, and that

the orientation of the antenna pattern with respect to the earth’s magnetic field should have a measurable

effect on echo duration under certain circumstances. Meteor trails experience anisotropic diffusion, where

the parallel component of the diffusion velocity with respect to the earth’s magnetic field will be larger then

the perpendicular component. This was predicted to shorten the specular echo duration for trails oriented

perpendicular to the earth’s magnetic field. The first claim was experimentally verified by observing the same

trails using multiple frequencies [89], and the second by observing trails from the same shower at the same

time from multiple antenna angles and locations [88]. Eckersly’s theory of scattering from ionization having

a cloud-like geometry fails to predict the observed aspect sensitivity. Pierce’s theory assumes a highly ionized

trail having a radius larger then the radar wavelength where the majority of the meteor’s kinetic energy is

converted into ionization, essential a large, dense cylinder of ionization. Both Eckersly’s and Pierce’s theories

predicted electron densities in large disagreement with Herlofson’s accepted values as determined through

coincident measurements with visual meteors. Lovell and Clegg’s theory of scattering from an ionization

column with a radius small compared to the radar wavelength explained the majority of observations, and

their measurements of electron density were in decent agreement with Herlofson’s theory. One of the earliest

experiments based on Lovell’s radar equation was to measure the velocity of meteors using the diffraction

fringes or Fresnel intervals that form as the meteor deposits an ionization trail with a sharply defined edge

[21]. More recent work on Fresnel diffraction from meteor trails has introduced the “Fresnel Transform” [34]

as a promising technique for the study of meteoric velocity and fragmentation through the identification of

superimposed Fresnel oscillations suggesting parallel trails.



13

Lovell’s meteor radar equation accurately predicted the electron density, frequency dependence and

Fresnel oscillations associated with a trail assuming the electron density is sufficiently low so each electron

radiates independently of all others. Herlofson saw the inability of Lovell’s theory to predict a defined

boundary between the single and multiple scattering regimes, and in 1951 refined his earlier work to address

this problem [52]. Herlofson’s revised work was the first formulation of a “full-wave” theory where the entire

scattered EM field is solved using Maxwell’s equations under a set assumptions of which the low-density,

backscatter formulation of Lovell is a special case. Herlofson’s more general scattering theory led to the

work of Kaiser and Closs [77] where, unlike Herlofson’s theory, the solution is derived without limits on

the electron line density or trail radius. Like Lovell’s work, these two theories were formulated under the

assumption of normal incidence meaning that Ê× ẑ = 1 (See Figure 1.5). Kaiser and Closs’s theory patches

together reflection coefficients, making no assumptions for initial electron density or trail radius and solving

Maxwell’s equations for a long cylinder. One primary result of this work was that the decay in meteor

echoes is not due to recombination of the ions and a subsequent reduction in electron density, but rather

destructive interference resulting from the ambipolar diffusive expansion of the trail. Today the literature

refers to two primary types of specular echoes based on Kaiser’s work, overdense and underdense where

a transition region of electron line density exists between the two from 1012 to 1014 [electrons/meter]. When

the electron line number density exceeds 1014 [m−1], the dielectric constant becomes negative and the trail

scatters like a metallic cylinder. As the trail expands, the dielectric constant increases as a function of trail

radius, becoming positive during the transition region. When the dielectric constant becomes significantly

larger then one, the column is considered to be a dilute plasma where the single-scattering assumptions

apply. Using the Fresnel Transform Elford [34] has claimed a remarkable capability to measure the diffusion

velocity of a slightly overdense trail to a precision of ± 1 [cm], an assertion which should be reexamined in

light of the instrument precision analysis of Chapter 4.6.

Kaiser’s theory also outlines the idea of ambipolar diffusion as the primary mechanism governing a

trail’s radial expansion. This type of diffusion occurs in a plasma when the electron thermal velocity is

much greater then the ion thermal velocity, which is usually the case as the electrons are much less massive



14

then the ions. When a newly formed meteor trail begins to diffuse into the surrounding neutral region, the

electrons initially diffuse more quickly (because of their lower mass) resulting in a charge separation giving

rise to a radially directed electric field. Coulomb forces acting on the electrons and ions by the naturally

emergent electric field slows the outward radial motion of the electrons, and increases the radial velocity

of the ions, creating a net radial motion referred to as ambipolar diffusion [49]; a topic of much study in

the recent literature [27, 26]. Major advances in the backscatter theory came to an end with Poulter and

Baggaley’s full-wave theory [107], and artfully summarized a year later by Poulter [108].

During the same time that Herlofson and Kaiser were constructing their full-wave solutions for specular

radar, Eshleman published his initial theory on forward (oblique) scatter from meteor trails [36], which

is essentially identical to that found in McKinley’s seminal book, Meteor Science and Engineering [95].

Primarily studied in the context of long-distance communication links, oblique scatter has received little

attention as a tool for meteor and atmospheric studies due to a lack of theories with which to test experimental

data, and the complicated geometries and systems necessary to perform scientific measurements in the oblique

scatter case. For thirty years, only two sources seemed to have attempted serious formulation of oblique

meteor trail scatter. Eshleman’s theory is an extension of Lovell’s backscatter radar equation, showing that

in the forward scatter geometry, echo amplitudes can increase by a factor of secφ where 2φ is the forward

scattering angle between the transmitter and receiver due to the relative lengthening of the first Fresnel

interval at the receiver (see Figure 2.1). Furthermore, echo decay rates would decrease as if a wavelength

of λ secφ were used at the transmitter. This effect is actually caused because the Bragg wavelengths are

different in the forward and backscatter cases [122]. Similar to the backscatter case, a condition of specularity

where the trail lies tangent to an ellipse with foci at the transmitter and receiver is assumed. Building on

Eshleman’s initial formulation of forward scatter, Hines and Forsyth [55] placed an upper limit on the

received echo power assuming overdense trails. Following Hines, no thoughtful work on the theory of oblique

trail scattering was conducted until 1990 with a series of three papers by Jones and Jones [73] outlining

the full-wave calculations for oblique scatter. The full-wave theory assumes a Gaussian plasma distribution

and solves Maxwell’s equations using numerical techniques. Most recently, Tinin [126, 125] has provided an
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expression for the calculation of the oblique scatter ground illumination pattern based on first approximation

plasma perturbation theory (see Figures 2.17, 2.18 and 2.19). Apparently, very little work has been done in

providing robust experimental evidence supporting the full wave theories of Jones or Tinin.

A first understanding of meteor trail formation and scattering is aided through the identification of

some interesting physical properties of the processes. When the trail reaches a radius larger then λ/2π,

the reflection coefficients decrease rapidly. This critical radius leads to the idea of a wavelength dependent

height ceiling because the initial trail radius ro varies as a function of the atmospheric molecular mean free

path which is in turn related to the density ρ and meteor velocity V through the parametric approximation

ro ≈ ρ−0.3V 0.6 [98]. Meteors with increasing ablation height produce trails with larger initial radii eventually

exceeding the critical radius of the probing wavelength resulting in a biased trail height distribution [121]. A

similar effect is also observed concerning the meteor head echo [134]. Two additional interesting properties

naturally arise from the ambipolar diffusion of the plasma trail. The first is a polarization dependent

resonance in the underdense trail, and the second is a trail decay constant depending only on the trail height

and wavelength of the incident wave assuming an underdense trail. Ambipolar diffusion theory predicts

the trail will expand through a region meeting the geometrical condition for a plasma resonance causing

a temporary increase in the perpendicular scattering coefficient thereby enhancing the scattered wave, a

phenomenon which may enable direct experimental evidence in support of the current full-wave theory [72]

[9]. Figure 1.5 depicts the electric vector oriented perpendicular to a meteor trail. Finally, the rate at which

ambipolar diffusion causes a decrease in the echo amplitude of an underdense trail is constant at a given

height, dependent only on the radar wavelength. This is not to be confused with the total time the echo is

observable with a given receiver, but rather the rate at which the echo amplitude decays (the decay time

constant). Crude estimates of meteor heights have been calculated using the echo decay [42], however, this

technique only applies to trails firmly in the underdense regime Ne � 1014 [elec/m]. Ambipolar diffusion

leads to one important reason justifying the use of full-wave theories for interpretation of meteor trail echos.

During the transition region as a trail diffuses from overdense to underdense, the mechanism by which a

Doppler shift is imposed upon the radiated wave transitions from that of an expanding metallic cylinder to
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the bulk motion of a cylinder of electrons moving with the neutral wind. Clearly, wind estimates based on

echos from such transitionary trails could produce observational biases because a Doppler velocity measured

from an expanding metallic cylinder does not represent the neutral windfield. This point has been discussed

by Poulter [108] and briefly mentioned by Nechitailenko [100]. The field of meteor trail scatter is extensive,

and many thesis can be found on the obscure details of the above topics. This discussion is intended to

provide the reader with an overview of the primary ideas and physical mechanisms involved with the basic

physical processes of meteor trail formation and scattering.
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Figure 1.5: Under the traditional ‘backscattter’ meteor trail scattering theory, the electric vector of the
incident wave E is oriented perpendicular to the axis of the trail oriented along ẑ. The trail is assumed to
diffuse into the neutral atmosphere along the radial coordinate in the xy plane.

In addition to the study of meteor, ionospheric and plasma physics, another important application

involves the measurement of the upper atmospheric wind structure. Meteor wind radar (MWR) infers the

horizontal wind by measuring the range and Doppler shift of the VHF radio pulses scattered from meteor

trails sharing the neutral wind motion [5]. Through interferometric techniques [74], the elevation and azimuth

of the trail is subsequently determined. A new interferometric technique for meteor radar is described in

Chapter 4.4. The first measurements using this technique were accomplished in 1950 by Manning [91], and

later Robertson [113]. Combining many height and Doppler measurements using statistical estimation theory

[44] yields a measure of the windfield primarily used for atmospheric tidal analysis [97, 87] and recently for

gravity wave observations [56, 96]. For an excellent history of early meteor observations using radio and

radar, see Valentic’s PhD thesis [129].

A fundamental question naturally arises. How do we know that the ionized column shares the wind

motion? The first analytical answer to this question was provided by Kaiser, Pickering and Watkins in 1969
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[105] who showed that below 95 km, an ionized column should move with the ambient gasses unless closely

aligned with the earth’s magnetic field. The answer to this question boils down to one fundamental idea: if

the electron cyclotron frequency of a trail immersed in Earth’s magnetic field is much less then its collisional

frequency with the neutrals, its motion is dominated by collisional processes (wind). Over the past 20 years

there have been numerous meteor/lidar [39] and meteor/satellite wind comparisons [50, 30]. See Section 2.2

for a more detailed discussion of this topic.

Three case studies are helpful in providing a general overview of canonical MWR. The Georgia Tech

Radio Meteor Wind Facility [114], the University of Illinois Meteor Radar System [43] and a number of

related systems operating at Buckland Park in Adelaide Australia [130] all measure mesospheric winds using

interferometric echo location. This basic measurement technique has undergone few significant changes over

the last thirty years, aside from technological advances in data acquisition (a primary topic of this disser-

tation) and improvements in meteor diffusion modeling enabling more discriminatory wind measurements.

For example, as more advanced models for meteor diffusion become available, earlier assumptions may prove

to influence the derived winds. One such assumption is that of a negligible magnetohydrodynamic effect

on trail motion and diffusion, which has come into question [100]. Another problem identified concerns

the assorted and sometimes proprietary algorithms used to estimate and interpret the winds from different

systems, which is directly addressed through CoSRad’s transparent signal processing chain for MWR.

1.2.2 Software Defined Radio

Software Defined Radio (SDR) is based on the idea that most radio signal processing tasks can be

accomplished digitally assuming the use of a fast analog to digital converter (ADC). The feasibility of SDR

has been enabled with the advent of high-speed ADCs and fast, reconfigurable signal processing hardware.

With SDR methodology, the ADC is placed as close to the signal source as possible in the processing

chain with a minimum amount of analog signal conditioning. Typically, only preselection filtering and
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gain are applied to the signal before sampling. A number of textbooks are available on the topic of SDR,

with Reed [111] being a comprehensive introduction. SDR brings two important improvements to radar

remote sensing. By definition, SDR systems capture an entire band of the EM spectrum as defined by the

sampling frequency, rather than isolating a narrow band of interest and recording only the signals of assumed

importance. Most importantly, SDR systems are highly reconfigurable, a characteristic ideally suited for use

in radar remote sensing. An appropriately designed SDR with integrated radar and timing control is capable

of acquiring the data necessary for later calculation of atmospheric parameters using nearly all Mesosphere

Lower Thermosphere (MLT) radars in existence today [60]. A common data acquisition platform capable

of implementing the signal processing techniques described in Chapters 3 and 4 for all radar remote sensing

systems would increase confidence within the MLT community that instrumentation errors are not affecting

measurement results.

Along with the University of Colorado’s active development of CoSRad, various groups are currently

developing SDR systems for use with radar remote sensing. Most projects started with system prototypes

based on commercial digital receiver cards such as those available from Pentek, Echotek or the Universal

Software Radio Peripheral (USRP) project, and are now transitioning to custom hardware. The most active

being groups at the University of Illinois [117], The Jicamarca Radio Observatory, [67] MIT’s Millstone Hill

Observatory [133, 46], the Institute for Atmospheric Physics in Germany [122] and Genesis Software [58], a

scientific radar company based in Australia. A number of problems have been encountered with commercial

systems when applied to remote sensing SDR. Viable SDR systems for radar remote sensing require a

significant level of synchronization, including GPS time tagging, RF pulse generation and a minimum of

five channels for MWR systems based on the canonical Jones [74] antenna geometry. Commercial receivers

with this combination of hardware resources have historically been unavailable at reasonable price points,

however the newly available Nutaq systems [137] show much promise. Various groups involved with SDR

have anecdotally reported significant problems with the proprietary drivers and firmware included with the

commercial systems. Designing custom hardware ensures maximum possible control and knowledge over the

experimental apparatus, reducing the possibility of instrumental errors affecting scientific measurements.
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These points underpin the potential benefit of a common radar remote sensing data acquisition and control

architecture.

1.3 Problem Statement

The primary focus of this research has been the development of a new class of software defined

radar transceiver system for use in radar remote sensing applications. This effort has culminated in the

development of a prototype receiver architecture referred to throughout this dissertation as the Colorado

Software Defined Radar or by the stylish acronym ‘CoSRad.’ More specifically, we have developed a software

defined radar transceiver capable of multistatic, multi-frequency phase synchronous operation including

software defined bandwidth and sampling techniques enabling integration with most existing remote sensing

radars. Few radar remote sensing systems are immune to the benefits of the software defined model. Both

those employing high power, large aperture antennas like many ionospheric remote sensing radars, and

smaller systems such as Meteor Wind Radar (MWR) and MF/HF radars can benefit from a common data

acquisition system architecture thereby reducing instrumental uncertainty through well-understood common

hardware. A software defined reconfigurable and inexpensive remote sensing radar receiver is the ideal

measurement tool permitting common data acquisition and analysis using currently deployed systems in

addition to enabling the development of new systems. Ultimately, the CoSRad hardware/software platform

endeavors to deploy a worldwide network of MLT radars based on a common hardware platform and non-

proprietary data processing techniques. Enabling a reconfigurable, mobile and scalable platform having

common data attributes and extensive reconfigurability supporting yet to be imagined experiments [46].

Within the geospace community, this work aspires to enable cost effective ground-based mesoscale radar

remote sensing experimentation and system deployments.
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1.3.1 Case Study in Reconfigurability

At the highest level, CoSRad is software configurable over the two fundamental parameters depicted

in Figure 1.2. Both the sampling bandwidth fs/2 and carrier frequency fo are independently programmable

for each of the available 8 channels. Furthermore, fs is dynamically configurable during operation and fo

is capable of various frequency sweep profiles enabling multi-frequency and LFMCW operation (see Figure

3.4). Higher carrier frequencies are implemented by the use of external up and down conversion hardware,

while the sampling bandwidth is fixed at a maximum of 25 [MHz] (see Table 3.4). At this point, a brief

case study is helpful in illustrating the benefits of reconfigurable mulitstatic software defined radar. Similar

to SAAMER-OS [69], the Advanced Meteor Orbit Radar (AMOR) located near Christchurch, New Zealand

is one of the more advanced radars employing multi-station capabilities [7]. AMOR measures range offsets

through the time differences between detections at two remote stations (named Nutt and Spit) and combines

this with an interferometric elevation measurement made at the primary station to spatially locate a specular

trail and calculate the meteor trajectory and velocity. Originally designed as a meteor orbit determination

radar, AMOR suffers from a number of synchronization problems when configured for wind measurements,

requiring the implementation of complex reference oscillator schemes to measure the phase drifts between

the receiver and transmit oscillators required for wind measurements [92]. While the results from the

AMOR wind experiment do contain the expected meridional component of the semidiurnal tide, relying on

a complex set of oscillators is not ideal. Furthermore, the remote stations only serve to spatially locate the

specular meteor echo, and are not involved in the calculation of the radial wind component. As a result, the

remote stations are not capable of measuring the phase of the received signal necessary for a Doppler (and

therefore wind) determination. The primary challenge in using AMOR as a close-station MWR (10’s of [km]

receiver spacing) is lack of synchronization requiring a complex oscillator arrangement for determination

of the Doppler velocity. CoSRad would completely eliminate AMOR’s oscillator synchronization problem,

providing a straightforward MWR implementation.



21

1.3.2 Scientific Motivations

CoSRad brings reconfigurable multistatic, multi-frequency, phase-synchronous, networked and com-

mon volume radar measurements to the field of radar remote sensing. Without drowning in the technical

details of how these feats of engineering are accomplished, the following projects are of immediate interest.

Building on work done by Malhotra [94], a project at the Jicamarca Radio Observatory (JRO) [41], proposes

a multistatic interferometer configuration for the coincident study of various meteor radio echo phenomenon.

Observing specular meteor trail backscatter is possible when a meteor trail formation geometry meets the

backscatter specularity condition depicted in Figure 2.1. High Power Large Aperture (HPLA) radar, such

as JRO’s primary array [65], will observe scatter from the head echo and non-specular trail. Using HPLA

radar, coincident measurements of all meteor echo phenomenology is usually not possible as a trail meeting

the specular scattering condition will not produce a head echo, of which the reverse is also generally true,

however, some new results show that specular meteor radar systems are capable of observing head echoes

under certain conditions [70]. Using a phase-synchronous interferometer located 10’s - 100’s of [km] away

from the HPLA transmitter enables Doppler resolved coincident measurement of all primary meteor scatter

processes. Various investigators have also proposed a common-volume comparison between non-specular

winds derived using JRO’s primary array and those measured through the specular meteor radar technique

[94, 102]. Mathews [93] identifies a number of specific scenarios in which multi-frequency measurements

would alleviate identified issues surrounding VHF meteor radar. Specifically, because of the variation of

a trail’s scattering cross-section as a function of frequency, a calibrated frequency-multiplexed radar could

infer the initial radius of the trail, a parameter presented with some variability throughout the literature.

Furthermore, Mathews makes a case for multi-frequency common-volume studies of so called “anomalous

trail-echo formations” or “long-lived range-spread trail-echoes” as a function of the angle of the radar k vec-

tor to the earth’s geomagnetic field. These observations should yield new insights into the plasma processes

governing these events. These configurations based on the CoSRad architecture are intended to qualitatively

describe the system’s intended operational capabilities. Clearly, the atmospheric and space physics com-

munities would benefit from a universal receiver architecture specifically designed for radar remote sensing
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systems.

Thus far, the primary application for this new class of receiver is the Meteor Wind Radar (MWR).

Traditional MWR infers the horizontal wind by measuring the range and Doppler shift of the VHF radio

pulses scattered from meteor trails sharing the neutral wind motion. Trail motion with the neutral wind

is itself an assumption, not immune to the critical eye of review. Some work suggests that basis in wind

measurements arise from the plasma’s motion due to the earth’s magnetic field [100]. The canonical MWR

system consists of an array of transmit antennas illuminating the entire azimuthal sky with a 3 dB pattern

usually from about 30◦ in elevation and losing gain approaching zenith. Specular meteor trail echoes are

received with an interferometric array of antennas used to determine the echo’s angle-of-arrival (AOA).

The AOA combined with the radar range calculation allows for the determination of the 3D trail locations.

Doppler shifts and echo location are sequentially processed to calculate the trail’s radial velocity and fit

a vector to the windfield. After a number of radial velocity measurements are averaged, a component-

resolved wind measurement is said to represent the mean wind over some time interval, usually 30-60 minutes

[23], where the variances associated with the calculated parameters are related to the final measurement

error [78]. One of the primary difficulties identified in the analysis of MLT tidal phenomenon and wind

measurements is the limited spatial coverage inherent with ground-based instrumentation. Developing a

software reconfigurable data acquisition system capable of controlling both new multistatic systems and

recording science data using existing systems in a “piggy back” configuration are benefits of the universal

receiver solution. SDR is the ideal technological model in moving toward the creation of inexpensive and

scalable systems capable of continuous multistatic mesoscale windfield observations. A number of groups

have published results from various forward-scatter bistatic experiments, of which those associated with the

European Bologna-Lecee-Modra system seem to be the most developed [19, 140]. The current literature

contains few references concerning multistatic, common-volume MWR measurements of which the only

serious historical consideration seems to be a report to the US Air Force from the Smithsonian Astrophysical

Observatory [24]. Two very recent related publications indicate a new interest in the multistatic meteor

radar topic, one using pseudorandom CW meteor radar from MIT in collaboration with IAP [133] and the
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other describing an experiment currently being conducted at IAP [122].

As was mentioned in Section 1.2.1, little experimental evidence has been provided supporting the

full-wave theory from the standpoint of the ground illumination pattern. A natural question arises: can

we experimentally verify aspects of the illumination pattern predicted by the full-wave theory? The ground

illumination patterns presented in Chapter 2 calculated using Tinin’s formulation [126] suggest that a signal

could be observed over a large geographic area given an appropriately configured network of receivers.

Assuming Tinin’s equations are a reasonable approximation of reality, one could envision a network of

receivers spaced so as to sample the ground pattern and compare the measured illumination pattern with

one calculated using various full-wave approximations. Simulation parameters include the transmitted power

Pt, the angle between the x and x′ axis α, gain of the receiver Gr and transmitter Gt antennas, the radar

frequency fo, electron number density which has a Gaussian distribution along both dimensions of the

trail Ne and the geometric dimensions of the trail with l‖ being the trail characteristic length, and l⊥ the

characteristic trail radius. The electron number density has a Gaussian profile so that σ = l‖ and σ = l⊥

are the first standard deviations of the electron density profile along the primary and secondary axes of

the trail. Calculations are preformed over two reference frames. The (x, y, z) frame has an origin on the

earth’s surface where the center of the trail is placed on the x-axis at the desired height xm. The (x′, y′, z′)

frame has an origin at the center of the trial, with the trail axes along the ẑ′ direction lying in the x̂ẑ

plane. The two frames are related by a rotation matrix, Eq 1.1. The ground illumination patterns of

Chapter 2 suggest that trails will produce forward-scatter echoes covering a significant geographical area.

In Chapter 2, a multistatic experiment is proposed where a known distribution of meteor trails is observed

over some temporal period. This amounts to observing a meteor stream as the radiant transits across the

sky. Observation of the temporal evolution of the spatial asymmetry of the modeled aggregate illumination

pattern would strongly support Tinin’s formulation and the forward-scatter model.
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Perhaps the most dramatic motivation for multistatic MWR is the possibility of reducing the as-

sumption of windfield homogeneity. Eq 1.2 gives the zonal and meridional components of the windfield at

some hight as a function of the angle-of-arrival (AOA) and trail radial velocity neglecting the Bragg effect:

(Vx, Vy) = f(Vr, φ, θ) which is acceptable for this qualitative example. The subscripts a and b refer to the

specific receiver which measured the radial velocity and AOA of the echo. First, consider the case of two

radial velocity measurements taken at a monostatic MWR, both having similar AOA coordinates to within

a few degrees. Assuming the windfield changes slowly with respect to the time difference between detec-

tions, we could solve the system for the wind velocity components. But alas, the world does not allow such

simplicity. The issue with this scenario is the ill-condition of matrix A. In this scenario, A will have a very

large “condition number” (κ) defined by Eq 1.3, qualitatively meaning that large changes in the solution Vw

will result from very small changes in the AOA matrix, A. In the monostatic configuration, φ and θ are of

similar values for detections from a common volume, therefore A is nearly singular and errors in the AOA

measurement will amplify, causing huge (in fact catastrophic) changes in the solution for the wind vector.

Alleviating this obnoxious fact of reality requires assuming a homogeneous windfield over the radar’s field

of view allowing the use of orthogonal AOA measurements to solve for Vw. Next, consider the multistatic

radar as depicted in Figures 1.3 and 1.7. With this configuration, one may define a volume in the field of

view of both radars. Both receivers will measure different radial velocities Vr and AOA values from trails

moving with a constant wind through the volume. Depending on the geometry of the multistatic system,

we can now solve for the wind using the well-conditioned matrix A who’s elements are derived from more
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nearly orthogonal AOA measurements. There is no need to assume a homogeneous windfield.

Figure 1.6: Condition Number of A in Eq 1.2 using a common volume location specified by φ and θ with
Rd = 150 [km] and h = 95 [km]. In the case of a monostatic radar, A is ill-conditioned over the entire
space requiring the homogeneous windfield assumption. with the multistatic system depicted in Figure 1.7,
A is well-conditioned for common volumes from approximately ±(20◦ to 90◦) in azimuth and 20◦ to 70◦ in
elevation.

κ(A) = ‖A‖ · ‖A−1‖ (1.3)
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Figure 1.7: Multistatic system illustration. Receivers A and B are separated by a distance Rd on the order
of 100’s of [km]. A common volume is defined with elevation and azimuth positions defined by φa, φb and
θa, θb. The range to the volume from each receiver is Ra and Rb and the magnitude of the projection of the
range vectors on the surface of the earth are Rea and Reb.

Performing a common volume wind measurement requires the determination of three fundamental

parameters. Figure 1.8 suggests that for each elevation and azimuth angle measured at a remote interfer-
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Path Length=350 [km]

Path Length=300 [km]

Path 
Length=250 
[km]

Total Path Length (Ra + Rb) with Rd = 150 km

Figure 1.8: Using the quantities defined in Figure 1.7, a common volume is defined between the azimuth
angles of θa = 30◦ to 70◦, elevation angles of φa = 30◦ to 50◦ and over a height of 80-110 [km]. Within the
volume, the total range from a scatterer (Ra + Rb) is calculated between two receivers A and B separated
by a distance Rd = 150 [km]. Contours of three surfaces of constant path length at 350 [km], 300 [km] and
250 [km] within the volume are indicated.

ometer A, there exists a unique range. Therefore, the three pieces of information measured at the remote

receiving interferometer (Ra+Rb, θa, and φa) define a unique position within a common observation volume

of two interferometric specular meteor radar arrays. If two surfaces were to intersect within the volume,

this would indicate that a given AOA and range measurement could occur at multiple locations within the

volume, a situation requiring careful treatment. All receivers involved in a common-volume multistatic con-

figuration must have ranging, Doppler and interferometric AOA measurement capabilities. Of these three

measurements, range and Doppler require an inter-station synchronization mechanism to ensure phase co-

herence and measurement accuracy. For example, free-running oscillators on two geographically separated

systems will experience a relative, random frequency drift. Assuming the transmitter is synchronous with

its collocated receiver, a random drifting frequency at the remote receiver introduces a significant frequency

error in Doppler. Furthermore, accurate determination of the range requires knowledge of the time of the

transmit pulse to within the desired range resolution of the measurement. Past systems have accomplished

this through an analyses of the transmit pulse observed at the remote receiver.
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The meteor radar literature is sparse on the topics of interferometry solution techniques, instrument

precision and calibration. Indeed, many past investigators have simply ignored measurements of meteor

trails lying outside the expected meteor zone heights and labeled them as “outliers” to be removed from

the subsequent wind analysis. Unsurprisingly, there are no compelling citations for this dubious tradition,

however, in my many conversations with various experts in the field, I have concluded that the practice is

more widespread then the literature suggests. Jacobi speaks of “outlier rejection” in his wind fitting but

offers no additional details [68]. Hocking writes about outlier rejection in [58]: “This procedure tends to

‘clean up’ the data.” If measurements which do not fit an investigator’s assumed physical model are labeled

“outliers” and ignored, then the resulting data will tend to have good agreement with the assumed model!

The known (but unquantified) precision degradation of the Jones interferometer at lower elevations is a

motivating factor behind the dismissal of echoes originating from below ∼ 40◦ in elevation in many studies

[56]. Ignoring low-elevation echoes is not wholly unreasonable if we impose field-of-view restrictions on the

array, however, the ultimate goal should be to quantify the measurement precision of every observed echo,

and select echoes for processing based on this metric.

The problem of ignoring ‘outlying’ observations must be addressed if the meteor radar community is to

deploy multistatic meteor wind radar relying on lower-elevation forward-scatter echoes. Various authors have

attempted to address the problem of meteor radar interferometry using odd mathematical schemes. Three

papers are often cited in the literature [74, 63, 64] as the current standard for meteor radar interferometry

and calibration. The standard Jones array is a simple antenna configuration for sparsely sampling the spatial

wavefield generated by a single source (meteor trail). Unfortunately, solutions to the interferometry problem

using the Jones array described in Holdsworth’s papers are mathematically inelegant and overly complex,

resulting in an enormous degradation of the potential interferometry results, especially for echoes below 50◦

in elevation an at low SNR. Cervera [18] explicitly states the use of Holdsworth’s calibration and angle-of-

arrival techniques for echoes at 10 dB SNR, which the simulations of Chapter 4 suggest have poor solution

quality. The principle of Holdsworth’s statistical calibration technique has a solid conceptual foundation,

but his approach must be reformulated onto the complex-plane and put into a functional form for practical
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application (as was partially accomplished by Dr. Chau in Appendix A). Chapter 4 presents the first

self-consistent and mathematically elegant solution to the related problems of meteor radar interferometry,

instrument precision and calibration.



Chapter 2

Meteor Trail Physical Theory and Numerical Modeling

“All of physics is either impossible or trivial. It is impossible until you understand it, and then it

becomes trivial.” – Ernest Rutherford

2.1 Classical Meteor Trail Scattering

Every day, billions of particles enter Earth’s atmosphere and mostly evaporate due to atmospheric

friction starting in the lower E region of the ionosphere corresponding to the mesospheric region of Earth’s

atmosphere. Ablating meteors deposit a strongly elongated plasma inhomogeneity in Earth’s upper atmo-

sphere along their trajectory. The meteor trail is almost entirely composed of ionic vaporized meteoric

material [123]. Trails form with an initial radius on the order of 0.5 [m] at 80 [km] and increase with height

to 2 [m] at 100 [km] [6] with a linear extent of 10-30 [km] and mean length of 25 [km] [35]. As with all

fields of science, the classical theory is usually the simplest description. From the classical meteor trail scat-

tering Eqs of 2.1, decreasing levels of physical assumptions and approximations lead to the more advanced

and comprehensive theories based on Maxwell’s equations culminating in the full-wave theories of [76] and

implemented by [126]. The more advanced theories provide insight into the fundamental plasma processes

at the expense of added complexity, and are useful in interpreting radar echoes in the context of meteor and
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plasma physics.

The theory of radio scattering by plasmas is a scientific field in itself, developed by those masochistic

souls having the serendipitous combination of freakish intelligence and dogged determination. The simple

treatment given here is an attempt to define the basic geometries and properties of scattering by meteor

trails without drowning in the ocean of plasma physics. Specifically, the theory is outlined at a sufficient level

to justify application of the phase synchronous multistatic receiver to the field of specular meteor radar. In

the design of any remote sensing system, the signals of interest must be defined to such a level so as to make

appropriate engineering decisions. Straightforward results of the multistatic configuration are an increase in

the Bragg wave vector [122] which directly translates into an increase in the detectable trail height ceiling

[95] and an increase in trail echo duration, and an increase in the number of detected echoes per unit common

volume of the geographically distributed receiving array [133].

A number of important assumptions are made in the case of meteor scattering from electron trails.

First, we assume that upon formation, the initial radius of the plasma trail is small compared to the wave-

length (ro � λ). When the electron line density of the trail is below ∼ 1014 [electrons/meter] [98] as is the

case with most micro-meteors [72, 17], the trail behaves according to the ‘underdense’ scattering regime.

When a trail is ‘underdense’, an incident electric field vector perpendicular to the axis of the trail fully

penetrates the plasma column with negligible attenuation causing the electrons in a small segment the trail

(ds) to oscillate and reradiate in-phase, allowing for the single-scatterer ‘Thomson’ approximation where the

net reradiated field is the superposition of the fields created by each individually radiating electron which

radiates as if no others are present. As the trail radius increases to a significant fraction of λ, scatter from

different sections of trail’s radial cross-section can constructively interfere, causing an attenuation of the

scattered field in the direction of the receiver. Because trails which form at higher altitudes will tend to

have larger initial radii, a frequency dependent heigh ceiling is observed as reported by [95] and [122]. Some

additional definitions for an underdense trail are sometimes employed. If the trail’s plasma frequency is

below that of the incident wave, or if the dielectric function is positive [77] the trail my be modeled as un-



31

derdense. Typically, only echoes obtained from underdense trails are used for determination of the windfield

[15]. The characteristic time scales of the trail’s post-formation diffusion rate are assumed small compared

to the time scales of the trail’s initial formation. This implies we neglect the initial diffusion effects on the

trail formation. The trail is assumed to have a Gaussian cross-sectional electron distribution satisfying the

condition of quasi-neutrality so that any dimension of the trail is large compared to the Debye length of

the plasma and volumetric parcels of the plasma larger then the Debye length are charge-neutral. Also, we

assume that only free electrons contribute to the reradiated field because the mass of an electron is much

less then the mass of a proton (me � mp).

Three primary classes of meteor radar echoes exist. Specular echoes occur when a column of ioniza-

tion deposited by an ablating meteor scatters VHF frequencies having a wavelength larger then the trail

radius [123]. Non-Specular echoes originate from ionized structures meeting the Bragg condition within the

meteor trail [31] and head echoes result from the plasma ball surrounding the high-velocity ablating meteor

[70]. Typically, only high power large aperture type radars are capable of observing non-specular echoes as

their radar cross-sections are smaller then those of specular echoes. Specular echoes are routinely observed

with lower power meteor wind radar systems [40]. Diffusion of the trail into the meteoric zone of Earth’s

atmosphere is of key importance in specular trail observations. A number of studies have attempted to

infer temperature from the measured diffusion coefficients [84], and meteor wind radar measurements rely

on the assumption that momentum is completely transferred from the neutral wind to the trail’s electrons

on timescales below the diffusion timescale. The accuracy of both temperature measurements based on

trail diffusion and wind measurements based on neutral atmosphere momentum transfer rely on realistic

physics-based descriptions of the trail diffusion process. This Chapter explores two modern theories of trail

diffusion in the context of specular trail observations, and suggests a possible experimental technique to

provide evidence for Dimant and Oppenheim’s modern theory [27].

In the classical sense, specular scattering geometry is defined by a meteor trail forming tangent to the

surface of an ellipsoid who’s foci are the receiver and transmitter locations as shown in Figure 2.1. When the
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receiver and transmitter are collocated as is the case with monostatic meteor radar, the ellipse has coincident

foci and the surface becomes a sphere. The theory developed by McKinley [95] assumes all trails lie tangent

to the elliptical surface mentioned above. This assumption, while mathematically convenient, fails to capture

most trail geometries (in particular, those trail geometries not normal to the ellipse which accounts for most

trail formations). If the trail has an elevation angle relative to the ellipse (the parameter not included in

the basic forward scatter model) the classical form of the meteor radar equation does not apply. The more

comprehensive treatment of scattering from cold collisionless cylindrical plasmas (a meteor trail) developed

by Jones [76] and Tinin [126] are necessary to interpret and predict scattering from trails having arbitrary

geometries with respect to the transmitter and receiver.
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Figure 2.1: Classical scattering geometries defining the parameters in Eq 2.1. Lbs and Lfs are the lengths of
the first Fresnel intervals in the backscatter and forward-scatter geometries. The Fresnel zone is the segment
of the trail contributing most of the scattered power to the receiver [17]. γ is the angle between the electric
vector E and the line of site to the receiver. β defines the trail’s orientation in the plane tangent to an ellipse
with foci at the receiver and transmitter. φ is the classical ‘forward-scatter’ angle. Traditionally, monostatic
specular radars have assumed φ = 0.

Some interesting scattering features are observed from the classical meteor trail scattering Eqs of

2.1. An increase in both detection rates and improvement of Doppler frequency estimates due to longer

decay times are possible with the multistatic, common-volume configuration. Because of the sec2 φ term
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introduced in the forward-scatter geometry, the power available at a remote receiver increases as can been

seen by comparison with the backscatter case as is illustrated by the GIP visualizations later in this chapter.

Furthermore, the diffusive time constant τ increases (see Eq 2.6), leading to a slower decay of the forward-

scattered echo. Finally, the attenuation due to the trail’s initial finite radius given by Eq 2.1c decreases

thereby raising the effective detection height ceiling [95].

The forward scatter meteor radar equation given by Eq 2.1a describes the power delivered to the

receiver after trail formation [95]. Eq 2.1a reduces to the traditional specular meteor radar backscatter

equation when R1 = R2, φ = 0◦, β = 90◦ and γ = 90◦. This suggests that the phase of the received wave

changes with range as expected. Intuitively, this concept explains why Fresnel zones are formed along the

trail. The Fresnel zone is the segment of the trail contributing most of the scattered power to the receiver.

Electrons from each differential segment of the trail (ds) are located at different ranges from the receiver

and oscillate with incidence of the spherical radar wavefront, therefore the net scatter from each differential

trail segment forms regions of interference in the reradiated electric field. Eq 2.1f gives the an apparent

increase in λ for the case of non-zero specular scatter angle which is more accuracy classified as an increase

in the Bragg wavelength [122] and the corresponding radial trail velocity with respect to the remote station

is then found using vr = fdλB . See Section 4.6.1 for a more detailed description of this phenomenon. This

increase is also observed in the numerical simulations of Section 2.3. Notice that Eqs 2.1d and 2.1e also

define the minimum spatial sampling along the meteor trail because the Fresnel interval contributes most of

the scattered power to the receiver.
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An additional product term given by Eq 2.2 and visualized in Figure 2.2 can be multiplied by Eq

2.1a to describe the time-evolution of the return power as a meteor deposits a trail of ionization within the

radar beam. First given by Blackett and Lovell [13], this additional term describes the Fresnel oscillations

observed during trail formation as the scattered wave fronts interfere as a result of the trail’s abrupt edge

within the radar beam during formation. In Figure 2.2, x is directly related to the meteor’s location along

its trajectory by Eq 2.3 where s is distance from the point of orthogonality to. The full scattering model

of Eq of 2.1a including Fresnel oscillations is taken into account when forming simulated echoes using the

meteor radar forward model like that shown in Figure 4.5.
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Figure 2.2: Cornu spiral describing Fresnel oscillations [98] present during underdense trail formation. In
the classical backscatter case, Eq 2.1a is multiplied by the length of the vector Ac. During trail formation,
the vector Ac remains anchored at x = −∞ and tracks the curve as the parameter x increases reaching a
maximum at x = 1.217.

2.2 Diffusion

Various waves naturally exist in a cold, unmagnetized plasma. Consider the Langmuir wave [49, 110],

which one can visualize by considering a plasma with a small electron displacement with respect to the ions

away from an equilibrium position. The electrons will experience an electrostatic restoring force driving their

return to the equilibrium position thereby restoring charge neutrality. When the electron positions spatially

satisfy charge neutrality they will have acquired kinetic energy due to the restoring forces, causing them to

overshoot their spatial equilibrium positions. The process repeats and is termed a Langmuir oscillation with

a frequency given by Eq 2.4. In principle, both the ions and electrons are involved in Langmuir oscillations

(there is also an ion plasma frequency), however, because the electron mass is much smaller then the ion

mass, (me � mi) the ions respond far more slowly. With this assumption, the ions are considered stationary

and Eq 2.4 is termed the ‘plasma frequency.’ Radio waves incident on a plasma having a frequency higher

then the plasma frequency will penetrate the plasma, while waves with a frequency lower then the plasma

frequency are reflected by the plasma.
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The term Ae in equation 2.1a arises because the finite initial radius of the trail ro has an attenuating

affect given by Eq 2.1c. As the trail diffuses into the neutral atmospheric gas, the return power decreases by

Td given by Eq 2.1b and the trail’s electron number density Ne in Eq 2.4 also decreases thereby lowering the

plasma’s critical frequency (which is the primary mechanism by which a trail transitions from the overdense

to underdense regime). The physical interpretation of Eq 2.1b is fairly straightforward. If the cross sectional

electron density is assumed to have an initial Gaussian distribution, and if we ignore the forces on the

electrons caused by Earth’s magnetic field below 90 km, then the rate at which the trail diffuses is based on

the linear differential equation describing the diffusion of a gas. Under these circumstances, Eq 2.5 can be

analytically solved for Ne(r, t) producing an exponential with a decay time constant given by Eq 2.6 [139]

where D is an ion diffusion coefficient given as a function of height in Figures 2.4 and 2.3. Figure 2.3 shows

that ion diffusion in the meteor zone is unaffected by the geomagnetic field as Di‖ ' Di⊥ below 115 [km]

and Ωi < νin. Well above 97 [km], Ψ � 1 and De⊥ � De‖, therefore the electrons of trails closely aligned

with the geomagnetic field will experience inhibited diffusion in the B⊥ direction as De⊥ � Di. Electrons of

high-altitude trails (Ψ < 1) forming with a misalignment with respect toB experience significant asymmetric

diffusive components out of the trail’s cross-sectional plane as components of their gyromotion are parallel

to B, and De‖ is the dominant diffusive term when the gyrofrequency terms dominate over the neutral

collisional terms (ΩeΩi > νenνin) of Ψ as is shown in Figure 2.7.

∂Ne(r, t)

∂t
= D∇2Ne(r, t) (2.5)

τ =
λ2 sec(φ)2

16π2D
(2.6)
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Figure 2.3: Electron and ion diffusion coefficients given by Eqs 2.10-2.13.

Figure 2.4: Figure 6 from Ceplecha [17] gives the diffusion coefficients D in Eq 2.5 as a function of trail
height. Dx refers to diffusion in the plane containing both the trail and Earth’s magnetic field, and Dy is
the orthogonal direction. At heights above 90 [km], the diffusion becomes anisotropic as indicated by the
divergence of the diffusion coefficients. Various values for Dy are indicated as a function of the trail’s angle
to the earth’s magnetic field. A more through approach to the diffusion coefficients is given by Figure 2.3.
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2.2.1 The Meteor Zone Environment

This section will explore the basic principles underlying the physics of meteor trail diffusion. All

figures regarding collision frequencies or atmospheric composition were created using daytime MSIS on Jan

1st, 2000. The vast majority of material entering Earth’s atmosphere ablates in the lower E and upper D

regions of the ionosphere. The dominant ionic species of the daytime ablation-zone ionosphere from the

International Reference Ionosphere (IRI) is O+
2 and NO+ [12, 110].

The atomic masses of N and O are 14 and 16, therefore mi ≈ 30mp, where mi and mp are the mass

of an ion and proton. The following inequalities hold throughout the meteor region and indicate that most

particle collisions are between the neutrals and ions: Ωi < νin and νen < Ωe where Ωe,i [110] are the electron

and ion gyro-frequencies given by Eq 2.8 where me is the electron mass, B = |B| is the geomagnetic field

and e is the elementary charge. These meteoric zone quantities are calculated using B = 0.25 × 10−4 T

representing the equatorial geomagnetic field. The electron/ion neutral collision frequencies, νen,in for the

meteor region are shown in Figure 2.5.
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Figure 2.5: Ion-neutral and electron-neutral collision frequencies. Only the major ion and neutral species
(NO+ and N2) are used in the calculation. Note that νen ≈ 10νin throughout the indicated altitudes.
Throughout the meteor region, the ion-neutral νin collision frequency always exceeds the ion gyro-frequency
Ωi effectively demagnetizing the ions, and the electron-neutral collision frequency νen is less than the electron
gyro-frequency Ωe allowing for geomagnetic influences on trail diffusion when Ψ < 1.
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Figure 2.6: Percentages of neutral N2 and O2 of the total atmospheric mass density from MSIS. N2 is
clearly the dominant neutral species followed by O2 which comprises ∼ 20% of the total mass density. As
their molecular masses are similar, using only N2 when calculating collision frequencies will yield reasonable
results.

Using the dominant species of NO+ and N2 for calculation of the collision frequencies in Figure 2.5

is justified by inspection of Figure 2.6 and by noting that NO+ contributes the majority of the charged

atmospheric mass in the ablation region [11]. Inclusion of the minor species in these calculations has only

small effects on diffusion coefficients calculated using the major species. Due to frequent electron-neutral and

ion-neutral collisions (as compared with the higher ionosphere), the region is assumed isothermal with Te =

Ti = Tn = T . Dimant does point out that upon trail formation, the ions cool faster then the electrons creating

an initial divergence of temperatures which may influence early-trail diffusion; a phenomenon currently open

to investigation [9].

An important quantity used in describing the meteor zone diffusion is the Altitude Parameter [37]

listed in Eq 2.7 and shown in Figure 2.7. The altitude parameter indicates if the trail diffusion is governed

by ambipolar diffusion (Ψ � 1 and νenνin � ΩeΩi), or if geomagnetic effects play some roll in the plasma

motion (Ψ < 1). By inspection of Figure 2.7, it is apparent that geomagnetic effects can influence trail

diffusion above ∼97 [km]. Furthermore, we assume that diffusion begins nearly simultaneously along the
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Altitude Parameter: Ψ

Altitude parameter in the meteor zone

Figure 2.7: Altitude parameter [37] in the meteor zone. Note the change from Ψ > 1 to Ψ < 1 at ∼97 [km]
indicating a change from strictly collisional ambipolar diffusion to geomagnetically-influenced diffusion. For
trails below ∼97 [km] in altitude, the atmosphere is collisionally dominated as Ψ > 1 and Ωi < νin. In this
region, the trail shares the motion of the neutral wind. At higher altitudes when Ψ < 1, the geomagnetic
field can influence electron motion (because Ωe > νen and ΩeΩi > νenνin).

meteoric trajectory as its velocity is much larger then the diffusion velocities and the plasma is assumed to

be deposited homogeneously along the trail axis. Finally, total electron line density of the meteor trail is

assumed conserved as the time constant for recombination is much greater then the diffusion time constants

in the meteoric region [72]. As the gyrofrequency terms of the altitude parameter given by Eq 2.7 and shown

in Figure 2.7 become dominate over the collisional terms with increasing altitude, the electron diffusion

coefficients in Figure 2.3 can influence electron diffusion thereby causing spatially divergent motion between

the electrons and neutrals. The specular meteor radar measures the motion of the electrons to infer the

motion of the neutral wind, and therefore the Doppler measurement may not reflect the true motion of the

neutral atmosphere at higher altitudes when Ψ < 1.
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Ψ =
νenνin
ΩeΩi

(2.7)

Ωe,i =
eB

me,i
(2.8)

Ωe ≈ 6.5× 106 [Hz]

Ωi ≈ 80 [Hz]

These assumptions have a number of interesting consequences. Because the meteor region is ion-

neutral collisional (because Ωi � νin), the ions are demagnetized through frequent collisions with the

neutral particles (primarily N2), and the geomagnetic field has little effect on ion dynamics as supported by

Figure 2.3. At higher altitudes (when Ψ� 1 indicating geomagnetically influenced diffusion), trail diffusion

is strictly ambipolar only when the trail axis is closely aligned with the geomagnetic field. Above 97 [km]

the altitude parameter (Figure 2.7) indicates that the geomagnetic field will exert some degree of influence

on electron motion. Electrons gyrating at an angle greater then the critical angle of Eq 2.9 with respect

to B will undertake highly-mobile motion along B outside of the trail’s transverse cross-section and will

diffuse along the geomagnetic field in accordance with De‖ shown in Figure 2.3. Trails formed in atmospheric

regions where Ψ < 1 at an angle greater then Θo will experience a faster depletion of their cross-sectional

electron density over trails closely aligned with the geomagnetic field (when θ < Θo). Furthermore, when

Ψ < 1 electron motion is not guaranteed to track the neutral motion. As the radar measures scattering from

the electrons, this situation has the potential to bias the Doppler measurements.
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Θo ≡
√
meνen
miνin

' 0.8◦ in the meteor region (2.9)

Di‖ =
kbT

miνin
(2.10)

De‖ =
kbT

meνen
(2.11)

Di⊥ =
ν2
inDi‖

ν2
in + Ω2

i

(2.12)

De⊥ =
ν2
enDe‖

ν2
en + Ω2

e

(2.13)

Derivation of the basic meteor trail diffusion equation begins with the two coupled nonlinear PDEs

for the plasma density and electric potential given by Eq 2.14 [27]. These two equations describe the

assumptions of continuity and quasi-neutrality where the divergence of the ion and electron fluxes are equal.

By defining the total force on an electron as the residual potential given by Eq 2.15 which is a combination

of the electric potential (Φ) and the electron pressure gradient, and by defining the electron and ion fluxes as

straightforward but cumbersome functions of the residual potential φres and total electron density ne, (see

Eq 2.16) [27], we may write Eq 2.14 as Eq 2.17 where neo is the constant background ionospheric plasma

density. This is the fundamental meteor trail diffusion equation in two spatial dimensions representing the

meteor trail cross-section with the coordinates defined in Figure 2.8.

Figure 2.8: Figure 2 from [27]. Coordinate system used in meteor trail diffusion equations. x̂ is perpendicular
to ŷ and B such that B has components in the ẑ and ŷ directions. B lies in the ŷẑ plane such that x is
always normal to the plane. The trail makes an angle of θ with B.
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∂tne +∇ · Γi = 0 : Continuity (2.14a)

∇ · Γi −∇ · Γe = 0 : Quasineutrality (2.14b)

φres ≡
eΦ− Teln(ne/noe)

kb(Te + Ti)
(2.15)

Γe,i = f(φres, ne) (2.16)

∂tne −D
[
∇2ne +∇ · (ne∇φres)

]
= 0 (2.17a)

(1 + ψ) ∂x(ne∂xφres + (1 +Q)∂y(ne∂yφres) +∇2ne+

µ(∂xφres∂yne − ∂xne∂yφres) = 0 (2.17b)

Eq 2.17 describes the electron density and residual potential (and therefore electrical potential through

Eq 2.15) along the two spatial coordinates (x and y) and describes how these two dependent variables evolve

with time. Before considering solutions to Eq 2.17, we should explore the fundamental assumption allowing

us to describe trail diffusion using the magnetized two-fluid magneto hydrodynamic equations (MHD). In

addition to Eq 2.17, the electrical potential Φ and electron density ne are linked by Possion’s Equation

2.18, which must also have a valid solution in the same temporal and spatial domain as Eq 2.17. Solving

Possion’s equation highlights the fundamental assumption of the meteor trail diffusion equation, and in fact

any attempt to describe a plasma using MHD requires the following assumption. Solving Possions’s equation

requires the assumption listed in Eq 2.19 (see pages 7-9 in [49] for a detailed mathematical justification). The

assumption implies that the number of charged particles in a Debye sphere is large (� 1) so that electrical

neutrality is maintained over the spatial scales in question which implies that the physical dimensions of a

system described using MHD must be large compared to the Debye length.

∇2Φ = − e

εo
(ni − ne) (2.18)
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eΦ

kbTe
� 1 =⇒ 4

3
π

(
εokT

n
1/3
e e2

)
� 1 (2.19)

A number of solutions for Eq 2.14 exist in the literature, however, solutions proposed by Jones [75]

and Dimant and Oppenheim [26] are most instructive in the study meter trail diffusion.

2.2.2 Jones’ Diffusion Solution

Jones solves Eq 2.17 for ne(x, y, t) and φres(x, y, t) under the boundary conditions ne → 0 as x, y →

∞ and Φ → ∞ as x, y → ∞ given by Eqs 2.20 and 2.21 [75]. D is the ambipolar diffusion coefficient

assuming miνin � meνen given by Eq 2.22. Q and µ are the electron mobility parameter and the electron

Hall parameter given by Eqs 2.23 and 2.24 and Ne is the conserved electron line density of the trail. By

allowing the ambipolar electric field to approach infinity, Jones was able to find an analytic solution to Eq

2.17. The clearly non-physical boundary condition of infinite electric potential has the effect of neglecting

the background ionosphere by allowing current closure (∇ · j = 0) at infinite spatial coordinates. Jones’

approach accurately describes trail diffusion when the trail plasma density is many orders of magnitude

above the background plasma density neo , however his solution shows significant deviation from Dimant’s at

the later stages of trail diffusion as Jones’ solution inaccurately describes the polarization electric field which

provides current closure and significantly effects late-stage trail diffusion (when ne is only slightly larger then

neo).
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ne(x, y, t) =
C

t
exp

(
−Axxx

2 +Ayyy
2 +Axyxy

4Dt

)
(2.20)

φres(x, y, t) =
Bxxx

2 +Byyy
2 +Bxyxy

4Dt
(2.21)

where:

Bxx =
Q(2 +Q+ Ψ)2 + 2µ2(Q+ Ψ)

QΨ(2 +Q+ Ψ)2 + µ2(Q+ Ψ)2

Byy =
Ψ(2 +Q+ Ψ)2 + 2µ2(Q+ Ψ)

QΨ(2 +Q+ Ψ)2 + µ2(Q+ Ψ)2

Bxy =
2µ(2 +Q+ Ψ)(Ψ−Q)

QΨ(2 +Q+ Ψ)2 + µ2(Q+ Ψ)2

Axx = 1 +Bxx

Ayy = 1 +Byy

Axy = Bxy

C =
(4AxxAyy −A2

xy)1/2

8πD
Ne

D ≡ 2kbT

miνin
(2.22)

Q ≡ Ψ cos2 θ +
sin2 θ

Θ2
o

(2.23)

µ ≡
√

Ψ

Θo
cos θ (2.24)

By numerically calculating Jones’ solutions for ne and φres we may investigate a number of interesting

features of early-stage trail diffusion. As discussed in Section 2.2.1, trail diffusion at higher altitudes (Ψ < 1)

can be influenced by the geomagnetic field B based on the electron and ion diffusion coefficients depicted

in Figure 2.3, which is confirmed in the solutions to the Jones meteor diffusion equation by inspection of

Figures 2.9 and 2.10. The only difference between the two trail cross-sections is the angle θ, which changes

from θ < Θo in Figure 2.9 to θ > Θo in Figure 2.10 where Θo is defined by Eq 2.9. The trail closely aligned

with B experiences inhibited electron diffusion in the cross-sectional plane of the trail thereby slowing the

cross-sectional electron depletion. The slight asymmetry of the cross-sections in Figures 2.9 and 2.10 is due

to the Axy Hall term of Eq 2.20. At lower altitudes where Ψ � 1, the geomagnetic field has little effect as
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seen in by inspection of the altitude parameter (Eq 2.7) and Figures 2.12 and 2.7. Small deviations away

from B have dramatic effects on the character of the electron diffusion because of the high electron mobility

along the geomagnetic field lines, which is the dominant diffusive term by ∼4 orders of magnitude at higher

altitudes as is seen in Figure 2.3. When θ > Θo, the electrons experience significant De‖ diffusion away

from the cross-sectional plane of the trail, causing a faster reduction in the cross-sectional electron density.

Study of Doppler biases introduced by geomagnetic effects on high-altitude meteor trail electron motion is

currently an active field of research, but many investigators anecdotally believe the effect to be small as

the structure of the wind inversion usually remains coherent throughout the higher altitudes as is shown

in Figure 4.7. Study of the ground illumination pattern described in Section 2.3 generated by scatter from

high-altitude meteor trails using an electron density function given by Dimant & Oppenheim’s geomagnetic

diffusion theory described in section 2.2.3 could reveal new aspects of geomagnetically influenced electron

motion.

Figure 2.9: Cross-section of relative trail electron density ∆ne = ne/neo of a trail aligned with B (θ = 0.6◦ <
Θo) at t = 0.3 [s] at an altitude of 110 [km] based on Jones’ solution. The cross-sectional radial component
of the electron diffusion is inhibited due to the trail’s close alignment with B. The dominant component
of electron diffusion occurs normal to the trail cross-section, therefore the electron density exhibits slower
cross-sectional depletion compared to Figures 2.10 and 2.11. The inequality of Eq. 2.19 is met inside the
red ellipse
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Figure 2.10: Cross-section of relative trail electron density ∆ne = ne/neo of a trail not aligned with B
(θ = 1◦ > Θo) at t = 0.3 [s] at an altitude of 110 [km] based on Jones’ diffusion solution. Because of
the high altitude where Ψ < 1, electron motion is influenced by the geomagnetic field and they experience
high mobility along B described by De‖. More pronounced geomagnetic effects are observed in this trail’s
diffusion along B by comparison with Figure 2.9. The inequality of Eq. 2.19 is met inside the red ellipse

Figure 2.11: Cross-section of relative trail electron density ∆ne = ne/neo of a trail significantly unaligned
with B (θ = 10◦ > Θo) at t = 0.3 [s] at an altitude of 110 [km] based on Jones’ solution. The trail is
elongated along B and has a lower cross-sectional electron density at the same time as the trail in Figure
2.10. This results from the larger angle θ = 10◦ causing more significant diffusion along B. Note the different
colorbar scale from Figure 2.10.



48

Figure 2.12: Cross-section of relative trail electron density ∆ne = ne/neo of a trail significantly unaligned
with B (θ = 10◦ > Θo) at t = 0.3 [s] at an altitude of 90 [km] based on Jones’ solution. By comparison with
Figure 2.11, observe that at lower altitudes where Ψ > 1 the geomagnetic field has little effect on diffusion
as the cross-sectional density distribution is diagonally-symmetric and the trail experiences strict ambipolar
diffusion.
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2.2.3 Dimant and Oppenheim’s Diffusion Solution

Dimant and Oppenheim have written a series of advanced papers exploring the solutions and im-

plications of Eq 2.17 under the boundary conditions ne → 0 as x, y → ∞ and Φ → 0 as x, y → ∞ which

ultimately has the effect of forcing current closure through the background ionosphere (∇ · j = 0) at finite

distances from the trail. Under these boundary conditions, analytic solutions under arbitrary θ to Eq 2.17

do not exist, and the authors present a series of analytic approximations valid under specific trail geometries

and conditions. Specifically, their analytic theory applies when θ is large compared with Θo as is shown

by Eq 2.25. When the inequality of Eq 2.19 is maintained, Dimant’s solution follows Jones’ while the trail

density exceeds the background ionosphere by at least a few hundred times. Dimant and Oppenheim’s most

modern meteor trail diffusion simulation results are presented in [28] and the reader is encouraged to explore

the beautiful supercomputer animations included in this paper.

Q ≈ sin2 θ

Θ2
o

� 1 (2.25)

Interestingly, Eq 2.17 can be solved numerically under Dimant’s boundary conditions using a finite-

element PDE solver. Dimant found the numerically generated solutions to reasonably approximate the exact

solutions [27], and capture the major ambipolar electric field and electron density features [27]. By forcing the

electric potential to zero at the spatial limits, the background ionospheric plasma is permitted to participate

in maintaining quasineutrality in addition to the trail electrons. In other words, both electrons originating

from the meteor trail and electrons already present in the ionospheric background can comprise Γe in Eq

2.14. In Jones’ solution, both Γe and Γi arise only from particles originating from the trail. Qualitatively,

currents are established along B when θ > Θo because De‖ � De⊥. The currents close in complex ways

through the background ionosphere (because Φ → 0 as x, y → ∞ and ∇ · j = 0) and create a number

of interesting features in electron density. The analytic solution formulated by Dimant and Oppenheim is

somewhat bulky, and the reader is referred to the actual paper [26] for mathematical details. By imposing
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current closure, depletions in the background ionosphere can appear at considerable distances from trails

that are not aligned with B as can be see in Figure 2.13 as the ionospheric electrons participate in trail

diffusion. Observation of either the ionospheric electron depletion shown in Figure 2.13 or the diffusive

critical time shown in Figure 2.15 and described by Eq 2.26 could provide compelling evidence for Dimant

and Oppenheim’s theory from the perspective of specular meteor radar.

Figure 2.13: Figure 6 from [27]. Disturbance of the background electron density δneo = no/neo for Ψ = 0.2
(higher altitude) at t = 3.5 sec and ∆ne = ne/neo = 104. neo is the constant background density, no is the
instantaneous background density (no is a function of time) and ne is the quasineutral total plasma density.
The coordinate system is given in Figure 2.8. The y-coordinate is located at 20 [m], far from the trail where
the trail density is much less then the background plasma density (∆ne = ne/neo ≈ 1).

One consequence of Dimant and Oppenheim’s theory for the observation of specular meteor trails is

the prediction of the diffusion ‘Critical Time’ tcr given by Eq 2.26 (see Eq 21 in [27]) where Nlin is the

meteor trail electron line density, e is the elementary electron charge, K(Ψ) is a dimensionless parameter

related to the altitude parameter, Te and Ti are the electron and ion temperatures, B is the magnetic field

strength and no is the background ionosphere electron density. The critical time tcr describes the time of a

nearly instantaneous transition (with respect to the total trail observation time) of the trail’s diffusion from

sharply anisotropic to largely isotropic. This transition is a consequence of the complex current closures

in the background ionosphere. Figure 2.14 shows how the trail diffusion becomes more isotropic in nature

at the later stage of diffusion as compared to Jones’ solution. Confirmation of the critical time would

provide strong evidence in support of Dimant and Oppenheim’s diffusion theory, of which little exists from
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Figure 2.14: Figure 4 from [27]. Numerical PDE solution from Dimant and Oppenheim (b) and Jones’
solution (a) for Ψ = 0.2 (higher altitude) at t = 6 [s]. and ∆ne = ne/neo = 50. neo is the constant
background density and ne is the quasineutral total plasma electron density. Diffusion is faster and more
isotropic when including the background plasma and current closure. The maximum relative electron density,
nmax is shown in the contour plots. High altitude trails are predicted to experience a sharp transition from
anisotropic to nearly isotropic diffusion at the critical time tcr as given by Eq 2.26. This figure has been
generated when t > tcr and therefore the change in diffusion coefficient has already occurred as is shown by
the more nearly isotropic electron density distribution in the PDE simulation of panel (b).
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Figure 2.15: Example specular meteor trail echo observed by CoSRad using the Platteville meteor radar sys-
tem displaying an instantaneous increase in the diffusion constant consistent with the critical time hypothesis
given by Eq 2.26 and shown in Figure 2.14.

the perspective of specular meteor trail echoes. The critical time would be present in the measurements

from high-altitude trails which are not closely aligned with B as an instantaneous increase in the diffusion

constant. Figure 2.15 shows a CoSRad specular meteor trail observation from the Platteville meteor radar

displaying an instantaneous change in diffusion coefficient. Because the trail’s orientation with respect to B

is unknown, no meaningful conclusions can be drawn using a single observation so Figure 2.15 only serves as

an example of the expected diffusion behavior under a critical time hypothesis. Without coincident LIDAR

or ISR measurements of Te, Ti and no of Eq 2.26 cannot be directly measured. Furthermore, without meteor

trajectory information, the trail’s orientation with respect to B is unknown, however, tcr is a function of

the background E-region electron density no which can fluctuate by three orders of magnitude between day

and night [110]. Finding a correlation between the critical time of trail diffusion and the time of day would

provide evidence in support of Dimant and Oppenheim’s theory from the perspective of specular meteor

radar. The model of the least-squares fitting procedure in Chapter 4 could be modified to include two

decaying exponentials which would automate the process of finding echoes with strong, nearly instantaneous

changes in diffusion coefficient.

tcr =
NlineBK(Ψ)

2π(Te + Ti)no
(2.26)
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2.2.4 Discussion of Solutions

Both Jones’ and Dimant’s solutions similarly describe trail diffusion when the trail is aligned with

the magnetic field, however significant differences surface in the meteor zone as θ > Θo when Ψ < 1. To

describe a plasma using the MHD equations from which Eq 2.17 is derived, the number of charged particles

within a Debye sphere must be large which is the case throughout the meteor region at VHF length-scales

[75]. Another, more qualitative approach is to realize that the spatial lengths of a plasma phenomenon under

consideration must be large compared with the Debye length. Inclusion of the background plasma increases

the diffusion rate as the electric potential created during current closure reinforces the ambipolar electric

field and accelerates diffusion.

In light of Dimant’s and Oppenheim’s work, studies inferring atmospheric parameters such at Tn

when Ψ < 1 by measuring diffusion coefficients may consider revisiting results as accelerated diffusion may

introduced a bias as was partially done by [9]. Structures in the background ionospheric electron density are

predicted to occur during high-altitude trail formation as illustrated in Figure 2.13. The ionospheric electron

density depletion is predicted to form at distances from the trail where ∆ne = ne/neo ≈ 1 and may prove to

be a useful feature in providing evidence for Dimant’s theory, however, no feasible remote sensing experiment

has been proposed with the potential to observe this predicted depletion structure. This predicted feature

of high-altitude meteor trail diffusion has proved difficult to observe as LIDAR does not directly measure

the background electron density, and observation of this short-lived feature using ISR would require very

high power due to the short incoherent integration time. Nonetheless, this predicted background electron

depletion region is a significant consequence of Dimant and Oppenheim’s modern diffusion theory. For

beautifully rendered meteor trail diffusion supercomputer simulations, see the modern paper [28]. Limited

evidence exists in providing experimental evidence for this theory [102]. Moving forward, a measurement

campaign aimed at providing evidence of Dimant and Oppenheim’s diffusion theory using specular echoes is

the logical next step.
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Two modern theories of meteor trail diffusion are presented for the meteoric region of Earth’s iono-

sphere. Both theories solve the fundamental equation for meteor trail diffusion in two dimensions (Eq

2.17) but under different boundary conditions. Both theories force the trail electron density to zero at

the spatial limit (ne → 0 as x, y → ∞), but Jones allows the electric potential to approach infinity

(Φ → ∞ as x, y → ∞) while Dimant and Oppenheim provide an analytical approximation to solve Eq

2.17 under the more geophysically realistic boundary condition of forcing the electric potential to zero at

the spatial limit (Φ→ 0 as x, y →∞). Both theories describe trail diffusion at the early stage similarly, but

deviate significantly at the later stages of trail diffusion, identified in Dimant’s theory by a transition from

primarily anisotropic to isotropic diffusion. While Jones’ theory captures the major altitude and θ-dependent

features of trail diffusion as is shown in Figures 2.9-2.12, it fails to account for current closure in the back-

ground plasma. Dimant’s theory includes the background plasma, and allows for complex current closure

structures which influence the trail electron density’s temporal and spatial evolution. Two consequences of

accounting for current closure through the background plasma is the creation of electron depletion regions in

the background ionosphere at large distances from the trail (see Figure 2.13) where the trail density is well

below that of the background plasma (∆ne = ne/neo ≈ 1), and the instantaneous increase in the specular

echo decay coefficient at the ‘critical time’ tcr given by Eq 2.26.
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2.3 Numerical Modeling and the Ground Illumination Pattern

A number of primary assumptions are used in the formulation of the Ground Illumination Pattern

(GIP) equations. The GIP equations were derived by Tinin using a modified single-scattering theory, which

is based on solving Maxwell’s equations in their first perturbed (linearized) approximation [126]. The trail is

also assumed to be in the Fraunhofer zone described by Eq 2.27 where W is the size of some trail dimension,

λ is the radar operating wavelength and L is the distance from the trail to the receiver. The scattering

volume is assumed smaller than the first Fresnel radius which is on the order of 1 [km] for meteor radar

frequencies assuming mesospheric scatterers with the transmitter and receiver located on the earth’s surface.

The transverse radius of the trail is on the order of several meters, which clearly falls within the Fresnel

assumption, however, trails are typically tens of kilometers in length, much larger then the Fresnel radius.

Because of the strong spatial anisotropy of meteor trails, the single-scattering theory only directly applies

when analyzing scattering along the transverse (cross-sectional) spatial components of the trail. Scattering

along the primary axis of the trail (longitudinal direction) is described using a stationary-phase technique

where the majority of the longitudinal scattering is assumed to originate from a point of stationary phase

along the trail (with respect to the transmitter and receiver locations) as determined by the conditions of

Eq. 2.28a and explicitly calculated by Eq. 2.29c. Ψ is the phase change along the path from the transmitter

ro to a point in the scattering volume (trail) rs and continuing to the receiver r assuming the coordinate

system depicted in Figure 2.16. Throughout this section, the following notation is used, and all scattering

equations are baed on the work of Tinin [126] with some minor notation changes for clarity. Other then the

fully integrated GIPs in Figure 2.21, all GIPs in this chapter are calculated by evaluating Eq 2.31 over a set

of candidate receiver locations r with fixed transmitter ro and trail locations. In the formulations of Eqs

2.31 and 2.29, the transmitter and receiver locations are given with respect to the trail. In some of the GIP

figures, the axis are adjusted to show the trail and receivers with respect to the transmitter.
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Figure 2.16: Geometry for the calculation of ground illumination patterns (GIPs). The primed coordinate
axis has an origin at the center of the trail with the axis along the trail’s major axis, and is related to the
unprimed coordinates through the rotation of Eq 2.30. The trail always lies in the x̂′ẑ′ which is rotated by
α.

W 2

Lλ
<< 1 (2.27)

• Pt : Peak transmit power [W]

• Pr : Receive power [W]

• Gt and Gr : Gain of receive and transmit antennas in the direction of the scatterer.

• k : wavenumber k = 2πfo/c

• qm : Maximum electron line density [m−1]

• r : Location of receiver with respect to the trail, r = (x, y, z) [m]
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• ro : Location of transmitter with respect to the trail, ro = (xo, yo, zo) [m]

• rs : Scattering section along the trail [m]

• ρ : (y, z) coordinates of Rx location, (x,ρ) = (x, y, z) [m], ρ and ρ′ are related through Eq 2.30

• ρo : (yo, zo) coordinates of Tx location, (xo,ρo) = (yo, zo) [m], ρo and ρ′o are related through Eq

2.30

• z′s : z′ component of rs [m]

• xm : Height of meteor trail [m]

• z′c : Point of stationary phase along trail axis [m]. Defined by Eq 2.28a

• γ(z′c) : Angle between electric vector of incident wave E and the vector connecting z′c to r

• l‖ : Characteristic length of meteor trail [m]

• l⊥ : Characteristic transverse radius of meteor trail [m]

• α : Angle between x and x′ (Angle between zenith and meteor trail primary axis)

• E : Electric vector of incident wave [V m−1]

• Ψ(r, rs, ro) : Phase of radar wave as a function of Tx and Rx locations (ro, r) and the point of

scattering rs

Throughout this section, a boldface symbol indicates a vector-valued quantity, and its norm is indi-

cated by the standard typeface. For example: r = |r|.
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∂Ψ(z′s)
∂z′s

= 0 (2.28a)

where

Ψ(r, rs, ro) = |rs − ro|+ |r − rs| (2.28b)

and

r′ = {ρ′, z′} = {x′, y′, z′} and r′o = {ρ′o, z′o} = {x′o, y′o, z′o} (2.28c)

(2.28d)

The primed coordinate system has an origin at the center of the meteor trail, and the unprimed

coordinates are centered on the surface of the earth as depicted in Figure 2.17. The meteor is at a hight xm

above the earth’s surface and at an angle α with respect to the unprimed coordinates. The two coordinate

systems are related by Eq. 2.30

I(r) =

(
80.6π2

c2

)2
λ3|FN |2

ρ′ρ′o

√
(ρ′ + ρ′o)

2
+ (z′ − z′o)2

(2.29a)

1

Leff
=

(
1

ρ′o
+

1

ρ′

)[
1 +

(
z′ − z′o
ρ′ + ρ′o

)2
]3/2

(2.29b)

z′c =
z′ρ′o + z′oρ

′

ρ′ + ρ′o
(2.29c)

z′a = z′c +
ξ√
k

Leff

(2.29d)
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|FN | =
1√
2π

∞∫
−∞

exp

[
jξ2

2

]
Φ

Q, z′c +
ξ√
k

Leff

 dξ (2.29e)

Q(r′) = k

[
1 +

(
z′ − z′o
ρ′ + ρ′o

)2
]− 1

2 [
ρ′

ρ′
+
ρ′o
ρ′o

]
(2.29f)

Φ (Q, z′a) =
1√
2π

∞∫∫
−∞

N(ρ′s, z
′
a) exp

[
−iρ′sQ

]
d2ρ′s (2.29g)

N(ρ′s, z
′
a) =

q(z′a)

πl2⊥
exp

[
−ρ
′2
s

l2⊥

]
(2.29h)

q(z′a) = qm exp− z
′2
a

2l2||
(2.29i)

γ(z′c) =
E · [x′ y′ z′ − z′c]
E|[x′ y′ z′ − z′c]|

(2.29j)

Pr(r) = PtGtGrI(r) sin2(γ(z′c)) (2.29k)

x′ = (x− xm) cosα+ z sinα (2.30a)

z′ = z cosα− (x− xm) sinα (2.30b)

y′ = y (2.30c)
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The ground pattern created when radar-illuminating an elongated electron cloud is calculated using

the series of Eqs 2.29 where the arbitrary cross-sectional electron density is used in place of the Gaussian

distribution of Eq 2.29h. Eqs 2.29 require the time-consuming numerical evaluation of a triple integral

expression. Under the assumptions of Gaussian electron density distribution along both the trail length l‖

and trail radius l⊥ Eqs 2.29 reduce to Eqs 2.31 where Q(r
′
) is given by Eq 2.29f and z′c is found using Eq

2.29c. The power received at a candidate receiver location is a function of the transmitted electric vector

polarization γ and the radar system parameters both included in Eq 2.29k. It can be shown that Eq 2.31

reduces to the classical meteor radar equation given by 2.1a (see Section 4 of [126]). The procedure for

finding the numerically integrated illumination pattern is a 6-stage process outlined below:

Ig(r) = D
λ3q2

m

ρ′ρ′o

√
(ρ′ + ρ′o)

2
+ (z′ − z′o)2

exp

(
−z′c
2l2‖
− Q(r′)2l2⊥

2

)

where D =

(
20.15

c2

)2

≈ 5.027× 10−32 [unitless]

(2.31)

(1) Choose a candidate receiver location r in the ẑŷ plane.

(2) Transform receiver and transmitter into the trail coordinate frame using Eq 2.30.

(3) Find the point of stationary phase with respect to the receiver using Eq 2.29c. z′c represents the

point along the trail where the derivative of the phase with respect to changes in the receiver location

is zero as is indicated by Eq 2.28a. This point is assumed to lie in the first Fresnel zone contributing

most of the scattered power at any given receiver location.

(4) Evaluate Eq 2.29e by integrating over ξ. In principle the limits of integration are at infinity, however,

we may set the limits of integration to an order of magnitude greater then the trail’s effective length

given by Eq 2.29b. The effective length is related to the length of the first Fresnel zone and contributes

most of the scattered power at the chosen receiver location.

(5) In step (4) the trail is sliced into cross-sectional pieces. Each cross-sectional section is integrated
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over the 2D electron density profile using Eq 2.29g.

(6) Move the receiver to a new candidate location and repeat the process to form the ground illumination

pattern.

Studying the full numerical solution is helpful for understanding the technique and assumptions,

however, Tinin has also provided a closed-form expression of Eq 2.29 assuming a Gaussian electron density

which can be directly evaluated without the need for extensive numerical integrations. The closed-form

expression is shown by Eq 2.31.
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Figure 2.17: Power available at antenna terminals from Eqs 2.31 and 2.29k. The transmitter is located on
the z-axis at -200 [km]. Simulation parameters: α = 3◦, trail height xm = 100 [km], Transmit power= 10e3
[W], Gain of receive and transmit antennas Gr = Gt = 3 [dB]. Carrier frequency fo = 30 [MHz], Max
electron line density Ne = 1013[m−1], Gaussian trail distribution l‖ = 30 [km], l⊥ = 1 [m], Transmitter
location Tx = −200ẑ [km], Electric vector polarization E × x̂ = 0

The widely cited scattering theory proposed by McKinley [95] was formulated in such as way as to make

the calculation of GIPs difficult, as the equations were not explicit functions of positions on the ground with

respect to arbitrary transmitter and receiver locations. Tinin has reformulated McKinley’s original theory

for the calculation of GIPs by creating a set of equations as a function of the position of transmitter and

receiver. A final set of equations describing the ground illumination as an explicit function of the transverse

(cross-sectional) electron density N(ρ′s, z
′
a) is described by Eqs 2.29 and under the Gaussian electron density
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Figure 2.18: Power available at antenna terminals from Eqs 2.31 and 2.29k. Simulation parameters: α = 10◦,
xm = 100 [km], Pt = 10e3 [W], Gr = Gt = 3 [dB]. fo = 30 [MHz], Max Ne = 1013[m−1], l‖ = 20 [km],
l⊥ = 1 [m], transmitter location: Tx = (300ŷ− 100ẑ) [km], E× ẑ′ = 0. The trail does not meet the classical
backscatter geometry as can be seen by a lack of scattered power at the transmitter, however, a multistatic
system could observe this echo.

distribution assumption by Eq 2.31. The explicit dependence on electron density is important because this

allows for calculation of the GIP for any arbitrary electron density distribution function assuming the function

meets the single-scatting assumptions. Historically, Gaussian distribution functions such as Eqs 2.29h and

2.29i have been used to describe both the transverse and along-trail electron density, an assumption which

allows considerable simplifications to Eq 2.29 and results in the analytic solution of Eq 2.31 for the GIP. While

the assumption of a radial Gaussian electron density distribution describes the early evolution of the meteor

trail [76], it fails to accurately capture the later-stage radial distribution when the trail electron density has

diffused to only a few orders of magnitude above that of the background ionospheric plasma. Furthermore,

the Gaussian electron distribution assumption neglects the known temporal effects of earth’s magnetic field

in addition to the background ionosphere on trail diffusion [102], and the assumption of a Gaussian electron

density distribution along the primary axis of the trail is a notable geophysical simplification.

Dimant and Oppenheim’s modern theory of diffusion discussed in Section 2.2.3 [27, 26] includes the

effects of Earth’s geomagnetic field and the motion of the background ionosphere on the spatial and temporal
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Figure 2.19: Power available at antenna terminals with geographical landmarks in Colorado (USA) from Eqs
2.31 and 2.29k. Simulation parameters: α = 0◦, xm = 100 [km], Pt = 10 [kW], Gr = Gt = 3 [dB]. fo = 30
[MHz], Max Ne = 1013 [elec/m], l‖ = 20 [km], l⊥ = 1 [m], transmitter location: Tx = 200ŷ [km], E × ẑ = 0
(electric vector is parallel to ẑ). The trail lies normal to the x̂ŷ plane connecting Platteville and Boulder.
An increase in power at the forward-scatter location is due to the effective increase in Bragg wavelength by
secφ where φ is half the forward-scatter angle (see Figure 2.1). The z′c coordinate is the location on the
trail (shown projected onto the ŷẑ plane) in the primed coordinate frame (Eq 2.30) of the center of the first
Fresnel zone contributing to 90% [17] of the scattered power at any given point on the ŷẑ plane (receiver
location). Receivers located along contours of constant z′c will observe scatter from the same location along
the trail.

evolution of a meteor trail. Eq 2.17 is solved for the plasma density distribution and the residual potential as

a function of the spatial and temporal coordinates. Fundamentally, Eq 2.17 governs the spatial evolution of

the meteor trail plasma N(x, y, z, t). The constant terms D, Q, ψ and µ are a function of various plasma and

environmental parameters including the electron and ion temperatures, collision frequencies and the trail’s

orientation with respect to the geomagnetic field B. The initial electron distribution is actually assumed



64

z

y

x

x′

y′
z′

!
"! #!! #"! $!! $"! %!! %"! &!!'()*+,"!,#!!

,#!!

,$!!

,%!!

#!!

$!!

%!!'()*+

α = 10◦

-.

$"

"!

/"'()*+

!"#$%

,"! ,$" ,#! #! $" "!'()*+z′
c

!"#$$%"&'(%&)'

*)&$%+,'-./!0)

Figure 2.20: Power available at antenna terminals from Eqs 2.31 and 2.29k. Model parameters: α = 10◦,
xm = 100 [km], Pt = 10 [kW], Gr = Gt = 3 [dB], fo = 30 [MHz], qm = 1013[m−1], l‖ = 20[km], l⊥ = 1
[m], transmitter location: Tx = (300ŷ,−100ẑ), [km] E × x̂′ = 0. The trail does not meet the condition for
classical ‘backscatter’ as can be seen by a lack of scattered power at the transmitter location, however, a
multistatic system could observe this echo. The z′c coordinate is the location on the trail (shown projected
onto the ŷẑ plane) in the primed coordinate frame of the center of the first Fresnel zone. Receivers located
along contours of constant z′c will observe scatter from the same location on the trail.

to be Gaussian [76], and subsequently diffuses according to Eq 2.17. By using the solution for the electron

density distribution N(x, y, z, t) in Eq 2.17 in place of Eq 2.29h in the full formulation, the temporal evolution

and spatial distribution of the scattered field under the modern diffusion theory could be determined. Note

that Eq 2.29g relates the scattering intensity to the Fourier transform of the spatial distribution of the trail’s

cross-sectional electron distribution. This would suggest (consistent with antenna theory) that a larger trail

radius will produce a more spatially localized GIP. General analytical solutions to Eq 2.17 do not exist and

N(x, y, z, t) must either be solved numerically, or under some limiting assumptions on trail geometry which

enable analytic descriptions. The ultimate goal is the calculation of GIPs under arbitrary trail, transmitter

and receiver geometry assuming an electron density distribution described by Eq 2.17. In Figure 2.21 the

full numerical GIP model (Eqs 2.29 represent a nontrivial problem in computational electromagnetics) is

compared with the closed-form analytical model described by Eq 2.31 under an identically Gaussian electron

density distribution. New spatial structures of the scattered field are observed in the fully integrated model,

suggesting that the classical scattering equations do not capture all structures present in the scattered field.
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Including the electron density described by Eq 2.17 and presented by [28] into Eq 2.29h would undoubtably

reveal a new and rich tempro-spatial structure in the scattered field not captured under the classical theory

described by Eq 2.1a and assumed in the formulation of Eq 2.31. In both models of Figure 2.21, the electron

density profile is identically Gaussian. The general structure of the numerically integrated GIP is consistent

with that of Figure 2.19 using similar system and physical parameters. The fully integrated models show

spatial structures which are not present when the equations are evaluated using the closed-form analytical

equation (Eq 2.31) which implicitly assumes a Gaussian electron density profile. These results should be

taken with a dose of skepticism as I have not performed an extensive study of the GIPs produced through

evaluating the fully integrated set of equations in Eq 2.29, which is an excellent starting point for future

investigations. As a first step, expressions containing explicit Fourier transforms in Eqs 2.29 should be

reformulated using the FFT for the purpose of sane execution times.
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Figure 2.21: Evaluating the 3D Fourier transform described by Eqs 2.29 and finding the resultant electric
field over an arbitrarily oriented plane (in this case Earth’s surface) is a nontrivial problem in computational
electromagnetics. The illumination patterns in panels (A) and (C) were calculated using Tinin’s analytic
expression which assumes a Gaussian electron density profile along each axis of the trail (Eqs 2.31 and 2.29k).
Panels (B) and (D) show the integrated solution generated by evaluating the full set of GIP equations in
2.29 which allows for an arbitrary electron density profile N(ρ′s, z

′
a) in Eq 2.29h.
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The simplified GIP formulation of Eq 2.31 was evaluated over a variety of trail orientations. Figure 2.17

shows the GIP for a transmitter oriented along the axis of the trail. The transmitter is located at x = −200

[km] and the meteor trail electron density is described by the Gaussian distribution centered at x = y = 0

[km]. Figures 2.18 and 2.20 show GIPs with similar transmitter and trail geometries, but different transmit

electric vector orientations. Figure 2.19 shows the GIP of a trail having the classical ‘backscatter’ geometry

with some familiar Colorado landmarks. These Figures clearly show that power scattered from meteor trails

with typical physical parameters is available over large spatial regions on Earth’s surface. In fact, the terms

‘backscatter’ and ‘forward-scatter’ used throughout the meteor radar literature seem misleading under these

results. The meteor trail need not lie nearly perpendicular to the radar’s wavevector for specular scatter to

occur as the modern literature often suggests [25]. This model suggests that all meteor trails will exhibit

specular scatter over large spatial regions when illuminated by a low-VHF meteor radar. Furthermore, these

results show that power from specular scatter is available from any given trail on spatial scales of 100’s of

km, which strongly supports the fundamental assumption of multistatic meteor wind radar.

Figure 2.22 shows how the GIP changes when sweeping though the trail’s azimuthal orientation by

rotating the trail in the ŷẑ plane about the x̂ axis. Figure 2.23 shows how the GIP changes when rotating

the trail about the ŷ axis in the x̂ẑ plane by sweeping through α. The radar system parameters are included

for completeness but only serve as a scaling factor as seen by Eq 2.29k. One conclusion of the illumination

pattern simulations is that the spatial structure of the scattered field is a complex function of the trail

and transmitter geometry, and that specular scatter from meteor trails under arbitrary Tx/Rx and trail

geometries is always available to properly located receiver stations.

Figures 2.25 and 2.26 suggest an experiment with the potential to provide evidence in support of

Tinin’s trail scatter theory by observing a meter shower having a known problem geometry. In addition to

observing the spatial detection rate asymmetry of a meteor shower, Figure 2.24 shows the probability of

detecting a trail out of a large spatially uniform population at any geographic location with respect to the

transmitter. Each receiver added to the network will increase the total number of detections N according
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to Eq 2.32 [133] where No is the number of meteors detected by a monostatic system ((z,y)=(0,0) in Figure

2.24), Ntx and Nrx are the number of transmitters and receivers and c(d) is a scaling factor related to the

transmitter/receiver spacing which decreases with longer station baselines. As the shower radiant propagates

across the sky from panels(A) to (E) in Figure 2.25, the distribution of detection rates on the ground exhibits

clear spatial asymmetry. Each receiver in a spatially distributed grid over the region would observe different

rates of trail detection as the shower radiant passed over the observer. Figure 2.26 shows the normalized

detection rates that would be expected at the receiver locations shown in panel (E) over the course of the

radiant transit. This experiment would enable direct experimental evidence for Tinin’s theory of meteor

trail scatter [126]. A multistatic meteor radar could observe the spatially asymmetric trail detection rates

of a meteor shower. For multistatic meteor radar networks with stations spacing in the low 100’s of [km],

this value is usually between 0.3 and 0.8.

N ≈ c(d)NoNtxNrx (2.32)



69

Figure 2.22: Effect of the trail’s azimuth angle on the GIP using Eqs 2.31 and 2.29k. The azimuth angle is
varied from 0◦ to 90◦ as the trail is rotated in the ŷẑ plane about the x̂ axis. The trail’s height is xm = 100
[km]. The trail is represented by the white line centered at (z, y) = (−200, 0) [km], and the transmitter is
located at (z, y) = (0, 0) [km] which is represented by the magenta circle. GIPs are calculated under the
same system parameters as used in Figure 2.23. A monostatic system would only observe the trail in panel
(f) under realistic environmental noise conditions (Te ≈ 100, 000[K]).
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Figure 2.23: Effect the trail’s elevation angle α on the GIP using Eqs 2.31 and 2.29k. The elevation angle
is varied from −20◦ to 10◦ as the trail is rotated about the ŷ axis in the x̂ẑ plane by sweeping through
α. The trail’s height is xm = 100 [km]. Note that panel (d) is identical to panel (a) in Figure 2.22. The
trail is represented by the white line centered at (z, y) = (−200, 0) [km], and the transmitter is located at
(z, y) = (0, 0) [km] which is represented by the magenta circle. See Figure 2.16 for the definition of trail
elevation angle. As the elevation angle is increased, the effective size of the Fresnel zone with respect to the
transmitter location causes a decrease in scattered power. These GIPs were calculated under the system
parameters of: Gr = 15 [dB], Gt = 15 [dB], Pt = 10 [kW]. A classical monostatic MWR system would
observe none of these trails.
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Figure 2.24: Panel (b) shows the percentage of trails detected out of a total population of 50,000 simulated
trails uniformly distributed over a geographic region of 2000 [km2] as a function of the receiver’s geographical
location. Trail heights were generated using the Gaussian parameters: µ = 95 [km], σ = 5 [km]. Azimuth
and elevation angles are realized from the uniform distribution. The region containing the largest number
of detections is bounded by an approximate 400 [km] radius ring centered at the transmitter location,
which is shown on a geographic map centered at the Platteville, Colorado radar site (a). The simulation is
consistent with Eq 2.32 which describes how the number of additional meteor trail detections increases for
each additional receiver and transmitter added to the geographically distributed multistatic network.
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Figure 2.25: This figure shows the simulated temporal evolution of the integrated ground illumination pattern
over the course of the Quadrantid meteor shower as observed from Boulder, Colorado on 3-Jan-2014. The
right panel shows the position of the radiant in the sky where 0 [deg] is true north. The left panel shows
the percentage of meteor trails detected at any given location over a region of 2400 [km2] where the 40 [kW]
transmitter is located at (Y,Z)=(0,0) [km] and represented by the magenta circle.
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Figure 2.26: Normalized meteor trail detection rates over the course of the Quadrantid radiant transit at the
receiver locations shown in panel (E) of Figure 2.25. Observation of this predicted spatial asymmetry using
a multistatic meteor radar network could provide direct experimental evidence for the Ground Illumination
Pattern model described in this Chapter.
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This section described the numeral GIP formulation as formulated by Tinin, and presents a limited

comparison of the numerically calculated GIP with the analytical solution under the Gaussian electron

density assumption. The GIP simulations presented in this chapter are the first numerical results which

clearly show the expected meteor trail radar response under an arbitrary receiver, transmitter and trail

geometry. The large spatial distribution of scattered power on Earth’s surface supports the fundamental

viability of multistatic meteor wind radar. The numerically integrated formulation allows for an arbitrary

electron density distribution in Eq 2.29h. The numerical and analytic GIP solutions are consistent in their

structure and the ratio of the magnitudes of the intensity. The magnitudes of the calculated intensities are

slightly different, an inconsistency which has yet to be resolved. See Chapter 5 for suggested future work

related to the GIP and diffusion topics. Possible future research topics include parallelizing the numerical

GIP calculation and implementing a full electrodynamic description for electron density distribution (use

Eq 2.17 for Eq 2.29h) in addition to implementing a time-dependent numerical simulation to study the

time-evolution of the radar return under Dimant and Oppenheim’s full electrodynamic diffusion.



Chapter 3

The Colorado Software Defined Radar

“Machines take me by surprise with great frequency.” – Alan Turing

3.1 Design Philosophy

Problems inherent with traditional analog radar remote sensing receiver systems are suboptimal in

meeting the scientific goals of mesoscale, MMWR observations. Long-term stability of analog receiver systems

are difficult to quantify. For example, free-running transmit oscillators radiating at the carrier frequency

of the radar easily leak into the receive chain of an analog receiver, resulting in DC offsets at baseband

and degraded SNR. Furthermore, fixed-frequency operation and geographically distributed synchronization

issues inherent in the analog receiver systems are all roadblocks in the deployment of coherent, MMWR

systems. CoSRad address these problems by enabling direct-convert data acquisition with straightforward

geographically distributed array synchronization.

CoSRad began as a project funded under Prof. Palo’s NSF-CAREER award ATM0449985 with a goal

of replacing the analog receiver used in the Colorado Obninsk Radar (COBRA) [38] series of meteor radars

with a software defined radio (SDR) based receiver solution, and has evolved into a highly-reconfigurable
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data acquisition and radar transceiver system well suited for use in nearly all radar remote sensing topologies.

At the beginning of this project in 2008, no commercially available products met the requirements needed

for deploying a SDR based receiver in the existing COBRA radar configuration. The primary requirements

driving our SDR based receiver development are summarized below. First, a minimum of six synchronously

sampled channels were required to deploy a software radar solution in the existing COBRA topology. Five

channels are required for the canonical all-sky receive antenna array described in [74] and used with many

meteor radar systems including those described in [48, 86] in addition to the COBRA-specific yagi-based

detection antennas. Secondly, each system must be fully synchronous with itself (synchronous fs, fo and fp),

capable of synchronizing with other collocated receivers, and be capable of synchronizing with any number

of geographically distributed receivers. fs is the DDS-generated receiver sampling frequency (see Eq 3.1), fo

is the DDS-generated carrier frequency, and fp is the pulse repetition frequency defined by a FPGA counter.

Thirdly, the system should be based on open source hardware and software, and make use of well-specified

interfaces and protocols whenever possible. Similar to the SuperDARN Auroral Radar Network model [8],

this could enable anyone to build and innovate upon the CoSRad hardware [47].

A number of secondary requirements are derived from the primary design drivers listed above. For

example, avoiding expensive and time consuming board-level hardware design was desirable. The use of well

supported open-source development tools and software packages was instrumental in cost reduction as was

the use of USB 2.0 or gigabit ethernet as the receiver’s interface protocol. Having a long support lifetime,

Red Hat Linux was the natural choice for the General Purpose Computer (GPC) operating system. Use of

a Field Programable Gate Array (FPGA) device was the most straightforward way to integrate the various

development boards and interfaces necessary to build a MMWR system meeting our primary design goals. At

the most abstract hardware level, CoSRad consists of an 8-channel data acquisition system where a stream

of real-valued voltage samples from an interferometric antenna array are transferred over a serial interface

and stored on a GPC where the traditional radar signal processing tasks such as I/Q demodulation, matched

filtering and signal detection are preformed.
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Table 3.1: Comparison of CoSRad with other popular software defined receiver technologies

CoSRad USRP N210 Pentek Nutaq
Approximate cost (USD) ± 20% 5k 11k 30k 30k

Number of channels 8 2 4 16
Native fo and fs generation X X

Native GPS disciplined timing X X
Integrated radar controller X

Open source drivers X X X
Extensive multistatic synchronization capabilities X X X

Our current approach utilizes the development boards listed in Table 3.2 to build the CoSRad receiver

depicted in Figures 3.1 and 3.5. In Table 3.1, the complete receiver system cost is calculated based on all

hardware necessary to meet technical specifications approaching those of the CoSRad system. For example,

implementation of a system based on the USRP N210 would require the integration of four separate USRP

N210 units to provide an aggregated eight channels which are natively available on a single CoSRad system.

Since the beginning of this project, the Nutaq digitizer system has become commercially available which

shows promise in providing a complete hardware solution, but will not be further discussed.

3.2 Reconfigurability

CoSRad is a software configurable data acquisition system, timing pulse generation engine and software

defined radar signal processor designed to operate over a wide range of radar remote sensing topologies. A

defining characteristic of the SDR approach to data acquisition and radar receiver design is the location of the

of the ADC in the signal processing chain. In accordance with maximizing flexibility in frequency selection

Table 3.2: Primary commercial components used to build the CoSRad receiver depicted in Figures 3.1 and
3.5

Description Manufacturer Part Number
Virtex 5 Eval Board Avnet AES-XLX-V5LX-EVL50-G
ADC Eval Board Analog Devices AD9252-50EBZ
Interface Board Avnet AES-EXP-ADI-ADPT-G
DDS Eval Board Analog Devices AD9954/PCBZ
DAC Eval Board Analog Devices EVAL-AD5440EBZ
GPS Disciplined Oscillator Trimble 53110-45
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Figure 3.1: CoSRad hardware block diagram when configured for pulsed Doppler operation. For LMFCW
operation, two additional DDS devices are utilized. Both the carrier frequency fo and sampling frequency
fs are defined using the programmable frequency tuning words associated with each DDS.

Table 3.3: CoSRad was successfully configured for measurement campaigns with the following existing radar
systems. See Figure 1.2 for a graphical depiction of the carrier frequencies listed in this table. Reconfig-
urability for use with a wide range of existing antenna and transmitter systems is a characteristic of the
software-defined approach to radar remote sensing. The LFMCW system has an fo=926 [MHz] (via up
conversion) and an IF at 10.7 [MHz] with 2 [MHz] Bandwidth

Symbol System Description Frequency [MHz]
R1 LFMCW 10.7
R2 Platteville (COBRA) 30.355
R3 SAAMER 32.55
R4 DEL-ADL Multistatic Configuration 35.24
R5 South Pole (COBRA) 46.3
R6 Jicamarca (JASMET) 49.9
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Table 3.4: Fundamental Hardware Specifications

Symbol Description Value Unit
fs Sampling Frequency Range 5 - 50 MSPS
Nch Available Number of Channels 8
fo DDS Carrier Frequency Range 0.5 - 200 MHz
Bsys Analog Bandwidth of AD9252-50EBZ 0.01 - 325 MHz
Bd Max Digital Bandwidth (USB 2.0) 480 Mbps
fdac DAC Update Rate 21 MHz
Vin ADC Input Voltage Range 2 Vpp
ADCres ADC Resolution 14 bits
GV GA Built-in VGA gain -4.5 - 55.5 dB

and system reconfigurability, the ADC is placed as close as possible to the antenna terminals in the RF

processing chain. Typically, the antenna output will only be subjected to gain and anti-alias filtering before

sampling. Transmit waveform structure and processing of the received radar echoes are software defined.

Their characteristics fall within the fundamental hardware parameters listed in Table 3.4. For VHF carrier

frequencies with a bandwidth below the receiver’s Nyquist frequency (fs/2) and carrier below the receiver’s

analog bandwidth (Bsys), traditional analog receiver components such as IF mixers are absent from the high

level architecture outlined in Figure 3.1.

Both fs/2 (sampling bandwidth) and fo (carrier frequency) are programmable within the ranges spec-

ified in Table 3.4. Furthermore, fs is dynamically configurable during operation and fo is capable of various

frequency sweep profiles enabling multi-frequency and LFMCW operation. Carrier frequencies (fo) greater

than Bsys are implemented through the use of external up and down conversion hardware, while the sampling

bandwidth is fixed at a maximum of 25 [MHz]. See the datasheets associated with the components listed in

Table 3.2 for additional hardware details. While we have described a specific set of hardware components

used to implement CoSRad, the software defined design philosophy depicted in Figure 3.1 can be applied to

all SDR radar remote sensing receivers using a range of available hardware.

CoSRad includes an integrated data acquisition timing controller which can be configured as a radar

controller. See [117] for an overview of configurable FPGA-based timing control. When configured for meteor

radar observations, CoSRad functions as a radar controller, VHF direct-sampling data acquisition system and
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software-defined pulsed Doppler radar. In this configuration, the channels of an interferometric array similar

to that depicted in Figure 4.1 [74, 57] are sampled at the output of an RF front-end. The resulting time

series of real-valued samples are transferred over USB 2.0 to a GPC where the signal detection and pulsed

Doppler processor components of CoSRad are implemented (see Section 3.5). Figure 3.2 shows a specular

meteor trail echo visualized using the software pulsed Doppler component of CoSRad. Configuring CoSRad

for integration into existing meteor radar systems typically involves setup of the integrated radar timing

controller to interface with external hardware (usually a transmitter and RF switches) and modification of

fo and fs unique to each radar site (see Figure 3.3). Table 3.3 in combination with Figure 1.2 detail the

CoSRad configurations which resulted in successful specular radar observations of meteor trails.

In collaboration with Dr. Christopher Williams [136], the CoSRad receiver was configured for LFMCW

observation of boundary-layer winds. A thorough exploration of the LFMCW technique is beyond the scope

of this thesis, however, this campaign showcases the potential for extensive reconfigurability inherent in

software defined radar observations. Two additional DDSs (DDS3 and DDS4 in Figure 3.1) were employed

to generate the necessary frequency swept waveforms and when coupled with an up-converting RF front

end at fo = 926 [MHz] and a software defined linear frequency modulation radar software component,

we successfully observed the line-of-sight boundary layer wind velocities depicted in Figure 3.4. The data

was acquired on a gusty day at NOAA’s Boulder Atmospheric Observatory. These LFMCW observations

represent an important aspect of the software defined approach to radar remote sensing. As was discussed

in section 3.2, CoSRad can be configured for use in a wide rage of radar remote sensing regimes through

modifying the software configuration and incorporating an appropriate RF front end.

3.3 Hardware details

The core components comprising the CoSRad receiver are listed in Table 3.2. These components

are packaged with supporting power distribution and RF front-end blocks (gain and anti-aliasing filters
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D = 2.0 [m2s−1]D = 2.0 [m2s−1]

II

QQ
fd = −5.6 [Hz]fd = −5.6 [Hz]

Figure 3.2: A specular meteor trail echo observed by CoSRad configured for monostatic meteor radar. Each
column is a separate receiver channel, one for each antenna of the interferometric antenna array depicted in
Figure 4.1. The radar was operating with fp = 500 [Hz], PW = 80 [us], fo = [35.24] MHz and fs = [10.843]
MHz. The echo was processed and visualized with latest pulsed Doppler processor CoSRad software module.
Row 1 shows the SNR of the processed radar pulse at the output of the matched filter (see Section 3.5.2).
The range of maximum SNR (indicated by the horizontal red line in row 1) is shown in row 3. The ADC
quantization level of the I and Q components at the range of maximum SNR are shown in row 2 and are
directly related to the ADC input voltage by a scale factor of 2/214. The phase and Doppler at maximum

SNR are shown in row 4. The I and Q components (row 2) is the row of Ṽq corresponding to the row of E
which exceeds an SNR threshold in the Doppler bandwidth (columns of E). The black trace is the functional
form of the least-squares estimate of the signal model parameters β̂ found using Eq 4.21 which represents the
basic analytic model of radar echoes from an underdense specular meteor trail [98]. The Doppler frequency

estimate f̂d and the diffusion coefficient estimate D̂ are also shown.
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Subsampled Frequency Spectrum

Frequency spectrum after Sample Rate Conversion

Figure 3.3: Graphical depiction of CoSRad’s sample rate conversion scheme when configured for meteor radar
applications. Bandpass sampling shifts the carrier from fo to fa1 when sampled at 4fo/1 + 4n. Programmable
integer decimation further transforms fa1 to fa2 where d is the integer decimation factor (i.e. d=3 implies
every 3rd sample is retained for further processing). ns and nd are the number of spectral folds introduced
by bandpass sampling and decimation. The frequency tuning words of DDS1 and DDS2 (see Figure 3.1) are
chosen such that each carrier cycle fo always contains exactly 4 samples.

Figure 3.4: Boundary-Layer wind velocities observed by CoSRad configured for LFMCW operation [135].
A component of the problem statement for this dissertation is the development of a universal radar remote
sensing receiver, exemplified by our successful observation of boundary layer winds
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for typical meteor radar applications) to create a CoSRad receiver shown in Figure 3.5. CoSRad consists

of a set of integrated development boards housing the main receiver components such as analog-to-digital

converters (ADC) and direct digital synthesizers (DDS). The electrical interface between the ADC and

FPGA development boards consists of a low voltage differential signaling interface running at a maximum of

350 [MHz] requiring careful board-to-board interconnect design. The ADC and FPGA boards are connected

via a commercially produced, impedance controlled high-speed interface board. As the radar remote sensing

community moves toward large-scale MMWR observations, it is our expectation that many groups will

implement software defined architectures meeting their specific requirements using a variety of hardware

realizations. Hardware specifications for the CoSRad-based receiver realization shown in Figure 3.5 using

the components listed in Table 3.2 are given in Table 3.4.

3.3.1 ADC

In accordance with software defined radar design methodology, the ADC is placed at the closest point

in the analog receive chain which does not exceed the ADC’s maximum analog input bandwidth of 325 [MHz]

or maximum digital bandwidth of 25 [MHz]. The ADC listed in Table 3.2 has a maximum input voltage

specification of 2 [Vpp] and outputs a stream of 14-bit samples via eight separate serial bit streams (one

for each channel) controlled by the FPGA. The samples are transmitted synchronous to edge transitions

on the ADC’s DCO output which are derived from the DDS-generated sampling clock (fs). Upon system

initialization, the ADC device is configured via a standard two-wire serial programmable interface. The gain

applied to the analog signal before sampling should be set such that the effects of quantization noise are

minimized (gain too low) while the environmental noise is clearly observed by the ADC’s least significant

bits. In other words, the gain should be set as high as possible while staying within the expected dynamic

range of the input signal, in this case specular meteor trail echoes. At higher gain levels, nonlinearities

introduced by quantization become less significant. Practically, this corresponds to around 80 [dB] of gain

for a 14-bit ADC with the environmental noise present in the lower-VHF band of around 100e3 [K].
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Figure 3.5: Major hardware components are identified in the CoSRad receiver when configured for multistatic
meteor wind radar applications. The receiver is housed in a standard 4U, 19-inch enclosure and weighs
approximately 10 kg.
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For meteor wind radar applications, CoSRad is configured for bandpass sampling of the amplified and

band-limited received signal. See Figure 3.3 for definitions of the quantities used in the following discussion.

Bandpass sampling intentionally aliases the carrier (fo) into the Nyquist region (fs/2) of the sampled signal

[54, 132]. fo and fs are chosen such that Equation 3.1 is satisfied. For any given fo there exist an ensemble

of sampling frequencies fs that satisfy Eq 3.1. For meteor radar applications with fo in the lower VHF band,

choosing fs such all CoSRad hardware specifications are met restricts ns to low-valued integers and places

fs in the range of 6-15 [MHz]. ns is the number of spectral folds introduced when band-pass sampling fo.

fs =
4fo

1 + 4ns
where ns ∈ Z (3.1)

This requirement intentionally aliases fo to fs/4 = fa1. For pulsed Doppler configuration, fo is

constant which leads directly the requirement that FTWfs = 4FTWfo/1 + 4ns where FTWfs and FTWfo are

the 32 bit frequency tuning words defining the DDS output frequencies. Further reduction in the data rate

is accomplished through downsampling fa1 by an integer ratio d where nd is the number of spectral folds

introduced by decimation by d. Equation 3.2 is the total data production rate of CoSRad where Nch is the

number of active channels. For best performance, do should be kept below 40 [MBytes/s] when using USB

2.0.

do =
2fsNch
d

[Bytes/s] (3.2)

3.3.2 Direct Digital Synthesis and Transmit Pulse Shaping

Measurement of the Doppler frequency associated with specular forward scatter from meteor trails

requires a phase coherent, geographically distributed receiver array. When CoSRad is configured for pulsed

Doppler mode, two DDS devices generate the RF transmit waveform and ADC sampling clock (fs). Both



86

DAC

DDS
Transmitter

fo

A(t) A(t)fo Band Pass 
Filter fc=fo

Analog Mixer

G
7 dBm

RF

LO

IF1

Figure 3.6: the DDS-generated carrier frequency fo is mixed with the ADC-generated pulse shaping envelope
A(t). The low DDS output power is boosted to 7 [dBm] using a simple linear amplifier which is necessary for
driving a standard 7 [dBm] mixer. The high DAC output impedance is lowered using a unity-gain BUF634P
IC for driving the 50 [Ohm] IF analog mixer input. An optional bandpass filter with center frequency at fo
may be necessary at the mixer’s RF output to condition the transmit pulse for presentation to a high-power
amplifier.

DDS devices are driven using a 10 MHz GPS disciplined clock source ensuring synchronous outputs. DDS

devices typically provide only crude amplitude modulation capabilities. Precise amplitude modulation of

the RF transmit pulse is achieved by mixing the output of the digital-to-analog converter, A(t) with the

DDS-generated RF carrier, fo as shown in Figure 3.6. Samples representing points on the transmit pulse

waveform envelope (A(t) in Figure 3.10) are calculated from an analytic function (i.e. Gaussian or trape-

zoidal envelope). During receiver configuration, samples representing the transmit waveform envelope are

loaded into a FPGA block RAM primitive where they are used to drive the digital-to-analog converter and

mixed with the DDS fo output to shape each individual transmit pulse. Imposing a constant pulse-to-pulse

carrier phase on each transmit pulse simplifies debug and signal processing and is usually straightforward to

implement. Choosing the frequency tuning words such that Equation 3.3 is satisfied ensures that an exact

integer number of carrier (fo) cycles are contained within a single inter-pulse period. Rs is the IPP counter

value discussed in section 3.3.7. Rs + 1 is equal to the number of samples per pulse n discussed in section

3.5.1.

mod

(
dRsFTWfo

FTWfs
, 1

)
= 0 (3.3)

Care should be taken when calculating this modulus because values exist for FTWfo and FTWfs
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which can satisfy Equation 3.3 within the numerical precision of standard computational software such as

Matlab. Practically, choosing FTWfo/FTWfs such that the resultant is clearly rational (repeating pattern

in the decimal) will prevent numerical errors and ensure the modulus is precisely met.

3.3.3 FPGA Architecture

The FPGA depicted in Figure 3.7 controls the receiver. Bold face text indicates reference to a

FPGA logic block. FPGA register initialization, system control and transmission of status information is

achieved through custom USB vendor requests (see USB specification). An 8051 uProcessor monitors USB

activity over endpoint zero and transmits configuration data and status request commands directly to the

Command Transceiver block on external device pins. The Command Transceiver and Reset Unit

perform configuration and initialization of all FPGA logic. After FPGA initialization, ADC configuration

commands sent by the host are received by the Command Transceiver and passed to the ADC SPI Core

for transmission to the ADC. After full system initialization, individual channels are enabled over USB via

the Command Transceiver. When a channel is enabled, serial samples originating from the ADC are

parallelized into 16-bit words (the two most significant bits are unused) by the LVDS Deserializer and

processed by the DSP Core. Processed data is finally packetized and buffered in the Data Packetizer for

transmission to the host GPC via the USB Controller. Data packets originating from enabled channels are

multiplexed into a single stream and transferred to the USB FX2 transceiver chip by the USB Controller

block. See Section 3.3.7 for a more through discussion of the data format. A Timing Synchronization

block creates logic signals used to control the various external timing requirements. See Section 3.3.6 for

more details on the radar controller block and timing signals. All timing signals are synchronous to fs and

therefore also fgps.



88

Receiver CoreClock Generator
Digital Clock 

Manager
ADC SPI Core

USB 
Controller

8051 uProcessor 
Interface

ADC LVDS 
Interface 
(8 Channels)

ADC SPI 
Interface

Host USB 
Interface IC

48 MHz 
Oscillator

SPI Clocks

48 MHz Clk

ADC Sample 
Clock (fs)

Reset Unit Core Reset

SPI Reset

ADC Reset

Timing 
Syncronizer

Radar Timing 
SignalsCommand 

Transceiver
UART

ADC Core

DSP Core
Data 
Packetizer & 
Async FIFO

LVDS 
Deserializer

Artifact 
Insertion

DCO Clk (7*fs)

DAC Core
RAM

12 x 1024

DAC Interface 
(Tx Amplitude
Modulation)

DDS SPI Core
DDS SPI 
Interface

Figure 3.7: Block diagram of the CoSRad FPGA. The radar timing signals and transmit pulse amplitude
modulation are both synchronous to the ADC sample clock (fs). DDS devices synthesizes the sampling
clock fs and transmit pulse frequency fo. Both DDS devices are driven by a GPS disciplined oscillator (see
Figure 3.1), therefore the FPGA’s ADC Core processing chain is GPS synchronous. Each block in this
diagram represents a VHDL module. Note that the ADC Core is replicated 8 times in parallel, one core
for each available channel.
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3.3.4 FPGA Development Methodology

A suite of industry standard tools were used to create the FPGA architecture. The FPGA is de-

scribed in VHDL (with the exception of the DSP Core), while some vendor-supplied models are written in

Verilog. ModelSim SE, the Xilinx ISE development suite and Matlab are the primary tools used in FPGA

development. FPGA development enjoys a long and thriving reputation of frustration inducing cryptic er-

rors and excruciatingly complex development tools. One design goal of the CoSRad system is to provide

reconfigurable software defined data acquisition to users who lack extensive FPGA programming experience.

After device configuration, the FPGA appears to the user as a bank of registers accessed via USB custom

vendor requests to endpoint zero. Registers control which channels are active, timing characteristics of the

radar control signals, configuration parameters of the ADC and DDS along with various aspects of the signal

processing preformed by the FPGA. For example, programmable registers define the data artifact format

(see Section 3.3.7) and DSP Core sample rate conversion factor. Adhering to software defined radar design

methodology, CoSRad provides flexibility in sampling rate and FPGA-based signal processing. Interestingly,

the FPGA’s DSP Core functionality is defined in Matlab and synthesized into HDL primitives using the

Matlab HDL Coder toolbox. For narrow-band specular meteor radar applications, the filter structure shown

in Figure 3.8 with frequency response shown in Figure 3.9 is implemented on a per-channel basis. Algo-

rithms used to synthesize code described by a highly abstracted language like Matlab into a set of FPGA

hardware primitives comes at the price of speed and efficiently, however, considering the gains in simplicity

of implementation, the tradeoff is acceptable for most meteor radar receiver applications. Receiver config-

urations requiring signal processing speeds approaching the physical timing limitations of the FPGA will

require a less abstracted (but more time consuming and complex) implementation strategy. The DSP Core

is individually configurable on each of CoSRad’s eight receive channels, implying another tradeoff between

the number of active channels and the FPGA-based signal processing complexity. For example, applications

requiring fewer channels could implement higher order filter structures on each of the active channels and

still use the abstracted Matlab based design flow.
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Figure 3.8: A fourth-order direct form II second order section structure used to implement the bandpass filter
for the purpose of reducing the bandwidth of fa1 before decimation (see Figure 3.3). For the observations
presented in the following sections, the coefficients are configured to implement a band-pass filter with a
center frequency at fa2 and bandwidth fsd. Energy outside the bandwidth is attenuated by a minimum of
40 dB as shown in Figure 3.9. For typical MWR applications, each of the 8 DSP Core blocks in Figure 3.7
would contain the same filter, however, each filter could be individually configured.

~

Figure 3.9: Frequency response of the filter structure depicted in Figure 3.8 as configured for use with the
Delamere antenna array and transmitter at fo = 35.24 [MHz] and fs = 10.843 [MHz]. fa1 is the subsampled
carrier (see Figure 3.3) and fsd is the final per-channel receiver bandwidth at the USB port. The frequency
response for this filter was specifically configured for each radar site in Table 3.3, and is replicated for each
active channel in the DSP Core FPGA block of Figure 3.7.
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Table 3.5: Parameters associated with the GPIO and transmit pulse signals depicted in Figure 3.10

Symbol Description
tIPP Inter-pulse period
tPW Pulsewidth
tDLY Pulse delay
A(t) Pulse shaping envelope
∆ t Timing resolution

3.3.5 FX2 USB Transceiver

Samples are requested from the host general purpose computer (GPC) over a USB 2.0 link with

a maximum throughput of 480 [Mbps] aggregate over all channels. A Cypress Semiconductor FX2 USB

transceiver arbitrates USB bus transactions. The FPGA clocks data packets into the slave FIFO interface of

the USB transceiver, where a host PC subsequently reads the data using the open source LibUSB libraries.

Architecture of the FX2 slave FIFOs is optimized for 1024 byte data transfers, hence, the FPGA transfers

data to the FX2 slave FIFOs in multiples of the optimal transfer size. Exhaustive documentation describing

USB, the FX2 device and LibUSB libraries are available online. Two freeware Linux tools, the Small Device

C Compiler (SDCC) and CycFX2Prog provided useful for development and debug of the USB and 8051

microprocessor-to-FPGA interface.

3.3.6 GPIO and Timing Signals

CoSRad includes a programmable controller capable of modifying the timing parameters depicted in

Figure 3.10 and Table 3.5 based on a GPS synchronous oscillator and are therefore synchronous to fs. The

inter-pulse period tIPP , pulse width tPW , pulse delay tDLY , carrier frequency fo and pulse shaping envelope

A(t) are all modified by configuring various FPGA registers. In this way, CoSRad functions as a GPS

synchronous programmable radar controller. When configured to generate the radar control signals needed

to drive a typical transmitter, 32 GPS-synchronous GPIO signals are also available. All timing signals have

a maximum time resolution of ∆ t = 1/7fs.
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Figure 3.10: Properties of the radar timing signals generated by the CoSRad Timing Synchronizer FPGA
core. The properties defined in Table 3.5 are defined though various FPGA registers for each signal. This
allows CoSRad to function as a programable GPS-synchronous pulse engine, capable of driving external
radar hardware components such as transmitters and switches.

3.3.7 Data Format

CoSRad is a real-time system generating a constant stream of real-valued samples transferred to a

host computer through an asynchronous USB interface. All low-level USB bus transactions are handled by

the FX2 USB transceiver and LibUSB library. Data samples are written by the FPGA into the FX2 and at

some nondeterministic time later are read by the GPC. Bulk transfer mode USB does not guarantee time

of delivery; therefore, the instantaneous USB interface throughput may temporarily drop below the data

generation rate of the receiver (see Equation 3.2). Buffering in the Data Packetizer FPGA block provides

some tolerance to this scenario, however, in the event of a buffer overflow in the FPGA’s FIFOs, the host

GPC must identify the quantity of dropped data. This functionality is provided through a transmission

protocol imposed on the USB data stream. Consider the data protocol depicted in Figure 3.11 as abstracted

from the low-level USB layers, implementable over any serial interface. The serial stream of data contains

two features of interest. Packet headers containing metadata information and artifacts identifying the start

of each radar pulse are artificially inserted into the data stream. All data is read by the GPC in 2040 byte

chunks with an 8 byte header forming a stream of 2048 byte packets. Packets generated from data received

on identical channels have sequentially numbered packet counter fields assuming the absence of a receiver

buffer overflow. Any non-sequential packet counter values received by the host indicate a dropped data

event. Data is associated with a specific channel through a ‘Channel ID’ field in the packet header. The
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USB Controller interleaves packets from sequential channels for transmission to the GPC. For example, if

channels 1, 4 and 5 are enabled, packets containing data from those channels are sequentially and circularly

queued for transmission to the GPC.

An optional data artifact comprised of a geophysically improbable numerical sequence is written over

the data stream at the start of each transmit pulse. Note that the packet headers are inserted into the data

stream in addition to the data samples while the data artifact replaces a section of data. When configured

for pulsed Doppler meteor radar, replacement of the lower range-gate data by the artifact does not influence

science results because samples directly following the transmit pulse are blanked by the host processing

software. The data artifact allows software on the GPC to identify the start of each pulse and quickly

identify samples from identical range gates acquired on different channels within the stream. Furthermore,

by changing the format of the artifact on a pulse-wise basis, specific information about each pulse is encoded.

For example, if multiple antenna feeds are multiplexed onto a single receiver channel (as they are in the

COBRA configuration), pulses are associated with specific transmit antennas by defining a unique artifact

for each antenna. Data artifacts are written into the stream at the beginning of each pulse, and are separated

by the number of samples per pulse n = Rs + 1 where Rs is the counter value determining fp. The CoSRad

GPC software presents received data in the format of Figure 3.12 and mathematically by Equation 3.20 for

subsequent signal processing tasks.

3.4 RF Performance and Observing the Analog World

Characterizing the interface between the actual analog world and the digital world of computer systems

requires an understanding of the boundary between the two. While attempting to analytically characterize

the noise of a direct convert receiver, I found a number of poorly written and incomplete sources, with none

directly dealing with the following topics in a comprehensive, general and straightforward manner. The best

of the worst texts that I did encounter was probably James Tsui’s book on Digital Wideband Receivers [127],
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8 byte packet header

Packet Counter

[31:16]

Channel ID

[15:12]

Unused

[31:0]

Unused

[11:0] 

2040 byte data payload

(1020 Samples)

32 Bits

Figure 3.11: Data is received over the USB 2.0 interface in the depicted format. All data is received in
2048 byte packets where the first 8 bytes contain header information and the remaining 2040 bytes contain
the actual samples. The header contains a 16 bit sequentially incrementing packet counter and a 4 bit
channel ID indicating the channel associated with data payload of each packet. The remaining 44 bits of
header space are user configurable. Packets of this format are sequentially written to the GPC storage device
during operation.

Figure 3.12: Data is stored in GPC memory in the depicted format. V , Ṽ and Ṽ q are time-domain signals
while P and E are frequency-domain signals. The GPC requests m pulses on k channels with n samples-
per-pulse over USB 2.0 from the CoSRad receiver.
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and it goes downhill from there. My intension with this section is to provide a general treatment of noise

characteristics in direct-convert receiver architectures for future SDR engineers. General concepts concerning

the observation of analog signals is followed by a numerical simulation of the CoSRad noise characteristics

in section 3.4.5.

3.4.1 Direct Convert Noise Theory

This section deals with the fundamental limits on the detection of signals in direct RF sampling

receiver systems. In this analysis, only signals at the output of the ADC are considered. This arrangement

allows for the definition of fundamental limits on the parameters describing signals sampled using the direct

convert receiver. After analog-to-digital conversion, a colossal variety of processing techniques may increase

the signal to noise ratio or isolate various bands of interest, but if the fundamental limits of the input signal

are not met, subsequent processing will be of little use. Figure 3.13 depicts the hardware setup used in the

following description.

Gc3 ADCRF Filter
FFT Operation

Nin = Total noise power into amplifier [dBm 1 Hz BW]
Non = Total noise power out of amplifier [dBm 1 Hz BW]
NFn = Component noise figure [dB]
Gcn = Component power gain [dB]
Lcn = Component power loss [dB]
Qn,3 = Component third order intercept [dB]

Vpp = Maximum peak-to-peak ADC input voltage [V]
Rin = ADC module input impedance [ohms]
b = Number of ADC bits
NADC = Noise power of of ADC [dBm]

Ni3 No3

Nenv = Environment noise power [dBm 1 Hz BW]
Sia = Signal power at antenna [dBm]
La = Antenna loss [dB]

N = Length of FFT
Lc = Cable loss [dB]
Sir = Signal power at receiver input [dBm]

NFs = Total system noise figure [dB]

fs=Sampling frequency [Hz]

SRC FilterGc1
Ni1 No1 NADC

Lc2

Figure 3.13: General layout of the direct-convert receiver RF front end

First, consider an antenna with loss La connected to a low noise amplifier with gain Gc1 by a segment

of cable with loss Lc. The noise power at the antenna is Nenv and the noise power out of an amplifier with

gain Gcn and noise figure NFn is Non where n is the component number in the chain (See Figure 3.13).

Equation 3.4 relates the environmental noise temperature Tenv to the sky and galactic noise temperatures for

the various environments listed in ITU-R P.372 [4] to the average noise power in a 1 [Hz] bandwidth where
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k is Boltzman’s constant. We can approximate the thermal noise power spectral density by Sn(ω) ≈ kT if

|ω| � 2π kT/h where h is Plank’s constant, and ω is in radians, a condition clearly satisfied in the VHF band.

Equation 3.5 is used to calculate the average noise power in a 1 [Hz] bandwidth at the input to the first

amplifier Gc1. Being a physical object at a temperature above absolute zero, the antenna and cable generate

a thermal noise power (kTo) when connected to a matched load where To is the physical temperature of the

antenna. Usually, a room temperature of To=290 [K] is used to calculate the thermal noise power. In the

VHF band, terrestrial noise power Tenv based on sky and galactic noise temperatures Tsky is much greater

then the thermal noise power generated in the receiver system and To has little influence on the noise power

into the LNA. In other situations, (for example if the receiver were operating in the gigahertz band) this may

not be the case and the thermal system noise could significantly contribute to the noise power into the LNA

Ni1. When an equation produces a value in logarithmic units, it is followed by a [dBm] or [dB] to indicate

decibels relative to 1 [mW] or decibels expressed as a ratio between two values. Power in [dBm] and [Watts]

is related by PdBm = 10log10PW + 30

Nenv = kTenv = k(Tsky + Tgalactic)

[
W

Hz

]
(3.4)

Ni1 = 10log10(kTenv + kTo) + 30− Lc − La
[

dBm

Hz

]
(3.5)

Knowledge of the noise figures for each component of the system allows one to calculate the total

system noise factor of a cascade of components using the well-known Friis’ Formula [82] as FT in linear

units. Finally, calculate the noise power at the output of the final amplifier No3 where NFT is the total

noise figure (or “noise factor” in linear units) of the pre-ADC RF chain. The noise figure is a measure of

the amount of additional noise the amplifier introduces to the input signal as referenced to matched load at

the reference temperature. In an amplifier with NF = 0 dB, the input signal would be amplified by G dB

and the noise power at the output is completely defined by the noise power at the input and the gain. Of

course, this ideal situation does not exist and all amplifiers at temperatures above absolute zero add some
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amount of additional noise to the input signal.

Noise Factor =
actual output noise power

ideal output noise power
=

actual output noise power

kBTo ×G
(3.6)

Using the input noise power and total noise figure of the RF chain, the noise power in a 1 [Hz] band

into the ADC is calculated as No3.

GT = Gc1 +Gc2 +Gc3 (3.7)

No3 = Ni1 +GT +NFT

[
dBm

Hz

]
where Gc2 =

1

Lc2

We are now in a position to define the noise power at NADC in Figure 3.13. The ADC measures an

input voltage in discrete steps at specified times defined by the quantization level Q defined in Equation 3.8

where Vpp is the maximum peak-peak voltage level of the ADC and b is the number of bits used to represent

the ADC’s analog input.

Q =
Vpp
2b

[V ] (3.8)

An arbitrary analog input signal may fall anywhere within a quantization level at the time of voltage

measurement causing errors in the digital representation of the analog signal. When the input signal is large

compared to Q and is uncorrelated to the sampling frequency fs, this error in the ADC’s measurement of the

input voltage is represented by an additive noise power defined by Equation 3.9 [10]. The quantization noise

power is only valid for signals that are uncorrelated to the sampling frequency. In a configuration where the
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carrier may be correlated with the sampling frequency, dither may be added to decorrelate the input signal

[81]. Ps is the RMS power delivered to the ADC at the maximum peak-to-peak voltage level Vpp assuming a

zero-biased sinusoidal input. The ADC has an input impedance of Rin. Unlike the environment noise Nenv

which was defined as the noise power in a 1 Hz band, quantization noise power as defined by Equation 3.9

is the total noise power in the sampling bandwidth fs/2.

Nb = Ps − 6b− 1.76 [dBm] (3.9)

Ps =
V 2
pp

8Rin
[W] (3.10)

The total noise power out of the ADC is the sum of the RF chain output noise power from Equation 3.7

and quantization noise power Nb. Recall that the output noise power from the RF chain given by Equation

3.7 is defined in a 1 [Hz] bandwidth while the quantization noise power Nb is defined over the entire sampling

bandwidth. Therefore we must multiply No3 by the filter bandwidth Bf to calculate the total noise power

at the output of the ADC. Bf is the bandwidth of the RF filter measured in [Hz]. A number of different

definitions may be used to calculate Bf . Often, the 6 [dB] power bandwidth is used as an approximation

to the true filter bandwidth. In other applications, one may require a more accurate measure of bandwidth

and various correction factors and strategies exist for the calculation of accurate values of Bf .

NADC = 10log10(Nb +No3Bf ) + 30 [dBm] (3.11)

where Nb, Bf and No3 are in linear units

The value of NADC is the noise power one would expect to calculate using a sequence of samples

acquired from the ADC. At first glance, we may be tempted to conclude that because Nb is constant, the

ADC will have an output even in the absence of amplifier noise power (No3 = 0). In this case, a sequence
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of samples will indeed indicate zero-valued ADC voltage input, but this simply represents an analog input

noise power of No3 ≤ Nb. The ADC will produce a zero-valued voltage measurement until No3 ≥ Nb. In

other words, an ADC output indicating no voltage fluctuations higher then the lowest quantization level Q

does not imply zero system noise power.

With the total noise power at the output of the ADC of Equation 3.11 we may calculate the noise

figure NFs at the ADC output and the ratio of input noise to quantization noise Nr

NFs = NADC −Ni1 −GT −Bf [dB] (3.12)

Nr = No3 +Bf −Nb (3.13)

Equations 3.11 and 3.12 provide a description of the direct-sampling receiver in terms of gain and

noise power. The task now becomes selecting appropriate values for the system gains Gcn based on the

receiver parameters and characteristics of the expected input signals. Accomplishing this task requires the

definition of two additional quantities, receiver sensitivity Se and dynamic range DR. Various definitions of

sensitivity exist in the technical literature, but the most straightforward and insightful definition of Equation

3.14 provides the minimum input signal Se power necessary at the receiver input to produce an FFT output

at a specified SNR assuming a rectangular FFT window.

Se = Ni1 +NFs +Bf + SNR− 10log10

(
N

2

)
[dBm] (3.14)

Given a desired SNR at the FFT output, the dynamic range of the signal power at the receiver input

is defined by Equation 3.16. Together, the dynamic range DR and sensitivity Se describe the minimum

signal power and the maximum variations of the signal power that the receiver can process at a minimum
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specified SNR using a rectangular windowed FFT length of N . SiMax is the necessary signal power at

the input to Gc1 to drive the ADC to its full-scale voltage level Vpp given the RF chain, and represents the

maximum input power of the receiver. This formulation assumes perfect amplifier linearity (i.e. the amplifier

produces an output So = SiG with no spectral contamination under all circumstances). This assumption

will be discussed in a later section.

When calculating the dynamic range, it is convenient to define the noise floor at the output of the

FFT operation as P3. Conceptually, the dynamic range is the difference between the receivers maximum

input power as seen on the FFT and the FFT noise floor. The factor of ‘3’ in Eq 3.16 results from using a

single-sided FFT.

P3 = Ni1 +GT +NFs +Bf − 10log10(N) [dBm] (3.15)

DR = SiMax +GT + P3− SNR− 3 [dB] (3.16)

SiMax = Ps −GT [dBm] (3.17)

In a conventional analog receiver, the gain is usually set so that when the input is connected to an

antenna, the external environmental noise dominates the receiver noise. In a digital receiver, the nonlin-

earities introduced by the sampling processes and radiated noise from the digital lines both cause spurs to

appear in the sampling bandwidth. These spurs are independent of the power of the input signal, and as

such are easily masked by raising the noise floor. Contrary to analog receiver gain, in a digital receiver the

gain should be set as high as possible while not saturating the ADC when a signal of maximum expected

power is present at the receiver input. In other words, under ideal situations, the gain of the digital receiver

should be tuned to exercise the maximum full-scale ADC voltage (Vpp) without saturation. The challenge

with the specular meteor radar receiver is maximizing the number of observed echoes. As most echoes occur

at a lower SNR, the gain may be tuned such that the small population of high-SNR echoes (above 25 [dB])
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will cause receiver saturation.

3.4.2 Third Order Intercept

3.4.3 Second order products

When driven with a single tone, non-linearities present in all amplifiers will cause harmonics of the

fundamental to appear at the output. Assuming the radar’s carrier frequency is related to the sampling

frequency by fo = fs/4 (see Figure 3.3) then the second-order harmonics produced by the single tone will

appear at 0 and fs [Hz]. fs is aliased into 0 [Hz] so with a single tone at located at fs/4 the harmonics

will appear at DC. Using two tones (f1 and f2), the second order intermodulation products will appear at

f2 + f1 and f2 − f1. Again, assuming f1 and f2 are close to the carrier frequency fo = fs/4 then the second

order intermodulation products will appear near DC at fs. The second-order intercept products appear at

places in the receiver bandwidth which are far from the carrier fo and are easily removed by appropriate

filtering. In general, second order products of carriers near fs/4 will appear near DC and fs at the output

of the ADC.

3.4.4 Third order products

The Third Order Intercept (TOI) point of an amplifier is a measure of device linearity and therefore

of interest. The TOI point can be defined in terms of the input power (IP3) or output power (OP3). Two

different definitions exist for the IP3 based on driving an amplifier with a single tone, or two closely spaced

tones. Third order products generated with a single tone input into the amplifier appear at integer multiples

of the input tone which when sampled will alias to the same frequency as the carrier. For this reason, it

may be advantageous to insert a filter at the output of the LNA depending on the strength of the IP3. If

the amplifiers are chosen such that their aggregate IP3 at the maximum expected signal input level SiMax
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is below the FFT noise floor given by Equation 3.15, then an RF filter is not needed.

The more conventional definition for the third order intercept involves inputting two tones close in

frequency, and measuring the output of the third order intermodulation products with respect to the power

of one of the input tones. The input power level which produces third order intermodulation products

equal to the output power of the fundamental is called the third order intercept (TOI). This specification

is the output power at which the third order intermodulation products will be equal to the amplitude of

the fundamental. This is a purely theoretical specification and has no physical manifestation, as the TOI

power level is most likely beyond the maximum power output of the device in question. The primary point

of concern is to choose a set of amplifiers who’s combined second and third order products are below that of

the FFT noise floor P3 given by Equation 3.15.

3.4.5 Simulation of CoSRad RF Characteristics

Using the theory formulated in Section 3.4.1, the minimum detectible signal and dynamic range were

calculated over a range of gain values for Gc1 and Gc3 with the simulation parameters given in Table 3.6.

Contours of constant quantization noise ratio and noise figure are indicated. To ensure that the system

is dominated by external noise, gain values should be chosen so that Nr is large and NFs is small. The

plots also indicate one of the primary tradeoffs with receiver design, that between gain and sensitivity.

Introducing additional gain to a system will increase its sensitivity, but decrease the dynamic range of the

input. Another consequence is that the sensitivity will reach an asymptote as additional gain is added to the

system, indicating that the output of the receiver is dominated by external noise. When this limit is reached,

additional gain will not improve sensitivity, but will continue to deteriorate the dynamic range, therefore

we must design the RF front end to have sufficient gain necessary to meet a MDS specification without

unnecessarily degrading the dynamic range. Various investigators have suggested adding amplifiers at the

output of the antennas (before the feed cables) to boost the system SNR. A simulation of the total SNR
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degradation caused by the feed cables based on the concepts outlined in this section was performed and the

results are presented in Figure 3.16. Figure 3.16 clearly shows that under typical low-VHF environmental

noise conditions (Te ≈ 100, 000[K]), adding LNAs at the antenna terminals will produce a nearly negligible

improvement in system SNR.

Table 3.6: Parameters used to generate Figures 3.14 and 3.15 using the theory described in Section 3.4.1

Symbol Parameter Description Value
NF1 Noise Figure of Gc1 1.3 [dB]
NF2 Noise Figure of Gc2 (= Lc2) 3.35 [dB]
NF3 Noise Figure of Gc3 5 [dB]
fs Sampling Frequency 9.34e6 [Hz]
Bf RF Filter Bandwidth 2.6e6 [Hz]
b Number of ADC bits 14
Vpp Max peak-peak ADC voltage 2 [V]
Rin ADC input impedance 50 [ohms]
N FFT length 256
SNR Desired SNR at FFT output 13 [dB]
Lc Cable loss 0 [dB]
To Thermal noise reference temp 290 [K]
Tenv Environmental noise 100e3 [K]

Throughout the following discussions, we will assume that the instantaneous noise amplitude at any

antenna of the array w(t) is a realization of a zero-mean Gaussian white noise signal W (σ2, 0) with variance

σ2. σ2 is related to the antenna noise temperature σ2 = kbBa(Te +Ta) ' kbBaTe where kb is the Boltzmann

constant, Ba is the antenna bandwidth and Te is the external noise temperature (Te > 100, 000[K] � Ta

[K] for meteor radar applications). This implies that the Fourier transform of the noise is constant across

all frequencies. The input noise bandwidth Ba is shaped by the RF front-end, the FPGA IIR filter (Figure

3.9) and the matched filter (Eq 3.28). The noise bandwidth at each processing stage is less then the system

bandwidth, ensuring optimal SNR of the power spectrum. Equation 3.18 gives the 3 [dB] noise bandwidth

at each stage in the processing chain. Because the signal detection described in section 3.6.1 is based on the

power spectrum, the input noise bandwidth to any section must only be less than the digital bandwidth for

optimal detector performance.
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Figure 3.14: Dynamic range Vs. gain for Gc1 = G1 and Gc3 = G2 at the receiver input. Higher gain
results in higher MDS at the expense of dynamic range. For a digital receiver, the gain should be set as
high as possible while staying within the expected dynamic range of the input signal. At higher gain levels,
nonlinearities introduced by quantization become less significant
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Figure 3.15: Minimum detectable signal (MDS) Vs. gain for Gc1 = G1 and Gc3 = G2 at the receiver
necessary to produce a SNR = 13 [dB] at the FFT output. Contours of constant noise figure at the ADC
NFs and quantization noise ratio Nr are shown. At gain values producing low Nr or high NFs, the noise
characteristics become non-linear and signal dependent.
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Figure 3.16: Various investigators have suggested the placement of low-noise amplifiers at the antennas of
specular meteor radar systems operating in the lower VHF band. Assuming antenna feed cables of rational
length (a few λ), this simulation suggests that such a modification would result in limited system performance
improvements. The use of high-performance LNA’s at the antennas would only result in an appreciable SNR
increase in very low environmental noise conditions or with very long antenna feed cables.



106

B1 = HRF (3dB) <
fs
2

[Hz]

B2 = HRF (3dB)HIIR(3dB) <
fs
2d

[Hz]

B3 = HRF (3dB)HIIR(3dB)HMF (3dB) <
1

tPW
[Hz]

(3.18)

HRF , HIIR and HMF are the frequency responses of the RF front-end, the FPGA IIR bandpass filter

and the matched filter (Eq 3.28). The notation ‘3dB’ in eq 3.18 indicates the 3dB bandwidth of the resulting

frequency response. The notation w1(t), w2(t) and w3(t) refers to the spectrally shaped (real or complex

valued) time-domain noise signal at the input to each processing stage with bandwidths defined by B1, B2

and B3 and t defined by Eq 3.22.

3.5 Radar Signal Processing

The Doppler shifts imposed on the carrier by the radial velocity of the drifting meteor trail is given

by Equation 3.19 where fd is the Doppler frequency, or the deviation of the carrier frequency fo due to a

Doppler shift. vr is the radial velocity of the trail, fo is the carrier frequency and c is the speed of light.

For an absolute maximum radial wind velocity of 200 [m/s] at VHF, the Doppler frequency imposed on the

carrier is fd=40-400 [Hz] for fo=30-300 [MHz]. CoSRad’s sampling scheme intentionally aliases the radar’s

carrier frequency into the ADC’s sampling bandwidth [51]. Figure 3.3 graphically depicts the process of

subsampling and decimation. Rather then directly sampling the carrier, bandpass sampling captures the

information (fd) bandwidth.

vr =
cfd
−2fo

(3.19)

After the amplified, band-limited signal is sampled by an ADC channel and received by the FPGA,
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the samples are passed through the DSP Core block where integer multiple sample rate conversion further

reduces the data rate to a value below that of the USB bandwidth. CoSRad implements sample rate

conversion as a two-stage process consisting of bandpass filtering using the second-order-section structure in

Figure 3.8 with a frequency response shown in Figure 3.9 followed by a decimation stage. Fundamentally,

sample rate conversion reduces the bandwidth of the sampled signal to a value below the USB 2.0 bandwidth

of 60 [MB/s] and amounts to a maximum data rate of 7 [MB/channel] when CoSRad is configured for 8

active channels. A wider per-channel bandwidth is possible using fewer channels, but the combined data

rate defined by Equation 3.2 over all channels should not exceed the maximum possible USB 2.0 throughput.

One straightforward upgrade for future versions of CoSRad is the use of gigabit ethernet, implemented by

substituting an Ethernet Controller block for the USB Controller block in Figure 3.7.

3.5.1 I/Q Demodulation

The CoSRad GPC software component formats the stream of real-valued samples received over USB

2.0 in the manner depicted in Figure 3.12 and mathematically described by Equation 3.20 with a bandwidth

shown by Figures 3.9 and 3.3. When sampling a Jones array, k = 5. n is the number of samples-per-pulse, and

m is the programmable number of pulses to process on each iteration of the pulsed Doppler processor. v(1,∗)

is the first sample along each pulse corresponding to zero range, and v(n,∗) is the last sample corresponding

to the maximum unambiguous range defined by Rmax = c/2fp = ndc/2fs [m]. Equation 3.20 represents the

most basic data structure generated and formatted by the receiver. Throughout the following discussion,

all operations are identical for each active channel, so the subscript k is not always explicitly listed. The

notation mi, ni, and ki refer to specific rows, columns and channels.

V =


v(1,1) . . . v(1,m)

...
. . .

...

v(n,1) . . . v(n,m)

 ∈ Rn×m×k (3.20)
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After bandpass sampling by the ADC, sample rate conversion and bandpass filtering in the FPGA,

the carrier fo is placed at fa2 = fs/4d with a bandwidth of fs/2d. Any meteor trail radar echo present in the

real-valued stream of samples represented by Eq 3.20 will be embedded in noise w2(t) at the subsampled

carrier frequency fa2 with an additive Doppler deviation fd as shows in Eq 3.21. Eqs 3.21, 3.25, 3.26 and

3.29 all use t as it is defined by Eq 3.22. The goal of the CoSRad signal processing chain is detection of

time-coherent signals (across the rows of V ) occurring at a frequency of fs/4d+ fd. A time-domain specular

meteor trail radar echo observed by each CoSRad receiver channel is represented by Eq 3.20 where each

element of V can be calculated using Eq 3.21. A square transmit pulse envelope A(ni) with pulsewidth

tPW [s] can be placed at an arbitrary range R within V by defining A(ni) using Eq 3.23. A constant phase

offset φ(ki) is associated with each channel. Note the dependence of t on mi and ni through Eq 3.22. This

explicitly notated dependence has been notationally dropped after Eq 3.21 for convenience.

v(ni,mi, ki) =

A(ni) sin

((
fs
4d

+ fd

)
2πt(ni,mi) + φ(ki)

)
+ w2(t(ni,mi))

(3.21)

In the data block format of Figure 3.12, t is a function of ni and mi identically over each channel k

as shown in Eq 3.22.

t(ni,mi) = (min− n+ ni)
d

fs
(3.22)

A(ni) =


1 if

(
2R
c + tPW

2

)
fs
d > ni >

(
2R
c − tPW

2

)
fs
d

0 otherwise

(3.23)

Both signals represented by Eqs 3.21 and 3.23 are embedded in a sampled bandwidth defined by B2
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which far exceeds that necessary for the observation of the narrow-band meteor trail radar echoes (see section

3.5). The detector of Section 3.6.1 is sensitive to coherent signals at equal ranges across sequential radar

pulses, therefore our goal becomes minimizing the noise bandwidth without degrading the amplitude of the

narrow-band radar echo approximated by Eq 3.21. A number of methods exist for this purpose, but we will

focus on the traditional technique of I/Q demodulation and matched filtering.

Placing the subsampled carrier fa2 = fs/4d at fb in addition to moving Eq 3.20 into the complex domain

for determination of the Doppler sign (negative or positive frequencies) is accomplished by performing the

element-wise matrix multiplication (Hadamard product) of Eq 3.24.

Ṽ = Y ◦ V = Y ◦


v(1,1) . . . v(1,m)

...
. . .

...

v(n,1) . . . v(n,m)

 ∈ Cn×m×k (3.24)

The elements of Y are calculated using Eq 3.25 where t is defined by Eq 3.22 and fb is a tuning

frequency offset discussed in section 3.6.1. Y can be conceptualized as a synthesized local oscillator generated

by the GPC, typically having zero phase.

y(ni,mi, ki) = exp[j( fs4d+fb)2πt] ∈ Cn×m×k (3.25)

Each element y(ni,mi,∗) is equal across all channels k. After performing the element-wise matrix

multiplication in Eq 3.24, each element ṽ(ni,mi,ki) of the complex-valued time-domain signal Ṽ is now

represented by Eq 3.26.
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ṽ(ni,mi, ki) = A(ni) expj[(
fs
4d+fd)2πt+φ(ki)] expj[(

fs
4d+fb)2πt] +w2(t)

= A(ni) expj[(
fs
2d+fd+fb)2πt+φ(ki)] +w2(t) ∈ Cn×m×k (3.26)

The real and imaginary parts of Ṽ represent the I and Q components of V .

3.5.2 Matched Filtering

The frequency of interest in Eq 3.26 is the Doppler shift fd. By low-pass filtering the columns of Eq

3.26, the higher-frequency carrier fs/2d is removed resulting in a time-domain signal with frequency fd+fb at

the maximum possible SNR. This is accomplished using a filter with a frequency response matched to that

of the transmit pulse along each column of Ṽ to form Ṽq. In the case of a square-envelope transmit pulse

A(ni), the matched filter bandwidth is defined by BPW = t−1
PW and implemented using the moving average

of Eq 3.28. A trapezoidal transmit pulse where the rise and fall times of the pulse are small compared to

the pulsewidth can be approximated by a square pulse. The number of samples s to include in the moving

average ‘boxcar’ filter for a square transmit pulse is given by Eq 3.27.

s =

⌈
tPW fs
d

⌉
(3.27)

The matched filter is applied to the columns of Ṽ by Eq 3.28.

ṽq(ni,mi) =

l+s∑
p=l

ṽ(p,mi) where l : [1...(ni − s)] (3.28)

Ṽq has the functional form given by Eq 3.29.
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ṽq(ni,mi,ki) = A(ni) expj[(fd+fb)2πt+φδ(ki)] +w3(t) (3.29)

Where φδ(ki) is the phase offset of each channel after matched filtering. The phase delay introduced by

the matched filter is constant across all channels and therefore will not affect the interferometry results. Ṽ q

represents the final output of CoSRad’s signal processing chain and is used in section 3.6.1 to extract meteor

trail echoes from the data stream. Any correlation across the rows of Ṽ q within the Doppler bandwidth

indicate a radar return at a range given by Eq 3.31.

3.5.3 Synchronization

The multistatic meteor wind radar architecture relies on phase synchronization of all the remote

stations. This is accomplished using a GPS locked oscillator with a frequency stability of S = 10−10 [Hz] over

1 [sec] to drive the DDSs on each receiver. This implies a maximum error in the radial velocity determination

of Verr = foSλ/2. At fo = 35.24 [MHz], Verr = 15 [cm/s]. Range synchronization is accomplished by starting

each receiver on a specific GPS-PPS determined by reading the GPS week number and time of week from the

GPS oscillator’s serial port. GPS specifies that the PPS will be synchronized to σ = ±15 [ns] across the entire

network, which drives the absolute range error of 2.25 [m]. Rubidium-based GPS oscillators are also available

which could improve the frequency stability to S = 10−11 [Hz] over 1 [sec], however, the forward-scatter

Doppler error introduced using the GPS disciplined oscillator listed in Table 3.2 is acceptable for multistatic

meteor wind radar applications. By sampling the transmit pulse at both the Delamere and Adelaide stations,

the oscillator stability can be quantified. The DFT of the transmit pulse is taken over both one second and

200 [ms] data segments for two hours and zero-padded to produce a sufficiently interpolated spectrum. The

Doppler frequency at the maximum of the interpolated spectra are counted and shown in Figure 3.17 at

both receiver locations. As expected, the observed forward-scatter signal is less stable in Doppler at the

receive-only Adelaide station, but still consistent with the specified oscillator stability.
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(a) (b)

(c) (d)

Figure 3.17: Maximum of interpolated Doppler spectrum over 1 [sec] and 200 [ms] data segments during
pulse transmission for two hours at both the Delamere backscatter (a & c) and Adelaide forward-scatter
(b & d) sites. The transmit pulse was sampled at zero range at DEL and at 86 [km] in propagation path
length at ADL (see Figures 3.26 and 3.27). Both signals are at ∼10 [dB SNR]. Using Eq 3.19 applied to the
identified standard deviations in frequency, these figures suggest the bounds in radial wind velocity error
due to oscillator synchronization mismatches as σDEL = ±0.6− 1.1 [cm/s] and σADL = ±4.5− 16.2 [cm/s]
associated with the typical duration of meteor trail echoes. This technique for experimentally measuring the
Doppler error due to oscillator phase mismatches can be continuously applied throughout an observation
campaign by configuring CoSRad to persistently record the transmit pulse at all stations.
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3.6 Specular Meteor Trail Scatter Examples and Observational Results

Figure 3.2 depicts an example meteor trail echo as observed by CoSRad at the Delamere interferometer

under the experimental setup shown in Figure 3.18. The 80 [us] transmit square pulse is sampled at fs = 1.2

[MHz] leading to a range resolution of 12 [km] which can be seen by inspecting the SNR RTI plots on Figures

3.2 and 3.19.

Figure 3.19 shows a strong specular echo observed at the Adelaide forward-scatter site. The detection

rates at the Adelaide site are rather low due to its location in an urban noise environment (Te = 450 [K]

noise power) and the use of a low-efficacy single-dipole receive antenna. Observation of specular meteor

trail scatter at a long-baseline phase synchronous multistatic station strongly supports the fundamental

viability of future large-scale MMWR installations. Both Figures 3.20 and 3.21 show the hight distribution

of one week of high-SNR echoes at the Delamere monostatic station and the expected increase in ambipolar

diffusion as a function of echo height. Figures 3.22 and 3.23 present echoes observed by CoSRad at the

Jicamarca All-sky Specular Meteor Radar [48] and at the Platteville COBRA meteor radar (similar to [23]

but with fo = 30.355 [MHz]). Both campaigns were conducted for system development purposes and serve

as important examples of CoSRad’s potential for extensive reconfigurability. Both sites require separate

configurations for fo, fs, and FPGA filters (Figure 3.9). Each site also requires a different fp ensuring an

integer number of samples-per-pulse and distinct timing signal configurations are necessary to drive external

hardware (see Figure 3.10). Figures 3.26 and 3.27 show SNR-RTI plots observed during the Geminids meteor

shower at both the Delamere and Adelaide sites with interesting features identified.

While the approach taken with CoSRad of varying the sampling frequency dependent on the carrier

frequency is simple and effective, it does have some drawbacks. Primarily, the FPGA must be re-compiled

for every new deployment. Fixing the sampling rate at the maximum specified by the ADC would require

more complex FPGA-based polyphase filtering without the need for re-compiling the FPGA.
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Delamere
5 chan Rx, all-sky Tx

Adelaide
1 chan Rx

86 km

Figure 3.18: Experimental setup for the multistatic observation campaign of the Geminids meteor shower in
December, 2014. A 5-channel Jones receive interferometer (see Figure 4.1) and 7.5 [kW] all-sky transmitter
are located at the Delamere site (DEL). A single channel receive antenna is located at the multistatic remote
site in central Adelaide (ADL). The two stations are separated by a distance of 86 [km]. Note that in
Figures 3.26 and 3.27, the transmit pulse is observed at ADL at the expected one-way ground propagation
path length of 86 [km].
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fd=-4.1 Hz

D=3.0 m2s-1

Figure 3.19: Specular meteor trail scatter observed at the Adelaide single channel forward-scatter site.
In most cases, the Delamere and Adelaide sites will observe specular scatter from different trails. If an
interferometer is located at the forward-scatter site (instead of a single dipole as was used in this experiment),
both the multistatic and monostatic sites can observe common volumes of atmosphere as depicted in Figure
1.3. Observation and accurate estimation of the Doppler signal at multistatic remote sites is the fundamental
mechanism enabling multistatic meteor wind radar.
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Figure 3.20: Trail height distribution for one week of data starting Dec 13, 2014 observed at the DEL
monostatic site. Only echoes above 17 [dB SNR], above 30 [deg] in elevation and between 70-160 [km] in
range are counted. The array was calibrated by determining the phase offsets associated with each antenna
with the maximization technique of Chapter 4.8, however, only the imprecise 0.5λ baseline was used to find
the height (See [63] and Chapter 4.3). The structure of the height distribution is generally consistent with
that found by other investigators [40], however, the distribution is wider then expected due to use of only the
imprecise 0.5λ phase offsets. Efforts to calibrate the Jones array without using the traditional real-valued
solution methods without discarding ‘outlying observations’ was met with limited success, and served as the
catalyst behind the complex plane interferometry and calibration approach presented in Chapter 4.
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Figure 3.21: Ambipolar diffusion Vs. height for a population of high SNR echoes (>17 [dB SNR]) counted
in Figure 3.20. The expected trend towards higher diffusion at higher altitudes is clearly observed.
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Figure 3.22: Specular meteor trail echo observed by CoSRad configured for 5-channel observations using the
Jones antenna array and driving a Tomco transmitter at the Jicamarca Radio Observatory in Sep of 2012.
An uncoded square 80 [us] pulse was generated by the receiver with a fp = 499.65 [Hz], fo = 49.9 [MHz]
and fs = 1.305 [MHz]. This echo was processed and visualized using an earlier version of the pulsed Doppler
processor software. This observation highlights CoSRad’s potential for extensive reconfigurability
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Figure 3.23: Specular meteor trail echoes observed by CoSRad configured for use on a Yagi channel of the
Plateville meteor radar and driving the COBRA transmitter in August, 2012. An uncoded square 60 [us]
pulse was generated with a fp = 305 [Hz], fo = 30.355 [MHz] and fs = 9.34 [MHz]. This observation shows
4 simultaneous distinct echoes at four different ranges, one of CoSRad’s advantages over traditional meteor
radar. Echo (c) appears as a possibly underdense echo, whereas the echoes in region (a) and (b) seem to
be overdense and range-spread. Note that two distinct echoes appear in region (b)
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3.6.1 Signal Extraction

Figure 3.26 and 3.27 shows blocks of data acquired under the multistatic configuration depicted in

Figure 3.18. The data was acquired during the Geminids meteor stream on 14 Dec, 2014 at 4:53AM and

4:39AM, Adelaide time. The top panels shows data acquired at the Delamere 5-channel interferometer from

Figure 4.1 and the bottom panels shows the phase and pulse synchronous forward scatter data acquired at the

Adelaide single-channel forward scatter site. Data from all 5 channels of the interferometer is summed to form

the top panel. A signal detection algorithm is used to identify both forward and backscatter coherent signals

within the RT-SNR data block identified by the white outlines around the visible echoes. The detection

algorithm performs a short-time Fourier transform (STFT) over a 128-pulse block with a 32-pulse overlap.

Begin the analysis by forming a complex-valued magnitude (voltage) block of radar pulses as depicted in

Equation 3.30 and Figure 3.12. Eq 3.30 is the end result of the matched filtering stage of sec 3.5.2.

Ṽq =


[I + jQ](1×1) . . . [I + jQ](1×m)

...
. . .

...

[I + jQ](n×1) . . . [I + jQ](n×m)

 ∈ Cn×m×k (3.30)

Take the single-sided DFT along each row (range) of each channel of k to form Xss. Each row of

Xss now represents the Doppler amplitude spectrum observed on each antenna at a range R defined by Eq

3.31 where ni is the sample number in the pulse starting from zero range. Because the DFT in Eq 3.32 is

real-valued, only the columns mi = [1 : m2 ] are unique along each row ni.

R =
nidc

2fs
[m] (3.31)
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Xss =

∣∣∣∣∣∣∣∣∣∣∣∣
DFTrow




ṽq(1×1)

. . . ṽq(1×m)

...
. . .

...

ṽq(n×1)
. . . ṽq(n×m)





∣∣∣∣∣∣∣∣∣∣∣∣
∈ Rn×

m
2 ×k (3.32)

Detection could be performed on each channel ki of Xss, however we can combine the amplitudes in

each DFT bin to improve the overall SNR. Form X ∈ Rn×m2 by summing Xss over each channel ki as shown

in Eq 3.33. X now represents the amplitude spectrum as a function of range as observed by the entire array.

X =

k∑
ki=1

Xss(∗,∗,ki)
(3.33)

Form the real-valued power spectrum by taking the Hadamard product of X (element-wise multipli-

cation) as shown in Eq 3.34. At this point, each column of P represents a power spectral bin as a function

of range (ni). The frequency axis of the DFT is defined by the Doppler bandwidth (fp/2). The synthesized

local oscillator of Eq 3.25 forming the I and Q components of Eq 3.30 can be intentionally de-tuned so that

echoes with zero Doppler will appear at fb = fp/4 in the Doppler spectrum.

P = X ◦X ∈ Rn×
m
2 (3.34)

E is the ratio of signal power to noise power (SNR) in each DFT bin. Calculate E by first forming

the diagonal matrix M by squaring the median (EM) of each column of the amplitude spectrum X as shown

in Eq 3.35.
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M =


EM
[
X(∗,1)

]2
. . . 0

...
. . .

...

0 . . . EM

[
X(∗,m2 )

]2

 (3.35)

M now represents an estimate of the median noise power in each spectral bin along range. We use

the median to avoid heavily biasing the noise estimate in the presence of strong signals (meteor trail echoes).

Subtract the average noise power from the total power in each DFT Doppler frequency bin as shown in Eq

3.36 to form the total signal power spectrum S. J(m2 ×n) is a unit matrix of all ones.

S = P −
[
MJ(m2 ×n)

]ᵀ
∈ Rn×

m
2 (3.36)

Finally, form E in each Doppler frequency bin using Eq 3.37

E = S (M)
−1

(3.37)

Each row of the E(n×m2 ) represents a Doppler spectrum at a range given by Eq 3.31 and each column

represents a spectral bin in the Doppler bandwidth defined by Bd = fp/2 with frequency resolution δf = fp/m.

Extract signals of interest by finding elements of E within the expected bandwidth of drifting meteor trails

which exceed a threshold value. The rows at which E exceeds the threshold will correspond to the rows of Ṽq

that contain the time-series of the complex-valued voltage signals which are stored to the GPC disk for later

analysis such as performing a least squares fit to a decaying sinusoid as shown in Figure 3.2. The threshold

SNR is set to 10 [dB], and the rows surrounding those which exceed the detection threshold indicated by

the white boxes in Figures 3.26 and 3.27 are also saved to preserve the noise context. At this point, stored

echoes could be processed by more computationally intensive and advanced analysis techniques such as the

time-frequency discriminator described in [79].
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El=55°
Az=70°

h=82 [km]

Figure 3.24: Instantaneous AOA solutions are computed from the phase of each pulse of an echo similar the
one shown in Figure 3.2 and plotted vs. height. Each solution (pulse) is color-coded to indicate SNR. A
clear point cloud is observed near 82 [km]. A weighted least-squares fit to a set decaying sinusoids like those
in row 2 of Figure 3.2 will provide the phase offsets used to determine the most likely AOA.

The I/Q demodulation stage is slightly de-tuned to place an echo with zero Doppler at fb = 1/4TIPP

in the STFT spectrum taken over time (128 pulses) at an identical range gate. Placing zero Doppler at

fb = 1/4TIPP in the Doppler spectrum prevents DC signal components from influencing the detection.

When power within the Doppler spectrum exceeds a threshold, the range-specific time-series is flagged and

saved for further analysis. Note that at the Adelaide forward-scatter site, the ground-propagating transmit

pulse is clearly observed at the expected inter-station distance of 86 [km]. In the top panel, an attenuated

transmit pulse (an RF switch is opened during transmit) is observed at a radar range of 0 [km].

Figures 3.24 and 3.25 show the instantaneous phase observations from two specular meteor echoes.

The interferometric solutions were found using the course 0.5λ ‘short-baseline’ phase offsets and calibration

values. Figure 3.25 is especially interesting as it shows a time-dependent phase drift, behavior not captured

in the classical theory of specular meteor trail scatter.

This section has described the system details and development of the CoSRad transceiver. CoSRad is

more then a software receiver, rather it comprises a complete phase coherent digital radar system, including a

pulse control engine and software defined signal processing chain. CoSRad enables rapidly deployable meteor
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Figure 3.25: Instantaneous AOA solutions of a high-SNR echo color-coded by time. This surprising result
shows a change in the location of the trail’s scattering center. The traditional analytical model of meteor
trail scatter does not capture this behavior which is present in a significant portion ( > 10%) of all CoSRad
meteor trail observations.

Classical underdense 
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transmit pulse,  
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Figure 3.26: Interesting features are identified in a segment of visualized radar data taken during the Gemi-
nids meteor shower at 4:53AM on 14 Dec 2014, Adelaide time. The Delamere monostatic site is shown in the
top panel and the Adelaide multistatic receiver is on the bottom. At the DEL monostatic site the attenuated
transmit pulse is observed at 0 [km] in range followed by clutter probably resulting from the hilly landscape
surrounding the DEL transmit site. Bands of interference are observed across all ranges at both sites. The
ground-propagating transmit pulse with the expected Doppler frequency of fd = 0 [Hz] is observed at the
expected range of 86 [km] at the ADL forward-scatter site (see Figure 3.18). Observation of the transmit
pulse at both the forward and backscatter sites enables the quantification of Doppler error due to oscillator
phase mismatches as shown in Figure 3.17.
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Interference observed at 

forward-scatter station

Strong overdense echo observed 

at both stations likely originating 

from the same trail

Figure 3.27: A strong echo is observed at both sites at 4:39AM on 14 Dec 2014 Adelaide time, likely
originating from the same trail. The echo is embedded in a large band of interference at the forward-scatter
site, reducing the SNR. The detector outlined in Section 3.6.1 is sensitive to signals which are coherent
across time at the same range, and performs well even with degraded SNR. Most echoes observed under
the multistatic wind radar configuration originate from different trails, so this is an unusual observation.
Upon termination of the interfering signal at ∼-5.5 [s], a period of SNR recovery is observed on the transmit
ground pulse as the estimate of the environmental noise level on each channel (σk) is determined using a
running average.
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wind radar in both the traditional monostatic and new multistatic architectures. After the application of

anti-alias filtering and gain, CoSRad directly samples the antenna feeds of a interferometric array and

observes Doppler-shifted specular RF scatter from meteor trails. CoSRad’s phase-coherent architecture

enables the measurement of the forward-scatter Doppler signal, a key technical requirement enabling the

multistatic meteor wind radar. The full system description presented in this paper should help the radar

remote sensing community understand how CoSRad could be integrated into existing systems, and also

showcase the benefits of software defined, geographically distributed radar systems. Our first results show

the success of our prototype MMWR deployment, and lay the groundwork for more substantial MMWR

installations. We encourage future remote sensing radar engineers and scientist to draw from work done

with CoSRad and implement large-scale multistatic deployments.



Chapter 4

Meteor Radar Interferometry And Measurement Precision

“You cannot teach a man anything; you can only help him find it within himself.” – Galileo Galilei

4.1 Introduction

Meteor radar interferometry concerns the problem of spatially locating a specular radar echo from

a meteor trail in 3-dimensional space. This problem has almost exclusively been approached using Jones

technique where the real-valued phases of a radar echo are measured between the elements of an antenna

array like that shown in Figure 4.1 [74]. The phase measurements are then additively combined and used

to solve for the direction cosines of the range vector R (see Eq 4.1). This approach suffers from a num-

ber of drawbacks. The Jones-style solutions are based on an imprecise d = 0.5λ initial estimate of the

direction cosines (θx, θy) [63] which significantly degrades the local solution quality for lower SNR echoes

as can been seen in Figure 4.6. Furthermore, the direction cosines have historically been cast as a function

of real-valued phase measurements, greatly complicating the mathematics in finding an optimal solution.

Finally, almost no attention has been given to determining the precision of the fundamental specular meteor

radar measurements of (θx, θy, D, fd and R). Without knowledge of the fundamental instrument precision,

variations in the derived geophysical wind parameters cannot be confidently attributed to actual physical



126

variability. This chapter presents an elegant complex-plane solution to the meteor wind radar interferom-

etry problem, and formulates the statistical measurement precision based on the fundamental voltage-level

CoSRad measurements.

Rx1

Rx2

Rx3Rx4

Rx5

2.5!

2.5!
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2!

x

y

Top Down View

Figure 4.1: Layout of the classical Jones interferometer. Phase differences of a received echo between the
antennas along the two baselines (Rx1-Rx2 and Rx3-Rx4) are used to determine of the angle-of-arrival of a
specular meteor radar echo.

We can define the angle-of-arrival coordinates of a specular meteor radar echo impinging on a Jones

array in terms of the cosine angles of the unit vector pointing in the direction of the trail as shown in Eq

4.1. R = [rx, ry, rz] are the cartesian coordinates describing the location of the trail with respect to the

array, ex and ey are the cartesian basis unit vectors aligned with the axis of the array and [θx, θy, θz] are the

direction cosines [124] describing the projection of R onto the plane of the array. R = |R| is the scalar range

measured by the receiver with variance σ2
R.
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θx =
R · ex
|R|

θy =
R · ey
|R|

θz =
√

1− θ2
x − θ2

y

R = |R|

(4.1)

The solution to the problem of meteor radar interferometry and the associated measurement uncer-

tainty are closely linked, and the mathematics used for their description are related such that the two topics

should be discussed simultaneously. Scientific formulations often present ‘top-down’ deductive analysis,

where a theory describing a generalized set of observations is presented and the reader is left to apply the

theory to a specifically encountered problem. This Chapter takes the somewhat opposite approach of in-

ductive analysis which examines the specific details of a single instance of a problem which is assumed to

fall under a larger generalized theory. Details of the Jones array meteor radar interferometry problem are

presented, and the reader is invited to explore the chapter references for a generalization of the concepts.

A qualitative familiarization with the more intuitive problem of beamforming is helpful when con-

sidering the interferometry problem as the two are closely related via antenna reciprocity. Pointing the

main lobe of a phased transmit array consisting of a set of spatially distributed antennas in some desired

direction involves changing the phase delays associated with each channel of the transmitting array. If the

transmitting array were configured according to Figure 4.1, we could simply plug θx and θy describing the

desired beam direction into Eq 4.9 and apply the resulting phase offsets to each antenna of the array. Note

that the phase wrapping terms pk are included when Ax is evaluated.

The problem of interferometry is the opposite of the beamforming problem. An EM wave impinging

on a spatially distributed set of antennas produces a set of measured phase offsets φk. Now, we must invert

(i.e. solve) Eq 4.9 to estimate the direction cosines θ̂x and θ̂y describing the wave’s angle-of-arrival (AOA).

Note that when dk > 0.5λ, the number of phase wraps pk cannot be directly determined. Therefore, Eq 4.9
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has a set of possible solutions corresponding to the integer-valued set of pk which is defined by the array

geometry d and γ. If we assume pk is unknown, as is the case when considering a spatially sparse (dk > 0.5λ)

Jones array configuration, then Eq 4.9 is no longer elegantly solved using linear techniques.

A primary assumption of statistical uncertainty estimation is that the noise observed on each antenna

is a realization of an independent Gaussian random variable, each with a probably density function described

by N (0, σ2
k). The question has been posed: If all the antennas are spatially located in the same general region

(as is the case with the array in Figure 4.1), do they observe a corrolated noise environment and therefore

violate the primary assumption? The key lies in developing an appreciation between the temporal and

spatial coherence of a signal. Consider a wave having some small bandwidth originating from a single source

in space, such as from a single antenna. The generated wavefield is then observed in time at some other

point in space, such as by an antenna connected to a sampling receiver. The wavefield generated by the

source is coherent in time because the value of future samples can be deterministically predicted based on

the past samples. The wavefield is also coherent in space because its value is deterministically calculated at

any spatial point around the source. Imagine 2 or 3 sources generating a deterministic wavefield which is

sampled in time and space, where the net wavefield is the superposition of the wavefield generated at each

individual source. Now imagine that each source is slowy changing location with a random velocity such

that the Doppler effect is small. The temporal determinism is maintained because the superposition of the

wavefield at any point in space will oscillate at the wavefield frequency, but our ability to predict the spatial

structure of the wavefield now requires knowledge of the source locations, which we do not have. In the

limit, imagine an infinite collection of sources each having a small random velocity relative to the observer.

Environmental noise is generated by such a model. A wavefield generated by an infinite number of moving

sources will have temporal coherence at each unique point in space, but our ability to predict the structure

of the wavefield between any two spatial locations larger then the antenna dimensions becomes impossible.

The spatial superposition of the wavefield only has temporal determinism over spatial dimensions on the

order of the wavelength under consideration (the Fourier transform of an infinite spatial dimension is a single

point). Any observations of this wavefield over the spatial dimensions larger then the observing antenna are
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independent and uncorrelated. For this reason, the noise observed at each spatially distributed antenna in

the spatially sparse Jones array is accurately modeled as an independent random variable.

4.2 Specular Meteor Trail Signal Model

The classical specular meteor trail signal model comprises two parts. An exponential rise in power

during the trail formation, and an exponential decay as the assumed underdense trail diffuses into the neutral

atmosphere. This process is described by the classical specular meteor radar Equation 2.1 in Chapter 2. The

interferometry problem as it is posed here fits the received radar echo to the classical underdense meteor

trail signal in a least-squares sense. The output of the CoSRad signal processing chain described in Chapter

3.5 by Eq 3.30 is represented by Ṽq. A specular meteor radar echo may be present along the m-dimension

rows (along time) of Ṽq (see Figure 3.12). Assuming an underdense meteor trail, the decaying portion of

the radar return at a range R related to sample number n (see Eq 3.31) is observed at the output of the

CoSRad signal processing chain as Eq 4.14. The echo is assumed to be observed on all channels (antennas)

k in Figure 4.1. Here, the amplitude of a radar echo on a specific channel k is represented as Ak as opposed

to the signifying the envelope the radar transmit pulse as was done in Chapter 3.

Ṽq(n,m, k) = Ake
j(2πfdt[m]+φk)e−Dat[m] + wk(t[m]) (4.2)

where t[m] = m
fp

and m = 0, 1, ...,M − 1 (4.3)

and k = 1...5 (4.4)

The sample number n can be obtained from the range R using Eq 3.31 from Chapter 3. The noise

term wk(t[m]) is described by the Gaussian probability distribution wk(t[m]) ∈ N (0, σ2
k). The exponential

decay coefficient Da in Eq 4.2 is related to the physical diffusion D coefficient through Eq 4.5.
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D =
Daλ

2

16π2
[m2s−1] (4.5)

Throughout this chapter, the following definitions are used. Quantities with a ‘hat’ signify estimates

of true parameters, whereas ‘primed’ quantities signify candidate parameters.

• k : Referes to a channel or antenna in Figure 4.1

• m : Referes to a radar pulse number (see Figure 3.12)

• Ak: Amplitude of the specular meteor radar echo on a channel k where k = [1..5]. See row 2 of

Figure 3.2 or 4.5

• fd: Doppler frequency of the specular meteor radar echo

• Da: Exponential decay coefficient. The decay coefficient is related to the physical diffusion coefficient

through Eq 4.5 assuming a monostatic observation.

• D : Physical diffusion coefficient of Eq 2.1b [m2s−1]

• φk : Phase of the specular echo radar return on each channel k

• θx : Direction cosine of R in the ex direction.

• θy : Direction cosine of R in the ey direction.

• β : Vector containing the true parameters of the observed signal in Eq 4.14

• β′ : Vector containing a set of candidate signal model parameters in Eq 4.17

• β̂ : Vector containing the least squares estimates of the signal model parameters

• Âk: Estimate of the amplitude of the observed specular meteor radar echo on a channel k where

k = [1..5]
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• f̂d: Estimate of the observed doppler frequency in Eq 4.14.

• D̂a: Estimate of the observed decay coefficient in Eq 4.14.

• D̂: Estimate of the observed physical diffusion coefficient

• φ̂k : Estimate of the observed phase of the specular echo radar return on each channel k

• θ̂x : Estimate of θx

• θ̂y : Estimate of θy

• fp : pulse repetition frequency of the radar pulses

• t : The independent exogenous variable time

• to : Beginning of the meteor trail echo in time

• M : Total duration of the meteor trail echo in number of radar pulses

• tM : Total duration of the meteor trail echo in time

• Φ : Matrix containing the time-series voltage data observed by CoSRad according to Eq. 4.14

• Ω : Matrix containing the time-series voltage signal model described by Eq. 4.18.

• d : Vector containing the distances between each antenna with respect to antenna 5

• γ : Vector containing angular position between each antenna with respect to antenna 5

• κ : Angular wavenumber. κ = 2π/λ

• λ : Radar carrier frequency wavelength. λ = c/fo

• J : Jacobin of the specular meteor echo signal model Ω

• Js : Jacobin of the spherical coordinate transformation of Eq 4.27.

• Σ : Covariance matrix of β̂
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• Σd : Submatrix of Σ containing the covariances of the direction cosines and range

• Σs : Covariance of the echo’s spatial location in spherical coordinates

• αk : Phase biases on each receiver channel k

• w(t) : Additive Gaussian noise term of Eq 4.16 described by the probability distribution N (0, σ2
k)

• σ2
k : Variance of the observed real-valued noise on each channel k

• Ψx : Angle-of-arrival of a wave along the ex direction

• Ψy : Angle-of-arrival of a wave along the ey direction

• ηx : Phase relationship between α3 and α4

• ηy : Phase relationship between α1 and α2

Equation 4.14 is known as the observable, and it represents a specular meteor trail echo embedded

in the complex-valued voltages produced at the output of the CoSRad signal processing chain of Eq 3.30

and is denoted Φ. The columns of Φ are populated by the explicit real and imaginary parts of the voltage

observations with a functional form given by Eq 4.14 as shown in Eq 4.6.

Φ = Ṽq(n, [0 : M−1], k) = [R (Φk) I (Φk)] =


R(Φ1(to,β)) I(Φ1(to,β)) . . . R(Φ5(to,β)) I(Φ5(to,β))

...
...

...
...

R(Φ1(tm,β)) I(Φ1(tm,β)) . . . R(Φ5(tm,β)) I(Φ5(tm,β))


(4.6)

The complete 10 element parameter vector is given by Eq 4.7.

β = [A1 A2 A3 A4 A5 fd D φ5 θx θy] (4.7)
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The goal of the interferometry and uncertainty estimation problem is determining a set of parameters

β̂ which best describe the voltage observations Φ(β, t) under the known antenna geometry of Figure 4.1

in addition to assessing the quality of the estimated parameters. A number of techniques exist for finding

reasonable values of β̂ which describe the observations, however, we will focus on the technique of nonlinear

least squares because it provides a direct estimate of the measurement uncertainty, interpreted as a statistical

probability. Think of this problem as finding a set of parameters β̂ which will reproduce the observations

Φ(β, t) in addition to providing a measure of the precision of the estimated parameters. The observations

Φ are assumed to have been produced under the physical process governing radar scatter from classical

underdense specular meteor trails [95] described in Chapter 2. The first goal of this chapter is finding

parameter estimates β̂ which represent the ‘true’ physical parameters β in some optimal way. This will

require the formulation of a model representing the observed signal Φ(β, t) as a function of all the parameters

in Eq 4.7, including the direction cosines θx and θy.

4.3 Classical Meteor Radar Interferometry

The fundamental equation used to determine the angle of R with respect to to the axis connecting

two antennas spaced at a distance d in one dimension is given by Eq 4.8 where φ is the phase measured

between the two antennas. Therefore, the direction cosine representing the projection of R onto the antenna

baseline is given by θx = φλ
2πd . The direction cosine in the ez direction is given by Eq 4.1.

Ψ = cos−1

(
φλ

2πd

)
(4.8)

Eq 4.8 can be extended into two dimensions using an arbitrary set of antennas set on a common plane

under the antenna geometry described by d and γ using Eq 4.9 [131]. This system of equations describes

the direction cosines in (θx, θy) as a function of the phase offsets between each set of antennas in Figure 4.1.



134



∆φ15 + 2πp1

∆φ25 + 2πp2

∆φ35 + 2πp3

∆φ45 + 2πp4


=



−κd1 cos(γ1) −κd1 sin(γ1)

−κd2 cos(γ2) −κd2 sin(γ2)

−κd3 cos(γ3) −κd3 sin(γ3)

−κd4 cos(γ4) −κd4 sin(γ4)



θx
θy

 = Ax where pk ∈ Z (4.9)

Eq 4.9 is compactly written in matrix form as Eq 4.10. Eq 4.10 is the classical interferometry equation

as applied to the Jones style array. Eq 4.10 can be solved in a linear least squares sense for various integer

values of pk because an ensemble of solutions exist (as implied by Eq 4.8) depending on the antenna geometry

encoded in the coefficient matrix A. If the phase wrapping constants pk are known, the solution to Eq 4.9

becomes either a simple matrix inversion in the case of one set of phase offsets, or a linear least squares

optimization problem (AᵀA) β̂ = AᵀΦ when multiple phase measurements are observed over the course of

a single echo as is the case with echoes observed by CoSRad.

∆φk5 + 2πpk = Ax (4.10)

Where the phase differences are determined by Eq 4.11.



∆φ15

∆φ25

∆φ35

∆φ45


=



φ1 − φ5

φ2 − φ5

φ3 − φ5

φ4 − φ5


(4.11)

Eq 4.10 will have multiple solutions at various multiples of 2π assuming the antenna spacing depicted in

Figure 4.1. This is the real-valued form of the interferometry problem still widely in use today for determining

directional cosine solutions [63]. One modern paper describing a rudimentary multistatic system makes us
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of the classical interferometry technique [90]. The classical interferometry solution approach has apparently

formed the basis for the modern body of literature exploring gravity wave observations with meteor radar

[56], and suffers from a number of somber drawbacks. As is outlined in [63, 138, 131] Equation 4.9 requires

solving for values of pk by summing the phase offsets between the sets of antennas along each baseline, thereby

synthesizing the unambiguous phase as would be observed by an antenna placed at 0.5λ (assuming a single

plane wave is impinging upon the array). The phase delays between the outer sets of antennas form a precise,

but ambiguous direction cosine solution corresponding to 4.5λ. Values of pk are chosen that minimize the

difference between the unambiguous ‘short-baseline’ 0.5λ solution and the ensemble of 4.5λ ‘long-baseline’

ambiguous solutions. This inelegant approach requires a convoluted scheme of back-substitution based on

the imprecise 0.5λ estimate. A questionable assumption is made that the 4.5λ ambiguous solution which

most closely matches the 0.5λ unambiguous solution is the ‘true’ solution. In fact, the simulation of Figure

4.6 shows that even for relatively high SNR echoes (>13 dB), the 0.5λ solution for the direction cosines

may significantly deviate from the true value, even with no system phase biases (αk = 0). See chapter 5.3

in Kang’s doctoral dissertation [78] for additional details on AOA estimation accuracy using the traditional

techniques.

4.4 Complex Plane Meteor Radar Interferometry

Here I will present the complex-plane formulation of the classical meteor radar interferometry problem.

Recast Eq. 4.9 on the complex plane by taking the complex exponential of the terms. Working in the

complex plane has two primary and related advantages. First, it enables the straightforward mathematical

determination of the best-fit parameters. When put in terms of complex exponentials, the parameter space of

β′ described by Eq 4.18 becomes a smooth, differentiable continuous function (see Figure 4.4) which permits

the use of gradient-following numerical solution methods such as the trust-region algorithm [103]. Secondly,

because the first derivatives of the residual matrix with respect to the model parameters continuously exist

over the parameter space, the Jacobian matrix is numerically calculated which enables determination of the
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best-fit model parameter uncertainties (variances). Begin the complex-plane meteor radar interferometry

problem by taking the complex exponential of Eq 4.9 as shown in Eq 4.12.

NLS Global 

Minimization Core

Figure 4.2: Schematic depiction of the nonlinear least squares (NLS) minimization core described in this
Chapter. The minimization core accepts a time-series of voltage-level CoSRad observations Φ (row 2 of
Figure 3.2 or 4.5) and outputs parameter estimates β̂ of the specular meteor trail signal model Ω along with
their associated covariances Σ by globally minimizing the objective function of Eq 4.19 by evaluating Eq
4.21 using iterative gradient methods.

ej(φk−φ5+2πpk) = ejφke−jφ5ej2πpk = ej(−κdkθx cos γk−κdkθy sin γk) (4.12)

Solve for the complex phase ejφk and realize that ej2πpk = 1 + 0j. This gives an expression for the

phase at each channel with respect to channel 5 as a function of the direction cosines θx and θy given by Eq

4.13.

ejφk = ej(−κdkθx cos γk−κdkθt sin γk)ejφ5 = ejφa(θx,θy)ejφ5 (4.13)

The first term in Eq 4.13 is a function of θx and θy and a set of constant geometric terms, therefore

ejφa(θx,θy) = ej(−κdkθx cos γk−κdkθy sin γk) . Equation 4.13 is the complex form of the real-valued interferometry

equation 4.9. Given a set of measured phase differences φk, Eq 4.13 is solved on the complex plane to find

the direction cosine terms describing the AOA of the specular meteor echo. The full equation describing the
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complex-valued output of the CoSRad pulsed Doppler signal processing chain including the phase differences

at each antenna as a function of the direction cosines is written as Eq 4.14.

Ṽq(n,m, k) = Ake
j2πfdt[m]e−Dat[m]ejφak(θx,θy)ejφ5 + wk(t[m]) (4.14)

(4.15)

Where the observed phase φk in Eq 4.6 has been equated with the phase as a function of directional

cosines with respect to the phase on channel 5: φk = φak(θx, θy)+φ5. The full set of equations and unknowns

representing the observed signal as a function of the true (not estimated) signal parameters β is given by

Eq 4.16. The notation indicating the explicit dependence of t on m has been dropped for convenience.

Φ(β, t) = Ṽq =



A1e
−Datej2πfdtejφa1(θx,θy)ejφ5

A2e
−Datej2πfdtejφa2(θx,θy)ejφ5

A3e
−Datej2πfdtejφa3(θx,θy)ejφ5

A4e
−Datej2πfdtejφa4(θx,θy)ejφ5

A5e
−Datej2πfdtejφ5



ᵀ

+



w1(t)

w2(t)

w3(t)

w4(t)

w5(t)



ᵀ

(4.16)

As stated earlier, the goal of the interferometry problem becomes finding values of β that represent

the observed signal Φ in some optimal way. To accomplish this, a signal model is defined as Eq 4.17 as

a function of candidate parameter vectors β′. Values of β′ which best reproduce the observations Φ(β, t)

using the signal model Ω(β′, t) is the optimal estimate β̂ of β.
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Ω(β′, t) =



A′1e
−D′atej2πf

′
dtejφa1(θ′x,θ

′
y)ejφ

′
5

A′2e
−D′atej2πf

′
dtejφa2(θ′x,θ

′
y)ejφ

′
5

A′3e
−D′atej2πf

′
dtejφa3(θ′x,θ

′
y)ejφ

′
5

A′4e
−D′atej2πf

′
dtejφa4(θ′x,θ

′
y)ejφ

′
5

A′5e
−D′atej2πf

′
dtejφ

′
5



ᵀ

(4.17)

Eq 4.17 represents a ‘model’ of the observed specular echo from a meteor trail. Note that in the

noiseless case, wn(t) = 0 and Ω(β̂, t) = Φ(β, t). But of course, electrical noise will always corrupt our

desire to find the true parameter values. Now that the signal observations Φ(β, t) are represented by an

appropriately selected model Ω(β′, t), we are in a position to attempt a solution, or to find the values of β′

that best represent β.

4.5 Finding The Least Squares Estimate of β

Software packages such as Matlab and IDL offer excellent nonlinear least squares minimization algo-

rithms when the problem is cast in purely real terms. From this point on, the explicit dependence of Ω and

Φ on β̂, β′, β and t is occasionally dropped for notational convenience. Rewrite Eq 4.17 as Eq 4.18 so that

the I and Q (real and imaginary) components of Ω are explicitly expressed along the columns of Ω. Note

that the voltage observations Ṽq(n, [0 : M−1], k) = Φ(β, t) are already in complex rectangular format at the

output of the CoSRad pulsed Doppler signal processor (see Eq 3.29). Eq 4.18 represents a system of 10M

equations and 10 candidate parameter values β′. The fact that the number of estimated parameters equals

the number of channels is merely a coincidence and a consequence of having five channels (antennas), each

observing I and Q signal components. We could add additional antennas and still produce valid solutions.
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Ω(β′, t) =



R
(
A′1e

−D′atej2πf
′
dtejφa1(θ′x,θ

′
y)ejφ

′
5

)
I
(
A′1e

−D′atej2πf
′
dtejφa1(θ′x,θ

′
y)ejφ

′
5

)
R
(
A′2e

−D′atej2πf
′
dtejφa2(θ′x,θ

′
y)ejφ

′
5

)
I
(
A′2e

−D′atej2πf
′
dtejφa2(θ′x,θ

′
y)ejφ

′
5

)
R
(
A′3e

−D′atej2πf
′
dtejφa3(θ′x,θ

′
y)ejφ

′
5

)
I
(
A′3e

−D′atej2πf
′
dtejφa3(θ′x,θ

′
y)ejφ

′
5

)
R
(
A′4e

−D′atej2πf
′
dtejφa4(θ′x,θ

′
y)ejφ

′
5

)
I
(
A′4e

−D′atej2πf
′
dtejφa4(θ′x,θ

′
y)ejφ

′
5

)
R
(
A′5e

−D′atej2πf
′
dtejφ

′
5

)
I
(
A′5e

−D′atej2πf
′
dtejφ

′
5

)



ᵀ

10×M

(4.18)

Γ(β′, t) =



f1(β′, t)

f2(β′, t)

f3(β′, t)

f4(β′, t)

f5(β′, t)

f6(β′, t)

f7(β′, t)

f8(β′, t)

f9(β′, t)

f10(β′, t)



ᵀ

=



R
[
A1e

−Datej2πfdtejφa1(θx,θy)ejφ5 + w1(t)
]
− R

[
A′1e

−D′atej2πf
′
dtejφa1(θ′x,θ

′
y)ejφ

′
5

]
I
[
A1e

−Datej2πfdtejφa1(θx,θy)ejφ5 + w1(t)
]
− I
[
A′1e

−D′atej2πf
′
dtejφa1(θ′x,θ

′
y)ejφ

′
5

]
R
[
A2e

−Datej2πfdtejφa2(θx,θy)ejφ5 + w2(t)
]
− R

[
A′2e

−D′atej2πf
′
dtejφa2(θ′x,θ

′
y)ejφ

′
5

]
I
[
A2e

−Datej2πfdtejφa2(θx,θy)ejφ5 + w2(t)
]
− I
[
A′2e

−D′atej2πf
′
dtejφa2(θ′x,θ

′
y)ejφ

′
5

]
R
[
A3e

−Datej2πfdtejφa3(θx,θy)ejφ5 + w3(t)
]
− R

[
A′3e

−D′atej2πf
′
dtejφa3(θ′x,θ

′
y)ejφ

′
5

]
I
[
A3e

−Datej2πfdtejφa3(θx,θy)ejφ5 + w3(t)
]
− I
[
A′3e

−D′atej2πf
′
dtejφa3(θ′x,θ

′
y)ejφ

′
5

]
R
[
A4e

−Datej2πfdtejφa4(θx,θy)ejφ5 + w4(t)
]
− R

[
A′4e

−D′atej2πf
′
dtejφa4(θ′x,θ

′
y)ejφ

′
5

]
I
[
A′4e

−Datej2πfdtejφa4(θx,θy)ejφ5 + w4(t)
]
− I
[
A′4e

−D′atej2πf
′
dtejφa4(θ′x,θ

′
y)ejφ

′
5

]
R
[
A5e

−Datej2πfdtejφ5 + w5(t)
]
− R

[
A′5e

−D′atej2πf
′
dtejφ

′
5

]
I
[
A5e

−Datej2πfdtejφ5 + w5(t)
]
− I
[
A′5e

−D′atej2πf
′
dtejφ

′
5

]



ᵀ

√
W

(4.19)

Eqs. 4.16 and 4.18 are vector-valued functions of the explicitly expressed real and imaginary compo-

nents of the phase differences measured across each antenna of the array. The model Ω(β′, t) takes candidate

parameter vectors of size 1×10 and return matrices of size M×10 ∈ R. The objective function is now defined
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as the difference between the observed signal Φ and the model Ω evaluated at some candidate parameter

vector β′ and is explicitly expressed by Eq 4.19. Γ is also known as the residual matrix and is compactly

written in Eq 4.20 where the explicit dependence on t has been dropped from the notation.

Γ(β′) = (Φ−Ω(β′))
√
W (4.20)

The goal of the nonlinear least squares procedure is to minimize the sum of the squares of the objective

function Γ over the domain of the candidate input parameters β′ as shown in Eq 4.21. β̂ is the least squares

estimate of the true parameters embedded within Φ when Eq 4.21 is minimized over the domain of the

candidate model parameters. This is an optimization problem of the nonlinear least squares type.

min
β′

∑[
Γ(β′)2

]
(4.21)

(A) (B)

Figure 4.3: I (A) and Q (B) components of a simulated meter trail echo. D=2 [m2s−1], fd=10 [Hz],
SNR=20 [dB]. The best fit parameters β̂ for Ω were found by evaluating Eq 4.21. The fit is performed on
each of the five channels. Only the fit for Channel 1 is shown in this figure.

W is a diagonal matrix of weights representing the inverse variances of the observed noise in each I

and Q channel as shown in Eq 4.22. I and Q are formed digitally with no offsets as discussed in Chapter 3

and shown by Eq 3.26, therefore the variance of each component of the complex-valued signal is half that
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of the real-valued signal. W gives channels with lower noise variance (and therefore higher SNR) more

influence over the estimate of β̂.

W =



2
σ1

. . . 0

2
σ1

2
σ2

2
σ2

... 2
σ3

...

2
σ3

2
σ4

2
σ4

2
σ5

0 . . . 2
σ5


10×10

(4.22)

Figure 4.4 shows the wrapping structure of the interferometric solutions. Local extrema in the objec-

tive function occur at regular intervals along the θ′x and θ′y parameters. This results from the Jones antenna

spacing of d > 0.5λ. By inspection of Eq. 4.8, we can see for d > 0.5λ, an ensemble of phase differences ∆φ

exist which satisfy any given angle-of-arrival Ψ. As has been done historically and assuming a monochromatic

plane wave impinging on the classical Jones array, the phase differences observed by an antenna spacing of

d = 0.5λ in both the ex and ey directions is created by adding the phase differences ∆φx0.5λ = ∆φ35 + ∆φ45

and ∆φy0.5λ = ∆φ15 + ∆φ25 thereby providing an unambiguous solution to Eq 4.8. Antenna spacing with

this additive property was the original motivation behind the Jones-style array because it appears to offer a

straightforward unambiguous solution to Eq 4.8.

Philosophically, imagine that all the information needed for an unambiguous determination of the

direction cosines is somehow encoded in an antenna geometry which spatially samples the wave at multiples

of 0.5λ. Indeed, Figure 4.4 demonstrates that a global extrema exists on the surface defined by Eq 4.21 over



142

True Directional Cosines : 

Figure 4.4: Inverse of the objective function (Eq 4.20) evaluated over the domain of θ′x and θ′y. All other
parameters in β′ are held constant. For this example β(θx, θy) = (−0.038, 0.83). The inverse of Γ is plotted
because the peaks are easier to visualize. The primary peak represents the global minimum of Γ. Initial
guesses based on the traditional short-baseline estimation of the direction cosines are also plotted for various
SNR values. Using the traditional local solution technique, minimization of 4.20 would produce inaccurate
values for β̂ under all but the 20 [dB] SNR case.

the domain of the direction cosine parameters θ′x and θ′y. This fact can also be appreciated by calculating the

spatial spectrum of the array [78, 71]. Implications of this realization are profound for determining meteor

radar interferometric solutions. When cast on the complex plane, global optimization techniques [128] can

be used to unambiguously minimize Eq 4.21 thereby estimating β in an optimal least-squares sense. With

Matlab, use the constrained ‘lsqnonlin()’ solver wrapped with the ‘multistart()’ global optimizer to solve Eq

4.21 using a modern multi-core computer. This approach breaks Eq 4.21 into a grid of regions. The required

density of the search grid in the θ′x and θ′y parameter space is defined by the antenna spacing, as can be seen

by inspection of Figure 4.4. Upon evaluation of Eq 4.21, the local minimum of each region is determined

on a separate processor core (remember that Figure 4.4 is the inverse of Eq 4.20). The regions are then
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re-combined and the smallest-valued minima is taken as β̂. In this way, determination of the global minimum

is guaranteed over the β′ parameter domain. This technique represents the state-of-the-art in meteor radar

interferometry. Figure 4.6 shows the striking difference in solution quality between the historical solution

technique and the global solution procedure described in this chapter.

I

Q

Figure 4.5: Simulated specular backscatter meteor trail echo as observed on the Jones interferometer depicted
in Figure 4.1 using the CoSRad radar transceiver at fo = 35.24 [MHz] at fp = 500 [Hz]. The echo is simulated
by modeling the radar echo at the output of each antenna feed and propagating the received signal through
the entire CoSRad receiver chain (including the FPGA filter). The model accounts for all terms involved
with classical meteor trail formation including evaluation of the Fresnel integrals of Eq 2.3. β̂ is found using
Eq 4.21, and the explicit phase differences between each channel of the simulated echo are determined by
substituting θ̂x and θ̂y into Eq 4.9. The functional form (defined by Eq 4.18) of the most likely model

parameters β̂ representing the simulated data is plotted as the black trace in the second row of the figure.
The power and phase fits are subsequently derived from the voltage fit.

4.6 Statistical Uncertainty

I was surprised to find that the words ‘error’ and ‘uncertainty’ are almost nonexistent in the modern

specular meteor radar literature. One modern paper [61] describes the range resolution as 2 [km] (an almost

meaningless metric in the context of specular meteor radar assuming a single target) but makes no reference

to the height or range uncertainty. In [59], the seasoned investigator claims that meteor radar instrumental

errors are the source of the variance his diffusion coefficient observations, but makes no attempt to quantify
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Figure 4.6: 1000 echoes similar to that depicted in Figure 4.5 were generated at 10 [dB SNR] with a uniform
azimuthal distribution and a Gaussian height distribution with mean of 92 [km]. The direction cosines were
determined using the traditional solution technique (b) and the global complex-plane technique outlined in
this chapter (a). The improvement in solution quality is striking and obvious.

or explain such “instrumental errors” which are more accurately described in terms of “instrument precision”

and “observational bias.” An instrumental error or bias is generally a constant quantity which is applied to

correct the accuracy of a measurement. Instrument uncertainty is the statistically characterized variation

in the observation of a given physical parameter. In a recent investigation of mesospheric winds [15], the

authors make no mention of the specular meteor radar instrument precision used to derive the wind data.

The following analysis provides a framework for quantifying meteor radar measurement precision in the

fundamental physical measurement parameters β, and future investigators are invited to incorporate this

statistical uncertainty quantification technique into their windfield derivations.

Given a set of voltage observations Φ represented by the model Ω that are embedded in zero-mean

gaussian noise, wk(t) ∈ N (0, σ2
k), a least-squares estimate of the most likely parameters β̂ representing the

true model parameters β is given by Eq 4.21. Because β̂ is an estimate of the true model parameters, it

too must have a statistical distribution described by some probability density. Determining the parameters

of the probability density function describing the variations of β̂ due to wk(t) is the problem of statistical

uncertainty determination and propagation. Said another way, we wish to determine the expected variation in

any estimate of the true model parameters β in a rigorous statistical sense by finding the covariance matrix

of the parameter estimates shown in Eq 4.23. The diagonal elements of Σ are the estimated parameter
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variances σ2
β̂(k)

and the off-diagonal elements are their covariances. Because the residual matrix Γ has a

normal distribution (Φ(β, t) − Ω(β, t) = wk(t) ∈ N (0, σ2
k)), the least squares estimate of β is also the

maximum likelihood estimate [80].

Σ =



σ2
β̂(1)

σβ̂(1)σβ̂(2) σβ̂(1)σβ̂(3) . . . σβ̂(1)σβ̂(10)

σβ̂(2)σβ̂(1) σ2
β̂(2)

σβ̂(2)σβ̂(3)

σβ̂(3)σβ̂(1) σβ̂(3)σβ̂(2) σ2
β̂(3)

...

...
. . .

σβ̂(10)σβ̂(1) . . . σ2
β̂(10)


10×10

(4.23)

Begin by considering a matrix of the first derivatives of the residual Γ(β′, t) with respect to the model

parameters β′. This matrix is known as the ‘Jacobian’ and is denoted J given by Eq 4.24. Finding β̂

does not necessarily require forming the strict analytical representation of J , however its numerical form

is important for calculating the covariance of the estimated parameters Σ. The size of J represents the

number of equations vs. the number of unknowns. With a time-series of M real-valued observations from

five antennas, we can form 10M simultaneous equations using Eq 4.19 with the 10 candidate parameters

β′ defined in Eq 4.7. Notice that J represents the first term of a Taylor-series expansion of Eq 4.20 about

a set of candidate model parameters β′. The numerical Jacobian is formed by the ‘lsqnonlin()’ Matlab

solver to follow the objective function gradients to a global minimum. The numerical Jacobian is used in

Eq 4.26 to find parameter covariance Σ. Because J is a first-order approximation of Eq 4.20 about β′(t),

the covariance matrix Σ is only valid when the difference between the true parameters β and estimated

parameters β̂ is small. This also implies that the covariance matrix is only valid at the global minimum of

Γ which is guaranteed when globally evaluating Eq 4.21. The numerical simulations in section 4.7.2 suggest

that these requirements are met for nearly all specular meteor trail echoes above 3 [dB]. In this formulation,

the Jacobian is scaled by
√
W to simplify the final solution. In practice only the differences between the

weights influence the final statistical result, so in the case of closely matched variances (σk) in Eq 4.22, we
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may set
√
W = I.

J(Γ(β′, t)) =




∂f1(t1)
∂β′(1)

. . . ∂f1(t1)
∂β′(10)

...
. . .

...

∂f1(tM )
∂β′(1)

. . . ∂f1(tM )
∂β′(10)


...

∂f10(t1)
∂β′(1)

. . . ∂f10(t1)
∂β′(10)

...
. . .

...

∂f10(tM )
∂β′(1)

. . . ∂f10(tM )
∂β′(10)





√
W (4.24)

The Jacobian J describes how differences between the residuals and the observations change with

respect to the model input parameters when calculated through Eq 4.20. Said another way, J describes how

Γ behaves when we ‘shake’ on the candidate model parameters inputs β′. Remember that the goal of this

problem is to find the covariance Σ of the estimated parameters β̂, and therefore we desire knowledge of

how the least-squares best fit parameter vector β̂ behaves when we ‘shake’ on the residual voltages Γ. This

is the essence of the inverse variance problem, and this description suggests the formation of the inverse of

J .

Define the scalar-valued mean square error ε as the sum of the squares of the weighted residual matrix

Γ as Eq 4.25 evaluated at some candidate parameter vector β′. The mean square error is a measure of the

variance of the residuals [118]. In this formulation, the weights have already been included in the objective

function (Eq 4.20).

ε =
∑

Γ(β′(t)) (4.25)

Under the assumption of a Gaussian distribution of the errors between the model Ω and the observa-
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tions Φ defined as Γ in Eq 4.20, the covariance of the input parameters has the amazingly simple solution

given by Eq 4.26. As with Eq 4.25, the weighting matrix has been included in the scaling of J . Eq 4.26

is the covariance of the model parameters Σ which describes the statistical uncertainty (precision) of the

estimated parameters β̂ assuming the model Ω.

Σ =
ε (JᵀJ)

−1

a− b =
ε (JᵀJ)

−1

M10− 10
(4.26)

Where a is the number of simultaneous equations which equals the number of rows of J , and b is the

number of parameters in β̂. Some caveats apply when applying Eq 4.26. The casual investigator may be

tempted to include additional signal parameters in β̂ such as the explicit phase estimate for each channel φ̂k.

In this case, the rows of J become linearly dependent because the phase estimates are a linear combination

of the direction cosines (Eq 4.9) and J becomes rank deficient. When J becomes rank deficient, JᵀJ is ill-

conditioned and non-invertible. Therefore, Eq 4.26 only applies when rank(J)=length(β̂). The ‘lsqnonlin()’

solver in Matlab used to evaluate Eq 4.21 can provide the numerically evaluated Jacobian J(β̂) and the

residual matrix Γ(β̂) for direct use in Eqs 4.25 and 4.26. Providing an analytical Jacobian will improve the

‘lsqnonlin()’ solution time by a factor of 2.

After estimating the direction cosines using Eq 4.21, estimates the echo location in the spherical

coordinates of azimuth θ̂a, elevation α̂e and height ĥ are determined using Eq 4.27 where the radial coordinate

is the radar range estimate R̂.

fs(θx, θy, R) =


fs1 (θx, θy)

fs2 (θx, θy)

fs3 (θx, θy, R)

 =


θa

αe

h

 =


tan−1

(
θy
θx

)
cos−1

(
θx

√
θ2y
θ2x

+ 1

)
R
√

1− θ2
x − θ2

y

 (4.27)

The statistical uncertainties in the directional cosine coordinates and range are transformed into
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uncertainties in the spherical coordinates described in Eq 4.27 by the widely practiced generalized uncertainty

propagation technique of Eq 4.30 [104]. First form the Jacobian of Eq 4.27 as shown in Eq 4.28. This task

is well-suited for computer algebra systems such as the symbolic toolbox or muPad in Matlab. Make use of

the functions ‘jacobian()’ and ‘matlabFunction()’ to generate a suitable error propagation Jacobian Js for

implementation of this technique. Most computer algebra systems manipulate complex-valued symbols by

default, therefore, care should be taken when symbolically computing the real-valued derivatives of Eq 4.28.

Js =


∂fs1
∂θx

∂fs1
∂θy

∂fs1
∂R

∂fs2
∂θx

∂fs2
∂θy

∂fs2
∂R

∂fs3
∂θx

∂fs3
∂θy

∂fs3
∂R

 =


∂fs1
∂θx

∂fs1
∂θy

0

∂fs2
∂θx

∂fs2
∂θy

0

∂fs3
∂θx

∂fs3
∂θy

∂fs3
∂R

 (4.28)

Note that for propagation of variance, (as opposed to finding the variance via inverse methods as was

done in Eq 4.26), the Jacobian need not be full rank. This allows us to determine the variance of any derived

parameters, even if they happen to have linear dependance. The statistical uncertainties from the estimated

parameters of θ̂x, θ̂y and R̂ are propagated into uncertainties in the derived parameters of Eq 4.27 using Eq

4.30

Σd =


σ2
β̂(9)

σβ̂(9)σβ̂(10) σβ̂(9)σR̂

σβ̂(10)σβ̂(9) σ2
β̂(10)

σβ̂(10)σR̂

σR̂σβ̂(9) σR̂σβ̂(10) σ2
R̂

 =


σ2
θ̂x

σθ̂xσθ̂y σθ̂xσR̂

σθ̂yσθ̂x σ2
θ̂y

σθ̂yσR̂

σR̂σθ̂x σR̂σθ̂y σ2
R̂



=


σ2
θ̂x

σθ̂xσθ̂y 0

σθ̂yσθ̂x σ2
θ̂y

0

0 0 σ2
R̂



(4.29)

A submatrix of Σ is formed as Eq 4.29. The covariance of the range estimate with respect to the

direction cosines is also assumed small. This makes intuitive sense as the radar’s range measurement should
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not depend on the arrival angle of the echo.

Σs =


σ2
θa

σθaσαe σθaσh

σθeσαa σ2
αe σαeσh

σhσθa σhσαe σ2
h

 = JsΣdJ
ᵀ
s (4.30)

As was the case with Eq 4.24, notice that Eq 4.28 comprises the first non-constant terms of a Taylor

series expansion of fs. One caveat of the first-order error propagation approach is that the estimated

parameters β̂ must not lie too far from the true parameters β. In other words, if the total error between the

estimated and true parameters is too large, Js is no longer a good approximation for how the covariance

matrix Σ maps onto the covariance Σs of the derived parameters. The simulation results in Section 4.7.2

suggest that echoes above 3 [dB] in SNR provide adequately precise solutions for application of Eq 4.30.
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4.6.1 Multistatic Wind Vector Retrieval

The notation regarding multistatic wind vector retrieval differs throughout the literature, and various

papers suffer from infuriating math errors and inadequately detailed explanations. This section is based on

a modern paper describing IAP’s MMARIA system [122], where I have attempted to unify the notation and

provide detailed explanations of the applicable equations and their origins in the radar literature. I have

also cast the equations in terms of the directly measured parameters of Doppler frequency and meteor trail

position. Wind retrieval results based on an unpublished technique currently in development at IAP are

presented in Figure 4.7. The SVD inversion of Figure 4.7 does not currently account for the fundamental

precision estimation described in Section 4.6. Integrating meteor wind radar instrument precision into IAP’s

SVD inversion technique is currently an active research topic. The coherent wind structures above 100 [km]

suggest that Earth’s geomagnetic field does not dramatically bias the high-altitude wind measurements (see

Chapter 2.2), however, geomagnetic effects on high-altitude winds such as those shown in Figure 4.7 is also

an active research topic. An independent wind retrieval technique based on unpublished inverse methods

formulated by Prof. David Hysell of Cornell University is currently under development with the goal of

providing an independent retrieval for comparison to Dr. Strober’s current iterative SVD technique.

After obtaining of an ensemble of meteor trail position and Doppler measurements i at each receiving

station of a networked multistatic radar, with each measurement having an associated Σi, Σdi and β̂i,

an estimate of the vector field û(ri) best representing the true windfield at some desired height and time

resolution defined by the window of i is determined by evaluating Eq 4.35 [122]. The wind is represented

by the vector quantity u′(ri) = [u′i, v
′
i, w
′
i] within some chosen height and time window. In the general case,

an arbitrary set of windfield vectors estimates û(ri) are generated over some spatial and temporal window

defined by i (see Figure 1.3). In the monostatic case, ri is the location of the estimated windfield vector û

within some hight bin and time window. In the multistatic case, ri represents the locations of each estimated

windfield vector, forming a vector field estimate of the true windfield. Under arbitrary network geometry,

the Doppler shift observed at any receiver location is a function of the Bragg vector magnitude kBi. The
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quantity mi is defined as a unit vector that points from the receiving station to the trail. The observed

Doppler shift for any given trail is represented as the dot product between the wind vector u(ri) and the

magnitude of the Bragg vector as shown in Eq 4.31 [22, 122].

fdi = [u(ri) ·mi]
kBi
2π

(4.31)

The Bragg vector magnitude in Eq 4.31 is given by Eq 4.32

kBi =
2π

λBi
(4.32)

where the Bragg wavelength associated with each trail observation is given by Eq 4.33 and φ is the

specular scattering angle given by Figure 2.1. λ is the radar wavelength λ = c/fo.

λBi =
λ

2 cosφ
(4.33)

In the case zero specular scattering angle (φ = 0) the trail is observed by a receiver collocated with

the transmitter and the Bragg wavelength becomes λBi = λ/2. Eq 4.31 then reduces to Eq 4.34 which relates

the measured Doppler frequency fdi to the wind vector u(ri) and meteor trail location mi. Eq 4.34 is easily

rearranged to produce the radial velocity measurement vi using a monostatic radar under the assumption of

φ = 0.

fdi = [u(ri) ·mi]
2

λ
→ vi = [u(ri) ·mi] =

fdiλ

2
(4.34)
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As was done in Section 4.4 for determine the fundamental signal parameters, Eq 4.31 is used to

estimate the vector windfield û(ri) by minimizing the quantity ([u′(ri) ·mi] kBi − 2πfdi)
2

as shown in Eq

4.35

min
u′(ri)

∑
i

([u′(ri) ·mi] kBi − 2πfdi)
2

(4.35)

In the monostatic case where the specular scattering angle is zero, Eq 4.35 reduces to Eq 4.36 [56].

The vertical wind component is typically assumed small compared to the horizontal components such that

w′i = 0. The quantity u′(ri) ·mi represents the projection of a candidate wind vector u′(ri) in the direction

of the trail, which is equal to the measured radial neutral wind velocity assuming the trail shares the motion

of the neutral windfield. Therefore, vi = u′(ri) ·mi. To find the best-fit monostatic wind vector û(ri) in

some height and time window, minimize the quantity (u′(ri) ·mi − vi)2
over a set of candidate wind vectors

u′(ri) as implied by Eq 4.34 and shown in Eq 4.36.

min
u′(ri)

∑
i

[u′(ri) ·mi − vi]2 (4.36)

If we include the Doppler and directional cosine measurement precision terms, Eq 4.35 becomes the

problem shown in Eq 4.37 where Σa is found via Choleski Decomposition of the non-diagonal covariance of

the Doppler and directional cosine measurements for each trail of the ensemble i. How the precision in the

directional cosine terms is represented in Σa is currently an active area of research at IAP. Finding values of û

along with the estimated vector windfield precision which best represents the vector windfield observations

under the known measurement parameter precision is a nontrivial generalized least squares optimization

problem well suited as a future dissertation topic, and represents the future of inverse-variance meteor wind

radar statistical signal processing. Finding solutions to Eq 4.37 is currently an active research topic among

the atmospheric physics community and at IAP. As of this writing, positions are available for investigators
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who wish to attempt a solution.

min
u′(ri)

∑
i

[(u′(ri) ·mi) kBi − 2πfdi]
ᵀ

(Σᵀ
a)−1Σ−1

a [(u′(ri) ·mi) kBi − 2πfdi] (4.37)
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Figure 4.7: Example of Zonal and Meridional winds from the Juliusruh specular meteor radar [115] provided
by [Strober, G] of IAP in 2015. The winds were calculated using advanced inversion techniques applied to
raw specular meteor radar data from 2010. This currently unpublished approach uses an iterative singular
value decomposition (SVD) technique developed at IAP and applied to Eq 4.36 to find best-fit winds. Dr.
Strober’s description of the wind inversion technique is given in Appendix A.
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4.7 Forward Model and Simulation Results

Validation of the statistical uncertainty and error propagation technique outlined in Section 4.6 re-

quired the creation of a sophisticated instrument forward model. Simulated CoSRad observations of specular

meteor trail echoes are generated with statistical spatial distributions and distributions in the true parame-

ters β assuming some noise environment. The simulated voltage-level echoes like the one shown in Figure 4.3

are placed in the columns of Φ. After β̂ and Σ are determined, the true (known) a-priori parameter values β

are compared with the best fit parameters β̂. The solution core only uses knowledge of the true parameters

to loosely bound the ‘lsqnonlin()’ solver in D′a and f ′d for decreased computation time, but this simulation

optimization is not necessary to replicate the presented results. Simulating the phase delays associated with

an arbitrary antenna geometry is greatly simplified through use of the Matlab Phased Array Toolbox. The

function ‘collectPlaneWave()’ proved especially convenient in creating the array forward-model.

4.7.1 Forward Model Range Estimation

The radar range uncertainty has been set at σR̂ = 176 [m] corresponding to the uncertainty of

the approximate propagation path length (the absolute range determination ability) associated with one

CoSRad sample when configured for typical meteor radar applications (see Chapter 3 and Figure 3.9). This

simplification is a reasonable but not entirely accurate representation of reality. When observing echoes

with even moderate SNR (>10 dB), the variance in the sample number corresponding to the range of

maximum power from the output of the matched filter (Chapter 3, Eq 3.28) rapidly approaches zero. This

phenomenon results from using a simple arithmetic average weighted by the SNR to estimate the sample

number corresponding to maximum power and subsequently range (see Chapter 3.6.1). For proper range

estimation, a signal model representing the output of the matched filter defined by the shape of the transmit

pulse (a square in the case of the CoSRad observations such as that shown in Figure 3.26) should be fit to the

output of the matched filter using a least squares technique similar to that described in Section 4.5. For the
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purposes of this investigation, setting a constant range variance does not significantly effect the estimated

precision results as it essentially sets a lower-bound on the height uncertainty estimate for high SNR echoes

at high elevation angles (see Figure 4.9). Figure 4.12 shows the cumulative distribution functions of the error

distributions of Figures 4.10 and 4.11 and strongly suggest that the estimated parameters are unbiased, and

that the estimated uncertainties are realized from the Gaussian distribution. The estimates are consistent

over SNR and across the parameter space of β. This uncertainty estimation technique represents the current

state-of-the-art in specular meteor radar parameter and uncertainty estimation.

4.7.2 Uncertainty Estimation Performance

Direction Cosine: θx
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Figure 4.8: Qualitative depiction of 6000 simulated echoes, generated with a uniform azimuthal distribution.
The simulated echoes are uncorrelated in time and height and therefore do not represent a geophysically
realistic windfield. The elevation angle contours are labeled in [deg]. Each echo is color-coded to indicate the
estimated height uncertainty σh from Eq 4.30. Note that echoes may have a larger estimated uncertainty
then the maximum colorbar limit of 600 [m].

Figure 4.8 provides a qualitative depiction of the simulated echo spatial distribution along with the

estimated uncertainty distribution, and clearly shows that an increase in estimated uncertainty is corollated

with decreasing in elevation angle. All uncertainty estimates are statistical in nature, therefore an echo

coincidentally having a low true error may have a large estimated uncertainty, and an echo with a larger true
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error could be estimated with an uncertainty falling outside the first standard deviation of the estimator.

Echoes with a true error falling outside the second (2σh) standard deviation in height estimation should

become increasingly unlikely, so we would expect to see very few echoes having large true errors with a small

uncertainty, which is indeed the case. Figure 4.8 does not succinctly describe the magnitude of the estimated

errors. For this, turn to Figures 4.9, 4.10, 4.11 and 4.12. As expected, the estimated uncertainties tracks

the true errors and decreases with increasing SNR. Furthermore, the estimated parameters and uncertainties

appear to be unbiased and consistent over all values of SNR, which is corroborated by Figure 4.12.

(A) (B)

Figure 4.9: Height uncertainty is plotted as a function of elevation angle. Uncertainty is maximized at low
SNR and at low elevation angles. The height uncertainty approaches the range uncertainty σR̂ for higher
elevation angles as expected. Interestingly, panel (B) shows that for high SNR echoes at mid-elevation
angles, the height uncertainty is driven by σR̂. For SNR=18 [dB SNR], the height uncertainty actually drops
below σR̂ resulting from the projection of σR̂ onto h.
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(A) (B)

(C) (D)

Figure 4.10: Comparison of 4000 echoes with random Doppler velocities fd ∈ N (0, 10) [Hz] and diffusion
coefficients D ∈ N (5, 2) [m2 s−1] with their estimated uncertainties and true errors. Echoes are generated
at four different SNR levels with the spatial distribution shown in Figure 4.8. Estimates of the true model
parameters β̂ and their associated parameter uncertainties Σ for each simulated echo are determined using
the global solution technique of Section 4.4. Both the estimated Doppler uncertainty σfd and the known

a-priori Doppler error (fd − f̂d) are plotted. A smoothing spline function is fit to the uncertainty estimates
representing the average of the estimated uncertainties.
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(A) (B)

(C) (D)

Figure 4.11: Comparison of 4000 echoes with random Doppler velocities fd ∈ N (0, 10) [Hz] and diffusion
coefficients D ∈ N (5, 2) [m2 s−1] with their estimated uncertainties and true errors. Echoes are generated
at four different SNR levels with the spatial distribution shown in Figure 4.8. Estimates of the true model
parameters β̂ and associated parameter uncertainties Σ for each simulated echo are determined using the
global solution technique of Section 4.4. Both the estimated diffusion uncertainty σD and the known a-
priori diffusion error (D − D̂) are plotted. A smoothing spline function is fit to the uncertainty estimates
representing the average of the estimated uncertainties.
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(A) (B)

(C) (D)

(E)

Figure 4.12: CDFs of the true a-priori parameter error compared to the estimated parameter uncertainty.
All 4000 echoes of Figures 4.10 and 4.11 are included along with an additional 2000 echoes having a con-
stant Doppler fd = 10 [Hz], and normally distributed SNR ∈ N (13, 4) [dB SNR] with a uniform azimuthal
distribution. The first and second standard deviations of the Gaussian CDF are also plotted. The CDFs of
the estimated uncertainties closely track those expected from the Gaussian distribution.
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4.8 Complex Plane Phase Calibration

Yet another point of contention in the meteor radar community concerns the phase calibration of the

antenna array. Various calibration techniques have been attempting for array phase calibration of remote

sensing radar systems including the use of radio stars [20] or radio beacons [131]. More recently, all-sky

optical cameras have been used to validate the radar interferometric solutions from bright visible meteor

trails [90]. The radio star and optical all-sky camera array calibration approaches show promise in addition

to the technique presented here. A comprehensive specular meteor radar phase calibration strategy would

probably combine elements of all three strategies. In Sections 4.3 and 4.6 the phase at the output of each

receiver channel was assumed to be a perfect time-delayed reproduction of the phase observed on each

antenna. No systemic phase biases between the five receiver channels were included in the analysis. With

real specular meteor radar systems, phase biases exist between true phase of the observed signal at the

antennas, and the output of the receiver. The meteor radar literature is somewhat sparse on the topic

of phase calibration. One paper by Holdsworth [64] describes a rudimentary version of the maximization

technique outlined in this section using real-value phases, complicating the implementation. The paper also

suffers from at least one math error in equation 19. During efforts to produce reasonable results using the

CoSRad data acquired at the Jones array located in Delemare, South Australia (see Figure 3.18), Prof.

Jorge Chau (currently serving as the director of the radar group at the Institute for Atmospheric Physics

located in Khlungsborn, Germany), made available a page of notes formulating Holdsworth’s technique on

the complex plane, thereby simplifying the implementation. Prof. Chau’s original notes are shown in Figure

A.1 of Appendix A. While mathematically correct, Prof. Chau’s notes proved to be an implementation

challenge as they were intended for his own personal analysis of Holdsworth’s technique. The goal of this

section is to combine elements from Holdsworth’s technique and Prof. Chau’s mathematical formulation into

a clear calibration procedure for application to SDR-based specular meteor radar systems. The approach

outlined in this chapter only directly applies to the Jones antenna configuration; however, it can guide a

clever radar engineer in applying the technique to other antenna configurations.



161

Rx4 Rx3Rx5

Figure 4.13: A plane wave intersects the array of Figure 4.1 along the ex direction at an elevation angle Ψx.
The geometry and mathematical formulation is identical in the ey direction but with a different incidence
angle Ψy.

Eq 4.38 now includes a phase bias term αk as part of the observed signal originally given by Eq 4.16.

Φ(β, t) =



A1e
−Dtej2πfdtejφa1(θx,θy)ejφ5ejα1

A2e
−Dtej2πfdtejφa2(θx,θy)ejφ5ejα2

A3e
−Dtej2πfdtejφa3(θx,θy)ejφ5ejα3

A4e
−Dtej2πfdtejφa4(θx,θy)ejφ5ejα4

A5e
−Dtej2πfdtejφ5ejα5



ᵀ

+



w1(t)

w2(t)

w3(t)

w4(t)

w5(t)



ᵀ

(4.38)

The problem of phase calibration is determination of the assumed constant phase bias values αk. The

values of αk which compensate for the (assumed) fixed phase biases present on each channel of a CoSRad-

based digital meteor radar system comprise the ‘phase calibration values’. As was done in Section 4.3, the

phases are referenced to channel 5 such that α5 = 0 and ejα5 = 1+0j. Begin by writing the phases observed

at the output of the receiver on each antenna in Figure 4.13 with respect to channel 5. Eq 4.39 represents

the phase delays observed at the output of the CoSRad receiver assuming a monochromatic plane wave

originating from a single target impinging on the antenna array as a function of Ψx. This assumption is

valid under most specular meteor radar conditions as observing more then one trail at the same range at

the same time is unlikely.



162

ejφ3 = ej(κd3 cos(Ψx)+α3)

ejφ4 = ej(κd4 cos(Ψx)+α4)

(4.39)

Next form the product of the complex-valued phase observations as shown in Eq 4.40 which describes

the unambiguous phase at two antennas spaced at d = λ/2 assuming a single target.

ejφ3ejφ4 = ej(κd3 cos(Ψx)+α3)ej(κd4 cos(α3+α4)

= ejk(d3+d4) cos(Ψx)+j(α3+α4)

(4.40)

The goal of determining α3 and α4 given Eq 4.40 requires a mathematical relationship which is

independent of Ψx. Because the values of α3 and α4 are assumed unknown (the system is uncalibrated),

any values of Ψx and Ψy measured between the antennas originating from a specular meteor trail echo will

will produce an inaccurate estimate of the direction cosines (θ̂x, θ̂y) by evaluation of Eq 4.21. However,

determining a phase relationship between α3 and α4 which is independent of Ψx is possible. Write Eq 4.40

and either expression of Eq 4.39 as a function of Ψx.

ejκ cos Ψx =
[
ejφ3ejφ4e−j(α3+α4)

] 1
d3+d4

(4.41)

ejκ cos Ψx =
[
ejφ3e−j(α3+α4)

] 1
d3

(4.42)

Equate Eq 4.41 and 4.42 and move all the constant terms to one side, and set the variable terms equal

to ηx as shown in Eq 4.44. The mathematics are identical in the ey direction and reference to both phase

relationships is denoted by η = [ηx ηy].
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[
ejφ3ejφ4e−j(α3+α4)

] 1
d3+d4

=
[
ejφ3e−j(α3+α4)

] 1
d3 → (4.43)

[
ejφ3

] −d4
d3+d4

[
ejφ4

] d3
d3+d4 = ej

−φ3d4
d3+d4 ej

φ4d3
d3+d4 = e

j
[

(α3+α4)d3
d3+d4

−α3

]
= ejηx (4.44)

Eq 4.44 represents the phase relationship between antennas Rx3 (φ3) and Rx4 (φ4) as ηx, which is

a function of the phase biases α3 and α4 and the constant antenna geometry terms. In principle, a single

high-SNR echo could be used to determine a value for ηx by plugging the measured quantities for ejφ3 and

ejφ4 into Eq 4.44. Because Eq 4.44 is based on the imprecise d = λ/2 summation of φ3 + φ4 = ejφ3ejφ4 , ηx

becomes a noisy quantity as small variations between the measured phases on the left hand side of Eq 4.44

will cause large deviations of ηx from its expected value, therefore, we must resort to building a statistical

picture for the determination of ηx. Figure 4.16 shows the histograms of ηx and ηy calculated for each

uncalibrated echo in Figure 4.15. Values for ηx and ηy are determined by fitting a Gaussian PDF to the

distributions.
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Figure 4.14: When calculating a meteor trail height for use in the calibration procedure, geometric biasing
terms should be taken into account such as Earth’s curvature and the height of the array above sea level
Ha. For radars located on 2.7 [km] of Antarctic ice at the South Pole [87], the array height correction term
is crucial for obtaining accurate results. Geometric correction factors are also discussed in [62] and [86].

To demonstrate the complex plane phase calibration technique, the set of known phase delays in Eq

4.45 were applied to the I and Q components of 5000 simulated echoes between 8-13 [dB SNR]: Φu = Φejαk

where Φu is the set of uncalibrated observations depicted in Figure 4.15.
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αka =



−223

66

−78

182

0



◦

(4.45)

The histogram of η produced using Eq. 4.44 is then used to find η̂ for the total population of

uncalibrated echoes Φu. Figure 4.16 shows the histograms of ηx and ηy with the mean values η̂ identified.

Notice that ηx and ηy are real-valued radians, and therefore wrap between [π : −π]. Care must be taken

when finding η̂ of the wrapped distribution in Figure 4.16. η̂ represents the phase relationships between the

antennas along each baseline independent of Ψ and αk.

Figure 4.15: The set of known phase delays αk in Eq 4.45 are applied to a set of simulated echoes to create
the uncalibrated set Φu. After application of the calibration procedure, the phase calibration estimates α̂k
are applied to the uncalibrated set and the location of each echo is re-calculated. The resulting calibrated
set of echoes are seen to have good agreement with the a-priori ‘true’ echo locations.

After determination of η̂ using Eq 4.44 applied to a large population of observations as shown in

Figure 4.16, we are in a position to estimate the antenna phase bias terms α3 and α4 (or α1 and α2 in the
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(A) (B)

Figure 4.16: Histograms of the phase relationships ηx and ηy between the antennas along both the ex and
ey baselines. Reference to the mean values of both histograms is denoted by η̂ = [η̂x η̂y]. A clear peak is
identified in η along both baselines and is used in Eqs 4.46 and 4.47 to create the calibration map of Figure
4.17. For accurate determination of η̂, a Gaussian distribution is fit to the histograms, carefully taking into
account the observed phase wrapping behavior.

ey direction). The phase bias estimates α̂k are found by what I have termed the ‘Maximization Technique’.

The concept is rather straightforward: the best estimated phase biases should result in the maximization of

the number of meteor trail detections originating from the meteoric ablation zone of 80-110 [km] in height.

Said another way, there should exist a set of phase bias correction terms α̂k that when applied to Φu will

maximize the total number of ‘valid’ height determinations h calculated using Eqs 4.21 and then 4.27.

Finding α̂k need not necessitate an exhaustive search over the entire five channel α′k parameter space

because the problem has been decomposed into two dimensions through Eq 4.44. To see this fact, expand

terms and rewrite Eq 4.44 such that α′3 is the independent variable as shown in Eq 4.46. The phase bias α′2

as a function of α′1 in the ey direction is also written as Eq 4.47.

ejα
′
4 =fx(α′3) = ejηxejηx

d4
d3 ej

α′3d4
d3 (4.46)

ejα
′
2 =fy(α′1) = ejηyejηy

d2
d1 ej

α′1d2
d1 (4.47)

To determine α̂k, evaluate Eqs 4.46 and 4.47 over the (α′1, α
′
3) domain of [0 : 10π]. The domain of

(α′1, α
′
3) of is found by noting that both equalities ejα

′
2 = ej

α′1d2
d1 and ejα

′
4 = ej

α′3d2
d1 hold at multiples of
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10π. For each set of candidate phase offsets α′k, the height of each echo in the population Φu is calculated

and the number of echoes found within ±10 [km] of the simulated height mean of 92 [km] are plotted as a

percentage of the total number of 5000 simulated echoes in Figure 4.17. This approach of maximizing the

total number of echoes observed within the meteor zone does contain one subtle source of error: the meteor

trail height distribution may become artificially narrowed. A more sophisticated approach might include

elements of Maximum Likelihood estimation where the number of echoes within a given height distribution

is maximized over α′k. In either approach, an assumed model for the meteor trail height distribution is

required. If the assumed model does not accurately represent geophysical reality, then observations made

under the estimated bias terms α̂k will contain errors present in the geophysical height distribution model.

This calibration technique could be tightly integrated with the complex-plane interferometry of Section 4.4 to

create a system which provides continuously updated values of α̂k with the changing external environmental

factors which affect αk.

Figure 4.17: α′1 and α′3 are swept over the domain of [0 : 10π]. Each set of candidate phase offsets α′k are
applied to the set of uncalibrated observations Φu and the height of each echo is subsequently calculated. The
number of echoes falling within ±10 [km] of the simulated height mean of 92 [km] are plotted as a percentage
of the total number of 5000 simulated echoes. A clear peak is observed at (α′1, α

′
3) = (4.76π, 3.57π) which

closely matches the a-priori phase bias αka =[-223 66 -78 182 0]◦ though Eqs 4.46 and 4.47

The phase calibration procedure outlined in this section is unlikely to consistently produce calibration
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values within 5◦ of the true values, and therefore we can expect this figure to represent a lower bound on

the heigh errors due to phase biases. Figure 4.18 shows the effect of a 5◦ constant phase bias applied to the

various channels. Investigators have shown reluctance to reveal the variance in their meteor radar system bias

values, but anecdotal evidence suggests the standard deviation of αk to be on the order of ±10◦. This does

not necessarily imply that the estimated phase biases deviate from their true values by ±10◦ as many time-

dependent factors may effect the phase biases including system and environmental temperatures, component

age and even ground moisture content. The phase calibration technique could be tightly integrated with

the complex-plane interferometry solutions to provide continuously updated phase calibration values during

system operation.

(A) (B) (C)

Figure 4.18: A depiction of how a 5◦ constant phase bias applied to channels Rx1 (A), Rx3 (B) and both
Rx1 and Rx3 (C) effect the echo height determination. Contours of constant elevation angle are indicated
in [deg]. Interestingly, the height determination biases remain asymmetric in panel (C).



Chapter 5

Overview and Future Work

The work presented in this dissertation represents the current state-of-the-art in specular meteor

radar instrumentation, modeling of specular meteor trail scattering, interferometry solutions and uncertainty

estimation. Chapter 2 first summarized the classical meteor trail scattering equations and then presented

two modern theories of trail diffusion. Tinin’s technique for modeling the tempro-spatial structure of the

ground illumination pattern is refined and applied to the observation of a meteor shower. Two experiments

are proposed to provide experimental evidence for Dimant and Oppenheim’s modern trail diffusion theory

and Tinin’s specular scattering formulation. Chapter 3 presents technical details of the Colorado Software

Radar (CoSRad), an innovative software-defined radar remote sensing transceiver system. Observational

results are presented which showcase CoSRad’s ability for extensive reconfigurability, and the technical

descriptions can guide future radar remote sensing engineers in understanding how the CoSRad architecture

could be applied to solve new remote radar sensing problems. First of their kind long-baseline software-

defined specular meteor trail observations are presented in Figures 3.26 and 3.27. The dissertation material

crescendos in Chapter 4 with the presentation of a new and elegant technique for solving the specular

meteor radar interferometry problem on the complex plane. One consequence of the nonlinear least squares

minimization technique is the calculation of the parameter covariance matrix described in Section 4.6, which

represents the first statistically rigorous measurement uncertainties placed on the fundamental meteor radar

observational parameters of Eq 4.7. Finally, Holdsworth’s specular meteor radar array calibration technique
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is combined with Prof. Chau’s unpublished complex plane formulation shown in Appendix A to produce

a straightforward statistical calibration implantation. Each Chapter is summarized below and a number of

dissertation-level topics are suggested for future investigators.

(1) Numerical modeling of the ground illumination pattern generated by specular scatter of radar

pulses from meteor trails with arbitrary receiver/transmitter geometry motivates the development and de-

ployment of multistatic specular meteor radar. The numerical framework used to generate the ground

illumination patterns presented in Chapter 2 is well suited for inclusion of Dimant and Oppenheim’s [26]

particle-in-cell (PIC) meteor trail electron density model [28]. This proposed extension to my work could

reveal new tempro-spatial structures in the ground illumination pattern such as those observed in Figure

2.21 and provide new experimental insight when observing specular meter trail echoes under the modern

diffusion theory.

New experimental observations based Oppenheim’s work combined with my implementation of Tinin’s

GIP technique [126] will guide future investigators in designing experiments to provide evidence in support

of Dimant and Oppenheim’s theory. One such experiment is proposed whereby a known meteor stream

is observed using a CoSRad-based multistatic array. Another possible line of future investigation involves

observation of the ‘critical time’ when the character of meteor trail diffusion instantaneously transitions

from anisotropic to isotropic. Similar to the work done in providing evidence of Dimant’s diffusion using

nonspecular echoes [102], correlating the critical time with the time of day would provide compelling evidence

from the perspective of specular echoes. Integrating Dimant and Oppenheim’s electron density model [28]

into Tinin’s formulation for the ground illumination pattern, observation and time-of-day correlation of the

diffusion critical time, and multistatic meteor stream observations are dissertation-level extensions to this

work. Future investigators are also encouraged to explore the potential of a new dust accelerator facility at

the University of Colorado [119] which shows some promise in producing laboratory plasmas analogous to

those generated by ablating meteors.
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(2) A universal software-defined radar transceiver, the Colorado Software Radar (CoSRad) has shown

the fundamental viability of the multistatic specular meteor radar measurement technique. First-of-their-

kind long-baseline specular meteor trail observations are presented in Chapter 3. CoSRad is designed for

integration with most existing specular meteor radar systems, as shown by the deployment history of Table

3.3. CoSRad comprises a direct-sampling data acquisition system including a complete radar timing engine

and a software-defined multistatic pulsed Doppler radar. Future investigators are encouraged to use the

software-defined radar transceiver system architecture described in this dissertation for application to their

own multistatic specular meteor wind radar deployments.

CoSRad has observed a time-dependent drift in Doppler frequency as shown in Figure 3.25. This

geophysical observation could be incorporated into the meteor trail specular scatter signal model of Eq 4.2

as an additional complex-exponential term describing a slowly-changing time-dependent phase. Recently,

the commercially available Nutaq software-defined transceiver systems have become available [137]. Nutaq-

based systems are well suited to host the next iteration of CoSRad. Porting the CoSRad software radar into

a Nutaq transceiver platform and deploying a CW pseudorandom multistatic specular wind radar network

[133, 122] in addition to providing a geophysical explanation of the observed time-depended phase drift of

Figure 3.25 both represent dissertation-level extensions to this work.

(3) The problem of meteor radar interferometry and statistical uncertainty is elegantly solved by casing

the relevant equations onto the complex plane and performing a global solution search using a nonlinear least

squares (NLS) iterative minimization technique. All 10 fundamental specular meteor radar signal parameters

of Eq 4.7 are estimated by minimizing a single objective function, producing a numerically evaluated Jacobian

matrix at the global NLS minimum. Statical signal processing techniques are borrowed from the field of

satellite orbit determination [116], and the full-rank numerical Jacobian is inverted to generate a parameter

covariance matrix which is forward-propagated to find the statistical uncertainties in direction cosine, height,

Doppler and physical diffusion coefficient.
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The statistical uncertainties are shown to be consistent over the entire estimated parameter space

including SNR as is clearly shown in Figure 4.12. This achievement represents an important advance in

specular meteor radar interferometric solutions and instrument precision analysis, and lays the groundwork

for solving the inverse-variance problem associated with fitting a vector windfield to the multistatic specular

radar observations enabled by CoSRad and described by Eq 4.37. This extension to the interferometry

solution and precision formulation of Chapter 4 is a dissertation-level project with currently active funding.
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Appendix A

Supplemental Wind Computation and Array Calibration Details

Dr. Strober’s description of Figure 4.7 is listed below:

“The zonal and meridional wind was computed applying a singular value decomposition fit to solve

for the coefficients putting the constrain that the vertical velocity w is almost zero. After the first initial

guess I additionally apply constrains to get an optimized solution regarding the smoothness in time and the

vertical coordinate. After computing the wind field for 24 hours I use a smoothness matrix to estimate the

temporal gradient between neighbor points (vertical and time) and use this information in the next SVD

inversion. Typically after 3-5 steps I get a stable and well-behaved solution for the winds. In contrast to

the zeroth order Tikhonov regularization, there is no amplitude decrease/leakage due to the truncating of

some singular values. However, both approaches provide very good wind estimates for the horizontal wind

components.”
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Figure A.1: Prof. Jorge Chau’s original complex-plane phase calibration notes for specular meteor radar
utilizing the Jones antenna configuration. These notes were made available via a personal communication
with Prof. Chau. The formulations in Chapter 4.8 were based on these notes in combination with the
real-valued formulation of [64]. In Chapter 4.8, I have substituted η for γ used in this formulation.


