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A new type of thruster technology offers promising low speed maneuvering capabilities for

underwater vehicles. Similar to the natural locomotion of squid and jellyfish the thruster succes-

sively forces fluid jets in and out of a small internal cavity. We investigate several properties of

squid and jellyfish locomotion to drive the thruster design including actuation of nozzle geometry

and vortex ring thrust augmentation. The thrusters are compact with no extruding components

to negatively impact the vehicle’s drag. These devices have thrust rise-times orders of magnitude

faster than those reported for typical propeller thrusters, making them an attractive option for

high accuracy underwater vehicle maneuvering.

The dynamics of starting jet circulation, impulse, and kinetic energy are derived in terms of

kinematics at the entrance boundary of a semi-infinite domain, specifically identifying the effect

of a non-parallel incoming flow. A model for pressure at the nozzle is derived without the typical

reliance on a predetermined potential function, making it a powerful tool for modeling any jet

flow. Jets are created from multiple nozzle configurations to validate these models, and velocity

and vorticity fields are determined using DPIV techniques. A converging starting jet resulted in

circulation 90− 100%, impulse 70− 75%, and energy 105− 135% larger than a parallel starting jet

with identical volume flux and piston velocity, depending on the stroke ratio. The new model is a

much better predictor of the jet properties than the standard 1D slug model.

A simplified thrust model, was derived to describe the high frequency thruster characteristics.

This model accurately predicts the average thrust, measured directly, for stroke ratios up to a

critical value where the leading vortex ring separates from the remainder of the shear flow. A new

model predicting the vortex ring pinch-off process is developed based on characteristic centerline

velocities. The vortex ring pinch-off is coincides with this velocity criterion, for all cases tested.



iv

Piston velocity program and nozzle radius are optimized with respect to average thrust, and

a quantity similar to propulsive efficiency. The average thrust is maximized by a critical nozzle

radius. An approximate linear time-invariant (LTI) model of the thruster vehicle system was derived

which categorizes maneuvers into different characteristic regimes. Initial thruster testing showed

that open and closed loop frequency response were sufficiently approximated by the LTI model,

and that the thruster is ideally suited for small scale high accuracy maneuvers.
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Chapter 1

Introduction

1.1 Motivation

Traditionally unmanned underwater vehicles fall into one of two categories. One class of

vehicles (torpedo like) are built to travel long distances with minimal energy, and are usually

characterized by a long slender body, a rear propeller for propulsion and a set of fins to provide

maneuvering forces. This type of vehicle is poorly suited for missions requiring a high degree of

positioning accuracy because the control surfaces provide little to no maneuvering force at low

forward velocity. The other class of vehicle (ROV like) is designed to operate in these situations

which require high positioning accuracy, and incorporate several thrusters at various locations to

provide maneuvering forces in all directions. However, this class of vehicle typically has a very high

drag coefficient due to the abundance of external thrusters, and cannot travel to remote locations

without additional support.

The abundance of remote marine research sites requiring high positioning accuracy for in-

spection, as well as the desire to create fully autonomous vehicle sensor networks, has inspired

significant research in a hybrid class of vehicles with the efficient cruising characteristics of the

torpedo class and the high positioning accuracy abilities of the ROV class. Some take a mechanical

approach moving the maneuvering propellers into tunnels which run through the hull of the vehicle

[52, 89] or into the fins themselves [19]. Others observe that nature’s swimmers have a healthy

balance of long distance endurance and high accuracy low speed maneuvering. Vehicles have been

designed to use fins both as control surfaces at high speeds as well as mimic the low speed flapping
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Figure 1.1: Diagram showing body layout of a squid focusing on the anatomy responsible for jetting.

of turtles and marine mammals [44, 43]; and some use tail fins as a primary means of propulsion

[5]. Our inspiration comes from the cyclical jet propulsion seen in jellyfish, scallops, octopus, squid

and other cephalopods.

1.2 Squid and Jellyfish Locomotion

Squid jet propulsion produces the fastest swimming velocities seen in aquatic invertebrates

[4, 61]. While jetting is generally considered a less efficient form of locomotion than undulatory

swimming [61, 93], squid morphology has evolved to fully exploit it. In fact propulsive efficiency was

seen to rise as high as 78% in adult L. brevis swimming at high velocities, and averaged 87% (±6.5%)

for paralarvae [7], challenging the notion that a low volume high velocity jet inherently negates a

high propulsive efficiency. Soaring and climbing vertically through ocean currents, negotiating prey

capture, or hovering near the surface are a few of the squid’s many swimming capabilities [61].

In general, jetting locomotion begins when the squid inhales seawater through a pair of vents

or aperture behind the head, filling the mantle cavity. The mantle then contracts forcing seawater

out through the funnel which rolls into a high momentum vortex ring and imparts the necessary

propulsive force [4]. Figure 1.1 shows the basic squid layout and anatomy used for jetting. The

versatility of the system permits both low speed steady swimming or cruising, and fast impulsive

escape jetting. Two distinct gaits are seen in steadily swimming squid as determined by the
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nature of the expelled jet [6], those being above or below the jet formation number (The formation

number is defined in great detail in section 5.1.2; it is essentially a measure of the quality of the

jet). During cruising, squid swim at nominal speed with a higher efficiency; whereas, escape jetting

involves a hyperinflation of the mantle followed by a fast powerful contraction to impart significant

acceleration at the cost of fluid dynamic losses; similar to the loss in efficiency seen in high velocity

jet locomotion of jellyfish [83]. Bartol et al. [6] report cruising mode efficiency at 69% (±14%)

averaged over several species and swimming speeds, and 59% (±14%) for escape jetting.

The locomotion of jellyfish tends to be very similar to that of squid with some key differences;

primarily that the refilling phase of jellyfish swimming uses the same bell opening as the jetting

phase. However, despite the fact that squid do not use the funnel during refilling, the inlet vents

are still on the anterior side of the mantle cavity (See Figure 1.1), meaning that locomotion for both

organisms is quite different from traditional pumping mechanisms. Similar to the different gaits

seen in squid locomotion, different species of jellyfish generally fall into two categories of swimmers

based on the quality of vortex ring they produce. Jellyfish like moon jellyfish have a very large

bell opening, and the jetting motion is more similar to a paddling type motion. Box jellyfish and

other faster swimming jellyfish have smaller bell openings with nozzle-like flaps at the velar cavity

opening, and have a much more distinct jetting motion.

Jellyfish morphology during swimming has been digitally captured from experiment, and the

body motions imported into numerical simulations to predict body forces on the swimming jellyfish,

determining drastically different swimming efficiencies. Froude propulsive efficiency of jellyfish was

calculated through this process by Sahin and Mohseni [81, 82, 83] to be 37% for Aeqorea victoria

and 17% for Sarsia tubulosa. It should be noted that both species of jellyfish most likely do not

use vortex generation for the sole purpose of locomotion. Aeqorea victoria uses vortex generation

for feeding as demonstrated through Lagrangian coherent structures (LCS) analysis [47, 46, 97],

and Sarsia tubulosa use jetting as an escape mechanism, where survival supersedes the desire for

efficient propulsion. Empirical data gathered by Dabiri et al. through DPIV measurements of

several species shows similar efficiency characteristics for the different swimming patterns [15].
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Figure 1.2(a) shows stable and unstable LCS around a swimming jellyfish taken from simu-

lations in [83] and [47]. During the phase of jetting which is shown in this figure, the velar opening

is a converging conical nozzle. Which creates a converging radial velocity in the jet being expelled

which is shown in Figure 1.2(b). The squid funnel changes shape during pulsation and at times

resembles a converging conical nozzle, and a converging radial velocity can be seen very close to

the exit of the funnel in figure 8 of [4].

Non-parallel starting jets serve an important function in the jetting of marine animals like

jellyfish and squid, but it is not clear exactly which swimming behaviors benefit propulsion vs.

feeding and respiration.

1.3 Problem Statement

Several aspects of squid and jellyfish locomotion are quite different from continuous propul-

sive jetting mechanisms used in recreational watercraft. These animals are limited to a given finite

jet volume, and a wide variety of species have similar propulsive jet characteristics. These char-

acteristics include some amount of converging radial velocity at the jet source, as well as similar

vortex ring patterns.

This investigation analyzes these behaviors to determine the exact effect on propulsion. More

specifically, a control volume analysis is derived to model the evolution of circulation, impulse,

and kinetic energy of non-parallel starting jets in terms of kinematics at the entrance boundary;

and the kinematics are parameterized for several nozzle configurations. A new, more accurate,

velocity criterion corresponding to vortex ring pinch-off is presented and validated, and the starting

jet control volume analysis is incorporated to model the vortex ring formation process again in

terms of the entrance boundary kinematics. Finally this analysis is used to create a methodology

for optimizing propulsive jetting with respect to desirable locomotion performance indices. The

prototype thruster is also analyzed with respect to inclusion in typical vehicle control environments.
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1.4 Starting Jet Dynamics

The study of short duration starting jets is almost synonymous with the study of vortex

ring formation dynamics. In this type of flow a jet of fluid is expelled into a semi-infinite resting

reservoir of similarly dense fluid, where the unstable shear layer/tube begins to spiral, and the jet

rolls into a single vortex ring or a vortex ring with a trailing wake depending on the exact jetting

parameters, [23]. The formation and evolution of vortex rings have been extensively studied by

the fluid dynamics community; for a more in depth review of vortex rings see [84]. However, the

formation analysis has been limited to a fairly restricted set of boundary flow conditions.

In practice starting jets which enter the domain with nearly parallel axial streamlines can

be created by ejecting the jet through a nozzle which consists of a long cylindrical tube. Here, as

a point of clarification, we define ‘nozzle’ to be any solid structure which separates the emerging

jet flow from the surrounding fluid reservoir. Commonly, flows ejected through a tube nozzle are

driven by a moving piston internal to the cylinder. Starting flows with converging streamlines

can be created by ejecting the jet through a converging conical nozzle. Converging conical nozzles

are a family of nozzles extending from a nearly cylindrical tube to nozzles with increasing slope

until the nozzle cone becomes a flat plate with a central circular orifice, which we will call an orifice

nozzle. In these flows the fluid behind the nozzle must converge to pass through the central opening

and these converging streamlines persist downstream of the nozzle exit plane. Similarly, starting

flows with diverging streamlines can be created by diverging conical nozzles with the maximum

divergence created by an unbounded source just outside the domain. It should be noted here that

during the early stages of vortex formation the vortex ring is very close to the entrance boundary,

and will induce a radial velocity on the flow crossing the entrance plane. However, throughout this

paper we will refer to jet flows which are expelled through tube nozzles as parallel jets, and jet

flows expelled through converging or diverging nozzles as non-parallel in reference to the nature of

the source flow, despite the influence of the vortex ring at early formation times.

Experimental studies on parallel starting jets have characterized jet velocity profiles and
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vortex ring geometries [18]. Gharib et al. [23] used DPIV to get the full velocity field of parallel

flows and used that data to determine vortex ring circulation and vortex ring separation dynamics.

Using numerical simulations this analysis was extended to flows with a much larger range of jet

velocity profiles [78] and shear layer growth/acceleration [57]. The circulation of the primary

vortex ring is usually modeled by a 1D slug model [25, 84, 23], or through the self similar roll-up

of the vortex tube extending from the nozzle [67, 79, 69, 68, 58]. The circulation and impulse of

the jet were modeled by the 1D slug model with an added contribution due to ‘overpressure’ by

([40, 39]). However, vortex rings formed from non-parallel starting jets have only been recently

studied through numerical simulation by Rosenfeld et al. [77], even though non-parallel starting

jets exist in several vortex flows from squid and jellyfish propulsion, to cardiac flows, to synthetic

jet actuation. Rosenfeld et al. [77] investigated the effect the added 2D velocity component had

on the circulation of the forming jet. This paper presents additional empirical data to support

these findings, and extends the analysis to impulse and energy, and presents an alternative model

to predict these quantities in the jet, for a general case of an incoming flow with known velocity

profiles at the boundary.

Therefore, the tools of this manuscript can be used to analyze jellyfish and squid jetting,

which in turn will help to clarify the genetic optimization of these animals swimming behaviors,

since impulse and kinetic energy of the jet are directly related to propulsion, whereas creating a jet

with increased circulation may be tied to other functions like feeding or respiration.

An accurate model for determining the kinetic energy of a fluid jet as well as the pressure

along the jet entrance boundary is an invaluable tool for analyzing any fluid propulsor. Propulsive

efficiency of a vehicle driving mechanism is inversely proportional to the energy required to generate

motion. For propulsors in a fluid environment this is directly related to the kinetic energy of the jet

created while propelling the vehicle forward. The pressure at the entrance boundary of a parallel

starting jet was approximated by Krueger in [39]. This was done by equating the starting jet flow

to the flow around a translating flat plate with the same propagation velocity as the leading vortex

ring, and determining pressure from the resulting potential function, where the plate is oriented
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normal to the axis of symmetry and moves parallel to it. The modeling of this study allows jet

energy and nozzle pressure to be determined using only the velocity profiles at the jet entrance

boundary. Though we focus mainly on finite jets in this paper, the analysis can be extended to

continuous jets as well.

One of the biggest advantages to using pulsatile jet thrusters for underwater vehicle locomo-

tion is that they can be installed within the hull of the vehicle with no protruding control surfaces,

reducing the impact on the overall drag of the vehicle [35]. However, to create a parallel starting jet

this thruster would require either an external tube nozzle, which would eliminate the beneficial drag

characteristics, or an internal tube nozzle which would use up valuable payload space. Therefore it

is ideal to create a thruster which expels jets through a circular orifice in the side of the vehicle, but

this will generate a jet with a converging radial velocity. Therefore an accurate 2D energy model

is crucial to determining the effect that this thruster arrangement has on propulsive efficiency.

The rate of circulation and momentum transfered to the external flow could play a key role

in defining synthetic jet formation criteria. Characteristic jet flow parameters like Strouhal number

are determined entirely from axial jet velocity; however, as is shown in this paper, the radial

velocity of the jet flow at the nozzle exit plane has a significant effect on the rate of circulation,

impulse, and energy added to the external flow. Ignoring the radial velocity during normalization

produces an underspecified scaling law which results in large scatter in experimental data. Holman

et al. [31] approximated the vorticity flux from axial jet velocity which was related to Strouhal

number to give a criterion for synthetic jet formation. The entrance geometry of the synthetic

jet nozzle was observed to strongly affect this criterion, and a heuristic expression was used to

modify the vorticity flux based on nozzle entrance curvature. Similarly, the entrance length was

characterized for zero-net mass-flux devices with a variety of channel entrance conditions in [71],

showing that a sharp edge at the channel entrance has a strong effect on vorticity flux and entrance

length. While not pursued here, we expect that if the characteristic vorticity flux and Strouhal

number are redefined to include contributions from radial velocity, the jet formation constant and

entrance length, as well as other characteristic synthetic jet parameters, would converge upon a
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more universal value independent of specific device geometry. Additionally, predicting jet kinetic

energy and nozzle pressure could serve as a powerful tool for analyzing and designing synthetic jet

actuators, one particular application would be improving energetic cost functions for optimization

of systems which use synthetic jets for active flow control in airfoil drag reduction applications.

A more complete model for the circulation, impulse, and energy of a jet formed from incoming

flow with non-zero radial velocity is given based on the flux of kinematic quantities across the

entrance plane, which in all cases reduces to the evaluation of surface integrals at the boundary.

The pressure profile at the entrance boundary which is required to evaluate energy is also derived in

terms of the entrance plane kinematics. The velocity profiles at the inflow are then parameterized

for a set of nozzle configurations allowing the invariants of motion to be calculated from a limited

number of parameters. It should be noted that the hydrodynamic impulse is modeled, because the

rate of change of the hydrodynamic impulse is equal to the net external force required to create

the flow. This is not in all cases equal to the total fluid momentum. The derivation of total jet

circulation, impulse, and kinetic energy is given in Chapter 2, and the general form model for

the axial and radial velocity profiles for several actual nozzle flows is given in Chapter 4 allowing

the total circulation, impulse, and energy to be predicted. This model is validated in Chapter 6,

showing good agreement with actual jet values.

1.5 Vortex Ring Dynamics

Squid and jellyfish locomotion has been linked to vortex ring formation dynamics in the

propulsive jet [7, 6, 81, 82, 83, 15], and a phenomena known as vortex ring ‘pinch-off’, is closely

associated with the efficiency of the propulsive jet. Vortex ring pinch-off is one of the most well

studied and denotative aspects of vortex ring formation. This is a process where a forming vortex

ring achieves a critical state and separates from the remainder of the shear flow feeding the vortex

ring growth. This phenomena gained notoriety through the classic paper by Gharib et al. [23]. In

this study vortex rings were generated experimentally using a piston-cylinder device and analyzed

using DPIV techniques. A circulation history of both the vortex ring and the total expelled jet was
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extracted from the DPIV vorticity field. It was observed that as the jet formation time increases,

the primary vortex ring grows until it becomes saturated and can no longer accept circulation in its

current arrangement, and ‘pinches off’ from the trailing shear flow. The formation time is defined

as the time since flow initiation normalized by the piston velocity, up, and cylinder diameter, D,

t⋆ =
∫ t
0 up dτ/D. Gharib et. al. defined the formation number as the formation time when the

total jet circulation first reached the final circulation of the primary vortex ring; and additionally

showed that jets generated with a variety of piston velocity programs, up(t), have a nearly universal

formation number (3.6 - 4.2).

The experimental studies of Gharib et al. were limited to starting flows with a fairly specific

jet velocity profile, despite the wide range of piston velocity programs. Numerical simulations

performed by Rosenfeld et al. [78] were not restricted by the mechanical limitations of a physical

vortex generator, and examined formation dynamics of jets with a wide variety of axial velocity

profiles, ranging from the top hat profile to the fully developed Poiseuille flow. It was observed that

jets formed with a more parabolic velocity profile separate at a lower formation number, dropping

as low as 0.9 for a fully developed pipe flow. However, all cases were limited to parallel starting jets,

meaning that at the entrance boundary there is no radial velocity and the streamlines are parallel

(similar to flows created with piston-cylinder vortex generators). The rate of circulation added to

the system was observed to be drastically different for non-parallel jet flows [77, 37], and vortex

rings created from converging jet flows have formation numbers drastically lower than parallel jets

[77].

The study by Mohseni et al. [57] showed that the formation number can also be shifted by

adjusting the shear layer diameter during pulsation or by accelerating the shear layer. Vortex rings

generated with a background co-flow were studied by Krueger et al. [38] exhibiting a decrease in

formation number which was proportional to the ratio of jet velocity to co-flow velocity. Dabiri and

Gharib [17] present experimental data on the effect of changing nozzle diameter during pulsation

on formation number, but do not account for the radial velocity in the nozzle arrangement.

It follows from the Kelvin-Benjamin variational principle that the energy of steadily trans-
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lating vortex rings is maximized with respect to impulse preserving iso-vortical perturbations

[10, 76, 75]. Gharib et al. [23] suggested that pinch-off is a direct manifestation of this prin-

ciple whereby the energy required for the jet to attain steady motion increases with increasing

impulse and circulation until it becomes equal to the energy of the forming jet and the vortex ring

separates from the remainder of the shear flow. Mohseni and Gharib [57] analytically solved for

the formation number utilizing this principle by equating the forming vortex ring to a member of

the Norbury family of vortex rings [59, 60, 21, 22], and using the 1D slug approximation to model

the circulation, impulse, and energy of the ejected jet.

Shusser and Gharib [85] suggest that an equality between jet velocity and vortex ring transla-

tional velocity should provide a good criterion for vortex ring pinch-off, and equated this condition

to the Kelvin-Benjamin variational principle in [86]. This analysis represented the KB principle by

the constraint that the required energy for steady propagation must be less than the jet energy or

the vortex ring will pinch-off.

Within this manuscript the kinematic pinch-off criterion presented by Shusser and Gharib [86]

is re-evaluated, and another more robust criterion is proposed. This study also provides additional

experimental data to support the simulations of Rosenfeld et al. [77], and extends pinch-off analysis

to non-parallel starting jets. The new kinematic velocity criterion is described in Chapter 5, and

is validated in Chapter 6.

1.6 Operational Usage

Traditional propeller type thrusters are very efficient when operating at nominal rotation

rates. However, accurate positioning often requires short impulses, which correspond to propeller

rotations on the order of single rotations, resulting in unpredictable control forces [98]. This coupled

with the unpredictability of typical marine environments causes traditional propeller type thrusters

to be non-ideal for accurate maneuvering. The prototype thruster of this investigation is extremely

much more accurate for small corrective impulses, since the thrust can be quantized down to the

level of a single pulsation whose impulse is described in great detail in Chapters 2 and 4.
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Though the thruster studied here is loosely inspired by the natural locomotion of squid and

jellyfish, there are several aspects of the thruster which are well beyond the capabilities of any

jetting animals. One obvious example is that the thruster of this investigation is not limited to low

pulsation frequencies, which are more ideal for small scale corrective propulsion. The high frequency

operation of this type of thruster will certainly come into use during normal vehicle maneuvers, and

the response of the thruster under high frequency actuation is presented in Section 6.6. Traditional

propeller type thrusters also have a rise time associated with reaching the desired thrust. This rise

time is inversely proportional to the level of thrust and can take on the order of several seconds

for the low thrust ranges [98, 20], additionally tunnel thrusters have been observed to continue

producing a force even after being terminated [52]. The rise time of the prototype thruster is

examined for high frequency operation showing similar rise times, but these rise times are orders

of magnitude faster than those for propeller thrusters, and no lingering force is present when the

flow is terminated. The high frequency testing also characterized the average thrust production,

showing that average thrust suffers from losses when the jet is being expelled at high frequencies

with a stroke ratio above the formation number. These losses are attributed to interactions with

the jet trailing wake during thruster cavity refilling.

This observation inspired an optimization analysis, whereby the average thrust, as well as a

measure of jet efficiency, are optimized with respect to the selection of piston velocity program and

nozzle radius. The constraint that the stroke ratio of the expelled jet must be below the resulting

formation number, is critical to finding any optimal driving program for the thruster, and actually

reduces the optimization problem to the selection of the nozzle radius. This optimization analysis

is given in Chapter 7.

Additionally, an approximated transfer function of the thruster output is derived which can

be used in linear time-invariant control models. We also developed an approximated LTI model of

underwater vehicle dynamics which separates maneuvers into different regimes based on the ratio of

the the maneuver scale to the vehicle size. The approximated vehicle-thruster LTI model was used

to study open and closed loop frequency response of the thruster in a mock control environment.
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It is shown that the cutoff-frequency of the thruster and loop gains are well predicted by the

approximated transfer function, and that the thruster is more ideally suited for small scale high

frequency maneuvers. This analysis is given in Chapter 8.

1.7 Contributions

Listed here are this study’s contributions to the field.

• Design and fabrication of a new type of vortex ring thruster.

• High frequency thrust characterization of vortex ring thruster.

• Model rate of change of hydrodynamic impulse in a starting jet system with non-zero radial

velocity in the jet.

• Model nozzle pressure for any axisymmetric jet, purely in terms of kinematics at the nozzle

plane (no reliance on approximated potential field).

• Introduce generic polynomial parameterization for any jet axial velocity profile, and derive

circulation, impulse, and energy of that parameterization.

• Introduce simple linear parameterization for any jet radial velocity profile, and derive cir-

culation, impulse, and energy of that parameterization.

• Develop more accurate velocity based criterion for vortex ring pinch off, in both parallel

and non-parallel flows.

• Introduce optimization methodology, based on dynamic formation number constraint, for

finite propulsive jets.

• Model approximate transfer function of thruster dynamics.

• Develop maneuver scaling technique for LTI frequency response analysis of non-linear ve-

hicle environments.
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• Implement vortex ring thrusters on vehicle testbeds to perform basic maneuvers.

• Model for the energy storage mechanics of collagen fibers in the squid mantle [36].



Chapter 2

Starting Jet Control Volume Analysis

The circulation, hydrodynamic impulse, and kinetic energy of a starting jet are modeled with

a control volume analysis which relates the kinematics at the entrance boundary to the rate of

change of those quantities. The fluid in the control volume is assumed to start at rest, so that

integration of these rates over time gives the total circulation, impulse, and energy of the jet.

This section will present the control volume analysis in terms of unspecified velocity profiles at the

entrance boundary. These velocity profiles are specific to the method used to generate the flow and

will be parameterized for several actuation methods in Chapter 4.

We consider a semi-infinite axisymmetric control volume, which extends from the axis of

symmetry to infinity, R∞, in the radial direction, and from the source of the starting flow, x0, to

infinity, x∞, in the axial direction as is depicted in Figure 2.1. The position and velocity vectors

in the cylindrical coordinate system are x⃗ = [r, ϕ, x]T and u⃗ = [v, w, u]T , respectively. The model

presented in this section will presume that the control volume is truly infinite in the directions

specified, when in actuality the fluid reservoir for experimentation is bounded by the walls of the

testing tank. However, the distances to these boundaries are sufficiently large to consider the fluid

reservoir unbounded, R∞ is at least 50 times the nozzle radius, and x∞ is at least 140 times the

nozzle radius.

The flow is assumed to be incompressible with a constant density, ρ. The flow is also assumed

to be symmetric about the x-axis with no swirl, so that w = 0 and ∂/∂ϕ = 0. In the axisymmetric
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Figure 2.1: Definition of problem coordinate system and control volume boundaries, rc and xc are
the radial and axial coordinates of the leading vortex ring center in this coordinate system.
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coordinate system with the preceding assumptions the continuity equation can be written,

∂u

∂x
+

∂v

∂r
+

v

r
= 0 . (2.1)

The walls of the tank, and the center of mass of the fluid remain stationary meaning that there is no

net force acting on the control volume, and forces are transmitted between the fluid and the tank

walls through pressure forces. Therefore, there are no body forces in this specific control volume.

It is also assumed that the effect of viscous dissipation is negligible and the governing dynamics of

the flow field are modeled by the momentum equation,

ρ
Du⃗

Dt
= −1

ρ
∇P . (2.2)

Here P is the local pressure including the potentials of all conservative forces. Taking the curl

of this equation, one obtains the vorticity transport equation, which is presented here in vector

product form recognizing that the divergence of both vorticity and velocity are zero,

∂ω⃗

∂t
= ∇× (u⃗× ω⃗) . (2.3)

For the remainder of the analysis the equations presented will not include the fluid density,

ρ, meaning that the quantities are calculated per unit density; furthermore, in the system of units

used for this experiment (g, cm, s) the density of water actually happens to be very close to 1. The

density of water is 1 - 0.96 g cm−3 depending on temperature.

2.1 Circulation

The total circulation of the jet is just the integral of the vorticity over the axisymmetric

plane, [r, x]. For inviscid fluids, circulation is an invariant, and the rate of change of circulation is

equal to the flux of vorticity into the control volume. Since the vorticity is confined to the core of

the primary vortex ring and trailing shear layer, the flux of vorticity across the boundaries r = R∞

and x = x∞ drops to zero, and the rate of change of the circulation is equal to the flux of vorticity

across the nozzle exit plane [18],

dΓ

dt
=

∫ R∞

0
u

(
du

dr
− dv

dx

)
dr . (2.4)
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As was noted by [78, 77] the first term is independent of the specific axial velocity profile so that

given the centerline velocity, u0, the evolution of circulation becomes,

dΓ

dt
= −1

2
u20 −

∫ R∞

0
u
dv

dx
dr . (2.5)

For parallel starting jets the rate of change is mostly dependent on the axial velocity at the cen-

terline, but the additional terms become significant for non-parallel starting jets.

2.2 Hydrodynamic Impulse and Momentum

Now we perform a similar derivation to arrive at the rate of change of impulse in terms of the

same kinematic terms at the entrance boundary. The hydrodynamic impulse of the control volume

is defined as,

I⃗h ≡ 1

2

∫
CV

x⃗× ω⃗ dx⃗ . (2.6)

It was shown by [42] (and in vector form by [80]) that in an unbounded fluid with vorticity confined

to a finite region, the rate of change of the hydrodynamic impulse is equal to the total non-

conservative body forces acting on the fluid. The following analysis gives the rate of change of

the hydrodynamic impulse in a semi-infinite domain (more specifically the control volume of this

section). The rate of change of hydrodynamic impulse in this bounded domain will be related to

a surface integral at the entrance plane, but this integral is not exactly equal to the flux of the

integrand of (2.6). Therefore, this rate of change of impulse is not necessarily equal to the force

imposed on the source flow; however, the total hydrodynamic impulse of the jet at the end of

pulsation is equal to the integral of that force, since at the end of pulsation the volume can be

assumed to be unbounded.

Taking the total derivative of the hydrodynamic impulse, and using the vorticity transport

equation (2.3) as the rate of change of vorticity, provides rate of change of hydrodynamic impulse
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of an axisymmetric inviscid jet with no swirl,

dI⃗h
dt

=
1

2



∫∫
−x

(
∂(−uω)

∂x
− ∂(vω)

∂r

)
2πr drdx

0∫∫
r

(
∂(−uω)

∂x
− ∂(vω)

∂r

)
2πr drdx

 . (2.7)

The hydrodynamic impulse in the radial direction is of little concern (and indeed can be shown to

be equal to zero), so we will focus on impulse in the axial direction. The volume integral can be

simplified to a sum of surface integrals by taking a series of partial integrations and utilizing the

incompressibility condition.

dIh
dt

= π

∫ R∞

0

[
−r2uω − rv2 + ru2

]x∞
x0

dr + π

∫ x∞

x0

[
−r2vω + 2rvu

]R∞
0

dx . (2.8)

Now the integral terms at the far field boundary can be eliminated using an order of magnitude

Stream function analysis. The vorticity is confined to the core of the primary vortex ring and the

trailing shear flow, so along the far surfaces the bounded vorticity appears as a point vortex at

the origin, and the Stokes Stream function can be treated like that in an unbounded spherical

domain since the vorticity is an equally infinite distance from the boundaries in the radial and axial

directions, respectively. The first integrand term in both integrals of equation (2.8) involve the

vorticity which is known to be zero at the farfield boundaries. Using the Stokes Stream function

[12] and [80] showed that in an unbounded spherical domain the velocities, u and v, scale with

r−2. From this relation, the remaining integrand terms of (2.8) at farfield boundaries scale with

r−3 meaning that the integrand drops to zero faster than the integration area grows at infinity.

Therefore the surface integrals taken along the boundaries x = x∞ and r = R∞ can be neglected

and the surface integral of (2.8) need only be calculated along the boundary x = x0,

dIh
dt

= π

∫ R∞

0

[
ur2ω + rv2 − u2r

]
x=x0

dr . (2.9)

Separating the vorticity term and performing a partial integration allows us to simplify,

dIh
dt

= −π

∫ R∞

0

[
2u2r + u

dv

dx
r2 − v2r

]
x=x0

dr . (2.10)
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The first flux term should look familiar, it is the axial momentum across the entrance bound-

ary. Several studies ([25, 84, 23, 57]) approximate the jet circulation assuming that the jet leaves

the vortex ring generator with a uniform axial velocity and no radial velocity (meaning that the

jet is considered a uniform slug of fluid). Using the slug model approximation the rate of change

of hydrodynamic impulse can be simplified to dIh = πu2pR
2dt. The integral of this term is used in

[57, 40, 34] to predict the total impulse of the jet. For simplicity, throughout the remainder of the

paper the hydrodynamic impulse in the axial direction will just be referred to as the impulse of the

jet, I.

The total momentum of the control volume, H =
∫
u⃗ dx⃗, is not in general equal to the

hydrodynamic impulse. Classical analysis by [12] and [80], has shown that in a spherical control

volume, extended to infinity, with vorticity localized to a confined central region the relationship is

H = 2
3Ih. To illustrate this point we integrate the momentum equation (2.2) over the entire control

volume to get the rate of change of the total momentum, H⃗, and making a partial integration gives

only surface integral terms,∫
∂u⃗

∂t
dx⃗ =

dH⃗

dt
= −

∫
u⃗ · ∇u⃗ dx⃗−

∫
∇p dx⃗

= −
∫

u⃗ (u⃗ · n⃗) dS −
∫

u⃗ (∇ · u⃗) dx⃗−
∫

pn⃗ dS

= −
∫

u⃗ (u⃗ · n⃗) dS −
∫

pn⃗ dS .

(2.11)

Here n⃗ is the unit normal which points out of the surface by convention. Under the same boundary

conditions as were used to simplify equation (2.8), and taking advantage of axial symmetry to

simplify the surface integral of the pressure, the rate of change of the total momentum in the axial

direction is,

dHx

dt
= 2π

∫ R

0
u2r dr − 2π

∫ R∞

0
[p (x∞, r)− p (x0, r)] r dr . (2.12)

[40] define an added force measured during experimentation which they term the pressure

impulse,

IP (t) =

∫ t

0

∫
A
[p(r, τ)− p∞] dS dτ, (2.13)
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where A is the nozzle area and p∞ is the ambient pressure; p∞ = lim
x→+∞

p(x, 0). This term can

readily be equated to the pressure term of (2.12), since the pressure can be assumed to be uniform

at the boundary x = x∞. To avoid confusion, we will refer to this terms as the pressure momentum,

contrary to the term ‘pressure impulse’ used by Krueger et al. This is because ‘pressure impulse’

usually refers to the pressure needed to start impulsive motion where the acceleration dominates

the convective terms (∂u/∂t ≫ u⃗ · ∇u⃗), and the pressure can be found from solid body mechanics,

see [9]. This is distinctly different from an additional momentum due to over-pressure at the nozzle.

2.3 Kinetic Energy and Shaft Work

The rate of change of kinetic energy of the system, E =
∫

1
2 u⃗

2dV , is derived for an incom-

pressible, inviscid control volume in multiple texts [42, 14]. This rate is presented here in vector

form,

dE

dt
= −

∫ (
1

2
u⃗2 + P

)
u⃗ · n⃗ dS , (2.14)

where 1
2 u⃗

2 + P is referred to as the ‘total head’ in some thermodynamic control volume analy-

sis. Defining this surface integral in the axisymmetric coordinate system, taking into account the

symmetry at the surface r = R∞, results in,

dE

dt
= −π

∫ R∞

0

[(
u2 + v2 + 2P

)
ur

]x∞
x0

dr , (2.15)

The surface integral can again be eliminated at the farfield boundary, using the same order of

magnitude analysis as was used to eliminate the surface integrals in the impulse equation. By this

analysis the integrand terms of (2.15), excluding the pressure term, scale with x−3 to the leading

power of x, at the x = x∞ boundary. Since the pressure at this boundary is P∞, a finite constant,

the pressure integrand term scales with x−1r−1. Therefore, the integrand terms vanish faster than

the surface of integration expands to infinity, and the surface integral of equation (2.15) only needs

to be evaluated at the entrance boundary,

dE

dt
= π

∫ R∞

0

[(
u2 + v2 + 2P

)
ur

]
x=x0

dr . (2.16)
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Figure 2.2: The emanating jet flow is depicted along with the line integral used to calculate jet
circulation, which is the closed blue loop. The velocity potential at the entrance boundary and
farfield boundary are marked by Φ0 and Φ∞ respectively, all of these are on the axis of symmetry.

Therefore, the kinetic energy of the jet is dependent on both the radial velocity, v, and the

pressure at the nozzle exit plane, P , both of which are non trivial in non-parallel jet flows.

We assume that there is no heat transfer taking place, and there is also no change in potential

energy since the control volume remains stationary. Therefore, there is no net change in internal

energy and the rate at which shaft work must be performed by a mechanical system used to generate

the flow is equal to the rate of change of kinetic energy of the system, Ẇ = dE
dt .

In order to calculate equation (2.16) for an arbitrary jet flow entering the control volume,

the pressure along the entrance boundary must be determined in terms of the jet velocity profiles.

This analysis is presented next.

2.4 Pressure at the Nozzle Plane

Since the starting jet is assumed to be axisymmetric, several simplifying assumptions can be

made which aid greatly in determination of the pressure at the entrance plane. The pressure is

determined in terms of the velocity potential along the axis of symmetry; moreover, this analysis

does not require that the vortex ring leading material surface be equated to translating flat plate

potential flow like the model derived in [39].

The axis of symmetry is a streamline, given the axisymmetric condition that radial velocity is

equal to zero at the centerline. The axis of symmetry is also devoid of vorticity if the axial velocity
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profile is assumed to be continuous and smooth across the axis. Therefore, the pressure along this

axis can be described by the unsteady form of Bernoulli’s equation,

∂φ

∂t
+

1

2
u⃗2 + P = f(t) , (2.17)

where φ is the velocity potential, and f(t) is an arbitrary function which only depends on time.

Here we replace the velocity potential, φ, with Φ, defined as Φ = φ+
∫ t
0 f(τ) dτ , so that Bernoulli’s

equation can be written without dependence on f(t), but the new potential still has the same

gradient, ∇Φ = ∇φ. Since the axis of symmetry is irrotational, the velocity potential can be

determined from the axial velocity by definition of the potential function, ∇φ ≡ u⃗. In cylindrical

coordinates the axial velocity becomes u = ∂φ/∂x = ∂Φ/∂x. This flow is illustrated in Figure

2.2. At the far boundary in the axial direction, x = x∞, the fluid is at stagnation pressure P∞.

Integrating the axial velocity we have a relationship between velocity potential at the far boundary,

Φ∞, and the potential at the entrance plane, Φ0,

Φ0 = Φ∞ −
∫ x∞

x0

u dx . (2.18)

The velocity along the centerline is not easily determined; however, the line integral of this velocity

is contained in the total jet circulation. The circulation is, by definition, equal to the closed loop line

integral of velocity around the axisymmetric plane, which can be separated into sections. Since the

line integrals along the far field boundaries drop to zero, by a similar order of magnitude analysis

as that presented in the previous section, the circulation is,

Γ =

∮
u⃗ · d⃗l =

∫ 0

R∞

−v dr +

∫ x∞

x0

u dx . (2.19)

Combining equations (2.18) and (2.19) gives the potential at the entrance plane as,

Φ0 = Φ∞ −
[
Γ−

∫ R∞

0
v dr

]
. (2.20)

Applying Bernoulli’s equation at the entrance and the farfield boundaries results in the relation,

∂Φ0

∂t
+

1

2
u20 + P0 =

∂Φ∞
∂t

+ P∞ , (2.21)
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where P0 is the pressure on the centerline at entrance plane and u0 is the centerline velocity at the

entrance plane. Inserting the derivative of equation (2.20), and noting that the boundary r = R∞

remains stationary relates the centerline pressure to circulation and entrance kinematics,

P0 = P∞ +
dΓ

dt
−

∫ R∞

0

∂v

∂t
dr − 1

2
u20 . (2.22)

The rate of change of circulation is equal to the flux of vorticity across the nozzle exit plane,

inserting equation (2.5) into (2.22) allows the pressure on the centerline to be calculated,

P0 = P∞ +

∫ R∞

0

(
u
∂v

∂x
− ∂v

∂t

)
dr . (2.23)

The pressure along the rest of the entrance plane can be determined by integrating the

momentum equation in the radial direction,

P (r) = P0 −
∫ r

0

(
u
∂v

∂x
+

∂v

∂t

)
dϖ − 1

2
v(r)2 , (2.24)

where ϖ is a dummy variable for the radius of integration. Finally combining equations (2.23) and

(2.24) gives the pressure distribution along the entrance plane in terms of surface integrals at the

entrance boundary only involving jet velocity profiles,

P (r) = P∞ − 1

2
v(r)2 +

∫ R∞

r
u
∂v

∂x
dr −

∫ R∞

0

∂v

∂t
(2−H(ϖ − r)) dϖ , (2.25)

where H is the heaviside function, defined H = 0 for ϖ < r and H = 1 for ϖ ≥ r.

Now the pressure and kinetic energy of any axisymmetric jet flow can be determined as long

as the jet kinematics are known at the entrance boundary. Chapter 4 describes the velocity profiles

of jets which are expelled through nozzles to create both parallel starting jet flows and ones with a

converging radial velocity. These profiles are then applied to the equations for circulation, impulse,

pressure, and energy that were just derived, and compared to actual circulation, impulse, and

energy of jet flows measured experimentally.



Chapter 3

Experimental Setup

To create the jet flows studied here a prototype thruster/flow generator was developed which

can independently control all of the different characteristic jetting parameters. The vortex generator

mechanism is sealed within a transparent canister which is submerged fully within a fluid reservoir

in a static testing tank. A vertical rod runs from the canister to a frame mounting structure keeping

the canister stationary and allowing direct measurement the thrust produced. A flow visualization

setup is used to film the resulting jet flows in order to capture jet velocity fields using standard

DPIV techniques. A data acquisition assembly sends driving signals to the motor of the vortex

generator, sends trigger signals to the camera, records motor encoder data, and records load cell

thrust measurements. All of these components are described here in detail.

3.1 Prototype Thruster/Vortex Generator

The thruster of this investigation consists of a clear canister (allowing immediate observation

of any leaks, or mechanical issues), which is sealed off by a set of steel endcaps. The bottom endcap

has a large circular opening which leads to an internal fluid cavity. Fluid is forced in and out of the

opening by driving a plunger in the internal cavity. A CAD model of the internal mechanism of the

thruster canister is shown in Figure 3.1, along with a conceptual diagram of the jetting process. The

plunger is a semi-flexible accordion style bellows, which is reinforced by a helically wound metal

rod to minimize changes in diameter, while allowing expansion of the plunger in the axial direction.

This arrangement was chosen so that the volume of fluid ejected has a linear proportionality to
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the deflection of the plunger. A set of nozzles were fabricated to attach to the thruster opening

providing a wide range of jet flow characteristics.

Figure 3.1: A CAD model of the vortex generator internal mechanism is shown along with a blown
up schematic depiction of the internal cavity section

Static Nozzle Configurations There are two basic types of nozzles that are used in this

study. Jet flows which leave the nozzle with nearly parallel streamlines (no radial velocity) are

created using a tube nozzle, which is a long tube connected to the end of the cavity. The tube is

sufficiently long, > 6D, to ensure parallel flow at the exit. The outside of the tube is tapered at

the exit with an angle, γ, as shown in Figure 3.2. The tube nozzle is fabricated with a very small

γ, very close to 11◦. Converging starting jets are created with an orifice nozzle which is simply a

flat plate with a central circular orifice. The converging internal streamlines persist downstream

creating the converging jet flow.

Variable Diameter Nozzle The variable diameter nozzle is functionally very similar to

the orifice nozzle. The mechanism is similar to an iris diaphragm/shutter used in photography,

where a set of interwoven leaves can be actuated to increase or decrease the central opening.

Though the opening is not a perfect circle, technically a regular 20 point polygon (corresponding
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           Diameter
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(a) Nozzle Configurations (b) Variable Diameter Nozzle

Figure 3.2: Conceptual diagram of the layout of different nozzles used to generate various jet
flows for this experimentation (a) and the variable diameter nozzle shown at the limits of diameter
actuation (b).
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to the 20 leaves), It will be approximated as a circular opening diameter. The variable diameter

nozzle is constructed out of thin stainless steel leaves, about 0.5 mm (0.02 in) in thickness. The

nozzle can be actuated from 0.64 cm (0.25 in) to 4.5 cm (1.75 in) in diameter. The mechanism is

shown at in Figure 3.2 at the maximum and minimum achievable diameters.

3.2 Testing Tank

The prototype thruster is placed in a controlled testing tank which was custom designed for

this experiment. The thruster tank consists of an acrylic box measuring 4 ft (1.2 m) wide 3 ft. (0.91

m) deep and 6.5 ft. (2 m) tall, and is supported by an outer steel frame. The frame applies forces to

the acrylic walls via individually tensioned pads, in order to counteract the water pressure forces.

The construction of the thruster tank allows for complete visual access from all sides (including the

bottom), to facilitate filming of the thruster jet flow. A schematic diagram of the thruster tank as

well as an image of the tank itself is shown in Figure 3.2.

3.3 Flow Visualization

The flow visualization setup is composed of a high speed camera and illumination apparatus.

As depicted in Figure 3.2, a 2D cross section of the flow is illuminated with a laser sheet. The flow

is seeded with reflective polyamide particles ≈ 50 µm in diameter, with a density of 1.03 gcm−3

(manufactured by Dantec Dynamics). The laser sheet is generated by a 1W solid state 532 nm laser

(Aixis GAM 1000B) expanded through a cylindrical lens within the tank. Placing the cylindrical

lens within the fluid reservoir minimized the divergence of the laser prior to the sheet making

optics, resulting in a laser-sheet thickness of ≈ 1 mm at the nozzle exit plane. The illuminated

cross section of the flow is recorded using a high speed digital camera, operating at 150-250 fps

depending on the piston velocity. The camera used is a monochrome Phantom v210. This camera

has a resolution of 1 Mpixel (1280×800) and a light sensitivity of 6000 ISO, making it suitable for

DPIV with the solid state laser.
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Figure 3.3: A schematic of the experimental setup (a) as well as a picture of the actual experimental
apparatus in operation (b).

(a) Schematic of Setup (b) Actual Setup
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3.4 DPIV Analysis Description

The high speed video of the jet flow is analyzed using a commercial software, with DPIV

algorithms similar to those described in [96, 70], to determine a velocity field u⃗ = [u, v]T in the

illuminated cross section of the jet flow. Frames (1280×800 pixel resolution), were divided into

36×36 pixel interrogation windows (with 50% overlap), to give the velocity field a 70×44 grid-point

resolution (with the long dimension of the image aligned with the axis of symmetry). Strict care

was taken to ensure that the laser sheet bisected the flow through the jet axis of symmetry, so that

the filmed jet flow corresponds to the axisymmetric flow. An example of the velocity and vorticity

fields determined with this process is presented in Figure 3.4.

Again, the flow is assumed to be axisymmetric with no swirl. Therefore, the total circulation,

hydrodynamic impulse, and kinetic energy of the control volume can be calculated from the vorticity

and velocity fields, [80, 45],

Γ =

∫ x∞

x0

∫ R∞

0
ω dr dx ,

I = π

∫ x∞

x0

∫ R∞

0
ωr2 dr dx .

E = π

∫ x∞

x0

∫ R∞

0

(
u2 + v2

)
r dr dx .

(3.1)

The axisymmetric formulation implies that the velocity/vorticity field is known for a single

half plane extending from the axis of symmetry. The DPIV analysis determines the velocity field for

the entire plane which gives two axisymmetric sections π rad out of phase. The axis of symmetry,

which separates the two half-planes, is determined in the image as the mid-line between the peak

in positive and negative vorticity, and is shown as the dashed line in Figure 3.4. In order to

determine the axis of symmetry with sub piv-window accuracy, the peak location is interpolated

from a small vorticity field surrounding the peak measured value. In general quantities of interest

will be calculated for both half planes given by DPIV analysis and averaged to give a more accurate

value.

The boundary of the vortex ring core, δ, is determined from the vorticity field as an isovorticity
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Figure 3.4: Sample image of the velocity field and vorticity field determined from the DPIV analysis.
The axis of symmetry is shown by the dashed red line running horizontal through the center and
the vertical dashed line marks the nozzle exit plane. This sample flow field was generated by a jet
ejected from an orifice nozzle with a nozzle radius of 0.93 cm and a piston velocity of 6.8cm s−1.
This corresponds to experimental case 4, as summarized in table 6.1
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contour at some small threshold value ωϵ, which is above the background noise level. It should be

noted that the isovorticity contour corresponding to the vortex boundary often includes multiple

rings in the trailing wake. Therefore, the leading vortex ring core boundary is determined as the

closed isovorticity contour enclosing the peak vorticity. Figure 3.4 also shows the vorticity contours

used to identify core boundaries. The isovorticity contour at ωϵ = 2 cm2s−1 is depicted by the

thicker red contour, which is composed of two distinct closed contours; one around the leading

vortex ring and the other around a vortex ring in the trailing wake. Defining the core area, Ac,

as the region encompassed by the core boundary, δ, the circulation, impulse, and energy of the

leading vortex ring can be determined from the same integrands as the total quantities with a

closed boundary of integration.

Γc =

∮
Ac

ω drdx ,

Ic = π

∮
Ac

ωr2 drdx ,

Ec = π

∮
Ac

(
u2 + v2

)
r drdx .

(3.2)

Of course the center of vorticity of the vortex ring, which will be utilized for the model in

Chapter 5, is not necessarily at the same location as the peak vorticity value. The definition of

the center of vorticity is given in [42, 49] in terms of vorticity integral quantities. Restricting the

integrals to the vortex core area, Ac, allows the vortex center of vorticity to be determined,

l2 =

∫
Ac

ωϕr
2 drdx∫

Ac
ωϕ drdx

, xc =

∫
Ac

ωϕr
2x drdx∫

Ac
ωϕr2 drdx

. (3.3)

Now the invariants of motion of experimentally generated jet flows can be determined from

DPIV data, along with characteristics of the leading vortex ring, which allows validation of the jet

and vortex ring modeling.



Chapter 4

Velocity Profiles at the Exit of a Family of Nozzles

The evolution of circulation, hydrodynamic impulse, and kinetic energy of the control volume,

have been derived in terms of surface integrals of the jet kinematics along the entrance plane in

equations (2.5), (2.10), and (2.16), respectively, in Chapter 2. The pressure profile along the

entrance plane which is needed to calculate the kinetic energy is described by equation (2.25). The

equations are valid for determining the circulation, impulse, and energy of any inviscid axisymmetric

starting jet flow, provided the exact kinematics are known at the source of the flow. The velocity

profiles of various starting jets are heavily dependent on the nozzle used to generate the flow. As

was mentioned a starting jet expelled through a long cylindrical nozzle will create a nearly parallel

starting jet, whereas converging conical nozzles and the flat plate orifice nozzle create a starting jet

with a converging radial velocity at the entrance boundary. Here we describe jet velocity profiles

for starting jets created from both tube and orifice nozzles as observed in previous experiments and

measured here. We also present multiple approximations to these profiles. Using the approximated

jet velocity profiles we calculate the rate of circulation, impulse, and energy added to the control

volume in terms of characteristic parameters.

4.1 Axial Velocity Profile, u

The axial jet velocity for flows expelled from tube nozzles has been extensively studied. The

jet velocity is a dynamic function of both radial position and time, even for programs with constant

volume flux. At the onset of the flow the axial jet velocity is nearly uniform with a small peak near
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the edge due to the influence of the primary vortex ring. This peak is very similar to Richardson’s

annular effect observed in oscillating pipe flow [73], and is seen for jets expelled through both tube

nozzles [18] and plate/conical nozzles [77]. As the piston continues to push out fluid, the boundary

layer on the cylinder wall becomes more developed and the jet velocity profile becomes parabolic

in tube nozzle flows. Since there is minimal boundary layer development on the orifice nozzle prior

to ejection, the development of a parabolic velocity profile is less pronounced, or completely absent

if the ratio of the nozzle to cavity diameter is low enough [77], and a small peak near the edge is

observed even in the final development stages. The axial velocity profile at the nozzle exit plane

(as determined from DPIV analysis, see section 3.4) is shown for starting jets ejected from both

tube and orifice nozzles in figure 4.1.

For a nozzle of radius, R, which has a volume flux, Ω, passing through it, the piston velocity

is defined up ≡ Ω/πR2. This terminology is derived from piston cylinder mechanisms, but the

definition is valid for all jetting mechanisms.

4.1.1 1D Slug Model

The simplest approximation of the jet flow at the nozzle plane is the 1D slug model, which

makes the assumption that the jet is ejected with a uniform axial velocity and no radial velocity,

u(r) = up for 0 ≤ r < R. Under these assumptions equations (2.5), (2.10), (2.25), and (2.16)

simplify to the more familiar form,

dΓ

dt 1D
=

1

2
u2p , (4.1a)

dI

dt 1D
= πu2pR

2 , (4.1b)

P1D = P∞ , (4.1c)

dE

dt 1D
=

π

2
u3pR

2 . (4.1d)

This approximation is used frequently for simple calculations, but is only accurate for a very

limited range of jet flows. Therefore we will define a more general axial velocity profile which can

be adjusted to fit jet flows found at the outlet of various nozzles at any given time.
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Figure 4.1: Axial velocity profile at the nozzle exit throughout pulsation for a (a) tube nozzle and
(b) orifice nozzle. The data was fitted to a curve of the form (4.2) described in section 4.1.2. The
velocity profiles shown in (a) and (b) correspond to experimental cases 2 and 4, respectively, as
summarized in Table 6.1.
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4.1.2 Shape Factor Model

There is a large variation in axial velocity profile between different types of nozzles, and at

different formation times. As a second order approximation to the axial velocity profile we define

a generic polynomial velocity profile, which allows the jet flows emanating from any nozzle at any

stage of formation to be defined by a limited number of parameters.

u(r) = a

(
r

Reff

)n

− (u0 + a)

(
r

Reff

)m

+ uo , (4.2)

where Reff is the ‘effective radius’ which is the radial extent of the jet velocity crossing the nozzle

exit plane (for the present explanation it suffices to consider this the nozzle radius R), and a, m

and n are coefficients which control the shape of the velocity profile. This velocity profile is defined

on the domain 0 ≤ r < Reff, outside of this domain the axial velocity is assumed to be zero. The

effective mass flux, Ωeff, is the total mass flux crossing the nozzle exit plane, which is the sum of the

mass flux coming from the jet source and the flux of fluid across the entrance boundary which is

entrained into the jet. In accordance with the definition of the piston velocity we have an ‘effective

piston velocity’ defined by the effective radius and mass flux, ueff = Ωeff/πR
2
eff. Restricting the axial

velocity profiles to a family of solutions whose integral over the nozzle exit plane is the effective

mass flux, the centerline velocity can be defined in terms of the shape factors,

u0 =
Ωeff

πR2
eff

m+ 2

m
− a

2(m− n)

m(n+ 2)
. (4.3)

For flows generated through orifice nozzles the effective mass flux, effective piston velocity and

effective radius are equal to the mass flux, piston velocity, and nozzle radius, respectively; however,

these values differ for flows generated through tube nozzles.

This general form axial velocity profile can be used to describe several useful jet flows, which

are graphically described in figure 4.2. A flow with peaks at the outer edges can be described by

setting a < 0. The profile has a single peak at the centerline for the special case where a = 0, or

m = n. In this case the profile describes a fully developed Poiseuille flow with shape factor m = 2.

The hypothetical top hat velocity profile (1D slug model) is the limit of the generic profile as the
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Figure 4.2: Various jet velocity profiles available to the general axial velocity profile. The effect of
adjusting the shape factors a and m are shown with graphical examples, and n is set much higher
than m.
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exponential coefficients, m and n, approach infinity, independent of a. If a becomes large and

positive the velocity profile develops a local minimum, which is negative, before returning to zero

at the effective radius. In order to maintain a purely positive axial velocity profile the constraint,

∂u/∂r ≤ 0, must be imposed at the point r = Reff; which directly translates to the constraint

a ≤ u0m
n−m .

If it is assumed that the fluid crosses the entrance plane with no radial velocity and an axial

velocity profile defined by Equations (4.2) and (4.3) then the rate of change of circulation, impulse,

and energy of the control volume can be calculated from equations (2.5), (2.10), and (2.16), again

with zero radial velocity P = P∞,

dΓ

dt SF
=

1

2
u20 =

1

2

[
Ωeff

πR2

m+ 2

m
− a

2(m− n)

m(n+ 2)

]2
, (4.4a)

dI

dt SF
= ρ2πR2

eff

[
a2

2n+ 1
− 2a (u0 + a)

m+ n+ 2
+

(u0 + a)2

2m+ 2
− 2u0 (u0 + a)

m+ 2

+
2au0
n+ 2

+
1

2
u20

]
,

(4.4b)

dE

dt SF
= πR2

[
u30
2

+
a3

3n+ 2
+

3a2u0
2n+ 2

+
3au20
n+ 2

− (a+ u0)
3

3m+ 2
− 3u20 (a+ u0)

m+ 2

+
3u0 (a+ u0)

2

2m+ 2
− 3a2 (a+ u0)

m+ 2n+ 2
+

3a (a+ u0)
2

2m+ n+ 2
− 6au0 (a+ u0)

m+ n+ 2

]
.

(4.4c)

In a crude sense the shape factorm can be considered inversely proportional to the thickness of

the shear layer coming into the control volume. As m increases the axial velocity profile approaches

the uniform velocity distribution, and the circulation, impulse, and energy predicted by the shape

factor approximation asymptotically approach the circulation, impulse, and energy of the 1D slug

model.

So far the jet velocity characterization has only described the axial velocity profile for jet

flows. Next we define a characterization for the radial velocity profile in non-parallel starting jets.
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4.2 Radial Velocity Profile (v)

At the onset of pulsation the emerging fluid rapidly rolls into a vortex ring. As a result of the

primary vortex ring’s close proximity to the nozzle exit plane, the emerging flow from both nozzles

experiences an induced velocity in the radial direction. As the vortex ring travels downstream, a jet

emanating from the tube nozzle quickly becomes parallel; while the flow emerging from the orifice

nozzle maintains a consistent radial velocity throughout pulsation. It is expected that the radial

component of velocity reach a maximum near the edge of the nozzle. Experimental DPIV velocity

data shows that this is the case and more specifically, that the radial velocity profile at the nozzle

is nearly linear, at least for orifice nozzles. A typical radial velocity profile at the exit of an orifice

nozzle was averaged over time and is shown in figure 4.3, along with the velocity gradient ∂v/∂x.

2D Model The simplest radial velocity profile (keeping in mind that axisymmetric flows

must have no radial velocity at the axis of symmetry) is a linear proportionality, v(r) = k1r for

0 ≤ r < R. In fact, the radial velocity profile at the exit of an orifice nozzle is seen to be very close

to linear, as was just illustrated. The gradient of the radial velocity in the axial direction will also

be assumed to be linear over the same domain, ∂v/∂x = k2r, which is a fair approximation. A

linear fit to both the radial velocity profile and the velocity gradient profile are also shown in figure

4.3. Taking these approximations for the radial velocity profile, and again assuming a uniform

axial velocity the contributions to circulation, impulse, nozzle pressure, and energy from the radial

velocity terms are calculated from (2.5), (2.10), (2.25), and (2.16) to be,

dΓ

dt 2D
=

1

2
k2upR

2 , (4.5a)

dI

dt 2D
=

π

4
k2upR

4 − π

4
k21R

4 , (4.5b)

P2D =
1

2
R2

(
upk2 −

∂k1
∂t

)
− 1

2
r2

(
k21 + upk2 +

∂k1
∂t

)
, (4.5c)

dE

dt 2D
=

π

4
upR

4

[
upk2 − 3

∂k1
∂t

]
. (4.5d)

The slope of the radial velocity, k1, has the units of s
−1, and the slope of the velocity gradient,

k2, has units cm
−1s−1. Additionally, these slopes are dependent on the exact nozzle configuration
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Figure 4.3: Radial velocity and gradient of the radial velocity ( ∂v∂x) as a function of radius, at the
at the exit of an orifice nozzle. The jet is expelled with a piston velocity of 6.8 cm s−1 and a nozzle
radius of 1.3 cm. This corresponds to experimental case 3 as summarized in Table 6.1. Actual
values are shown by markers and a linear fit is shown by the solid line
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and jetting velocity. Using the piston velocity, up, and nozzle diameter, D, as characteristic velocity

and length scales the slope of the radial velocity and velocity gradient can be normalized, k⋆1 =

k12R/up, and k⋆2 = k24R
2/up. Interestingly, if the contributions to circulation, impulse, and energy

from radial velocity terms are calculated with respect to the non-dimensional parameters k⋆1 and

k⋆2 they take on a similar dependency to piston velocity and nozzle radius as the 1D slug model,

which is

dΓ

dt 2D
=

1

8
u2pk

⋆
2 =

dΓ

dt 1D

k⋆2
4

, (4.6a)

dI

dt 2D
=

π

16
u2pR

2
(
k⋆2 − k⋆21

)
=

dI

dt 1D

k⋆2 − k⋆21
16

, (4.6b)

P2D =
1

8
u2p

[
k⋆2 −

( r

R

)2 (
k⋆2 + k⋆21

)]
=

dΓ

dt 1D

k⋆2 −
(
r
R

)2 (
k⋆2 + k⋆21

)
4

, (4.6c)

dE

dt 2D
=

π

16
u3pR

2k⋆2 =
dE

dt 1D

k⋆2
8

. (4.6d)

The contributions due to the radial velocity are calculated assuming uniform axial velocity

for simplicity; however, these contributions will later be added to the shape factor model to give

a reasonable approximation. Though the most accurate method would be to use the generic axial

profile (4.2) when calculating the contributions from non-zero radial velocity terms (4.5), the small

increase in accuracy does not justify the increased complexity of the radial contribution terms, and

equations (4.6) will be used to describe the contributions from radial velocity for all cases.



Chapter 5

Jet and Vortex Ring Modeling

5.1 Characteristic Parameters

There are several features which should be considered when trying to characterize jet flows and

the resulting vortex rings. A parameter which is useful when describing any flow is the Reynolds

number, Re. Starting jet flows specifically are often characterized by a quantity known as the

formation time.

5.1.1 Reynolds Number

The Reynolds number is often defined for jet flows as,

Re =
2Γ0

ν
, (5.1)

where Γ0 is the total circulation of the jet flow, and ν is the kinematic viscosity of the fluid. Γ0

is often approximated from the 1D slug model (4.1), but we would like to avoid this definition,

since it ignores the contributions from non-zero radial velocity terms. For any Reynolds number

presented herein, Γ0 will be calculated as the total jet circulation determined from DPIV, just after

pulsation has stopped.

Glezer [25] showed that starting jets/vortex rings become turbulent at a critical Re of 25000.

This critical Reynolds number is significantly lower for pulsatile jets, as is described in Appendix

A.
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5.1.2 Formation Time

The formation time is a dimensionless measure of time since initiation of the flow normalized

by the piston velocity and a characteristic diameter. Formation time is defined by Gharib et al.

[23] to be,

t⋆ =

∫ t
0 up dτ

D
, (5.2)

where D is the characteristic diameter which is the nozzle diameter for jets with static nozzles. The

formation time is equal to the stroke ration, L/D, at the final formation time, for cylinder piston

devices. Therefore, we will define the stroke ration as the formation time at the end of pulsation

for all cases. The definition of formation time becomes ambiguous for jet flows expelled through

variable diameter nozzles, and we need to define a characteristic diameter for the case of dynamic

nozzles. Dabiri and Gharib [17] suggest,

t⋆DG =

∫ t

0

up
D

dτ , (5.3)

as a new definition for the formation time, which seems a natural choice but doesn’t necessarily

incorporate the dynamics of the problem. We suggest an alternative definition,

t⋆RMS =

∫ t
0 up dτ

2RRMS
, (5.4)

where RRMS is the root mean square of the nozzle radius, RRMS =
[
1/t

∫ t
0 R

2 dτ
]1/2

. While both

definitions reduce to the original definition for static nozzles, we believe the second is more directly

related to the jet dynamics. The energy of the jet nondimensionalized by the circulation and

impulse is defined as α = Ec/
(
I
1/2
c Γ

3/2
c

)
, as was done in [23, 54, 55, 53, 56]. It can be shown that

the formation time is inversely proportional to the dimensionless energy of the jet if the piston

velocity and nozzle radius are held constant. If we assume that the axial velocity profile is constant

and the radial velocity profile is linear, then the total circulation, impulse and energy of the jet

can be calculated as the sum of equations (4.1) and (4.6) multiplied by the total pulsation time.
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Figure 5.1: Diagram of vortex ring formation, and important flow characteristics

Inserting these into the definition of, α, and rearranging terms results in the relationship,

t⋆ =
upte
D

=
Cα

α
,

Cα =
√
8π

8 + k⋆2[
16 + k⋆2 − k⋆21

]1/2
[4 + k⋆2]

3/2
=

√
π

2

∣∣∣∣
k⋆1=k⋆2=0

.
(5.5)

Meaning that in a very loose generalization a universal formation number corresponds to a minimum

dimensionless energy, α, for forming vortex rings. Again holding the piston velocity constant

but allowing the nozzle diameter to vary during pulsation, the circulation, impulse, and energy

calculated from equations (4.1) and (4.6) will be the same as before, except that the terms R2 will

be replaced with R2
RMS. Plugging these values back into the definition of α results in,

upte
2RRMS

=
Cα

α
. (5.6)

Only the definition of formation time in (5.4) preserves the relationship between formation time,

t⋆, and dimensionless energy, α, for variable diameter jets with constant piston velocity.

5.2 Predicting Formation Number

Here the physical mechanism of vortex ring pinch-off is briefly described as well as a method-

ology for predicting when the pinch-off will take place for any general starting jet flow. Consider



45

a starting jet flow which is still attached to the leading vortex ring as depicted in Figure 5.1. The

shear layer (tube), which extends into the domain with the jet flow, coils up at the free end starting

the vortex ring formation process. As the vortex ring grows the induced velocity on the spiraling

shear layer increases, approaching the feeding velocity of the of the starting jet. When the induced

velocity surpasses the feeding velocity the trailing shear tube becomes unstable, and the shear layer

crossing the vortex boundary (vortex bubble) is driven towards the axis of symmetry under the

induction of the vortex ring. Vorticity cancellation at the axis of symmetry causes the shear layer

in this region to break, separating the primary vortex ring from the trailing shear layer. The free

end of the trailing shear layer rolls into a secondary vortex ring and the primary vortex ring settles

upon a stable arrangement. The primary vortex ring quickly travels downstream out of range of the

influence of the secondary slower moving vortex ring, and the evolution of the ring becomes only

dependent on viscosity (refer to the work of Maxworthy [50, 51]). This process is depicted graph-

ically in Figure 5.2 where a diagram of the shear layer shape is shown alongside actual vorticity

contours for several formation times.

In order to model this process and predict jet formation number we need to define a criterion

which coincides with the shear layer instability. Similar to Shusser and Gharib [86], we will use

the relationship between a characteristic feeding velocity and a characteristic vortex ring velocity

to define this criterion; however, the important quantities will be treated very differently and

our analysis will not be restricted to specific nozzle configurations, piston velocity programs, or

nozzle radius programs. The model of Shusser and Gharib suggested that an appropriate criterion

for vortex ring pinch-off is when the propagation velocity of the primary vortex ring surpasses

the jet velocity driving the flow, making corrections to the jet velocity based on conservation of

mass flux, we will refer to this as the SG criterion throughout this manuscript. We derive an

approximation for the translational velocity of the vortex ring and demonstrate that this velocity

is sensitive to formation dynamics, and moreover show that this criterion does not exactly coincide

with vortex ring pinch-off so that, Utr, might not be the best choice for the characteristic vortex

ring velocity. Alternatively, a velocity criterion is proposed here which compares feeding velocity
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Figure 5.2: At several characteristic formation times the evolution of the shear layer is represented
schematically on the left and actual corresponding vorticity contours are shown to the right. The
vorticity contours were taken from a converging jet with a stroke ratio L/D = 2.4, and piston
velocity of up = 6.8. This corresponds to experimental case 3 as summarized in Table 6.1
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to the velocity induced by the forming vortex at a specific interface location, as the characteristic

vortex ring velocity. Both the propagation velocity and the induced velocity are approximated

from the circulation, impulse, and energy of the vortex ring which determine a unique stable ring

configuration. The characteristic feeding velocity will be determined from the velocity profiles at

the nozzle exit plane for both pinch-off criteria.

The rate of circulation, impulse, and energy added to a starting jet flow were derived for

any starting jet flow in Chapter 2, in terms of the velocity profiles at the nozzle exit plane. These

profiles were parameterized for several specific nozzle configurations in Chapter 4, so that the total

circulation, impulse, and kinetic energy can be determined for any jet flow if the piston velocity, up,

radial slopes, k⋆1 and k⋆2, and shape factors, a, m, and n are all known during the entire pulsation.

Next the flow’s total invariants of motion will be equated to properties of stable vortex rings

to allow a direct comparison of characteristic feeding and vortex ring velocities.

In contrast to the jet modeling presented in previous chapters, the majority of vortex ring

models are parameterized by the vortex ring torroidal radius, l, translational velocity, Utr, mean

core radius, ϵ, and vorticity density function, Ω. The mean core radius, ϵ, is a dimensionless

parameter which describes the ‘thickness’ of the vortex ring. For a vortex ring of core area Ac,

the mean core radius is defined ϵ ≡ [Ac/πl
2]1/2, and can range from ϵ = 0 for vortex filaments to

ϵ =
√
2 for Hill’s spherical vortex. The vorticity density function is defined Ω(x, r) ≡ ω/r; if the

vorticity density is assumed to be constant then there is a unique set of stable solutions for the

vortex core boundary, δ, which we refer to as the Norbury family of vortex rings [60, 59, 21, 22]

(or sometimes called ‘standard’ vortex rings). All vortex rings of this family can be collapsed onto

a self-similar ring, and this set of rings varies purely as a function of the mean core radius, ϵ. The

circulation, impulse, and energy of Norbury vortices are normalized by torroidal radius, mean core
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radius, and vorticity density,

Γc =
(
Ωϵ2l2

)
lΓN , (5.7a)

Ic = ρ
(
Ωϵ2l2

)
l3IN , (5.7b)

Ec = ρ
(
Ωϵ2l2

)2
l3EN . (5.7c)

Here the subscript c refers to the values of the vortex ring and the subscript N refers to the

normalized quantities as presented in [60]. Instead of scaling by the characteristic ring parameters

the ring energy can be nondimensionalized by the other two invariants, as in the dimensionless

energy, α. Note that this normalization eliminates the geometric scaling terms of (5.7), so that for

vortex rings in the Norbury family α = EN/
(
I
1/2
N Γ

3/2
N

)
, which is purely a function of ϵ.

Similarly, if the translational velocity of the vortex ring, Utr, is known then the circulation

can also be made dimensionless β = Γc/
(
I
1/3
c U

2/3
tr

)
[56, 53]. Again the dimensionless circulation is

purely a function of mean core radius β = ΓN/
(
I
1/3
N W 2/3

)
, whereW is the normalized translational

velocity of the vortex ring defined in [60], Utr =
(
Ωϵ2l2

)
W .

Therefore if the circulation, impulse, and energy of the vortex ring are all known, then

the mean core radius can be interpolated from the dimensionless energy, α. Additionally the

translational velocity can then be determined from the dimensionless circulation corresponding

to that mean core radius, Utr = Γ
3/2
c /

(
I
1/2
c β3/2(ϵ)

)
. For reference the dimensionless energy and

circulation, as determined from [60], are depicted in Figure 5.3(a) with respect to mean core radius.

Fortunately the dimensionless energy and circulation have a relationship which eliminates the need

to interpolate ϵ. Figure 5.3(b) shows the inverse of the nondimensional energy, 1/α, plotted with

respect to the corresponding nondimensional circulation taken to the power of 3/2, β3/2. It can be

seen in this figure that the quantities have a nearly linear proportionality, which is demonstrated

by the line fitted to the form β3/2 = c1 + c2/α, with c1 = 1.13 and c2 = 0.52. This allows the

translational velocity of the vortex ring to be written in terms of the invariants of motion.

Utr =
Γ
3/2
c Ec

c1I
1/2
c Ec + c2IcΓ

3/2
c

, (5.8)
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Figure 5.3: Dimensionless energy and circulation, as reported by [60], are shown with respect to
mean core radius, ϵ, (a), and with respect to each other (b).
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Furthermore, when the formation time is below the formation number, it is assumed that all the

circulation, impulse, and energy supplied by the jet will end up in the leading vortex ring so that

Γc = Γ, Ic = I, and Ec = E prior to pinch-off.

The translational velocity of the vortex ring was used as the characteristic vortex ring veloc-

ity for the SG criterion; however, the local velocity anywhere within the torroidal radius will be

significantly higher than this propagation velocity, with the exception of extremely thin core vortex

rings. The velocity along the shear layer at the interface between the vortex ring and the driving

jet flow, which is at the vortex bubble, see Figure 5.1, is most directly related to the development

of instability in the shear layer; unfortunately, the exact location and velocity field of that region

is very difficult to determine (and next to impossible analytically). However, at the time when the

vortex ring separates, the shear layer has moved very close to the axis of symmetry; therefore, as

an approximation we will define the characteristic feeding velocity as the axial velocity on the cen-

terline produced by the jet flow (ignoring roll-up) and define the characteristic vortex ring velocity

as the velocity on the centerline induced by the developing vortex ring.

For simplicity the induced velocity on the axis of symmetry at the origin of the vortex ring,

u⋆ = u(0, xc), (see Figure 5.1) will be used as the characteristic vortex ring velocity. The velocity

profile along the axis of symmetry in the vicinity of a vortex ring can be determined from the

stream function. For any axisymmetric vorticity distribution, with vorticity confined to the region

Ac, the stream function is defined [42, 1],

Ψ (r, x) =
1

2π

∫
Ac

ω′ (r1 + r2) [K(λ)− E(λ)] dx⃗′ . (5.9)

Here Ψ is the Stokes stream function evaluated at point x⃗ = [r, x]T , x⃗′ = [r′, x′]T is a dummy

position specifying the location of integration, ω′ is the vorticity at x⃗′, K and E are the complete

elliptic integrals of the first and second kind, λ is the modulus of the elliptic integrals defined

λ = (r2 − r1) / (r2 + r1), and r2 and r1 are distances defined r2 =
[
(x− x′)2 + (r + r′)

]1/2
and

r1 =
[
(x− x′)2 + (r − r′)

]1/2
. The axial velocity field can be determined from the definition of the
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stream function.

u(r, x) ≡ 1

r

∂Ψ

∂r
=

1

2π

∫
Ac

ω′

r
(A+B) , (5.10)

where,

A =

[
r − r′

r1
+

r + r′

r2

]
[K(λ)− E(λ)] ,

B =
2
(
∂K
∂λ − ∂E

∂λ

)
r2 + r1

[
r1
r2

(
r + r′

)
− r2

r1

(
r − r′

)]
.

There is an infinite series representation of the elliptic integrals K and E which is presented in the

following form by Gradshteyn and Ryzhik [29],

K =
π

2

{
1 +

(
1

2

)2

λ2 +

(
3

8

)2

λ4 + ...+

[
(2n− 1)!!

2nn!

]2
λ2n + ...

}
, (5.11a)

E =
π

2

{
1− 1

4
λ2 − 3

64
λ4 − ...−

[
(2n− 1)!!

2nn!

]2 λ2n

2n− 1
− ...

}
. (5.11b)

In this equation !! represents the double factorial operator. This is a convenient expansion when

analyzing behavior at the axis of symmetry because at r = 0, the modulus of the elliptic integrals

is also zero, λ = 0, which means that the elliptic integrals evaluated at this location are, K(0) =

E(0) = π/2. The form of (5.11) allows us to exactly calculate the m’th order derivative of the

elliptic integrals at the axis of symmetry,

∂mK

∂λm

∣∣∣∣
r=0

=


0 if m = ‘odd’

m!
[
(m−1)!!

2m/2 m
2
!

]2
if m = ‘even’

, (5.12a)

∂mE

∂λm

∣∣∣∣
r=0

=


0 if m = ‘odd’

m!
m−1

[
(m−1)!!

2m/2 m
2
!

]2
if m = ‘even’

. (5.12b)

Therefore, the quantities A and B in (5.10) are equal to zero at the axis of symmetry which makes

the fractions A/r and B/r undefined. We can use L’Hopital’s rule to define the axial velocity along

the axis of symmetry.

u(0, x) =
1

2π

∫
Ac

ω′
([

∂A

∂r

]
r=0

+

[
∂B

∂r

]
r=0

)
dx′dr′ (5.13)
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The First derivative term, ∂A/∂r, is equal to zero when evaluated at the axis of symmetry. Incor-

porating (5.12) the second derivative term can be shown to be equal to ∂B/∂r = πr′2/r31, which

means that the exact velocity profile along the axis of symmetry is,

u(0, x) =
1

2

∫
Ac

ω′ r′2[
(x− x′)2 + r′2

]3/2 dr′dx′ . (5.14)

For the point vortex (zero cross sectional area), the velocity profile becomes very simple,

u(0, x) =
Γc

2

l2[
(x− xc)

2 + l2
]3/2 (5.15a)

and,

u⋆ = u (0, xc) =
Γc

2l
. (5.15b)

The point vortex (and other thin core vortex rings) has a well defined torroidal radius [42, 1],

l =
√
Ic/πΓc, so that an approximation for the induced velocity can be made in terms of the vortex

ring circulation and impulse,

u⋆ =

√
πΓ3

c

4Ic
. (5.16)

It should be noted that the characteristic induced velocity, u⋆, is a maximum velocity along

the centerline induced by the vortex ring; therefore, maintaining consistency, the characteristic

feeding velocity should be defined as the maximum jet velocity on the centerline before roll-up.

This feeding velocity is approximated as twice the piston velocity, 2up, which is the centerline

velocity of a fully developed pipe flow (Poiseuille flow).

Now the SG velocity criterion for the time when the propagation velocity surpasses the

corrected jet velocity can be written,

Utr =

(
R

l

)2

up , (5.17)

and Utr can be approximated by equation (5.8). The alternative velocity criterion proposed here

of induced centerline velocity (5.16) surpassing the maximum centerline feeding velocity predicts
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pinch-off at the time when, √
πΓ3

c

4Ic
= 2up . (5.18)

Both criteria suggest that for a given vortex ring configuration, the pinch-off can be delayed by

accelerating piston velocity for a given critical configuration.



Chapter 6

Thruster Testing Results

In order to validate the analysis and modeling presented in Chapters 2, 4, and 5 a wide variety

of jet flows needed to be examined. These jet flows will be created with both tube and orifice nozzles

to create parallel vs. non-parallel flows. Flows are created with expanding or contracting shear

layer diameter using the variable diameter nozzle. Multiple piston velocity programs are created by

switching out a cam in the mechanical plunger driving mechanism, these piston velocity programs

are discussed presently.

6.1 Piston Velocity Programs

The vast majority of jet flows examined in this study have a nearly impulsive velocity pro-

gram. This means that the piston velocity of the jet rapidly accelerates at the onset of flow, then

maintains a nearly constant piston velocity for the remainder of pulsation. The experimental trials

which utilize a nearly impulsive velocity program are summarized in table 6.1. In this table the

piston velocity, up, normalized radial slope, k⋆1, and normalized radial gradient slope, k⋆2, are all

average value for the entire pulsation.

The actual piston velocity programs of cases 1-6 are presented in Figure 6.1. These velocity

programs were determined from the recorded motor encoder data, and this technique is validated

using a particular nozzle in Appendix B. The velocity programs are shown for these cases in

particular because quantities of these cases will be plotted individually in later figures. Cases 7-

12 are not plotted individually, and are mainly used in the velocity profile parameterization, but



55

Table 6.1: Summary of experimental trials with nearly impulsive velocity programs. All values
which vary with time are taken as the average over the entire pulsation.

Case up Nozzle Type Nozzle Radius L
D k⋆1 k⋆2 Re

1 6.7 Tube 1.3 cm 2.4 0.16 1.3 3046
2 7.5 Tube 0.91 6.9 0.12 0.27 7879
3 6.8 Orifice 1.3 2.4 -0.78 4.0 6044
4 7.4 Orifice 0.93 6.8 -0.91 4.2 10491
5 5.1 Orifice [0.96 - 1.38] 4.2 -0.8 4.2 3622
6 3.3 Orifice [1.23 - 0.84] 4.7 -0.78 3.5 2056

7 12.8 Tube 1.3 2.5 0.17 1.1 4863
8 10.8 Tube 0.91 6.9 0.12 0.25 10178
9 12.5 Orifice 1.3 2.4 -0.81 4.1 8454
10 8.7 Orifice 1.3 2.4 -0.89 4.0 5976
11 10.4 Orifice 0.93 6.8 -0.88 3.9 11241
12 5.4 Orifice 0.93 6.8 -0.85 3.8 7205
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Figure 6.1: Piston velocity programs for several trials, summarized as Cases 1-6 in Table 6.1.

their velocity programs are very similar to those shown in Figure 6.1. Cases 5 and 6 use the

variable diameter nozzle, Case 5 has a linearly increasing nozzle diameter, and case 6 has a linearly

decreasing nozzle diameter. For both of these cases the volume flux of the prototype thruster was

compensated for the expanding or contracting nozzle radius in order to maintain a nearly constant

piston velocity program. For the remainder of the analysis we will consider these flows to be truly

impulsive with a constant piston velocity reached at the onset of flow.

The jets with constant piston velocity are very useful while validating the control volume

analysis of Chapter 2 and jet velocity parameterization in Chapter 4; however, validation of the

vortex ring pinch-off model of Section 5.2 requires testing of a jet flow with an accelerating piston

velocity. For this trial a jet was created with a linearly accelerating piston velocity and a constant

nozzle radius of 0.98 cm (0.4 in). This velocity program is shown in Figure 6.2.

6.2 Resulting Jet Flow Parameters

Here we describe the characteristic parameters of the jet flow throughout pulsation for the

various experimental trials. These parameters are required to evaluate the modeling of Chapters 2

and 4, and will be used in the model validation Section 6.3.
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Figure 6.2: Velocity program for the accelerating jet velocity trial.

6.2.1 Volume Flux and Entrained Fluid

The volume flux, corresponding to jet flow, through any plane at some axial location,

x –V, which is orthogonal to the axis of symmetry, can be determined from the velocity field,

d –V/dt =
∫ R∞
0 u(r, x –V)2πrdr. The total jet volume to pass through this plane is simply, –V =∫ t+

0

∫ R∞
0 u(r, x –V)2πrdrdt, where t+ is some time after the entire jet has passed through the plane.

For any plane downstream of the nozzle exit plane, t+ must be greater than the time when the

jet flow is terminated, te. We calculated the total jet volume to pass through every plane in the

control volume which is presented as a function of axial distance from the nozzle in Figure 6.3. In

this figure the curve for tube nozzle jets is averaged from cases 2 and 8 and the curve for the orifice

nozzle jets is averaged from cases 4, 11, and 12. This figure only shows the first ≈ 5 cm (2 D) from

the nozzle. It is assumed that the entire jet has passed through every plane in this region, which

was qualitatively verified by the lack of flow in this region at the final time.

Also shown in Figure 6.3, is the ejected jet volume, or volume of fluid expelled from the

vortex generator. It can be seen that the jets expelled from the tube nozzle entrained 8 ml of fluid

right at the nozzle plane. This instantaneous entrainment of fluid can be explained by the fact

that the driving flow is expelled out of a long thin cylindrical tube; which allows fluid upstream

of the nozzle plane to be drawn into the low pressure roll up (see Figure 3.2). After this initial

entrainment the shear tube travels downstream under its own induction velocity without entraining
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Figure 6.3: Total volume flux in the axial direction as a function of distance from the nozzle plane.
Any volume flux above the jet volume (total fluid volume ejected out of the vortex generator)
corresponds to entrained fluid. The tube nozzle data is averaged from cases 2 and 8 and the orifice
nozzle data from cases 4, 11, and 12. For all cases the stroke ration is L/D ≈ 7 and the errorbars
indicate the standard deviation between cases.
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any additional fluid, where it eventually rolls into the primary vortex ring or is left in the trailing

wake. This entrainment corresponds to 25% of the jet volume expelled from the vortex generator,

which is similar to entrainment fractions observed by [16] and [62]. Dabiri and Gharib measured

entrainment fractions around 30−40% for jets expelled with no counterflow, and Olcay and Krueger

observed entrainment fractions from 20% to 45% depending on the stroke ratio, showing a large

increase in entrainment fraction at very low stroke ratios (L/D ≤ 1). The entrained volume analysis

presented here is not meant to augment or verify these results, but rather show that the entrainment

takes place at or around the nozzle exit plane, for tube nozzle flows, which will greatly affect the

volume flux at the entrance plane, Ωeff.

The fact that the orifice nozzle forms a physical barrier at the entrance plane means that

there is no flow normal to the nozzle plane. Therefore, all entrained fluid must come from the radial

direction, and the total jet volume to pass through the nozzle exit plane is much closer to that

of the ejected jet volume, for the orifice nozzle nozzle flow. Setup limitations prevent the velocity

profile from being determined exactly at the nozzle exit plane, and is instead measured a very short

distance, ≈ 2 mm, downstream. This is why there is a small amount of initial entrained fluid being

measured. However, this measured initial entrainment is very small and the vortex generator flow

rate can be used as the volume flux at the nozzle exit plane, Ωeff, without compromising accuracy.

Within a short axial distance (less than a diameter) the converging jet has entrained the same

volume of fluid as the parallel jet and continues to entrain fluid while contracting until reaching

the vena contracta plane, at which point the converging jet has entrained 15 ml of fluid, close to

50% of the ejected jet volume.

6.2.2 Shape Factors

The shape factor model (Section 4.1.2) defines the axial velocity profile at the nozzle exit

plane, in terms of the parameters Ωeff, Reff, a, m, and n. The volume flux was determined at the

nozzle plane (as well the rest of the control volume) as was described in Section 6.2.1, which was

used to define the effective mass flux, Ωeff = d–V/dt|x=x0 ; the remainder of the coefficients were



60

0.2 0.4 0.6 0.8 1

−12

−10

−8

−6

−4

−2

0

2

Time t

te

S
ha

pe
 F

ac
to

r a

 

 

Converging Jet
Parallel Jet

0.2 0.4 0.6 0.8 1

4

6

8

10

12

14

Time t

te

Sh
ap

e 
Fa

ct
or

 m

 

 

Converging Jet
Parallel Jet

(a) (b)

Figure 6.4: Fitted velocity profile coefficients a and m shown throughout pulsation for both parallel
and non-parallel starting jets, with a nozzle radius of 1.3 cm. Each series represents the average
of multiple trials, and time has been normalized by the final time at the end of pulsation. Parallel
jets are averaged from cases 1 and 7 and non-parallel jets are averaged from cases 3, 9, and 10.

determined by fitting the DPIV data to the form of equation (4.2) with constraint (4.3). The

fitting of the larger exponential shape factor, n, is observed to be sensitive to noise in the DPIV

velocity data and fluctuates randomly. However, there is little correlation between change in n and

characteristic vortex generator parameters, and a good approximation of the jet flow can be reached

if this parameter is set much larger than the smaller exponential coefficient, m. The other two shape

factors were averaged for multiple trials for jets ejected from both tube and orifice nozzles. Cases 1

and 7 (as summarized in Table 6.1) are averaged to give parameters of the low stroke ratio parallel

jets, cases 2 and 8 are averaged for large stroke ration parallel jets, cases 3, 9, and 10 are averaged

for low stroke ration converging jets, and cases 4, 11, and 12 are averaged for large stroke ratio

converging jets.

Figure 6.4 shows the parameters a and m for low stroke ratio parallel and non-parallel jets.

The standard deviation of the averaged experimental trials is depicted by the errorbars in the figure.

A velocity profile which peaks towards the edges and drops off in the middle has a negative value

for a. The value of a, determined for the converging jet, remains at a relatively constant negative

value throughout pulsation demonstrating that the velocity profile has a persistent peak towards
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the nozzle radius. The peak towards the edge is clearly seen in the axial velocity of the converging

jet at all 3 formation times shown in Figure 4.1(b), which are sampled from case 3. The value for

m also remains fairly constant throughout pulsation, indicating that the shear layer maintains a

constant thickness. The parallel starting jet has a very brief period with a peak near the edges

due to the influence of the forming vortex ring, but this profile quickly develops a peak on the

centerline, and the value for a becomes slightly positive. The value for m starts out very high,

meaning that the velocity profile is nearly uniform, but shows a slight decrease over time where

development of the boundary layer on the tube nozzle increases shear layer thickness.

As would be expected the influence of the primary vortex ring during formation is marginal-

ized over the entire pulsation for the large stroke ratio jets. The averaged shape factors a and m

for both parallel and non-parallel jets with L/D ≈ 7 is shown in Figure 6.5. Since the jet with the

larger stroke ratio corresponds to a larger formation time, the boundary layer on the tube nozzle

becomes more developed towards the end of pulsation. The value for m drops very low for the large

stroke ratio parallel jet due to this boundary layer growth, and asymptotically approaches m = 2,

corresponding to a fully developed pipe flow. The developed flow can clearly be seen in the axial

velocity of the parallel jet in Figure 4.1(a) at the final time sample. Other than this the shape

factors are very similar for the different stroke ratios.

6.2.3 Radial Velocity Profile

The normalized slopes k⋆1 and k⋆2 are averaged for the same cases as the shape factors. The

dimensionless slope of the radial velocity, k⋆1, is shown vs. time in Figure 6.6(a), for both parallel and

converging jets with a low stroke ratio, L/D ≈ 2.5. At the initiation of motion the jet flow expands

outwards and both jets show a positive slope (diverging radial velocity) corresponding to the initial

roll up of the leading vortex ring. As the vortex ring moves downstream, the radial velocity of the

parallel jet drops to zero until the flow is terminated and the development of a stopping vortex

induces a negative radial velocity profile. The slope of the radial velocity profile for the converging

jet quickly reaches a negative value (converging radial velocity) which it maintains throughout the
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Figure 6.5: Fitted velocity profile coefficients a and m shown throughout pulsation for both parallel
and non-parallel starting jets with large stroke ratio. Each series represents the average of multiple
trials, and time has been normalized by the final time at the end of pulsation. Parallel jets are
averaged from cases 2 and 8 and non-parallel jets are averaged from cases 4, 11, and 12.
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Figure 6.6: The dimensionless slope of the (a) radial velocity profile, k⋆1 and (b) gradient of the
radial velocity profile, k⋆2, for jets with a stroke ratio of L/D ≈ 2.5, expelled through both tube
and orifice nozzles. Parallel jets are averaged from cases 1 and 7 and non-parallel jets are averaged
from cases 3, 9, and 10.
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rest of the pulsation. Figure 6.6(b) shows the dimensionless slope of the gradient of the radial

velocity in the axial direction, k⋆2. Again the parallel jet radial velocity is due to the roll-up of

the leading vortex ring and stopping vortex ring with nearly zero slope in between. The slope of

the converging jet radial velocity gradient is larger and persists throughout pulsation as would be

expected, but here the primary vortex ring has a more significant presence increasing the slope of

∂v/∂x in the initial formation period.

The dimensionless slopes k⋆1 and k⋆2 are shown in Figure 6.7 for the jets with a large stroke

ratio. The converging jet shows the same behavior as the low stroke ratio trials, but the influence

of the primary vortex ring is much less noticeable and can be considered negligible. It should be

noted here that k1 and k2 actually vary significantly between different trials not just because of the

different piston velocities, but also because the ratio of nozzle diameter to inner cavity diameter

varies between trials and this will also change the radial velocity independently of piston velocity.

Fortunately the normalization employed to scale these slopes results in a convergence of k⋆1 and k⋆2,

not just for trials with different piston velocities, but also for the different nozzle diameters.

The slope of the radial velocity and velocity gradient of the parallel jet also display the same

behavior as the low stroke ratio trials but as would be expected the jet spends a longer period of

time with no induced radial velocity. Additionally the radial velocity gradient of the parallel jets

has a negative value for a very short period of time, due to the rapid acceleration of fluid during

vortex ring formation. This phenomenon was not observed for the low stroke ratio case because

the acceleration of piston velocity occurred before any significant vortex ring formation.

Here it is interesting to note that nearly the entire jet will end up in the primary vortex ring

for the parallel jet with low stroke ratio (cases 1 and 7). Despite the lack of separation between the

vortex ring and the trailing shear flow, Figures 6.6 and 6.7 shows that there is a clear point where

the primary vortex no longer induces any appreciable radial velocity at the nozzle exit plane, which

is at a formation time of, t⋆ ≈ 1.2, which is well before the vortex ring separates from the shear

flow.
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Figure 6.7: The dimensionless slope of (a) radial velocity profile, k⋆1 and (b) gradient of the radial
velocity profile, k⋆2, for jets with a stroke ratio of L/D ≈ 7, expelled through both tube and orifice
nozzles. Parallel jets are averaged from cases 2 and 8 and non-parallel jets are averaged from cases
4, 11, and 12.
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6.3 Validation of Starting Jet Model

The circulation, hydrodynamic impulse, and kinetic energy of the control volume are calcu-

lated according to the 1D slug model, equation (4.1) and the shape factor model, equation (4.4)

both with and without contributions from the radial velocity terms, equation (4.6) for all exper-

imental cases, using the parameters k⋆1, k⋆2, a, and m identified for these cases in the previous

section. The actual circulation, impulse, and kinetic energy of the total jet was determined from

the DPIV analysis (Section 3.4). The accuracy of all 3 models is presented here for the different

nozzles and stroke ratios.

6.3.1 Circulation

Figure 6.8 shows the evolution of circulation for both parallel and converging starting jets

with a stroke ratio of L/D ≈ 2.5 and piston velocity of ≈7 cm s−1 (cases 1 and 3). It can be seen

from this figure that the total circulation of the jet is well predicted by the shape factor model with

contributions from the radial velocity included, for both nozzle configurations.

The circulation of the parallel jet (case 1) is fairly closely approximated by all three models,

with the 1D slug model predicting the lowest circulation at the final time when the jet flow is

terminated. The maximum circulation reached by the jet is 34% larger than the 1D slug model

prediction. The rate of circulation added to the system is dependent on the centerline axial ve-

locity and not the piston velocity; therefore, a parabolic velocity profile will have a greater flux of

circulation for the same piston velocity. The shape factor model accurately captures the parabolic

axial profile, but still under-predicts the final circulation. Despite the parallel flow in the cylinder,

the development of the primary vortex ring induces a small radial velocity in the jet flow crossing

the nozzle exit plane, as was mentioned in previous sections. Including contributions from non-zero

radial velocity brings the predicted circulation very close to the final jet circulation.

The total circulation of the converging jet (case 3) just after pulsation is significantly higher

than the circulation predicted by the 1D slug model and the shape factor model. In this config-
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Figure 6.8: Evolution of circulation for a (a) parallel jet and (b) converging jet, with a stroke ratio
of, L/D = 2.4 and a jet velocity of ≈ 7cm s−1.

uration the centerline velocity still experiences a slight increase, which causes the shape factor to

predict a higher circulation than the 1D slug model, but the effect of the converging radial veloc-

ity at the entrance boundary is much more apparent. Including the contribution from the radial

terms nearly doubles the predicted circulation, and brings the prediction very close to the actual

circulation of the jet. This radial velocity component causes the total circulation of the converging

jet to be double the total circulation of the parallel jet, 103% larger, for the same piston velocity

and a low stroke ratio, L/D = 2.4.

The circulation of both parallel and converging jets with a larger stroke ratio, L/D ≈ 7 (cases

2 and 4), is shown in Figure 6.9, and again the shape factor model, with contributions from the

radial velocity component included, provides a good predictor of total circulation for both parallel

and converging jets. Here the longer formation time and more developed axial velocity profile of

the parallel jet (case 2) produces a large increase in circulation; as is shown by the larger circulation

predicted by the shape factor model compared the 1D slug model. Whereas the effect of the radial

velocity component, which exists for a short period of time during initial ring formation, only

increases the predicted circulation by a negligible amount. The converging jet (case 4) experiences

less development in the axial velocity profile due to boundary layer growth and the shape factor

model for this case predicts a similar increase over the 1D slug model as the low stroke ratio case
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(a) Case 2, Parallel Jet, L/D = 6.9 (b) Case 4, Converging Jet, L/D = 6.8

Figure 6.9: Evolution of circulation for a (a) parallel jet and (b) converging jet, with a stroke ratio
of, L/D ≈ 7 and a jet velocity of ≈ 7cm s−1.

(case 3). The persistent radial velocity profile again nearly doubles the total jet circulation which is

captured by the 2D model contributions. In total the converging jet produces 94% more circulation

than the parallel jet with a stroke ratio L/D ≈ 7

6.3.2 Impulse

The impulse is fairly insensitive to the parameter, m, when a ≈ 0, which means that any

deviation of the shape factor model from the 1D slug model for parallel jets is mostly due to the

change in the effective mass flux, Ωeff, and effective radius, Reff, which are in part due to entrainment

of fluid at the entrance boundary. Interestingly the initial entrained fluid increases the effective

mass flux for the parallel jet, but it also increases the effective radius, sometimes to the point where

there is a slight decrease in effective piston velocity. This effect results in a total jet impulse which

is lower than that predicted by the 1D slug model as can be seen in Figure 6.10, which shows the

total impulse of both parallel and converging jets with a stroke ratio L/D = 2.4 (cases 1 and 3).

This fairly minimal decrease in impulse of the parallel jet is captured by the shape factor model,

and the contribution from the radial velocity terms is negligible for this case. Krueger and Gharib

[40] measured the total impulse imparted by expelling a parallel jet with a stroke ratio of L/D = 2,

to be 40% larger than the ‘momentum impulse’ (see equation 2.12) for certain velocity programs.
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(a) Case 1, Parallel Jet, L/D = 2.4 (b) Case 3, Converging Jet, L/D = 2.4

Figure 6.10: Evolution of impulse for a (a) parallel jet and (b) converging jet, with a stroke ratio
of, L/D = 2.4 and a jet velocity of ≈ 7cm s−1.

The discrepancy between those results and impulse measured for parallel jets in this investigation

could result from a number of differences in the experimental setup. The velocity program used

here has a very fast acceleration then levels off and remains at a constant value for the rest of the

pulsation, as opposed to the velocity programs of Krueger and Gharib which are more triangular

than trapezoidal. This might cause the vortex ring to grow close to the nozzle exit for a longer

period of time and induce a more significant radial velocity on the starting jet, especially since

the slope of the radial velocity gradient, k⋆2, was observed in Figure 6.7 to be sensitive to the

acceleration during the vortex ring formation stages. Additionally, the jets of Krueger and Gharib

have a Reynolds number on the order of 20000, whereas the parallel jet of Figure 6.10a (case 1) has

a Reynolds number of 3046, and the thinning of the shear layer associated with increased Reynolds

number likely helps keep the effective radius small.

The total impulse of the low stroke ratio converging jet (case 3) is 35% larger than the impulse

predicted by the 1D slug model. The shape factor model prediction shows that the converging jet

impulse experiences an increase due to the peak of the axial velocity towards the edge of the nozzle,

but the jet impulse is mostly affected by the radial velocity, and again the increase is accurately

captured by the 2D model contributions. Overall the converging jet impulse is 73% higher than

the parallel jet for the same piston velocity with stroke ratio L/D = 2.4.
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Figure 6.11 shows the hydrodynamic impulse of both parallel and converging jets with a

stroke ratio L/D ≈ 7 (cases 2 and 4). The impulse of the parallel jet is actually fairly well

predicted by the 1D slug model, but the shape factor model slightly over-predicts the total impulse

for this case. This overshoot can be attributed to the difficulty in capturing the velocity directly

on the nozzle exit plane, compounded by an inadequacy of the jet velocity parameterization. For

this particular case even a very short distance from the nozzle the forming vortex ring induces

a substantial upstream flux, just outside the nozzle radius area. The generalized velocity model,

equations (4.2 and 4.3), were intended to approximate the jet velocity profile right at the nozzle

exit boundary using a limited number of parameters. As a result any negative flux outside of the

nozzle radius is not captured in the model. While there is no limitation in extending the jet velocity

model to capture profiles which are more typical further downstream, this would introduce at least

two more model parameters drastically increasing the complexity of the model; hence that is not

pursued in this investigation. Since the generalized jet velocity model cannot capture negative

velocity, and therefore cannot capture the negative flux during formation, the shape factor model

will predict impulse slightly above the actual jet impulse when the entrance boundary is chosen

just downstream of the nozzle exit plane. However, the shape factor model will accurately predict

the circulation for the same case since it still properly captures the centerline velocity (as can be

seen in Figure 6.9). The effect of the radial velocity induced by the formation of the primary vortex

ring is almost non-existent for the parallel jet with a large stroke ratio (case 2).

The velocity profile of the converging jet is much more consistent throughout pulsation even

for the large stroke jet (case 4), so that the effect of axial velocity shape as well as the effect of

radial velocity on total impulse is very similar between the converging jets with a low stroke ratio

and those with a high stroke ratio. Again the total jet impulse is well predicted by the shape

factor model, with contributions from the radial velocity terms included. In total the converging

jet has 75% more impulse than the parallel jet with the same piston velocity and stroke ratio,

L/D ≈ 7. Again the impulse measured for the parallel jet does not acquire the ‘pressure impulse’

reported by [40] for a stroke ratio L/D = 8; however, it should be noted that at such large stroke
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(a) Case 2, Parallel Jet, L/D = 6.9 (b) Case 4, Converging Jet, L/D = 6.8

Figure 6.11: Evolution of impulse for a (a) parallel jet and (b) converging jet, with a stroke ratio
of, L/D ≈ 7 and a jet velocity of ≈ 7cm s−1.

ratios the additional thrust attributed to ‘nozzle overpressure’ is greatly diminished because of the

marginalized influence of the initial vortex ring formation.

6.3.3 Kinetic Energy and Nozzle Pressure

The kinetic energy of the jets were determined using the DPIV algorithms and recorded

over time. Unfortunately, there is no direct pressure measurement at the nozzle exit plane, so

the accuracy of nozzle pressure calculation is difficult to determine. However, the energy model

requires the knowledge of the pressure at the nozzle (pressure work done at the boundary), so

that validation of the kinetic energy model indirectly validates the pressure model as well. Even

though the pressure distribution was not measured experimentally, it was calculated at the nozzle

exit plane from the jet velocity profile according to equation (2.25). The pressure profile is shown

with respect to radius in Figure 6.12, for parallel and non-parallel jets with L/D = 2.4 (cases 1 and

3). It can be seen in this figure that the initial stages of vortex ring formation induce overpressure

(pressure above stagnation pressure) within the nozzle exit area and under-pressure just outside the

nozzle radius, for the parallel jet (case 1). The overpressure on the orifice nozzle is very minimal at

the start of motion. After this formation period the converging jet maintains overpressure at the

nozzle exit area but the parallel jet drops to stagnation pressure.
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(a) Case 1, Parallel Jet, L/D = 2.4 (b) Case 3, Converging Jet, L/D = 2.4

Figure 6.13: Kinetic energy of a jet created with a piston velocity of ≈ 7 cm s−1 and stroke ratio
of L/D = 2.4. (a) parallel jet and (b) converging jet.

The kinetic energy of both parallel and converging starting jets, expelled with equivalent

piston velocities up ≈ 7 cm s−1 and low stroke ratio L/D = 2.4 (cases 1 and 3) are shown in Figure

6.13. The converging jet has a much larger kinetic energy than the 1D slug model prediction.

Some of the additional energy is due to the peak in axial velocity towards the nozzle edge, which

is captured by the shape factor model prediction; however, a much larger portion of the increased

energy is due to the increased pressure along the nozzle plane required to support the radial velocity

gradient. The shape factor model with contributions from the radial velocity provides a very close

approximation to the actual kinetic energy of the jet. Overall the converging jet has a kinetic energy

more than double (135%) the parallel jet. The parallel jet’s energy is fairly well approximated by

all three models, all coming within 15% of the final jet energy. But the shape factor model with

contributions from the radial velocity terms provides the best approximation.

For the jets with a large stroke ratio, L/D ≈ 7 (cases 2 and 4), again all three models provide

a decent approximation of the parallel jet energy, as can be seen in Figure 6.14. The converging

jet has a much larger kinetic energy than the 1D slug model prediction. The shape factor model

prediction shows that the peak in axial velocity plays a role in increasing the total jet energy, but

the added pressure associated with radial velocity gradient still has a more significant effect. Again

the shape factor model with radial components included accurately predicts kinetic energy of the
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(a) Case 2, Parallel Jet, L/D = 6.9 (b) Case 4, Converging Jet, L/D = 6.8

Figure 6.14: Kinetic energy of a jet created with a piston velocity of ≈ 7 cm s−1 and stroke ratio
of L/D ≈ 7. (a) parallel jet and (b) converging jet. Total energy is marked by a gray diamond.

converging jet. Overall the converging jet contains 105% more kinetic energy than the parallel jet,

for L/D ≈ 7.

6.4 Validation of Characteristic Vortex Ring Velocities

The formation number modeling in Chapter 5 relies on the approximation of multiple ve-

locities associated with a translating vortex ring. This section addresses the accuracy of those

approximations.

6.4.1 Vortex Ring Translational Velocity

Lord Kelvin stated that the motion of a vortex system will minimize the energy Hamiltonian

of the system, under area preserving iso-vortical perturbations [32, 33]; this equates the translational

velocity, a Lagrange multiplier of impulse in the energy Hamiltonian, to the ratio Utr =
δE
δI . Using

the 1D slug model approximation and equating the vortex system to the Norbury family of vortex

rings, Mohseni [55, 53] derived the translational velocity in terms of piston velocity. This analysis

showed that the translational velocity will be approximately half the piston velocity, Utr ≈ 1
2up.

This relationship has been well documented for parallel starting jets; however, the 1D slug model

is demonstrated to be a poor prediction of non-parallel starting jets so the relationship between
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Figure 6.15: Vortex ring translational velocity and piston velocity vs. formation time, t⋆, for case
1 (a), case 3 (b), case 2 (c), and case 4 (d).
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piston and ring velocity is likely very different.

Equation (5.8) gives an approximation for the translational velocity of a steady vortex ring

in the Norbury family with specified circulation, impulse, and energy. The actual translational

velocity of several vortex rings was determined from the motion of the center of vorticity of the

leading vortex ring given by the DPIV analysis. The measured translational velocity is shown in

Figure 6.15, as well as the translational velocity as predicted by equation (5.8) using circulation,

impulse, and energy of the primary vortex ring measured from DPIV data, equation (3.2). Figure

6.15 also shows the piston velocity over the same time period as a reference velocity.

Figures 6.15a and 6.15b (corresponding to cases 1 and 3) show that when the jets are ejected

with a low stroke ratio equation (5.8) provides an excellent prediction of translational velocity, after

the formation dynamics have subsided and the ring settles upon a stable configuration. However,

during the period of substantial vortex ring growth, the actual vortex ring translational velocity is

substantially less than the predicted velocity. The jets expelled with a higher stroke ratio, Figures

6.15c and 6.15d (corresponding to cases 2 and 4), experience a much more energetic/dynamic

pinch-off which results in large oscillations in both Utr and l as the primary vortex ring settles

upon a stable configuration, due to the interaction of the leading vortex ring with the trailing jet.

Eventually these vortex rings stabilize and translational velocity closely approaches the predicted

velocity of (5.8), but the vortex ring does not acquire a stable configuration until well after pinch-

off, when there is a large enough distance between the leading vortex ring and the trailing jet. This

demonstrates that the propagation velocity is very sensitive to the formation dynamics.

It can also be seen that despite the nearly identical piston velocities (≈7 cm/s for all cases)

the vortex ring formed from the converging jet has a significantly larger translational velocity.

After settling on a stable configuration, the vortex rings crated from parallel jets have an average

translational velocity which is close to half the piston velocity, 48% for low stroke ratio (case 1)

and 54% for large stroke ratio (case 2). Whereas the converging jet vortex rings have average

translational velocities which are 74% of the piston velocity for low stroke ratio (case 3) and 73%

of the piston velocity for large stroke ratio (case 4). This could help explain a large variation in
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Figure 6.16: Centerline velocity of the vortex ring, u⋆, vs. formation time t⋆. Actual values
calculated from PIV velocity data along axis of symmetry, predicted values calculated from equation
(5.16).

reported vortex ring translational velocities with the same piston velocity.

6.4.2 Vortex Ring Centerline Velocity

This study uses the centerline velocity of the vortex ring, u⋆ = u(0, xc), as the characteristic

induced velocity to define a kinematic pinch-off criterion. The simplest approximation of this

velocity is the centerline velocity of an equivalent point vortex ring (identical circulation) whose

velocity is defined in (5.16). Figure 6.16 shows the actual centerline velocity of vortex rings created

from both converging and parallel jet flows (cases 2 and 4), and the approximated centerline velocity

is calculated from (5.16) using values for ring circulation and impulse determined from (3.2). For

both cases the stroke ratio is large L/D ≈ 7, which corresponds to a more energetic pinch-off

process resulting in large oscillations in the translational velocity of the vortex ring. It can be seen

in Figure 6.16 that the centerline velocity of the vortex ring is reasonably well approximated by

the point vortex approximation (5.16).
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6.5 Validation of Pinch-Off Criterion

Now that the velocity approximations have been validated we will examine the exact for-

mation number of different starting jet flows, and the validity of the different pinch-off criteria.

Starting with the the most simple flow having constant piston velocity, up, and static nozzle (R =

constant). A converging radial velocity significantly decreases the jet formation number, and this

is accurately captured by the centerline velocity criterion used in this paper. Next the formation

number is measured for jets with expanding and contracting nozzle radius programs, showing little

change from the constant diameter orifice nozzle. Finally, an accelerating piston velocity program

is investigated exhibiting a vastly increased formation number over the constant piston velocity jet

with the same nozzle configuration. The new pinch-off criterion is observed to be valid for both

variable nozzle radius programs and accelerating piston velocity programs.

6.5.1 Constant up Constant R

From a qualitative standpoint, the much larger induced/translational velocity of the con-

verging jet should cause a decrease in formation number if the kinematic pinch-off criterion truly

corresponds to the vortex ring separation mechanism.

The formation number can be predicted from (5.18) if the circulation and impulse of the

forming vortex ring are known. If we assume that the piston velocity is constant, and that, up until

pinch-off, the circulation and impulse of the vortex ring are equal to the total jet circulation and

impulse, then those quantities can be approximated by the product of the rates given in (4.1) and

(4.6) and the total pulsation time, te. Substituting these circulation and impulse approximations

into (5.18) and recognizing that the stroke length is equal to, L = upte, for constant piston velocity,

allows the formation number to be calculated as,

t⋆p =
L

D

∣∣∣∣
2up=u⋆

=

[
128

(
16 + k⋆2 − k⋆21

)
(4 + k⋆2)

3

]1/2

. (6.1)

Using the values of k⋆1 and k⋆2 from table 6.1, equation (6.1) predicts a formation number of 4.1 for

parallel jets (case 1 specifically) and 2.1 for converging jets. Both of these formation numbers will
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(a) Case 2, Parallel Jet, L/D = 6.9 (b) Case 4, Converging Jet, L/D = 6.8

Figure 6.17: Circulation vs. Formation time of the entire jet and the leading vortex ring for both
parallel and non-parallel jets.

be shown to be reasonable predictions of the actual formation number of parallel and converging

jets, respectively.

The circulation for a converging starting jet (case 4) is plotted with respect to formation

time in Figure 6.17(b) next to the circulation for a parallel starting jet (case 2) in Figure 6.17(a).

The vortex core boundary was identified as described in 3.4. The circulation integrated over this

region, after the primary vortex ring had settled, is also shown for both jet flows. Some time after

the jet flow has been terminated the total circulation drops accounting for vorticity cancellation

at the axis of symmetry. This decay is typical of thick vortex rings and has been reported in [57],

also the fluid from the shear layer which rolls into the leading vortex ring just before separation

is compressed towards the axis of symmetry, as was described in Section 5.2 (Figure 5.2), adding

to the vorticity cancellation. In addition to the cancellation of vorticity, the large trailing wake

becomes unstable with time which can result in bifurcation/blooming of forming vortex rings in the

wake, making the flow asymmetric about the centerline and driving the vortex rings in the wake

out of the illuminated cross section. See [72] for a description of blooming jets.

Figure 6.17 demonstrates that vortex rings formed from converging starting jets pinch-off at

a significantly lower formation time. It can be seen that the formation number for the parallel jet

is ≈ 4 as would be expected, but the formation number for the converging jet drops to ≈ 2.3, which
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Figure 6.18: Induced and feeding velocity vs. formation time for a jets created with tube and orifice
nozzles. Formation number for these cases is also shown.

is very close to the formation number predicted by our pinch-off criterion under the assumption of

constant piston velocity (6.1). Figure 6.18 shows the induced velocity, defined by (5.16), as well

as the feeding velocity, 2up, for the two jet flows represented in Figure 6.17 (cases 2 and 4). It

can be seen here that the induced velocity surpasses the feeding velocity almost exactly at the

formation number for both types of jet flows, affirming the use of the centerline kinematic criterion

for predicting pinch-off in both parallel and non-parallel starting jets.

Figure 6.19 shows the vortex ring translational velocity, Utr, determined from the motion of

the vortex centroid, as a function of formation time as well as the adjusted jet velocity in accordance

with the SG criterion. To determine the adjusted jet velocity the vortex ring radius was calculated

from DPIV data according to equation (3.3). This criterion predicts pinch-off at a later formation

time than observed, mostly because the axial velocity at the jet/ring interface is substantially larger

than the propagation velocity. Furthermore, the large fluctuations in both translational velocity

and torroidal radius (used to determine adjusted jet velocity) result in some ambiguity of predicted

formation number, for the converging jet, since when the translational velocity approaches the

adjusted velocity it drops briefly before surpassing the adjusted jet velocity well after pinch-off.

However, it is not exactly clear that the shift in formation number associated with a converg-

ing radial velocity is due to a change in the final vortex ring configuration. The drop in formation

number seen in starting jet simulations with fully developed pipe flow at the entrance boundary

(see [78]) is closely related to the definition of formation time. As was pointed out by Rosenfeld
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Figure 6.19: Propogation and adjusted jet velocity vs. formation time for a jets created with tube
and orifice nozzles.

et. al. the rate of circulation flux across the entrance plane for parallel starting flows is exactly

proportional to the centerline velocity, dΓ/dt = 1
2u

2
0, independent of the jet velocity profile. How-

ever, the formation time is scaled by the piston velocity, which is much less than the centerline

velocity for parabolic jet velocity profiles; meaning that flows with a parabolic velocity profile will

produce a higher vorticity flux for the same volume flux compared to flows with a uniform velocity

profile. Similarly converging starting jets generate a significantly larger vorticity flux than the

parallel starting jet with the same piston velocity, as was just shown in Section 6.3. As would be

expected these flows have a formation number, much lower than the trend seen in [23]. Therefore,

we calculated the mean core radius of the vortex ring, as well as the hypothetical mean core radius

of the total jet, by taking the non-dimensional energy and interpolating mean core radius from the

data given in [60]. The mean core radius of vortex rings generated from parallel and converging

starting jets (cases 2 and 4) are shown in Figure 6.20. The mean core radius of the parallel jet

vortex ring settles to about ϵ = 0.57, which is very similar to values found in [23] for parallel jets.

The mean core radius of the converging jet vortex ring is a bit lower ϵ = 0.47, corresponding to a

‘thinner’ vortex ring with larger dimensionless energy, α. This means that the centerline velocity

criterion accurately predicts pinch-off without requiring a specified final ring configuration.

Next we extend our analysis to include more complicated jetting programs, starting with an

accelerating piston velocity program, while still using a static nozzle.
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Figure 6.20: Mean core radius, ϵ, vs. formation time of the total jet and leading vortex ring for
parallel and converging jets.

6.5.2 Accelerating up Constant R

It was hypothesized earlier that the formation number could be increased for a given vortex

ring configuration by accelerating the jet flow to compensate for the quickly accelerating induced

velocity. To investigate this, the vortex generator was driven with a linearly increasing piston

velocity. Figure 6.21 shows the total jet circulation as well as the circulation of the primary vortex

ring for an accelerating jet expelled through an orifice nozzle. The piston velocity program was

depicted earlier in Figure 6.2 for this trial. It can be seen that the formation number of this flow is

approximately 4, which is a drastic increase over the formation number of the jets expelled through

the same nozzle with constant piston velocity.

Figure 6.22 shows that the centerline velocity criterion still coincides with the jet formation

number even for jets with accelerating piston velocity. The mean core radius of the vortex ring is

shown in Figure 6.23, which shows that after pinch-off the vortex ring settles on a configuration

with mean core radius ϵ = 0.66, which means that jets with accelerating piston velocity are able to

create significantly ‘thicker’ vortex rings than any jet expelled with a constant piston velocity.

Finally we analyze the formation number dynamics with the inclusion of a variable diameter

orifice nozzle.
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Figure 6.21: Circulation vs. Formation time for a jet ejected from an orifice nozzle with a nozzle
radius of 0.9 cm and an accelerating piston velocity.
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Figure 6.22: Feeding and Induced velocity of the accelerating jet vs. formation time.
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Figure 6.23: Mean core radius, ϵ, of the leading vortex ring shown with respect to formation time,
for the jet with accelerating piston velocity.
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6.5.3 Constant up Variable Nozzle Diameter

Here we would like to take a minute to note the nature of variable diameter nozzles. A jet

flow discharging from a variable diameter nozzle will almost inherently contain some component of

radial velocity. The most straight forward way to create a parallel jet flow with a variable diameter,

is to create a tube nozzle with the ability to expand uniformly along its length, which is well out

of the range of our own manufacturing ability. Variable diameter nozzles which change conical

shape dynamically pose an interesting problem since at some formation times they create a nearly

parallel jet flow, and at other formation times they create a jet flow with significant radial velocity.

This makes the effect of these types of nozzles difficult to determine since they are not functionally

similar to any single type of static nozzle for comparison. The variable diameter nozzle of this

investigation is an iris nozzle which is essentially a flat plate with an adjustable circular orifice in

the center. This allows a direct comparison with static orifice type nozzles to determine the effect

of increasing/decreasing nozzle radius, independent of any other factors.

The vortex generator was driven with both a linearly increasing and linearly decreasing

nozzle radius program. The desired and actual nozzle radii for these tests are shown in Figure 6.24,

corresponding to cases 5 and 6 in Table 6.1. For both cases the volume flux program, –V(t), was

designed to compensate for the variable nozzle diameter and maintain a constant piston velocity,

despite the changing nozzle area. Figure 6.24 also shows the the torroidal radius of the leading

vortex ring, demonstrating that an increasing radius nozzle will dynamically increase the vortex

radius, but the most crucial factor controlling the vortex radius is the initial nozzle radius.

Since the piston velocity is held constant and the nozzle radius program is nearly linear, the

formation time defined by (5.3) and (5.4) are nearly identical, with some negligible variations due

to an inability to guarantee a perfectly linear nozzle radius program. The total circulation and

vortex ring circulation of the jets created with the nozzle radius programs depicted in Figure 6.24

(cases 5 and 6), are plotted in Figure 6.25 with respect to formation time as defined by (5.4). It

can be seen in this figure that jets created with both increasing and decreasing nozzle radius have
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Figure 6.24: The desired and actual nozzle radii are shown for increasing and decreasing radius
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Figure 6.25: Circulation vs. Formation time, as defined by (5.4), for jets created with linearly
increasing and decreasing nozzle radii.

a formation number nearly identical to the constant diameter jet.

Figure 6.26, shows that the centerline velocity criterion still coincides with vortex ring pinch-

off for starting jets with variable diameter nozzles. As was just mentioned the formation time is

defined as (5.4) for variable diameter devices in an attempt to maintain the relationship between

formation number and the configuration of the final vortex ring. To verify this relationship we show

the mean core radius of the vortex rings in Figure 6.27. It can be seen that the decreasing radius

jet (whose formation number is nearly identical to the formation number of the constant radius

jet) has a final mean core radius of ϵ ≈ 0.55 which is very close to the mean core radius of the

jet expelled through the constant radius nozzle. Similarly the mean core radius of the increasing

radius jet is ϵ ≈ 0.5, corresponding to a very slight decrease in mean core radius. This decrease in

mean core radius is likely due to the increase in vortex ring torroidal radius which accompanies the

increasing nozzle radius, see Figure 6.24.

6.6 High Frequency Operation

The dynamics of jet formation have been modeled and verified for a wide variety of nozzle

configurations and jet driving programs. However, in all cases the modeling and testing were

restricted to cases where both the jetting fluid and the fluid reservoir are starting at rest, and the
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Figure 6.26: Induced and feeding velocity vs. formation time, as defined by (5.4), for jets created
expanding and contracting nozzles.
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Figure 6.27: Mean core radius, ϵ, vs. formation time, as defined by (5.4), for jets created with
expanding and contracting nozzles
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jet consists of a single pulsation. Invariably if this technology is used for vehicle maneuvering, then

the thruster will be required to operate continuously at some stage. This section describes the

average thrust of the thruster pulsating at high frequencies and shows that the average thrust is

closely related to vortex ring pinch-off dynamics. The average thrust is defined T̄ = If , where I

is the total jet impulse of each pulsation, and f is the frequency of actuation. It should be noted

that the high frequency jets become turbulent at a much lower Reynolds number, as is described

in Appendix A, which makes the jets unsuitable for PIV analysis. Here the average jet thrust is

determined from direct thrust measurements using a load cell.

In between pulsations the prototype thruster must refill the internal cavity in preparation for

the next jet. The prototype thruster of this investigation ingests fluid through the same aperture

through which the jet is expelled. Alternatively, the refilling could be supplied from a separate

vent, but this option requires complicated valving mechanisms and introduces additional structure

to vehicle frameworks, both of which we would like to avoid. Additionally, jellyfish (which loosely

inspired this technology) refill the velar cavity through the same opening, and although squid refill

through separate vents behind the head they are still on the anterior side of the animal (see Figure

1.1), so losses associated with this type of refilling mechanism might be minimized for certain

conditions.

During the refilling phase the impulse transfered to the vehicle cannot be modeled by the

starting jet equations (2.5), (2.10), (2.25), and (2.16), because the internal cavity violates the

assumption that the only unbounded surface is the nozzle plane, and the interaction of the incoming

fluid and the internal cavity walls are significant. In the most simple qualitative sense since the

fluid which gets ingested starts out at rest in the reservoir and ends at rest in the internal cavity

before being expelled, the net change in momentum of the ingestion cycle is equal to zero. Of

course, there is work associated with moving the fluid to the new location, and the pressure at the

nozzle plane is not being considered; however, as a first order approximation we will assume that

the net impulse of jet refilling is zero.

The thruster analyzed in this section has a sinusoidal piston velocity program with frequency
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f . Since the mechanical driving system guarantees a regular controlled piston velocity program

at every pulsation, the Buckingham Π theorem predicts that the average thrust equation should

reduce to a function of two non-dimensional parameters. The first is a coefficient of thrust defined

by,

CT =
T̄

4R4ρf2
(6.2)

The other non-dimensional parameter which characterizes the jet pulsation is the stroke ratio of the

jet L
D . If the average thrust T̄ is calculated from (4.1) with the sinusoidal piston velocity program

used by the thruster, then the average thrust is,

T̄ = ρ
π3

4
L2R2f2 (6.3)

or in non-dimensional terms,

CT =
π3

16

(
L

D

)2

. (6.4)

The model assumes that all ingested fluid starts from rest initially and ignores the effect that

previously formed vortex rings have on the flow field of the jet. This effect should not be ignored

given the rapid succession in which jets are expelled. Experiments were performed by Krueger and

Gharib [41], which showed that cyclical jet pulsing had the effect of augmenting the jet thrust as

much as 1.9 times the thrust produced by a single jet. The thrust augmentation was considered to

be caused by overpressure at the nozzle opening and observed to degrade as the stroke ratio and

jet expulsion frequency were increased. The device used to generate the jets studied in [41] differs

significantly from the thrusters studied in this paper; due to the fact that the expelled fluid used in

[41] was all supplied by an external fluid source, whereas the actuator of our investigation ingests

its fluid from the surrounding reservoir.

The pulsation dynamics will be accounted for by a correction factor σ in the average thrust

equation (6.4),

CT = σ
π3

16

(
L

D

)2

(6.5)
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Figure 6.28: Thrust is plotted on the frequency domain for the entire range of stroke ratios tested.

6.6.1 Average Thrust Characteristics

When testing in high frequency mode the prototype thruster is equipped with a set of orifice

nozzles which varied in diameter allowing jets to be created with stroke ratios ranging from L/D = 2

to L/D = 14, independent of velocity program and actuation frequency. In Figure 6.28 the thrust

measured for each stroke length has been plotted versus the actuation frequency. The thrust

response curves corresponding to low stroke ratios maintain a strong dependency on the square of

the frequency, as predicted by equation (6.3), but the higher stroke ratios have a plateau in the

thrust response curve as the frequency increases.

It should be noted that the testing was only conducted up to a frequency of ≈ 20 Hz.

At higher frequencies we observed evidence of cavitation inside the actuator cavity, which is not

accounted for in any of the modeling. When the actuator frequency becomes critically high, the

pressure drop taking place during the fluid ingestion phase causes the water close to the plunger to

expand into small cavitation bubbles. Through the use of a high speed camera (Phantom v4.3 with

a wide angle lens) this phenomenon was captured visually. Figure 6.29 shows a close up image of

the plunger within the thruster cavity during both phases of actuation (ingestion and expulsion).
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Figure 6.29: Cavitation bubbles within cavity of thruster operating with f = 17 Hz and L/D =
4.3.

The actuator is operating with a stroke ratio of 4.3 and a frequency of 17 Hz. The lower part

of the image shows the plunger just after the ingestion stroke causes a pressure drop resulting in

the formation of cavitation bubbles. The upper part of the image shows the piston just after the

ejection stroke. Some of the bubbles remain at the top of the plunger, but many of them have

imploded due to the sudden increase in pressure. This cycle has the effect of reducing the volume

of the ejected jet, since part of the volume change induced by the plunger deflection goes into

collapsing the cavitation bubbles instead of ejecting fluids from the orifice. Additionally implosion

of the cavitation bubbles results in unpredictable forces acting on the plunger. Therefore, testing

was terminated when the increasing frequency resulted in cavitation.

The non-dimensionalization theory predicts that the entire thrust frequency response should

converge upon a single coefficient of thrust for each stroke ratio. All thrust measurements have been

scaled by the actuation frequency, and orifice diameter to give the coefficient of thrust described

in equation (6.2). The average coefficients of thrust measured for the stroke ratios tested have

been plotted in Figure 6.30. In addition, the graph contains the theoretical thrust coefficient, as

predicted by equation (6.4).

The coefficient of thrust described in equation (6.4) is in good agreement with the measured

coefficients for stroke ratios up to ≈ 6 at which point the accuracy of the model degrades with the

increasing stroke ratio. This loss of thrust accuracy can be attributed to the pinch-off effect.

The fact that each stroke ratio is represented by a single point in Figure 6.30 is misleading.
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Figure 6.30: Theoretical and measured thrust coefficient as a function of the stroke ratio.
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Figure 6.31: Correction factor σ defined on the actuator frequency domain for (a) stroke ratios
below the formation number and (b) stroke ratios above the formation number.

This would suggest that all the thrust data for every formation number converges to a single

coefficient of thrust. This is generally true for the thrust measured with stroke ratios below the

formation number; however, the thrust coefficient measured for stroke ratios greater than the

formation number showed a strong dependence on frequency, and the average was reported. The

parameter σ was defined as a correction factor to the slug model approximation (6.3), and shows

the accuracy of this model for various actuation frequencies and stroke ratios. Figure 6.31 shows σ

for the set of stroke ratios and actuation frequencies tested.

It should be noted that the formation number for an orifice nozzle with a constant velocity

program is close to two, but the sinusoidal velocity program must be considered more similar to

the accelerating velocity program which has a formation number of four (see Section 6.5). First

consider the thrust response of the actuator operating below the formation number Figure 6.31a.

In the low frequency regime the average thrust is higher than that predicted by the slug model

due to the converging radial velocity at the nozzle exit plane (which was discussed in great detail

in Section 6.3). However, as the frequency increases the total thrust settles on the value predicted

by the slug model, meaning that in this frequency range the increased impulse due radial velocity

during expulsion, which is also referred to as the impulse due to overpressure, is equal to the impulse
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due to under-pressure during refilling so that the net impulse transfer is that predicted by the slug

model.

Now consider the thruster response when operating above the formation number, shown in

Figure 6.31b. Again the low frequency ranges exhibit an added impulse due to the the radial

velocity effects, but the high frequency range exhibits an added loss in thrust with respect to the

slug model prediction. This relative loss is seen to increase monotonically with both actuation

frequency and stroke ratio. This suggests that the assumptions made concerning impulse of the

refilling phase are no longer valid when operating above the formation number. We assume that

this loss in model accuracy is tied into the assumption made that all fluid being ingested between

pulsations is at rest outside of the thruster. When a jet is ejected with a stroke ratio above the

formation number, some of the shear flow is left behind in the trailing wake of the leading vortex

ring. The trailing wake has a lower momentum than the leading vortex ring and travels at a much

lower induced velocity, but still has a forward momentum substantially larger than the surrounding

resting fluid. Therefore, the loss in model accuracy could be explained by the thruster ingesting

some of the trailing wake during the refilling phase. Figure 6.32 shows successive frames from a

video of the thruster’s forming jet while operating at a low enough frequency to capture on film,

and high stroke ratio, where some of the trailing wake is ingested back into the thruster during the

refilling phase.

6.6.2 Transient Thrust

The thrust produced is a highly dynamic one exhibiting large oscillations associated with

the pulsatile nature of the device. Section 6.6 presented the average thrust characteristics, and

their dependence on driving frequency and stroke ratio. A complete description of the transient

characteristics of the thruster in high frequency mode is not only desirable from a vehicle design

standpoint, but necessary for the implementation of any high accuracy control algorithm

There are two major characteristics of the thruster’s transient behavior, while operating in

high frequency mode, which were observed in [35]. The first feature is a rise time associated with



95

Figure 6.32: Successive frames of jet flow showing the thruster re-ingesting wake flow, of high stroke
ratio jets.
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Figure 6.33: Thruster transient response fitted to a first order delay
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reaching the average thrust. Similar to propeller type thrusters [98, 20], the VRT has time delays

which are inversely proportional to the desired level of thrust. However, it should be noted that

this type of thruster has rise times on the order of fractions of a second; whereas, typical propeller

type thrusters experience rise times on the order of several seconds [98, 20]. The rise time can be

modeled in similar terms to a first order linear damper dTDC
dt =

(
T̄ − TDC

)
1
τ . In this expression

T̄ is the steady average level of thrust discussed in Section 6.6, which is purely a function of the

driving parameters (and can therefore be thought of as a control signal), TDC is the DC component

of the transient thrust signal, and τ is a time constant which is a function of T̄ . Assuming that the

thruster starts at rest and that the steady state thrust is held constant the solution of the thrust

equation becomes

TDC(t) = T̄
(
1− e−t/τ

)
. (6.6)

Several time dependent thrust data sets were analyzed to determine the rise time dependence on

steady thrust level. Using a least square approximation the transient thrust sets were fit to the

form (eq:damper) to determine the damping time constant τ for each set. The fitted curves for

these dynamic data sets are given in Figure 6.33. Dimensional analysis suggests that the rise time

dynamics should converge to a single non-dimensional equation. Consider the non-dimensional

equation,

T̄ ⋆(t⋆) = 1− e−t⋆/τ⋆ , (6.7)

where T̄ ⋆ = TDC

T̄
is the thrust normalized by the average steady state thrust, and the time is

normalized as t⋆ = tf with characteristic time scale selected to be the most pertinent time scale

associated with the thrust level, the pulsation period, 1
f . The data sets shown in Figure 6.33 were

all normalized to the new variables T̄ ⋆ and t⋆. The set of normalized curves are shown in Figure

6.34. This graph clearly shows that normalizing the thrust by the steady state value and the time

by the oscillation period results in self similar behavior of the average thrust rise time. Depicted

as a solid line is the average thrust rise time curve where τ⋆ = 0.38, which is the average of all the

data sets. The actual normalized data sets are shown by the dotted lines.
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Figure 6.34: Normalized thrust T̄ ⋆ vs. normalized time, for all cases of steady state thrust, T̄ .
Actual thrust values shown with dotted lines, theoretical curve based on average time constant
shown in solid red
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The second feature of the transient thruster response (which remains undamped throughout

actuation) is a sinusoidal wave mode associated with the pulsation of the actuator. When these

two modes are incorporated into the average thrust equation it takes on the following form

T (t, f) ≃ T̄
(
1− e−tf/τ⋆

)
+ a sin(2πft), (6.8)

where f is the pulsation frequency of the thruster, and a is the amplitude of oscillation associated

with the pulsation, which can be determined from the slug model along with the steady state

thrust. The slug model predicts that the amplitude a is proportional to the square of the actuation

frequency, so that the ratio a/T̄ is a constant for all driving frequencies. This ratio will be denoted

η. For a thruster with a sinusoidal jet velocity profile, like the one used in the high frequency

experiments, this ratio has a value of η = 4. Taking this relation into account and incorporating

the steady state thrust equation (6.3) gives an equation for the thrust as a function of time and

actuation frequency,

T (t, f) ≃ Cvf
2
[(

1− e−tf/τ⋆
)
+ η sin(2πft)

]
, (6.9)

with Cv = ρ
π3

16
L2D2 being a thruster constant describing the operating parameters of the thruster

(since D and L are fixed during high frequency operation).



Chapter 7

Optimal Thruster Velocity Programs

In section 6.6 the prototype thruster was observed to suffer losses due to trailing wake re-

ingestion when operating at high frequencies with a stroke ratio above the formation number.

However, the formation number can be shifted by adjusting the rate of circulation and impulse

added to the system (i.e. changing the piston velocity and nozzle radius during pulsation). This

limitation on thruster performance provides a necessary constraint for determining optimal driving

programs, as will be formalized in this section.

The optimization problem can be stated as finding the critical nozzle radius and piston

velocity program, for a single pulsation, which maximizes certain design parameters (performance

indices), while satisfying the dynamic constraint that the final jet stroke length is less than (or

equal to) the resulting formation number for that jet flow. This optimization will not incorporate

the refilling phase, as the dynamics of the refill phase are poorly understood.

The variable diameter mechanism works well for creating low velocity starting jets with

either increasing or decreasing shear layer radius during pulsation; however, the variable diameter

nozzle is very complicated mechanically, and may not be ideal for use in high frequency operation.

This initial optimization analysis will assume that the nozzle radius remains constant throughout

pulsation, but can vary from pulsation to pulsation. The piston velocity will be allowed to vary

during pulsation, and the chosen velocity program will repeat every pulsation. The internal cavity

diameter will also be prescribed as an initial condition meaning that the normalized radial slopes,

k⋆1 and k⋆2, will also remain constant independent of the choice of nozzle radius or piston velocity
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Figure 7.1: Hypothetical vehicle with one degree of freedom (in the x direction).

program; however, the values of k⋆1 and k⋆2 will change depending on whether an orifice or tube

nozzle is attached to the thruster. Therefore, the control space for this optimization problem

consists of the selection of the static nozzle radius, R, the piston velocity program, up(t), and the

nozzle configuration. The constant radius assumption also allows the feasible thruster control space

to be conceptualized much more easily, which helps to clarify the effect of the dynamic formation

number constraint.

7.1 Performance Indices (Cost Functions)

The first performance index we will investigate is the average thrust created by a single

pulsation. This correlates to a critical mission scenario where vehicle survival is dependent on

sufficient corrective thrust, and propulsive efficiency is less important. The average thrust of a

single pulsation is just the final impulse of the propulsive jet, If , divided by the final time when

the flow is terminated tf ,

T̄e =
If
tf

. (7.1)

The average thrust over the entire jetting cycle, T̄ , which was characterized in Section 6.6, is related

to the average thrust of the pulsation phase as T̄ = T̄eλ, and λ is the limit cycle of the pulsation,

or ratio of the time spent jetting to the time spent refilling.

The other performance index which is advantageous to a vehicle maneuvering system is an
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optimal propulsive efficiency. In the absence of more critical concerns, the propulsive efficiency

should always be maximized. However, propulsive efficiency is a difficult measure to quantify for a

thruster independent of a specific vehicle environment. Propulsive efficiency is defined,

ηp =
Wp

Ws
, (7.2)

where, Ws, is the total mechanical work required to create the propulsive flow, or shaft work,

and Wp is the useful propulsive work done on the vehicle. If the vehicle is being acted on by

propulsive force F⃗ and moves with position x⃗, then Wp =
∫
F⃗ · dx⃗. Consider a simple one degree

of freedom vehicle as depicted by figure 7.1, which is being driven by the thruster of this study

operating continuously at a high frequency. Due to the pulsatile nature of the thrust, the vehicle

velocity will oscillate in phase with the thruster pulsations. After some time the vehicle will reach a

quasi-equilibrium state where the velocity oscillates around a steady average velocity. Furthermore,

if the vehicle is relatively large, with respect to the impulse of an individual pulsation, then the

fluctuation in velocity will be small compared to the average velocity and the vehicle velocity can

be approximated as a constant value.

With a constant velocity the propulsive work can be rewritten, Wp = T̄∆x. Furthermore,

when the vehicle is traveling at a constant velocity, the propulsive force and drag force are in

equilibrium, T̄ = Fdrag =
1
2ρAwCD

(
dx
dt

)2
, where ρ is the fluid density, Aw is the wetted area of the

vehicle in the direction of motion, and CD is the coefficient of drag of the vehicle. The coefficient

of drag of a cylinder is relatively constant in the high Reynolds number regime around CD ≈ 0.81,

in the low Re regime the coefficient of drag is inversely proportional to the Reynolds number

CD ≈ 10/Re. Here Reynolds number is defined, Re = ẋd/ν, where d is the vehicle diameter, and

ν is the kinematic viscosity of the fluid. Therefore in the high Reynolds number regime the vehicle

velocity can be approximated,

∆x

∆t
=

[
2T̄

ρAwCD

]1/2
, (7.3)

and in the low Reynolds number regime,

∆x

∆t
=

dT̄

5ρAwν
. (7.4)
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The constant vehicle velocity approximation allows the propulsive work to be defined for a

single pulsation cycle, in the high Re regime the propulsive work is,

Wp =
∆tT̄ 3/2[

1
2ρAwCD

]1/2 =
I
3/2
f

∆t1/2
[
1
2ρAwCD

]1/2 , (7.5a)

and for low Re

Wp =
d∆tT̄ 2

5ρAwν
=

2dI2f
5∆tρAwν

, (7.5b)

where If is the total impulse of the jet, and ∆t = 1/f = tf/λ is the time it takes for a complete

pulsation cycle. This analysis is not intended to drive the selection of fluid driving mechanism;

therefore, all energy losses in the motor and plunger will be ignored. This means that the total

shaft work during the expulsion phase is just the total kinetic energy of the jet at the end of

pulsation, Ef . This leads to the definition of a quantity we call the jetting efficiency,

ηJH =
I
3/2
f

t
1/2
f Ef

[
1
2ρAwCD

]1/2 , (7.6a)

ηJL =
I2fd

tfEf5ρAwν
. (7.6b)

The jetting efficiency does not consider the jetting limit cycle, or the shaft work required for

the refilling phase both of which must be included to determine propulsive efficiency. However,

the jetting efficiency should be considered similar to propulsive efficiency and the two will be

maximized by similar piston velocity programs and nozzle radii, and the refill phase must be

optimized independently to acquire a truly optimal propulsive efficiency. For this analysis we

assume that the vehicle thruster has the same scale and geometry as the prototype thruster and

is operating on a basic cylindrical vehicle with a diameter of, d = 10 cm, and a wetted area of,

Aw = 1000 cm2. The values of density and kinematic viscosity of water are set to 1 g/cm3, and

0.01 cm2/s, respectively.
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7.2 System Dynamics

The circulation, impulse, and energy of the jet are calculated assuming that the axial velocity

profile is uniform (4.1), and the radial velocity profile is linear (4.6), which can be summarized,

dΓ

dt 1D+2D
=

1

8
u2p (4 + k⋆2) , (7.7a)

dI

dt 1D+2D
=

ρπ

16
u2pR

2
(
16 + k⋆2 − k⋆21

)
, (7.7b)

dE

dt 1D+2D
=

ρπ

16
u3pR

2 (8 + k⋆2) . (7.7c)

It should be noted that the initial high frequency testing showed that the effect of the radial velocity

is not observed in the average thrust above ≈ 4 Hz, meaning that the increased impulse due to

the radial velocity components is negated by an equal negative impulse from the converging radial

velocity during refilling. We leave the radial terms in the jet dynamics because it is possible that

the refilling phase could be optimized in future studies to eliminate ‘under-pressure’, but results

will still apply to the 1D slug model if the radial slopes are set to zero, k⋆1 = k⋆2 = 0.

7.3 Incorporating Constraints, Control Space Restrictions

In a truly unbounded control space, meaning that there are no limitations placed on possible

nozzle radius and piston velocity, there is no local optimal velocity program which maximizes either

performance index. In this case the maximum average thrust is generated by expelling the fluid

with an infinite velocity in an infinitely short period of time, and the optimal jetting efficiency, ηJ ,

is stationary with respect to piston velocity in the high Reynolds number regime, and is realized in

both regimes by setting the nozzle radius infinitely large. Therefore, any locally optimal program

relies on the constraints of the problem.

The first constraint on this thruster is that the jetting volume is finite, which is also one of the

key differences between this type of propulsion and continuous jet propulsion used in recreational

watercraft. This is a terminal constraint which is enforced by setting the final volume expelled

from the thruster equal to the available jet volume, Vjet. Additionally, the rate at which volume
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Figure 7.2: An example of possible piston velocity program under the formation number constraint.

is ejected V̇ = πR2up is bounded by the physical limitations of the fluid driving mechanism. This

is enforced by the inequality up ≤ V̇max/πR
2, which provides a boundary for an admissible region

in the control space. If a local optimum exists within the admissible region then the inequality is

ignored, otherwise the optimal controls will lie on the boundary of this admissible region.

The final constraint that the jet stroke ratio must be less than the formation number of the

resulting flow can be enforced by the inequality, 2up ≥ u⋆, where u⋆ is the centerline velocity at

the origin of the vortex ring (5.16). Again this constraint defines an additional boundary on the

admissible region of the control space, but this boundary is a dynamic function of the velocity

program itself, and optimal programs which lie on this boundary will be dependent on the initial

conditions that created this boundary. To illustrate this point consider an example velocity program

shown in Figure 7.2. This figure shows the piston velocity of a hypothetical jet which starts out at

some constant piston velocity up0, and nozzle radius R, as well as the resulting vortex centerline

velocity. It can be seen that the jet velocity starts out constant and is then forced to accelerate to

account for the accelerating vortex ring velocity. This is a representation of the formation number

constraint in the control space. At the onset of flow the vortex ring velocity is very small and the

velocity program will remain unaffected since the dynamic formation number constraint is being

satisfied in this initial stage. However, the vortex ring velocity grows until the boundary of the

admissible control region intersects the constant piston velocity, which is forced to accelerate to
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stay in the admissible region of the formation number constraint. It is not hard to imagine that

changing the initial nozzle radius and piston velocity program will result in very different behavior

because these quantities will change how the formation number constraint shapes the boundary of

the admissible control region.

Therefore, the optimization of the piston velocity program and nozzle radius does not rely on

finding a locally optimal trajectory within the admissible control region, but rather finding critical

values of the initial nozzle radius and piston velocity program which optimize the admissible region

in the control space resulting from the formation number constraint. Here we will make one final

restriction that the piston velocity program will be held constant in the initial formation stages

before the formation number constraint forces an acceleration of piston velocity. This restriction

reduces the control space of the problem to the vector u⃗ = [up0, R]T , which is the selection of initial

piston velocity and nozzle radius. This restriction also aids in conceptualizing the control space of

the problem, which helps to identify the effect of the dynamic formation number constraint.

7.4 Velocity Program Derivation

If the nozzle radius is selected greater than some critical value R⋆, then the jet stroke ratio

(which is only a dependent on nozzle radius since total jet volume is held constant) will always be

lower than the resulting jet formation number independent of the choice of initial piston velocity.

The critical radius can be defined in terms of the jet volume and radial slopes,

R⋆ =

[
Vjet (4 + k⋆2)

3/2

29/2π
(
16 + k⋆2 − k⋆21

)1/2
]1/3

. (7.8)

If the nozzle radius is above the critical radius, then the entire control space will be within the

admissible region of the formation number constraint. Therefore, ignoring this constraint gives the

optimal piston velocity on the boundary of the thruster limitations, up = V̇max/πR
2.

If the nozzle radius is below the critical value, R⋆, then at some time t1 the piston velocity

will intersect half the vortex ring velocity. We denote the circulation, impulse, energy, and volume

at this time, Γ1, I1, E1, and V1 respectively. Setting 2up0 = u⋆ (Γ1, I1) allows the intersection time,
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t1, to be calculated, which also allows all the quantities at this time to be calculated.

t1 =
2(9/2)A(1/2)R

up0 (4 + k⋆2)
, (7.9a)

Γ1 = 23/2A1/2Rup0 , (7.9b)

I1 = π21/2A3/2R3up0 , (7.9c)

E1 = π21/2A1/2R3u2p0
8 + k⋆2
4 + k⋆2

, (7.9d)

V1 =
π29/2A1/2R3

4 + k⋆2
, (7.9e)

where,

A =
16 + k⋆2 − k⋆21

4 + k⋆2
. (7.9f)

After this time the piston velocity lies on the boundary of the formation number constraint

meaning that up = u⋆/2. Inserting this relation for piston velocity back into the system dynamics

(7.7) provides an ordinary differential equation for the jet circulation, since impulse is proportional

to circulation reducing the vortex centerline velocity to a function of circulation, u⋆ ∝ Γ, when the

nozzle radius is held constant.

Inserting this relation for piston velocity back into the system dynamics (7.7) gives an ordinary

differential equation for the circulation. Solving this equation for circulation under the initial

condition that Γ(t1) = Γ1 results in a function for the circulation on this boundary in terms of time

and initial piston velocity,

Γ =
26AR2up0

2(11/2)A1/2R− (4 + k⋆2)up0t
. (7.10)

Which in turn allows the piston velocity to be determined for this region,

up =
29/2A1/2Rup0

211/2A1/2R− (4 + k⋆2)up0t
. (7.11)

Given the piston velocity all other quantities can be solved from (7.7). As was mentioned

previously, the terminal constraint is defined by the total available jet volume, Vjet. Setting the

final volume (integrated from the piston velocity equation) equal to the total available jet volume
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determines the final time,

tf =
29/2A1/2R

(4 + k⋆2)up0

[
2− e

1− (4+k⋆2)Vjet
π29/2A1/2R3

]
. (7.12)

Finally, the physical limitations of the thruster driving mechanism bound the allowable piston

velocity at the final time, which can be translated into a constraint on the choice of initial piston

velocity, up0, for a given nozzle radius, R. By requiring upf ≤ V̇max/πR
2, the initial piston velocity

is constrained to,

up0 ≤
V̇max

πR2
e
1− (4+k⋆2)Vjet

π29/2A1/2R3 . (7.13)

Meaning that for a given nozzle radius there is a maximum initial piston velocity that can be chosen

which will satisfy both the thruster driving constraint and formation number constraint throughout

the entire pulsation.

Summary of Constrained Problem This means that under these constraints and re-

strictions we do not have complete control over the piston velocity program. Once a nozzle radius

has been selected, the constraints on the problem limit the choice of initial piston velocity as is

described by (7.13). The piston velocity for maximum average thrust will always tend towards

the maximum allowable velocity for that region, and the initial piston velocity will be chosen as

the maximum allowable value. Therefore, the optimization problem can be restated as finding

the nozzle radius which maximizes average thrust, T̄e, or the nozzle radius initial piston velocity

combination which maximizes jetting efficiency, ηJ , with final pulsation time defined by (7.12), and

total jet impulse and energy defined by integrating the system dynamics (7.7). The constraints are

all automatically satisfied since the piston velocity program used to integrate the system dynamics

is derived based on the constraints.

7.5 Results

It can be seen in the preceding section that the constraints placed upon the problem, reduce

the control space to the selection of the initial nozzle radius, R, for the average thrust optimization,

and the selection of the nozzle radius and initial piston velocity, [R, up0] for the jetting efficiency
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Figure 7.3: Piston velocity programs resulting from multiple nozzle radii.

optimization. Using typical values for Vjet and V̇max from the prototype thruster, the piston velocity

program up(t) and the performance indices, T̄e and ηJ were calculated for a range of feasible nozzle

radii, and initial piston velocities. Multiple values were used for the radial slopes. k⋆1 = 0 and

k⋆2 = 0 correspond to the dynamics of a truly parallel jet (1D slug model), but we also calculated

the performance indices with k⋆1 = −1 and k⋆2 = 4 which are typical of starting jets expelled through

orifice nozzles (see Table 6.1). Figure 7.3 shows multiple piston velocity programs resulting from

the nozzle radius selection, and choosing the maximum allowable initial piston velocity. The general

shape of the piston velocity was not affected by the radial velocity slopes.

The average thrust of the jet, T̄e, is depicted in Figure 7.4, as a function of nozzle radius for

both sets of radial slopes. It can be seen that under the constraints used here the average thrust

of the pulsation will be maximized, when the nozzle radius is equal to the critical nozzle radius,

R⋆, and the resulting piston velocity program is just the maximum piston velocity bounded by

the limitations of the thruster driving mechanism. For this particular control program, the piston

velocity and vortex ring velocity do not intersect until the final pulsation time. This is the case for

both sets of k⋆1 and k⋆2, even though the different slopes will result in jets with drastically different

formation number. It should be noted that the case of k⋆1 = −1, and k⋆2 = 4 will have a lower

formation number, and therefore, a larger critical radius and lower maximum piston velocity at

the critical radius. As a result the maximum average thrust is actually lower for the converging
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Figure 7.5: Jetting efficiency, ηJ , is shown for the admissible range of nozzle radius and initial
piston velocity for both low and high Re regimes. The boundary of the admissible control space is
marked by the solid white line, and k⋆1 = −1 and k⋆2 = 4 for both regimes.

jet. This would suggest that the maximum average thrust is reached by jets with a large formation

number; however, increasing the formation number by accelerating the piston velocity does not

increase the average thrust, as indicated by the average thrust values for nozzle radius below the

critical radius.

The jetting efficiency in the low Reynolds number regime, ηJL, for the converging nozzle

configuration (k⋆1 = −1 and k⋆2 = 4) is shown over the same range of nozzle radius as well an

admissible range of initial piston velocities in Figure 7.5(a) and Figure 7.5(b) shows the jetting

efficiency for high Re and the same control space. When the nozzle radius is selected below the

critical radius there is a maximum initial piston velocity defined by equation (7.13), and this

boundary in the control space is marked by the solid white line in Figure 7.5. It can be seen from

this figure that the jetting efficiency drops of drastically when the nozzle radius is selected below

the critical radius for both regimes, meaning that accelerating the piston velocity to increase the

formation number of the jet is in general not beneficial to the propulsive efficiency. If the nozzle

radius is above the critical radius this figure shows that a vehicle operating at low Reynolds numbers

will experience a maximum jetting efficiency with maximum piston velocity and is independent of

the nozzle radius (provided that radius is above the critical value). Conversely, a vehicle operating
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at high Re experiences a maximum efficiency with maximum nozzle radius but is insensitive to

selection of initial piston velocity.

The jetting efficiency for the parallel jet has nearly identical shape as the converging jet

for both velocity regimes. In order to show the quantitative effect of non-parallel jets on jetting

efficiency we again restrict the control space to just the selection of nozzle radius, and the initial

piston velocity is selected to be the maximum allowable for that radius. Figure 7.6 shows the jetting

efficiency for both velocity regimes and both nozzle configurations. It can be observed that the

converging radial velocity has a higher jetting efficiency for the same constraints in the high Re

regime, suggesting that jetting efficiency is maximized by thin cored vortex rings in this regime.

Whereas, the parallel jet has a higher jetting efficiency in the low Re regime.
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Chapter 8

Vehicle Integration

So far the analysis of this new type of thruster has focused heavily on jet dynamics. Here

considerations are made for the implementation of such a thruster in typical vehicle control envi-

ronments.

8.1 Transfer Function Approximation

Any high accuracy maneuvering system will be required to operate in chaotic environments.

The energy of these turbulent marine environments is well defined in the spectral domain [64]. A

Linear time invariant (LTI) transfer function model of the thruster dynamics is desirable since it

allows the thruster parameters to be selected with respect to the mission specific environmental

dynamics.

If the thrust equation (6.9) is mapped into the spectral domain through a Laplace transform

it becomes a nonlinear integral function of the frequency input, which can be linearized by setting

the input function, which in this case is the frequency, equal to a weighted Heaviside function

f(t) = f0
∫ t
0 δ(τ)dτ trimmed at some nominal pulsation frequency f0. The linearized thrust equation

in the spectral domain is

T̂ (f, s) ≈ Cv

(
f2
0

s
− f2

0

s+ f0/τ⋆
+

η2πf3
0

s2 + 4π2f2
0

)
. (8.1)

The transfer function plant for the thruster is therefore the ratio T̂ (s)
F (s) , where F (s) is the

Laplace transform of the input function F (s) =
∫∞
0 f(t)dt = f0

s . Using this relation the thruster
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plant can be determined. This should be an accurate approximation so long as the rate of change

of f(t) is slow with respect to the rate of change of x(t)

GVRT(s) = Cv

(
f2
0

τ⋆s+ f0
+

η2πf2
0 s

s2 + 4π2f2
0

)
. (8.2)

Therefore the thruster plant describes the linearized dynamics between the input actuation fre-

quency and output thrust, and is purely a function of the trim frequency f0.

The accuracy of the linearized transfer function approximation was tested by operating the

thruster in a hybrid vehicle simulation and interpolating the system frequency response. A method

is used whereby the behavior of a vehicle is modeled as a virtual vehicle; and the thrust is measured

empirically from the prototype thruster in a controlled static setup. Using this procedure the

validity of the thruster model can be tested with respect to a “pure” vehicle which acts predictably

according to the fully non-linear drag equations. Also approximation/modeling errors may be

determined independently from inconsistencies due to environment unpredictability. The virtual

vehicle was modeled by a simple cylinder with a single degree of freedom (perpendicular to the

long axis) suspended in an incompressible fluid. The governing equation for the simple vehicle

simulation is just Newton’s second law with a nonlinear drag term.

The virtual vehicle model assumes that the vehicle starts at rest. At the onset of the experi-

ment the vehicle is given some form of driving signal (desired trajectory) from a vehicle controller.

The corresponding force from the thruster is measured directly using the load cell. The unfiltered

thrust is then fed into the virtual algorithm, and the vehicle motion is integrated according to the

vehicle governing equation. In real time the control algorithm drives the virtual vehicle using the

actual forces generated by the thruster within its test environment.

In order to demonstrate the accuracy of the LTI approximation the hybrid simulation must

be tested for maneuvers with fundamentally different scaling. A quantity termed the “scale fac-

tor” was introduced to quantify the different maneuvering regimes. The scale factor is defined as

A⋆ =
A

d
, where A is the maneuvering amplitude, and d is the vehicle diameter (or characteristic

size). The simulation was tested for three different maneuvering regimes, the Cruising Regime
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(maneuver much larger than vehicle size, A⋆ = 3), the Docking Regime (maneuver smaller than

vehicle size, A⋆ = 0.5), and the Transition Regime (the transition between other regimes, A⋆ = 1).

A more complete description of the vehicle model, as well as considerations for modeling different

maneuvering regimes refer to Appendix C.

8.2 Frequency Response

Within the hybrid simulation the open loop frequency response was determined for the

thruster vehicle system. This response was tested (over a maneuvering frequency range encompass-

ing the -3 dB cutoff frequency) for all three maneuvering regime scale factors. The three response

curves are shown in Figure 8.1. It should be noted here that the modeled response was calculated

assuming a pulsation frequency sufficiently higher than the maneuvering frequencies tested in the

simulation. For the Cruising Regime the model assumes a thruster frequency of f0 = 20Hz, how-

ever, the thruster trim frequency could be set significantly lower for the other regimes and still

maintain accuracy, due to the lower thrust requirements in general for those regimes. The modeled

response was calculated for the other two regimes assuming a pulsation frequency of 9 and 5 Hz

respectively.

It can be seen from this graph that the constant pulsation frequency approximation accurately

models several features of the frequency response including the cutoff frequency and the convergence

of different maneuvering regime response curves near the cutoff frequency. Another interesting

feature is located in the low frequency maneuvers. Here the spread between the maneuvering

regimes is more drastic than at the corner frequency of the system (which happens to be nearly

identical for all three maneuvering regimes). This is indicative of the fact that at low maneuvering

frequencies the thruster is required to deliver smaller forces, which in turn result in lower actuation

frequencies, so that at this level the vehicle experiences individual pulsations. In the low amplitude

Docking regime this results in a higher gain since pulsations enact an acceleration before drag forces

take effect. In the Transit regime however, this results in less gain since the drag terms dominate

in between pulsations. This trend is accurately captured by the approximated LTI model. Though
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Figure 8.1: Open loop frequency response for the thruster vehicle system; Cruising regime shown
by A⋆ = 3, Transition regime shown by A⋆ = 1, Docking regime shown by A⋆ = 0.5. Theoretical
response modeled assuming f0 = 20, 9 and 5 Hz respectively
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the simulation was not run for higher maneuvering frequencies, the model predicts that the vehicle

in the Cruising regime will achieve a higher amplitude maneuver in the high frequency ranges,

which is suggested by the slopes of the experimental trends.

8.3 Feedback Control

A simple proportional derivative (PD) feedback algorithm was then implemented in the hybrid

simulation based off of the vehicle position error. The closed loop frequency response of the system

under PD control is depicted in Figure 8.2. The important parameters which drive the controller

gain selection are motivated by different goals for the different maneuvering regimes. The Docking

Regime requires very accurate tracking with minimal overshoot; whereas the Cruising Regime is

generally indifferent to overshoot and is much more concerned with a fast approach time (so that

the vehicle can move to a site of interest before the phenomena of interest dissipates). For this

study the feedback gain was set to 4 which was chosen to keep the required thrust within the

thruster capacity; and the derivative gain ratio was set to 0.75 to keep the position overshoot

within acceptable bounds in the Docking regime.

The system closed loop frequency response was determined over a similar frequency range

for the same maneuvering scale factors as the open loop response. The pulsation frequency, f0, for

the linear model was set to the same driving frequencies as the open loop case. This model is seen

to approximate the closed loop behavior of the thruster vehicle system sufficiently including the

cutoff frequency. A key parameter of the model linearization which has not been discussed in detail

is the trim velocity which is used to linearize the drag of the vehicle. This is one of the important

parameters which differentiates between the different maneuvering regimes. In the Docking regime,

the vehicle generally changes directions with a higher frequency and spends much of its time at

low velocities. Therefore, selecting the trim velocity according to a maximum acceleration relation

yields very good results, and is an appropriate approximation. By contrast the Cruising regime

is characterized by long periods of sustained motion and the corresponding trim velocity should

be set according to a velocity drag relation. Though the transfer function model for this regime
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Figure 8.2: Closed loop frequency response for the thruster vehicle system. Cruising regime shown
by A⋆ = 3, Transition regime shown by A⋆ = 1, Docking regime shown by A⋆ = 0.5. Theoretical
response modeled assuming f0 = 20, 9 and 5 Hz respectively



120

comes close to approaching the actual cutoff seen in the system, it incorrectly predicts the gain on

either side of the cutoff frequency. This is due to the fact that maneuvers in the cruising regime

experience drastically variable drag forces, since the drag force is non-linear and the vehicle has

a larger velocity range in the cruising regime. Because of these non-linearities and the sizable

velocity range, the linearization about a single trim velocity predicts a drag which is too large in

the low maneuvering frequencies, and similarly predicts a drag which is too low for high frequency

maneuvers. Therefore, the accuracy of the drag approximation will decrease as the maneuvering

scale increases. This implies that the large velocity range in the Cruising regime, requires a sliding

model to accurately predict system frequency response (as opposed to the small scale maneuvers

which are well approximated by a single trim velocity). Additionally the model has no limitation on

thrust level, and in this regime drives the thruster beyond its actual capacity (even with relatively

low gains). Though this is an un-modeled non-linear effect, it also addresses an interesting design

consideration. This analysis demonstrates that any high accuracy thruster may not have a large

enough range to be completely effective in the Cruising regime. The thruster could be designed with

a larger output but this would reduce the accuracy of the system in the Docking regime. Fortunately,

maneuvers in the high frequency Cruising regime are also generally coupled with significant forward

vehicle velocity. This strong cross flow gives the thrusters an added dimensionality; instead of

generating control forces strictly from the jetting momentum transfer, the VRT can be used to

inject energy into the flow going over the vehicle, altering the effective shape of the vehicle seen by

the surrounding flow. Furthermore, the effect of so called ‘hydroshaping’ increases with increased

velocity where the thrust generation is observed to be lacking. Aeroshaping has been shown to be

an effective technique in fighter jets, and general drag reduction [2]. Future studies will investigate

the use of VRT’s for the purpose of flow control. However, these studies are outside the scope of

this investigation.



Chapter 9

Conclusions

9.1 Discussion

Unmanned vehicle networks are becoming an irreplaceable resource for in depth scientific

testing in oceanic environments. Current vehicles are limited by an inability to provide simultaneous

docking and transit capabilities. A new type of underwater jet thruster inspired by squid and

jellyfish locomotion offers a possible solution to this problem since it offers faster tracking and

lower overall vehicle drag than typical propeller thrusters, while maintaining the thrust capabilities

at zero forward velocity. Another advantage of this type of thruster is that the desired level of thrust

is reached much more quickly than typical propeller thrusters, and there is no lingering momentum

transfer after the jet flow has been terminated, unlike tunnel thrusters. These advantages make

this type of thruster ideal for high accuracy maneuvering applications.

There are several real world flows which involve non-parallel starting jets, but theoretical

analysis has been largely focused on parallel starting jets; and specifically those created by a piston-

cylinder vortex generator. It was demonstrated here that the 1D slug model, which is traditionally

used to model impulse, circulation, and energy of all starting jets, under-predicts these quantities

if the incoming flow has a converging radial velocity, and it is predicted that the 1D slug model

will over-predict both quantities if there is a diverging radial velocity. Additionally, the 1D slug

model provides a poor prediction of the impulse, circulation, and energy of low stroke ratio parallel

starting jets, where the leading vortex ring has a strong influence on the incoming jet flow, as has

been observed previously. Some studies have introduced correction factors to the slug model based
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on nozzle configurations, but this doesn’t address the source of the problem.

A new model was derived to predict impulse, circulation, energy, and pressure distribution of

starting jets which specifically accounts for a radial velocity at the source of the jet flow. This model

only requires the knowledge of jet kinematics at the entrance boundary of any axisymmetric control

volume. This is a powerful tool for modeling jet flows and can even be extended to continuous jets

by changing the treatment of farfield boundaries, but this will be examined in future publications.

This formulation showed that ‘overpressure’ at the nozzle is impossible without any radial velocity

at that boundary, induced or otherwise. We also presented generic axial and radial velocity profiles

which can be used to parameterize a wide variety of actual jet flows, and the jet impulse and

circulation were then derived in terms of the velocity profile parameters.

Both parallel and converging starting jets were created experimentally by ejecting fluid

through a set of tube and orifice nozzles, and the velocity field of these jets was captured us-

ing DPIV techniques. The DPIV data was used to parameterize the velocity profiles at the exit of

these nozzles, as well as to validate the control volume analysis. The velocity profiles of parallel

jets expelled through a tube nozzle, and subsequently impulse and circulation of the jet, are highly

sensitive to the formation of the primary vortex ring as indicated by the large variation in dynam-

ics between high and low stroke ratios. Whereas, the orifice nozzle used to create a converging jet

resulted in a much more uniform velocity profile throughout pulsation for any stroke ratio. The

radial velocity at the entrance boundary has a drastic effect on both the circulation and impulse

of the starting jet. The converging jet was observed to have as much as double the circulation and

energy and 75% more impulse than the parallel jet with the same mass flux and nozzle diameter,

and this increase was very well captured by the new jet model.

It should be noted that the parameters describing axial and radial velocity profiles are deter-

mined experimentally from the jet flows examined in this study, which makes these profiles more

of an analytical tool than a predictive model. However, the consistency of some parameters allows

them to actually be used in a predictive sense. The normalized slope of the radial profile and radial

gradient profile k⋆1 and k⋆2 in particular show almost no variation with nozzle radius and piston ve-
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locity for orifice nozzles, and seem to only depend on the stroke ratio for tube nozzles. Similarly the

value of the axial shape parameters appears to be consistent for orifice nozzles since there is little

change in axial velocity profile during formation. Though there is large variation in axial velocity

in tube nozzle flows, these nozzles are avoided for vehicle maneuvering applications because of the

increased drag associated with the tube jutting out the side of the hull. Therefore, this model is

actually predictive for the type of thruster considered here under any operating condition, despite

the parameterization based on specific jet flows.

The thruster was operated at high frequencies, as would be typical in vehicle applications,

and the average thrust was modeled similar to the starting jets, making simple assumptions for the

refilling period. It was observed that the model predicts the average thrust accurately for devices

operating at frequencies below the cavitation frequency and stroke ratios below the formation

number. When the frequency is very high, the formation and collapse of cavitation bubbles causes

an undesired decrease in jetting volume, and when the stroke ratio is above the formation number

interaction with the trailing wake substantially increases the negative impulse of refilling phase.

A model was derived to predict the formation number of the jet for any nozzle radius and

jet velocity program, which is based on characteristic velocities at the axis of symmetry. The

approximations developed to predict both vortex ring translational velocity and vortex ring velocity

at the ring origin, may be used to predict these quantities in any vortex ring study provided that

the circulation and impulse of the ring are known. The new velocity criterion was observed to

accurately predict vortex ring pinch-off for the entire range of nozzle configurations, piston velocity

programs, and nozzle radius programs tested in this study.

Using the new jet models a framework is presented which allows piston velocity program and

nozzle radius to be optimized with respect to both maximum average thrust and maximum jetting

efficiency, which is a quantity developed in this study that is similar to propulsive efficiency but

does not require a knowledge of exact vehicle specifications. This analysis heavily focuses on the

correct treatment of constraints on the velocity profile, and the differences between continuous jets

and finite jets. The average thrust will be maximized by a constant piston velocity program at the
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maximum attainable velocity, and the nozzle radius is set to a critical value where the vortex ring

pinch-off occurs exactly when the flow is terminated. The jetting efficiency will be optimized by

setting the nozzle radius to a minimum allowable value and expelling a jet with a slowly accelerating

piston velocity which exactly matches a characteristic vortex ring velocity.

Additionally, a linear transfer function model was developed to approximate the transient

dynamics of the thruster vehicle assembly. Vehicle maneuvers were characterized in three different

maneuvering regimes based on this linearization; including the Cruising, Docking and Transition

regimes. This transfer function model was seen to accurately predict the frequency response of the

system (both open and closed loop), in regard to the cutoff frequency and general shape of the

frequency response, even though it ignores certain high order dynamics, and again the thruster is

seen to be ideally suited for small amplitude high accuracy maneuvers.

9.2 Future Work

9.2.1 Vortex Ring Centerline Velocity

The axial velocity distribution along the axis of symmetry a vortex ring was derived from

stream function analysis in equation (5.14). This equation is valid for any vorticity distribution

but the characteristic centerline velocity was approximated assuming a point vortex (zero core

radius). Further analysis will be conducted to determine the centerline velocity considering the

vortex distribution of the Norbury family of vortex rings. This characteristic velocity will then

be a function of the total vortex ring circulation and impulse, like before, but will also have a

dependence on the mean core of the vortex ring, ϵ. We predict this analysis will become necessary

when formation number is delayed even more than the programs of the analysis here, and the mean

core radius approaches that of hills spherical vortex ϵ =
√
2.
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9.2.2 Inclusion of Viscosity

The consistency of axial velocity profile for orifice nozzles allows the analysis of this study

to be used as a predictive model for thrusters using these nozzles. However, pulsatile jet thrusters

being used as a primary means of propulsion, rather than for maneuver, may be desired to use

some form of tube nozzle. The modeling of this type of thruster would require an additional

consideration, which is viscosity. The control volume analysis clearly requires that viscosity be

ignored; however, the axial velocity profile at the exit of a tube nozzle is dependent on the viscosity

and nozzle diameter. Since the axial shape parameter m, is inversely proportional to the thickness

of the shear layer, this value could be approximated in tube nozzle flows from the fluid viscosity

tube diameter, and formation time, making the model predictive.
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Appendix A

Vortex Ring Reynolds Number Dependency

The Reynolds number of the jet describes the relative significance of viscous damping forces

to inertial forces; and is closely related to the transition into turbulent flow regimes. The jet

Reynolds number can be computed in terms of the initial circulation Γ0 defined as [25],

ReΓ = 2
Γ0

ν
. (A.1)

It was determined that jets created from fluid at rest will roll into laminar vortex rings if the

Reynolds number is less than a critical Reynolds number which is dependent on the stroke ratio of

the jet. For a jet with a stroke ratio of 2.3 the critical Reynolds number at which the vortex ring

becomes turbulent is 25000 [25].

To analyze the nature of the jet a cross section of the flow extruding from the thruster was

photographed using a laser induced fluorescein (LIF) technique. A laser sheet was used to illuminate

the vortex ring cross section shown in Figure A.1. According to the formulation of the Reynolds

number in terms of the initial circulation, every pulse of the thruster at the operational parameters

used in capturing the images in Figure A.1 produces a ring with an identical Reynolds number of

9408. The first ejected vortex ring is clearly seen to be a laminar one. This ring is created from

a laminar jet extruding from the orifice (Figure A.1(a)). For this ring the Glezer criteria for the

laminarity of the vortex ring is clearly satisfied. It should be noted that all of the vortex rings

studied in [25] were started from laminar jets, whereby fluid at rest in a cylinder was ejected by a

sliding piston which was reset and brought to rest before subsequent testing. The jet only evolved
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Figure A.1: Cross section of the flow emanating from thruster operating with stroke ratio of 2.3
and f = 7 Hz. A reflective dye is illuminated with a laser sheet through the center of the vortex
ring. The initial ring with a laminar starting jet is shown in (a), the secondary turbulent pulsatile
jet is shown in (b), and both fully evolved vortex rings are shown in (c).
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into a turbulent ring if a critical Reynolds number criterion was met. The second ring ejected from

our thruster, by contrast, started from a turbulent jet, and evolved into a turbulent ring. Even

though the ReΓ for both rings is identical for both cases, ReΓ = 9408, the second ring is clearly

turbulent due to the fact that it is generated from a turbulent jet (the jet is initially turbulent since

it is comprised of fluid which was recently ingested into the cavity). The inherent disturbances in

the cycling fluid motion into the cavity causes pulsatile jets to be much more prone to turbulence

than starting jets, an idea reflected in the higher spreading rate of a pulsatile jet as compared with

a steady jet1 . Therefore, in all of the high frequency experiments conducted in this investigation

the jet emanating from the orifice is primarily turbulent.

1 For experimental measurement and analytical modeling of micro synthetic jets in air see [91]



Appendix B

Piston Velocity Validation

The jet piston velocity, up, is determined from motor encoder velocity, assuming that the

plunger has a linear corespondence between deflection and volume displacement. The displaced

volume was measured at several plunger deflections to test this relationship. However, this testing

used static volume measurement techniques and further validation was needed to ensure that this

relationship is preserved during high speed operation, especially considering that the plunger is

constructed with a flexible rubber which might have load dependent deformation characteristics.

Fortunately, one of the tube nozzles used during experimentation is constructed out of clear

acrylic which allowed visual access to the internal flow. Therefore, filming the internal flow just

required repositioning the camera slightly higher in the visualization setup (see Section 3.3). A

sample image of the clear tube nozzle with illuminated internal flow is depicted in Figure B.1.

A typical driving signal was sent to the thruster, which was to quickly ramp up to then

maintain a constant piston velocity, around 7 cm/s. The internal tube flow was filmed and processed

using the commercial DPIV algorithms (see Section 3.4). The velocity profile across the nozzle area

was determined at multiple locations. Though the nozzle itself is a cylindrical plastic tube, the

optical density of acrylic is close enough to water that the optical distortion will be minimized,

and no corrections were made to the velocity field determined in the tube. The velocity profile

accross the nozzle was also observed to be nearly uniform except at the nozzle surface at later

stages of pulsation accounting for boundary layer development. The volume flux, Ω, was calculated



140

PIV Analysis Region

Nozzle Exit Plane

Inner Nozzle Edge

Outer Nozzle Edge

Figure B.1: A single frame depicting the flow visualization used to calibrate piston velocity. Seeding
particles are illuminated by a laser sheet entering from the nozzle opening.
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by integrating the DPIV velocity profile over the nozzle area,

Ω = 2π

∫ R

0
ur dr . (B.1)

Next the piston velocity is determined from the volume flux in the usual way, up = Ω/πR2. The

piston velocity was also determined from the motor encoder data for the same trial run. The piston

velocity determined from each method is plotted as a function of time in Figure B.2.

For the majority of the pulsation cycle the piston velocity determined from DPIV matches the

piston velocity determined by the encoder validating the encoder piston velocity, with the exception

of the end of pulsation where the sudden termination of plunger motion results in some oscillation

of the piston velocity associated with elastic vibrations in the plunger surface.



142

0.2 0.4 0.6 0.8 1 1.2

−4

−2

0

2

4

6

8

Time (s)

Pi
st

on
 V

el
oc

ity
 (

cm
/s

)

 

 

PIV
Encoder

Figure B.2: Piston velocity is shown vs. time, values determined from encoder data are shown by
the solid red line and values determined from DPIV measurements are shown with a green point
marker



Appendix C

LTI Vehicle Modeling and Thruster Implementation

C.1 Vehicle Model

Consider a simple underwater vehicle to be modeled by a cylinder in a fluid with a single

degree of freedom. The governing equation for the system is given by the simple drag equation

Mẍ = T − Cdẋr|ẋr| (C.1)

here, x is the unrestrained axis, M is the mass of the vehicle (including an added mass), T is the

instantaneous force provided by the thruster, ẋr is the relative vehicle velocity ẋr = ẋ+ ufluid, and

Cd is a drag coefficient defined by Cd = 1
2ρSCD(Re), S is the wetted area of the vehicle and CD(Re)

is the coefficient of drag of a cylinder in a laminar cross flow, which seems like a fair assumption since

the primary uses of these thrusters are for maneuvers involving rotation and sideways translation

at low speeds, both of which induce a laminar cylinder cross flow. Without loss of generality the

relative velocity will be considered equal to the inertial velocity (i.e. ufluid = 0). If the nonlinear

drag term is linearized about some nominal trim velocity ẋtrim then the governing equation of the

vehicle can be modeled by a plant in the spectral domain with the following form,

Gsub(s) =
1

ms2 + Cs
, and C =

1

2
ρSCD(Re)ẋtrim, (C.2)

where the input is the transient thrust of the thruster, and the output is the position of the vehicle

along the x axis.
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C.2 Maneuver Scaling and Trim Conditions

The ultimate goal of this type of maneuvering technology is to achieve a high accuracy

loiter or hover, so that the vehicle can engage some docking mechanism and perform autonomous

upkeep. Marine environments are cluttered with wave like current disturbances. To overcome these

disturbances a vehicle must provide a wide range of controlling forces. It becomes apparent that

the performance of a controller in this type of an environment can be most usefully characterized

by a frequency analysis. Whereby, the inputs to the system are sinusoidal maneuvers of the form

xd = A sin (ωt) (C.3)

with xd being the desired vehicle position, A is the maneuvering amplitude, and ω the maneuvering

frequency.

It should be noted that the model developed for the thruster vehicle system was derived using

several approximations and linearizations. The actual dynamics of the system are highly non-linear,

so that the choice of design points to linearize about has a strong effect on the predicted dynamics of

the system. Therefore, the selection of these design points deserves careful consideration. Typically

these parameters would be defined in terms of actual vehicle requirements, but we would like to

extend a more general analysis. That is to define optimal vehicle parameters with respect to

maneuvering capabilities, and maneuvering parameters.

Consider again that the drag model assumes the vehicle to be a perfect cylinder in cross flow.

The characteristic size of a cylinder in this flow is the diameter. If all vehicles are assumed to have

the same aspect ratio (which we will denote σ), then the geometry is reduced to the diameter d. The

relative size of a maneuver plays a large role in determining the dynamics of the vehicle performing

that maneuver. This quality can be characterized by the ratio of maneuver amplitude to the

vehicle characteristic length A⋆ = A
d , which will be referred to as the scale factor of the maneuver.

If we characterize maneuvers according to their scale factor, then maneuvers can be thought of as

members three regimes. Maneuvers in the Cruising regime are characterized by maneuvers much

larger than the vehicle sizing, and maneuvers in the Docking regime are characterized by maneuvers
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much smaller than the vehicle characteristic sizing. Maneuvers with amplitudes on the same order

as the vehicle sizing are in the Transition regime, which is required to transition between the cruising

and docking modes.

C.3 Scaling the problem for unitary amplitude

This section describes a method for scaling the vehicle control problem so that maneuvers

in different regimes can be analyzed using consistent nomenclature as in the frequency response

analysis. It is convenient from a frequency analysis point of view, to scale the problem so that the

maneuvering amplitude attains unity (A = 1). Through this mapping a maneuver with a smaller

amplitude may be modeled by a larger vehicle with unitary amplitude. The geometric scaling is

fairly straightforward. The vehicle diameter can be recast as d = 1/A⋆, and assuming that the

vehicle is designed to approach neutral buoyancy the mass of the vehicle becomes M = ρπ/A⋆3. In

order to maintain consistency, the thruster response must be scaled appropriately to incorporate

the larger vehicle. The limitation on the thruster is the maximum thrust it can produce while still

being accurately described by the slug model; which in the vehicle model shows up as a maximum

voltage that can be applied to the motor controller Vmax. If a thruster bounded by maximum thrust

Cv (VmaxKMC)
2 is operating on a vehicle of mass M(A⋆), the maximum acceleration it can attain

can be derived from Newton’s second law (assuming the vehicle is at rest and being forced with the

maximum thrust). This maximum acceleration will be considered the design criterion for vehicle

thruster selection. Consider a thruster (characterized by KMC0) which is selected for a vehicle of

characteristic size d0. The criterion on the thrust capacity requires that the system’s maximum

acceleration is equal to the maximum required maneuvering acceleration (given A⋆ = 1). Some

algebra gives a natural maneuvering frequency where this design constraint holds true

ω0 =

(
Cv

ρπ

) 1
4
(
KMC0Vmax

ω0

) 1
2

. (C.4)

Additionally as the maneuvering regime changes the maximum acceleration required by the desired

maneuver increases proportionally to the scale factor (ẍd,max = A⋆ẍmax). This is the condition
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that will be enforced to ensure a consistent thruster scaling.

Now consider the scaled vehicle which ensures unitary amplitude whose diameter and mass

are purely a function of the scale factor. The maximum acceleration of this vehicle can similarly

be defined in terms of the scaled unknown thruster gain KMC(A
⋆). Furthermore, the maximum

acceleration of the desired maneuver will always be the square of the maneuvering frequency (since

it has unitary amplitude). If the maneuvering amplitude is set equal to the natural maneuvering

frequency of the actual thruster vehicle system, and the relation between accelerations is enforced

then the scaled thruster gain can be solved as a function of the natural vehicle parameters and the

scale factor,

KMC(A
⋆) = KMC0

1

A⋆2d20
. (C.5)

If we define a natural scale factor for the system as, A⋆
0 =

1
d0
, then the equation for the scaled

motor gain takes on a much more aesthetic form given by

KMC(A
⋆) = KMC0

(
A⋆

0

A⋆

)2

. (C.6)

Similarly the drag normalization velocity can be rescaled in terms of the maneuvering regime

parameter which results in a new coefficient term in the vehicle model (C.2)

C =
KMCVtrim

A⋆

√
ρCDCvσ

2
, (C.7)

where Vtrim is a trim voltage which should be somewhere in the middle of the range of possible

controller signal voltages correlating to the voltage required to attain the trim velocity. Therefore

a maneuver defined by a given scale factor, being performed by a vehicle with specific parameters

can be similarly analyzed by a unitary maneuver being performed by a scaled equivalent vehicle,

whose thruster strength is characterized by (C.6), and whose drag is characterized by (C.7).



Appendix D

New Perspectives on Squid Collagen Fibers

D.1 Introduction

Squid Mantle

The powerful squid mantle primarily consists of muscle packed between two helically wound

collagenous tunics which are oriented at an angle of approximately 27◦ ± 1◦ to the longitudinal

axis of the squid, for Lolligoguncula brevis [95]. The arrangement of a single layer of collagen fibers

in the tunic and a definition of the tunic fiber angle, θ, are shown in Figure D.1. Circumferential

muscles ring the mantle and radial muscles run from the inner tunic to the outer tunic Figure D.2.

The robust nature of the collagen fibers in the tunic, their inelastic properties, and low axial angle

suggest that they act to prevent elongation and deformation of the mantle tissue during jetting.

Wound through the muscle layer, are three systems of intramuscular (IM) collagen fibers

conventionally dubbed, IM-1, IM-2, and IM-3. IM-1 runs at an oblique angle through the muscle

layer that is difficult to measure unless the angle is known a priori. Measurements of the IM-1

fiber angle relative to the squids long axis, therefore, rely on both sagittal and tangential sections

(see Figure 2 for definition of primary sections) to accurately describe the path. We will refer

to the respective fiber angles in these planes (demarcated by some authors as IM-1 sag and IM-

1 tan) as β and λ in this analysis. Values differing by as much as 20◦ are reported for both β

and λ. Ward and Wainright [95], measured β in Lolligoguncula brevis at 28◦. Bone et al. [11]

measured λ at 15◦ in Alloteuthis subulata. MacGillivray et al. [48] reported similar values in

Loligo pealei. These low angles are in contrast to those reported by Thompson and Kier [87], who
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Figure D.1: The squid tunic fibers are wound in a spiral helix arrangement, and are oriented at a
uniform angle (θ) to the longitudinal axis. The tunic fibers form a cylindrical tube with length L
and radius a. Though the tunic consists of multiple layers of spiraling fibers only a single layer is
shown for clarity.
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Figure D.2: Intramuscular (IM) Fibers - Conceptual diagram of the squid mantle structure. De-
picted are the three primary reference planes defining the (IM) collagen fiber angles, and the muscle
structure. The sagittal plane cuts through and runs parallel to the longitudinal axis; the tangential
plane runs parallel to the longitudinal axis and is locally tangent to the surface; the transverse
plane runs Normal to the longitudinal axis. IM-1 fibers run at oblique angles through the mantle
and form angles β and λ with the longitudinal axis in the sagittal and tangential sections respec-
tively. The IM-2 fibers are found localized in the radial muscles and form an angle ϕ with the
circumferential axis in the transverse plane.
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measured an angle of 43◦ for β and 32◦ for λ in juvenile Sepioteuthis lessoniana (though this value

varies significantly throughout ontogeny). Thompson and Kier suggest that the less streamlined

appearance of hatchling and juvenile squid is related to the larger fiber angles. The differences

between findings may also have resulted from species differences, or largely different ratio of mantle

cavity volume to total volume as will be discussed in the Maximizing Energy Storage and Results

sections.

The exhalant phase of the jetting cycle begins when the squid contracts the circumferential

muscles reducing the circumference of the mantle and thickening the muscle layer, while producing

only a small increase in length [95, 90]. The rapid reduction in the mantle cavity volume forces

seawater through the funnel and results in a high-energy jet that rapidly accelerates the squid.

After coasting, the inhalant phase begins and the inner and outer tunics are brought closer together,

thinning the muscle layer [99]. This is achieved by a combination of radial muscle contraction and

energy transfer from deformed IM-1 and IM-2 fibers [26]. In fact, it was shown that the refilling of

the mantle cavity can occur in the absence of any radial muscle power [28].

Regardless of the measurement discrepancies, the function of the IM-1 fibers is generally

agreed upon. During the circumferential muscle contraction, the muscle layer thickens, and as the

collagen fibers are stretched they store elastic potential energy. Once the circumferential muscles

relax, the fibers pull the tunics closer together and increase the mantle circumference. We will

show that the orientation of these fibers allows them to store an optimal amount of energy during

contraction in the Results section.

The IM-2 measurements have been more consistent between studies. When mantle tissue

was viewed in transverse sections, the IM-2 angle relative to the mantle surface has been reported

from 50◦ to 55◦ [26, 87, 95]. However the exact function of these fibers is less clear.

The IM-3 fibers lie parallel to the circumferential muscle fibers, and are observed to be coiled

up while the mantle is in a resting state [48]. Their orientation suggests that the IM-3 fibers are

rarely fully extended while the squid is cruising, but rather aide in the contraction of the mantle

after hyperinflation has been utilized for an especially large jet [48].
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D.2 Problems Addressed

First the difference between maximizing ejected jet volume and maximizing total volume

must be examined. Squid draw propulsive power from a transfer of momentum to a fluid jet.

The force acting on the squid during this process is equal to the rate at which the squid transfers

momentum to the jet. This force is equal to the product of the jet mass flux and velocity. Both of

these quantities are intrinsically related to the muscle contraction rate and the dynamic response

of the mantle geometry associated with muscle contraction. Jet velocity and mass flux can be

determined from the rate of change of the mantle cavity volume. In this study, we model the

muscular contraction as a geometric constraint rather than modeling the complicated dynamics of

the muscles themselves. Therefore, the thrust experienced by the squid can be explicitly determined

by the structural kinematics of the mantle. The change in mantle cavity volume is modeled with

respect to tunic fiber orientation in the subsection Maximizing Jet Volume. The energy storage

capacity of the IM-1 fibers was modeled next. We considered a squid swimming at a steady rate with

regular contractions and without hyperinflation. We modeled the squid mantle as a tube circled

by inner and outer walls (the tunics) and determined the energy stored by the IM fibers according

to the mantle stress strain dynamics. In developing the energy storage model it was determined

that the elongation of the squid, played a crucial role in the energy storage capacity. The fact

that the IM-1 collagen fibers lie at a low angle in the sagittal plane causes the strain of individual

fibers to have a strong dependence on longitudinal deformation. Though this deformation is small,

inclusion in the energy storage model resulted in an optimal fiber orientation in the sagittal plane.

This methodology is found in the subsection Maximizing Energy Storage.

D.3 Methods

D.3.1 Maximizing Jet Volume

To analyze the effect of collagen geometry, we constructed a rigid mathematical definition

of the fiber orientation. The squid mantle is essentially a tube of interwoven muscle and collagen
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fibers. The mantle is encased by the tightly woven spiral stacks of the inner and outer tunics. For

the purposes of this analysis, each tunic will be modeled as a perfect cylinder composed of helically

spiraling fibers Figure D.1. The parametric equations,

x = acos (ωz) ,

y = acos (ωz) ,

(D.1)

describe the layout of a single tunic fiber, where z is the location of a point along the fiber in the

longitudinal direction (starting at the anterior and extending towards the posterior) and x and y

are the geometric coordinates of a point on the collagen fiber in the plane normal to the longitudinal

axis a distance z from the origin (transverse plane at z). The coordinates in the transverse plane

are centered on the longitudinal axis; positive y extends towards the dorsal side, and positive x

forms a right handed coordinate system with y and z. The orientation of this coordinate system

is depicted in (Figure 1). Additionally, a is the spiral radius, and ω is a parameter which controls

the slope of the spiral (the inverse of ω is the spiral wavelength).

This construct allows us to easily determine several geometric parameters of the cylinder that

are necessary to model the mantle mechanics. The cylinder diameter is simply D = 2a, the total

cylinder length, L, is the maximum value of the parametric length L = zmax, and the tunic fiber

angle is defined as θ = arctan (aω). The length of the tunic fiber is the total arc length of the spiral

which is,

s =

∫ L

0

√
ẋ2 + ẏ2 + 1 dz = L

√
a2ω2 + 1 . (D.2)

With these definitions, the cylinder geometry is defined in terms of the tunic fiber angle, θ.

This allows the cylinder volume to be calculated as,

V =
π

4
D2L =

π

4

( s

2πm
sinθ

)2
scosθ

=
s3

16π2m2
sin2θcosθ .

(D.3)

Here m is the number of spiral windings in the cylinder and s is the fiber length defined in

(D.2). It can be seen from (D.3) that the total cylinder volume is purely a function of fiber length,

s, and fiber angle, θ. Since the collagen fibers are known to have a large low extensibility, we hold
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the fiber length constant. This imposed constraint reduces the cylinder volume to a function of

a single variable, θ. A similar approach has been used to analyze the total squid volume [93]. In

the next section of this manuscript a model is derived describing the energy storage in the collagen

fibers which requires deformation of collagen fiber lengths. However, these deformations are very

small and can be neglected when defining mantle geometry with minimal error.

It is convenient to clarify our naming convention since there are several characteristic volumes

which describe the squid. Equation (D.3) describes the volume of a cylinder defined by a fiber of

length s and angle θ. The total squid volume is the outer tunics cylindrical volume, V2. The total

internal volume is the inner tunics cylindrical volume, V1. The sum of the mantle cavity volume

and the internal organs comprises the total internal volume. The difference between the outer tunic

cylinder volume and the inner tunic cylinder volume is the mantle volume (or volume of the mantle

tissue).

Assuming water to have a constant density, ρ, the mass flux across the funnel will be propor-

tional to the rate of volume change of the inner tunic. Jet velocity can easily be determined from

the volume flux if the funnel area, A, is known. This allows the thrust, T , to be described in terms

of the tunic geometry to a first order approximation as,

T = ṁuj = ρAu2j =
ρ

A

(
∂V1

∂t

)2

=
ρ

A

(
∂V1

∂C1

)2(∂C1

∂t

)2

. (D.4)

Here, ṁ is the mass flux across the funnel, uj is the jet velocity, A is the funnel cross sectional area,

and C1 = πD1 is the circumference of the inner tunic. The rate of change of inner tunic volume,

∂V1
∂t , is decomposed according to the chain rule into the rate of change of the inner tunic volume with

respect to change in the inner tunic circumference, ∂V1
∂C1

, and the time rate of change of the inner

tunic circumference itself, ∂C1
∂t . As was mentioned previously, the rate at which the circumference

contracts is purely defined by the dynamics of the ring muscles and will be treated as a constant.

Although the funnel area, A, is known to oscillate with the jetting cycle [3, 8], for simplicity we will

assume that it remains constant. Therefore, the fiber orientation which maximizes ∂V1
∂C1

will also

maximize the thrust capacity of the squid for any given muscle contraction. This partial derivative
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is defined here as a function of the inner tunic fiber angle, θ1, by use of the chain rule,

∂V1

∂C1
=

∂V1

∂θ1

∂θ1
∂C1

∝ tanθ1
(
3cos2θ1 − 1

)
,

where
∂V1

∂θ1
∝ sinθ1

(
3cos2θ1 − 1

)
,

and
∂θ1
∂C1

∝ 1

cosθ1
,

(D.5)

and irrelevant constants have been omitted since we only seek to optimize with respect to θ1,

and are somewhat indifferent to the exact value of (i.e. the angle which maximizes the volume

derivative will be the optimal tunic fiber angle because it results in the largest jet volume for some

small contraction of the circumferential muscles, but the actual jet volume for a given contraction

is less important).

D.3.2 Maximizing Energy Storage

During slow swimming, the power stroke comes from contracting the circumferential muscles

that ring the mantle and contribute the bulk of its mass. The inhalant phase is powered mainly by

releasing elastic energy stored during the contraction phase. There is also a set of radial muscles

that extend between the inner and outer tunics (Figure 2); a contraction of these muscles will thin

out the mantle layer causing its circumference to re-expand. The intramuscular collagen fibers IM-1

and IM-2 are predicted in some studies to store the necessary mechanical energy with an efficiency

approaching 75% [26]. This restoring mechanism allows the mantle composition to heavily favor

the circumferential muscles, with a small number of radial muscles accounting for energy losses and

providing power for the hyper-inflation, required for escape jetting and large amplitude ventilation.

This arrangement gives the squid a larger range of jetting capabilities since such a large portion of

the mantle structure is composed of circumferential muscles used actively during jetting.

To model the energy storage process, we investigated the stress-strain dynamics in the mantle

structure. We modeled the mantle as a tube defined by an inner and outer helical shell (the inner

and outer tunics), whereby the geometry of each shell is defined by Equations (1) and (3), and

depicted in Figure 1. The mantle geometry can be explicitly defined in terms of shell geometries.
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The mantle volume is,

Vm =
π

4

(
D2

2L
2
2 −D2

1L
2
1

)
+

π

6

(
D2

2 −D2D1 +D2
1

)
,

= f (θ1, θ2) .

(D.6)

Here D1, L1, D2, L2 are the diameter and length of the inner and outer tunics respectively, which

can be defined in terms of the inner and outer tunic fiber angles, θ1 and θ2, and fiber lengths,

s1 and s2, as described in the previous section (we assumed that the inner and outer tunic fibers

have the same angle at rest θ1 = θ2). Here, again, the tunic fiber lengths are considered to remain

constant during the mantle contraction, which means that the tunic fiber angles must change to

allow for any change in tunic volume and diameter. Therefore, a deformation of the tunic will be

modeled by a small shift in the tunic fiber angle, defined as α. It should be noted that a shift in

fiber angle will result in coupled changes in volume, length, and diameter. Since the jet volume

will be equal to the change in internal volume, the shift in inner tunic fiber angle, α1, can be

determined if the jet volume, initial tunic fiber angle, and initial inner tunic volume are known

(i.e. Vj = V (θ1 + α1) − V (θ1) where V is the volume defined by (D.3) and Vj is the jet volume).

Thus the shift in the inner tunic fiber angle is calculated numerically, as the value which achieves

the desired jet volume. It should be noted that the actual jet volume, ejected during swimming,

has been minimally studied. Most experiments rely upon indirect measurements based on wet and

dry weights of deceased specimens [61, 90]. The study by Thompson and kier [88] measured the

mantle cavity volume more accurately by weighing anesthetized squid with both empty and full

mantle cavity. This method should give an appropriate upper bound for the ratio between the jet

volume and the total volume, but does not address the possibility that certain swimming behaviors

only eject a portion of the fluid in the mantle cavity. This uncertainty will be discussed later in

the Results section. Anderson and Demont [3], approximated the jetting volume during swimming

by determining the squid 2-D profile in the sagittal plane and interpolating the total squid volume

assuming perfect axial symmetry. However, this approach completely ignores any oblateness or

non-uniformity which might arise during swimming. It has also been qualitatively observed that

the paralarvae (early development stages) hold a proportionally greater volume of water in their
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Figure D.3: Strain model construction in the sagittal plane. Here ϵ is the mantle strain (subscripts
indicate direction of strain), y is the radial distance from the inner tunic, γ is the length in the
direction of the IM-1 fiber.

cavities than juvenile and adult squid [24, 66].

To calculate the shift in the outer tunic fiber angle, α2, we assumed that the mantle volume

remained constant during contraction (constant muscle tissue density). The shift in the inner tunic

fiber angle is directly correlated to the change in volume required for jetting. This is coupled to

a contraction of the diameter and elongation of the length. As a result, the outer tunic must

experience a corrective shift in fiber angle which preserves the mantle volume. This shift can be

determined by setting the initial mantle volume equal to the final mantle volume,

f (θ1 + α1, θ2 + α2) = f (θ1, θ2) , (D.7)

where f is the mantle volume function defined in (D.6). α2 can now be calculated from (D.7)

since θ1, θ2, and α1 are all known. Thus the geometry of the entire mantle can be determined

before and after contraction. The change in geometry will be used to determine the mantle strain

characteristics (which will not be uniform).

The energy stored in the mantle structure is directly related to the strain distribution. Sim-

ilar to a spring system, the energy stored in the collagen fibers is equal to the integral of the

stress (force) applied during stretching over the distance [65]. Furthermore, the stress applied to a

material is intrinsically related, by the elastic properties of the material, to the strain (stretching)

it experiences. The strain experienced throughout the mantle structure is modeled according to

the change in geometry experienced during contraction, and the strain experienced in the fibers
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themselves is calculated according to their orientation in the mantle. The axial symmetry of the

mantle model allows us to define the 3-dimensional strain in cylindrical coordinates. In general,

the contraction of the mantles circumferential muscles causes the tunic cylinders to decrease in

circumference and volume, but also causes the mantle to increase in length and thickness. Thus,

the strain in the radial and longitudinal directions will be positive, but the strain in the tangential

direction (hoop strain) will be negative. We analyzed the orientation of the IM-1 fibers in the

sagittal plane since this involves the radial and longitudinal components of strain, which are both

positive.

Consider a longitudinal slice through the top of the mantle, in the sagittal plane. Figure 3

shows the strain orientation and projection of the IM-1 fibers onto this plane. According to the

original model construction, the diameter of each tunic is assumed to be constant along its length.

This means that the thickness of the mantle will increase uniformly throughout the mantle during

contraction. Consequently, the radial component of strain throughout the section will be constant,

ϵy =
hf−h0

h0
, where h = D2−D1 is the thickness of the mantle, and the subscripts 0 and f refer to the

initial and final states of the mantle (before and after contraction) respectively. The lateral strain

is slightly more complicated. Both tunics experience a contraction, which results in elongation.

However, the amounts by which they contract are not equal (α1 ̸= α2), so their elongations will

not be strictly equal either. The lateral strain of each tunic can be determined from the length

deformation, ϵi =
Lif−Li0

Li0
, where ϵi is the tunic strain, and the subscript i can take a value of either

1 or 2 and refers to either the inner or outer tunic respectively. Assuming that the material on the

surface of the tunic experiences the same strain as the tunic itself, and a linear strain distribution,

the lateral strain at any location in the section is ϵl(y) = ϵ2 + (ϵ1 − ϵ2)
y
hf
, where y is the distance

from the inner tunic in the radial direction, and hf is the final mantle thickness. This gives a

complete strain distribution in the longitudinal and radial directions, which allows us to define the

total strain imposed on a collagen fiber lying in this section.

The stress-strain relationship for collagen fibers is only defined in the direction of the fibers

primary axis since collagen fibers only support tensile loads, and the energy stored in a given fiber
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is determined purely by the strain in the direction of that fiber. For a fiber of length b, which is

oriented at the IM-1 sagittal angle β with respect to the longitudinal axis, the normal strain can

be calculated as,

ϵfiber =
1

b

∫ b

0
[ϵl(y(γ))cosβ + ϵysinβ] dγ ,

=
ϵ1 + ϵ2

2
cosβ + ϵysinβ ,

(D.8)

where γ is a variable which describes position along the length of the fiber (see Figure D.3). Given

the final strain in a single fiber as defined by (D.8), the energy stored in that fiber is defined by a

simple integral equation.

Efiber =

∫ δf

0
F (ϵ(δ)) dδ = bAfiber

∫ ϵfiber

0
σ(ϵ) dϵ (D.9)

In this equation δ is the change in fiber length, δf is the total change after contraction, Afiber

is the cross sectional area of the fiber, F is the stretching force acting on the fiber (tension), and

is the stress of the fiber which is a function of the strain. Gosline and Shadwick examined the

stress strain relationship for the mantle tissue of Loligo opalescens ([26] Figure 7). A section of the

mantle tissue was compressed in the circumferential direction to mimic natural muscle contraction,

and the resulting reaction forces were recorded. The mantle tissue was determined to be relatively

stiff with an elastic modulus of 2 × 106 Nm−2. Unfortunately, these findings only give the bulk

material properties rather than the elastic modulus of the collagen fibers themselves, which is the

relationship required for our potential energy model (D.9). To the authors knowledge there are no

studies which present the elastic properties of individual IM fibers; however, Gosline and Shadwick

[27] performed tensile testing on thin isolated sheets of tunic fibers. Since the fibers in the tunic are

at very acute angles, this stress strain relationship should be considered a decent approximation

for the stress strain relationship of the IM fibers, and has been recreated in Figure 4. These

experiments indicated that collagen fibers exhibit a parabolic stress strain relationship in the low

strain regime (toe region), but the slope quickly becomes close to linear and maintains a linear

proportionality for the majority of the strain domain. Before reaching the critical breaking stress,

there is a very small region where the stress strain relationship asymptotically plateaus which is
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Figure D.4: Stress vs. strain relationship used in the model (estimated from [27] for a sheet of
tunic collagen fibers.)

typical behavior for elastic fibers which deform plastically at high strains, but the transition in

collagen is very sharp. Therefore, we modeled the stress strain relationship as,

σ =



c1ϵ
2 if ϵ ≤ ϵ1

σ1 + Eϵ if ϵ1 ≤ ϵ ≤ ϵ2

c2 (ϵ+ c3)
1
n if ϵ2 ≤ ϵ ≤ ϵm

0 if ϵm ≤ ϵ

, (D.10)

where,

E = 540 MPa

ϵ1 = 0.04 σ1 = 5 MPa c1 = σ1/ϵ
2
1

ϵ2 = 0.13 σ2 = 48 MPa c2 =
(
σ2
m−σ2

2
ϵm−ϵ2

) 1
n

ϵm = 0.14 σm = 49 MPa c3 = (σm/c2)− ϵm

where ϵ1, ϵ2, and ϵm are the critical strains in the stress/strain profile corresponding to the beginning

and end of the linear region and the critical failure strain respectively. E is the modulus of elasticity

in the linear range (540 MPa), σ1, σ2, and σm are the stress values corresponding to strains ϵ1, ϵ2,

and ϵm. The values used for all of these coefficients were estimated from ([27], Fig. 5).

This form was chosen because it closely matches the shape of empirical curves obtained for
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both invertebrate and mammalian collagen [26, 74, 92, 94]. However, it is hypothesized that the

toe region is due to the fact that the collagen fibers are still not perfectly aligned with the strain

direction, and this is in essence a straightening process. Therefore, the stress strain relationship

was also be modeled as a perfect spring with the modulus of elasticity equal to that of the linear

region; however, this had very little effect on optimal fiber angles predicted by the model, which is

mostly sensitive to the critical stress/strain values, rather than the profile in the low strain region.

Now all of the relationships in the mantle model have been defined so that the total energy

stored in a single fiber is found by numerically approximating the integral of (D.9), using the stress

relationship defined by (D.10).

To determine an actual value for total energy storage in the mantle structure several con-

straints must be imposed. The initial geometry of the mantle was defined according to the length,

diameter and thickness of Sepioteuthis lessoniana as were reported in [87]. We also assumed that

the inner and outer tunics start at the same length which gives a relationship between the fiber

lengths of each tunic. The predictions of this model under these constraints will be compared with

observed data in Section D.4.

D.4 Results

D.4.1 Tunic Fiber Orientation

To maximize thrust production the fiber angle should be aligned so that the ejected volume

flux is maximized rather than the total volume. The rate at which fluid is ejected should be

considered proportional to the rate of change in the total volume with respect to a change in the

circumference, as is derived in (D.5).

Figure D.5 shows the instantaneous change in tunic cylinder volume with respect to a dif-

ferential change in circumference, as a function of the initial fiber angle. It can be seen from this

figure that, for a given small contraction of the circumferential ring muscles, the squid will expel a

maximal jet if the initial fiber angle is near 31◦. This jet will result in maximum thrust assuming
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Figure D.5: Differential change in cylinder volume with respect to a contraction of circumference.
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that the ring muscles have a constant rate of contraction (D.4). This angle approaches the actual

orientation of tunic fibers measured by Ward and Wainwright [95].

D.4.2 Intramuscular Fiber Orientation

The squid mantle is oriented so that the circumferential ring muscles (which constitute the

bulk of the mantle muscle tissue) provide sufficient compression forces during the jetting phase.

However, the refilling phase is driven by sparsely packed radial muscles as well as a release of elastic

potential energy stored in the deformed mantle fiber structure, which provides sufficient force to

refill the mantle cavity in the absence of any radial muscle contraction [28].

There is an obvious dichotomy between the tightly packed collagen fibers in the tunics and the

scarce intramuscular collagen fibers. The tunic fibers are wound in layers of alternating orientation

to form a more or less uniform tube of collagen. The IM fibers, by contrast, are arranged more

sparsely throughout the muscle tissue, accounting for 0.1−7% of the total mantle volume, depending

on the age of the squid [87]. The abundance of collagen fibers in the tunics suggest that these self

reinforced fibers experience minimal stretching compared to the IM fibers. As discussed in the

subsection Maximizing Energy Storage, energy is directly related to the deformation of the fibers.

The small deformation of tunic fibers results in a low capacity for energy storage, indicating that

the tunic fibers primarily serve a structural purpose. In contrast, the high deformation of the IM-1

fibers suggests that they serve as the primary energy storage devices.

Figure D.6 shows the normalized energy storage capacity of the IM-1 fibers as a function

of the sagittal plane orientation angle β, as was modeled in the subsection Maximizing Energy

Storage. The storage capacity was normalized by the maximum achievable energy storage over the

β distribution. Figure D.6a shows the fiber storage capacity vs. β for a jet volume ratio of 0.25,

and Figure D.6b for a jet volume ratio of 0.45. It can be seen that a squid expelling a jet with a

low volume ratio will store a maximum potential energy when the IM-1 fibers are oriented with an

angle β = 67◦. The peak in the energy storage capacity curve is very oblate giving a large range

of fiber angles with similar energy storage capacity. Conversely the energy storage capacity for the
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(a) (b)

Figure D.6: Energy storage capacity of the mantle structure and IM-1 collagen fiber strain vs. fiber
angle β. Energy storage capacity as a function of fiber angle is represented by the solid line, fiber
strain is shown by the dash-dotted line, and actual distributions of fiber angles are bounded by
the vertical band. Energy storage capacity for a cavity volume ratio of 0.25 (a), and cavity volume
ratio of 0.45 (b).
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squid ejecting a jet with a larger volume ratio has a very distinct peak at β = 23◦. This peak

does not actually correspond to an equilibrium balance between axial and radial strain, but rather

is associated with the failure strain of the collagen fibers; as the fiber angle increases so does the

strain in the fiber until the failure strain is reached and the fiber is ruptured.

Data reported for Sepioteuthis lessoniana in [88] was used to define the initial geometry of

the mantle (length, diameter, thickness). This data set was chosen because the mantle geometry

and mantle cavity volume ratio required for the energy storage model is presented for a large range

of squid developmental stages. Additionally the IM fiber angles are given in [87] corresponding to

a similar squid population, providing a reference to validate the model. The values for β over this

data set are shown as a vertical band in Figure D.6 (bounded on either side by the maximum and

minimum observed fiber angles). The cavity volume ratio can vary quite drastically throughout

ontogeny, and is more precisely, a maximum bound on the jet volume, and ignores the possibility

that during cruising the squid might not eject the entire cavity volume. We used our model to

predict optimal fiber angle for the entire range of cavity volume ratios seen in S. lessoniana using

the mantle geometry associated with that cavity volume ratio and assuming complete evacuation of

the cavity. We also calculated the optimal fiber angle for the same range of jet volume ratios using

the mantle geometry of a single adult squid. The optimal fiber angles determined for both ranges

of initial conditions are shown in Figure D.7. It can be seen that the optimal fiber angles for both

conditions are nearly identical, indicating that the squid mantle grows such that the relationship

between jet volume ratio and mantle strain is preserved.

In addition, the longitudinal strain on the inner tunic was calculated for the same set of

volume fractions, and the result is also shown in Figure D.7. For the entire range of volume

fractions, the longitudinal tunic strain remains very small < 8%; a fact which has been observed in

previous experiments [63]. As a result many models have ignored longitudinal tunic strain entirely,

thus losing knowledge of a key energy storage mechanism as will be analyzed in the Discussion.

The model predicts an optimal fiber angle with respect to jet volume ratio (cavity volume

ratio), which can be related to dorsal mantle length (via Thompson and Kier [88]). Therefore we
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Figure D.7: Optimal IM-1 sagittal fiber angle β as well as inner tunic longitudinal stress ϵ1 shown
as a function of the volume ratio

Vj

V .
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Figure D.8: IM-1 sagittal fiber angle, β, throughout ontogeny. Predicted optimal fiber angles shown
by large square, diamond, and triangle markers and actual fiber angles marked by star.

can directly compare the optimal fiber angle predicted by the model with the actual fiber angles

observed in the squid [87] over the range of dorsal mantle lengths reported. The large variability in

cavity volume fraction for a given dorsal mantle length, results in the model predicting a similarly

large range of optimal fiber angles for a given dorsal mantle length. To aid in visualizing this data

the predicted optimal fiber angle was averaged for three mantle length regions (hatchling, juvenile

1, and juvenile 2) which are compared to the actual fiber angle distribution in Figure D.8.

D.5 Discussion

The use of helically wound high tensile strength fibers has been examined in the anatomy of

several invertebrates with respect to spiral orientation angles. Harris and Crofton [30] first looked

into the effect of the orientation of reinforcing fibers on the length and volume relationship in

nematodes. This analysis was extended and applied to both nemerteans and turbellarians (both

of which are adept at changing shape) in Clark and Cowey [13], and determined a relationship

between volume and fiber angle for a given length of worm. The volume attains a maximum for a

fiber angle near 55◦. Similarly, this nominal angle was identified by Harris and Crofton [30] as the

angle that would maintain a constant worm volume for a small deflection in the fiber orientation
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angle. Vogel [93] adapted this analysis to squid tunic structures and noted that actual tunic fiber

angles will result in a structure that decreases volume with decreased diameter, despite an increase

in length, and that the squid volume is maximized at the nominal fiber angle of 55◦. However,

as is shown in Figure D.5, a tunic fiber angle close to 31◦ will maximize the jet volume flux for a

given circumferential muscle contraction (directly related to the jetting thrust), which is very close

to actual squid tunic fiber angles. Figure D.5 also shows that when the fiber angle is 55◦, there

will be no change in volume for a small contraction in circumference (or equivalently diameter), as

observed by Harris and Crofton [30].

Unlike previous studies [95, 13] which assert that the low angles of the tunic and IM fibers

prevent the mantle from changing length, our model incorporates the variation in mantle length

during contraction. Our analysis predicts that IM-1 fibers have an optimal angle in the sagittal

plane that allows for maximum energy storage. Additionally, we find that as length, diameter, and

volume are intrinsically coupled, a purely constant mantle length is an overly restrictive assumption

and is not required to achieve maximal jet volume. Furthermore, the large aspect ratio of the mantle

(being much longer than it is thick), causes a small deformation in length to result in substantial

potential energy storage in the longitudinal direction. In fact, the predicted longitudinal strain in

the tunics is quite small, 4% in the outer tunic and 4.8% in the inner tunic, which is within the

range of longitudinal strains measured by Packard and Trueman [63]. These longitudinal tunic

strains were determined assuming a volume ratio of 0.45. In the Results section, we calculated the

longitudinal strain on the inner tunic for several other volume ratios. The sensitivity of tunic strain

to volume ratio was shown in Figure D.7. It can be seen that even as the jet volume approaches a

maximum value of 0.8, the longitudinal tunic strain remains below 8%.

The sensitivity of the optimal IM-1 fiber angle β with respect to cavity volume fraction and

jet volume fraction was also shown in Figure D.7. The large variation in the optimal fiber angle can

primarily be attributed to the fact that large volume ratio contractions produce critical strain in

the IM-1 fibers with larger orientation angles in the sagittal plane. In fact, if the fiber is assumed

to have a boundless linear stress strain relationship, the optimal fiber angle varies by only 3◦. This
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means that squid can eject several different size jets with similar mantle energy storage properties.

As was previously mentioned, Figure D.6a shows that the energy storage capacity has a rather

broad peak (when critical strain is not a factor), meaning that there is a large range of fiber angles,

β, with favorable energy storage characteristics. Moreover, even the minimum fiber angle observed

throughout ontogeny, still has an energy storage capacity close to 70% of predicted maximum for

low volume ratio. Therefore, the IM-1 fibers are most likely oriented to provide the maximum

energy storage, within the limiting physical bounds of the collagen fibers.

The comparison of IM-1 sagittal fiber angles in Figure 8 shows decent agreement between

predicted optimal β and actual measured β; but the optimal energy storage model predicts β more

acute than that observed, for both hatchling and shorter juvenile squid. First, it should be noted

that both these age groups have the most uncertainty in cavity volume ratio, which will certainly

carry over to uncertainty in predicting optimal fiber angles. Additionally, the squid mantle is not a

perfect cylinder but tapered (like a conical tube), this shape is more pronounced in younger squid,

so the cylinder mantle approximation may not be valid for these young developmental stages.

In the transverse plane, the components of mantle strain were quite different. The radial

component of strain (through the thickness) was still defined by the mantle thickness expansion.

However, the circumferential component (tangent to the tunic) was negative due to the contraction

of the circumferential muscles. Since fibers can only store energy under tension (not compression),

the IM-2 fibers would store a maximum amount of energy if they were oriented radially (90◦). The

fact that these fibers are oriented at an angle between 50◦ and 55◦ suggests that these fibers are

not purely energy storage components, but also serve to transmit forces from the discrete radial

muscles to the rest of the mantle.

The various systems of collagen fibers within squid mantle tissue form a complex mechanical

system. Several studies have observed a nearly universal orientation of these fiber systems across

several species. We have provided a rigid mathematical model to analyze the structural mechanics

of the tunic fiber system, and have determined that the tunic fibers angle of incidence maximizes

the expelled jet volume for a given contraction of circumferential muscles. We have also modeled
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the energy storage dynamics of the IM-1 fiber system in the sagittal plane. It was shown that the

orientation of these fibers maximizes their energy storage capacity, within the physical limitations

of the collagen fiber itself. In addition it was determined that previous assumptions about the role

of IM-1 fibers in restricting longitudinal deformation are not supported by the energy analysis.


