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Traditionally, large-scale power generation has been operated to reduce system operational

costs. To expedite the mitigation of the harmful effects of climate change, many have proposed ad-

ditional incentives for system operation (i.e., policies) that consider greenhouse gas emissions. How-

ever, such policies rarely consider unforeseen impacts on the volumes of water required for cooling

thermoelectric plants as well as the potential effects on electricity production from water/climate-

related stressors. Each chapter in this dissertation incrementally develops a multi-objective frame-

work to create holistic power system policies that balance cost, water, emissions, and reliability.

Each incremental development is applied to a realistic case study to systematically demonstrate

what types of insights are possible through the proposed framework.

One fundamental hurdle in water/energy/emissions policy is understanding how such quan-

tities tradeoff with one another. The third chapter of this thesis uses visual and statistical methods

to qualitatively and quantitatively understand the interplay of these quantities. Once the gen-

eral interplay of these quantities is understood, the fourth chapter proposes a policy framework

to incorporate the water used by power systems as an additional operational system incentive. A

policy is defined by an operational penalty that gives the water used by power systems monetary

value. However, actually selecting a monetary value for this water use is nontrivial as it is funda-

mentally rooted in human morals and the inherent uncertainty of water systems. Therefore, the

fourth chapter’s framework seeks to understand the relationship between policy decisions, external

climatological stressors (e.g., heatwaves, droughts, etc.), and system performance (e.g., total cost,

water use, etc.). The framework proposed in the fifth chapter uses the relationships established

in the previous chapter to find optimal operational policies. These operational policies must effec-

tively balance cost, water use, emissions, and reliability under many operational stressors (e.g., line
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outage) in addition to the previously studied climatological stressors. This dissertation ultimately

concludes that consideration of many criteria (cost, water, emissions, and reliability) is necessary

for creating an effective water-energy-emissions policy.



Dedication

To my family



v

Acknowledgements

First and foremost, I thank Dr. Joseph Kasprzyk and Dr. Kyri Baker for their mentorship,

care, and investment in me as both an individual and scholar. I have heard that Ph.D. programs

equip people with a “toolbelt” of skills - under your tutelage, I gained mechanic’s chest of technical,

academic, and interpersonal skills that I will use throughout my career. I thank all my collaborators

for their input and thoughts on our various publications. Dr. Ashlynn Stillwell, your expertise

and passion for the water/energy nexus is a continued inspiration. Additionally, I appreciate the

diverse input and education from Dr. Andrey Bernstein and Dr. Balaji Rajagopalan - the skills

and understanding gained through your courses are demonstrated throughout this thesis.

I would like to thank all the graduate students who gave me support: specifically, Ash Pigott

- for teaching me about home energy management, Mostafa Mohammadian - for always brightening

my day, and Barra Peak - for our collaborations to make our university a better place.

I thank Dr. Carlo Brancucci and all my fellow colleagues at Encoord for showing me that the

skills and perspectives gained through my dissertation play a critical role in the energy transition.

I also want to thank Dr. Katherine Schlef and everyone at my undergraduate institution for

piquing my interest in academic research.

I thank my literal and spiritual families. I am grateful for my parents, brother, and extended

family - their emphasis on kindness and thoughtfulness from a young age was critical to my success

in graduate school. To the Graduate Christian Fellowship, Crestview Church, and New Hope

Church, thank you for your prayers over the years. Last and not least, I want to thank my wife

Danielle for her love, emotional support, spiritual guidance, and inspiration.



vi

Contents

Chapter

1 Introduction 1

1.1 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Chapter 3: Quantifying Water, Emissions, and Cost Tradeoffs . . . . . . . . . 4

1.1.3 Chapter 4: The Impact of Water Policy on Power Systems Operations . . . . 4

1.1.4 Chapter 5: Considering Cost, Water, Emissions, and Reliability When Cre-

ating Optimal Power System Policies . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5 Chapter 6: Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8

2.1 Thermoelectric Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Water Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Hydroelectric Energy Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Dam Hazard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Single- and Multi-Objective Optimization Theory . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Single Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Weighted Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Multi-Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



vii

2.3.4 Nested Multi-Objective Optimization Using a Single-Objective Solver and

Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 AC Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 The DC Optimal Power Flow Simplification . . . . . . . . . . . . . . . . . . . 21

2.5 Applications of Background Concepts Throughout Thesis . . . . . . . . . . . . . . . 22

3 Quantifying Water, Emissions, and Cost Tradeoffs 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Water/Emissions-Informed DC OPF Formulation . . . . . . . . . . . . . . . . 27

3.3 Case Study: Water-Extended IEEE 30 Bus Test System . . . . . . . . . . . . . . . . 27

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Qualatitive Tradeoff Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Quantitative Tradeoff Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 The Impact of Water Policy on Power Systems Operations 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Water-Weighted OPF Formulation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Objective Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Sensitivity Analysis of Uniform Variability . . . . . . . . . . . . . . . . . . . . 40

4.2.4 Sensitivity Analysis of Non-Uniform Variability . . . . . . . . . . . . . . . . . 43

4.3 Case Study: Water-Extended Illinois 200 Bus System . . . . . . . . . . . . . . . . . . 46

4.3.1 Synthetic Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



viii

4.3.2 Assigning Synthetic Generator Cooling Systems . . . . . . . . . . . . . . . . . 49

4.3.3 Regional Estimates of Generator Water Use . . . . . . . . . . . . . . . . . . . 50

4.3.4 Assigning Synthetic Generator Water Use Via K-Means Clustering . . . . . . 52

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Impacts of Uniform Variability on System Performance . . . . . . . . . . . . 53

4.4.2 Impacts of Non-Uniform Variability on System Performance . . . . . . . . . . 61

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Considering Cost, Water, Emissions, and Reliability When Creating Optimal Power System

Policies 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Policy Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Water/Energy/Emissions Cosimulation . . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.4 Nested Multi-Objective Optimization Using a Single-Objective Solver and

Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.5 Tradeoff Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Extension of Case Study from Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Sourcing Exogenous Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Generating Policies for Comparision . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Exogenous Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.3 The Interplay of Cost, Water Withdrawal, Water Consumption, and Emissions 77

5.4.4 Comparing Climatological and Operational Stressors . . . . . . . . . . . . . . 79

5.4.5 The Benefits of Holistic Policy Considerations . . . . . . . . . . . . . . . . . . 82

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



ix

6 Concluding Remarks 85

Bibliography 88

Appendix

A Summary of Symbol Definitions 103

B Case Study: Dam Hazard Classification 106

B.1 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.3 Single- and Multi-Objective Formulations . . . . . . . . . . . . . . . . . . . . . . . . 108

B.4 Insights From a Multi-Objective Perspective . . . . . . . . . . . . . . . . . . . . . . . 109

C Water-Use Simulation Models 111

C.1 Once-through Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.2 Recirculating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.3 Capacity Reduction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D Case Study Generation 116

E Extended Comparison of Policies 118



x

Tables

Table

1.1 Literature Context of Thesis. Multi-objective considerations of cost, water, emis-

sion, and reliability have been previously conducted for long-term system planning.

However, such quantities are typically considered in a two-at-a-time fashion when

considering operational timescales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Confusion Matrix for High and Not High Dam Hazard Classification. . . . . . . . . . 17

4.1 Sampling Space of Input Factors for Uniform Sensitivity Analysis . . . . . . . . . . . 54

4.2 Exogenous Operational and Policy Scenarios for Non-Uniform SA . . . . . . . . . . . 61

5.1 Single-Objective Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Exogenous Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 Summary of Symbol Definitions. Note, does not include symbols only used in Ap-

pendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



xi

Figures

Figure

1.1 Overview of Chapter Question, Methods, and Contribution. The colors of the boxes

highlight methodological commonalities across chapters. Abbreviations: optimal

power flow (OPF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Overview of Solving Multi-objective OPF . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Performance of Nondominated Solutions. Visualization created using [Kravits, 2022]. 30

3.3 Power Output of Nondominated Solutions . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Correlation of Objectives in Nondominated Set . . . . . . . . . . . . . . . . . . . . . 31

4.1 Overview Cost/Water Power System Cosimulation. Exogenous parameters, param-

eters out of the control of system operators, are inputs to the cosimulation. These

parameters are used in the water-weighted OPF formulation to find the optimal gen-

erator output. These parameters are also used to compute objectives as indicated.

Every feasible set of exogenous parameters corresponds to a set of objective values. . 37

4.2 Sampling for Sensitivity Analysis of Uniform Variability . . . . . . . . . . . . . . . . 43

4.3 Sampling for Sensitivity Analysis of Non-Uniform Variability. This approach samples

each plant’s water coefficient from g to G in a system. . . . . . . . . . . . . . . . . . 45



xii

4.4 Case Study Preparation Overview. Case study applies the proposed uniform sen-

sitivity analysis (SA) as well as the non-uniform SA. Dark blue boxes correspond

to sections 4.3.2 - 4.3.4. Green boxes correspond to the sections 4.4.1 and brown

corresponds to 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Location and Breakdown of Generators from Illinois 200-Bus System. The color

of the synthetic generator marker reflects the fuel type. The size of the synthetic

generator marker reflects the maximum power output of the generator (splits based

on Jenks classification). The size of the river line reflects the relative annual flows

for 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Regional EIA-Reported Dataset of Water Usage. Abbreviations: Recirculating with

Induced Draft Cooling Tower (RI), Recirculating with Cooling Ponds (RC), Once-

through with Cooling Ponds (OC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Effect of Withdrawal Weight on Total System Withdrawal. This figure shows both

how our water-informed OPF reduces system-wide water withdrawals as well as how

a water-informed system is able to take on additional loads with marginal increases to

overall water use. This figure subsets the data such that the consumption coefficient

wcon = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Effect of Withdrawal Weight and Uniform Water Coefficient on Plant Output. Sam-

ples subset such that consumption weight (wcon) equals 0.0. Subsets of the uniform

water coefficient (cwater) and the withdrawal weight (wwith) are depicted to right.

Abbreviations: Recirculating with Induced Draft Cooling Tower (RI), Recirculat-

ing with Cooling Ponds (RC), Once-through with Cooling Ponds (OC), No cooling

system (NCS), Natural Gas (NG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



xiii

4.9 Effect of Withdrawal Weight on Line Flows. Samples subset such that consumption

weight (wcon) equals 0.0, uniform loading coefficient (cload) equals 1.5, and the uni-

form water coefficient (cwater) equals 0.5. Traditional OPF defined by withdrawal

weight (wwith) equal 0.0 and the water OPF defined by withdrawal weight (wwith)

equal 0.1. Lines are colored based on the percent change relative to the traditional

OPF case. Bus locations in the plot are not representative of actual geospatial

locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 First Order Sobol Indices Non-Uniform Sensitivity Analysis. Each row is a different

objective. Each column is a different input factor. Each panel column represents

a grouping of plants based on their fuel and cooling system type as indicated on

the top. Each panel row indicates an operational and policy scenario as indicated

by the labels on the right. Under traditional OPF formulations, the generator cost

and total cost objectives do not consider the input factors, and are undefined in the

first-order sensitivities indices; thus, they are not colored. . . . . . . . . . . . . . . . 63

5.1 Overview of Simulation. The water use rate model is the system-level generic model

(S-GEM) [Rutberg et al., 2011] and the capacity reduction model is adapted from

van Vliet et al. [2016]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Tradeoffs in Policy Performance for an Average Week. Status quo operations de-

emphasize water consumption, withdrawal, and emissions. However, through multi-

objective policy optimization, we find holistic policies that effectively compromise

among all objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



xiv

5.3 Policy Performance Over Several Scenarios. Objectives, scenarios, and policies are

depicted as rows, columns, and colors, respectively. We introduce the discharge vio-

lations objective defined as the amount and temperature of water discharged beyond

the legal limit as well as the energy not supplied by the system (i.e., reliability) as

additional system objectives. Objective performance is impacted by the scenario

regardless of the policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Policy Performance Relative to Status Quo Operations. “Status quo” policy is de-

picted as bars. Downward lollipops portray an improvement in policy performance

relative to “status quo” policy. Through water- and emission-informed policy, the

impacts of various climatological and operational stressors can be effectively mitigated. 82

B.1 Example Nondominated Set from a Multi-Objective Problem Set. Solutions are

colored according to accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

D.1 Fit of Water Temperature Model From Mohseni et al. [1998] for USGS Gauge on

Illinois River at Henry, IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D.2 Overview of Node Load Procedure. (A) pl captures the average difference in bus

loadings. (B) fsys captures the system-wide hourly variation in loading including

correlations with the exogenous parameters. (C) fvar captures the hour-to-hour

variation in bus loading. (D) Loading profiles for each bus. . . . . . . . . . . . . . . 117

E.1 Power Output by Cooling and Fuel Technology Output for an Average Week. . . . 118



Chapter 1

Introduction

The annual cost of energy system operations in the U.S. is approximately $105 billion (U.S.

dollars) and the estimated economic value of U.S. power plants is approximately $1 trillion (U.S.

dollars) [Fares, 2017, Rhodes, 2017]. Globally, 25 percent of emissions come from electric power

production [Hockstad and Hanel, 2018]. Even as many power systems transition to renewable gen-

eration sources, it is currently estimated that 89 percent of energy sector greenhouse gas emissions

are a result of fossil fuel combustion and industrial processes [IEA, 2021] with a similar percentage

of total power coming from such sources. In the U.S., an estimated 48 percent of fresh surface water

withdrawals (water that is diverted from a source) can be attributed to thermoelectric power plant

electricity generation [Dieter et al., 2018]. Although the water consumed (water that is evaporated)

is far less, proposed technological solutions to reduce emissions, such as carbon capture systems,

have been shown to increase water consumption [Zhai and Rubin, 2010].

The impacts of climatological grid stressors expose how power plants are at the intersection

of a functioning economy, healthy waterways, reliable energy systems, and a clean atmosphere.

Droughts and heatwaves increase the temperature of cooling water and electricity demands - thus

impacting energy reliability, increasing water withdrawal and consumption, creating negative im-

pacts on riverine ecology from elevated-temperature discharge water, increasing operational costs,

and shifting system operations to higher-emitting fuel sources [Lubega and Stillwell, 2018b, Harto

et al., 2012, Poumadère et al., 2005, Harto et al., 2012, Freedman, 2012, Galbraith, 2011, Reuters

Staff, 2011, Eaton, 2012, Luo, 2017]. Impacts on grid reliability during heatwaves are particularly
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concerning as such coupled stress events increase mortality and morbidity risk [Stone et al., 2023].

In many regions, climate change increases the severity and frequency of these coupled stress events

[Auffhammer et al., 2017].

Generally, power systems operations have the objective of minimizing operational costs while

satisfying operational constraints on grid reliability, thermoelectric discharge temperature regula-

tions, and emissions regulations. However, current operational policies fail to explicitly avoid these

negative impacts on cost, reliability, water use, and emissions. In practice, system operators often

choose between enforcing existing policies that limit the temperature of discharged water or grant-

ing thermal variances that allow discharge beyond legal limits [Harto et al., 2012, Poumadère et al.,

2005, Lubega and Stillwell, 2018a]. Thermal variances are almost always granted [Micha, 2014],

often due to concerns of impacting grid reliability. However, even grid reliability is not always

achieved during particularly stressful climatological events. Therefore, cost, reliability, emissions

reductions, and avoidance of thermal discharge violations are, in reality, ideals that compete with

one another. Thus, it is more honest to model these quantities as objectives rather than hard

constraints.

Previous studies have demonstrated that modeling power system emissions, water use, and

reliability as extra constraints or objectives modify operations. However, previous frameworks have

studied such quantities in a two-at-a-time fashion - for example, cost-emissions [Abido, 2003a],

reliability-water [Lubega and Stillwell, 2018a, van Vliet et al., 2016], cost-reliability [Billinton and

Allan, 1984], and cost-water [Fooladivanda and Taylor, 2015, Sanders et al., 2014] (Figure 1.1).

Water use and emissions have been effectively incorporated as objectives and constraints or multiple

objectives in long-term power system planning problems [Jornada and Leon, 2016, Mu et al., 2020,

Liu et al., 2019, Wang et al., 2018]. However, there is a need to holistically create new cost-water-

emissions-reliability-informed operations. These measures promote system coordination rather than

manual intervention by system operators, as well as offer a rapid way for system operators to respond

to current drought events, especially if long-term solutions are infeasible due to a lack of time to

implement [Pacsi et al., 2013].
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Timescale Example Paper Cost Water Emissions Reliability

Short-Term
Operations

(minutes to 
days)

This Work ✓ ✓ ✓ ✓

[Lubega and Stillwell, 2018] ✓ ✓

[Sanders et al., 2014] ✓ ✓

[Abido, 2003] ✓ ✓

[Billinton and Allan, 1984] ✓ ✓

Status Quo ✓ ✓

Long-Term
Planning

(years to 
decades)

[Jornada and Leon, 2016] ✓ ✓ ✓

[Wang et al., 2018] ✓ ✓ ✓

Status Quo ✓ ✓

Table 1.1: Literature Context of Thesis. Multi-objective considerations of cost, water, emission, and

reliability have been previously conducted for long-term system planning. However, such quantities

are typically considered in a two-at-a-time fashion when considering operational timescales.

This thesis develops a multi-objective framework to create holistic power system operational

policies that balance cost, water, emissions, and reliability. To achieve this, we will link single-

and multi-objective optimization concepts with coupled existing and novel models of power and

water systems. Through several representative case studies, we demonstrate how our proposed

frameworks not only allow nuanced insights into water/energy/emissions interplay but also show

that our proposed policies mitigate the impacts of various operational and climatological grid

stressors.

1.1 Overview of Chapters

1.1.1 Chapter 2: Background

Chapter 2 provides a review of the technical concepts used throughout this thesis. First, this

chapter provides the context on the different types of generator water use as well as how they create

emissions. Generally, each of these quantities is a function of how much active power is produced by
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a generator. Next, we summarize single- and multi-objective optimization theory - tools that will

allow us to efficiently balance the competing interests of water/energy/emissions systems. Finally,

we provide context on how this thesis simulates “grid operations” via optimal power flow (OPF) -

a problem that selects the optimal power dispatch (power output) of generators in a system.

1.1.2 Chapter 3: Quantifying Water, Emissions, and Cost Tradeoffs

The first step in creating a cost/water/emissions energy policy is understanding how such

quantities impact one another. For a given system, it is essential to know if low-cost operations

do so at the unintended expense of increased emissions but decreased water use. Thus, Chapter

3 analyzes how cost, water use, and emissions tradeoff with one another by incorporating these

quantities as multiple objectives in an OPF formulation. Each “solution” to this formulation is a

unique generator power dispatch. These solutions are then used in a tradeoff analysis to understand

how these solutions uniquely compromise among the objectives (See lower-left diagram in Figure

1.1).

We apply this formulation to a modified test system we call the Water-Extended IEEE 30

Bus Test System and show how energy system operations can differ drastically when emissions and

water use are considered in addition to the cost of system operation. Additionally, statistical metrics

quantify the degree to which these various objectives tradeoff or are consistent with one another.

To focus on these fundamental tradeoffs, the chapter models a “snapshot” of grid operations and

thus does not explicitly consider the various water/energy processes that change over time such as

a changing load and climate. This work has been published in [Kravits et al., 2022a].

1.1.3 Chapter 4: The Impact of Water Policy on Power Systems Operations

Once the general interplay among water/emissions/cost has been established, Chapter 4 in-

troduces a “water policy.” Here, a water policy comprises operational penalties that can incentivize

different degrees of water-efficient power systems operations (i.e., penalties on excessive water use).

These operational water penalties are a monetary value assigned to the different types of generator
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water use. These water penalties allow water use to be considered as an additional cost term in

the OPF formulation. Thus, we call this formulation a water-weighted OPF formulation.

Chapter 4 also introduces the concept of exogenous grid stressors. This chapter focuses on

climatologic stressors that impact thermoelectric water use (e.g., drought) as well as load stressors

(e.g., heatwaves). What makes each of these stressors exogenous is that system operators do not

have direct control of these processes, and thus, must use the previously described policies to

mitigate negative impacts.

Selecting a value for these operational water penalties is nontrivial, mainly because it requires

specifying a monetary value for water use which is fundamentally linked to system climatology as

well as moral values on the importance of healthy water systems. Therefore, Chapter 4 quantifies

the impact of these operational water penalties under varying degrees of exogenous grid stressors.

To achieve such insights, this framework utilizes a sensitivity analysis of many “snapshots” of

our proposed water-weighted OPF formulation to qualitatively and quantitatively understand how

operational penalty policies can mitigate the adverse effects of exogenous stressors (See lower-middle

boxes of Figure 1.1).

We create an extension of a synthetic power system test case called the Water-Extended

Illinois 200 Bus System to demonstrate the utility of our framework. This test system provides

a synthetic, yet realistic, model of a transmission system in the midwest U.S. - an area that has

historically faced problems with respect to its thermoelectric water use [Lydersen, 2016, Tomich,

2021]. We use historical load and water use data to inform the region over which sensitivity is

assessed. Through this case study we show how our framework offers generator-level and line-level

insights into how exogenous stressors impact power systems. This work has been published in

[Kravits et al., 2022b].

With frameworks proposed to (1) understand the cost/emissions/water tradeoffs and (2)

create operational penalties to help mitigate the impacts of exogenous stressors, the next chapter

seeks to create and analyze optimal operational penalty policies.
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1.1.4 Chapter 5: Considering Cost, Water, Emissions, and Reliability When

Creating Optimal Power System Policies

Chapter 5 extends the scope of a policy from the previous chapter to include emissions in

addition to water use. Thus, the optimal power flow formulation of the previous chapter is also

extended to include an operational penalty on emissions in addition to water use. We use the same

multi-objective optimization methods of Chapter 3 to achieve optimality of these penalties with

respect to several competing objectives (See lower-right Figure 1.1).

Once we have established optimal policies, we test how they mitigate the impact of exogenous

system stressors, just as in the previous chapter. However, this chapter tests optimal policies’

performance against operational stressors (e.g., line outage, generator outage) in addition to the

previously mentioned climatological stressors.

The framework in this chapter additionally extends the previous chapters’ framework by

considering a higher fidelity cosimulation model to analyze interactions between power system

cost, water use, reliability, and emissions. The fidelity of the water use simulations is increased to

directly analyze the impact of various natural processes such as streamflow, stream temperature,

and ambient air on generator water use. Additionally, the timescale of the simulation is increased to

better represent the temporal processes of power systems (e.g., diurnal changes to load, generator

ramping constraints, etc.).

This framework is demonstrated on the previously-introduced Water-Extended Illinois 200

Bus System using historical exogenous stressor events to gain realistic insights into the impacts

of optimal policies. This framework shows that the consideration of many criteria (cost, water,

emissions, and reliability) is necessary for creating an effective water-energy-emissions policy. The

findings of this chapter are in preparation to be published in Environmental Research Letters.
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1.1.5 Chapter 6: Concluding Remarks

The final chapter makes concluding remarks summarizing the contributions of this thesis to

fields of water/energy nexus analyses and power systems policy. Additionally, current limitations,

possible next steps, and calls to action are presented.

Multi-Objective Optimization

Sensitivity Analysis

Main
Research 
Question

Overview 
of 

Methods

Water-Weighted OPF

Multi-Timestep 
Cosimulation

Emissions- and Water-
Weighted OPF

Water Use Model

Exogenous 
Stressors

Optimal Water/Emissions 
Polices

Multi-Objective Optimization

Potential Generator 
Operating Levels

Water and Emissions 
Multi-Objective OPF

Tradeoff Analysis

Water 
Policies

Main
Contribution

Qualitative/quantitative 
tradeoff framework for cost, 
water use, and emissions

System- and component-level 
insights into the impacts of 
water policy 

Optimal policies can balance 
cost, water use, emissions, and 
reliability under different 
exogenous stressors

Chapter 3: To what extend does 
cost, water use, and emissions 
tradeoff in the grid?

Chapter 4: In what ways do water 
policies and exogenous stressors 
impact grid operations?

Chapter 5: How do optimal policies
balance cost, water use, 
emissions, and reliability under 
different exogenous stressors?

Assess Policy Performance

Tradeoff Analysis

Figure 1.1: Overview of Chapter Question, Methods, and Contribution. The colors of the boxes

highlight methodological commonalities across chapters. Abbreviations: optimal power flow (OPF)



Chapter 2

Background

This thesis is a systems engineering exercise that unites several fields: water resources engi-

neering, power systems engineering, data science, and optimization are the most prevalent. Thus,

there are many concepts, or rules of the game, required to fully understand this thesis:

The only way to learn the rules of this Game of games is to take the usual prescribed
course, which requires many years; and none of the initiates could ever possibly have
any interest in making these rules easier to learn. These rules, the sign language
and grammar of the Game, constitute a kind of highly developed secret language
drawing upon several sciences and arts, but especially mathematics.

[Hesse et al., 1969]

I, unlike the players of the Game, do have an interest in making this work accessible to a wide

audience. Thus, this chapter provides a high-level background on the concepts that will be used

throughout this thesis. Suggested references are provided throughout for additional details or

context.

2.1 Thermoelectric Power Plants

Thermoelectric power generators, by definition, turn heat energy into electrical energy. The

specific source of the heat varies widely. For example, natural gas generators use the combustion of

natural gas, whereas modern nuclear generators use nuclear fission reactions. For many generators,

these sources heat a working fluid, that eventually turns a turbine to create alternating current

electrical power. There are many ongoing research efforts and descriptions of these thermodynamic
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and mechanical processes Horlock [2013]. However, the specifics of these processes are beyond the

scope of this thesis - we will mainly consider this process as a black box that takes as input some

fuel which produces a thermal load that requires additional cooling and electrical energy.

2.1.1 Water Use

Water is often used as the working fluid in both cooling and generation technologies. This fact

means that significant volumes of water are required to effectively run many types of thermoelectric

generators. However, there is an important distinction in how the water is used during this process.

Water “withdrawal” is defined as the volume of water diverted from a source. Water “consumption”

is the subset of that water that evaporates during usage - and thus is not able to be returned to a

body of water. We will use the term “water use” when we wish to describe both water withdrawal

and consumption. We use a black box model to define water withdrawal and consumption rates

which are the ratio of the volume of water withdrawn or consumed to the amount of energy produced

(e.g., Gallons/MWh). These rates will be used extensively throughout this thesis. These principles

can be applied to both riverine-cooling and ocean-cooled power plants. However, this thesis focuses

on riverine-cooled plants.

In the U.S., an estimated 48 percent of fresh surface water withdrawals can be attributed

to thermoelectric power plant electricity generation [Dieter et al., 2018]. The volumes of water

withdrawn during normal operations are generally not a problem - water is often returned to its

source at a slightly higher temperature but is diluted by the vast volumes of riverine water [Langford,

1990]. The problem arises during coupled droughts/heatwave events when the temperature of the

intake water may be elevated and river streamflow may be reduced. In such cases, plants would

have to discharge water at higher temperatures to water sources that are less capable of diluting

this water (due to reduced volumes and increased temperatures), thus threatening local ecology

Logan and Stillwell [2018], Logan et al. [2021]. Legally, in the U.S., the Clean Water Act regulates

an upper limit on the temperature of this discharged water, which would require thermoelectric

power plants to alter their operations to avoid these violations. However such limits are rarely
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enforced due to concerns about the propagating impacts of modified operations on the electric grid

[Micha, 2014, Lubega et al., 2014].

Roughly 2.5 percent of that water withdrawn is consumed [Horlock, 2013]. Although the

magnitude of consumed water is far less than its withdrawal counterpart, the implications of water

consumption are still an important operation consideration - mainly because water that is consumed

is not directly returned to its source (i.e., considered water waste). Therefore, it is not available to

downstream users which could include other power plants, hydropower plants, drinking water util-

ities, recreationists, or the myriad of other water users in modern riverine networks. Additionally,

heatwaves can increase the temperature of ambient air used for providing cooling, thus increasing

consumption rates [Meng and Sanders, 2019].

The extent to which water is withdrawn or consumed is largely defined by the type of cooling

technology [Durmayaz and Sogut, 2006, Peer et al., 2016]. The two general categories of cooling

systems are once-through cooling systems and recirculating cooling systems [Gerdes and Nichols,

2009]. The major difference between once-through and recirculating systems is that once-through

cooling systems rely on the direct heating of withdrawn cooling water to provide cooling capacity.

However, recirculating systems mainly use ambient air with a heat exchanger to provide cooling -

thus allowing cooling water to be cooled/recycled or evaporated. Generally, once-through systems

are the largest withdrawers of water whereas recirculating systems are the largest consumers of

water [Peer et al., 2016].

In summary, the water that is consumed and withdrawn by thermoelectric power plants is

used in large quantities, critical for power plant operations, linked to cooling technologies, impacted

by external climatological/hydrological stressors, and capable of impacting local riverine ecology.

These principles will be considered throughout this thesis.

2.1.2 Emissions

Most fossil-fuel-burning thermoelectric plants produce emissions during the combustion pro-

cess. These emissions are generally released into the air where they can contribute to the devastating
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impacts of global climate change. This thesis will incorporate analyses of several types of pollutants

- sulfur-based, nitrogen-based, and carbon-based. However, the details of the chemical reactions

responsible for creating these pollutants are beyond the scope of this text. As with water use, we

will take a black box approach to thermoelectric power plants in that they have some fuel source as

inputs and generate emissions and electrical energy. This allows us to define an analogous emissions

rate of the amount of emissions per energy produced (e.g., lbs CO2/MWh).

Globally, 25 percent of carbon emissions come from electric power production [Hockstad

and Hanel, 2018]. Even as many power systems transition to renewable generation sources, it

is currently estimated that 89 percent of energy sector greenhouse gas emissions are a result of

fossil fuel combustion and industrial processes [IEA, 2021] with a similar percentage of total power

coming from such sources.

Recently, the U.S. federal government proposed the first regulations that would greatly re-

strict emissions from the power sector. If passed, these measures would require coal and gas-fired

power plants to eliminate nearly all of their carbon dioxide emissions by 2040 [Davenport and Fried-

man, 2023]. One promising solution to reducing thermoelectric power plant emissions is to capture

the pollutants as they are emitted. One prevalent example of such a technology is carbon capture

sequestration which compresses carbon dioxide particles from the air into solid forms that can easily

be stored. However, such technologies often require additional water for cooling components. In

fact, installing carbon capture sequestration technologies have been proven to significantly increase

water consumption for generators with certain cooling types [Zhai and Rubin, 2010].

Nuclear generation is another energy technology with interesting links to emissions and wa-

ter use. Nuclear generation is generally considered to be a low- or zero-emitting thermoelectric

technology. However, due to the scale of these plants and the required thermal load that must

be cooled, these plants can be both inefficient with respect to their water withdrawal and water

consumption when compared with other higher-emitting generator/cooling systems combinations

[Macknick et al., 2012]. In the context of system-wide operations (i.e., many plants with various

generator and cooling technologies) there can arise cases where shifting system dispatch away from
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nuclear reduces emissions while increasing the total water usage and emissions. Such a case will be

explored in Chapter 5.

In summary, the emissions that are produced by thermoelectric generators are both significant

and technologically linked to the various types of water usage.

2.2 Hydroelectric Energy Generation

Another coupling between energy systems and riverine systems is hydroelectric generation.

Hydroelectric generation currently constitutes six percent of the annual energy generation and

thirty percent of the renewable annual energy generation in the U.S. [Office of Energy Efficiency

and Renewable Energy, 2022]. Although it is a crucial component of the water/energy nexus,

hydroelectric generation will not be the focus of this thesis. However, there are relevant connections

from this thesis work to hydroelectric generation.

Hydroelectric energy generation can generally be categorized into two types: run-of-river

and impounded. Run-of-river hydroelectric generation works by converting the kinetic energy of

running water into electrical energy via the river currents turning a turbine. Impounded electric

generation works by converting the gravitational potential energy of water impounded behind a

dam into electrical energy by releasing water through a turbine.

Both types of hydroelectric generation typically use dams to regulate the natural flow of

the river and guide water to turbines for energy production. Much like power plant water use,

there are several environmental impacts of hydroelectric energy generation [Union of Concerned

Scientists, 2013]. One impact that is shared by power plants and hydroelectric energy generation is

the impact on water consumption. Just as power plants cause water to be consumed (evaporated),

the impounding of water increases the surface area, thus also increasing the consumption rates

[Torcellini et al., 2003]. Thus, the findings discussed throughout this thesis have broader connections

to other coupling points in water and energy systems.
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2.2.1 Dam Hazard

Another result of hydroelectric generation is the hazard of potential dam failure. There

are 16,000 high-hazard potential dams in the U.S. [Federal Emergency Management Agency and

Department of Homeland Security, 2017]. A high-hazard potential dam is one in which it is probable

that failure would cause loss of human life. Although this definition is codified at the federal level,

the actual methodologies by which dams are classified are defined on a state level, with state dam

officials evaluating dam hazard potential on a case-by-case basis, ultimately relying on human

judgment [Federal Emergency Management Agency, 1998]. Such a system is prone to hazard

potential classification inconsistencies which could lead to negative regulatory and human-safety

implications.

Classifying dam hazard potential needs to be done consistently, continually, and across large

spatial extents [Mamerow, 2018, Schoolmeesters, 2020]. Geospatial models [Aboelata et al., 2002,

Aboelata and Bowles, 2008], dam-break flood routing numerical simulation models [Luo et al.,

2009], risk-based models [Larruari and Lall, 2020] offer valuable insight into the engineering and

economic consequences of dam failures but could be difficult to automate due to input feature

requirements. Other works have proposed empirical relationships for estimating dam loss-of-life

based on datasets of historic dam breaks [Feinberg et al., 2016]. However, these methods fail

to consider the complex locational aspects of dam failure. Preliminary work done for this thesis

overcomes the existing feature requirements by using a parameterized geospatial and tree-based

model that has been trained using existing geospatial datasets and publicly available dam hazard

datasets. We will discuss the optimization of this model in Section 2.3.3.

The results of this optimization are published in Kravits et al. [2021b]. Such an analysis

laid the groundwork for understanding the propagating impacts of energy infrastructure on other

systems. Specifically, this work shows how the impacts of competing systems be quantified by

different objectives - and that these objectives can be balanced through multi-objective perspectives.

Such a theme will be further developed throughout this thesis.
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2.3 Single- and Multi-Objective Optimization Theory

Both power and water systems operations are transitioning from general operational rules

to system optimization. Large-scale water systems (e.g., reservoir systems) have a long history

of these rules of operations dating back to ancient Romans Lund et al. [2006]. Similarly, in the

first half of the 20th century, generator power output was determined manually based on general

“rules of thumb” and specialized slide rulers [Cain et al., 2012]. Following this, early attempts to

formulate grid operations as an optimization problem were formulated, but difficult to implement

due to their inability to be solved in real-time [Carpentier, 1962]. However, with the increase in

computational power, optimization problems became an essential part of modern water and power

system operations [Burges, 1979, Cain et al., 2012].

The shift toward optimization required the need to explicitly select “constraints” and a single

“objective” for system operation. Philosophically, constraints were selected to be a physical process

that must be obeyed by a system (e.g., the conservation of water moving through a reservoir

system) or an extremely undesirable operational outcome (e.g., moving more than the designed

power through a transmission line). An objective, on the other hand, was some operational ideal

with the most common objective being to minimize cost.

Both the water and power systems fields have seen a shift from a single objective perspective

towards a multi-objective perspective. One of the main drivers of this shift has been the immense

difficulty in agreement on the relative importance of the previously mentioned “extremely undesir-

able” constraints and objectives.

The following sections explore different methods of implementing single- and multi-objective

perspectives in optimization problems. We will use a generic optimization problem where the

decisions of the problem can be collected into a vector x of length d (for this thesis, bold-face

variables indicate multi-dimensional or nonscalar values). Assume that there are g objectives of

interest that are a function of our decisions x. Additionally, assume that all the constraints can be

distilled into a function of the decisions h(x). The function h may not be a closed-form equation,
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in fact, it could be a complex black-box simulation of many physical systems. Such details will

become important when solving these optimization problems (these details will be addressed as we

proceed throughout the thesis).

2.3.1 Single Objective

Assume that it is possible to choose the design of a system to solely maximize or minimize

a single given objective (f1). In such cases, we can formulate our problem as a traditional single-

objective problem:

min
x

f1(x) (2.1)

s.t. h(x) = 0 (2.2)

Given requirements on the mathematical form of the objective and constraint, it is often possible

to find a single optimal objective value f1(x
∗) and corresponding decision vector x∗. This fact is a

general advantage of this formulation in addition to the general efficiency with which they can be

solved (assuming simple cases of h).

2.3.2 Weighted Objective

Let’s now assume we can normalize all remaining objectives [f2, f3, ..., fp] to the units and/or

magnitude of the first objective f1 by introducing weights on the remaining objectives [w2, w3, ..., wp]

which can be collected into a vector w of length W . This weighting scheme allows us to turn multi-

objective problems into weighted-objective problems. Thus, we can define our optimization problem

as such:

min
x

f1 (x) + w2f2(x) + ...+ wpfp(x) (2.3)

s.t. h (x) = 0 (2.4)
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Just as in the previous formulation, this formulation benefits from efficiency and a single optimal

objective value (with the corresponding decision(s)). Additionally, introducing weights can have

some physical meaning for a system (e.g., they may reflect a price or preference). However, deciding

on a weighting scheme w can be difficult - particularly in cases with many decision makers with

competing interests [Smith et al., 2017] or when it is unknown how processes within h may impact

the relationship between different objectives.

Sensitivity Analysis

One way to unpack the relationships between these various quantities would be to conduct a

sensitivity analysis. Sensitivity analysis seeks to find the influence of uncertain input parameters

on the distribution of output parameters. To explore this, sampling is (randomly or systematically)

used. For example, through a Sobol sensitivity analysis, one could quantify how changes in the

weighting schemes w or h impact optimal solutions x∗ or objective behavior f [Sobol, 1990]. It is

important to note that the point of the sensitivity analysis itself is not to produce optimal solutions,

but rather to understand the general behavior of the model.

2.3.3 Multi-Objective

A multi-objective formulation is often desirable when analysts are concerned with how each

objective impacts the other, in other words, an objective tradeoff. Often, this is particularly useful

when it is unknown how objectives tradeoff with one another.

To demonstrate a multi-objective optimization problem, we review a case study published in

Kravits et al. [2021b] with additional details/insights in Appendix B. In this problem, you make

a model for dam hazard classification - recall, a high-hazard potential dam is one in which it is

probable that failure would cause loss of human life. You must decide the input data for this

model and values for various model parameters. The goal is to ensure that your decision results in

the best-performing classification model. To achieve this, you propose objectives to quantify what

“best-performing” decisions actually are.

Table 2.1 shows how dams can be correctly and incorrectly classified. On the diagonal, we
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have our correctly classified dams (true positive and negative). These cases are ideal in that they

mean that our model agrees with the current classification. However, consider the incorrectly

classified off-diagonal (false negative and positive) cases - wrongly classifying a high-hazard dam

may lead to downstream populations being put at an increased risk whereas wrongly classifying a

non-high-hazard dam may lead to overinvestment.

Predict Not High Predict High

Actual Not High True Positive False Negative

Actual High False Positive True Negative

Table 2.1: Confusion Matrix for High and Not High Dam Hazard Classification.

Given these types of classifications, there are several objectives that exist. An accuracy

objective reflects how well a model captures the “greatest good” by considering the diagonal cases.

The different types of off-diagonal cases are quantified by a false positive rate (FPR) and true

positive rate (TPR) - with each objective quantifying the degree to which the model increases risk

or causes overinvestment. Accuracy, TPR, and FPR are hard to compare because you are forced

to morally compare correctly classified threats to human life, potentially unclassified threats to

human life, and wasted capital.

Multi-objective optimization allows you to understand how each of these objectives (accuracy,

FPR, and TPR) tradeoff with one another. Once these tradeoffs are understood you can make

an informed decision based on the observed performance. For example, based on the objective

tradeoffs, you can pick a decision that balances accuracy, FPR, and TPR.

The multi-objective perspective flips the “weighting of objectives” described in Section 2.3.2.

Instead of trying to get a single solution that captures a single set of weights w, a multi-objective

perspective seeks many solutions with each solution capturing a unique set of relative objective

importance. To achieve this, we need to rethink how we can compare two sets of decisions in a

multi-objective context.
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We introduce the domination operator ≺ to allow us to compare decision solution vec-

tors in a multi-objective context. Consider two sets of decisions to our problem x1 and x2 and

the corresponding vector of objective values F1(x1) = [f1(x1), f2(x1), ..., fp(x1)] and F2(x2) =

[f1(x2), f2(x2), ..., fp(x2)] both of length g. F1 ≺ F2 if and only if ∀i ∈ {1, 2, ..., g}, fi(x1) ≤ fi(x2),

and ∃j ∈ {1, 2, ..., g}, fj(x1) < fj(x2). In other words, for a solution to dominate another solution,

it must completely “beat out” the other solution. Nondomination is the converse of domination

such that a nondominated solution’s performance is not exceeded with respect to all objectives by

another solution.

The formulation of the multi-objective problem is an extension of the single-objective problem

that relies on the nondomination operator to compare decision vectors

minimize
x

[f1(x), f2(x), ..., fp(x)] (2.5)

s.t. h (x) = 0 (2.6)

which produces many nondominated decisions. The set of all the nondominated solutions to a

problem is called the Pareto-optimal set of decisions to the problem. Producing a nondominated

set is a major advantage and disadvantage of a multi-objective formulation. It is advantageous

because it allows for tradeoff analysis as well as the selection of a nondominated solution after

the optimization has occurred which is particularly helpful in cases when objective tradeoffs are

not known in advance. However, finding a pareto-approximate set of nondominated solutions often

means longer optimization times and extensive post-processing of results with human interpretation

which can be problematic for operational cases where a fast solution may be required. Addition-

ally, ensuring convergence of a search often requires post-processing and the use of metaheuristics

[Zatarain Salazar et al., 2016].
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2.3.4 Nested Multi-Objective Optimization Using a Single-Objective Solver and

Weights

Let’s assume that our problem:

• has many relevant objectives

• weights on these objectives have an important physical meaning

• the exact values of weights are difficult to determine in advance

• your problem has a sub-component to it that is traditionally solved with a single objective

optimization

In this case, we nest the weighted objective formulation proposed in Section 2.3.2 in the

multi-objective formulation proposed in Section 2.3.3 - thus creating an “outer” multi-objective

problem with an “inner” weighted objective problem:

minimize
w

[f1(x
∗), f2(x

∗), ..., fp(x
∗)] (2.7)

s.t. x∗ = {argmin
x

(f1 (x) + w2f2(x) + ...+ wpfp(x))|h(x) = 0} (2.8)

wi ≤ wi ≤ wi∀i ∈ {1, 2, ...,W} (2.9)

where the “decisions” of the outer problem (Line 2.7) are the weights w which are passed into the

inner optimization problem (Line 2.8) that optimizes true decisions x of the inner optimization.

Therefore, this formulation produces a set of nondominated solutions - with each solution having a

corresponding set of weights, decisions, and objectives. The inner/outer behavior of this formulation

is analogous to bilevel multi-objective formulations [Deb and Sinha, 2010] or Stackelberg games [von

Stackelberg, 2011]. Additionally, we constrain these weights to some upper w and lower w bounds.

Having sets of weights, decisions, and objectives has several advantages that overcome the

previously mentioned challenges. Not only does this formulation facilitate the previously mentioned
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tradeoff analysis between decisions and objectives but it can also facilitate a tradeoff analysis

between weights and objectives. In cases where the weights have important physical meaning, the

impacts of these weights on objective performance may be most relevant.

Another advantage of this formulation is that every feasible solution (dominated and non-

dominated) to the multi-objective produces an optimal set of internal decisions. This is because the

outer multi-objective problem produces weights that are then used to optimize the decisions of the

inner single-objective problem. Therefore, although the convergence of the outer multi-objective

problem often requires metaheuristics, the optimality of the solution to the inner weighted prob-

lem can be confirmed (e.g., if h is convex, optimality can typically be confirmed using standard

proofs [Kuhn and Tucker, 1951]). This has many practical implications because a nondominated

set of weights from a multi-objective optimization of h can be applied to similar h′. Although

the transferred weights may be dominated under h′, the resulting decisions for the inner weighted-

single-objective problem are still optimal.

2.4 Optimal Power Flow

As previously discussed, with the increase in computational power, operational single-objective

optimization problems have become an essential part of modern grid operations. For example, OPF

is one such optimization problem that generally ensures that all the generators in a system output

power in a consistent, economical, safe, and efficient manner and is typically solved by independent

system operators. Modern energy systems use several OPF formulations. This thesis will use the

DC OPF simplification of the full AC OPF formulation because of its ubiquity in modern power

systems.

2.4.1 AC Optimal Power Flow

Given a set of power sources, loads, and other various systems topological/operational pa-

rameters, OPF seeks the active power dispatch at each generator pg, the reactive power at each

generator q, and the voltage at each bus v such that only the economic costs are minimized. The
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formal AC OPF formulation is as follows:

min
v,pg,q

C0 (v) +
∑
∀j∈G

Cj (pj , qj) (2.10)

s.t. (pg − pL) + j (q− qL) = diag (v)Y∗v∗ (2.11)

vmin ≤ |vi| ≤ vmax, i = 1, . . . , B (2.12)

(pg,j , qj) ∈ Yj (2.13)

v1 = vref (2.14)

where Ci are the various economic costs associated with a power system’s voltage, active power,

and reactive power. pL and qL are the active and reactive loads that change throughout time Y

is the line admittance matrix that captures the network topology and potential for losses. B is

the number of buses in the system. The minimum/maximum voltages at each bus are determined

by vmin and vmax. Yi is the set of feasible values for active and reactive power. G is the set of

generators in the system. vref is the reference voltage for the system. Conceptually, equation 2.11

models the power balance on the lines throughout the system by solving for the system voltages

while the remaining constraints are conceptually straightforward.

2.4.2 The DC Optimal Power Flow Simplification

Equation 2.11 introduces significant complexities due to the non-convex nature of the right-

hand side. Because the OPF problem needs to be solved for real-time operation on the order of

minutes or hours, the DC OPF simplification was introduced to reduce the computational burden.

Specifically, the DC OPF assumes constant voltages for all nodes, lossless lines, and small angle

approximation Taylor [2015, chap 3]. Just as AC OPF, the DC OPF approximation also seeks

to find the power output pg such that solely economic costs are minimized. The resulting single-

objective DC OPF formulation is:
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min
{θi}∀i∈N ,{pg,i}∀j∈G

∑
∀j∈G

Cj (pg,j) (2.15)

s.t. pg,i − pL,i =
N∑

n=1

Bin (θi − θn) ,∀i ∈ N (2.16)

pmin
g,j ≤ pg,j ≤ pmax

g,j , ∀j ∈ G (2.17)

− Λmax,im ≤ Bimθim ≤ Λmax,im, ∀im ∈ L (2.18)

with Bim as the (i,m) entry of the susceptance matrix B. The difference in the voltage phase angles

between neighboring buses i and m is denoted as θim. Although the angle at each bus is formally a

decision variable, this thesis will mainly consider it as an internal parameter calculated in order to

satisfy the constraints of the DC OPF formulation. The product of Bim and θim approximates the

electricity flowing through line im in the set of all lines L. Equation 2.16 constrains the line flows

using the previously defined simplifications, and Equation 2.17 constrains the active power output,

and Equation 2.18 constrains the power flowing through the lines (Λmax).

2.5 Applications of Background Concepts Throughout Thesis

Throughout this thesis, we apply various optimization formulations to water/energy/emissions

systems. Generally, the decisions (x) are power dispatch of a power system’s generators, h is a DC

OPF simulation of power system operations, and the various objectives (f) each capture an aspect

of a system’s cost, emissions, and water use.

In Chapter 3, we use a multi-objective formulation to study the tradeoffs of cost, water

use, and emissions objectives f . Our simulation (h) is a single timestep of DC OPF. Then, in

Chapter 4, we shift our formulation to be more policy-focused by introducing weights (w) to

reflect an operational cost penalty assigned to each of these objectives, not unlike a water or

emissions “price”. We conduct a sensitivity analysis to show how those operational policies as

well as different stressors on the system (captured by different h) impact the system cost and

water use objectives (f). Finally, in Chapter 5, we use a nested multi-objective optimization using
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a single-objective solver and weights to optimize these operational policies to a multi-timestep

water/energy/emissions/reliability simulation (h). We show how such policies optimized to a single

scenario (h) can still perform well over several different scenarios (h′).



Chapter 3

Quantifying Water, Emissions, and Cost Tradeoffs

In this chapter, we demonstrate how to analyze the tradeoffs of water use, emissions, and

cost in thermoelectric-dominated power systems. To achieve this, we introduce four objectives to

capture the cost, water withdrawal, water consumption, and emissions in the system. We com-

bine these objectives into a novel multi-objective water/emissions-informed DC OPF formulation.

This formulation is applied to a synthetic case system where we analyze the system components

responsible for these tradeoffs as well as quantify the degree to which each objective is redundant

(or not redundant) with one another. The findings of this chapter have been adapted from their

publication in Kravits et al. [2022a].

3.1 Introduction

The interactions of water, cost, and emissions of thermoelectric-dominated power systems

have been quantified over long timescales and across large spatial extents [Meng et al., 2020, Peer

et al., 2016]. However, less work has been done to incorporate such processes into the sub-hourly

operations of the grid. The work that has been done typically focuses on two objectives at a time.

For example, emissions and cost have been previously incorporated into operational problems such

as optimal power flow [Abido, 2003b, Wu et al., 2010]. Similar work has incorporated water used by

thermoelectric plants into the constraints of the OPF problem [Fooladivanda and Taylor, 2015] or

as objectives in the economic dispatching problem [Sanders et al., 2014]. However, few studies have

incorporated all three objectives (cost, emissions, and water use) into a multi-objective formulation.
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Therefore, this chapter provides a multi-objective OPF formulation that considers cost, emissions,

and types of thermoelectric water use as separate objectives.

Previous efforts to convey objective tradeoffs among solutions to multi-objective OPF mainly

relied on interpreting plots of solution objective performance [Abido, 2003b, Kravits et al., 2021a].

These visual-interpretation methods are intuitive for visualizing objective tradeoffs among a few

dimensions. However, comparing tradeoffs among many dimensions (as is the case in our formu-

lation) or across different problems becomes especially difficult due to human subjectivity; thus,

metrics exist to quantify tradeoffs in many objective systems [Wu et al., 2021, Chen et al., 2020,

Tang et al., 2019]. In this chapter, we propose methods for quantifying objective tradeoffs, within

a pre-specified objective tolerance, for our multi-objective OPF formulation. We also provide ex-

amples of how to intuitively visualize these tradeoff metrics to allow for within-system objective

tradeoff comparisons.

3.2 Methodology

First, we introduce the decisions of this optimization problem. Then, we propose several

objectives to quantify the performance of a power system with respect to its cost, water use, and

emissions. Finally, we incorporate these objectives and decisions into a multi-objective extension

of the traditional DC OPF problem previously outlined in Section 2.4.2.

3.2.1 Decisions

The decisions of this problem are the same as the traditional DC OPF formulation introduced

in Section 2.4.2. Recall, these decisions are the active power dispatch of a set of generators (pg)

over a single timestep. This chapter extends the traditional DC OPF formulation by considering

multiple objectives.
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3.2.2 Objectives

The first objective is the traditional OPF objective of fuel costs associated with active power

output [Frank and Rebennack, 2016, Taylor, 2015]. These fuel costs are a quadratic function of the

active power output at each generator and are summed across the entire system. The total fuel

costs in the system (fgen) are expressed as:

fgen(pg) =
∑
j∈G

aj + bjpg,j + cjp
2
g,j (3.1)

where pg is a vector of all the active power outputs and aj , bj , and cj are the cost coefficients of

the active power output of generator j. The units on aj , bj , and cj are such that the final units of

fgen is $ / hr. The set of all the generators is G.

The second objective captures the total atmospheric pollutants of sulfur oxides (SOx) and

nitrogen oxides (NOx) emitted by the system [Abido, 2003b]. The total emissions in the system

(Femit) are expressed as:

femit(pg) =
∑
j∈G

10−2
(
αj + βemit,jpg,j + γjp

2
g,j

)
+ ξje

λjpg,j (3.2)

where αj , βj , γj , ξj , and λj are the emission coefficients of active power output of generator j

(power in per-unit). The quadratic form reflects the SOx pollutants while exponential terms reflect

the NOx pollutants Ghasemi et al. [2015]. The final units of femit are total emissions in U.S. ton

/ hr.

The third and fourth objectives capture the thermoelectric water use of the generators. These

objectives capture the water withdrawn and water consumed. The total water consumed by the

system (fcon) and withdrawn by the system (fwith) are expressed as:

fwith(pg) =
∑
j∈G

βwith,jpg,j (3.3)

fcon(pg) =
∑
j∈G

βcon,jpg,j (3.4)
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where βwith,j and βcon,j are the withdrawal and consumption rates of generator j. Such rates are

defined as the amount of water required to produce some unit of electricity and have the units

of gal / MWh. These rates are dependent on fuel type, cooling system type, as well as external

climatic/hydrologic factors Macknick et al. [2012], Miara et al. [2018]. The product of these rates

and the power output yields the final units of fwith and fcon of gal/hr.

3.2.3 Water/Emissions-Informed DC OPF Formulation

These objectives are incorporated into a multi-objective DC OPF formulation, which finds

the decisions (active power dispatch pg) that minimize the vector of the four objectives

[fgen(pg), femit(pg), fwith(pg), fcon(pg)]:

minimize
pg

[fgen(pg), femit(pg), fwith(pg), fcon(pg)] (3.5)

s.t. pl,i −
∑
k∈Gi

pg,k =
∑
m∈N

Bimθim, ∀i ∈ N (3.6)

− Λmax,im ≤ Bimθim ≤ Λmax,im, ∀im ∈ L (3.7)

p
g,j
≤ pg,j ≤ p̄g,j , ∀j ∈ G (3.8)

This DC OPF formulation uses the same notation introduced in Section 2.4.2. Additionally,

see Section 2.3.3 for further details on multi-objective formulations.

3.3 Case Study: Water-Extended IEEE 30 Bus Test System

We demonstrate this formulation and the insights gained through it with the IEEE 30-bus test

system using default line and generator parameters Thurner et al. [2018]. However, the coefficients

needed to compute the objectives required by this formulation are not supplied by default but

rather are inferred to ensure a system that has both realistic generators and cooling systems as well

as realistic objective performance. Fuel costs and emission coefficients were based on previously

published coefficients Abido [2003b], Wu et al. [2010]. Based on these coefficients, we assumed
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representative fuel and cooling system types for each generator and estimated withdrawal and

consumption rates based on national estimates Macknick et al. [2012]. We assume bus zero is the

slack bus that is connected to an active power generator. This modified test system we call the

Water-Extended IEEE 30 Bus test system.

Figure 3.1 presents the overview of how we get the set of nondominated solutions. Initially,

the power output bounds of every generator are known, and infer the slack bus based on system

topology. Then, we define a uniform grid of 10 steps over every generator except the slack bus. The

DC power flow equations are then solved for all 100,000 entries in the grid using a Newton-Raphson

solver Thurner et al. [2018]. Infeasible grid entries are dropped and the objectives are computed

for the remaining entries.

We implement an epsilon nondomination filter to find our solutions to the multi-objective

problem Woodruff and Herman [2013]. Practically, epsilon nondomination allows us to give a

user-defined precision on each objective function. Epsilon nondomination is an extension of the

nondomination definition presented in Section B.3 where a tolerance is specified, which must be

exceeded for domination to occur [Laumanns et al., 2002].

For this problem, fgen, femit, fwith, and fcon are assigned the epsilons of 10.0, 0.01, 100000.0,

and 10000.0, respectively. These choices are based on the precision of the objective quantities made

in the literature Abido [2003b], Wu et al. [2010], Macknick et al. [2012]. The number of steps in the

grid was chosen by iteratively increasing the step number until no additional epsilon-nondominated

solutions were found by increasing further.
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Grid Sample

Solve Power Flow

Drop Infeasible Solutions

Compute Objectives

Bounds on 
Generator Output

Non-dominated
Solutions

Epsilon Non-dominated 
Filter

Figure 3.1: Overview of Solving Multi-objective OPF

We ran this search on the RMACC Summit supercomputer across one node with two CPUs

(Intel Xeon E5-2680 v3, 2.50 GHz, 24 cores/node) with 4.84 GB RAM per core. This optimization

took a wall time of roughly 10 minutes.

3.4 Results and Discussion

3.4.1 Qualatitive Tradeoff Analysis

The objective performance of the nondominated set of solutions (power dispatches) for our

multi-objective OPF formulation applied to the Water-Extended IEEE 30 Bus system is presented

in Figure 3.2. Each line on this plot is a unique nondominated solution to the multi-objective

OPF just as the plot discussed in 2.3.3. Objectives have been oriented such that desired solutions

intersect towards the bottom of this figure. Additionally, to aid in visualization, solutions have

been colored to reflect their cost.
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Figure 3.2: Performance of Nondominated Solutions. Visualization created using [Kravits, 2022].

Figure 3.3 depicts the actual solution values (pg) associated with Figure 3.2. To aid in

visualization, the same coloring scheme (generator cost) is implemented in both figures. Unlike

Figure 3.2, Figure 3.3 expresses no preference in the direction as each axis is simply reflecting

active power dispatch.
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Figure 3.3: Power Output of Nondominated Solutions

From Figures 3.2 and 3.3, we gain insights into system-level performance. For example,

withdrawal and consumption generally present tradeoffs consistent with broader findings in the

literature Tidwell et al. [2012]. There is also a small tradeoff between cost and emissions, as

evident by the few solutions crossing at the bottom of the emissions axis, which is consistent with

previous findings Abido [2003b], Ah King and Rughooputh [2003].

Of notable interest are the many solutions that emerge that have low withdrawal (depicted

as purple). These solutions have poor performance with respect to cost, emissions, and water
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consumption (depicted as high intersections). From Figure 3.3, we see that these solutions generally

do not use the once-through cooled generators (7, 10, and 12) and do use the natural gas generators

with cooling towers (0 and 4). Conversely, we see many of the solutions that have low emissions

(depicted as yellow) have high water withdrawal and average water consumption performance. Such

solutions highlight how incorporating external objectives into traditional OPF formulations can

drastically change the behavior of the system. Furthermore, such solutions highlight the potential

tradeoffs among cost, water, and emissions in water-energy systems.

3.4.2 Quantitative Tradeoff Analysis

We can quantify the tradeoffs that exist in this system by visualizing the objective correlation

of the nondominated sets as is done in Figure 3.4. Specifically, this figure depicts the correlation

of every axis (objective) pair in Figure 3.2. To aid in visualization, the color of each cell represents

the correlation value. Objectives that have a high positive correlation are generally harmonious

while objective pairs with high negative correlations present tradeoffs (i.e., performance increases

in one objective degrade performance in the other objective).
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Figure 3.4: Correlation of Objectives in Nondominated Set
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Figure 3.4 allows analysts to quickly summarize trends in the nondominated set. For example,

the large negative correlation values of water withdrawal with consumption and cost, confirm the

behavior previously discussed in Figure 3.2. Conversely, emissions are semi-harmonious with cost.

This figure also allows analysts to quickly compare the degree to which tradeoffs occur. For example,

Figure 3.4 allows analysts to quickly see the tradeoff between water withdrawal and consumption is

stronger than the tradeoff between water withdrawal and cost. Such a trend may not be as obvious

when simply looking at the nondominated performance (e.g., Figure 3.2).

Viewing Figures 3.2 - 3.4 allows analysts to quickly gain insights into system-level behavior

by identifying how objectives interact with one another as well as what system components are

responsible for changes in system performance. Such insights could be useful for comparing system

behavior across multiple systems. For example, the methods presented in this paper would be

useful if analysts were interested in comparing the tradeoffs among cost, water use, and emissions

across several power systems. First, the analyst could find the nondominated set of solutions to our

multi-objective OPF formulation for each system. Then, by visualizing the objective correlation

plots for each system (such as Figure 3.4), the analysts could quickly compare the severity of trade-

offs among individual objective pairs. Identifying such tradeoffs would help analysts to compare

potential objective performance vulnerabilities across energy systems. Such insights could be used

to inform energy policy for ensuring that resources are allocated to systems with the most potential

vulnerabilities.

3.5 Conclusion

In this chapter, we first demonstrated how cost, emissions, water withdrawal, and water

consumption can be incorporated into a multi-objective OPF formulation that does not rely on

specifically weighting each objective. We then applied this formulation to an example power sys-

tem to show the system-level insights that such a formulation facilitates. Specifically, we showed

how visualizing the correlations among each objective pair allows analysts to summarize system

performance as well as compare performance across systems.
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An additional insight gained from this work was the vast number of nondominated solutions

that emerged from DC OPF operations when more than just economic costs were considered.

For example, not only can solutions emerge that solely emphasize other objectives, but numerous

solutions that compromise among all the objectives emerge from a multi-objective perspective. This

idea of solutions that emerge to the multi-objective DC OPF problem will be expanded in Chapter

5.

Applying these methods to larger systems also poses a problem for real-time operation. For

example, there exists a computational challenge for finding the epsilon nondominated solutions

as increasing the number of generators would increase the size of the decision space. Using multi-

objective evolutionary algorithms reduces the computational burden by more intelligently searching

the decision space and will be applied in Chapter 5. However, decision-makers would still be required

to select a nondominated solution from a set, which may be infeasible for real-time operations. The

next chapter (Chapter 4) addresses this downside through a policy-focused reformulation of the

multi-objective DC OPF formulation where objectives are weighted. The ability to quickly and

consistently compare the tradeoffs in these systems as demonstrated in this chapter will be crucial

to apply policy insights from one system to another.

Another extension of this work would be to apply the presented methods to more realistic

power systems over several timesteps. Although care was taken to ensure the power system in this

work had realistic behavior, the tradeoffs identified in this work do not necessarily reflect broader

trends in energy systems. To gain insights into the behavior of actual power systems, our methods

would need to be implemented by analysts with access to true power system models. One possible

challenge for applying these methods to real systems would be modeling water use and emissions

of external grids; although representative emissions and water use coefficients could be assumed.

Another option for more broadly-applicable insights would be to use synthetic models of true power

systems Birchfield et al. [2017] as will be demonstrated in Chapter 5.



Chapter 4

The Impact of Water Policy on Power Systems Operations

The previous chapter established a framework to analyze the tradeoffs of water/energy sys-

tems whereas this chapter introduces a policy framework to incorporate the water used by power

systems as an additional incentive for power system operations. In other words, the previous chap-

ter focused on analyzing existing system performance where as this chapter introduces a mechanism

to influence this behavior via a policy decision. Specifically, this policy decision is the specification

of an “operational water penalty” that assigns a monetary value to the different types of gener-

ator water use. We then analyze how such decisions impact the various facets of power system

operations. These findings have been adapted from their original publication in [Kravits et al.,

2022b].

4.1 Introduction

Modern power grids respond to stressors that are out of the control of system operators

(i.e., exogenous stressors). For example, electric loads on the grid change over time. On shorter

operational timescales, electric loads vary throughout the day based on user types within an electric

system [Merrick, 2016, EIA, 2020a]. These demands also vary on longer timescales such as seasonal

changes [EIA, 2020a, Archibald et al., 1982] as well as the additions of new loads (e.g., electric

vehicle charging or new development) being added to the grid [Hatziargyriou et al., 2013, Jacob,

2021]. Thermoelectric water withdrawal and consumption rates (defined in Section 2.1.1) change

over time as they are impacted by extreme climatic events such as droughts, heatwaves, or upstream
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water users [Scanlon et al., 2013b, Lydersen, 2016, Meng and Sanders, 2019].

The temporal variability of electric loads, thermoelectric withdrawal rates, and thermoelectric

consumption rates are particularly important during extreme natural events. These events can be

broadly categorized into events that impact electric loads, events that impact thermoelectric water

use rates, and events that impact both. For example, a drought event may impact the thermoelectric

water use rates while a heatwave may impact the electric loading [Scanlon et al., 2013b, Harto et al.,

2012]. Such system-stressing events can also occur simultaneously, further stressing energy systems

[Galbraith, 2011, Freedman, 2012]. In these extreme operational scenarios, system operators often

manually intervene in traditional operations (e.g., shutting down specific generators or granting

thermal variances) [Harto et al., 2012, Poumadère et al., 2005, Lubega and Stillwell, 2018a].

The previous chapter demonstrated the value of incorporating thermoelectric water use into

system operations using the example of a water-informed OPF formulation. Such water-informed

operations are important as they (1) promote system coordination rather than manual intervention

by system operators, as well as (2) offer a rapid way for system operators to respond to current

drought events, especially if long-term solutions are infeasible due to a lack of time to implement

[Pacsi et al., 2013]. This chapter refines the previous water-informed OPF formulation to specify

an operational weight for the water consumed and withdrawn - thus eliminating the need to choose

a nondominated generator dispatch in real-time.

Solving a single case of a water-informed OPF, such as was done in the previous chapter, only

allows for insights into a single snapshot of system performance. For example, in the demonstra-

tion of their formulation, Fooladivanda and Taylor [2015] assume a single price of water consumed

($1/m3), load demand case, withdrawal rates, and consumption rates. However, Lubega and Still-

well [2019] found that a thermoelectric cooling water price is a function of many dynamic economic

factors. Furthermore, a $1/m3 cost is a high price for cooling water when compared to traditional

market prices [Lubega and Stillwell, 2019, Brewer et al., 2007]. Similarly, loads, withdrawal rates,

and consumption rates are all impacted by extreme demand and climate events as previously stated.

Many studies have modeled loads as a stochastic process to attempt to capture the uncertainty of
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the temporal variability of loads in the grid [Taiyou Yong and Lasseter, 2000, Hu et al., 2010]. Such

studies have found that by including this variability, solutions to the OPF problem are drastically

different from their deterministic counterparts. Therefore, to allow insights into longer-term system

performance, our operational scenario analysis framework considers the water optimization weights,

generator water consumption rates, generator water withdrawal rates, and system loadings as “ex-

ogenous parameters” that are outside of the control of the system operator, and therefore could be

different every time the OPF is solved, due to system conditions. Such a novel consideration allows

us to isolate the impacts of various inputs on the water-energy system.

The operational scenario analysis framework proposed in this chapter also extends the previ-

ous literature by conducting several sensitivity analyses to quantify the individual significance and

effects of each exogenous parameter. We show that such a novel framework allows analysts both

system-wide insights into the operations of a power system as well as identifying the most critical

generators that impact various aspects of system performance. This framework allows the most

important generators of a power system to emerge from the underlying mathematics of short-term

power systems operations, rather than assuming generator importance a priori. We first define

our operational scenario analysis framework consisting of our water-informed OPF formulation, an

embedding of the water-informed OPF into a larger multi-objective water/power systems cosimu-

lation, and two sensitivity analyses of the cosimulation model. We then demonstrate the insights

possible through the operational scenario analysis framework on a synthetic case study located in

the Midwestern United States.

4.2 Methodology

An overview of the cost/water power system cosimulation is presented in Figure 4.1. First,

we define all the exogenous parameter inputs to the cosimulation. Then, the water-weighted OPF

formulation finds the optimal power output at each generator. Finally, multiple objectives are a

function of the optimal power outputs and the exogenous parameters.
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Figure 4.1: Overview Cost/Water Power System Cosimulation. Exogenous parameters, parameters

out of the control of system operators, are inputs to the cosimulation. These parameters are used

in the water-weighted OPF formulation to find the optimal generator output. These parameters

are also used to compute objectives as indicated. Every feasible set of exogenous parameters

corresponds to a set of objective values.

4.2.1 Water-Weighted OPF Formulation

Just as the multi-objective water-emission-informed OPF formulation from the previous chap-

ter, the water-weighted OPF formulation (Pwwopf ) finds the set of generator power dispatch pg

that minimizes an objective function while also satisfying the DC simplification of the power flow

equations. The major difference between the formulation in this chapter is the objective function is

a weighted sum of water and economic costs (See 2.3.2 for more reference on weighted formulations).

The inputs of (Pwwopf ) are exogenous parameters. As previously mentioned, exogenous

parameters are outside of the control of the system operator, and therefore could be different every

time the OPF is solved, due to system conditions. In this formulation, these exogenous parameters

include the water withdrawal and consumption rates at each generator, the loads at each bus, as

well as the weights of water withdrawn and consumed.

The withdrawal rate and consumption rate at each generator represent a generator’s “water
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efficiency”, the amount of water used to produce a given amount of electricity. The withdrawal rate

at generator j is denoted as βwith,j . Similarly, the consumption rate at generator j is denoted as

βcon,j . These terms are collected into vectors βwith and βcon of length G, the number of generators

in the system.

Value ranges of withdrawal and consumption rates can be estimated based on historic datasets

of electricity production, water withdrawal, and water consumption. Additionally, general ranges

of withdrawal and consumption rates have been estimated based on fuel and cooling system types

[Macknick et al., 2012]. Physically, withdrawal and consumption rates can be interpreted such that

water-efficient generators would have lower rates than water-inefficient generators (i.e., it takes

water-efficient generators less water to produce a unit amount of electricity).

Other exogenous parameters include the loads pl,i at each bus i. These terms can also be

collected into a vector pl. The set of buses in the system N has the length B. Therefore, pl also

has the length B (buses with no load have a zero as its corresponding entry in pl).

The two remaining parameters in this formulation are the operational weight associated with

the water withdrawn wwith and the operational weight associated with water consumed wcon. Each

of these terms specifies a water penalty assigned to generators that withdraw or consume water.

The units of these weights are a monetary cost per volume of water used. For example, a policy

that assigns a low value of the withdrawal weight wwith and a high value of the consumption weight

wcon gives preference to generators that do not consume water. Therefore, generators that consume

a lot of water would have a low power output while generators that consume less water will have a

higher output. Through varying values of wwith and wcon, we create operational policies based on

differing levels of withdrawal and consumption preference. These preferences could be correlated

with constraints in the water system. In real-world systems, these weight values could be in the

form of a monetary tax on water use, for example.

Our water weighted OPF formulation (Pwwopf ) is defined as follows:
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min
pg

∑
j∈G

aj + bjpg,j + cjp
2
g,j + wwith

∑
j∈G

βwith,jpg,jt+ wcon

∑
j∈G

βcon,jpg,jt (4.1)

s.t. pl,i −
∑
k∈Gi

pg,k =
∑
m∈N

Bimθim, ∀i ∈ N (4.2)

− Λmax,im ≤ Bimθim ≤ Λmax,im, ∀im ∈ L (4.3)

p
g,j
≤ pg,j ≤ p̄g,j , ∀j ∈ G (4.4)

This formulation uses the same notation introduced in Section 2.4.2.

The objective function is a weighted sum of generator costs, water withdrawal, and water

consumption. The coefficients of aj , bj , and cj reflect the monetary cost as a function of active

power output for each generator j. βwith,j and βcon,j reflect the water withdrawn and consumed as

a function of active power output for each generator j. t represents the timestep conversion factor

of the optimization problem, which converts the power output of generators to an energy output

such that the water withdrawal and consumption rates can be applied. As previously discussed,

wwith and wcon capture the monetary cost of the water withdrawn and consumed, respectively.

4.2.2 Objective Outputs

The cost and water cosimulation relies on the water-weighted OPF but produces several

objective outputs that each capture unique and analyst-relevant aspects of a system’s performance.

One such measure of the system performance is the objective function from the water-informed

OPF. This objective captures the “total effects” of the system (i.e., it captures the generator costs,

costs from withdrawal, and costs from consumption). The total cost objective is defined as

fcos =
∑
j∈G

aj + bjpg,j + cjp
2
g,j + wwith

∑
j∈G

βwith,jpg,jt+ wcon

∑
j∈G

βcon,jpg,jt (4.5)

The total cost objective Fcos is critical as it captures both the direct monetary costs of operations

as well as the costs associated with the generator water usage. As was visually depicted in Figure

4.1, it is the only objective that directly uses all the exogenous parameters.
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Another measure of system performance is the summation of all the direct generator opera-

tional costs defined as

fgen =
∑
j∈G

aj + bjpg,j + cjp
2
g,j (4.6)

This “traditional” OPF objective of generator costs serves as a reference for analysts familiar

with system performance under traditional OPF formulations. As is visualized in Figure 4.1, this

objective is the only objective that is solely a function of generator power outputs, such that it also

serves as a proxy for measuring total system generator outputs and will not be directly impacted

by varying exogenous parameters. It will only be impacted by exogenous parameter values that

change the generator power output values (pg).

The final two objectives capture the total amount of water withdrawn and consumed in the

system and are defined as

fwith =
∑
j∈G

βwith,jpg,jt (4.7)

fcon =
∑
j∈G

βcon,jpg,jt (4.8)

Recall that t is a conversion factor to convert the power output to an energy output over a timestep.

These objectives serve as a ground truth of the volume of water that would be used in the system

over the optimization timestep (and does not consider the withdrawal weight wwith or consumption

weight wcon). Such information is important for operations during climatic extremes where the

total amount of water usage can have detrimental ecological effects as well as operational impacts.

4.2.3 Sensitivity Analysis of Uniform Variability

Our operational framework focuses on two ways that exogenous parameters can vary: uni-

formly and non-uniformly. We define uniform variability as changes that impact parameters in all

parts of the system in the same way. For example, during an extreme loading event, a system
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may experience increased loading across all buses. However, non-uniform variability impacts each

exogenous parameter differently. For example, the water use of an upstream utility may only im-

pact generator withdrawal rates at a single downstream plant. We introduce different coefficients

on each exogenous parameter to mathematically model the different types of variability. Our op-

erational scenario analysis framework utilizes two different types of sensitivity analyses of these

introduced coefficients to gain insights into both the uniform and non-uniform variability of our

multi-objective water-informed OPF model.

The demands at each bus (pL) are assumed to vary uniformly throughout system operation

(i.e., all the loads increase at once). Mathematically, we present this uniform variability as a uniform

loading coefficient (cload) multiplied by pL. A uniform loading coefficient (cload) greater than one

means that the system is experiencing increased loading relative to its baseline loading case. Such

uniform increases would generally be the result of higher system-wide temperatures being linked

to higher system-wide loading [PJM, 2019].

The generator withdrawal rates (βwith) and generator consumption rates (βcon) also vary

uniformly. Similar to the loading uniform variability, the uniform water exogenous parameter

variability is mathematically represented as a uniform water coefficient cwater multiplied by βwith

and βcon. A uniform water coefficient (cwater) less than one means that the generators are becoming

more water efficient (using less water to produce the same unit of electricity) while a coefficient

of greater than one means the generators are becoming less water efficient (using more water

to produce the same unit of electricity). Such variability has been categorized across cooling

technology, fuel technology, space, and time [Macknick et al., 2012, Peer and Sanders, 2016, Huston,

1975]. We focus on sources of variability in time, based on assuming a system with non-changing

cooling technologies and generators. Uniform variability, i.e., processes that would impact all

generators in a given system, include seasonal, climatic, and hydrologic/hydraulic variability [Lee

et al., 2020, Clement et al., 2017, Dziegielewski et al., 2002].

In the uniform sensitivity analysis, we test the sensitivity of the operational water penalties

wwith and wcon, as well as the exogenous uniform loading coefficient (cload) and uniform water coef-
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ficient (cwater). These four parameters of our sensitivity analysis are referred to as “input factors”

to avoid confusion with the entire set of operational water penalties and exogenous parameters

[Pianosi et al., 2016]. The goal of this analysis is to (1) identify how the water and load uniform

variability interact with one another to gain insights into what general mechanisms impact sys-

tem performance, as well as (2) determine which regions of the input factor space cause extreme

objective performance for each of the objectives in our water-weighted OPF model.

We use a qualitative global mapping sensitivity analysis to analyze the uniform variability

[Pianosi et al., 2016, Singh et al., 2014, Harper et al., 2011]. First, we conduct a sampling of the

input factor space as depicted in Figure 4.2. This sampling creates a set of input factor scenarios and

each scenario’s corresponding four objective values. The underlying assumptions of this sampling

are dependent on the analysts’ access to data as well as system configurations. After the sampling,

we create several plots to visualize the impacts of the input factors on both system performance

as well as the behavior of individual system components. In Section 4.4.1, we demonstrate how to

find the bounds of these input factors, one possible way to conduct sampling of the input factor

space, as well as how to interpret the resulting visualizations.
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Cost/Water Cosimulation (𝑃𝑐𝑤)

Objectives: 
{𝑓𝑐𝑜𝑠, 𝑓𝑔𝑒𝑛 , 𝑓𝑤𝑖𝑡ℎ , 𝑓𝑐𝑜𝑛}

Input Factor Scenarios

Withdrawal Weight (𝑤𝑤𝑖𝑡ℎ)

Consumption Weight (𝑤𝑐𝑜𝑛)

Uniform Loading Factor (𝑐𝑙𝑜𝑎𝑑)

Bus Loads (𝑐𝑙𝑜𝑎𝑑 ∗ 𝒑𝒍)

Uniform Water Factor (𝑐𝑤𝑎𝑡𝑒𝑟)

Generator Withdrawal Rates (𝑐𝑤𝑎𝑡𝑒𝑟 ∗ 𝜷𝒘𝒊𝒕𝒉)

Generator Consumption Rates (𝑐𝑤𝑎𝑡𝑒𝑟 ∗ 𝜷𝒄𝒐𝒏)

Figure 4.2: Sampling for Sensitivity Analysis of Uniform Variability

4.2.4 Sensitivity Analysis of Non-Uniform Variability

As previously discussed, the non-uniform variability of generator withdrawal rates (βwith) and

generator consumption rates (βcon) can be attributed to plant-to-plant discharging interactions, a

change in cooling system operational policies, or other water discharges in the system [Tidwell

et al., 2019, Miara et al., 2018, Yang and Dziegielewski, 2007, Fooladivanda and Taylor, 2015].

Physically, these processes all impact different fuel/cooling type combinations differently and pose

a key operational challenge. The non-uniform sensitivity analysis allows us insights into how these

non-uniform processes impact system-wide performance under several exogenous operational and

policy scenarios. These exogenous operational and policy scenarios are defined by the input factors

already examined in the uniform sensitivity analysis: the withdrawal weight wwith, the consumption

weight wcon, and the uniform loading coefficient cload.

Unlike the uniform sensitivity analysis where a single uniform water coefficient (cwater) im-
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pacted generator water use at all plants, in the non-uniform case, we introduce unique non-uniform

water coefficients for each plant g denoted as cwater,g. Assuming there are G unique plants in a

system, there will be G non-uniform water coefficients. This formulation assumes that generators in

the same plant have the same fuel and cooling types such that no processes impact single generators

differently within a plant. If a single plant location consists of multiple generator/cooling system

types, a unique non-uniform water coefficient is assigned to each set of unique generators/cooling

system types. This condition is demonstrated in the case study in Section 4.4.2.

The G non-uniform water coefficients constitute the input factors of the non-uniform sensi-

tivity analysis. Just as in the uniform sensitivity analysis, the input factor space must be sampled

for each exogenous operational and policy scenario. The sampling of the non-uniform input factor

space is visualized in Figure 4.3. Starting with the outermost layer, we see the exogenous oper-

ational and policy scenario defines the values for the withdrawal weight wwith, the consumption

weight wcon, and the uniform loading coefficient cload. Then, the input factors whose sensitivity is

tested are the non-uniform water coefficient of each plant in the system from g to G. Again, just as

is in the uniform case, each set of input factor scenarios produces a set of objective function values.

This entire sampling is repeated for each exogenous operational and policy scenario.
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Cost/Water Cosimulation (𝑃𝑐𝑤)

Objectives: 
{𝑓𝑐𝑜𝑠, 𝑓𝑔𝑒𝑛 , 𝑓𝑤𝑖𝑡ℎ , 𝑓𝑐𝑜𝑛}

Input Factor Scenarios

Withdrawal Weight (𝑤𝑤𝑖𝑡ℎ)

Consumption Weight (𝑤𝑐𝑜𝑛)

Uniform Loading Factor (𝑐𝑙𝑜𝑎𝑑)

Bus Loads (𝑐𝑙𝑜𝑎𝑑 ∗ 𝒑𝒍)

Non-Uniform Water Coefficient for Plant 𝑔 (𝑐𝑤𝑎𝑡𝑒𝑟,𝑝)

Generator Withdrawal Rates (𝑐𝑤𝑎𝑡𝑒𝑟,𝑔 ∗ 𝛽𝑤𝑖𝑡ℎ,𝑔)

Generator Consumption Rates (𝑐𝑤𝑎𝑡𝑒𝑟,𝑔 ∗ 𝛽𝑐𝑜𝑛,𝑔)

⋮

Non-Uniform Water Coefficient for Plant 𝐺 (𝑐𝑤𝑎𝑡𝑒𝑟,𝐺)

Generator Withdrawal Rates (𝑐𝑤𝑎𝑡𝑒𝑟,𝐺 ∗ 𝛽𝑤𝑖𝑡ℎ,𝐺)

Generator Consumption Rates (𝑐𝑤𝑎𝑡𝑒𝑟,𝐺 ∗ 𝛽𝑐𝑜𝑛,𝐺)

Exogenous Operational and Policy Scenario

Figure 4.3: Sampling for Sensitivity Analysis of Non-Uniform Variability. This approach samples

each plant’s water coefficient from g to G in a system.

A variance-based sensitivity analysis is implemented for the non-uniform variability analysis

because it allows us to rank and quantify the significance of input factor relationships. Variance

methods assume that the input factors are stochastic variables that produce distributions of each

objective value. Therefore, they assume that the variance of the output distribution is a suitable

proxy for uncertainty and that the contribution of an input factor to the output variance is a

measure of its uncertainty [Pianosi et al., 2016]. Several indices have been proposed to quantify

this process, with the Sobol index being widely accepted. The first order Sobol index (SFirst
i,j ) for

objective j captures the “main effect” of an input factor xi and is defined as
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SFirst
i,j =

Vxi [Ex∼i (yj | xi)]
V (yj)

(4.9)

where y is the objective value for objective j, V is variance, E is the expected value, and x∼i is

all the input factors except the ith value. Conceptually, SFirst
i,j is the expected reduction in output

variance that can be obtained when fixing xi [Pianosi et al., 2016, Sobol, 1990]. Physically, S
First
i,j

quantifies how important input factor xi is to objective j. For example, SFirst
cwater,1,fcos

quantifies how

important the water use at plant 1 is to the total cost of the system.

In Section 4.4.2, we demonstrate a nonparametric method for both sampling the non-uniform

input factor space as well as estimating the first order Sobol index. However, many methods for

estimating Sobol indices could be implemented for a non-uniform sensitivity analysis as long as all

assumptions are satisfied.

4.3 Case Study: Water-Extended Illinois 200 Bus System

The following section describes the synthetic yet realistic case study chosen to demonstrate

our operational scenario analysis framework we call the Water-Extended Illinois 200 Bus System.

We show how we use EIA-reported thermoelectric water use information to ensure realistic water

use for our synthetic test system. This water-use-assigned test case is then used to demonstrate

the insights possible from both the uniform and non-uniform sensitivity analyses. An overview of

the case study is provided in Figure 4.4.
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Figure 4.4: Case Study Preparation Overview. Case study applies the proposed uniform sensitivity

analysis (SA) as well as the non-uniform SA. Dark blue boxes correspond to sections 4.3.2 - 4.3.4.

Green boxes correspond to the sections 4.4.1 and brown corresponds to 4.4.2

4.3.1 Synthetic Grid

Due to national security concerns, models of the actual electricity grid contain sensitive data,

so many frameworks have been developed to generate synthetic grids that retain many valuable

properties of the true grid while not revealing sensitive data [Birchfield et al., 2017]. The framework

generally consists of two phases: substation placement and transmission topology specification. The

substation placement phase specifies the locations and specifications of loads and generators. This

phase is based on a weighted distance clustering algorithm of loads in each postal code and known

generator locations. One constraint in the algorithm is that hydroelectric, nuclear, or renewable

energy resources cannot be grouped with nonrenewable energy sources. The final results of this

phase are synthetic but realistic substation locations containing loads and generators. The second

phase then connects these substations based on an iterative algorithm with several criteria based

on line property constraints as well as line topology constraints. Finally, a variety of other devices

are inserted in the network to regulate reactive power and voltage, such as shunt capacitor banks,

transformer taps, and synchronous condensers.

We use the Illinois 200-bus synthetic grid currently hosted in the Electric Grid Test Case

Repository [Birchfield et al., 2017]. As the name implies, this synthetic grid is based on a part
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of the transmission system in Illinois - a region that has historically been prone to thermoelectric

temperature discharge violations. This 180-line transmission system has a 2800 MW capacity with

half of its capacity coming from coal and the remaining capacity being equally split between natural

gas, wind, and nuclear.

Instead of simulating economic dispatch, we manually dispatch all generators in the system.

However, the simulation of other operational processes is discussed in Section 4.4. Recall, that

these generators do not explicitly correspond to true generators but are rather synthetic generators

based on aggregation. Fortunately, these synthetic generators do have coordinates on a coordinate

reference system specified by the distance weighting algorithm and are available in the PowerWorld

formats of the synthetic case. Figure 4.5 shows these locations. The locations of the generators

reported to the U.S. Energy Information Agency (EIA) are also depicted. These generators are

called “EIA generators” for the remainder of this analysis.

The Illinois 200-bus synthetic grid does not initially include withdrawal rates (βwith) or con-

sumption rates (βcon) for the synthetic power generators. Therefore, we infer realistic withdrawal

rates (βwith) and consumption rates (βcon) in a two stage process. As explained below, we infer

the synthetic generator cooling system type based on location and characteristics. Then, we deter-

mine withdrawal rates (βwith) and consumption rates (βcon) from regional aggregations of publicly

available power systems data [EIA, 2020b].
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Figure 4.5: Location and Breakdown of Generators from Illinois 200-Bus System. The color of

the synthetic generator marker reflects the fuel type. The size of the synthetic generator marker

reflects the maximum power output of the generator (splits based on Jenks classification). The size

of the river line reflects the relative annual flows for 2019.

4.3.2 Assigning Synthetic Generator Cooling Systems

We first assigned each synthetic generator a cooling system. We manually matched the

synthetic generators to EIA generators who reported data on Forms 860 and 923. Figure 4.5 shows

both synthetic and EIA generators. From inspection of this figure, we assign cooling systems to

the synthetic generators. For each synthetic generator, we assign a cooling system based on an

EIA generator that is spatially close, has a matching fuel type, and has a similar capacity to the

synthetic generator. This process ensures that the synthetic generators are assigned representative

and realistic cooling systems.
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4.3.3 Regional Estimates of Generator Water Use

We gathered regional estimates of withdrawal rates (βwith) and consumption rates (βcon) for

the fuel type/cooling system combinations present in our case study. Specifically, we use data from

EIA-reported generators in the state of Illinois, as this approach ensures that water use data come

from generators that have the same political regulations and climatic conditions as the synthetic

generators. Because the EIA generator dataset is generated from human-reported data, this dataset

is notoriously noisy and often requires preprocessing [Tidwell et al., 2019, Meng and Sanders, 2019,

Grubert and Sanders, 2018, Harris and Diehl, 2017, Peer and Sanders, 2016, Scanlon et al., 2013a,

Averyt et al., 2013]. We build upon the frameworks presented in these studies and implement the

following filtering criteria for the regional EIA dataset:

• Generators must be located in Illinois.

• Only consider generator fuel type/cooling system combinations present in synthetic gener-

ators

• Only keep observations that reported finite withdrawal and consumption rates (i.e., remove

zeros or division by zero errors)

• Only keep generators that reported water use at least half of the months between the period

of observation (2014-2019)

• Remove outlier withdrawal and consumption values based on the Modified Z-Score test

[Iglewicz and Hoaglin, 1993] for each generator, which was previously used to filter the EIA

dataset in Peer and Sanders [2016].

The distributions of the resulting regional EIA-reported estimates of withdrawal rates (βwith)

and consumption rates (βcon) are presented in Figure 4.6. This plot is consistent with the find-

ings from Peer and Sanders [2016], where we see that once-through cooling systems have a more

pronounced impact on withdrawal rate than fuel type.
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Figure 4.6: Regional EIA-Reported Dataset of Water Usage. Abbreviations: Recirculating with

Induced Draft Cooling Tower (RI), Recirculating with Cooling Ponds (RC), Once-through with

Cooling Ponds (OC)
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With regional estimates of withdrawal rates (βwith) and consumption rates (βcon) for the

generator fuel type/cooling system combinations in our synthetic grid, we find representative values

of water use for each synthetic generator.

4.3.4 Assigning Synthetic Generator Water Use Via K-Means Clustering

We use the regional estimates of withdrawal rates (βwith) and consumption rates (βcon) to

assign the withdrawal rates and consumption rates for each synthetic generator. For the nuclear

and natural gas regional generators, the median value is justified due to the symmetry of the distri-

butions and lack of variation. However, the coal generators exhibit a notable spread in withdrawal

and consumption rates, as shown in Figure 4.6. The variation of coal generator withdrawal rates

(βwith) and consumption rates (βcon) can be attributed to the variation of coal generator capacities

for this region. This trend emerges by plotting the withdrawal rates (βwith) and consumption rates

(βcon) against the capacities of the coal plants. Several clusters emerge for each cooling type based

on the capacities of the generators. The median value of each corresponding cluster informs the

synthetic generator water use.

This regional-estimate-with-clustering methodology is not used for wind and solar genera-

tors, which do not require cooling systems, and have zero values for their exogenous water param-

eters. Similarly, small-capacity natural gas combustion turbines are also assumed to use negligible

amounts of water, so zero values are assumed for their exogenous water parameters [Stillwell et al.,

2011].

4.4 Results and Discussion

The following section demonstrates our operational scenario analysis previously outlined in

Section 4.2 for the case study. We perform a global sensitivity analysis of the uniform and non-

uniform variability of our multi-objective water-informed OPF model. This section provides an

example of both uniform and non-uniform sensitivity analyses based on publicly available data.

However, applying these sensitivity analyses to different datasets or system configurations may
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require modification of the specific implementation demonstrated in this analysis.

4.4.1 Impacts of Uniform Variability on System Performance

We apply the uniform sensitivity analysis outlined in Section 4.2.3 to our case study to

first demonstrate the efficacy of the water-informed OPF formulation as well as examine how

system-wide sources of variability impact system performance. Table 4.1 outlines the bounds of

the four input factors for our case study. Starting with the loading in the synthetic grid, the

algorithm in Birchfield et al. [2017] creates realistic load profiles based on population densities.

Additionally, we assume that the default loading supplied by this test case is generally reflective of

normal loading conditions (i.e., cload = 1.0). We tested feasible uniform loading coefficients cload by

increasing values until the traditional DC OPF became infeasible due to thermal line limits or lack

of generation capacity. This simulated increase resulted in a maximum feasible cload value of 1.6.

To ensure that this bound is reasonable given actual conditions, we also examined historic loads.

The synthetic grid for this case study would be located in the Midcontinent Independent System

Operator (MISO). MISO only provides load data for its entire system and not for individual hubs.

The distribution of historic load data as well as the uniform loading coefficients for the years 2018

to 2019 were analyzed yielding that 1.6 is just out of the historic range of load coefficients so we

set the max uniform load coefficient value to be 1.5 to ensure a value that is both feasible and has

occurred in the historic record. To ensure that this value is realistic, we observe that a value of

1.5 is roughly the 99th percentile of historic loading. Studies have shown that the frequency of the

historic 99th percentile loading occurring is expected to increase up to 1500 percent depending on

the region and climatic predictions utilized [Auffhammer et al., 2017]. Therefore, we set 1.5 as the

upper bound of the uniform loading coefficient as it is both a historically realistic value, feasible

for our system, as well as a potential planning metric for analyzing a power system’s preparedness

for uncertain future conditions.

A similar process was followed to assign the ranges of the uniform water coefficient cwater.

First, well-behaved ranges were found to be between 0.5 and 1.5 (i.e., beyond these values the
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water-informed OPF becomes ill-conditioned and fails to converge). The distribution of historical

cwater values suggested that our variable is in the range of historical bounds. Additionally, we use

empirical estimates from standard thermoelectric water use models to show that such changes can

result from reasonable changes to inlet cooling temperature water [Rutberg et al., 2011].

The water withdrawal and consumption optimization weights (wwith and wcon) ranges are

selected to prevent against the previously mentioned ill-conditions for convergence.

Table 4.1: Sampling Space of Input Factors for Uniform Sensitivity Analysis

Input Factor Min Max

Number

of

Steps

wwith 0.0 0.1 10

wcon 0.0 1.0 10

cload 1.0 1.5 10

cwater 0.5 1.5 10

To grid sample the input factor space, each of the four input factors is divided into an equal

number of steps between its bounds as outlined in Table 4.1. This approach produces a uniform

sampling of the input factor space yielding 10,000 combinations of the input factors (wwith, wcon,

cwater, and cload), and the multi-objective water-informed OPF model was run for each combination

producing four objective values (fcos, fgen, fwith, fcon). The sampling was run on the RMACC

Summit supercomputer across one node with two CPUs (Intel Xeon E5-2680 v3, 2.50 GHz, 24

cores/node) with 4.84 GB RAM per core, taking a wall time of roughly 12 minutes.

A subset of this sampling is depicted in Figure 4.7. This figure shows both how our water-

informed OPF reduces system-wide water withdrawals as well as how a water-informed system is

able to take on additional loads with marginal increases to overall water use. This subset is chosen

to demonstrate extreme values for the withdrawal and consumption coefficients. The horizontal
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axis of Figure 4.7 represents increasing electricity demand. The vertical axis depicts the total

water withdrawal objective Fwith, which was defined in Equation 10. The color of the lines reflects

the uniform water coefficient (cwater). Darker lines correspond to more severe system-wide water

constraints (e.g., drought). Finally, the marker styles reflect a subset of the minimum and maximum

withdrawal weight (wwith).

Comparing system withdrawals between the same water constraint/increased electricity de-

mand scenarios but different withdrawal weights in Figure 4.7, we gain insights into the efficacy of

the water-informed OPF. Visually, the two lightest lines (uniform water coefficient equal to 0.61)

correspond to the highest water efficiency. As the system experiences increases in electricity de-

mand (i.e., moves to the right along the horizontal axis), the withdrawal weight has an increasing

effect on reducing overall system withdrawals. In fact, for loading coefficients less than 1.2, by

considering a withdrawal weight, the system adapts to rely on plants that either have low or zero

withdrawal weights to cover added loads. This outcome results in the system having only marginal

increases to water withdrawal as the system experiences larger loads. Across varying system-wide

water efficiencies (line color in Figure 4.7), we see that the effect of the withdrawal weight increases

as the system gets more water inefficient. To demonstrate the largest system-wide water inefficien-

cies (e.g., drought; uniform water coefficient equal to 1.5), we see that by assigning a withdrawal

weight (e.g., implementing a policy focused on withdrawal), we reduce system withdrawal to a level

expected at a better system-wide water efficiency (uniform water coefficient of 1.06).

Another trend from Figure 4.7 is that linear increases in electricity demands do not cause

linear increases to water use. This result might be expected given that water withdrawal is modeled

as a linear coefficient on generator power output. The reasons for this nonlinearity arise from other

power flow considerations in the water-informed OPF that cause individual generators to generate

electricity with nonlinear increases even under linear increases to total system loadings.
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Figure 4.7: Effect of Withdrawal Weight on Total System Withdrawal. This figure shows both how

our water-informed OPF reduces system-wide water withdrawals as well as how a water-informed

system is able to take on additional loads with marginal increases to overall water use. This figure

subsets the data such that the consumption coefficient wcon = 0.

To gain insights into what is happening on the plant level, we depict plant output capacity

factors in Figure 4.8, with each plant shown as a different line color and type. Generator output

capacity factors are defined as the ratio of the current power output to its total power output

capacity, shown on the vertical axis of Figure 4.8. As in Figure 4.7, the electricity demand (uniform

loading coefficient) is plotted on the horizontal axis. Each panel moving from left to right reflects

a different group of plants with the same fuel/cooling system type (with unique legends for each

row on the bottom). Each row of the figure reflects a different subsetting of the data as denoted

by the labels on the right.
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Figure 4.8: Effect of Withdrawal Weight and Uniform Water Coefficient on Plant Output. Samples

subset such that consumption weight (wcon) equals 0.0. Subsets of the uniform water coefficient

(cwater) and the withdrawal weight (wwith) are depicted to right. Abbreviations: Recirculating

with Induced Draft Cooling Tower (RI), Recirculating with Cooling Ponds (RC), Once-through

with Cooling Ponds (OC), No cooling system (NCS), Natural Gas (NG)

From Figure 4.8, we see the general trend that as loading increases (moves along the horizontal

axis), plants either output the same or more power (vertical axis). For example, there is no case

when system loading increases but an individual generator outputs less. This behavior is expected

given the nature of power systems and their governing equations. However, a more interesting

insight from Figure 4.8 is which plants output more power under linear increases to system load.

Looking at the top row of Figure 4.8 (lowest water constraint with traditional OPF), we see that

the increased electricity demand is generally supplied by the coal and nuclear plants. We see initial

electricity demand increases are first supplied by the nuclear generator, which quickly reaches

maximum generation as uniform loading coefficients increase beyond 1.2. Continued electricity

demand increases are then supplied by the coal plants with once-through and recirculating induced

draft cooling systems. Within the coal/once-through plants, the cheaper plants reach maximum
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capacity quickly (such as plants 9 and 12), whereas the more expensive plants reach capacity much

slower (plant 6). Certain plants, like 1 and 6, never reach maximum generation, even at the highest

uniform loading case. This finding suggests that something else about this network, like a line

constraint, is leading to the infeasibility of solutions beyond uniform loading coefficients of 1.6 as

there is extra generation capacity.

Comparing across rows in Figure 4.8, we see the impact that the withdrawal weight has on

individual plant power output. Recall that by putting a high weight on the withdrawn water, the

system operates to minimize the power output of plants with high withdrawal rates. This condition

is clear when comparing the coal/once-through plant output. In the top row (traditional OPF),

the system relies on coal/once-through plants to cover the initial increases in electricity demand.

However, when these water-inefficient plants are penalized, they do not output power until the most

severe loading conditions (first column, second row of Figure 4.8). In fact, the system is able to rely

on plants with lower withdrawal rates (coal/recirculating induced) or plants with zero withdrawal

rates (natural gas/no cooling system) to cover the initial load increases. Beyond loading coefficients

of 1.2 the nuclear plant is selected, which causes the increase in water withdrawal. Specifically, this

result is why system withdrawals did not increase until a loading coefficient of 1.2 as was observed

in Figure 4.7.

We can further subset the sampling data to observe the effect that applying a withdrawal

weight has on the actual flows through the system. We choose two solutions that both have a

consumption weight of 0.0, a uniform loading coefficient value of 1.5, and a uniform water coefficient

of 0.5. The only difference between the two solutions is that one is a traditional OPF formulation

with no withdrawal weight and the other is a water OPF formulation with a withdrawal weight of

0.1. Each solution produces a value of line loading for each line that we can express as a percentage

of each line’s limit. We visualize the difference in line loading between the traditional and water

OPF as is done in Figure 4.9. The convention for this figure is relative to the traditional OPF, such

that negative changes mean that under the water OPF flows went down in that particular line.

Busses are depicted as blue circles and transformers are depicted as black circles.
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Figure 4.9: Effect of Withdrawal Weight on Line Flows. Samples subset such that consumption

weight (wcon) equals 0.0, uniform loading coefficient (cload) equals 1.5, and the uniform water

coefficient (cwater) equals 0.5. Traditional OPF defined by withdrawal weight (wwith) equal 0.0

and the water OPF defined by withdrawal weight (wwith) equal 0.1. Lines are colored based on the

percent change relative to the traditional OPF case. Bus locations in the plot are not representative

of actual geospatial locations.

From Figure 4.9, we see that by incorporating water into the OPF formulation, flows through-

out the network change. We see that there are certain sections of the area that experience an

increase in line loading (depicted as dark red), while other areas experience significant decreases in

loading.

Through the uniform sensitivity analysis, we show that our water-informed OPF formulation

can effectively mitigate impacts on water consumption and withdrawal from changes in system
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water inefficiencies or increased loading. These water-informed operational policies are especially

useful if systems are experiencing sudden water constraints as these operational policies would be

much quicker to deploy than more long-term solutions like a water pipeline or upgrades to plant

components [Pacsi et al., 2013], and could avoid ecosystem damage from widespread granting of

thermal variances [Lubega and Stillwell, 2018a, Micha, 2014, Logan et al., 2021]. The proposed

water-informed power system operations complement the efforts to include water in long-term

planning operations [Jornada and Leon, 2016]. These efforts are also analogous to the efforts to

incorporate air pollutants into both long-term grid planning and short-term grid operations [Kumar

et al., 2020, Flores and Brouwer, 2018, Ren et al., 2010] both of which generally fall under the need

to create a grid that meets environmental targets [Ipakchi and Albuyeh, 2009].

Our framework is also helpful for determining what actions system operators or policymakers

could implement by showing which individual plants/generators are impacted by various external

stressors. For example, targeted maintenance or generator-level operational policies could be put

in place so that critical generators are ready to operate when needed. Similarly, through analysis

of line flows, analysts can identify areas of the transmission system that would be most impacted

by water-informed operational policies. Because increasing line loading closer to capacity can

result in increased losses, such parts of the transmission system could be preemptively upgraded.

Such insights address broader issues of creating policy that integrates day-to-day component-level

operations to long-term system planning and behavior [Battey et al., 2014].

Comparing the second and last rows of Figure 4.8 we see the impact that generator water

efficiency has on a system governed by our water-informed OPF. We see that the main differences

come from plant 9 and plant 16. Under more severe water inefficiencies, the coal/once-through

plant 9 reaches capacity before the recirculating/nuclear plant 16. However, what happens if local

processes impact the water withdrawal rates of these plants? The non-uniform sensitivity analysis

allows us to quantify the sensitivities of each individual plant’s water use on the various aspects of

system performance.
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4.4.2 Impacts of Non-Uniform Variability on System Performance

In the previous section, we assumed that water changed uniformly (i.e., all generators ex-

perience the same increase/decrease) in the system. In this section, we investigate how allowing

individual plant water usage to vary impacts system performance under a variety of exogenous

operational and policy scenarios. We apply the non-uniform sensitivity analysis outlined in Section

4.2.4 to several scenarios. The scenarios as well as their mathematical representations are pre-

sented in Table 4.2. We see that these scenarios capture different loading cases and policy cases.

For loading cases, there are normal loading conditions (cload = 1.0) as well as increased scenarios

(cload = 1.5). For policy cases, we consider the traditional OPF (which does not incorporate water

use). We also consider the decreased withdrawal case, which puts a high optimization weight on

the water withdrawn and a low weight on consumption (e.g., policy focus on reducing withdrawal).

The converse is true of the decreased consumption case. Recall that the choice of these values was

based on both feasibility and historical validity as discussed in Section 4.4.1.

Table 4.2: Exogenous Operational and Policy Scenarios for Non-Uniform SA

Exogenous Operational and Policy Scenario wwith wcon cload

Normal loading with traditional OPF 0.0 0.0 1.0

Increased loading with traditional OPF 0.0 0.0 1.5

Increased loading with decreased withdrawal 0.1 0.0 1.5

Increased loading with decreased consumption 0.0 1.0 1.5

Within each exogenous operational and policy scenario, we test the sensitivity of the water

use coefficient corresponding to each plant for this system. Our synthetic grid contains multiple gen-

erators of different fuel/cooling types located in the same plant. As previously discussed in Section

4.2.4, such groups of generators are given separate plant designations. Therefore, there are a total

of 17 unique plants. However, only 10 of those plants have cooling systems. We assign non-uniform



62

water coefficients to each of these ten plants Cwater,plant9, Cwater,plant6, Cwater,plant12, Cwater,plant15,

Cwater,plant1, Cwater,plant10, Cwater,plant3, Cwater,plant17, Cwater,plant13, and Cwater,plant16. These coef-

ficients are the input factors of the non-uniform sensitivity analysis.

Recall from Section 4.2.4, the non-uniform sensitivity analysis uses Sobol indices to quantify

input factor sensitivity. However, many of the traditional methods for estimating Sobol indices

are dependent on assumptions on the input factor distributions [Cousin et al., 2019, Hart and

Gremaud, 2018]. However, from the analysis of the historic distributions of the 10 input factors

for the regional dataset, we see that the input factors do not exhibit the behavior of common

parametric distributions. Fortunately, previous works have proposed methods to estimate Sobol

indices based on samples alone [Li and Mahadevan, 2016]. These sample-based methods allow us to

bootstrap sample the historic input factors. The number of bootstrap samples was determined to

be 22,528 based on 1024∗ (2∗10+2) with the value of ten for the number of input factors and 1024

based on literature recommendations [Herman and Usher, 2017, Saltelli, 2004]. This sampling is

repeated for each of the four operational scenarios. This sampling was run on the RMACC Summit

supercomputer across ten nodes with two CPUs (Intel Xeon E5-2680 v3, 2.50 GHz, 24 cores/node)

with 4.84 GB RAM per core which took a wall time of approximately 30 minutes.

We compute approximate first-order sensitivity indices for each of the four objectives using

the methods proposed in Li and Mahadevan [2016], for each of the ten input factors, repeated for

each of the four operational and policy scenarios. We arrange them in a heatmap as is visualized

in Figure 4.10. Each column in the figure represents the non-uniform water coefficient associated

with the plant labeled on the bottom. Each row indicates a unique objective labeled on the left.

Each panel column represents a grouping of plants based on their fuel and cooling system type

as indicated on the top. Each panel row indicates an operational and policy scenario as indicated

by the labels on the right. The color of each cell represents the first-order sensitivity of the input

factor on the objective.
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Figure 4.10: First Order Sobol Indices Non-Uniform Sensitivity Analysis. Each row is a different

objective. Each column is a different input factor. Each panel column represents a grouping of

plants based on their fuel and cooling system type as indicated on the top. Each panel row indicates

an operational and policy scenario as indicated by the labels on the right. Under traditional OPF

formulations, the generator cost and total cost objectives do not consider the input factors, and

are undefined in the first-order sensitivities indices; thus, they are not colored.

From Figure 4.10, we see which objectives are most sensitive to which plant’s water efficiency.

For example, in the panel on the second row in the first column, we see that system-wide water

consumption is sensitive to the water efficiency of plant 12 (depicted as bright yellow). Furthermore,

we see that plants 10, 12, and 16 are almost always sensitive to all objectives and operational

scenarios. This result makes sense given that these are the plants with the highest capacities. We

also see that plant 3 becomes more important during increased loading scenarios, confirming the
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insights about plant 3 found from the uniform sensitivity analysis.

Non-uniform loading allows analysts to see which plants most impact various aspects of sys-

tem performance. For example, our analysis showed that plant sensitivity to generator cost, water

consumption, and water withdrawal was often different. Such insights allow for the creation of

policy that directly targets the most important plants, or types of plants, with respect to a policy-

maker’s values. For example, our framework could inform a policy that targets water consumption

under increased loading, which might be different from a policy that targets water withdrawal under

normal loading.

4.5 Conclusion

Examples of extreme climate events that have impacted thermoelectric operations are com-

mon throughout the early 21st century. Perhaps the largest and most catastrophic event was the

2003 heatwave in France that forced a shutdown of 25 percent of its nuclear generators due to

high cooling water inlet temperatures [Harto et al., 2012, Poumadère et al., 2005]. Less severe

events include the droughts in 2006 that required the shutdown and curtailment of a number of

generators in Europe [Union of Concerned Scientists, 2007], as well as in Illinois and Minnesota,

U.S. [Harto et al., 2012]. The following year, a unit at Browns Ferry nuclear plant was forced to

shut down and the other two units reduced capacity during a heatwave and record-setting demand

[Union of Concerned Scientists, 2007]. Such reduced capacity operations cost the grid operators an

estimated additional $1 million per day to purchase power from neighboring systems [Freedman,

2012]. Similarly, droughts in 2011 caused reductions in power output in Texas [Galbraith, 2011,

Reuters Staff, 2011], with similar reductions occurring in the Northeastern and Midwestern United

States the following year [Eaton, 2012]. Recent studies estimate generator reductions/shutdowns

during the 2013-2016 droughts in India prevented 30 TWh of potential electricity generation [Luo,

2017].

One commonality among all these events is that they marked instances where system op-

erators needed to manually intervene in the traditional power system operations to accommodate
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external hydrologic, climatic, or demand factors. Instead of such reactive measures, our proposed

water-weighted OPF operational scenario framework provides an opportunity to take proactive

measures. We discussed how the insights gained through the operational scenario framework are

useful to system analysts and policymakers.

This chapter contributes and demonstrates a novel operational scenario analysis framework to

analyze power system performance under loading and water stresses. This framework is built on our

water-informed formulation of the OPF problem whose solutions are a function of generator water

efficiency, system loadings, and water use penalty terms. A multi-objective simulation model built

on this formulation allows analysts insights into relevant aspects of system performance. Sensitivity

analyses of this multi-objective model facilitated both system-level and component-level insights;

such insights are relevant to both system analysts as well as policymakers.



Chapter 5

Considering Cost, Water, Emissions, and Reliability When Creating Optimal

Power System Policies

The previous chapter proposed a framework where operational water penalties defined “pol-

icy” decisions. Using sensitivity analysis, that framework showed, by varying the values for the

operational water penalties, the cost and water use of power systems can vary significantly. This

chapter focuses on how optimal policies can be created that effectively compromise among emis-

sions and reliability (concerns raised in Chapter 3) in addition to the previously analyzed cost and

water use.

5.1 Introduction

This chapter unites Chapters 3 and 4. This chapter expands the policy-centric formulation

from Chapter 4 and optimizes the policies using the same methods as was done in Chapter 3. Just

as in Chapter 4, we will test the performance of the optimal policies against several exogenous

stress scenarios. However, this chapter looks at operational stressors (e.g., line outages) in addition

to the climatological stressors previously considered. Additionally, we will use the Water-Extended

Illinois 200 Bus System just as in Chapter 4.

This chapter contributes a tradeoff analysis of the cost, water, carbon dioxide emissions,

and reliability of energy systems, via proposing policies that can be rapidly and directly incorpo-

rated into existing power systems operations. We couple existing models of thermoelectric power

plant water use, emissions rates, and power systems reliability with an optimal power flow for-
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mulation. Through a representative case study, our generated policies mitigate the impacts of

various operational and climatological stressors. The combined water-emissions policies show im-

proved performance relative to policies solely created using water or emissions improvements, thus

demonstrating how effective energy policy would benefit from a multi-perspective approach.

5.2 Methodology

We expand the simulation model introduced in Chapter 4 in two major ways - the simulation

in this chapter (1) considers multiple timesteps of operation and (2) uses well-accepted empiri-

cal/physical models of water use, emissions, and reliability. Power systems cost and reliability are

simulated at an hourly timestep while water use and emissions are modeled on a daily timestep.

Exogenous parameters, those that are out of direct control of the system operator, such as the

loads in the system, streamflow, streamflow temperature, ambient air temperature, wind speed,

and various generator-specific parameters are required for simulation (Figure 5.1).

Water-Use Simulation (Daily)

Water/Emission/Reliability-Weighted 
DC OPF

Electric System Simulation (Hourly Resolution)

Water Use Rates

Capacity Reduction

Node 
Demand 
(Hourly)

States (Hourly):
• Energy Not Supplied (Hourly)
• Generator Output (Hourly)

Parameters:
• Water Use Rate (Daily)
• Water Use Weights (Constant)
• Emission weight (Constant)
• Generator Capacities (Daily)
• Wind capacity factor (Hourly)

States (Daily):
• Water Use Rates
• Discharge Temperature
• Generator Capacities

Daily Average Parameters:
• Stream Temperature
• Streamflow
• Air Temperature

End of Day

Send States for 
Next Day 

Figure 5.1: Overview of Simulation. The water use rate model is the system-level generic model

(S-GEM) [Rutberg et al., 2011] and the capacity reduction model is adapted from van Vliet et al.

[2016].
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5.2.1 Policy Decisions

We expand the operational penalties from the previous chapter not just to include generator

water withdrawal and water consumption but also generator emissions. Recall from the previous

chapter that a water withdrawal penalty with the units of dollars per gallon of water allows us to

define a water withdrawal cost term to be directly added to other operational costs.

A set of operational penalties constitutes a “policy”. Thus, each unique policy expresses a

relative preference for reducing water withdrawal, water consumption, and emissions. For example,

if a policy specifies a weight on water withdrawal too low, there will be no significant reduction in

system water withdrawal. However, if the value is too high, then the system drastically reduces

water withdrawal at the expense of significant increases in operational costs, emissions, and water

consumption. Therefore, it is crucial to make an informed policy decision that holistically considers

all aspects of energy system performance.

5.2.2 Water/Energy/Emissions Cosimulation

Through creating a week-long hourly-resolution water/energy/emissions cosimulation model,

we capture the system-level and generator-level performance impacts of policy decisions. The water

component of the cosimulation captures the water withdrawal and consumption of the generators.

The emissions component captures the carbon emissions associated with energy production. Finally,

the energy component captures the underlying generator operations of the electrical power system.

5.2.2.1 Water Use Simulation

Previously in Chapter 4, we assumed the water use rates of the generators to be an exogenous

factor. However, historic timeseries of these rates are not publicly available information. Therefore,

in this chapter, we broaden the scope of our simulation to start with streamflow, stream temper-

ature, and air temperature and simulate the resulting impacts on water use rates using standard

models because historic streamflow, stream temperature, and air temperature are either directly

available or easier to interpolate from historic data, as will be demonstrated for our case study.
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To model the water withdrawal and consumption rates, we implement models from Rutberg

et al. [2011] that capture the underlying thermodynamics of the thermoelectric cooling process. We

have extended these models to allow for temperature discharge violations following assumptions

laid out in Langford [1990], Madden et al. [2013] (Appendix Section C.1). To capture the impacts of

climatology on generator capacity, we implement the models from van Vliet et al. [2016] (Appendix

Section C.3). Rutberg et al. [2011] and van Vliet et al. [2016] use empirical correction factors to

account for the complexities and inefficiencies of real-world generators.

5.2.2.2 Emissions Simulation

This simulation focuses on carbon emissions due to their globally increasing trends in the

energy sector [Friedlingstein et al., 2022]. Fossil fuel sources have corresponding carbon emission

rates (e.g., lbs of CO2/MWh) analogous to the nitrogen oxide and sulfur oxide factors introduced

in Chapter 3. Estimates of carbon emission factors are typically based on historical information

and are generally well-accepted [EPA, 2021]. Therefore, our cosimulation captures total system

emissions as the product of a generator’s energy output and its emission rate.

5.2.2.3 Power System Simulation

The core of our simulation model is a water- and emissions-weighted DC OPF model solved

on an hourly timestep. Just as the formulation from Chapter 4, the objective is still a weighted

sum.

This formulation extends that of Chapter 4 in that it:

• includes an emission term and weight (wemit)

• includes a reliability term captured by energy not served (fcost,ENS)

• introduces a time dimension, thus active power at hour h is given by pg
h

The reliability of this system is also modeled as an additional penalty term in the objective

of our water- and emissions-informed DC OPF. Much like the operational penalties, the value-of-
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lost-load term specifies a monetary price associated with not serving electricity demand. These

monetary prices are typically expensive to avoid interruption in electricity supply [Anderson et al.,

2019]. Thus, the system will only choose not to serve demand if either all generators have reached

maximum capacity (so the system has no choice but not to serve demand) or, in the case of this

chapter, the operational penalties on water use or emissions are priced so expensive that it is

cheaper not to serve demand.

Our water/emission/reliability-weighted DC OPF formulation is as follows:

min
pg

h∀h
fgen + fcost,emit + fcost,water + fcost,ENS (5.1)

s.t. fgen =

24∑
h=1

∑
j∈G

aj + bjp
h
g,j + cj

(
phg,j

)2
t

 (5.2)

fcost,emit =

24∑
h=1

∑
j∈G

wemitβemit,jp
h
g,jt

 (5.3)

fcost,water =
24∑
h=1

∑
j∈G

(wwithβwith,j + wconβcon,j) p
h
g,jt

 (5.4)

fcost,ENS =
24∑
h=1

∑
j∈D

phg,jβV oLL
t

 (5.5)

phl,i −
∑
k∈Gi

phg,k =
∑
m∈N

Bimθhim, ∀i ∈ N , h = 1...24 (5.6)

− Λmax,im ≤ Bimθhim ≤ Λmax,im, ∀im ∈ L, h = 1...24 (5.7)

p
g,j
≤ phg,j ≤ p̄g,j , ∀j ∈ G, h = 1...24 (5.8)

− rg,j ≤ phg,j − ph+1
g,j ≤ r̄g,j , ∀j ∈ G, h = 1...24 (5.9)

which uses the same notation as the previous DC OPF notations used throughout this thesis (See

Section 2.4.2. However, a few new terms have been introduced. The rate of emissions is modeled

as βemit,j (e.g., lbs/MWh) and is converted to a cost using wemit. The value of the lost load is

βV oLL and D is the set of all the demands in the system. Due to the time-series nature of this

simulation, ramp-up and down rates (rg,j and r̄g,j) are also considered. Importantly, day-to-day
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ramping constraints are considered (i.e., hour 24 constraints hour 1 of the next day).

5.2.3 Objectives

Just as in Chapter 3, we compile several objectives that each appeal to a different decision-

maker-relevant aspect of system performance. We assume that the simulation runs for some number

of days D.

We use the traditional DC OPF objective from Equation 5.2 to quantify the total system

generator costs (fgen) defined as

fgen,tot =
D∑

d=1

(fd
gen) (5.10)

Similarly, we capture the total withdrawal (fwith,tot) and total consumption (fcon,tot) as

fwith,tot =

D∑
d=1

24∑
h=1

∑
j∈G

βd
with,j ∗ phg,j (5.11)

fcon,tot =
D∑

d=1

24∑
h=1

∑
j∈G

βd
con,j ∗ phg,j (5.12)

We capture the total thermoelectric discharge violations across all the generators with fdisvi,tot

fdisvi,tot =
D∑

d=1

24∑
h=1

∑
j∈G

(βwith,g − βcon,g) p
h
g,j∆T d

violation,j (5.13)

where ∆T d
violation,j is the discharge violation for generator j on day d. The estimated discharge is

captured by tracting the withdrawal from the consumption. The final units of this objective are the

volume of water times violation temperature such that both the volume of water discharge beyond

regulatory limits as well as the temperature are being captured.

Emissions are modeled as a linear rate

femit,tot =
D∑

d=1

24∑
h=1

∑
j∈G

βemit,jp
h
g,j (5.14)
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We model grid reliability with energy-not-served modeled over the set of demands D as

fENS,tot =
D∑

d=1

24∑
h=1

∑
j∈D

phg,j (5.15)

where phg,i is the energy not supplied at to load j during hour h. Recall that energy is not served

at a demand if its value exceeds the value of lost load βV oLL.

To capture the fact that system operators want to impose the lowest weights on the system,

we consider each of the decisions (wwith, wcon, wemit) to be additional objectives that are to be

minimized.

5.2.4 Nested Multi-Objective Optimization Using a Single-Objective Solver and

Weights

To recap, our water/energy simulation (Figure 5.1) is a function of decisions (operational

penalty weights) and exogenous parameters cex (processes that cannot be controlled by system

operators). The simulation produces several objectives as described in the previous section. We

denote our water/energy simulation (Figure 5.1) as a function Pcewr.

Because our simulation includes a weighted single objective optimization and we are interested

multi-objective optimization of those weights, we can use the same nested multi-objective formula-

tion proposed in Section 2.3.4. Recall that in this formulation we have an “inner” weighted-single-

objective optimization and an “outer” multi-objective optimization of those weights. Therefore,

our formulation is
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minimize
wwith,wcon,wemit

[fgen,tot, fwith,tot, fcon,tot, fdisvi,tot, femit,tot, fENS,tot, wwith, wcon, wemit] (5.16)

s.t.
Pcewr({wwith, wcon, wemit}, {cex}) =

[fgen,tot, fwith,tot, fcon,tot, fdisvi,tot, femit,tot, fENS,tot]

(5.17)

wwith ≤ wwith ≤ wwith (5.18)

wcon ≤ wcon ≤ wcon (5.19)

wemit ≤ wemit ≤ wemit (5.20)

where wwith, wcon, wemit represents the lower bound on each decision variable and wwith, wcon, wemit

represent the upper bound on each decision variable. The result of solving this problem is a

nondominated set of policies.

5.2.5 Tradeoff Analysis

Once we have our nondominated set of policies, we conduct a tradeoff analysis to first under-

stand the general interplay between our objectives. This allows us general insights into the systemic

behavior of water/energy systems. For example, we understand which objectives compete with one

another and which are harmonious.

In the final phase of our framework, we select a single representative “water-emissions” policy

that seeks an equal compromise with respect to several objectives (cost, water withdrawal, water

consumption, emissions) from the nondominated set. We simulate its performance under a variety

of system stressors. Through this, we understand how an optimal energy system policy can mitigate

the impacts of various stressors.

5.3 Extension of Case Study from Chapter 4

This chapter extends the synthetic case study that was used in the previous chapter (Chapter

4). Therefore, the same methods are implemented for assigning cooling system types for synthetic
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generators. Recall that the scope of the exogenous parameters has been broadened to allow for a

time-series simulation. Therefore, this chapter does not employ the statistical methods for sourcing

exogenous parameters previously outlined in Section 4.3.3 and 4.3.4. Instead, we use historical data

with empirical models to generate the required exogenous parameters.

5.3.1 Sourcing Exogenous Parameters

For ambient air temperature data, we use a National Solar Radiation Data Base location

near Springfield, Illinois from 2015 to 2020 [Sengupta et al., 2018]. For this system, the streamflow

temperature data does not have consistent temporal coverage. To supplement this, we fit the

empirical air temperature to the stream temperature model proposed in Mohseni et al. [1998],

which has been applied to similar thermoelectric modeling problems [Koch and Vögele, 2009, van

Vliet et al., 2016]. The fitted model appears in Appendix Figure D.1.

Due to the synthetic nature of this grid, hourly bus-level loading information must be syn-

thetically generated based on the publicly-available historic information. We start with the hourly

system-level load data for MISO, the geographic location in which our synthetic test system is

located (Figure 4.5).

We need to disaggregate this system-level load to the bus level. We model bus-level loads

as the product of the average bus-level loads, a system-wide capacity factor, and an hour-to-hour

bus-level load variation capacity factor. The average bus-level loadings are supplied in the synthetic

grid. We transform historic publicly available load data for our system by dividing it by the yearly

average to get the system-wide capacity factors. Finally, we use synthetic bus-level hourly profiles

to compute the hour-to-hour variation by dividing subsequent hours by one another to compute

our hour-to-hour load factors [Li et al., 2021]. For more details, consult Appendix Section D.

Wind capacity factors assume that turbines cut in at 6 mph, are rated for 25 mph, and turn

off beyond 50 miles per hour. Thus historic windspeed capacity factors are normalized to this

range.
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5.4 Results and Discussion

We apply the multi-objective policy search and tradeoff analysis previously outlined in Sec-

tion 5.2 to create our “water-emissions” policy. We solve the multi-objective problem using the

Borg multi-objective evolutionary algorithm [Hadka and Reed, 2013]. The Borg MOEA employs

epsilon dominance, a user-defined precision on each objective function. Within the dominance

calculation, a solution survives only if its performance differences are more significant than that

epsilon value, limiting the number of solutions found and easing the interpretability of tradeoffs.

Practically, epsilons act as a method for specifying the desired precision across the objective space.

An initial population of 100 was specified with a maximum of 7,500 function evaluations for this

search. Default parameter values were used for the remaining parameters which are justifiable

given demonstrations of Borg’s performance using its default parameterization Hadka et al. [2012].

This search was conducted on the University of Colorado’s Alpine supercomputer across 128 cores

(AMD Milan CPUs, 3.7 GHz, 3.75 GB/Core) for a wall time of 7.5 hours. To investigate the overall

success of the search, we analyze the hypervolume of the objective front throughout the search. The

hypervolume takes the volume of space covered by the objective front relative to a reference point

and is commonly used as a diagnostic for multi-objective searches [Zatarain Salazar et al., 2016].

We select a single policy from the resulting nondominated set which we label “Water-Emissions

Policy”.

5.4.1 Generating Policies for Comparision

For comparison, we also generate four unique policies using single-objective optimization

(Table 5.1). These comparison policies have been chosen such that each focuses on a single aspect

of water-energy-emissions system coupling. For example, the value of the water withdrawal penalty

for the “high water withdrawal penalty” policy is determined by increasing the penalty until no

additional reductions to water withdrawal were observed. An analogous process is followed for the

“high water consumption penalty” and the “high emissions penalty” policies. The final “status
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quo” policy reflects current economic-only operations. These four policies ignore the coupling of

water-energy-emissions systems as they each focus solely on a single objective at a time. Thus,

they will be used as a comparison to the holistic “water-emissions” policy.

Table 5.1: Single-Objective Policies

wwith wcon wemit Policy

0.0 0.0 0.0 Status Quo

0.0 0.043 0.0 High Water Consumption Penalty

0.036 0.0 0.0 High Water Withdrawal Wenalty

0.0 0.0 0.0044 High Emission Penalty

5.4.2 Exogenous Scenarios

We test our simulation/optimization on several historic exogenous parameter scenarios. The

average week scenario is simulated as a baseline reference for how the system behaves when all

the generators are available under average loading. The extreme load/climate scenario captures the

week that had the highest 7-day average air and water temperature. Such extreme weather produced

heavy loads. The nuclear outage scenario simulates a nuclear outage either due to operational

constraints or as a result of policy decisions. The line outage scenario simulates a planned or

unplanned line outage under average loading. The avoid temperature violation scenario assumes

that plant operators reduce capacity to avoid temperature violations.
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Table 5.2: Exogenous Scenarios

Scenario Name Description

Average Week Week with historically average temperature and

load

Extreme Load/Climate Week with historically high temperature and

load

Nuclear Outage1,2 Non-operation of a nuclear plant

Critical Line Outage2 Drastic changes in the transmission topology

Avoid Temperature Violation Shift in existing policy enforcement where gen-

erators ensure no temperature violations occur

by reducing output

1 For example, due to either maintenance or a water-related outage Krier [2012], Freedman
[2012].

2 The load and climatological stressors are set to average levels for these scenarios (i.e.,
outages are the only differences, with all other factors remaining constant)

5.4.3 The Interplay of Cost, Water Withdrawal, Water Consumption, and Emis-

sions

By comparing the relative performance of each policy for an average week, we gain insights

into the general interplay of cost, water withdrawal, water consumption, and emissions. The

performance of each policy is depicted in Figure 5.2 such that policies intersecting axes lower have

better performance (i.e., down is the preferred direction). Each policy increases operational costs

compared to “status quo” operations but offers benefits such as reduced water consumption. Some

policies offer focused benefits with respect to only a single objective while sacrificing performance

in other objectives. For example, the “high water consumption penalty” policy reduces status quo

water consumption by 80 percent but increases status quo emissions by 120 percent. Policies that

consider emissions (“high emissions penalty” and “water-emissions”) highlight that it is possible to
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reduce a system’s water withdrawal, water consumption, and emissions at a marginal (five percent)

increase in operational cost.

Cost
[$]

1.5e6
(Better)

2.5e6
(Worse)

Withdrawal
[Gallon]

9.5e7
(Better)

5.7e9
(Worse)

Consumption
[Gallon]

1.9e7
(Better)

1.0e8
(Worse)

Emissions
[lbs]

2.4e7
(Better)

9.8e7
(Worse)

Policy
Status Quo
High Water Withdrawal Penalty
High Water Consumption Penalty
High Emissions Penalty
Water-Emissions Policy

Figure 5.2: Tradeoffs in Policy Performance for an Average Week. Status quo operations de-

emphasize water consumption, withdrawal, and emissions. However, through multi-objective policy

optimization, we find holistic policies that effectively compromise among all objectives.

This analysis reveals a nuanced tradeoff between water use, emissions, and cost. The gen-

eral tradeoff between water consumption and withdrawal has been established [McCall and Mack-

nick, 2016], but the impacts of this tradeoff on operational costs and emissions have not been

demonstrated. Generator cooling technologies that are water-consumption-efficient tend to be

water-withdrawal-inefficient and vice versa. This is mainly because cooling technologies can be

broken down into open-loop technologies that rely on the direct warming of diverted liquid water

(increased withdrawal) and recirculating systems that warm air and recirculating water via heat

exchanger (increased consumption). The two policies that attempt only water reductions (“high

water withdrawal penalty” and “high water consumption penalty”) have poor cost and emissions

performance because they shift the power dispatch of the system toward costly water-efficient and

emission-inefficient generators (e.g., natural gas combustion turbines seen in Appendix Figure E.1).

However, the way that these policies achieve this performance is different; in our case study, each

policies’ relative emphasis determines the extent to which the system relies on expensive natural

gas generators with recirculating cooling systems or coal generators with once-through cooling sys-

tems. Therefore, even though these two policies have similar costs, one produces the minimum
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withdrawal while the other produces the maximum withdrawal of the policies tested. However, this

minimum/maximum behavior was not observed for system water consumption. Instead, the policy

that minimized withdrawal had the fourth highest consumption. For our system, this nuanced

behavior was due to the inclusion of a nuclear generator whose cooling system was inefficient with

respect to both water withdrawal and consumption. This behavior led to “status quo” operations

exhibiting the highest consumption. Unfortunately, the severity of this tradeoff would be further

exacerbated if generators install emission-capturing devices without considering how these devices

further increase water consumption [Zhai and Rubin, 2010]. Clearly, how policies impact the in-

terplay of cost, water withdrawal, water consumption, and emissions in energy systems, is both

nuanced and critical for the future of our energy systems.

5.4.4 Comparing Climatological and Operational Stressors

Modern energy grids, and the policies associated with them, must respond to various climato-

logical and operational stressors [Pfenninger et al., 2014, Miara et al., 2017]. The policy performance

(bars) over each scenario (column) for every objective (row) is depicted in Figure 5.3. We compare

our policy’s performance for several scenarios with varying degrees of climatological and operational

stressors (Table 5.2) to the average week performance previously discussed in Section 5.4.3.

Operational stressors not commonly associated with water/energy interactions, like a nuclear

outage, can have more pronounced impacts on systems than the traditionally considered climatolog-

ical stressors particularly due to their geographical correlation Bernstein et al. [2014]. The nuclear

outage scenario leads to increases in operational costs, water withdrawals, and emissions compared

to the extreme load/climate scenario under current operations. Physically, this result is because the

system has lost an operationally inexpensive and low-emitting fuel source. This finding suggests

that, for our case study, a nuclear outage is a larger stressor than historical climatological extremes.

Other uncommon water/energy operational stressors, like a line outage, can also impact

policy performance. Physically, the transmission network topology constrains generator dispatch.

Although the critical line outage scenario led to slight (roughly 10 percent) increases in operational
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cost, withdrawal, and consumption, system emissions saw a greater impact. Particularly, “status

quo” emissions saw a twenty percent increase. However, the largest impact was to system reliability

as a result of the “high water withdrawal penalty” policy. Such behavior further highlights the

importance of topological consideration in creating a holistic energy policy.

Our policies effectively mitigated impacts on system performance during our simulated sce-

narios. Figure 5.4 highlights the performance of the informed policies relative to “status quo” by

depicting this policy performance as bars and the relative change of the policy performance as

lollipops. Therefore, a downward-facing lollipop shows a decrease (i.e., improvement) in objective

performance relative to “status quo”.

The scenarios applied to our case study reveal that external stressors can have widely varying

impacts on policy performance. Recall the tendency from Section 5.4.3 that the two policies that

attempt only water reductions tend to strongly emphasize water-related objectives at the severe

cost of all other objectives. The extreme load/climate scenario illustrates the severity of this ten-

dency. By introducing a high consumption penalty, some generators discharge significant volumes

of elevated-temperature water beyond legal limits posing threats to riverine ecology. Conversely,

the “high withdrawal penalty policy” impacts system reliability as the cost of withdrawn water

outweighs the cost of not serving demand. However, the nuclear outage scenario illustrates that

these two policies actually improve emissions while not impacting reliability or discharge violations.

A policy focused only on emissions reduction has benefits for the various water-related ob-

jectives of the system across all simulated scenarios. We see the emission-focused policy (“high-

emissions penalty”) only marginally (less than 6 percent) increases cost across all scenarios. How-

ever, for this cost increase, it is able to unanimously improve status quo water withdrawal, water

consumption, and emissions performance. It even offers some benefits to reducing thermal dis-

charge violations in the extreme load/climate scenario. Importantly, we see that the reliability of

the system is maintained with an emissions-only-focused policy. In our next section, we discuss

how our holistic water and emissions policy is able further to improve on the emissions-only policy.
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Figure 5.3: Policy Performance Over Several Scenarios. Objectives, scenarios, and policies are

depicted as rows, columns, and colors, respectively. We introduce the discharge violations objective

defined as the amount and temperature of water discharged beyond the legal limit as well as the

energy not supplied by the system (i.e., reliability) as additional system objectives. Objective

performance is impacted by the scenario regardless of the policy.
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Figure 5.4: Policy Performance Relative to Status Quo Operations. “Status quo” policy is depicted

as bars. Downward lollipops portray an improvement in policy performance relative to “status

quo” policy. Through water- and emission-informed policy, the impacts of various climatological

and operational stressors can be effectively mitigated.

5.4.5 The Benefits of Holistic Policy Considerations

Life-threatening impacts on fish populations due to thermal discharge violations from power

plants [Logan et al., 2021, Barnthouse and Coutant, 2022] are avoidable through well-created and
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enforced energy policies. However, the physical grid reliability can be threatened by policies that

completely eliminate such violations (e.g., “high water withdrawal penalty”). Meanwhile, other

policies offer only some reductions to these thermal discharge violations (e.g., “high emissions

penalty”).

Our holistic “water-emissions” policy capitalizes on some of the strengths of the “high emis-

sions penalty” policy while augmenting the ability to operate the system with no discharge vi-

olations. Specifically, this holistic policy leads to no thermal discharge violations while yielding

improvements in system withdrawal, consumption, and emissions without major increases in oper-

ational cost. Additionally, this policy’s performance is preserved across climatological and opera-

tional stressors.

Our “water-emissions” policy also has enforcement benefits. The proposed policies are incor-

porated directly into the existing operational problem of optimal power flow without adding sub-

stantial complexity. Such direct incorporation avoids the need for enforcement that is dependent

on human judgment. For example, currently, many existing laws prevent discharge temperature

violations. However, such laws are rarely enforced [Micha, 2014, Liu et al., 2017]. In the avoid tem-

perature violation scenario, we simulate a reality in which such laws are enforced and generators

reduce capacity instead of allowing temperature violations. Even under such scenarios, our policy

still offers benefits to reducing water withdrawal and emissions. Although our policy only slightly

increases overall system costs, there does exist the “who pays?” question regarding that increase.

One such method that has been implemented for emissions reduction is a cap-and-trade scheme;

however, the specific methods are an area of future research.

5.5 Conclusion

In this chapter, we pose alternative water- and emissions-informed policies, comprised of

weights on water use and emission, for operating energy systems such that impacts associated with

extreme operational and climatological system stressors can be effectively mitigated. However,

selecting the specific value of these weights is nontrivial. We create several reference policies that
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capture the status quo and traditional single-objective operational approaches (i.e., policies that

just focus on reducing cost, just focus on reducing emissions, etc.). Through simulation applied to a

case study, we discover fundamental interactions among system operational costs, water withdrawal,

water consumption, emissions, and reliability. Additionally, we show that the consideration of

both operational and climatological stressors, as well as a high-fidelity power systems model, are

crucial when creating energy policies. If these considerations are ignored, policies intended to have

benefits with respect to certain aspects of system performance may severely degrade other areas

of performance. We compare the performance of our reference policies to the performance of a

holistic water/emissions policy created using a multi-objective policy search framework that allows

policymakers to create holistic policies that reflect their specific preferences for system operation.

We show that such holistic policies balance the impact of operational and climatological exogenous

system stressors. Thus, a multi-objective perspective is necessary to create holistic energy system

policies.



Chapter 6

Concluding Remarks

This dissertation proposed several novel frameworks for the multi-objective operation of power

systems - specifically, focusing on the interactions among of thermoelectric water use, emissions,

cost, and reliability. The first of these frameworks contributed a novel multi-objective water-

and emissions-informed tradeoff framework. The second of these frameworks used a sensitivity

analysis of a policy-focused water/energy model to show how policy decisions can help mitigate

the adverse effects of external climatological stressors. The final framework contributes a multi-

objective method to find optimal operational penalties as well as a novel cosimulation model to

simulate interactions between power system cost, water use, reliability, and emissions.

Throughout this thesis, we have demonstrated the utility of these frameworks to the current

and future power systems community. Currently, the insights gained through these frameworks are

primarily valuable to power system planners. We gained both system and component-level insights

into how various climatological stressors impact the water, emissions, cost, and reliability of the

grid. Such information is critical for grid planning decisions, such as generator decommissioning

or power plant cooling system retrofitting decisions. Our high-fidelity approach to modeling power

systems operations as well as the rigorousness with which the multi-objective methods were applied

also allowed us detailed insights into water/energy system interactions. Our demonstration of such

approaches is invaluable to the current and future water/energy academic community.

The value of this work will hopefully one day translate into water- and emissions-informed

real-time power systems operations. However, before such a pilot program could be attempted,
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additional efforts would need to be investigated to answer the “who pays” question which was

largely out of the scope of this thesis. Although the resulting cost increases throughout this thesis

were often marginal, such increases can add up over time, and thus further efforts are needed

to determine how these costs could be equitably split. One common solution for power systems

operations would be through the creation of a market structure, however, the specific details of

such a structure would require additional research efforts.

There are also several ways in which this research could be extended for power system plan-

ning purposes. One obvious extension would be to create projected grid stressors instead of historic

events [Verdin et al., 2015, Prairie et al., 2012]. The projection of synthetic water/energy datasets

is a particularly difficult task due to the natural uncertainty in natural systems as well as the

compounded uncertainty in the technological advances that will impact the grid. Therefore, the

future of water energy systems may be “deeply uncertain” and further efforts could take the view

of ensuring robust policies that are designed to be effective across many possible states of the world

[Kasprzyk et al., 2013].

Another extension of this work would be to expand the time horizon and detail of the

cosimulation model. For example, a production cost power systems simulation could include

both unit commitment and power flow over many years - thus allowing insight into seasonal

water/energy/emissions/reliability impacts. Additionally, our cosimulation could include existing

fishkill models to accurately capture the propagating ecological impacts of thermoelectric discharge

on local fish populations [Deslauriers et al., 2017]. Similarly, such a model could be coupled with

a high-fidelity river routing model to further examine the impacts of thermoelectric “interference”

(i.e., the process of upstream plants impacting downstream plants) [Miara et al., 2018]. However,

validating such a simulation would require extensive publicly-available thermoelectric discharge

data, which unfortunately has not become ubiquitous even after recent requests [Chini et al., 2018,

Meng et al., 2020]. Additionally, as further models are developed, increased efforts should be made

to create user-centric software tools for water/energy cosimulations, especially if such efforts are to

be repeated across many use cases.
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The important choice of how to operate the energy grid leads to cascading impacts that are felt

far beyond the energy sector. Neglecting such interactions during operation can have detrimental

externalities. While it may be tempting to consider such externalities as a hard constraint on

system operations, we have seen that when energy grids are pushed to their limits, these once-

hard constraints seem like ideals. Multi-objective operational policy frameworks, such as the ones

proposed in this thesis, demonstrate the ability to more honestly and consistently represent the

connectedness of the modern energy system. Therefore, if we are to make effective policies for

modern coupled energy systems, systems that are inherently multi-objective, we must embrace

multi-objective energy policies.
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Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger,
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Appendix A

Summary of Symbol Definitions

Symbol Definition

x Illustrative decision vector

x∗ Illustrative optimal decision vector

d Length of illustrative decision vector

g Number of illustrative objectives

h Illustrative function for optimization constraints

f Objective term

F Objective vector

p Length of objective vector

w Weight term

w Weight vector

W Length of weighting vector

pg Generator active power

pg Vector of active power generation

p∗
g Vector of optimal active power generation

q Generator reactive power

q Vector of generator reactive power

pL Active load

pL Vector of active load

v Bus voltage

v Vector of bus voltages

B Number of buses

N Set of buses

C Generic cost objective function

Y Admitiance matrix

Y Feasible active and reactive powers
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B Susceptance matrix

B Entry in susceptance matrix

θ Difference in the voltage phase angles

L Set of lines

Λmax Line limit

G Set of generators

t Timestep conversion factor

G Number of generators

a Constant cost term

b Linear cost term

c Quadratic cost term

α Constant emissions term

βemit Linear emissions term

γ Quadratic emissions term

ξ Linear emissions correction term

λ Exponential emission term

βwith Water withdrawal rate

βcon Water consumption rate

βV oLL Value of lost load

wwith Water withdrawal weight

wcon Water consumption weight

cload Uniform loading factor

wemit Emission weight

cwater Uniform water factor

SFirst
i,j First order Sobol index

r Generator ramp down rate

r̄ Generator ramp up rate

Pwwopf Water-weighted OPF formulation

Pcw Cost and water simulation

Pcewr Cost, emission, water, and reliability simulation

fcos Total cost objective

fgen Generator operational cost objective

fgen,tot Total (over time) generator operational cost objective

femit Emissions objective

fcost,emit Cost of emissions objective

femit,tot Total (over time) emission objective

fwith Water withdrawal objective

fcost,with Cost of water withdrawal objective
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fwith,tot Total (over time) water withdrawal objective

fcon Water consumption objective

fcost,con Cost of water consumption objective

fcon,tot Total (over time) water consumption objective

fcost,ENS Cost of energy not served objective

ftot,ENS Total (over time) energy not served objective

fdisvi,tot Total (over time) discharge violation objective

Table A.1: Summary of Symbol Definitions. Note, does not include symbols only used in Appendix.
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Case Study: Dam Hazard Classification

There are 16,000 high-hazard potential dams in the U.S. [Federal Emergency Management

Agency and Department of Homeland Security, 2017]. A high-hazard potential dam is one in which

it is probable that failure would cause loss of human life. Although this definition is codified at

the federal level, the actual methodologies by which dams are classified are defined on a state-

level, with state dam officials evaluating dam hazard potential on a case-by-case basis, ultimately

relying on human judgment [Federal Emergency Management Agency, 1998]. Such a system is

prone to hazard potential classification inconsistencies which could lead to negative regulatory and

human-safety implications.

Classifying dam hazard potential needs to be done consistently, continually, and across large

spatial extents [Mamerow, 2018, Schoolmeesters, 2020]. Geospatial models [Aboelata et al., 2002,

Aboelata and Bowles, 2008], dam-break flood routing numerical simulation models [Luo et al., 2009],

risk-based models [Larruari and Lall, 2020] offer valuable insight into the engineering and economic

consequences of dam failures but could be difficult to automate due to input feature requirements.

Other works have proposed empirical relationships for estimating dam loss-of-life based on datasets

of historic dam breaks [Feinberg et al., 2016]. However, these methods fail to consider the complex

locational aspects of dam failure. This case study overcomes the existing feature requirements

by using a parameterized geospatial and tree-based model that has been trained using existing

geospatial datasets and publicly available dam hazard datasets. However, how we get the values

for these parameters is tied to a single- or multi-objective perspective.
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B.1 Decisions

The nine “decisions” in this problem are the seven hyperparameters of an ensemble tree-

based algorithm and the two parameters of our novel geospatial dam-break estimation model. For

this illustrative example, we will provide only high-level summaries of these parameters (consult

Kravits et al. [2021b] for more detailed parameter descriptions). The six tree-based-model hyperpa-

rameters (Nestimators, Nmaxdepth, Nmaxfeatures, Nmaxleafnodes, Nminsamplesplit, Nminsamplesleaf , and

Nminweightfraction) work together to prevent the overfitting and handle imbalanced datasets. In lieu

of doing a full hydraulic analysis of flow downstream of the dam, the geospatial model hypothe-

sizes that the downstream statistics can be captured by two model parameters: Nlength, a distance

downstream of the dam itself; and Nwidth, a distance perpendicular to the downstream distance

that represents a characteristic “width” of the zone. We collect our nine decisions into a vector

that we define as x.

B.2 Objectives

The “objectives” allow us to quantify the performance of a decision vector x. In other words,

an objective allows us insights into how “good” or “bad” a set of decisions is. However, for this

problem, this choice of “good” and “bad” is deeply tied to moral values. Consider how dams

can be correctly and incorrectly classified in Table 2.1. On the diagonal, we have our correctly

classified dams (true positive and negative). These cases are ideal in that they mean that our

model agrees with the current classification. However, consider the incorrectly classified off-diagonal

(false negative and positive) cases - wrongly classifying a high-hazard dam may lead to downstream

populations being put at an increased risk whereas wrongly classifying a non-high-hazard dam may

lead to overinvestment. We are forced to morally compare correctly classified threats to human

life, potentially unclassified threats to human life, and wasted capital.

We quantify the cases in Table 2.1 into several objectives - each capturing a different moral

value. The accuracy (facc) objective, the ratio of true classifications to total classifications, is
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a common choice for these types of water resources classification problems as it maximizes the

greatest good [Maier and Dandy, 2000]. Although it is intuitive and easily interpretable, accuracy

alone does not directly consider the types of model misclassifications. Taking ratios over the cells

in Table 2.1 defines two common objectives of false positive rate (FPR) and true positive rate

(TPR). The FPR objective (fFPR) is the ratio of falsely classified high-hazard potential dams to

true high-hazard potential dams. TPR (fTPR) is the ratio of correctly classified not-high-hazard

dams to actually not-high-hazard potential dams. Each objective expresses a different preference

for misclassification type. One drawback of accuracy, TPR, and FPR is that they are all calculated

at a single classification threshold (how algorithms quantitatively split positive and negative cases).

However, it is often helpful to assess a model across many decision thresholds [Bradley, 1997]. To

capture a more holistic model performance, we quantify performance over multiple classification

thresholds using the area under receiver operator characteristic curve (AUROCC) objective (fAUC).

B.3 Single- and Multi-Objective Formulations

Now that we have selected our objectives to relate our decisions x to some scalar performance

(e.i, facc(x)), fTPR(x), fFPR(x), fAUC(x)), we are ready to demonstrate the difference between

single- and multi-objective optimization of our decisions.

Let’s start with the single-objective case assuming that we want to select decision x such

that accuracy is maximized. We would construct the following optimization problem:

min
x

− facc (B.1)

s.t. C(x) = facc (B.2)

xj ≥ xlowerj , ∀j ∈ {1, . . . , d} (B.3)

xj ≤ xupperj , ∀j ∈ {1, . . . , d} (B.4)

where d is the number of decisions, our geospatial tree-based classification is C, and the upper and

lower bounds on each decision variable is xlower and xupper, respectively.
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However, note that formulation only considers accuracy - we are ignoring the previously mo-

tivated misclassifications captured by the TPR, FPR, and AUROCC! We could add normalization

weights to those objectives such that these weights reflect the relative preference of each objective.

This case defines a new objective function fweighted(x, facc, fFPR, fTPR, fAUC) such that all of the

objectives are distilled into a scalar value. However, knowing what values to select for the prefer-

ence weights is difficult to know in advance as well as tied to the previously outlined difficult moral

comparisons. Furthermore, if the objectives do not conflict, no moral choice may need to be made.

This formulation seeks solutions that capture different compromises among the four objec-

tives, defined by the set of nondominated solutions. This case study employs the Borg multi-

objective evolutionary algorithm (MOEA) [Hadka and Reed, 2013] which is a population-based,

metaheuristic framework that evolves a set of Pareto-approximate solutions by combining solutions

using multiple recombination operators.

B.4 Insights From a Multi-Objective Perspective

We illustrate the types of insights gained through a multi-objective perspective using dams

in Massachusetts, U.S. Figure B.1 presents the set of nondominated solutions as parallel axis plots.

Figure B.1a depicts the performance of each objective as a vertical line. These axes have been

formatted such that ideal solutions intersect the vertical objective axis lower. In other words, a

preferred solution would appear as a horizontal line across the bottom of Figure B.1. Figure B.1b

depicts the corresponding decision values, and thus there is no preferred direction. To further

highlight patterns in the Phase 1 reference set, each solution has been colored to represent Phase

1 FPR.
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(a) Objective Performance

(b) Decision Values

Figure B.1: Example Nondominated Set from a Multi-Objective Problem Set. Solutions are colored

according to accuracy

Figure B.1 illustrates how from a multi-objective perspective we engage in how objectives

tradeoff with one another. For example, from Figure B.1a, there is a clear tradeoff between TPR

and FPR. The result suggests that maximizing the correctly classified not high-hazard dams comes

at the cost of wrongly classifying high-hazard dams. Generally, the best-performing TPR and

FPR results tend to have low AUROCC. This result makes sense given that decisions that yielded

extreme objective performance at a single classification threshold would have overall deteriorated

performance across many classification thresholds. Additionally, AUROCC does not appear to be

complementary to either FPR or TPR. This means that its inclusion in this analysis is helpful

because it successfully captures holistic model behavior without emphasizing false positive or false

negative classifications.
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Water-Use Simulation Models

This section investigates the System-Level Generic Model of thermoelectric water use pro-

posed in Rutberg et al. [2011].

C.1 Once-through Systems

Once-through systems provide cooling by directly warming colder withdrawn water by run-

ning it past a heat exchanger [Rutberg et al., 2011]. Therefore, the withdrawal and consumption of

these systems are sensitive to the temperature difference between the inlet and outlet of the cooling

system. We extend previous models to better capture discharge temperature violation beyond a

regulatory upper limit (st,regulatory) in Algorithm 1. By default, plants operate such that the dif-

ference between the inlet and outlet temperature is equal to 10 degrees Celsius [Langford, 1990].

If doing so puts them beyond the regulatory discharge limits, then plants discharge directly at the

regulatory limit. As inlet streamflow temperature increases, plants require higher water use rates.

However, withdrawal and consumption rates have an upper limit due to the pumping, availability,

or other physical characteristics of the plant. Therefore, in cases of high inlet streamflow tem-

peratures, we fix the withdrawal and consumption rates at an operational maximum (βwithlimit,j ,

βconlimit,j) for a given plant j and then solve for ∆T such that a discharge violation is occurring

[Madden et al., 2013].
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Algorithm 1 Overview of Once-Through Cooling Equations

∆T ← 10 ▷ From [Langford, 1990]

if st +∆T > st,regulator then ▷ Causes violation

∆T = st,regulator − st ▷ Set discharge temperature at regulatory

end if

βwith,oc = 3600 (1−ηnet−kos)
ηnet

1
ρwcp∆T + βproc

βcon,oc = 3600 (1−ηnet−kos)
ηnet

kde
ρwcp∆T + βproc

if (βwith,oc > βwithlimit) or (βcon,oc > βconlimit) then ▷ ∆T cannot be achieved

βwith,oc ← βwithlimit

βcon,oc ← βconlimit

∆T = 3600 (1−ηnet−kos)
ηnet

1
ρwcp(βwith,oc−βproc)

end if

where the terms are defined:
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Parameter Description Units

βwith Withdrawal Rate L/MWh

βcon Consumption Rate L/MWh

st Inlet streamflow temperature C

∆T Inlet/outlet water tempera-

ture difference

C

ηnet Ratio of electricity generation

rate to thermal input

%

kos Thermal input lost to non-

cooling system sinks

%

kde Fraction of withdrawal that

evaporates downstream

%

ρw Density of water kg/L

cp Specific heat of water MJ/kg-K

βproc Non-cooling rate L/MWh

C.2 Recirculating Systems

Recirculating systems provide cooling by using cooling towers to facilitate convective heat

transfer to ambient air. Therefore, the withdrawal and consumption of recirculating systems are

most sensitive to the ambient air temperature [Rutberg et al., 2011, Diehl et al., 2013]. Cooling

towers collect the cooled water for recirculation in the system with some water being consumed as

evaporation. These processes are captured in the withdrawal and consumption equations:

βwith,rc = 3600
(1− ηnet − kos)

ηnet

(1− ksens)

ρwhfg

(
1 +

1

ncc − 1

)
+ βproc (C.1)

βcon,rc = 3600
(1− ηnet − kos)

ηnet

(1− ksens)

ρwhfg

(
1 +

1− kbd
ncc − 1

)
+ βproc (C.2)

where the additional terms are defined:
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Parameter Description Units

ηcc Number of cooling cycles #

kbd Discharge blowdown %

ksens Heat load rejected %

hfg Latent heat of water MJ/kg

General estimates consider ksens to be constant value [ASHRAE, 2008]. However, such meth-

ods fail to capture the impact that ambient air temperature has on water efficiency. Rutberg et al.

[2011] conduct a sensitivity analysis of the cooling tower model proposed in Kloppers and Kröger

[2005] and determine that ksens can be estimated as:

ksens =
−0.000279t3inlet + 0.00109t2inlet − 0.345tinlet + 26.7

100
(C.3)

where tinlet is the dry-bulb temperature at the inlet of the cooling tower.

C.3 Capacity Reduction Model

We adapt the capacity reduciton model from van Vliet et al. [2016] to capture the impacts

that thermoelectric water use limits have on generator capacity.

qOC = KW · 1− ηtotal
ηelec

· (1− α)

ρw · Cp ·max (∆T, 0)
(C.4)

Pthermo,OC =
min((γ ·Q), qOC) · ρw · Cp ·max (∆T, 0)

1−ηtotal
ηelec

· λ · (1− α)
(C.5)

qRC = KW · 1− ηtotal
ηelec

· (1− α) · (1− β) · ω · EZ

ρw · Cp ·max (∆T, 0)
(C.6)

Pthermo,RC =
min((γ ·Q), qRC) · ρw · Cp ·max (∆T, 0)
1−ηtotal
ηelec

· λ · (1− α) · (1− β) · ω · EZ
(C.7)

where the parameter definitions are given:
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Parameter Description Units

Pthermo,OC Once through useable capacity [MW ]

Pthermo,RC Recirculating useable capacity [MW ]

KW Capacity [MW ]

ηtotal Total efficiency

ηelec Electric efficiency

α Share of waste heat not discharged by cooling water

β Share of waste heat released into the air

ω Correction factor accounting for effects of changes in air tem-

perature and humidity within a year

EZ Densification factor accounting for replacement of water in

cooling towers to avoid high salinity levels

λ Correction factor accounting for the effects of reductions in

efficiencies when power plants are operating at low capacities

γ Maximum fraction of streamflow to be withdrawn for cooling

of thermoelectric power

Q Daily streamflow
[
m3

s

]

Values for qwith,OC and qwith,RC are passed from the previously described water use models.

Total and electric efficiency values are sourced from [Koch and Vögele, 2009]. α and β are assumed

to be 0.01 and 0.986, respectively [IAEA, 2012, Habashy, 2020]. ω is taken as 0.95 [Koch and

Vögele, 2009]. EZ is assumed to be 3 [Koch and Vögele, 2009, Rübbelke and Vögele, 2011]. λ

is 1.0 for normal operations and 0.9 if the capacity is reduced more than fifty percent [van Vliet

et al., 2016]. γ is taken to be 0.02 based on the maximum withdrawal rates and median streamflow

temperatures for our system.
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Case Study Generation
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Figure D.1: Fit of Water Temperature Model From Mohseni et al. [1998] for USGS Gauge on

Illinois River at Henry, IL

We need to disaggregate this system-level load to the bus level. We model bus-level loads as
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phl,i = pl,avg ∗ fh
sys ∗ fh

var,i ∀i ∈ N (D.1)

where phl,i is the active load at bus i during hour h. To model this the pl,avg captures the average

difference in loading magnitudes between different buses, fh
sys captures the hour-hour load factors

among the entire system, and fh
var,i captures the relative hour-to-hour variation among loads at

each bus. This process has been visualized in Figure D.2.

For our synthetic grid, the vector of bus loadings (pl) is supplied (Figure D.2A). We use the

publicly available MISO data from and transform it into a system load factor by dividing it by the

yearly average. Interpreting Figure D.2B, we see the system loadings generally vary between 90

and 140 percent of the yearly average. We use randomly assigned synthetic bus-level hourly profiles

to compute the hour-to-hour variation by dividing subsequent hours by one another to compute

our hour-to-hour load factors [Li et al., 2021]. The hour-to-hour variation is the most significant

as visualized in Figure D.2C. Figure D.2D depicts the final loads for each bus in the system.

*𝒑𝒍 * =

(A) (B) (C) (D)

Figure D.2: Overview of Node Load Procedure. (A) pl captures the average difference in bus

loadings. (B) fsys captures the system-wide hourly variation in loading including correlations with

the exogenous parameters. (C) fvar captures the hour-to-hour variation in bus loading. (D) Loading

profiles for each bus.
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Extended Comparison of Policies
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Figure E.1: Power Output by Cooling and Fuel Technology Output for an Average Week.
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