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Abstract: We have previously reported that the application of a DC field can adjust the position
and/or bandwidth of the selective reflection notch in polymer-stabilized cholesteric liquid crystals
(PSCLCs). The proposed mechanism of these electro-optic (EO) response is ion-facilitated electrome-
chanical deformation of the polymer stabilizing network. Accordingly, the concentration of ions
trapped within the polymer network should considerably influence the EO response of PSCLC. Our
prior studies have indicated that photoinitiators can increase ion density in PSCLC by an order
of magnitude. Here, we isolate the contribution of ionic impurities associated with liquid crystal
monomers (LCMs) by utilizing initiator-less polymerization. PSCLCs prepared with LCM with low
ion concentration show bandwidth broadening of the reflection band whereas PSCLCs prepared
with LCM with high ion concentration exhibit a red shifting tuning of the reflection band. The extent
of the tuning or bandwidth broadening of the CLC reflection band depends on the concentration of
LCMs and the chirality of the LCM.

Keywords: liquid crystals; cholesteric liquid crystals; initiator-less polymerization; optical materials

1. Introduction

Cholesteric liquid crystals (CLC) are a class of organic small molecules that self-
organize into a one-dimensional photonic material with a helicoidal superstructure. These
structured optical materials exhibit a circularly polarized selective reflection, [1,2] with the
center of the reflection notch in CLCs expressed as λ0 = navg × P0, where navg = (no + ne)/2
is the average refractive index of the liquid crystal (LC). The P0 is the pitch, and the no and
ne are the ordinary and extraordinary refractive indices, respectively. The bandwidth of
the reflection band in a CLC is a simple product of the birefringence of the nematic liquid
crystal host and the cholesteric pitch length, ∆λ = ∆n × P0, where ∆n = ne − no is the
birefringence. The bandwidth of a CLC is typically in the range of 50–100 nm in the visible
wavelength of the electromagnetic spectrum.

It is well known that CLCs with positive dielectric anisotropy (∆ε > 0) pass through the
metastable focal-conic state upon relaxation from the field-induced homeotropic state to the
planar cholesteric state [3–5]. This relaxation process is relatively slow and, in many cases,
polymer stabilization is used to improve the relaxation kinetics [6–8]. Conversely, CLCs
with negative dielectric anisotropy (∆ε < 0) do not experience a field induced rotation in the
planar state upon application of a DC bias. Over the past several years, we have extensively
studied the dynamic electro-optic response of polymer-stabilized cholesteric liquid crystals
(PSCLCs) with negative dielectric anisotropy, including bandwidth broadening [9–11], red
shifting tuning [12–14], and blue shifting tuning [15] of the CLC reflection band. As shown
in Figure 1a, an unreacted CLC mixture (LC with ∆ε < 0, photoinitiator, chiral dopants,
and LCM) in the planar state shows no EO response when a DC field is applied prior to
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polymer stabilization. However, after the CLC mixture is photopolymerized, the polymer
stabilizing networks (5–10 wt%) impart varying, dynamic EO responses that are dependent
on the processing conditions (e.g., UV intensity, cure time) and material formulations
(e.g., photoinitiator, LCM). Figure 1b,c demonstrates how the EO response of PSCLCs
formulations can be drastically altered by simple changes in preparation. By systematically
varying processing conditions, we proposed a potential mechanism for the dynamic EO
response of PSCLCs with ∆ε < 0, which is based on the DC field-induced deformation of
the polymer network in the CLC medium [11,13,16–18].
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of the polymer network in a deformable PSCLC with Δε < 0: (left image) with no applied field, (right 
image) with a DC field applied between the top and bottom substrates. The blue lines represent the 

Figure 1. Electro-optic response of PSCLCs with negative dielectric anisotropy formulated with
6 wt% C6M, 6 wt% R1011, 5 wt% R811 and 84 wt% MLC-2079 (a) before and after 5 min UV exposure
showing (b) bandwidth broadening of PSCLC with 1 wt% Irgacure 651 and (c) red shifting tuning
of PSCLC with 1 wt% Irgacure 369. Right-handed circularly polarized light (RH CPL) is used as a
probe beam to match the handedness of the PSCLC samples. Cells of 15 µm thickness were used and
the chemical structures of the materials used for this study are shown in Figure S1. (d) Schematic of
the polymer network in a deformable PSCLC with ∆ε < 0: (left image) with no applied field, (right
image) with a DC field applied between the top and bottom substrates. The blue lines represent the
polymer network, the grey horizontal bars are the low-molecular weight CLC molecules, + and −
are the free cationic and anionic impurities and ⊕ are trapped cationic impurities. Adapted from
Reference [18].

The concentration of ions trapped in the polymer network has a considerable influence
on the deformation behavior of the polymer network. In liquid crystals or liquid crystal
mixtures, concentrations of ionic species can range of 109–1014 ions cm−3 originating
from impurities (initiators, catalysts, salts, moisture) generated during the synthesis and
purification processes [19]. Further increase in the ion density can be associated with the
UV curing process, which can degrade liquid crystals [20–23] and alignment layers [24].
The movement of ions trapped in the polymer network leads to the physical deformation
of the polymer network, and the anchored low-molecular-weight CLC molecules deform
accordingly, observed directly with fluorescence confocal microscopy [11,13]. Figure 1d
illustrates the mechanism for the EO response of PSCLCs. Upon application of a DC
field, the polymer network deforms towards the negative electrode. Since the number of
pitches must remain constant, this deformation induces pitch expansion near the positive
electrode and pitch contraction near the negative electrode. The mechanism is described
in detail reference [18]. The degree of deformation of the polymer stabilizing network in
the CLC medium at various DC voltages is affected by the viscoelastic properties of the
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polymer network [13,25] and the type and concentration of ions trapped in the polymer
network [15,19].

In this work, we isolate the contribution of ionic impurities originating from liquid
crystalline monomer (LCM) on the EO response of PSCLCs prepared without photoinitia-
tors. Polymer networks are successfully formed by direct photoinitiation of the LCM in the
CLC mixture by exposure to UV light. The contribution of ionic impurities associated with
LCMs are isolated by subjecting these materials to additional purification. Purified LCMs
have a lower ion density than as-received LCMs, whereas LCMs obtained from the residual
solution have a high ion density. The PSCLC prepared from purified LCM with low ion
density shows bandwidth broadening, whereas the PSCLC prepared from the residual
LCM with high ion density exhibits red tuning of the reflection band. This indicates that
the ion concentration in the LCM controls the type and the extent of the EO responses of
PSCLCs. The chirality of the LCM also affects the EO response. PSCLCs prepared from
chiral LCMs show a larger EO response than PSCLCs prepared from achiral LCMs, despite
having similar ion concentrations. This study helps to further clarify the mechanism for
the dynamic EO response of PSCLCs.

2. Materials and Methods

Preparation of cells and PSCLC samples. Alignment cells were prepared using indium
tin oxide (ITO) coated glass slides (Colorado Concepts). The glass substrates were cleaned
in acetone and methanol and then treated with air plasma for several minutes. The
substrate was spin-coated with a polyimide solution and baked on the hot plate at 200 ◦C
for 30 min. The polyimide alignment layer was rubbed with a cloth and the cell was
constructed to ensure planar alignment conditions. The cell gap was controlled by mixing
a 15 µm thickness glass rod spacer into an optical adhesive (Norland Optical Adhesive 65,
NOA) which was exposed to a UV lamp for several minutes. The thickness of the cells was
measured using an optical method based on the interference pattern of reflected light by the
glass substrates in each empty cell [26]. Liquid crystal mixtures were prepared by mixing
two right-handed chiral dopants (R1011 and R811, Merck, Kenilworth, NJ, USA), 6 wt%
a liquid crystal monomer (a right-handed chiral LC monomer (SL04151, AlphaMicron,
Inc., Cleveland/Akron, OH, USA) or achiral monomer (C3M or C6M, Merck)), and ∆ε < 0
nematic LC MLC-2079 (Merck) with TNI = 102 ◦C, ∆ε = 6.1, and ∆n = 0.15 at λ = 589 nm.
Chemical structures of the molecules are shown in Figure S1. The pitch length (and thus
reflection band position) of the CLC is adjusted by the concentration of the chiral dopants
and is monitored using an Ocean Optic spectrometer. The polymer stabilizing network
was formed by photopolymerization with 100~200 mW cm−2 of 365 nm light (OmniCure
LX500 LED Spot UV Curing System) for 5–30 min.

Experimental Setup and Measurements. Transmission spectra were collected with a fiber
optic spectrometer (Ocean Optics). Unpolarized or right-handed circularly polarized light
(RH CPL) was used as the probe beam. Transmission spectra were collected before, during,
and after the application of DC fields and the DC voltage increased either progressively at
the scanning rate of 1 V s−1 or directly in a single step. The ion density of the mixtures was
measured using a commercial instrument from LC Vision in 4 µm thickness homeotropic
alignment cells (LC Vision, LLC). For the ion density experiment, the sample was subjected
to a 1 Vp bias at a frequency of 3 Hz. There is no switching response of the liquid crystals
with ∆ε < 0 because the applied alternating voltage (1 Vp) is below the threshold voltage.
The ion density values are the average of five measurements. The ion density is calculated
from current measurements with the triangle method (Software). Optical and polarized
optical microscopy was used to characterize the morphology of PSCLCs. Real-time FTIR
(RTIR) measurements were performed using a Nicolet iS50 FTIR (Thermo Scientific). The
LC mixture was placed between KBr plates. Acrylate conversion was measured as the
decrease in the peak areas from 985 to 980 cm−1 and 1638 to 1633 cm−1. Series scans were
taken at one scan per second.
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3. Results and Discussion

We have previously reported on the initiator-less polymerization of LCMs to form
both thin film liquid crystalline networks (LCNs) and PSCLCs [27]. Upon exposure to UV
light, radicals were generated in the LCM melts or LC mixtures and confirmed by electron
paramagnetic resonance (EPR) measurement. The conversion of the acrylate groups of
the liquid crystal monomer was monitored using in situ FTIR measurements, and LCNs
prepared with or without a photoinitiator exhibited similar mechanical properties. The
PSCLCs prepared without a photoinitiator show a bandwidth broadening response when
increasing the DC field. A potential mechanism for the initiator-less photopolymerization
is through type II Norrish mechanism [28]. Liquid crystals can aggregate through π−π and
head−tail interactions between mesogens. The self-assembled stacked structure induces
red-shifted absorption (bathochromic) through J-type aggregation, which shows different
stacking offset angles due to transverse slippages between mesogens [29,30]. Thus, highly
aggregated liquid crystal mesogens through π−π interaction in high concentration mixtures
or pure LC melt can absorb longer wavelengths of light compared to when the materials
are in solution. Figure 2 shows the absorption spectra of the liquid crystal monomer C6M
in tetrahydrofuran (THF) and CLC mixture with various thicknesses. The 6 × 10−5 M C6M
solution in THF has an absorption peak centered around 265 nm, while the CLC mixture
has a relatively broad absorption peak at around 290 nm and weak absorption at longer
wavelengths (>400 nm). The conjugated LC aggregates can be excited by absorbing UV light
with a wavelength of 365 nm, and the excited aggregates can abstract the hydrogen in the
proton-donating molecules (acrylate group) [31]. The radicals from the proton-donating
molecules are generated by the hydrogen abstraction process, a type II initiation. The
generated radicals can attack the acrylate groups in LC monomers and start polymerization
without photoinitiators. The 15 µm-thick PSCLC sample prepared from the CLC mixture
containing 5 wt% as-received C6M, 5 wt% R1011, 5 wt% R811 and 85 wt% MLC-2079 by
irradiation with UV light for 10 min shows roughly threefold increase in bandwidth as the
DC voltage increases to 60 V DC, as shown in Figure 2b.
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in THF at various concentrations of 5–70 wt% when exposed to UV light [27]. All solutions 
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Figure 2. (a) Absorbance of 6 × 10−5 M C6M in THF, and CLC mixture formulated with 5 wt%
as-received C6M, 5 wt% R1011, 5 wt% R811 and 85 wt% E7 in 1.2 µm, 2.3 µm, 3.5 µm thickness KBr
pellets and (b) bandwidth broadening of 15 µm thick PSCLC by increasing a DC voltage from 0 V to
60 V DC. The PSCLC is prepared from the CLC mixture containing 5 wt% C6M, 5 wt% R1011, 5 wt%
R811 and 85 wt% MLC-2079 by irradiation with UV light for 10 min.

The EPR study in Figure S2 demonstrates the radical generation of the C6M solutions
in THF at various concentrations of 5–70 wt% when exposed to UV light [27]. All solutions
were deoxygenated by purging with nitrogen gas for one hour. No radical species were
observed in the solutions before UV exposure, and the appearance of a radical signal upon
illumination was dependent on the monomer concentration. In the most diluted solution
(5 wt% C6M), no radical species were observed before or after UV irradiation, indicating
that Type II initiation does not occur due to the absence of monomer aggregation. An
EPR signal appears at 30 wt% C6M, and the intensity of the EPR signal increases as the
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monomer concentration increases. The radicals generated directly from the LCMs can react
with acrylate groups to cause radical propagation and polymerization.

The conversion of C6M acrylate group in the mixture during UV exposure was
monitored using real-time FTIR. Figure 3 shows the conversion of the acrylate group of
C6M in two LC mixtures containing 10 wt% C6M, 5 wt% R1011 and E7 mixed with or
without 1 wt% Irgacure 369. The peak at 980 cm−1 corresponds to the carbon−carbon
double bond in the acrylate moiety, and the conversion of acrylate functional groups is
measured by the decrease in peak area with time. When exposed to 200 mW cm−2 UV
light, the mixture with 1 wt% photoinitiator shows a fast conversion of the acrylate groups,
and an almost complete conversion of the acrylate groups in the LC mixture occurs within
10 s (Figure 3b(i)). However, the LC mixture without photoinitiator shows a much slower
conversion of the acrylate groups, and only about 80% conversion is observed after 30 min
exposure to 200 mW cm−2 UV light (Figure 3b(ii)). This slow conversion can occur through
a slow Type II initiation process compared to a Type I initiation.
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Figure 3. Acrylate conversion at (a) 980 cm−1 from real-time FTIR examination irradiated with
200 mW cm−2 UV light for the LC mixtures formulated with 1 wt% Irgacure 369, 10 wt% C6M, 5 wt%
R1011 and 84 wt% E7, and (b) summary of acrylate conversion at 980 cm−1 of the LC mixtures (i)
with and (ii) without 1 wt% Irgacure 369 exposed with 200 mW cm−2 UV light for 30 min.

The dynamic EO response occurs due to the deformation of the polymer stabilizing
network when applying a DC field. The deformation of the polymer network is affected
by two factors: the viscoelastic properties of the polymer network and the concentration
of ions trapped in the polymer network. Thus, the EO response can be manipulated by
varying the alkyl spacer length of the LCM and by the concentration of ions trapped in the
polymer network [32]. All PSCLCs used for this study were prepared from CLC mixtures
without photoinitiator, were irradiated with high intensity UV light (100–200 mW cm−2)
for 30 min, and have similar crosslink density (~80% conversion of LCM). Our initial report
on initiator-less polymerization of LCM to prepare PSCLCs employed a six-carbon spacer
between the mesogenic core and the acrylate. Herein, we utilize and LCM with a shorter,
three-carbon spacer mesogen (C3M). The ion concentration of the C3M monomer was
varied by recrystallizing the material from methanol. The C3M monomer was dissolved
in boiling methanol, slowly cooled down to room temperature, and the resulting crystals
were filtered and dried under vacuum (see inset in Figure 4). The remaining supernatant
was subsequently evaporated and dried under vacuum. We refer to this product as
residual C3M. Recrystallized and residual C3M monomers were white and pale yellow
color, respectively. Purified and residual C3M was characterized using 1H NMR and no
noticeable difference was observed between the two C3M monomers (Figure S3). The ion
densities of mixtures containing C3M and the nematic LC (MLC-2079) were measured with
1 Vpeak AC applied at 3 Hz (so called “transient current method”) and then calculated using
the triangle method [27,33]. The ion density values of these mixtures and MLC-2079 were
monitored during 60 min exposures to 365 nm wavelength UV light, as shown in Figure 4
and summarized in Table S1. The initial average ion density of liquid crystal MLC-2079 is
2.3 × 1013 ions cm−3, which increases immediately upon exposure to UV light and reaches
4.4 × 1014 ions cm−3 after exposure. The photoinduced changes in ion density have been
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reported previously and are possibly due to the photoionization of associated ions [22–34].
The two LC mixtures of 10 wt% purified or residual C3M and 90 wt% MLC-2079 show
very different ion densities. Expectedly, the residual C3M and MLC-2079 mixture has a
much higher ion density than the purified C3M and MLC-2079 mixture. The purified C3M
and MLC-2079 mixture shows almost identical ion density as MLC-2079 before and during
60 min UV exposure. For reference, the 1 wt% Irgacure 369 and 99 wt% MLC-2079 mixture
shows a significant increase in ion concentration before and after 60 min of UV exposure,
as shown in Figure 4(iv) and Table S1. [15,19].
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Figure 4. Ion density of (i) a nematic LC mixture (MLC-2079), (ii) a mixture of 10 wt% purified C3M
and 90 wt% MLC-2079, (iii) a mixture of 10 wt% residual C3M and 90 wt% MLC-2079 and (iv) a
mixture of 1 wt% Irgacure 369 and 99 wt% MLC-2079 during irradiation of 100 mW cm−2 UV light
for 60 min. Inset is an image of the recrystallized solution of C3M monomer.

Figure 5 shows the EO response of three separate PSCLCs prepared from CLC mixtures
with 6 wt% C3M monomers (as-received, purified, and residual C3M monomers), 3.5 wt%
R1011 and 90.5 wt% MLC-2079 exposed. Samples were flipped every 5 min to avoid heat
build-up in the sample during UV curing. The acrylate conversion of the recrystallized
C3M/MLC-2079 and residual C3M/MLC-2079 mixtures were similar (as observed by FTIR,
Figure S4), which indicates the concentration of ions in the CLC mixture does not interfere
with polymerization. Even though the three PSCLC systems have similar conversion and
thus, crosslink density; the dynamic EO responses of these material systems are highly
differentiated. PSCLC samples prepared with the as-received C3M monomer have an initial
ion density of 7.6 × 1013 ions cm−3 and display a bandwidth increase of 3.5~4 times upon
application of 60 V DC (Figure 5a) [27]. The PSCLC prepared with purified C3M (small ion
density of 1.6 × 1013 ions cm−3) exhibits small bandwidth broadening (≤2 times increase
in bandwidth) even at higher DC voltage (80 V DC) (Figure 5b). Different magnitudes
of bandwidth broadening responses are observed between the PSCLCs prepared with
as-received C3M and purified C3M. Interestingly, the PSCLC prepared with residual C3M
monomer shows a high ion density of 9.3× 1013 ions cm−3, and as the DC voltage increases
to 40 V DC, a red shift of the reflection band is observed from 1380 nm to 1840 nm (460 nm
tuning) (Figure 5c). When exposed to UV light, the C3M diacrylate monomer can form a
polymer network, and the ions in the monomers can be trapped in the polymer network.
The ion concentration in the C3M monomer, which forms the polymer networks, affects the
type and magnitude of the dynamic EO responses of PSCLCs. As shown in Figure 1d, the
deformed polymer network induced by DC field application modulates the pitch across
the cell gap. For the bandwidth broadening samples, the pitch deforms linearly [11], while
nonlinear pitch deformation is reported for the red tuning samples across the cell gap [13].
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Figure 5. Transmission spectra of PSCLCs formulated with 3.5 wt% R1011, 90.5 wt% MLC-2079 and
(a) 6 wt% as-received C3M with an initial ion density of 7.6 × 1013 ions cm−3, (b) 6 wt% purified
C3M with an initial ion density of 1.6 × 1013 ions cm−3, and (c) 6 wt% residual C3M with an initial
ion density of 1.0 × 1014 ions cm−3. The samples were irradiated with 200 mW cm−2 UV for 30 min.

Two recrystallized and residual C6M monomers with an alkyl chain length longer
than C3M are also prepared through recrystallization of the as-received C6M. PSCLC
samples prepared using as-received C6M, recrystallized C6M and residual C6M show
7.8 × 1013 ions cm−3, 2.6 × 1013 ions cm−3 (low ion concentration) and 1.1 × 1014 ions
cm−3 (high ion concentration), respectively. The CLC mixture contains 6% residual or
recrystallized C6M, 3.5% R1011 and MLC-2079. The dynamic EO response of these
PSCLC samples is shown in Figure 6. The PSCLC sample prepared using as-received
C6M monomer shows bandwidth broadening of the reflection band by increasing the DC
voltage to 60 V (~4.14 V/mm), whereas the PSCLC prepared using purified C6M (low
ion density) shows small bandwidth broadening of the reflection band by increasing DC
voltage to 40 V (~2.7 V·µm−1). Interestingly, the PSCLC sample with high ion density
shows a red shift of the CLC reflection band from 1480 nm to 1830 nm when the DSC
voltage increases to 25 V DC (~1.7 V·µm−1). The EO response of PSCLC is related to the
ion density and viscoelastic properties of the polymer network. For PSCLCs with similar
ion densities, the viscoelastic properties of the polymer network influence the magnitude
of the dynamic response of the PSCLC. PSCLCs prepared using C6M (Figure 6) show larger
bandwidth broadening or red shifting tuning response than PSCLCs prepared using short
alkyl chain length C3M monomer (Figure 5) due to the large molecular weight between
crosslinks.
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Figure 6. Transmission spectra of PSCLCs formulated with 3.5 wt% R1011, 90.5 wt% MLC-2079 and
(a) 6 wt% as-received C6M with an initial ion density of 7.8 × 1013 ions cm−3 and (b) 6 wt% purified
C6M with an initial ion density of 2.6 × 1013 ions cm−3, and (c) residual C6M with an initial ion
density of 1.1 × 1014 ions cm−3. The 14.5 µm-thick samples were irradiated with 200 mW cm−2 UV
for 30 min.

In addition to the chain length effect, the chirality of LCMs was also studied in
Figure 7. PSCLCs were prepared from mixtures containing 6 wt% purified achiral C6M or
6 wt% purified chiral LCM (SL04151, AlphaMicron, Inc) mixed with MLC-2079 and have
similar ion density values. PSCLCs prepared with chiral SL04151 exhibit a much larger
bandwidth increase (~ fivefold) at 35 V DC voltage, compared to the achiral C6M case
shows a small increase in bandwidth (≤ twofold) at 40 V DC voltage. Video 1 shows the
large and reversible bandwidth broadening response of a PSCLC sample prepared using
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6 wt% chiral LCM. The chiral polymer networks, which are formed from chiral monomer
SL04151, show much larger deformation than the polymer network formed from achiral
LC monomer. This is probably due to the network being more elastic than that formed
from achiral LCM. The chirality of LCM, which affects the viscoelastic property of the
polymer network, affects the EO response of PSCLCs.
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6 wt% purified C6M with an initial ion density of 3 × 1013 ions cm−3 and (b) 6 wt% purified chiral
LCM (SL04151) with an initial ion density of 3.1 × 1013 ions cm−3. Cells with 15 µm thickness were
used and irradiated with 200 mW cm−2 UV for 30 min.

4. Conclusions

To further understand the mechanism of the dynamic EO response of PSCLCs, the
effect of ions trapped in the polymer network was studied. PSCLCs were prepared from
LC mixtures without photoinitiator with purified and residual monomers of different ion
concentrations. A red-shift of the reflection peak is observed in PSCLCs prepared using
residual LCMs with high ion concentrations, whereas PSCLCs prepared from recrystallized
LCMs with low ion concentrations show bandwidth broadening. The type and magnitude
of the EO response of PSCLCs was controlled by the ion concentration of the LCMs in
the sample. The concentration of ions in LCM is the dominant factor influencing the
dynamic EO response of PSCLCs. The chirality of LCMs forming the polymer network
also influences the viscoelastic properties (degree of deformation) of the polymer network
and the degree of EO response. A thorough understanding of the controlling variables for
the dynamic EO materials is central to utilizing them in a variety of optical applications.
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