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Abstract: Recent drastic reductions in the Arctic sea-ice cover have raised an interest in understanding
the role of sea ice in the global system as well as pointed out a need to understand the physical
processes that lead to such changes. Satellite remote-sensing data provide important information
about remote ice areas, and Synthetic Aperture Radar (SAR) data have the advantages of penetration
of the omnipresent cloud cover and of high spatial resolution. A challenge addressed in this paper
is how to extract information on sea-ice types and sea-ice processes from SAR data. We introduce,
validate and apply geostatistical and statistical approaches to automated classification of sea ice
from SAR data, to be used as individual tools for mapping sea-ice properties and provinces or
in combination. A key concept of the geostatistical classification method is the analysis of spatial
surface structures and their anisotropies, more generally, of spatial surface roughness, at variable,
intermediate-sized scales. The geostatistical approach utilizes vario parameters extracted from
directional vario functions, the parameters can be mapped or combined into feature vectors for
classification. The method is flexible with respect to window sizes and parameter types and detects
anisotropies. In two applications to RADARSAT and ERS-2 SAR data from the area near Point
Barrow, Alaska, it is demonstrated that vario-parameter maps may be utilized to distinguish regions
of different sea-ice characteristics in the Beaufort Sea, the Chukchi Sea and in Elson Lagoon. In a
third and a fourth case study the analysis is taken further by utilizing multi-parameter feature
vectors as inputs for unsupervised and supervised statistical classification. Field measurements
and high-resolution aerial observations serve as basis for validation of the geostatistical-statistical
classification methods. A combination of supervised classification and vario-parameter mapping
yields best results, correctly identifying several sea-ice provinces in the shore-fast ice and the pack
ice. Notably, sea ice does not have to be static to be classifiable with respect to spatial structures.
In consequence, the geostatistical-statistical classification may be applied to detect changes in ice
dynamics, kinematics or environmental changes, such as increased melt ponding, increased snowfall
or changes in the equilibrium line.
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1. Introduction

1.1. Motivation for Sea-Ice Classification

Observations of recent drastic changes in the Arctic sea-ice cover have raised academic interest
and public concern, motivating research that leads to an understanding of the role of the Arctic sea ice
in the global system (Maslanik et al. [1,2], Rothrock et al. [3], Vinnikov et al. [4], Cavalieri et al. [5],
Serreze et al. [6], Stroeve et al. [7,8], Drobot et al. [9], Serreze and Stroeve [10]).

The rapid decline of the Arctic sea-ice cover is one of the most obvious signs of climate change, as
documented in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [11]
and one that has threatening consequences for weather, climate, ecosystems and human livelihood
in the northern hemisphere (Mahoney et al. [12], George et al. [13], Druckenmiller et al. [14]).
Sea ice behaves as an insulator and modulates heat, moisture, and momentum transfers between the
atmosphere and ocean and is both an indicator and a driver of climate change. However, even more
alarming than the observed reduction in geographic extent of sea ice is the finding that the older,
multi-year ice is disappearing faster than the relatively thin first-year ice (Maslanik et al. [15]). An
ice-free summer Arctic ocean is predicted to occur in 20–50 years (Jahn et al. [16]). While a trend
of rising Arctic temperatures continues, sea ice coverage undergoes large fluctuations (Serreze and
Stroeve [10]), but the fact of a long-term decrease remains.

Most large-scale studies on the variability of Arctic sea ice (Stroeve et al. [8]) are based on
estimates of the geographic extent and/or area of the Arctic sea ice cover, as derived from satellite
visible/infrared imagery or passive microwave data. To better understand how and why the sea ice
cover is changing, the mass balance of sea ice must be quantified, which requires measurement of sea
ice thickness in addition to spatial coverage. The National Research Council, in its Decadal Survey of
priorities for Earth science from space, identified estimates of sea ice thickness change as a primary
objective [17].

Direct measurement of sea-ice freeboard with a precision of a few centimeters is possible with the
Geoscience Laser Altimeter System (GLAS) aboard ICESat (Kwok et al. [18], Zwally et al. [19]), however,
these data are temporally and spatially very limited. Knowledge of the spatial distribution of leads
and polynias is vital to assessing basin-wide estimates of ice thickness and mass change. Altimeter
data over sea-ice have been collected in NASA’s Operation IceBridge airborne campaigns (see, e.g.,
Farrell et al. [20], Kern et al. [21]) and by European Space Agency’s CryoSat-2 (Laxon et al.
[22]). Collection of high-resolution data from unmanned aerial systems, equipped with altimeters,
can provide valuable local and regional information (Crocker et al. [23], Herzfeld et al. [24]).
Sea-ice thickness can also be estimated from Special Sensor Microwave/Imager (SSM/I) brightness
temperatures, from passive microwave radiometers in general (e.g., Cavalieri [25], Cavalieri et al. [26],
Tateyama et al. [27], Aulicino et al. [28]) and from L-Band brightness temperature observations (1.4
Ghz) collected by the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) during
ESA’s Soil Moisture and Ocean Salinity (SMOS), but only for thin and not melting ice (Kaleschke et al.
[29,30]).

The work in this paper is motivated by the facts that older, thicker ice is typically less susceptible
to melting as well as morphologically more complex than younger ice (Herzfeld et al. [31]), and hence
mass loss may not be directly derived from freeboard and area of coverage. We introduce an approach
to spatial classification from SAR data to discern properties and provinces of Arctic sea ice as a means
to understand and manage this complexity and its relevance to Arctic change.

As the sea ice is highly heterogeneous in the Arctic Ocean in its entirety as well as in smaller
provinces and at each scale constantly changing, mapping and understanding characteristic properties
and morphogenetic, kinematic and dynamic processes become important. With the availability
of high-resolution Synthetic Aperture Radar (SAR) data (e.g., 12.5 m for RADARSAT-1), such
investigations also become possible. SAR data are useful for investigations of Arctic sea ice, because the
SAR signal penetrates the cloud cover that is often present in the Arctic, and because they have a high
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spatial resolution. SAR data have been collected by RADARSAT-1, RADARSAT-2 (Canadian Space
Agency and NASA), ERS-1, ERS-2 and ENVISAT (European Space Agency (ESA)) and JERS (Japanese
Space Agency) satellites, and recently by SENTINEL-1 (European Commission’s Earth Observation
Programme “Copernicus” ).

1.2. Requirements for Sea-Ice Classification Methods for SAR Data and an Avenue for a Solution

A problem that indicates a need for sea-ice classification is that multi-year sea ice, which has
been identified as a major source of ice loss (Maslanik et al. [15]), typically has a complex morphology
(Herzfeld et al. [31]). Other needs of sea-ice classification lie in sea-ice forecast related to marine
shipping routes (see, e.g., Karvonen et al. [32]), and in understanding the stability or the danger of
potential instability of shorefast ice for inuit hunters (George et al. [13], Druckenmiller et al. [14]).
The Canadian Ice Service employs thickness-redistribution functions in its forecasting models (e.g.,
Savage [33], Kubat et al. [34–37]. The problem of complexity relates to ice transport, ridging
and other forms of deformation, which on the modeling side is treated in Harder and Lemke [38],
Hunke [39], Hunke et al. [40], Steiner et al. [41], Bourke and Garrett [42] and Flato and Hibler [43].
These applications call for a data analysis method that can identify complex processes and properties
in the sea ice. The objective of this paper is to introduce an approach that allows to derive such
information from Synthetic Aperture Radar (SAR) data. Radiation at microwave wavelengths easily
penetrates clouds and darkness, making radar sensors ideal for observing the polar regions. In addition,
SAR sensors have very high spatial resolution, typically on the order of tens of meters (12.5 m for the
RADARSAT high-resolution product used here), and respond to surface roughness and internal ice
properties such as salinity and the presence of volume scatterers (Onstott [44]).

Analysis and classification of sea ice from SAR data has been a topic of increasing research in the
past year to two decades. A summary of approaches and comparison to the method derived in this
paper is given in the discussion section (Section 11), because it is most useful to the reader after the
introduction, application and validation of the method derived here.

As motivated above, the objective is to derive a method for automated sea-ice classification from
SAR data that identifies spatial properties and classes that are linked to physical properties or are
indicative of physical processes that the sea ice has experienced (morphogenesis). A new approach is
required to achieve this classification objective from SAR data because of the following limitations.
The fact that most SAR data are single-channel data renders the largest class of image classification
methods useless, which is the class of multi-variate statistical methods. Segmentation based on
backscatter values (grey values) is ambiguous for SAR data, since many examples can be found of
characteristically different ice classes which have similar grey values but different spatial characteristics
and represent different ice types. For instance, open water and very smooth ice may have a similar
signature in SAR data, but on the other hand wind-roughened open water will have a higher
backscatter value than calm open water. In consequence, analysis of spatial patterns of SAR values in a
neighborhood or window is required to distinguish more than a few property classes. Realizing that a
limitation of many image processing methods lies in the small window sizes, we will utilize mid-sized
moving windows which capture the spatial characteristics of sea-ice types. The principal idea in our
classification method is to exploit the spatial structure of sea-ice properties, as reflected in SAR data.

The geostatistical classification method that will be utilized in this paper is motivated by concepts
of structural mechanics. Spatial statistics will then be applied to identify spatially repeating patterns
in data sets and associate characteristic parameters. This has been demonstrated for deformation
states in surge glaciers (Herzfeld and Zahner [45], Herzfeld et al. [46]) but not been applied to sea-ice
deformation. In the first part of the paper, we will establish a similar approach for characterization of
sea ice and parameterization of sea-ice types.

The next goal is to derive an approach to sea-ice classification. We noted that multivariate
statistical methods cannot be directly applied to single-channel data such as SAR data. However, if
we can create a multi-component vector field from the original SAR data set, then such multi-variate
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methods will become applicable again. This will be addressed in the second part of the
paper, combining geostatistical feature vectors and multi-variate statistical classification techniques
(supervised and unsupervised classification). The methods and algorithms are implemented as part of
the software package libgeoclass by U.C. Herzfeld and S. Williams.

In applications to RADARSAT data and ERS-2 SAR data from the region near Point Barrow,
Alaska, we will demonstrate that the implicit analysis of spatially repeating patterns lends itself to
discriminating different sea-ice types in both shore-fast ice and near-shore pack ice. The methods will
be validated using field and aerial observations.

2. Concepts and Mathematical Principles of the Geostatistical Classification Method

2.1. Objectives of Classification

The method presented here to extract information from RADARSAT SAR data and identify sea-ice
provinces and properties is an image classification method. The objective of classification is to explore
given properties of an image or a data field and extract characteristics that allow for the association
of defined classes of objects. Association is a complicated highly nonlinear operation and as such
necessitates the development of computationally efficient algorithms. The challenge is then to retain
and capture the salient information in the image or data set.

An approach commonly used in classification of remote sensing data is the application of
classification algorithms based on moving windows operating on small neighborhoods, typically
3 × 3, 5 × 5 or 7 × 7 pixels, or templates of pixel patterns in small neighborhoods. The disadvantage of
this alternative is that intermediate and large-scale features are not captured in the analysis, and that
the use of templates in classification may induce a pattern similar to that of the template. For instance,
if isotropic templates are used then the algorithm often gives a preference to isotropic structures (as
e.g., in Caers [47]). At the other extreme, utilizing an entire image at once in training a classification
method is not only computationally prohibitive, but also results in overtraining of the classification
algorithm, as too many unnecessary details in the training image will be retained.

An additional challenge in designing a classification method for Synthetic Aperture Radar (SAR)
data is that SAR data lack absolute reference, both in scale and radiometric value, and depend on
look-angle. Classification based on data with lack of absolute reference requires mathematical methods
that do not depend on absolute values but on first-order differences.

In summary, automated classification based on SAR data requires the design of an algorithm that

1. captures the salient information
2. reduces the total data volume and the number of required operations,
3. utilizes mathematical methods that do not depend on absolute values but on first-order or

higher-order differences, and
4. is sensitive to anisotropies.

Our solution utilizes a moving-window technique with intermediate-sized windows, the
determination of the window size is described below in connection with the concepts of homogeneity
and sea-ice provinces. To meet the requirements (1) and (2) of data reduction and operationality of the
algorithm and at the same time capture the intermediate-scale information contained in each window,
spatially and directionally dependent functions are calculated for each window, and then parameters
are extracted from those functions and employed to build up a feature vector. We use vario functions as
introduced in Herzfeld [48] to meet requirement (3) and calculate them for several directions for each
window to meet the anisotropy requirement (4).

Several alternative approaches may lead to class association:

(a) The classification is based on association of a class (here: a sea-ice class) to a feature vector, each
class is color coded in an output image.

(b) A parameter map is stored for each parameter that is extracted from the directional vario function.
The parameter map represents a characterization of sea-ice properties.
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(c) The entire SAR data set/image is segmented into sea-ice provinces, using a classification based on
a combination of parameter maps.

(d) A neural network is trained for class association, based either on vario functions or on feature
vectors, and applied for each window.

Class association using a deterministic function based on feature vectors as in approach (a)
was used for seafloor classification in Herzfeld and Higginson [49]. The sea-floor classes are in
essence (1) submarine volcanoes (round, near isotropic); (2) mid-atlantic-ridge flank regions (highly
anisotropic sequences of ridges and valleys, very rough morphology) and (3) sediment ponds (flat
regions with smooth surfaces). Because the sea-ice morphology in the study area off Point Barrow,
Alaska, is spatially much more complex than the sea-floor morphology in the region of the Atlantic
investigated in Herzfeld and Higginson [49], it is hard to establish a deterministic function that will
serve to separate sea-ice surface classes based on feature vectors. Therefore in this paper we will take an
approach that combines methods (b) and (c). First, maps of characteristics parameters will be calculated
(approach (b)). This characterization approach works for any surface of any complexity. Building on
the results of (b), further classification of sea-ice provinces can be carried out by application of existing
unsupervised or supervised classification algorithms. In the case studies presented in this paper, we
will follow approaches (b) and (c) and demonstrate that classification of sea-ice types and segmentation
of the regions near Point Barrow into sea-ice provinces is possible. An example of approach (d) is
the connectionist-geostatistical classification derived and applied in Herzfeld and Zahner [45] for
classification of crevasse patterns in a surging glacier (Bering Glacier, Alaska). For sea-ice-data analysis
this is work in progress.

2.2. Definitions

2.2.1. Spatial Surface Structure and Vario Functions

We analyze the spatial surface structure of sea ice in the form in which it is reflected in SAR data.
Formative processes (kinematic and dynamic processes and environmental processes such as snow
fall, melting, wind erosion and deposition) that affect the morphology of the surface are captured in
differences of surface values. If we are interested in characterizing the surface structure of a given
area, then averages of such differences formed over the same distance (or distance and direction) will
contain the essential information. Mathematically, we form

v1(h) =
1

2n

n

∑
i=1

[z(xi)− z(xi + h)]2 (1)

for pairs of points (xi, z(xi)), (xi + h, z(xi + h)) ∈ D, where z(xi) is an observation of the variable z at
location xi,D is a region inR2 (case of survey profiles) orR3 (case of survey areas) and n is the number
of pairs separated by h; the distance value h is also termed “lag” (∈ - element of; R2,R3-two- and
three-dimensional space of real numbers (coordinates), respectively). The function v1(h) is called the
first-order vario function. This function exists always and has a finite value, because only finitely many
data points enter the calculation.

The first-order vario function is numerically equivalent to the variogram, provided that the data
may be considered a realization of a spatial stochastic process that satisfies the intrinsic hypothesis
(see Herzfeld [48]). The vario function, however, has the advantage that it may be calculated for
any discrete data set and also generalized to higher order. The place of the intrinsic hypothesis
condition is, in a way, taken by the homogeneity condition. The reader interested in the background
and philosophy of various mathematical theories and their application to geophysical data may be
referred to Herzfeld [48], Luenberger [50], Grafarend [51], Journel [52], Matheron [53], Herzfeld [48,54].
The reader who is mainly interested in the SAR classification method may simply keep in mind that
an objective function is calculated for each window and each direction, from which well-defined
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parameters are being extracted for classification purposes. The geostatistical classification method is
more mathematically and more comprehensively introduced in Herzfeld [55].

2.2.2. Spatial Surface Roughness

The concept of spatial surface structure is closely related to that of spatial surface roughness.
Surface roughness is defined as the spatial derivative of surface elevation. Morphologic properties at
any scale are not captured by absolute elevation (above an imaginary zero reference, such as sea level)
but rather by changes of elevation in space. At larger scale this is topographic relief, at small scale
roughness. For instance, spatial ice surface roughness is a morphologic characteristic of ice surfaces.
(Note that the convention of large scale for low resolution and small scale for high resolution is used
herein, which is opposite to the convention used in cartographic scale.)

Using this definition, surface roughness contains the complete morphologic information of the
surface under study. This may sound trivial, but in some disciplines surface roughness is commonly
understood as roughness length, a one-dimensional parameter, or root-mean-square roughness, a
one-dimensional statistical approximation. For instance, aerodynamic roughness (length) is used
in meteorology (e.g., Oke [56]). However, roughness length can be derived from (spatial) surface
roughness (see Section 5 and Herzfeld et al. [31]).

2.2.3. Characterization—Classification—Segmentation

The objective of (mathematical) characterization is to determine a set of parameters that uniquely
describe an object. The objective of classification is to associate a given object to one of a number of
classes; so that the class association can be carried out for each case automatically, a rest class may
be required to collect all objects that do not belong to any of the characteristic classes, depending
on the class association method. In each new application, the characterization problem must be
mastered before the classification problem. By moving a classification operator over a large spatial
data set, such as an image, each window is associated to a class, and a segmentation may be achieved.
A segmentation into reasonably coherent subsets or segments may require smoothing; however, in a
good classification this is not necessary (see Herzfeld and Higginson [49] for examples and details).
Case studies (1) and (2) will be examples of characterizations, and case studies (3) and (4) will be
examples of classifications and segmentations of SAR data sets into sea-ice classes.

2.2.4. Concept of Homogeneity

Extraction of parameters that are characteristic of an area requires the concept of homogeneity:
An area is called homogeneous with respect to surface structure if the area has the same surface structure
throughout, but the structure may be complex and resulting from several morphogenetic events,
phases, or processes, as long as all those processes have affected the entire area in the same way.
The term heterogeneous is reserved to mean “not homogeneous".

In view of data analyses, one needs to notice the following borderline cases: Assume two different
patterns, A and B. If an area is 20 m long with 10 m of pattern A and 10 m of pattern B, then the area
is heterogeneous. If a second area is 100 m long with patterns A and B alternating every 10 m, then
the area is called homogeneous. This should be considered when selecting optimal window sizes in
classification, as the window size needs to be large enough to contain at least two repetitions of the
largest characteristic features.

2.2.5. Terminology for Classification: Sea-Ice Type, Sea-Ice Class and Sea-Ice Province

Colloquially, we use the term sea-ice type to distinguish for instance heavily rubbled and ridged
ice, smooth sea ice, very smooth sea ice, young sea ice and old sea ice. Images of deformed ice, in
particular of ridges and rubble fields, are given in Tucker et al. [57], Steffen [58].

A sea-ice class is a type of sea ice that is uniquely characterized by its structural properties and
distinct from all other classes. In a first example, the goal may be to map areas of smooth ice versus
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areas of rough ice. This can be achieved through a classification with two classes, (1) smooth ice; (2)
rough ice (everything that does not satisfy our criterion for smooth ice). In a second example, we
may want to distinguish more types of rough ice, which may lead to a classification with 5 classes (1)
smooth ice; (2) ice with rubbles and ridges to 10 m diameter; (3) ice with rubbles and ridges larger than
10 m diameter; (4) smooth ice areas broken up by leads; (5) other complex ice areas.

A sea-ice province is an area of sea ice that is homogeneous with respect to the sea-ice classes it
contains. The ice in a province has experienced the same morphogenetic, kinematic and dynamic
processes. For instance, a connected area of smooth sea ice containing ice that has just formed may be
considered a province. A province in the Beaufort Sea offshore of Point Barrow may contain heavily
ridged and rubbled ice with faulted and overthrust ice sheet segments, interspersed with smooth areas
that have formed when open water areas between faulted blocks froze over again (see, Section (3) and
Herzfeld [55]).

3. Vario Parameters and their Role in the Geostatistical Classification Method

3.1. Mathematical Introduction of Vario Parameters

Different parameters have been defined in a suite of geophysical studies (see e.g., Herzfeld and
Higginson [49], Herzfeld [59], Stosius and Herzfeld [55,60]). In the following analysis of SAR data, we
employ the parameters pond, mindist, p1 and p2, which are illustrated in Figure 1.

Figure 1. Vario parameters for geostatistical classification.

A simple, but very useful parameter is the pond parameter, defined as the maximum value of the
vario function (in the window); it relates to total variance. If the main variable is elevation, then the
pond parameter is directly related to surface roughness length and may be used to distinguish smooth
areas from areas with morphologic relief. For reflectance values as in SAR data, the pond parameter
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depends on elevation variability, on material changes and changes in other reflective properties
with distance.

The parameter mindist, defined as the lag of the first minimum after the first maximum in the
vario function, gives the characteristic spacing of dominant surface features such as ridges, leads, or
smooth frozen areas separating rubbled and ridged areas (Herzfeld et al. [59], Herzfeld [31], Herzfeld
and Mayer [55]).

As a background example, the vario function of an evenly-spaced hill-and-valley profile in
topography is a sinusoidal wave. The lag to the first minimum in the sine curve is the characteristic
spacing of hills and valleys in the topographic relief. If more than one process has affected a surface,
creating a complex surface structure, the same principles still apply, but more minima and maxima
in the vario function need to be utilized, and more complex parameters derived to capture enough
information in the feature vector to allow a classification.

To distinguish primary features from superimposed ones, or more generally characterize more
complex spatial structures, significance parameters are introduced:

p1 =
γmax1 − γmin1

hmin1 − hmax1

(2)

p2 =
γmax1 − γmin1

γmax1

(3)

p1 is the slope parameter and p2 the relative significance of the first minimum min1 after the first
maximum max1, and hx and γx denote lag and vario-function value of x, respectively (Herzfeld [55]).
In this notation,

mindist = hmin1 (4)

Parameters p1 and p2 provide information on the significance of the spatial features whose sizes
are quantified by mindist = hmin1 . For more minima and maxima, p1-type parameters and p2-type
parameters are defined analogously. Slope parameters (p1-type parameters) involve distance. Relative
significance parameters (p2-type parameters) are independent of dimensions and thus facilitate
comparison between data from different instruments and of different scales, for example, surface
roughness from satellite SAR data may be compared directly to surface roughness from Glacier
Roughness Sensor (GRS) data collected in the field (Herzfeld et al. [61]), or to other field data as will
be applied in this study (see, Herzfeld et al. [31]).

Looking in the other direction along the range of scales, parameter p2 and related p2-type
parameters may facilitate use of SAR data for sub-scale studies of lower resolution satellite data.

3.2. Steps of the Geostatistical Classification Method

The geostatistical classification method proceeds by the following steps:

1. a window is selected from the study area; this may coincide with the entire study area,
2. statistical or analytical spatial functions are calculated from data in the window (e.g., experimental

variograms, directional vario functions of first or higher order, other functions),
3. spatial functions from (2) may be filtered,
4. parameters, called vario parameters or geostatistical classification parameters, are calculated from

the functions in (2) or (3),
5. a feature vector is composed of the parameters,
6. a deterministic discrimination algorithm or connectionist class association or a statistical

classification algorithm is applied to the feature vector to relate the structures in the window to
an object class.

In the Barrow area sea-ice applications, multi-variate statistical methods will be used for
supervised and unsupervised classification in step (6).
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4. Geographical Area, Data and Sea Ice Classes

4.1. Geography of the Study Area

The area around Point Barrow, Alaska, has the advantage that several sea-ice types are
encountered in its close vicinity in the Chukchi Sea, the Beaufort Sea, and in Elson Lagoon (see
Figure 2), comparative to sea-ice conditions found in pack ice areas several hundred kilometers
further North as well as in other shore-fast areas in the Arctic. The tip of a spit at Point Barrow
marks the longitudinal boundary between the Chukchi Sea in the West and the Beaufort Sea in the
East. Different wind and ocean current conditions exist in the Chukchi Sea and the Beaufort Sea (cf.
Figure 3c).

Figure 2. Study areas and surroundings near Point Barrow, Alaska. The Point Barrow area includes
sea ice in three different environments in the Chukchi Sea, the Beaufort Sea and Elson Lagoon.
The northernmost point of the spit, Point Barrow, indicates the latitude that separates the Chukchi Sea
from the Beaufort Sea. From the end of the spit extends a line of barrier islands, which separates the
protected waters of Elson Lagoon from the open waters of the Beaufort Sea. Inset: Location of study
area in northern Alaska. Image base from Google Earth.



Remote Sens. 2016, 8, 616 10 of 37

(a) (b)

(c)

(d)
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Figure 3. RADARSAT SAR data and PSR data of Barrow area from March 2003. (a) RADARSAT data, backscatter
intensity in grey. An example of land-fast ice and near-shore pack ice. Chukchi Sea is west of land, Elson Lagoon
is N and NE of land; (b) Examples of sea-ice types captured in the RADARSAT data set. Numbers refer to sea
ice types in Figure 3c. Field-survey profiles for snow-depth-data collection superimposed on RADARSAT data
(Figure 3a) for location reference. Photographs by J. Maslanik (March 2003); (c) Manual classification of Barrow area
sea ice types, superimposed on RADARSAT SAR data in Figure 3a; (d) PSR data, superimposed with snow-depth
data profiles, characterized according to complexity of sea-ice types (cf. Herzfeld et al. [31]). Color-coding of
snow-depth segments according to increasing complexity of snow-depth structures indicating increasing complexity
of sea-ice types. Segments are (on Elson-Beaufort profiles, trending SW-NE): Elson segment 1 (yellow), Elson
segment 2 (purple), Elson segment 3 (brown), Elson segment 4 (red), Elson segment 5 (orange), Beaufort (blue),
on Chukchi profiles: Chukchi main profile segment mod1 (green), Chukchi main profile segment mod2 (12–15)
(yellow), Chukchi main trends SE-NW. Chukchi cross profile shown in grey. Underlying PSR data are shown as
composition of data from three channels, 10.7 GHz H-Polarization (red), 19 GHz H-Polarization (green), 37 GHz
H-Polarization (blue). There is a relationship between snow-depth provinces, and hence sea-ice provinces, and
PSR-data.

The sea-ice provinces described in the sequel can be identified in the target image for classification
(Figure 3c) and in the ERS-2 data set (Figure 4). The spit and a line of barrier islands, which extend
east-southeast from Point Barrow, separate two different environments, (1) the open waters of the
Beaufort Sea exposed to storm, waves and ocean current; and (2) the more protected waters of Elson
Lagoon. Consequently two distinct sea-ice regimes reflect the quiescent nature of the lagoon (in (1))
and the dynamic interactions of the barrier islands and sea pack drifting on relatively shallow ground
in the near-shore section of the Beaufort Sea (2). The latter creates large ridges close to shore (see inset
photographs in Figure 3b). While the snow-covered sea ice in Elson Lagoon appeared homogeneous
to people working in the field in March 2003 (time of photographs), Elson Lagoon does de facto
encompass several structural subregions (cf. Herzfeld et al. [31]), which have been identified in field
data and aerial passive microwave data (Polarimetric Scanning Radiometer (PSR) data, Piepmeier and
Gasiewski [62]). Sea-level change, local grounding and thermal cracking have lead to locally specific
morphogenetic changes in the ice pack. Elson ice also reflects variations in ice conditions that occurred
during the early stages of freeze-up, including the effect of currents flowing through the gaps between
the barrier islands.

Sea ice in the Beaufort and Chukchi sea parts of the study area is morphologically complex, with
ridges of several meters height and rubble fields composed of smaller and larger particles. Close to
shore on the Chukchi side of the Barrow region is an area of extremely smooth ice (light blue in
Figure 3d) that is protected by a complexly ridged zone from open ocean dynamics. The complexly
ridged zone is termed “stamukhi” zone (a local term, explained in the next paragraph). These two
zones are known to Barrow locals to form every year, and the smooth ice is very young ice, the
youngest in the study area, in March 2003 (and definitely first-year ice). Beaufort ice in the study area
was found in snow-depth analyses to be organized at large scale with large ridges spaced at an average
distance of 210 m, and highly ridged and rubbled in between (Herzfeld et al. [31]. Both Chukchi ice
and Beaufort ice are directionally anisotropic.

In the Chukchi Sea and the Beaufort Sea, heavily ridged and rubbled ice forms at the seaward
edge of the grounded portion of the shore-fast ice, this is termed “stamukhi zone”. A stamukhi zone
consists of thick ridges that become grounded during the winter and become part of the fast ice zone;
while the rest of the fast ice melts during the summer, a stamukhi remains attached to the ocean bottom
throughout the summer. In the Chukchi Sea sector, the stamukhi zone protects an area of very smooth
ice. Seaward of the stamukhi zone is the pack ice. Ice floes of variable shapes and sizes move within
the pack ice. More rounded shapes are indicative of older ice (which could still be first-year ice, cf.
Maslanik et al. [63]). At Point Barrow, ice in floes develops shear zones that lead to striata following
the current off the point. Even in mid-winter, the pack ice tends to be in motion. Hence the ridged zone
closest to shore is grounded, whereas the outer ones are moving. The floes shearing off of Point Barrow
can be identified in the RADARSAT and ERS-2 SAR data (see Figure 3). The area SW of the Lagoon



Remote Sens. 2016, 8, 616 12 of 37

and SE of the western coast is tundra with approximately oval-shaped lakes, remnant of subglacial
movement during the time when the area was covered by inland ice.

In our analyses, we will utilize the concept of a province, akin to its use in structural geology,
to identify an area homogeneous with respect to morphogenetic processes and material type (but
different from a neighboring province; i.e., provinces are typically marked by clear boundaries).
This will facilitate the description of the classification and its interpretation. Several provinces can be
identified in Figure 3c, where sea-ice types are indicated. A province can contain several sea-ice types,
such as ridges and smooth areas in the near-shore Beaufort sea, or have subprovinces. For instance,
Elson Lagoon may be considered one province, or five different provinces at closer scrutiny (Herzfeld
et al. [31]).

(a)

Figure 4. Cont.
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(b)

Figure 4. (a) ERS-2 SAR data of Barrow area from March 2003. Original grey-scale SAR
data. An example of landfast ice. Chukchi Sea is west of land, Elson Lagoon is N and NE
of land. Copyright European Space Agency; (b) ERS-2 SAR data of Barrow area from March
2003. Color-enhanced version created using a spectral transformation. An example of landfast ice.
Chukchi Sea is west of land, Elson Lagoon is N and NE of land. Copyright European Space Agency.

4.2. In-Situ Observations and Related Data Analysis Resultant from the 2003 and 2006 AMSR-E Validation
Campaigns for Sea-Ice Products

Extensive field work has been conducted in the Barrow area (e.g., George et al. [13], Eicken
et al. [64], Druckenmiller et al. [14]), including collection of snow depth data, laser profilometer data
and other aerial observations as part of the NASA AMSR-E validation campaigns for sea ice products
in March 2003 and 2006, AMSRIce03 and AMSRIce06 (see Herzfeld et al. [31], Maslanik et al. [63],
Cavalieri et al. [65], Sturmet al. [66], Markus et al. [67], Heinrichs et al. [68], Rivas et al. [69], Stroeve
et al. [70]).

The in-situ snow depth, ice thickness, snow and surface roughness and topography data acquired
during the AMSRIce03 and AMSRIce06 field experiments that are relevant to this paper are described
in detail in Maslanik et al. [63], Sturm et al. [66] . We summarize the methodology and data briefly
here. Both experiments were carried out in March, for three weeks in 2003 and one week in 2006. The
in-situ observation program was combined with NASA P-3 aircraft overflights and coordinated with
satellite coverage. Detailed sets of snow and ice measurements were acquired along a series of walked
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transects across the shore-fast ice and extending onto pack ice. Snow measurements include snow
depth, density, water equivalent, stratigraphy, and grain size. Snow depths were measured using
a hand operated self-recording snow depth probe, equipped with GPS, with sub-centimeter depth
measurement accuracy. These measurements were taken at 0.5 m spacing along 100 m sections, with
15 such sections sampled. Depth was also measured using the same instrument at approximately 4 m
spacing along transects ranging from 2 to 5 km in length. Ice thickness was measured at intervals
along the transects at 25 locations. Thicknesses were also obtained using an EM-31 electromagnetic
inductance instrument towed along the surface, over the same transects used for the snow depth
measurements and with similar spatial sampling. During AMSRIce03, the snow depth and ice
thickness observations were obtained for over a total of 18 km. Snow stratigraphy was studied using
snow pits dug along the transects, while surface roughness was measured using a laser level with
range pole and measuring tape. For AMSRIce03, the surface-measured roughnesses were augmented
by interpretation of mosaics of high-resolution aerial photographs acquired at low altitude from a
Cessna 185 aircraft. The low sun angles and excellent lighting conditions helped to highlight the
variations in surface topography over the ice cover. In both experiments, field notes and ground-based
photographs were acquired to help put the measurements into context. Additional details as well
as field data and NASA aircraft imagery and flight tracks are available at the National Snow and
Ice Data Center (http://nsidc.org/data/amsr_validation/cryosphere/amsrice03/index.html
and http://nsidc.org/data/amsr_validation/cryosphere/amsrice06/index.html, and at
http://polynya.gsfc.nasa.gov/seaice_arctic2006.html).

Maslanik et al. [63] provide manual classification maps based on PSR data (Figure 3 in Maslanik
et al. [63]), this matches the target map of sea-ice types (Figure 3d) in this paper. PSR data provide
information on sea-ice roughness, using unsupervised clustering of several channels of the PSR signal.
Surface roughness length derived from Airborne Topographic Mapper (ATM) data is less conclusive.
Algorithms for ice-edge detection are described in Heinrichs et al. [68] and applied to MODIS and
RADARSAT data from the Barrow area. Rivas et al. [69] study the influence of sea ice roughness on
airborne lidar signals.

Geostatistical classification using hyperparameters is applied to analyze snow-depth data on sea
ice in Herzfeld et al. [31]. Results include a quantitative characterization of sea-ice provinces from field
transects in the Beaufort Sea, Chukchi Sea, and Elson Lagoon, which represent a good subset of Arctic
sea-ice types, an internal segmentation of the longer profiles, and a derivation of surface roughness
length and of sea-ice-type complexity. PSR data reflect complexity of spatial snow depth structures as
captured in multi-dimensional feature vectors, and, less directly, snow-depth and surface roughness
length.

4.3. SAR Data and Derivation of Target Maps of Sea-Ice Classes

SAR data have been selected for the investigations in this paper to match the time frame of the
AMSRIce03 experiment and, approximately, the AMSRIce06 experiment. We use two data sets: (A)
RADARSAT SAR data from March 2003 and (B) ERS-2 SAR data from December 2005.

4.3.1. RADARSAT SAR Data

The Canadian Space Agency’s RADARSAT-1 operates a SAR in C-band at 5.3 GHZ with a
bandwidth of 30 MHz and a single polarization (HH), an aperture length of 15 m and an aperture
width of 1.5 m. RADARSAT-1 flies at an altitude of 793–821 km with and inclination of 98.6◦ in a
sun-synchronous orbit, collecting at 14.29 orbits per day. It has several different beam modes.

The radar signal used in RADARSAT-1 SAR data penetrates the dry part of the snow layer that
may potentially cover sea ice and reflects off the surface of the ice. Water lenses or wet snow may affect
the SAR’s ice-surface retrieval capability, however, these are not likely present in March in the Arctic.
A 400 by 400 pixel RADARSAT SAR data set with a pixel size of 75 m, extending 30 km east-west and
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30 km north-south around Point Barrow, has been selected for this study (see, Figure 3). The data set
was collected in March 2003, at the same time as field and aerial experiments in the study area.

The SAR image (Figure 3a) shows the western coastline and the spit running NE from lower left
center to the middle of the image and turning east-southeast at the point (Pt Barrow). Elson Lagoon
can be identified visually. East of the western coastline and south of Elson Lagoon is an area of tundra
with frozen lakes (see also Figure 2).

4.3.2. Derivation of Target Map of Sea-Ice Types from March 2003 RADARSAT Data

A target and validation basis is created for the classification (Figure 3c), utilizing a SAR
data set, the Google satellite image composition in Figure 2 and expert knowledge based on field
experience/observations and interpretation of field data and PSR data (Maslanik et al. [31], Herzfeld
et al. [63]). Tendentially, open water and thin new ice (as occurs near the western coast) appear darker
because of the low radar backscatter, while thicker, rougher ice appears in lighter shades of grey, due
to higher backscatter. Expert knowledge is needed to derive the target classification proxy that is
superimposed on the SAR data set, since a visual interpretation of SAR data would be ambiguous.
Similar grey values occur in different zones of sea ice identified in Figure 3c, whereas different spatial
patterns indicate different ice types. This hints at the necessity of an automated classification employing
spatial characteristics, rather than grey values (backscatter values). Ice in the Beaufort sea is highly
anisotropic, according to roughness analysis from snow-depth data, this anisotropy is visible in the
SAR data. Sea-ice areas identified in the image have been described in Section 3.1.

4.3.3. ERS-2 SAR Data

For applications (A.2) and (A.3) we analyze a higher-resolution SAR data set from European
Remote Sensing satellite ERS-2 (E255809271G15003), which is a full-resolution image (resolution =
12.5 m) and has been collected on 22 December 2005 at 22:03:41.021 UTC. This data set is used in the
form of a calibrated image with floating-point values with backscatter given in dB. The data set has
been georeferenced, using UTM zone 4 (floating-point GEOTIFF E255809271G15003-warp-rectified.tif,
processed by John Heinrichs, Fort Hays State University). The data set covers an area of approximately
97.2 km (y-axis) by 100.1 km (x-axis). The area in Figure 4a,b is 128.16 km E-W by 123.48 km N-S
(including the black region that is the result of georectification) The SAR sensors aboard European
Remote Sensing Satellites ERS-1 and ERS-2 are essentially the same, operating in C-band (5.6 cm
wavelength, frequency 5.3 GHz) and using a single polarization (VV).

In the parameter calculation, the image was used at a reduced spatial resolution of approximately
121 m by 121 m, with 1055 rows (in 128.16 km E-W) and 1024 columns (in 123.48 km N-S). The reduction
in spatial resolution is a result of a format preprocessing and of course saves computational cost, while
the capacities of the approaches can be demonstrated. A parameter map at window size 20, step size 1
has 1005 rows and 1036 columns, and hence each point is derived from a 2420 m by 2420 m window,
where neighboring windows overlap as much as possible (step size 1 pixel width, equal to 121 m).
To focus on sea-ice classification, the land ice region is masked.

4.3.4. Interpretation of ERS-2 SAR for Validation of Classification Methods

In the ERS-2 SAR data (see Figure 4), one visually distinguishes four main provinces: (1) the
southern part of the Chukchi Sea, with very smooth ice west of the coastline (7860–7900 km UTM
N/520–560 km UTM E) with a tail extending north-northheast, and an indication of ridges in the
seaward part; (2) the northern part of the Chukchi Sea area, with irregularly sized and distributed ice
floes, the larger ones of which are rounded, indicative of older ice (multi-year ice or older first-year
ice); (3) the ice in Elson Lagoon, bounded by the tundra (with oval shaped, ice-covered lakes) in the
south, the line of barrier islands in the NNE and the spit in the WNW; and (4) a small part of the
southern Beaufort Sea, just outside of the line of barrier islands, with rougher ice and ridge structures
indicated in the SAR data. Elson Lagoon appears to have several subareas, which may coincide with
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subregions identified in the field. Material sheared off in pieces off the point of Pt Barrow results in
flows of small ice pieces, which lead off the point in streams. These have a lower roughness than the
Chukchi sea floes.

SAR backscatter values only partly aid in the visual segmentation, as the ice in area (1) has a
bright reflection, that is also found in open water with a surface roughened by small, sharp waves.
The ice in area (2) has a range of backscatter values, appearing grey to darker in Figure 4. The darker
backscatter values also occur in Elson Lagoon ice (area 3) and in the Beaufort Sea (area 4). The smooth
ice in Elson Lagoon has almost black backscatter values, which are close in signature to open water
(but actually frozen). Last not least, land surface values coincide with some sea-ice backscatter values.
Hence a classification based on backscatter values alone cannot be expected to be successful. We will
use the spatial distribution of backscatter values as the basis of our analysis.

5. Case Studies of Classification Methods and Applications—Overview

Four case studies are conducted to apply and validate several classification methods, which
increase in complexity. In the first case study (Section 6, application (A.1)), a geostatistical
characterization of sea ice from RADARSAT data is carried out. Objectives are to introduce parameter
maps, study anisotropy and investigate the effects of varying window size and step size (offset of
windows). In the second application (Section 7, application (A.2)), similar investigations are undertaken
for the ERS-2 data set. Both studies result in parameter maps, which provide information on surface
properties, individually or in combination. Case studies (A.3) (Section 9) and (A.4) (Section 10) take the
analyses a step further by building classifications based on parameter maps, applying unsupervised
and supervised statistical classification methods, respectively. To accomplish this, the feature vector
concept is introduced to combine several parameters at each map location as input for the multivariate
statistical classification (Section 8).

6. Application (A.1): Geostatistical Characterization of Sea Ice from RADARSAT Data
(March 2003)

The goal of this application is to introduce parameter maps for the first 4 classification parameters
(pond, mindist, p1 and p2) and to demonstrate the effects of varying window size, step size
and direction.

From the RADARSAT data set (Figure 3a), parameter maps were derived for vario parameters
pond, mindist, p1 and p2, each for directions 0 deg and 90 deg and for window sizes of 20 and 40 pixels
with an offset of 1 (see Figures 5–8). The offset value is the same in directions of rows and columns
(offset 1 means, the first window contains a submatrix of rows 1–40 and columns 1–40, the second
window rows 1–40 and columns 2–41, etc.) and determines the size of the output image (here: 400 −
40 + 1 = 361, 400 − 20 + 1 = 381, derived from Equation (1), since both xi and xi + h need to lie inside
the region D, which in our study corresponds to the SAR image; i.e., the output image has the same
size as the input image minus a margin, and the same resolution as the input image). Parameter maps
calculated with window size 40 have a larger smoothing effect than those resultant from window
size 20. Given the relatively large size of the SAR pixels (75 m) relative to sea-ice features, a window
size of 20 appears preferable. In the following sections, parameter maps are compared to the target
classification image (Figure 3c) for validation of results.

6.1. Parameter Maps for Pond

For the same material, the pond parameter indicates the overall roughness of the surface at the
observed scale. Areas with lowest pond parameter values are mapped in the Chukchi Sea close to
the spit (which in fact is an area of very smooth ice) and in Elson Lagoon (which comprises several
types of smooth ice). In Elson Lagoon two distinct subprovinces can be identified in the RADARSAT
SAR data (cf. Figure 3c) , whereas five subprovinces have been identified in PSR data and snow-depth
field data (Figure 3d). Subarea 2 contains significant changes in the SAR data reflectance value,
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which may be attributed to small-scale surface structures or to local spatial changes between wet
and dry areas, causing strong reflection differences. The pond parameter indicates changes in surface
characteristics, measured and summarized as variability in reflectance properties. On this basis, the
pond parameter facilitates a segmentation of the SAR image into provinces that match those in the
target image (Figure 3c), and additionally, more subareas can be identified in the northern third of the
image, which stand out optically in the SAR image. In case of the pond parameter map, both window
sizes are equally well suited, as no distance measures are involved.

The pond parameter may be considered as a first indicator of the degree of morphogenetic
processing that an area of sea ice has experienced, with a larger pond value indicating more steps of
morphogenesis. Material changes may be due to diagenesis of snow and ice. Reflectance properties
also depend on the geometry of the surface, such as exposure of parts of the surface in different
directions (slope aspect).

6.2. Parameter Maps for Mindist

Considering that several types of processes are found to contribute to changes in the SAR value,
the amount of variability (as in pond) does not allow a unique interpretation. Independently of the
source of variability (elevation, material, aspect, etc.), the size (or correlation length) of surface features
is an additional parameter that is suitable for characterization of a sea-ice type. The size of such features
is captured in the mindist parameter (see Figures 5b–8b). Comparison of the mindist parameter maps
with the target image in Figure 3c indicates that mindist indeed matches the sizes of surface features in
the image, with a lack of accuracy due to the lack of resolution in the SAR data.

(a) (b)

(c) (d)

1

Figure 5. Vario-parameter maps resultant from classification of RADARSAT data set in Figure 3a.
Based on first-order directional vario functions in 0◦ (east–west) direction calculated for windows of 20
by 20 pixels with offset 1 pixel. (a) pond; (b) mindist; (c) p1; (d) p2.
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(a) (b)

(c) (d)

1

Figure 6. Vario-parameter maps resultant from classification of RADARSAT data set in Figure 3a.
Based on first-order directional vario functions in 90◦ (north–south) direction calculated for windows
of 20 by 20 pixels with offset 1 pixel. (a) pond; (b) mindist; (c) p1; (d) p2.

(a) (b)

(c) (d)

1

Figure 7. Vario-parameter maps resultant from classification of RADARSAT data set in Figure 3a.
Based on first-order directional vario functions in 0◦ (east–west) direction calculated for windows of 40
by 40 pixels with offset 1 pixel. (a) pond; (b) mindist; (c) p1; (d) p2.
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(a) (b)

(c) (d)

1

Figure 8. Vario-parameter maps resultant from classification of RADARSAT data set in Figure 3a.
Based on first-order directional vario functions in 90◦ (north–south) direction calculated for windows
of 40 by 40 pixels with offset 1 pixel. (a) pond; (b) mindist; (c) p1; (d) p2.

6.3. Anisotropies

Anisotropies can be mapped and quantified comparing vario-parameter maps created for
directions 0 deg (east–west) and 90 deg (north–south). Comparing Figure 5 with Figure 6, and
Figure 7 with Figure 8 for matching panels, it is obvious that for each parameter the maps calculated
for 90 deg vario function differ from those for 0 deg variograms. This observation implies that the
sea ice is anisotropic in each province. The 0 deg maps and the 90 deg maps yield approximately the
same segmentation of the study area into provinces. The parameter most suited for quantification
of anisotropy is mindist. In general, in situations of geometric anisotropies characteristic distances
are best derived from profiles normal to the strike of the dominant features in the area, as spatial
variability is highest in this direction and characteristic distances are shortest. In the eastern part of
Elson Lagoon, anisotropic characteristics are least distinct compared to other areas in the study area,
mindist values are about the same for both directions (see e.g., Figures 5b and 6b), hence the ice may
be considered close to isotropic. In the Beaufort Sea, the strike of features appears to dominantly be
close to E-W, which is concluded from the fact that the mindist map for direction E-W (Figure 5b) has
more connected areas than the mindist map for direction N-S (Figure 6b), the latter one has a striped
appearance which results from quickly changing mindist values among neighboring windows. For the
Chukchi Sea areas, the same comparison yields a different picture, and there are even differences
between the northern and the southern Chukchi Sea parts in the image. Hence the main direction of
orientation of surface features is variable in the Chukchi Sea; in the northern area near Point Barrow it
appears to be closer to 45 deg than to 90 deg, this is the area of floe striata that shear off the tip of Pt
Barrow and extend north-eastwards, then eastwards.

In a mesoscale analysis of LANDSAT MSS data, Hibler III et al. [71] noticed that the pack ice
in the Beaufort Sea moves as a gyre with clockwise rotation, but that maximal shear, which induces
counterclockwise rotation, occurs in a 50 km wide zone between the shorefast ice and the moving pack
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ice. Hence the orientation changes counterclockwise in the area of Point Barrow, which matches our
results on anisotropy, notably based on analysis of a single image in two directions.

These observations indicate differences in wind and current directions in the Beaufort Sea and
the Chukchi Sea that likely have lead to the formation of large ridges as observed in the Beaufort Sea
and of ridged ad rubbled areas. To identify the direction of main orientation accurately, one needs to
calculate 8 directional variograms or determine parameter dirmin, the direction of the closest minimum
(see Herzfeld andHigginson [49]). As a methodological conclusion, we note that parameter mindist
derived from vario functions of different directions may be employed to identify directions of ice drift
and of compression or overthrusting of sea ice.

6.4. Parameter Combinations

The significance parameters p1 and p2 indicate the importance or significance of those spatial
features whose sizes are quantified by mindist. A combination of p1, p2 with the mindist value reveals
structural properties of the surface, in the following sense: A large p2 value combined with a large
mindist value indicates a surface with large and morphologically outstanding features. A small
p2 value with a large mindist value means that the surface has long-waved but shallow structures.
If mindist is small, but p2 is large, then the surface has short-length, but significant features, and a
high roughness at small scale. Now assume that a feature A has the same amplitude as feature B,
but a larger mindist value, then p1(A) < p1(B), but p2(A) = p2(B). Parameter p2 is termed relative
significance parameter, because a large p2 parameter stands for features with a large significance relative
to their size. A large p1 parameter (slope parameter) indicates features that are absolutely large and
also significant.

With the help of parameter combinations, we are now able to discriminate different characteristics
of Beaufort Sea, Elson Lagoon and Chukchi Sea ice provinces. Beaufort Sea and Chukchi Sea have
similar pond parameter values, and different from Elson Lagoon’s. One can also identify subprovinces
in the Beaufort and Chukchi seas simply on the pond parameter maps. Parameter p1 serves to
differentiate between the Elson Lagoon ice and the sea ice in open waters in the Chukchi and Beaufort
seas, whereas p2 maps seem to be to locally variable for visual interpretation; however, an automated
combination of parameters is expected to lead to a segmentation (see Applications (A.3) and (A.4)).

6.5. Interim Conclusions

Vario-parameter maps allow to automatically identify several spatial characteristics of sea ice types
from RADARSAT data, including size of dominant features, prominence (significance) of dominant
features absolutely and relative to their size, and maximum spatial variability of reflectance properties.
The combination of these properties may be useful for a characterization of sea-ice types. In the
example, the parameter maps, viewed together, indicate an Elson-Lagoon type with short-based but
at small scale significant features, with likely a mix of wet and dry surfaces responsible for the high
pond value; rougher surface in Beaufort Sea with long-waved features of similar significance to those
in Elson, with two subprovinces, a smoother province and a rougher province; and sea-ice types in the
Chukchi Sea with lower overall variability and slightly lower significance than in Beaufort. The sea
ice in each province is found to be anisotropic, however, ice in eastern Elson Lagoon is closest to
isotropic; ice in the Beaufort Sea is dominated by features that strike approximately north-south, while
anisotropies in the Chukchi Sea vary in direction.

The interpretation in this application depends on comparative visual interpretation of several
parameter maps, which in itself may already be considered classification maps or thematic maps.
Because of the complexity of information contained in each individual parameter map, an automated
classification based on parameter maps as inputs may be more user-friendly; this approach is followed
in the next applications.
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7. Application (A.2): Geostatistical Characterization of Sea Ice from ERS-2 SAR Data
(December 2005)

Parameter maps were calculated for the all of the following combinations of directions, resolutions
and step sizes: {dir0, dir90}{w20, w40}{s1, s2} and a large number of parameters. Parameter maps
resulting from a step offset of 1 pixel are close in appearance to those with stepsize = 2. Since the
features of interest are already poorly resolved in SAR data, a step size of 1 is most useful. Figure 9
shows the resultant parameter maps for pond, mindist, p1 and p2, for direction 0 only and step size 2
and w = 20. However, dir90-parameter maps will also be used in the next steps of analysis. In the next
sections, we interpret and discuss results of parameter maps for pond, mindist, p1, p2.

7.1. Parameter Maps for Pond

The value of the pond parameter relates to overall roughness length. The areas with lowest
roughness are in parts of Elson Lagoon and close to the shore in the Chukchi Sea and in the Beaufort
Sea; this matches the location of smooth ice derived in analyses of field and PSR data from March 2003
(Herzfeld et al. [31]) and therefore indicates that the areas of smooth ice remain approximately the
same throughout the winters. Elson Lagoon segments 1 and 5 (as identified in Figure 3d and Table 1
in Herzfeld et al. [31]) have lowest pond values throughout the study area for snow-depth field data,
in the SAR data, segments 1, and 2 have lowest values, followed by segment 5. Between those lies
segment 4, which has pond = 4.6 from field data, which corresponds to a low-intermediate value of
pond in the ERS-SAR parameter map (blue color). We find a general agreement, however, the field and
aerial surveys convey a lot more detailed information.

The western shoreline and the spit stand out visually, with red-green colors (Figure 9).
The Chukchi area close to shore is mapped with lower values, matching the low pond value (pond
= 2.4) in snow-depth data and the brightest blue in the PSR data, both characteristic of the smooth
ice that is protected by the stamukhi zone. (Note that PSR data are presented as a color composite to
facilitate visual comparison.) Further seaward, the pond map derived from ERS-2 data shows higher
values in good agreement with the brown-colored area in the PSR map, both indicative of higher
roughness associated with the stamukhi zone’s ridging. In summary, the pond parameter can be used
to map sea-ice provinces by overall roughness based on SAR data, matching field observations modulo
the expected loss of detail.

Results from the field data analysis indicated that a combination of several parameters is better
suited to characterize sea-ice complexity and spatial roughness than a single parameter (Herzfeld
et al. [31]). A similar observation holds here: more parameters may be needed for a classification based
on SAR data, which leads to the next step of combining parameters maps (see, Applications (A.3) and
(A.4)). First, this requires to determine useful additional parameters.

7.2. Parameter Maps for Mindist

The next interesting parameter is the size of features, which may be quantified by the mindist
parameter (see Figure 9b). Here we use the color-enhanced ERS-2 SAR image (Figure 4b) as a validation
basis (see also Figure 3c, as some provinces remain throughout several seasons or reform). In the
Chukchi sea, the color-enhanced SAR image shows an area of floes of various sizes, with a trend to
increase in size with distance from the coast. The size variability is reflected in the multi-coloring of the
mindist map in the same area, whereas the smooth area has a dominance of short distances (light-blue
to blue) or no features of discernible correlation length (black). The smooth area coincides with the area
that appears white in the original SAR image. Notably, this smooth area has lower mindist values than
much of Elson Lagoon, which also matches the observation that Elson Lagoon ice falls into several
different subclasses, which are all more complex than the smooth area in the Chukchi Sea. In terms of
a characterization, we note that mindist values differ more than pond values, comparing Elson Lagoon
and the smooth area in the Chukchi Sea. The mindist parameter appears useful to calculate sizes, but
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the distribution across a large range of values (colors) suggests that a higher-order parameter is needed
or a classification that summarizes parameter values further.

(a) (b)

(c) (d)

1

Figure 9. Vario parameter maps derived from ERS-2 SAR data of Barrow area from March 2003 shown
in Figure 4—Vario-parameter maps based on first-order directional vario functions in 0◦ (E-W) direction
calculated for windows of 20 by 20 pixels with offset 1 pixel. (a) pond (indicative of overall roughness);
(b) mindist (showing spacing of dominant features); (c) p1 (absolute significance of features); (d) p2
(relative significance of features, compared to their size).

Material sheared off in pieces at the tip of Point Barrow creates striated floes off the point, as noted
in the visual interpretation of the SAR data set. The area of striated floes has lower roughness and
contains fragments of smaller sizes than the lower end of the size range of ice floes in the Chukchi Sea.

We note further that the size classification with mindist works independently of the reflectance
properties of the surface of individual ice pieces, thereby adding another component of information in
addition to backscatter and the pond parameter. Several components of information may be combined
into a feature vector, an approach to be followed in application Sections A.3 and A.4.
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7.3. Parameter Maps for p1 and p2

The significance parameters p1 and p2 are designed to distinguish between surface types of
absolutely large roughness and surface types dominated by features that are absolutely small, but
cause significant roughness at a small scale. Large features with absolutely large significance will
have a relatively large p1 value and a relatively large p2 value. Small features with relatively large
significance will have a relatively large p2 value, but a relatively small p1 value. (Note that p1 can
assume any value, whereas p2 is always absolutely less or equal to 1). This difference in concept is
well exemplified in our study area.

In the Chukchi NW corner of the study area, results of p1 and p2 calculations are similar, since
large-scales floes dominate. p2-values in area (2) (as identified in the visual interpretation of the
color-enhanced SAR data, Figure 4b and Section 3.2) are overall higher than elsewhere in the study
area. However, in the boundary of area (3) Chukchi South, in areas in Elson Lagoon and in the Beaufort
sea, p2 reaches values of 0.9, whereas p1 values are in the lower range. High p2 values occur since
small pieces with high variability are frequent (water-flow boundaries are crossed more often, which
leads to high p2 values, while the ice is absolutely fairly smooth, as implied by the lower p1 values in
these areas). The different meaning of parameters p1 and p2 is most obvious in the overall smooth area
in the Chukchi Sea and in the Elson/Beaufort region. Narrow but strongly contrasting lines associated
with the striated floes in the Beaufort Sea receive a low p1 value but a high p2 value. In entirely smooth
areas lacking even small-scale roughness features, both the parameter p1-map and the p2-map have
low values (e.g., in the southern part of the Chukchi Sea in the study area). Therefore, a (p1, p2)-vector
may be utilized for detection of areas with small-scale openings, such as arrays of narrow leads, or
other contrasting lineaments.

7.4. Anisotropy

The structures here are of an anisotropic nature, reflected in differences between the directional
parameter maps. The latter observations warrant an inclusion of two sets of directional parameter
maps in the feature vectors (see (A.3) and (A.4)).

7.5. Interim Conclusions

The individual parameter maps are useful to map roughness properties, specifically:

1. overall roughness is mapped by pond,
2. average size or spacing of dominant features, similar to correlation length, is calculated by mindist,
3. mindist is most useful to detect anisotropies,
4. absolute significance of roughness structures is quantified by p1, and
5. scale-independent significance of roughness features relative to their size is identified by p2.
6. Parameters mindist, p1 and p2 map spatial properties independent of the reflectance of the

surface.
7. A combination of p1 and p2 may be used to detect narrow openings, leads and swarms of

openings.
8. A combination of parameters pond, mindist, p1 and p2 promises to be a good basis for

a segmentation.

In some cases, a single parameter map is sufficient to distinguish between sea-ice provinces,
and hence a parameter map may be considered a special case of a classification map, enabling a
segmentation into larger provinces. In other cases, a combination of parameters pond, mindist, p1 and
p2 may be required for a classification and segmentation.
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8. Multivariate Statistical Classification Based on Feature Vectors of Geostatistical Parameter
Maps—Method

Approaches to an automated classification based on several parameters require building a feature
vector and then applying an association or class discrimination algorithm. In the sequel, we utilize the
following approaches:

(a) an unsupervised classification, using a statistical technique (k-means clustering)
(b) a supervised classification, using a maximum likelihood classifier and demonstrate the main

differences between a supervised and an unsupervised classification.

The general form of the feature vector is

v(x) = (v1(x), v2(x), . . . , vn(x))

where vi(x) is a geostatistical vario parameter, calculated for a window centered on location x.
Hence the feature vector is a functional moving throughout the area. In our application cases, the
feature vector is composed of parameters pond, mindist, p1, p2, either in 4 components for a single
direction or in 8 components for two directions:

v(x) =


v1(x)
v2(x)
v3(x)
v4(x)

 =


pond

mindist
p1

p2

 ( f eatv.1)

or

v(x) =



v1(x)
v2(x)
v3(x)
v4(x)
v5(x)
v6(x)
v7(x)
v8(x)


=



pond(000)
mindist(000)

p1(000)
p2(000)

pond(090)
mindist(090)

p1(090)
p2(090)


( f eatv.2)

where the indeces (000) and (090) indicate calculation in directions 0◦ (east-west) 90◦

(north-south) respectively.
In case studies (A.3) and (A.4), an artificial image of four (or eight) “bands” is created in ENVI

(Research Systems Incorporated (RSI) Software, v. 4.2, IDL v. 6.2, 2005, now ENVI classic), where each
of the parameter maps pond, mindist, p1 and p2 constitute a “band" of an artificial multispectral image.
This trick allows one to apply multivariate statistical methods, operating in the feature vector, for each
location in the image area.

9. Application (A.3): Unsupervised Statistical Classification Based on Feature Vectors of
Parameter Maps

Unsupervised classification determines classes following an automated algorithm, without
previous knowledge of the classes. Unsupervised classification is easy to perform by the user, however,
the user is then left with the task of interpreting the resultant classes, which may or may not be
possible. Here the k-means clustering algorithm was applied, which uses a cluster analysis approach
that requires the user to select the number of clusters (classes) to partition a multi-dimensional data
set, arbitrarily locates the given number of cluster centers, and then iteratively repositions the centers
by aiming to minimize the within-cluster sum of squares (sum of squared distances between the center
and a point, for all points in the cluster; Swiniarski et al. [72]). The k-means unsupervised classification
was run in ENVI classic (RSI 2005).
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In the first case study, a classification is based on 4 input maps, the parameter maps for pond,
mindist, p1 and p2, calculated in direction 000 with window size 20 pixels (parallel to the right-hand
axis in the original orientation of the SAR data set), using a feature vector as in Equation (featv.1).
The k-means clustering routine, run with 10 classes and a threshold of 5% pixel value change to
stop iteration, yields the classification map in Figure 10a. The routine stopped after 3 iterations.
The unsupervised classification is somewhat successful in identifying the correct areas (1, 2, 3, 4
in the visual classification, Section 3), however, the individual parameter maps are more clear and
easier to interpret than the classification map. The fact that the land area is also classified may be
distracting, but this is not essential. The lake ice does have spatial properties similar to the sea ice in
the smoother regions. A problem lies in the fact that the unsupervised k-means routine aims to match
centers in clusters, but the parameter variables are scaled differently and the classes have non-linearly
different ranges.

(a) (b)

1

Figure 10. Sea-ice classification for ERS-2 SAR data of Barrow area in Figure 4. Result of unsupervised
classifications based on vario parameter maps (Figure 9a–e). (a) Result of an unsupervised classification
based on 4 parameter maps (pond, mindist, p1, p2, window size 20, direction 0◦) and 10 sea-ice class
types (using KMEANS routine in ENVI with a threshold of 5 % pixel value change to stop iterations;
stopped after 3 iterations); (b) Result of supervised classification based on 8 parameter maps (pond,
mindist, p1, p2, window size 20, directions 0◦ and 90◦) and 10 sea-ice class types (using KMEANS
routine in ENVI with a threshold of 5% pixel value change to stop iterations; stopped after 1 iteration).
KMEANS implements the “k-means" multi-variate statistical clustering technique. Land areas masked
for clarity.

To incorporate anisotropies in the classification, the eight-parameter feature vector given in
Equation (featv.2), using directional vario functions in two orthogonal directions (0◦ (east–west) and
90◦ (north–south)). In this run, the classification routine stopped after 1 iteration, with the same 5%
threshold as in the first experiment. The result is better than from the 4-component vector, noting that
the 3 areas Chukchi-south, Chukchi-N, and Elson have less fuzzy delimiters. In summary, results of
the unsupervised classification are not satisfactory.

10. Application (A.4): Supervised Statistical Classification Based on Feature Vectors of
Parameter Maps

In a supervised classification, the algorithm for association is trained based on areas of known
classes. Several areas of known sea-ice type were selected manually as “regions of interest”, following
the manual segmentation given in Figure 4. We used 3–10 areas in a number of example runs, based
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on a 4-component feature vector as in Equation (featv.1), for maps calculated with window size 20
and step size 1. Selected resultant maps are seen in Figure 11. Figure 11a shows the result of a simple
supervised classification based on only 3 training areas (smooth ice, ice of intermediate roughness
and scale in Elson Lagoon, and rough ice of large spatial scale and large p1 and p2-parameter values,
as found in the Chukchi NW corner). The classification is successful at separating these classes, but
several class types are summarized into a single class.

(a) (b)

1

Figure 11. Sea-ice classification for ERS SAR data of Barrow area in Figure 4. Result of supervised
classifications based on vario parameter maps (Figure 9a–d), using a maximum-likelihood criterion.
(a) Result of supervised classification based on 4 parameter maps (pond, mindist, p1, p2) and 3 sea-ice
class types; (b) Result of supervised classification based on 4 parameter maps (pond, mindist, p1, p2)
and 5 sea-ice class types. Land areas masked for clarity.

In the second example (see Figure 11b), 5 training types of 1 and 2 samples each were used.
This classification succeeded in mapping (1, red) the Chukchi smooth zone differently from the (2,
green) Elson smooth zone, (3, blue) rougher (higher p2) and spatially more varied ice of smaller
characteristic sizes in Elson Lagoon with low p1 and high p2 values; this class then included the
Beaufort sheared striated floes and Chukchi stamukhi zone, (4, yellow) areas of large floes with high
significance in the NW Chukchi corner (seems to put less striking features in Elson in the same class)
and (5, cyan) areas of highest roughness (only small regions were associated to this class, including the
shore because of the land-ice contrast along the shore and spit).

Notably, the classification algorithm is able to associate ice in a bay on the east side of the map
(where it was not trained), similar to Elson Laggon (see Figure 2). The ice in the eastern lagoon
appears to be classified correctly, similary to Elson Lagoon. Comparison of the results obtained in
this section with the results of the unsupervised classification in Section 9 demonstrates (1) that the
supervised classification is clearly superior, as expected; and (2) that the combination of parameters
and classification algorithm determines the quality of the results. The examples in this section yield
better results, while fewer parameters (feature-vector components) are employed. Application of the
same classification to the four parameters derived for the orthogonal direction gave similar results,
which indicates that in this example the anisotropies in the ice-surface morphology are not needed
to separate the classes. This is not always the case, as the classification of seafloor morphology in
Herzfeld and Higginson [49] shows.
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11. Discussion: Comparison of Different Approaches to Sea-Ice Characterization
and Classification

The problem of sea-ice classification has evolved into an area of active ongoing research.
Early research on sea-ice classification was motivated by understanding sea-ice movement and
mapping of a small number of ice types. Researchers in regions bordering the Arctic oceans, including
Canada, Finland, Norway and the United States of America have been interested in sea-ice forecasting
and recently derived classification methods for SAR data analysis. Along with this, interest shifted
to deriving a larger number of properties from imagery. A relatively new application is model-data
comparison and evaluation of physical sea-ice models. In this section we summarize some of the
history of the problem to lead to a comparison of recent approaches and goals in applications of
this topic.

11.1. Analysis of SAR Data for Sea-Ice Classification

The potential for using radar to detect sea ice was recognized in the 1970s, although at that
time technology permitted only discrimination between sea ice and ocean surfaces (Parashar [73]).
Later laboratory and field studies (Barber et al. [74], Grenfell [75]) showed that the backscatter of sea ice
undergoes a profound evolution as the ice grows and changes. However, because multiple sea ice states
can have the same backscatter values (Grenfell et al. [76]), backscatter at a single pixel is insufficient to
distinguish between ice categories. Steffen and Heinrichs [77], using Landsat data as “truth”, found
that first-year and old ice in winter can be separated using single-point C-band SAR backscatter but
that performance is much worse in other seasons and for the thinner ice types. The performance of a
single-pixel classifier can be improved by cluster analysis (Kwok et al. [78]), but most work in recent
years has been based on incorporating the spatial information present in SAR images. Most of these
approaches calculate measures of spatial variability in a window or neighborhood around each pixel in
a SAR image, and then employ supervised or unsupervised classification of those measures to segment
the image.

Texture feature vectors are the most commonly used, most often those derived from the gray
level co-occurrence matrix (GLCM), which represents the occurrence of a possible pair of gray levels
measured at two pixels as a function of the displacement vector between the two pixels (Shokr [79],
Soh and Tsatsoulis [80]). Shokr [79] found that of the many texture measures available, the inverse
difference moment and entropy produced the best results. Gill [81] also found an entropy measure
to be effective in classifying SAR images of sea ice. Bodanov et al. [82] used texture measures from
Markov Random Fields (MRFs) and probabilities derived from the GLCM to classify sea ice, with
segmentation by Linear Discriminant Analysis (LDA) and a neural network, and found that the neural
network had better results in classification open water and nilas while the LDA algorithm performed
better for classification of deformed first year ice. Yu and Clausi [83] used a Filament Preserving Model
with MRFs and found that their new model was better able to distinguish linear features such as
ridges and leads. Deng and Clausi [84] used a Bayesian probability model with Markov Random
Fields in an unsupervised classification and found better performance distinguishing first-year smooth
ice, first-year rough ice, and multiyear ice. Karvonen [85] used pulse-coupled neural networks for
classifying SAR images over the Baltic Sea and an automated training technique based on decomposing
the total pixel value distribution into a mixture of class distributions. Their results were promising, but
fast ice was classified to multiple classes and frozen brash ice could not be distinguished from highly
deformed ice areas. Karvonen and Kaarna [86] used non-negative factorization methods to classify
sea ice and found that these algorithms can produce useful features for classifying SAR data based on
texture. However, geophysical interpretation of their results proved to be difficult.

The major limitations of early classifications are related to information visible in the images that
is not incorporated in the classification algorithm. None of these studies listed above claim to be able
to reproduce ice classification with the quality of a trained ice analyst. Maillard et al. [87], using the
Markov Random Field and texture inputs, and with ice maps produced by the Canadian Ice Service,
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found performance between 71% and 89% compared to a trained ice analyst. They attribute the
limitations in performance to sub-scale information on floe size and shape available to human analysts,
but not incorporated into the classification system. It is worthwhile to point out that the US National
Ice Center and other operational ice monitoring agencies still use ice analysts to visually interpret SAR
imagery (Bertoia et al. [88]). Many of those problems are attributable primarily to features that arise
through dynamic and morphogenetic processes in the ice.

11.2. From Simple to Complex Variables

The two variables that are most commonly analyzed in the literature are velocity and thickness.
Sea-ice thickness is not typically derived from imagery, but from satellite or airborne altimeter data,
as summarized in the introduction. Techniques for the determination of sea-ice motion from satellite
images at large scales are described or referenced in Holt et al. [89], most of these utilize vector-based
algorithms that are applied to differences derived from two or more images. A method for derivation
of high-resolution velocity fields from SAR data is discussed by Karvonen et al. [32].

An approach for identification of sea-ice types, namely multi-year ice, first-year ice and thin ice,
from SAR data using a radar-lookup table, a minimum-distance classifier or a maximum-likelihood
classifier is described in Kwok et al. [78]. In the lookup-table method, the backscatter value of each
pixel is associated directly to one of the three classes, whereas in the other two methods, the variance
in a cluster of pixels also plays a role. An interesting statistical concept for sea-ice classification is
suggested by Collins [90], based on a “theory of belief”, which is a generalization of Bayesian statistics,
and on neural networks, but unfortunately no applications are presented. In summary, none of these
methods facilitate distinction of more than basic characteristics in very few classes.

Sea-ice thickness distribution functions have been successfully applied to summarize ice
properties over large areas (Rothrock et al. [3,91], Pritchard et al. [92]). A community need
identified in Wang et al. [93] is that to run larger-scale models, a parameterization of small-scale
models is needed. Significant progress in small-scale (less than 10 km) ice-ocean modeling was made
during the RADARSAT Geophysical Processor System (RGPS) project (Wang et al. [93], Kwok [94],
Coon et al. [95]). A major obstacle in the development of such models is the verification through data
analysis (Wang et al. [93]).

Work on small-scale kinematics and dynamics of sea ice (Pritchard et al. [92], Coon et al. [95],
Hibler III [96]) is based on the principles of structural mechanics and rheology. Examples of structural
mechanics models lead for instance to patterns of deformation in sea ice, such as shear, 2-dimensional
or 1-dimensional extension or compression, which result in typical patterns (e.g., Wang et al. [93]).
Wang et al. [93] in their summary of status quo versus needed tasks state that high-resolution models
can reproduce oceanic eddies and fractures zones qualitatively, but not validate those models from data.

The topic of linking properties that can be derived from imagery with physical properties and
processes of the sea ice has been limited by the simplicity of statistical approaches applied and to the
lack of recognition of the scale problem. Karvonen’s work [32] provides a milestone in state-of-the-art
statistical techniques in sea-ice classification, but applications are limited to the Baltic sea, which has a
seasonal ice cover. Karvonen et al. [32] note that understanding physical processes is an open problem.

11.3. Recent Developments

Most recent methods continue to use multivariate statistics at the pixel value, for example Ochilov
and Clausi [97], Wang et al. [98], Dabboor and Geldsetzer [99]. The differences between those methods
and the geostatistical characterization and classification method are that (1) the geostatistical approach
derives vario function values from sub-images of an intermediate size that is large enough to capture
characteristic repeating morphological features; and (2) the characterization or classification is then
based on parameters that are calculated from the vario functions in order to summarize spatial
properties, rather than on the vario function values themselves. Dabboor and Geldsetzer [99] utilize 23
statistical parameters. In Herzfeld et al. [61,100], Herzfeld [55] we have introduced a large number
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of parameters to capture different levels of feature complexity that occurs at several different scales,
however a too large number of individual parameters then may introduce unnecessary numerical
complexity at the next level, the actual classification step. Therefore in Herzfeld et al. [31], Herzfeld [55]
we introduced summarizing classes of hyperparameters as a means to provide a hierarchical structure
to the set of spatial parameters that may be useful in a given application.

In the geostatistical classification method described here, the classification builds on feature
vectors of parameter values and the result yields a segmentation of the study area into regions of
different sea-ice types (as illustrated in Figures 10 and 11. In this respect Ochilov and Clausi [97] present
a different approach that bases the segmentation on gradients in the original multivariate statistical
parameters, using an edge-detection method. Only three classes result this way from a single image
(gray-white, gray and new ice). Owing to the analysis of larger window sizes and parameters aimed
at detecting morphological complexity, the geostatistical classification method allows to distinguish
several sea-ice types that describe the deformation state and indicates levels of kinematics experienced
inside a sea-ice province. The conceptual difference is that the geostatistical method is in part motivated
by concepts of structural geology, whereas most other methods appear to be motivated by simple
characteristics of sea ice (spectral properties , new vs old ice; e.g., Kwok et al. [78]). As a consequence,
a structurally based approach facilitates model-data comparisons aimed at identification of the old,
deformed ice (whose decline in the Arctic ice cover has been identified as a critical indicator of Arctic ice
retreat altogether, see Herzfeld et al. [24]. A notable exception that includes the concept of deformation
is the work of Zakhvatkina et al. [101] which uses the gray-level co-occurrence matrix for windows of
2, 4, 8, 16 or 32 pixels in an ENVISAT SAR image, then employs a number of statistical parameters
including correlation, inertia, cluster prominence, energy, homogeneity, entropy and 3rd and 4th
order statistics moments and finally a neural network to separate (1) deformed first-year ice; (2) level
first-year ice; (3) multi-year ice and (4) open nilas. The neural net approach works well in the end,
but the training process is complicated and specific to the problem at hand. A combination of the
geostatistical classification method and a neural network (a feed-forward multi-layer perceptron with
back-propagation of errors) is described as the connectionist-geostatistical ice-surface classification
method in Herzfeld and Zahner [45], Herzfeld et al. [102] and applied to surge crevasse types for the
Bering Bagley Glacier System, Alaska. Karvonen Karvonen [103] uses a multi-layer perceptron as part
of an operational algorithm for estimation of sea-ice concentration from dual-polarized RADARSAT-2
ScanSAR data and applies this to observations of the Baltic Sea ice.

A paper that contributes to analysis of a component of ice kinematics without using a classification
is the following: Motivated by the observation of a tail in the sea-ice thickness distribution of ice
along the Arctic coasts of Greenland and the Canadian Arctic Archipelago, Kwok [104] introduces
a normalized ice convergence index to examine the variability and extremes in convergence of the
Arctic sea ice from 1992–2014 passive microwave data. The study indicates a potential impact of ice
dynamics on observed variability of summer ice extent in 2013 and 2014.

In summary, the research of sea-ice classification has moved from classification of simple
properties (such as color, new ice versus older ice) to identification of complex property sets that
may allow association with physical properties and processes that describe physical characteristics
dynamics and deformation states of sea ice and, as such, facilitate comparison of information that can
be derived from SAR imagery (and other data) with information can can be derived from numerical
sea-ice models. Further research is needed towards this goal.

12. Conclusions

The approach to SAR-data classification for sea ice derived and applied here is a two-tiered one,
combining (1) geostatistical characterization/classification and (2) multivariate statistical classification
based on step (1). The method is applied and evaluated here for shore-fast sea ice and near-shore
pack ice in the neighborhood of Point Barrow, Alaska, which includes Elson Lagoon and parts of the
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Chukchi Sea and the Beaufort Sea. SAR data from two satellites, the Canadian RADARSAT-1 and the
European ERS-2, are analyzed.

Salient ideas of the approach include the spatial surface roughness concept, which can be used to
characterize and discriminate sea-ice properties and provinces (where the term “province” is used as
in structural geology) and the realization that spatial variability measures, such as variograms and
their discrete-mathematical counterparts, vario functions, can be employed to analyze spatial surface
roughness. With the geostatistical classification parameters, or vario parameters, the paper introduces
new parameters to SAR classification, and to texture analysis/feature analysis/image analysis in
general. In an abstract sense, the parameters quantify overall roughness or reflectance variability
(caused by geometric features or wetness differences or exposure to the incoming signal), spacing and
significance of scale-dependent and scale-independent structures. The parameters relate directly to
sea-ice morphogenetic properties, including smooth ice areas, areas of small-scale rubbled ice, spacing
of leads and swarms of openings, sizes and structures of older, more complex and younger ice floes.
Individual parameter maps, such as the pond map, may serve to distinguish several provinces, simply
through spatial variability in reflectance. For example, the pond parameter separates subprovinces in
Elson Lagoon, smooth and very smooth ice areas in the Chukchi Sea and in the lagoon, stamukhi zone
ice and areas of older ice in the Chukchi and Beaufort seas.

A multivariate statistical classification based on several parameter maps is enabled by means of
the feature vector concept, where the components of the feature vector are the parameter operators.
Comparing an unsupervised classification based on k-means clustering and a supervised classification
using a maximum-likelihood classifier, the supervised classification yields good results, whereas the
unsupervised classification works less satisfactorily. The combination of supervised classification
with geostatistical classification yields the best results for segmentation of the study area into sea-ice
provinces, automatically identifying two provinces in Elson Lagoon, an area of striated floes northeast
and east of Point Barrow, the Chukchi smooth ice area and the stamukhi zone, areas of smoother,
young ice and older ice in the Chukchi sea, and other ice provinces as noted on the target map.
Field data were available for validation of some of the results. As a conceptual difference, we note
that the characterization/classification through vario parameter maps yields ice types, or ice classes,
whereas the combined multivariate classification based on vario parameter maps yields an automated
segmentation, i.e., an automated thematic mapping of sea-ice provinces. The supervised classification
requires a priori knowledge of some sea-ice prototype areas, whereas the geostatistical characterization
is fully automatic and operates without a-priory knowledge.

The strength of the geostatistical characterization and classification approach stems from the
facts that (1) the vario function both summarizes and enhances spatial and spectral characteristics
of the ice-surface at a spatial scale that can be adapted to the problem and data set at hand, by
setting the window size and unit lag of the vario function; and (2) the vario parameters then serve
to extract characteristic values from the vario functions. The classification is then based on the
parameters (composed into a feature vector) rather than on simple statistical combinations of the
original data, which may contain too much equally-weighted information for some classification
objectives. In contrast, classifications based on the grey-level co-occurrence matrix (GLCM) commonly
used in texture analysis are limited by the fixed spacing inherited from pixel size, whereas the
geostatistical method allows for adapting to sizes of ice-surface features as they occur in the sea-ice
types that the classification aims to distinguish.

12.1. Stationarity of Characteristic Provinces Versus Motion of Sea Ice

Sea ice does not have to be stationary to be classifiable with respect to spatial structures as the
examples in this paper have shown. The sea ice near the head of the Barrow spit is always in motion,
but it tends to form striata of sheared ridges and floes, and more generally, it forms a stationary pattern,
with individual ice blocks moving through. The rounded floes of older ice in the NW corner of the area
in Figure 3c (in the Chukchi Sea) form a different type of moving ice, with spatial characteristics that
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remain the same for some time. The observation that spatial sea ice provinces may be stationary, while
individual particles are in motion, has an analogy in glaciers: The glacier ice moves, but crevassed
areas, for instance, remain stationary in location for years. Hence a classification of based on spatial
structures is possible for both glaciers and sea ice. Furthermore, a change in domain characteristics
indicates a change in ice dynamics or in environmental causes of ice morphogenesis, and such domain
changes are detectable in classification. Ergo the classification can be applied to detect changes in ice
dynamics, kinematics or environmental changes, such as increased melt ponding or increased snowfall
or changes in the equilibrium line.

12.2. Generalizations

The characterization and classification methods introduced in this paper have been applied to
two different types of SAR data (RADARSAT SAR and SAR data from ERS-2) and validated using two
types of observations (1) a visual classification of a SAR data set; and (b) field observations taken in
Point Barrow. The study area was selected, because it includes three regions with entirely different
characteristics: The Chukchi Sea, the Beaufort Sea and Elson Lagoon. An observer standing at the
outermost land point at Point Barrow can literally see the different types of provinces meet, as sea ice
is carried off the point in large, striated and curved trajectories in northeastern directions (observations
by the author team). The area was also selected as a study area for the sea-ice validation campaigns for
AMSR-E sea-ice products (Herzfeld et al. [31], Maslanik et al. [63]), because it includes a large variety
of different sea-ice types in close proximity; i.e., the region is very heterogeneous with respect to spatial
characteristics of sea ice. This heterogeneity is more important than the actual size of the validation
region as an indicator for the general validity of the method for other sea-ice types. The method
has been applied to sea-ice regions in the central Arctic ocean as well, which are not included here.
A validation for other types of sea ice, for instance in the Baltic or in Antarctica, may still be valuable.
There are no assumptions in the mathematical approach nor in the sea-ice patterns encountered in the
data sets that indicate that the method may fail for other types of sea ice.

The SAR data analyzed here are single-channel data. For SAR data that are collected in
dual-polarized mode, such as data from the commercial Canadian RADARSAT-2 (launched 2007,
4 polarization modes HH, VV, HV, VH) and the European Space Agency’s SENTINEL-1 satellites of
the European Commission’s Earth Observation Programme “Copernicus” (SENTINEL-1A launched
3 April 2014, SENTINEL-1B launched 25 April 2016, 2 polarization modes VH, VV), maps of the
characteristic vario parameters can be calculated for each channel, thereby increasing the number of
input maps for a classification by a factor of 2 or 4 (depending on the number of polarization modes).
It is expected that a supervised classification will yield improved results, based on the larger number
of input parameters, while unsupervised classification methods may fail increasingly.

More generally, searching a solution in a space of higher dimension becomes an increasingly
ill-posed mathematical problem, which requires more advanced methods for its solution. For example,
Herzfeld and Zahner [45] and Herzfeld et al. [102] utilize a connectionist association for terrestrial
ice-surface classification. On the other hand, a consequence of the last line of thought is that it may
not always be the best strategy to increase the number of input parameters. As the case studies
in Sections 8–10 have shown, a classification based on only four parameters (calculated in a single
direction each, Section 10, Figure 11b) may yield better results than a classification based on eight
parameters (four parameters in two orthogonal directions each, Section 9, Figure 10b), because the
combination of parameters and classification algorithm determines the results. The best and most
efficient solution is the one that realizes a classification of sea-ice provinces based on the smallest
number of parameters or feature-vector components. To find this solution, one can increase the number
of parameters step-by-step (adding more directions or parameters); examples of additional parameters
are described in Herzfeld [55] as is an approach that uses hyper-parameters which group parameters
(see also Herzfeld et al. [31] for an application to sea-ice research). Similarly, the classification results
may depend on anisotropies captured in the parameters, for example to discriminate isotropic from
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anisotropic surface forms (as in a seafloor classification example in Herzfeld and Higginson [49]) or be
relatively independent on the selection of directions (as found in the sea-ice analyses in Sections 6, 9 and
10 here). Using data from sensors with higher resolution/ smaller pixels will allow to resolve different
morphologic characteristics of the sea ice in the classification, which may facilitate differentiation and
classification of a larger number of sea-ice types (if those are present in a given study area).

12.3. Applications

Methods presented here are expected to be valuable for mapping sea ice conditions, which are
needed for planning shipping routes and may even be useful for inuit hunters and their travels over the
changing sea ice. In the latter context, it is noteworthy that inuit hunters used to depend on traditional
knowledge of sea ice types and their formation throughout the seasons, however, changing climatic
and environmental conditions have led to unprecedented changes in the sea ice, such as sudden
dangerous instabilities (e.g., George et al. [13]) and a classification may assist in discerning such critical
changes in sea-ice types. In addition, the sea-ice classification method may be useful for calibration
and evaluation of new satellite sensors. Classification of sea-ice provinces derived from SAR data,
as described in this paper, may result in subscale information relevant for understanding laser and
radar altimeter data, as illustrated by the following two examples. (1) Since parameter p2 and other
p2-type parameters quantify relative significance of surface structures independent of dimensions,
these parameters facilitate a comparison between high-resolution observations and observations of
lower resolution. Examples include airborne microSAR data collected from unmanned and manned
aircraft (Crocker et al. [23], Zaugg et al. [105]) and satellite SAR data of any resolution, as well as
radar and laser altimeter data; (2) Mapping of roughness types of sea-ice areas (and land ice areas,
using similar methods) from SAR data may yield the surface information that is needed to study the
influence of ice roughness on the backscatter and return signal of radar and laser altimeter data, such
as those from ICESat (GLAS) Zwally et al. [106], Schutz et al. [107], CRYOSat-2 R.K. [108], Wingham
et al. [109], Drinkwater et al. [110] and ICESat-2 (launch 2017). Information on surface roughness
at several scales, as can be derived from SAR-data classification, may be relevant for understanding
satellite altimeter data.
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