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A GENERAL THEORY ON SMALL, RADIATING APERTURES

~IN THE OUTER SHEATH OF A COAXIAL CABLE

ABSTRACT

A pair of couﬁled, vector integral equations are formulated for

- finding the tangential electric field at the aperture. :A subsequent"
-use‘df a sma11 aperture aésumption allows us to reduce the intégral v»
equations to thoSe‘of quasi-static type. Solution of thése'equations
can be derivedjfrom’three canonical integral equationég‘ two correspond
to the normal magnetic field‘distribution'at the aperfuré wheh immersed
in an incident tangential static magnetic field and one for the scalar
potential at the aperture due to an incident static electric field
normal to the aperture. Solutions to these canonical equations are
well-known for the special cases of circular and elliptical apertures.
The reflection and transmission coefficients in the coaxial-line caused
by the aperture radiation are then expressed explicitly in terms of some
moment functions associated with the solution of these canonical problems.
Analytical expression for the equivalent circuit elements representing
‘both the localized effect of the aperture and the radiation character-
istics of the external surface of the outer cylinder are obtained. Our
approach therefore requires no assumption on the validity of Bethe's

small aperture theory as in a more conventional method.



1. Introduection

In the study of system electromagnetic compatibility (EMC), the need
to describe the circuit characteristics of a small aperture in the outer
sheath of a coaxial cable or cylinder arises from the concern of electro-
magnetic penetratlon into cyllndrlcal enclosures, propagating along cables
and leads and causing unwanted electromagnetic interferences with internal
circuit elements [1-3]. Application of the same aperture problem is also
found in the study of the shielding effectiveness of a braided- sh1elded
cable [4- 7], as well as the study of radiation properties of leaky lines
used in tunnel communication system [8]. With the exception of[8] a typical
procedure in deallng with this type of problem is first to replace the
aperture by an equlvalent electric and an equlvalent'magnetlc dlpole, the
amplitude of these dlpoles be1ng proportional to the unperturbed electro-
‘magnetic field in the absence of the aperture, and then to determine the
effect of these.dlpoles by solving the conventional source excitation
preblem in the coaxial region. While such a procedure usually can provide
sufficiently accurate description of the scattered field both in the
exterior and interior regions of the coaxial cable, it isyet to be determined
whether it can also yield an adequate~network‘representation
~of a radiating aperture in a common transmission-line analysis. To demonstrate
this point, we use the result derived in this manner for a small aperture
of electrlc polarlzablllty Oy and dyadlc magnetic polarizability um
(geometry of the problem is deplcted in Fig. 1.) Assuming the aperture
is fed from the coaxial region so that there is no external field in the
absence of the aperture, the equivalent network representation of the
aperture in this case is shown in Fig. 2 as consisting of a series induc-

tance Lb and a shunt capacitance Cp given, respectively, by [7]

2
U o € 0N
om oe
Ly = Gy = e (L
b 41Tb2 ' 4ﬂ2b2z§

where n = (uo/eo)% = 1207 ohms, is the characteristic impedance

of a plane wave in air;
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1
Zc =1 n b/a = (L/c)?®, 1is the characteristic impedance of an

air-filled coaxial line of outer radius b and inner radius a;
L = (po/Zn)ln(b/a); C==2n€o(£n b/a)-'1 , 1s respectively the

distributed inductance and capacitance per unit length in the
circuit representation of such a coaxial line;
(uo,eo) is the permeability and permittivity in air, and

o denotes the ¢¢-component of 3;.

We know that the outer surface of the outer conductor can be viewed as

a cylindrical radiating antenna, fed by a coaxial-line through an

aperture. That the radiation loss into the free-space has not been

properly taken into account is immediately apparent in this representation, ’
even though the effect of such a disruption to the line could be pre-
dominantly a reactive one.T The question then is how we can best incorporate
the input impedance of this antenna, which describes its radiation property,
into the conventional transmission-line analysis. Such an information could
be of utmost importancé for instance, in the calculation of the leakage

coefficient of a leaky feeder consisting of periodic isolated holes and

used in a tunnel communication system.

The above discussion points to the need of a more comprehensive theory
on radiating apertures located on the outer sheath of a coaxial cable.
From the viewpoint of boundary problems, a knowledge of the tangential
electric or magnetic field in the aperture is all that is required for
finding the fields everywhere both inside and outside of coaxial cable.

In principle, this can be accomplished by first formulating and then
sovling vector integral equations involving the unknown aperture field.

We note that although this type of formulation generally can lend itself
to numerical computation [9], a purely numerical approach to this problem
however is not very useful in the characterization of apertures by their
equivalent networks. The alternative then is to find analytical solutions

in closed form under judiciously-chosen approximations.

+The same comment is equally applicable to the treatment in [17] of
coupling from one waveguide into another waveguide, or into a cavity resonator
by a small aperture located at a suitable position on a common wall.



In practice, the kind of apertures we are intereéted is electrically
much smaller than the free-space wavelength. For these apertures, coupling
between the exterior and interior region of the coaxial cable is mainly
supported by the fringing field existing in a very localized area near the
aperture. Thus, one can, in principle study the effect of an aperture
by first investigating the canonical problem associated with an infinite
coaxial cable. In the case when the aperture in question is a long but
narrow slot, it has been shown that the vector integral equation formu-
lation reduces to a scalar one either exactly for a complete circumferen-
tial slot [8,10,11], or approximately for a sectional, transverse slot with
the assumption that azimuthal variation of field in the aperture is not
.significant [12]. In either case, analytical solution to the integral
equation can be obtained. The equivalent network representation of a
circumferential slot thus derived is shown in Fig. 3a [10]. It is seen
that the slot essentially provides a capacitive coupling which couples the
input admittance of the external "antenna" Y_ into the coaxial transmission
line circuit which has a characteristic impedance of Z,- Application of
this network is then extended to the case of a finite transmitting antenna
of finite length, fed internally by a finite section of coaxial transmission-
line as indicated in Fig. 3b. When compared with the network representation
in Fig. 2, the significance of Y_ and Ya is indeed apparent at least in

the case of a circumferential slot.

For the more general case of a small aperture of arbitrary shape,
the integral equation formulation of the tangential aperture field is much
more involved because of the vector nature of the solution. Furthermore,
as implied in the work of Bethe [13], Bouwkamp [14] and more recently,
Van Bladel [15,16],auxiliaryintegralequatibn for the normal component of
the aperture field is also needed in order to develop a complete, quasi-
static solution, even though the exact solution requires no such additional
equation. It is our purpose in this report to discuss the analytical
solution of these integral equations, and subsequently to derive from the
solution, the explicit network representation of small apertures consistent
with the transmission line theory, thus enabling us to compensate the

deficiency of the earlier analyses.
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2. Integral equation formulation for a radiating aperture

Geometry of the problem under investigation is depicted in Fig. 1.
It consists of a small aperture in the outer sheath of an otherwise
perfectly conducting coaxial cable of infinite extent having a tubular outer
conductor of radius b and vanishing thickness, and an inner conductor of
radius a. As shown in the figure, two coordinate systems will be employed
in the subsequent derivation; one is a cylindrical coordinate system
(p,$,z) with its axis coincides with the axis of the coaxial cable, and
the other is a local coordinate system (ui’uZ’uS) whose origin is located
somewhere in the aperture and is used to describe field points in the
vicinity of the aperture. We also use a position vector 5%:=u15i-+u255
tangent to the surface of the outer conductor to specify a point in the
aperture with coordinates of (b,$,z) in the global system and (ul,uz,O)
in the local system. Here, a_ and a_, are the unit vectors defined at

1 2
each point in the direction of an increasing u, and u,. The coaxial cable
is excited by an incident current wave of unit amplitude in the form of
exp(-iwt + ik.z) where ® is the angular operating frequency and
1

kl = w(plel)E is the wave number in the coaxial region.

In order to derive an appropriate integral equation for the aperture
field, we first note that the fields in the exterior region where P > b
consist of only the scattered potentials ﬂéz and ﬂhz’ representing essen-

tially the TM- and TE-type of waves in this region. More specifically,

vva(nﬂaZ)+ mmovxcﬂla) (2)

E
Z Z

i}

H

: a ) - i X a
vV xV X (Trhzaz) iwe v (ﬂezaz) (3)

where 'EZ is the unit vector in the z-direction. Since both ﬂez and

Ty satisfy the scalar wave equation (Vz + k2)Tre hz™ 0 where k 1is the

wave number in air, if is not difficult to show that they can be expressed

formally in terms of the value of Ty and the normal derivative of LI

on the boundary surface p=b as



ey (P5952) = E do %ez,m(b;a)ﬂél)(Cp)[Hél)(Cb)]—lei(m¢+“2) )
Thy (05952) = Z_yda (3o'7, ;)11 oy ! () oy te (M02)
m 3

(5)

where

1
g = (kZ__a2)§,, with the proper branch specified as Im(a) >0

for all a (6)

N

and Hél) is the Hankel function of the first-kind and order m, T

ez,m
and T is the double Fourier transforms of ™ and ,
hz,m ez . hz
respectively defined as
R 1 @ 2m _
i, 500 == f dzj[d¢ T (0,6,2) o
‘h Z,m 41 ~ o A hZ

so that the summation in (4) and (5) is over integer m  xanging from

—o to » , and the integration of o is continuously from -® to +

on the real axis of a complex o-plane with suitable deformations at

o = * k in order to agree with the requirement of Im(g) >0 given in (6).

Consistent with this definition then, both T (b;a) and 3T (b;a)
ez,m p hz,m

in (4) and (5) can be given in terms of the transform of the two tangential

electric field components E, and EZ on the cylindrical surface as follows:

0
~ _24 ] . '
Ty o) = €78, (500 (8)
3R (bia) = i(kn) LB, (b;0) + ma(bz®) B, (b3a)] 9)
p hz,m""’ om- "’ zm "’

Substitution of (8) and (9) into (4) and (5) now enables us to express

ﬂez and ™ and thus all field components, in terms of the two tangential

hz’
electric field components in the aperture. Specifically, we can write

down transforms of all three components of the magnetic field as
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i) =~ D oyt M @1 He, miaymam) e, b0}

v k() Y € M @) e, ) (10)
Ay (p3e) = -imatkne) ™ BV @) (e ) (o)) HE b0 ma o) e (b30))
ek Wy en1 ™ e 50 (1.
i, s = 10 e e P @1 By s +mawe?) e, (000}

(12)

Denoting the tangential electric and magnetic fieldi at the aperture as
_ " A A _
Et(b,¢,zL Ht(b,¢,z) and its transform as Etm(b;a)!Htm(b;a)’ we can show

after some rearrangements that

ﬁ;m(b;a)==[ﬁpm(b;u)(im b a¢-+ia5;)-+ikn_lab><§£m(b;u)]{H£1)(bc)[gﬂé(l)(bc)]_l}

2, (1 ) (21 0017 (10 o) e ) o0y (1D 02171

+ ikn—lﬁzm o

(13)
Now by recognizing that the tangential differential operator

vV, = (a¢ b_la¢-+5;az) can be replaced by the multiplication factor of
(imb-lE_ + iaaé) in the transform plane, we finally arrive at a suitable

¢

integral representation of the tangential magnetic field in the aperture
as the following
3 2,8 Ty L . —t 0) = —
-ikn (47°D)H, (x) = Jf [-ikmH (Vo) (x,-x1)
S
o
2w oA (0) o 2— o =15 (0) = o '
+ k ap xEt(xt)q)1 (xtfxt)-+k a¢EZ(xt)®2 (xt,xt)]ds s
(14)

for x_ €5
t O+
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where the two kernel function ®§o) and ®§O) are defined as

(1)
H“ (gb) -
(©) = _ m ' i (mdp+az)
8.7 x) = §Jda B , (15)
m
1 (1) (1)
: _ H (zb) 2\ H zhb) .
' @éo)(xt) = ) |da I?(l) + (1 132\ m(l)( ot (moraz)
H Y (gb) b7z -/;-HI; (zb)
(16)
Here, the position vectors E% and §; are used to denote the observation

and source point in the aperture. The notation S is used to describe

an observation point in front of the aperture with p = b+§, as 6 - 0. 1In
deriving (14), use has also been made of the convolution theorem in both

the ¢- and z- integrations as well as the boundary condition of vanishing

Ez’ E¢ and Hp on the conducting portion of the cylindrical surfacep =b.
We further note that the integral representation of Ht(xt) in (14)

involves both the normal component of the aperture magnetic field and the
tangential electric field. This particular form is chosen in anticipation
that major contribution to the integral would come from the term associated
with Hp , rather than that of be E; or EZ under a small aperture approx-
imation. However, any subsequent approximation by retaining only the term
involving Hp would automatically eliminate one of the two linearly-
independent boundary conditions regarding the continuity of the tangential
magnetic field at the aperture, even though two conditions would be required
in setting up the complete vector integral equation for the unknown aperture
field. In order to overcome such a difficulty, we now introduce an auxiliary
integral representation which relates the normal component of the aperture
electric field with the two tangential electric field components in the
aperture. One can show from (2),(4),(5),(8),(9) without much difficulty

that the normal electric field at the aperture is given by

B ) - fs B, G 7,00 (x4, (2,0 {0 G X Tas”
[e]
for x €5 (17)
t o+
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where the two kernel functions @{O) and '@éo) are again defined in (15)

and (16), respectively.

We now proceed to find the field components 1n the coaxial region
where a<p<b. The total field in this region consists of an incident
field and a scattered field due to. the presence of the aperture. For an
incident TEM current wave of unity in ‘the coaxial cable, the expre551on
for the correspondlng incident field is of the following

=inc inc — -1 L=
E = E a = (2 exp (ik,z)a
; ppnlp),p(lp‘
(18)
. L -1 . _
gine o gine a, = (2n exp(ik,z)a
o 2 ) Plyq)

S S ' -1
where k1 = w(poel) = nrk is the wave number, and n = (uo/el) =n.m

N}

is the characteristic impedance of a plane wave in the coaxial region with
a dielectric of permittivity € For an air-filled coaxial cable, nr=1.
Now since the incident electric field has no tangential component on the
conducting surfaces of p=a and p=b, the scattered potentials ‘"ez

and Tz in this region can be obtained in like manner as in the

exterior region, with the only exception that'the'Outgoing'wave boundary
condition at 1nf1n1ty has to be’ replaced by the vanishing tangential
electric field condition on the surface of the inner conductor. The two

scattered potentials are formally expressed in the form of

Moz (p+0:2) = ] {da my,  (b;000 (2,05 ) [0, (a,b52,)] 1ot M9402) (1)
m 2

wﬁz(p,¢,z) =.% du[ap: “hz;m(b;;“)] th(a,p;cr)[grgﬁm(a,b;cr)]

(20)

where :
QenPsa3T,) = Jm‘(crp)Hn(,l) (g, a)-J (crq)Hn(ll) (P> (21)
@iy = 3t o oW, (22)

—1ei(m¢+az)

o
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: - ‘ 1 ' : ,
Cp = (ki - a2)2 with the proper branch specified by Im(;r) >0
for all o , and Jm is the Bessel function of order m. Here, the
notation b_ is usédrto mean p=b-§ and §-+0. Equations (19) and
(20) are identical in form to the corresponding equations (4) and (5) in
the exterlor region, with the substitution of the Hankel function H(l) by
Qem in the case of Tey and by QU in the case 0f~'ﬂmz . A.51m11ar
manipulation like the one leading to (14) would therefore yield the

scattered magnetic field in the aperture as

-ikn (4n D) (%) =f [-ikni (K7, 2 (¢ )(xt xt)
e b . |

C+ kla ><E (x )Q(c)(x -X, )-rk a¢E (x )Q(c)(x é)]ds',

for X, €5 _ s - N - (24)

where the two kernel functions ®£c) and ®£c) are now given as

RN CHN-H W o1 (mg+az) » (25)

(c)
@ (~ ) = z do —r+————-
m Crth(a,b;Cr)
 ~ (a biz. ) : 2N Q (a,b;é N -
r em

S22 .

b Cr‘chhm(a:b’Cr) ‘

| (26)
Again, the notation So- in (24) is used to describe a cross-sectional area

same as S but with p=b-§ and § - 0. The total tangential magnetic

field in the aperture is then given as

= = _ =5 — . -1 . — :
Ht(xt) = Ht(xt) + (27b) exp(lklz)a¢ | (27)
. ' (c) (c)
according to (18). We note that in the expression for @ and - ¢ ,
the integrands have poles at o = P BT 1,2,... where Qem(a,b,gr) =0

and at a==:tqmn; n=1,2,... where Qﬁm(a,b;gr) = 0, in addition to a pair
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of poles at o = tkl. Thus, one can in principle replace the integration
over a by a sum of residue contributions from these poles. It can be
shown that the terms associated with P corresponds exactly to the
contribution from the TM-modes, Un to the TE-modes and k1 to the TEM
mode.

In order to obtain a suitable integral equation for the aperfure field,
we invoke the continuity of all field components in the aperture. Thus,
with the use of (14), (24) and (27), we finally arrive at the following
expression

. —t - -t 2— = N - = - o | '
Jf[-lkqﬂp(xt)yt@l(x X))+ k' x Et(xt)@l(xt-xt)+k2a¢ﬁz(xt)@z(xt-xt)]ds

t t

s

0
= -ianﬂaé exp(ik,z) ; for E% €S, (28)

where
(0) () = (0) 2_(c) B

.= &, - 9.7, . = 0. -n . for j=1,2 29
®J QJ <I)] QJ QJ r) J (29)

Equation (28) is then the vector integration equation for finding the
tangential aperture electric field. Likewise one can also find from
(18), (19), (20), the normal component of the electric field at the

aperture p = b as

w'v e G = [ LB - vl G v, (080 G et
(o]

2 inc —
30
+ 41°b Ep (xt) S for X, € So_ _ (30)

similar to the expression in (17) for the exterior region. An auxiliary
integral equation is then obtained from (17) and (30) by invoking the

continuity condition at the aperture,

v - =t — - 1 v .
Jf [-E, (51) 9,8, (X, -X))+ E, (x,)3,8, (X -x})]ds'=-2m exp(ik;2) ,
S
[¢]

for x, €s_, (31)
t ]
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where @1 and @2 are once again given by (29). As we mentioned
earlier, the vector equation (28) alone in its exact form is sufficient
to yield an unique solution to the tangential electric field at the
aperture, and hence, fields everywhere.The éuxiliary. integral equation
from this viewpoint indeed is only a redundant one and normally would
not provide any more information which is not already contained in the
solution of (28). However, as it will be shown later, the terms con-
taining k2in(28) are only higher terms in the quasi-static limit and
will not be retained in the homogeneous part of the integral equation.
Thus , only Hp—component can be resolved from the approximate form (28),
and one then needs to use the auxiliary integral equation (31) in order

to obtain a complete solution to the problem.

3. Approximate integral equation: small-aperture approximation

Although the exact integral equation as appears in (28) is not
immediately amendable to explicit solutions in close form, considerable
simplification of the equation can be achieved under the so-called small
aperture approximation in which we assume not only that the aperture is
very small compared to the free-space wavelength (kzscf<<< 1), but its
characteristic length is also small compared with the cross-sectional
dimension i.e. (b-a) of the coaxial cable. The consequence of this
assumption is that local behavior of the fields would now act more like
the static fields associated with the same aperture in a planar ground
screen. This would allow us to adopt a quasi-static equivalence of the
original problem, from which an analytic solution can be obtained. To
achieve that, we first note that the integrals associated with the kernels
®. and 6., j=1,2 actually diverge as the distance 1‘=|E¥-§;| > 0.

Now since %he singular behavior of these integrals can be retained by

simply keeping the leading terms of the integrands as a~»® , the proper
procedure then is to evaluate the leading terms in the integrand exactly,
while approximating terms which are smoothly varying with respect to r.
Using the Hankel's asymptotic expansion for the Bessel and Neumann functions

and their derivatives, we have from [18], after some manipulations, the
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the following asymptotic expressions for the integrands of individual

©) (o) NP -
0,7, 8,7 as defined in (15), (16), and @ (), ¢ () defined in (25) and

(26);

Hél)(;b)
D gy, ~ C bt o/2) Po? (PP m?)
m
2, (a,b;z )
hm >Pr ~ b(Czbz—mz) -(b/2)C2b2(C2b2—m2)-2
2 (a,bsz_) ror
hm bt J 3 r
(1) (1)
2 (Cb) Hm (2b) . 52 2
b (cb) @ (zb)
2 Q (a,b;c ) Q' (a b3z.) _
m hm r 2.2 2
1-=) CRHA y = b b m )"

bz zﬂhm(a,b;cr)

Before we carry out the integration of involving these leading terms

(0) oS
j

analytically, we note that only the difference of Qj and

5
j = 1,2 is actually involved in the integral equations (28) and (31).
Mutual cancellation of many of these asymptotic terms occurs for an air-
filled coaxial cable where nr = 1 and Cr= z . Because of this reason,
we shall restrict our discussion only to this case even though the
procedure can be extended to the more general casé. Thus, for the compu-

tation of @, = @§°)- @{C) we have from (15) and (25)

él)(gb) o (a,b50)
6 (x) = @ ) - 81%bd(x )~+Z-fﬁa{ T Q‘ Ta,550)

() ()

. i2b (222 n2)~? $) o3 (mproz) (33)
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where

2.2 2) %ei(m¢+az)

3x) = im0 | [do?’- (34)
’ m

The -integral 1in (33) now no longer diverges as ]§£|-+0. Consequently, .

a Taylor-series expansion of this term with respect to k]i%[, together

with (34) yields a suitable form of @1 as

5, (x,-X)) = -81T2bq>(§t-§:;) + Wi 0(kr) (35)

where
i2nkb

¢(§t-§é) @( Sc‘) + (2n2b)"12n(1-e ) (36)

(1
H "7 (gb) (a,b;7) ; .
W= 7 {ao) — - ng T * iZb(Csz—mz)—%MSLn(1—e121rkb
mJ o M py (030 (57)

I

(O)and

For the evaluation of @2, we note that the leading terms in @2

cancel completely, and hence, the integral for @2 converges for

(c)
QZ
all values of ]E;] including |§£I > 0. A Taylor-series expansion of ¢,

therefore yeilds
— o ox - _ 2)
0, (%) = 8,0x,) = §+ 0(k) (38)

where

1(1) ' .
21 Ejduﬂ‘ (zb) @, (a,b;0)

gH( Yoy g (325

mz r(”(@b) % (3,b57) 41

+ (1 - ) (39)
2| i () cnhm(a,b,c)ﬂ

)
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Substitution of the results given in (35) - (39) into (28) and (31) finally
gives a pair of much simplified integral equations in the aperture K£ €S,
~ o}

valid to the order of (kr) as

Jrrikatt GV G X))+ K % E, (e G-k 1ds = -iaF, (40)
S0

-fﬁt&;) - V4%, -X1)ds'= 6 (41)
So :

where

F, - -(4nb)’12¢ . ik(81r2bn)—1{llp)f§p <E, (Eé)ds'+$zyE¢EZ(§é)ds'} (42)
SO 50
G, = nm) L, (43)

The expression for ¢(§;—§1) as given in (34) has been evaluated to the

same order of accuracy in Appendix A,

VE, X)) = er? exp(ikr); r = |X. - x| . (44)

4. Formal solution to the approximate integral equation

In this section, we shall discuss the construction of a formal
solution from known canonical problems. To achieve this, let us first

define a vector function ﬁ; in the direction tangent to the aperture.
— - _ — et - — —-—' t
Ft(xt) = J/‘[Et(xt)xn]q)(xt xg ds (45)
s
o

where n = Eb is the unit normal and ¢(§£-xé) is the same kernel defined
in (43). As shown in Appendix B, the function ?; possesses the

following properties:

vt(vt-“t) = iknfs H-Ht(&“t)vtwit&;)ds' , (46)
[e)
n v, xF, = .fﬁt (1) 9,0 (X, -X,)ds (47)
S

o]
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where Vt denotes the usual differential operator taken in the plane of the
aperture. As a consequence of (45)-(47), we can rewrite the two integral

equations (39) and (41) in the form of
_ - R _ _
Vt(vt Ft)_+ k Ft = 1knFO ; no- (Vt><F )= G (48)

valid for E% € So' Thus, the next step is to find the value of f; from
these simplified differential relationships. Once found, we can then find
the unknown aperture field E;><H' from the solution of (44). Here it is

of particular interest to note that the vector function Ft actually
corresponds to the electric vector potential produced by an equivalent
magnetic current source of 2 E;><ﬁ' over a surface area of So in air.

In addition, one can also show that the governing equations for the case

of a plane-wave oblique incident onto an aperture S0 on a planar conducting
screen are essentially the same as (45) and (46), with the exception of

the source terms ?g and G0 being repiaced respectively by the tangential

magnetic field and normal electric field of the incident plane wave [16].

To construct the formal solution to (46), we can first consider
two canonical problems of magnetic type described by the following set of

differential equations for §%s:SO :

— 2= - = — -
Vt(vt.ft.) + k ft. = aj ; n(Vt><ft') 0 (49)
J J J
for j =1,2 and 55 are the two orthogonal unit vectors in the aperture
surface, and another canonical problem of electric type described by

¥ F - ™Y xE ) =
F )+ KE, =0, mEU xE )=1 (50)

V.
t 3 3 3

t
Since the three canonical problems are linearly-independent from each other,
we can expand the solution to the original equations (46) and (47) in the

form of
F. = A + A f  +AT (51)

Substitution of (51) to (48) together with the use of (42) and (43), then

provides us three independent equations for the determination of Al,A2 and Ag.
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To demonstrate how this can be done, we first note that the scattered

electric field in the aperture is related to the vector electiic potential

by E° = V’<§£. Since the incident electric field is normal to the

aperture, we have

(52)

which can then be used to evaluate Fo. As a consequence, we have from

@8) the following relationship,

A3y +AjE, = dn{-(nb) '3 - dk(en’bm) ™) I A
1

2 = =T
- w( ) % AjMij(a¢ ai)ai]} (53)
1

where the moment function Mij is defined as

M = f E.’Bft ds (54)

Equating the-like coefficients for Ei and Eé in (53) then allows us to

obtain two of the three equations for the determination of Aj's:

1 -1 2.3
A = -ikn (4b) T +ik2m) (qﬁl).ciw- J)Zl MoAL L 9)

where

C.=a, a. ; 1i=1,2 (56)

Similarly, the application of (51) and the expression for G0 in

(43) into the second equation in (48) yields immediately

Ay = n(dmb) 1 (57)
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Equations (55)-(57) therefore uniquely determine the value of A. for
all j. The vector function F; is nOW>eXplicit1y known in terms gf
solutions to the three canonical problems. Once again we note that
since ?; as defined in (45) represents the electric vector potential
due to the scattering from the aperture, the scattering electric field
everywhere including those in the aperture, is then given by the
expression V x F_, and the scattering magnetic field by

—i(kn)‘l[V(Vt-Fi) + kzFi] as a direct consequence of the Maxwell equation.

5. Discussions on the canonical problems

Before we proceed to derive the network equivalence of small
apertures, it is important to discuss some of the features contained in
the solution of the canonical problems. First of all, we note that the
results of these canonical problems are connected to the coaxial-line
problem directly from those moment functions M.lj in (54). As it will
be shown later, the magnitude of those terms associated with Mij is

typically in the order of (k250)3/2

where S, is the surface area of
the aperture. Since the aperture is assumed to be electrically small,
only a zeroth order estimates of Mij would be sufficient in the
present problem. Thus, for the canonical problems of magnetic type, we

have from (49) the approximate form of

vt(vt_o_ft.) = ;1- 5 n'(thft.) =0 for j=1,2 and xtgsp

j g j
(58)

which then has a same form as the case of an aperture immersed in a
quasi-static magnetic field of unity in the 55 direction. It is shown
in [15] and [16], via a derivation similar to the one leading to 48y,
that the associated integral equation is
- = —_ — -t t - -
. : - = a. 59
vtjs ARG 0 - %y Jas' = a,,  for Xes, (59)
0
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where

0, Gpxy) = m /XX (60)

and n*h. =n-V (V,-f_ ) is the normal component of the magnetic

field in the aperture.

One can further prove the following properties that [16]

i) the quality pj = n'hj is also proportional to the induce charge
on an electric conducting disc having the same shape as Sy

immersed in an incident field 55 3

ii) jﬁ 5{§£)d5==0 where D(i%) as a vector is defined as
s
o

alpl (xt) + azpz(xt);

— _1
iii) P becomes infinity like & % as the observation point
approaches the rim of the disc, where % 1is the distance

measured from the rim.

Solution to the integral equation (59) is well-known for elliptical and
circular aperturés [13-17], and will not be repeated here. For an
aperture of arbitrary shape, one needs to retort to numerical methods
for the computation of the aperture field. Here, we merely mention
that is is also customary to express the moment function Mij in terms

of 0 . Thus, using the definition of Mij in (54) and (52) and noting

that a. = V. u., we have
i ty

Y . X ) xn
Mij f- tu.1 ej(xt) xn ds
SO

. N 0 _ . ; ds,
f [Vt (ue, X n) -u, V, (€t.xﬁ‘)] s
55 J J

for i,j = 1,2 (61)

where e. is the aperture electric field in the canonical problem.
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With the use of the divergence theorem and the boundary conditiqn of a
vanishing tangential electric field along the boundary contour £ that
enclose s,» one can readily show that the contribution from the first
term in the square bracket is zero. The second term can be replaced by

—ui(_n-VtXet.) = ikn ui(_n -h_j) to yield

S

J
M.. =1 n - h. = i 0. (x : 1.9 =
1§ ikn j; ui(n hJ)ds ikn Jﬁ ulpj(xt)ds, for i,j=1,2
o) o '

(62)

As for the canonical problem of electric type, we have from (50)

the approximate form

V.V £ =0, n- vV, xfq) =1, (63)

with the associated integral equation obtained from (41) as
- — - = — =t T
n- Vtx _g [ets(x t) Xn]cbo(xt—xt)ds =1,
o —
for xt £ So (64)

where etS

(60). Now since Vt><(et3><n)¢o = ~( t3~Vt¢0)n, an alternative form

is the tangential aperture field and ¢O is defined in

of (63) can be given as

Sfé"ts(it)-vtq;o(i‘t-it)ds' = -1, (65)
(o]

which then has a same form as the case of an aperture immersed in a quasi-

static electric field of unity in the direction normal to the aperture

[15,16]. If now we define a scalar potential T3(££) so that €£3——VtT3,
it can be shown in portntial theory that [15,16] .

j) T is positive and vanishes along the rim like 2%, where £
is the distance measured from the rim;

ii) the function T(;;) also corresponds to half the potential
difference across a flat magnetic conductor having the same

shape as Sy immersed in a unit field in the normal direction.
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In addition, the moment function in this case is given by

Mi3 = ef a; - '(-V'tTSX'n)'dS = f’rsai-dﬂa , 1i=1,2 (66)

>0 2
which according to (i), vanishes on the boundary contour & , i=1,2
enclosing so. Because of this, we can now define a dyadic function M
as
..=a, ‘M- a., fori, j=1,2,
1] 1 J :
and _ L (67)
M= f xtp(xt)ds
s
o
Most often, the dyadic M is referred to as a dyadic magnetic polar-
izability of an aperture. It is obvious that for an aperture with

symmetry in both u, and u, directions (an elliptical aperture for
2

1
instance), the diagonal element Mij is identically zero for i # j.
Using the result in (66), it is then not difficult to show from (55)-

(57) that

e LT &
81 b
where
Kt = Alé'l + A2§2 s (69)
C= (agp-ajla; + (a, aa, , (70)

N I e A L R LA A

=

O
P
=

(71)

and I is the unitary dyadic. For the case of symmetrical aperture
where Mij =0 for i# i, solution-of A takes a simpler form
A - G (ay-a;)
- - ) —1 —
i b ) 2 gn2yy [‘p(l)_(aq)

for i = 1,2 (72)

'a—i_)w(Z)]Mii
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together with A.3 = n(4ﬂb)—1 as giyen in (57). Provided that Mii is

known from the static solution, (72) together with (57) and (51) then
yield the complete solution of the aperture field. Once again, we wish

to emphasize that the fields associated with fk. for j =1,2 describe the
magnetic property of the aperture, while ¥£“ 3 for j =3 describes the
electric property. Now even though ?;3 will not produce any contribution
to the moment function Mi" or the magnetic polarizability, its importance

comes from the evaluation of the following integral

P = Jﬂ E 2 zds , (73)
s
0o

which, as we shall see in the next section, is analogue to the magnetic
polarizability. More specifically, if we now replace EZ3 by

-a -V =_%9 .
a, tTS so that zEZS Vt {zT

3az) + 1 we have from (73)

3 >

P=- §£ZT3[az-t)d£ + .f TSdS .
0

The first integral vanishes because t1_, =0 on the boundary. Consequently,

3
P= J TSdS (74)

S .

)
which then is defined in the same way commonly referred to as the electric
polarizability. We should also note here p and M are identical to the
so-called equivalent electric and magnetic dipoles in the application of
Bethe's small aperture theory [13-16]. For an elliptical aperture, explicit

expression of P and M are known as
nlf(l-ez)
T T TEE(e ;
(e) 5 5 (75)
2
ﬂlfez o ﬂlle (1-e)
272

M= 28 SRETEET

3[E (e)-K(e) (1-e2) ]

L - —
where e = (1 -23/2?)2 is the excentricity of the aperture; a2, are
the unit vectors along the major and minor axis ; K, E are respectively

elliptical integrals of the first and second kind with modules e [17].
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Different from most of the applications regarding the Bethe's Theory
however is the fact that both the transmission-line and the antenna

) @ 5,

parameters are now explicitly contained in the form of y and y
the determination of the magnitudes of this dipole, and the direct usage
of the dipole concept actually is not needed in the subsequent development

in the network equivalence.

6. Reflection and transmission coefficient

The network representation of a small aperture can be determined
from a knowledge of the reflected and the transmitted field in the
transmission line. Using the formulation in (19) and (20) for the
Hertzian potentials, one can write down the formal expression for the

angular component of the magnetic field in the coaxial region as

Hs(p $,2) =.z‘gda(ilg{(‘ma) th(a,p;Cr) [E (b;a) + _ma g (b;a) ]
¢ m kn"t e gy (2,b5z) om* bai ame
(76)
2 Qém(a’p;cr) ~ i (mé+az)

+ k

. E_(b;a)} e

1 g (abz) zm

As we mentioned earlier, the integration over « can be expressed
alternatively in terms of residue conbtibutions from the zeros of
Qem(a,b;gr), Qﬁm(a,b;gr), and a pair of poles as a =%k, corresponding
individually to the Tan, TEmn and the TEM modes. Provided that the
coaxial cable propagates only the TEM mode, the residue contribution
from all other modes will decay exponentially from the aperture. Thus,
the expression for the scattered magnetic field takes a much simpler

form of

HS (,9,2) = m(nyotnb/a) 'E, (bsky)exp(ik;2) (77

as the observation point =z =+ «. By substituting for the definition of the

”~
Fourier transform Ezo’ we have



27

S + -1 ikyz
H¢ =V (4mpz )" el ‘ (78)
where
-ik.z »
+ _ -1 = 1
Vo = (27mb) ‘g Ez(xt)e ds (79)
0

and ZC = (nI/ZW)Qn b/a is the characteristic impedance of the coaxial
transmission-line. Thus, the transmission coefficient, defined as
H¢ = TH "¢ , 1S now known as

¢
T=1+V/(2) . ‘ (80)

. s . + ;
To find an explicit expression for VO, we can replace the exponential

exp (—iklz) by the first two terms in its Taylor series to obtain
o -1 — ) j‘ _
VO = (27b) [j~EZ(Xt)dS -1k1 ) zEZ(xt)d%} (81)
0 o

The first term can therefore be identified with the magnetic polarizability
while the second term with the electric polarizability .
If use is made of (52), (54) and (73), we can rewrite (81) as

+

\
o

(2mb) " [ ] -5, )My A, -ik PA]
1,]

(82)

(2mb) ! [CH-R, - ikPA]

where the expression for C, M and K; are given in {69)-(71) for an air-
filled line. Here, we note that the terms P and M are the intringic
properties of the aperture;K; and AS are the excitation factors which
involve both the transmission line and antenna parameters; C 1is a
geometrical correction indicating the angle between the incident magnetic
field and the aperture's axis.

In order to find a suitable expression for the reflection coefficient,
we again retain only the TEM contribution in (76) by allowing the observa-

tion point to approach infinity in the negative z-direction,
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s, 2 -1 _ | e
H¢(p,¢,z) ~ {(Bﬂ' Zcb) Nf Ez(xt)e ds} exp(flklz)
- O —1 .
Thus, from the definition H = H;“C +T'(2rp) " exp(-ik,z), we obtain an

expression for the reflection coefficient I as

r=v/@z), | (83)

where -
_ -1 J» ik
vy = (2mb) ° ] EZ(_Xt)e
o

Z

1 (84)

which according to the discussion leading to (82), is known explicitly
as

- -1 == & ) .

Vo = (2rb) [C-M At + 1k1PA3] (85)

and C, M, At’ P and A3

an air-filled coaxial-line. Equations (82) and (85) then comprise the

again are given in the previous section for

complete information concerning the transmission and reflection of the
current wave in the presence of an aperture of arbitrary shape. If how-
ever the aperture possesses the kind of axial symmetry as we mentioned

. . + . .
earlier, expression for Vo takes a simpler form according to (72),

3 2,2
* . 2,-1 2, b k™b 1 2)y;-1, P
Vy = -k ) ] clp— - e - ep®rte 5y,
j=1,2 jj . 8w b
(86)
where Cj-= §¢~55 for j =1,2. For the special case where one of the axis,
say Ei coincides with the direction of the incident magnetic field, i.e.
C1==1 and C2:=O, (86) further reduces to '
3 2,2 -1
* . 2,-1;. b k™b 1 2 '
v cinkb(en) - - Ay P e B 67
11 81 b

It is obvious that the term w(l) - w(Z) as given by (37) and (39), con-
tains the only information regarding the radiation property of the aperture.

Approximate expressions for this term is evaluated in Appendix C.
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7. Explicit network representation

We now proceed to derive an explicit network equivalence of a small
aperture by first defining a lumped impedance element Z, and a lumped

admittance Y as follows:

) . 3 22 1-1
e (2R ] A e i R e
8 j=1,2 33 8 J , c
gn bz’

+
so that the expression for V; can be cast into a more compact form of

-1
+ 1 1 2
RECRE (0

where ZC is the characteristic impedance of the coaxial transmission line.
-+

Here because V_ is small, the terms IYZc[ and [z/2 | are usually much

smaller than one. The apparent impedance as seen by the coaxial-line to the

left of the aperture, is then obtained in terms of the reflection coefficient

T=V/2Z as
(o] (o]

[S\]
)

i = Z,(1-D)/(1+D) -

-1
1+ (1422 /2) - YZ /2

-7 = (91)
©1- (%22 /2)"" + YZ /2
A subsequent expansion of (91) with respect to (YZ_/2) therefore yields
Z. =2 {1-vzZ L } + o(]yz 12)- (92)
in s 2 c *

c Z
1- (1+22C/Z)

where 1
l-+(1+ZZC/Z)

Z. =12
R I (1+22€/2)‘1
which can easily be shown as (24-ZC). Thus, by retaining only the first-

order terms in both Z/Zc and YZC, we obtain the final expression of
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Z. =7 +2 -Y2°
in C [
or R :
Zi % L+ Z/(A+YZ) (93)

Equation (93) now gives a surprisingly simple network interpresentation
in the form of a series Z and a shunt Y both located at the aperture
in the transmission line circiut, as indicated in Fig. 4 When we
compare this representation with the one derived from the equivalent-
dipoles concept (i.e. Fig. 1), we find that the series inductance (iwL,)
should now be replaced by Z and the shunt capacitance, iwa by Y
However, we have not assumed apriori an equivalent electric and magnetic
dipole to replace the aperture; as a consequence the radiation property
of the external cylinder, as fed by the aperture, is now contained in
the expression of Z, via the contribution of w(l)— C5¢(2}.in (88).

Let us now turn to the special case where one of the major axes of
the aperture is oriented in the ¢-direction. Using the expression for Y
in (90), we have 2
C. = 59832__ ' (94)

5 s
b” b Sﬂzbzzi

Y = iwC

with the electric polarizability P now denoted as %, - On the other

hand, the use of (88) with C, = 1 and C2 = 0 yields immediately

1
Z = _i (95)
(1mLB) + YZ
where
Ho%n (96)
L= ————
b )
8'rr2b2
_ ikb . (1) 2y, 1 (97)
YZ = n [IP - ll‘ ] ch

and again we have changed the notation for the magnetic polarizability
to o_. We note that the expressions for the capacitance and inductance
- C

are identical to those given previously in (1) using the
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equivalent dipole concept (the factor of 2 arises apparently due to the
different definition of the magnetic and electric dipoles; see the foot-
note explanation in [7]). However, our expression contains an additional

impedance element Y_ in parallel to the inductive element. In Appencix C

z

we have shown that YZ as given in (97) is explicitly known to be of the

following form

YZ = me + iwCp ; (98)
Cp = 26 pLan[16m b /d(b-a)] - 2y + 1 + N_(05b/a)} (99)
Y, - izkon ™ [ (kd/2) + ¥ - 1+ N (ka)] , (100)
N_ (kb) =fo{ﬂl(1)(cb)[ﬁgl)(cb)]‘l v it Ydo - /2, (101)

where NC(O;b/a) is a small quantity defined in (C.b) which depends only
upon the ration b/a, and Y= 0.577216 is the Euler's constant. As pointed
out in a previous work by this author [10], the term wa éorresponds
exactly to the input admittance of an infinite antenna of radius b,
driven uniformly by a voltage source across a gap of finite width d.

(The actual value chosen for d is of no consequence since its effect

is cancelled completely by a same term in CT). Physically, the electro-
magnetic field, once escaped from the aperture will excite current on

the external surface of the outer coaxial conductor which then acts like

a transmitting antenna and radiates into the free-space. This then explains
w in the formula. In addition to Y we also note

b b® ?
from (98) the existence of a capacitive term CT' Such a term is known

the appearance of Y

to exist in the case of a circumfernetial slot [10] as is evident in

Fig. 3 where the terms Lb and Cb associated with the electric and

magnetic polarizabilities of a small aperture become insignificant.



32

~————

\J

L 4

NS

Figure 4(a)

me

Figure 4(b)



33

8. Concluding Remarks

Analytical expression for the aperture field is obtained in this
paper from an integral equation formulation of the problem and a sub-
sequent use of the so-called quasi-static approach, in which the dominant
ﬁart of the solution can be extracted from canonical problems, while
retaining the basic features of the propagating mode in the coaxial region,
and the radiation characteristic of the coaxial cylinder. Equivalent
network répresentation of a small aperture is then derived without requiring
the use of equivalent dipoles. The network equivalence of a symmetrical
aperture with its axes oriented in the direction of the incident field,
is shown in Fig. 4b. It consists of a lumped shunt capacitance Cb’
and a series impedance Z composed of an inductive element Lb, a
and the input admittance Y, of the external

T b
antenna, all in parallel. Now since the fringe field exists only in

capacitive element C

close proximity of the aperture, the equivalent network excluding me can be
applied to truncated coaxial cylinders much in the same manner as in Fig.3b,
so long as the cylinders are long compared with the characteristic length
of the aperture. It is equally applicable to multiple or periodic
apertures when the near-field reactive coupling of two adjacent apertures
can be ignored.

Our apalysis in principle can be extended to include the problem of
electromagnetic penetration into a coaxial cable, or cylinder. This may
be achieved either from the use of reciprocity, or a direct analysis involving
an incident palne-wave field. The latter approach, however, can be very
involved because the need to find the scattered field both in the presence
and in the absence of the aperture. However, judging from the equivalent
network obtained for a radiating aperture, and the particular way the
antenna input admittance is coupled into the internal transmission-line
circuit, it would appear that an equivalent voltage generator (determined
by the product of the incident electric field strength and the effective
length of the external coaxial cylinder acting as a receiving antenna) in
series with Yb” , or an equivalent current source in parallel with Ybn’
would be required. Investigation of this aspect of the problem will be

reported later.
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APPENDIX A

In this appendix, we shall consider the evaluation of the kernel

function ¢(xt—3c‘;) defined in (34) and (36) as

¢ =¢ + (2r°b) "1 n(l-exp[i2nkb]) A.1)
5= i0m 2 Z.fda(czbz—mz)—% exp (img + iaz) (A.2)
m

3

Recalling that g = (kz—az) , the integrand is seen to have a pair of

4 2
branch cuts with branch points located ateb==% (kzbz,-mz)f for k>m and

+i (mz-kzbz)% for m>k. Rewriting the integral in (A.2) with a parameter
2 2,2.%

B defined as (k™ -m“/b") and Im(g) > 0, we have

pt fdoc (Bz—ocz) -2 exp (ioz)

B
21

s

da(Bz—azj_% cos az-—iZb-l J-da(az-Bz)-%cos oz
B

2 o]

-1 d6 cos(Bz cos §) - i2b_1 f do cos(Bz cosh9)
()

= 2b

o 'ﬁ{o

(A.3)

The two integrals in {(A.3) are known exactly in the form of Bessel and
Neumann functions, respectively [18]. Thus

i=16m™ T aW@Ene™ ; p= ala’nh? (A.4)
m

In order to evaluate the series in (A.4), we consider first the following

contour integral

ivgb
(1) 2 2.% e
b j( Hy " (zk-v 17 L2 dv
[
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with the contour C specified in Fig. (A.1) which includes the
integration along a circular path with radius R, and two branch cuts,

F+ and I' . As R+, magnitude of the integrand behaves like

]vl'% exp[-Im(kz-vz)fz-(Im V) $b]

in the upper half v-plane where Im v>0, and like

V] expl-naP-vH%z + (m v) (21-930]

in the lower half v-plane where Im v<0. Thus, the integration along the

circular path vanishes as R>®. The application of the residue theorem

now yields,

5 5 Jv¢b
3 D (ax? n2/b215)e ™ - b(f ~f) (1) (2 1P-v21%) ~525

m -1

elV¢b e~1v¢b )
=2b Jf Jo(z[k h1 J1ZTby | T -i2Tby bdv
k e -1
In the derlvatlon of (A.5), use is made of the relationship H(l)(z)+H

2JO(Z). If now we rearrange the terms in the curly bracket as

1(2ﬂ+¢)vb ei(Zﬂ-¢)vb

= 12TV 1 - o~ 12TV !

_[eiV0 |, IVb(2m-9),

The integral concerning the terms in the first square bracket is known

exactly [18]. On the other hand the terms in the second bracket decay
rapidly whenever 2ﬂ|v]b3>1 on the positive imaginary axis. Now since
bp << 1 and z << b under the small-aperture approximation, we can
evaluate the second integral by replacing Jo(z[kz—vz]%) and exp (i$bv)
with their small-argument expansion. Consequently, we have from (A.5)
1k|xt| ikry, i®_i2mvb

e
ZH(”( (P p?p) = AR S5 R

dv

(A.5)

(2)[ 7)

12mVb

(A.6)

qv

b
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1
z

where Ty = [(2ﬂ—¢)2b2 + 22] = 2mb. The remaining integral in (A.5) is
now known explicitly as,i(2ﬂb)—1{e12ﬂkb + 28n(l-exp[i2nkb])}. Thus from

(A.6), we have

ik|x, | .
Q) 2 2,2, % .. ‘e -1 i2nkb
EIHO (z[k —-m /b D= -12b[—]i—t]— - (2m)"" 2n(l-e )]
(A.7)
Substitution of (A.7) into (A.4) and (A.1) finally yields
_ o iklx |
¢&x) = (r|x. ) e (A.8)
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Appendix B

In this Appendix, we shall derive appropriate expressions for

vt(vt-Ft) and vt><?£ . According to (45), the vector potehtial function
?;(E;, is defined as
= — _ — - e | ' —
F, (x,) _fs [E, () xAlo(,Xp)ds' ,  for X, es (B.1)
O .

The divergence of ?; is then given by
- _ - —t -, _—l ]
Ve Ft(xt) = jr Et(xt) x T Vt¢(i£ X, )ds (B.2)

since the differentiation of the source function E;(§1)><ﬁ; with respect

to x, is zero. Now because vt¢ = —V;¢ , the integrand in (B.2) can

be rewritteh as -v] - {[E, (x}) xAl¢} + ¢V - [E, (x]) xn] so that

5 = — s T — Tt t = v
v, F,&,) = j;(p(xt—xt)[Et(xt) T1dg + ]S 0 (x,-X) [, E, (1) xTlds
L o (B.3)
when the divergence theorem is applied, and ¢ 1is the unit vector tangent
to the live contour £. The first integral .is identically zero because of
the vanishing tangential electric field at the boundary, - 1.e.,
E; % =0 on %. The second integral, on the other hand, can be simplified
. " = =1 o T ot W E (T = ks T

according to Vt-[Et(xt) xn] = n. Vt xEt(xt) iknn H(xt) for a small

aperture where T 1is a constant vector. It follows from (B.3)

v. (v

t

o F) = ikn fs n - H(G )V, (5, X)) (B.4)

s}
which is the same as given in (46). Following a similar reasoning, it is

then not difficult to show that

— —1 _ =t — v
v, xF, = js Veox, - X)) x [E, (x,) xnlds
0

- fs [v,6(x, X)) - E, &) Jads'
0o
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or alternatively we have,

=

<

X
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|
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Figure C.|
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APPENDIX C

The term [w(l) —w(Z)] defined in (37) and (39) can be rearranged

as in the following,

B _ @2 202 in 1 1-e12TKDy #N_(kb) +N; (kb;b/a)+N, (kbsb/a)}
h C.1)
where N (kb) d [j '(1)(Cb) . :} /
= a == | - iq/2 , (C.2)
rQeo(a b;z) i]
N, (kb;b/a) = 2fdontm RERTam i1/2 (C.3)

Nl

g (1) :
* (cb) @, (a,b5z)
N, (kb;b/a) = -2 2 fdoc L C J

1D by o (abie

ey :
o2 [H, 7 (@h) th(a,b,c)] 2ib
2,2 2.%

bz HI;(”(Cb) e, @,b52)” (% n?)*

(C.4)

‘We firsf note that the term No(kb) is only a function of the outer

radius, b. As shown in [10], this terms is related to the input admittance
me of an infinite cylindrical antenna of the same radius, driven uniformly
by a voltage source across a circumferential gap of width d, explicitly as
follows

12kb

Y [2n kd/2-+Y-fN (kb) 1] (C.5)

b =
The term Nl(kb;b/a), on the other hand, can be evaluated by deforming the
contour of integration onto the upper half of a complex a-plane. Using

the deformation detailed in Fig. C.1, it is not difficult to show that the
integration on the real axis reduces to an integration over both sides of
the upper branch cut, and a residue series due to the pole contribution at

.2 2.3
o=k and OL:pon where p0n=1(?;0n—k)
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o o8 | &) N
o (a,biz ) = I @ P e v -3 @ wu e a -0,
.6)

corresponding physically to the excitation of the TEM and the TMon—modes.

—

N . .
N, (kbsb/a) = 1im{niz (residue contribution at g=p ) -mi(2kbgn b/a) '-ir/2
N £ on
n
R

+ ifk k2-t2)2ae + [k“(_tz_kz)_%( | @
o b

where the upper limit of the second integral is defined as RN=Nﬂ/(b—a)+8.
and §>0. The two integrations in (C.7) are explicitly known as in/2 and
cosh_l(RN/k), respec_tively. Thus, upon the use of the approximation
cosh‘l(RN/k):zzn 27N/k (b-a), and the residue calculation, we have from (c.7)

2
. N/ . w7 Jo(b7!
k(b-a) . Tl 0°°n
N, (kb;b/a) = ~ A 22 4+ 1im {An N - z ( ) [ - ] s
1 2kb inb/a 2m Neoo n=1 ponb Ji(@na)

(C.8)

In deriving (C.8), use has also been made of (C.6), and the Wronskian of
two Bessel functions. In addition, we can replace ¢nN by an-algebraic

series so that

) _ _-mi .
Nl(kb:b/a) = ma - fn k(b-a)/2m -y + Wl(kb,b/a), (C.9)
and 2
o . JE (. b) o-1
W, (kbsb/a) =} ;11-- (—E%)[l -—g—i“-——] ? (C.10)
' n=1_ Pon Jo(gna)

In most cases, the radius b is usually small so that

. -1 . -1
"Pop = inm(b-a) and Ly~ nr(b-a) . Thus, we have
Wl(kb;b/a) = Wl(O;b/a) (C.11)

We further note that for a sufficiently large n, the large argument
expansion of the Bessel functions [18] yields immediately to the approxi-

mage expression of
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1 i b-a a cosz[nﬂb/(b-a)]
= - ;;C——ﬂ 1-2 5
cos " [nma/ (b-a)]

5 (C.12)

for each turn in the series. Now since cos[nmb/(b-a)] = (fl)ncos[nﬂa/(b-a)],
the two terms in (C.12) start to cancel each other as soon as n becomes

large . As shown in [10], this term is usually negligible in practice.

The only remalnlng integral is then N (kb b/a). For the range of small
o Wwhere [;b] << m2, a small-argument expansion gives rise to the following
result.

Hv.(l) o (l)

m m b

QH,gl) . bZCZ QH' (1) m

.
2

]
Qem _ 0’ hn ~_ b 1+ (a/b)™"
Fem b7 r2hm " 1o ()™

Thus, the integrand becomes increasingly small as m increases, and is
independent of k. Provided kb is small, we can therefore approximate

z by ia to obtain

o]

[0}

N,(0;b/a) = ]
m=1.

50 %) o[ i1 P }
X L Km(x) Qem 4 X2 L Ym (x +m )

o3

- (C.13)

1]

where (Qem/ﬂem)

[T, 2 D)X () - I (0K (xa/b)]/[1 (xa/bIK (x)-T, (x)K (xa/b)]
(C.14)

[I;(ax/b)Km(x)-Im(x)K;(ax/b)]/[I%(ax/b)KA(X)—I&(X)KA(gx/b)]

(th/Qﬁm)
(C.15)

and Im’ Km are respectively the modified Bessel functions of the first
and second kind. Now since both Nz(o;b/z) and Wl(O,b/a) are independent of

kb, we can group them together and define a new function NC(O;b/a)

NC(O;b/a) = Wl(O;b/a) + N2(O;b/a) (C.16)
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as a real function which varies only with the ratio of outer and innef-radii
of the coaxial-line. One further recalls from the devinition (C.4) and
(C.10) that the value of NC actually reduces to zero in the limit of a
flat ground screen where b=+« and a/b> 0. Thus, one might view the
function NC(O;b/a) as basically a correction term representing the change
in stored energy as a result of placing the aperture in the outer sheath
of a coaxial line instead of a planar screen environment. It is then
apparent, at least intuitively, that this correction term is négligible
when the size of the aperture is small compared with the overall dimension
of the coaxial line.

Upon the substitution of (C.5), (C.9) and (C.16) into (C.7) we now

have

lp(l)“l}}(Z) - (iﬂb_) (me + 2% + ijT) ;. (C.17)
C

where

Cp = 2b{tn 167°b2/[d (b-a)] - 2y + 1 +N,(0;b/a)}  (C.18)

and ZC = (n/2m) Znb/a is the characteristic impedance of the coaxial-line.
In deriving (C.17), use has also been made of the approximation that
1 - exp(i2mkb) = i2nkb, for a small kb. Thus, from the definition in

(97), we finally obtain a suitable expression for YZ as

Yy = Y, + i6Cp . (C.19)



