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The physical and chemical properties of planetary atmospheres are affected by tem-

poral evolution of ultraviolet (UV) radiation inputs from their host stars at all time scales.

This includes the short-lived flares ranging from minutes to hours, to medium-scaled stellar

rotation and cycles ranging from days to years, and long-term stellar evolutionary changes

on timescales of millions to billions of years. These varying energy inputs have great in-

fluence on the photochemical equilibrium of exoplanetary atmospheric conditions and their

susceptibility to atmospheric escape. While studies of X-ray/UV flare properties and long-

term stellar evolution of exoplanet host stars have provided new constraints regarding stellar

inputs to exoplanetary systems, the UV temporal variability of cool stars on the timescale of

stellar cycles remains largely unexplored. To address this concern, we analyze far-ultraviolet

(FUV) emission lines of ions that trace the chromosphere and transition region of nearby

stars (C II, Si III, Si IV, and N V; formation temperatures ∼ 20 – 150kK) using data from

the HST and IUE archives spanning temporal baselines of months to years. We select

33 unique stars of spectral types F – M with observing campaigns spanning over a year,

and create ionic light curves to evaluate the characteristic variability of cool stars on such

timescales. Screening for large flare events, we observe that the relative variability of FUV

light curves, with such timescales, decreases with increasing stellar effective temperature,

from 30 – 70% variability for M-type stars to < 30% variability for F and G-type stars. We

also observe a weak trend in the temporal variability with the Ca II R
′
HK stellar activity

indicator, suggesting that stars with lower Ca II activity exhibit a smaller range of FUV flux

variability. Screening for data sets with optimal temporal spread, and a sufficient number of
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individual observations, we select 5 data sets for further periodicity analysis (HST α Cen-

tauri A, HST α Centauri B, IUE α Centauri B, IUE ϵ Eri, IUE ξ Boo). Various periodic

structures within the FUV flux were detected, with most significant being a 79 day frequency

present within IUE ξ Boo, with a significance of 6-σ. Additional periodic structure of high

significance was detected within α Centauri B, for both HST and IUE measurements being

a 210 day frequency with significance of 3-σ and 3.7-σ, respectively. Periodicities detected

require further examination to identify potential false-periodic sources, such as measurement

frequency. Our results suggest that extreme ultraviolet (EUV) flux from cool stars varies

by less than a factor of two on decade timescales, as EUV flux is known to correlate tightly

with N V and Si IV.
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Chapter 1

Introduction

The study of exoplanets, or planets outside of our own solar system, has undergone

many technological advancements that have revolutionized the field of astronomy within

the past three decades. 16th century astronomers hypothesized their existence, however, it

wasn’t until the 1990’s that the discovery of the first exoplanet was confirmed (Mayor &

Queloz, 1995).

Initial exoplanet detections were mostly large gas giants. They were similar in size

to Jupiter or Saturn, and very close to their host stars, as this allowed detection using

the radial velocity method. This method involves the observation of wobbling motion of

a star as a result of the mutual gravitational influence of its orbiting planet. However, as

technology advanced, astronomers became able to detect even smaller exoplanets using the

transit method. This involves the observation of the periodic dips of a host star’s brightness

as a result of an orbiting planet partially eclipsing it (Charbonneau et al., 1999).

Advancements lead to the development of the Kepler Space Telescope (KST), which

launched in 2009, playing an instrumental role in exoplanet research. With its space plat-

form, the KST is able to perform long monitoring observations of an individual field of

stars. Additionally, the lack of atmospheric disturbances has allowed the KST to detect

thousands of exoplanet candidates using the previously defined methods. Some of these

systems are Earth-sized exoplanets within habitable zones of many solar systems (Dressing

& Charbonneau, 2015).
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Additional recent developments include the use of space telescopes like Transiting Ex-

oplanet Survey Satellite (TESS) and the James Webb Space Telescope (JWST). These new

instruments have enabled scientists to find exoplanets within our solar neighborhood, and

study them in greater detail. This detail has afforded increasingly precise measurements

on their atmospheres (Ahrer et al., 2023) and potential habitability. This progress made

in exoplanet research has furthered our understanding of the universe, as well as our place

within it.

As a result of the ever-expanding number and diversity of exoplanet detections, it

has become abundantly clear that a shift from an era of exoplanet discovery to an era

of characterization is necessary. The study of exoplanet atmospheric evolution is needed to

understand how their properties evolve over the lifetimes of these planets. Therefore our goal

has pivoted toward analyzing and understanding exoplanetary atmospheric composition and

evolution. This can then be used for identifying those that may potentially support habitable

atmospheric conditions.

Of the factors that drive atmospheric composition and evolution, the most critical is

the interaction between exoplanetary atmospheres and their host star’s light. Starlight is

the primary energy source that drives photochemistry, heating, and cooling within atmo-

spheres (Tsai et al., 2022). The radiative transfer properties, of these exoplanetary atmo-

spheres, are determined by the absorption and scattering of light by atmospheric gasses. This

process then influences the temperature and pressure profiles of these planets. Furthermore,

the interactions between starlight and exoplanetary atmospheres drive atmospheric escape

processes, which are a dominant factor in the evolution of these planets (Lammer et al.,

2003).

Ultraviolet (UV) radiation plays a central role in the photochemical reactions on both

gaseous and rocky exoplanets. UV photons ionize and dissociate molecular species in the

upper atmosphere, which in turn leads to the formation of radicals and ions. These molecular

species can then participate in numerous chemical reactions (Tsai et al., 2022).
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For rocky planets, UV radiation is a driving factor in the formation of ozone, a molecule

necessary for blocking harmful UV radiation from reaching the surface of a planet. Ozone, is

formed by a series of photochemical reactions that begin with the dissociation of molecular

oxygen by UV. These resulting oxygen atoms will react with molecular oxygen to form

ozone (Harman et al., 2015).

In addition to UV’s contribution on rocky planets, it is a significant source of for-

mation of haze particles in the upper atmosphere of Jovian and Neptunian planets. These

haze particles are formed by photochemical interactional processes involving simple organic

molecules, such as methane and nitrogen, by high-energy photons. The precise mechanisms

involved with haze formation are not completely understood. However, it is thought to in-

volve complex photochemical pathways that produce a range of organic molecules, some of

which can condense into small particles that scatter light (see, e.g., Teal et al. 2022 and

references therein).

As a result of the significant coupling between UV radiation and exoplanetary atmo-

spheric conditions, understanding the host stars UV spectrum, and how it changes with time,

becomes critical for interpreting observational data and identifying potential biosignatures

in these environments.

Photochemistry, as driven by UV radiation, can also lead to the heating of an exo-

planet’s atmosphere. This increase in temperature directly increases the atmospheric escape

rate. When an atmosphere becomes heated, gaseous atoms within the atmosphere begin to

move faster. These faster speeds allow for more energetic atoms to escape the atmosphere

completely, leading to greater atmospheric escape rates. This process can ultimately lead to

a planet losing its atmosphere entirely, likely rendering it uninhabitable (Tian et al., 2008;

Jakosky et al., 2018).

The intensity of UV radiation, as received by an exoplanet, depends on the host star’s

spectral type and age. For example, M-type dwarf stars are known to emit a significant

amount of UV radiation in the form of flares, which can lead to potentially extreme atmo-
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spheric heating and escape (France et al., 2016). On the other hand, G-type stars, similar

to our Sun, emit less UV radiation as a fraction of their total luminosity. As a result, they

are far less likely to drive significant atmospheric heating and escape.

The absorption of UV radiation is directly linked to the generation of ions in a star’s

upper atmosphere. The Si2+, N4+, C+, and Si3+ ions are formed within the chromosphere and

transition region of a star, where solar magnetic processes heat the gas. This heating, in turn,

is followed by higher electron collision rates, which leads to a highly ionized plasma. The

result is the creation of these ions, with electrons that are constantly transitioning from their

ground states to excited states, via electron collisions. Subsequently, these excited electrons

drop back down to their ground state, releasing a photon with a wavelength corresponding

to the energy drop between electron states. This photon emission creates unique emission

lines, Si III, N V, C II, and Si IV (corresponding to each ion, respectively), that can be

observed and studied by astronomers.

The intensity of the transitions for each of these ions is related to the level of magnetic

heating, with higher intensities indicating greater heating. As a result, the analysis of the

emission lines of Si III, N V, C II, and Si IV allows astronomers to better understand the

nature of the UV radiation present in a star’s atmosphere.

In summary, the complex interaction between a host star’s light and its exoplanets’

atmospheres are a significant contributor to the atmospheric composition and evolution of

these exoplanets. Therefore, the aim of this study is to perform extensive UV monitoring,

via the Si III, N V, C II, and Si IV emission line observations, of FGKM stars, in efforts of

identifying potentially habitable atmospheres beyond our own solar system.

FGKM stars, which include F, G, K, and M spectral types, are a group of the most

prevalent stars in the universe (∼ 90% of all stars), commonly known as ’cool stars’. They are

of particular interest to astronomers for their similarities with our own Sun in terms of size,

mass, and temperature. The mass range of FGKM stars is approximately ∼ 2 − 0.1MSun,

with F stars being the most massive of this group (∼ 1 − 2MSun) and M stars being the
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least massive (∼ 0.1−0.6MSun). Because FGKM stars are relatively smaller and cooler than

larger, hotter stars, they are favorable for the transit method of exoplanet detection (where

the signal is proportional to the ratio of the planetary to stellar surface area).

Another advantage of FGKM stars are their relative stability and long lifetimes. These

stars have lifetimes that are orders of magnitude longer than larger, hotter stars, providing

ample time for exoplanets to develop, form, and evolve in their stable environments.

The increased emphasis in exoplanet atmospheric characterization has highlighted a

gap in our knowledge of cool stars and their temporal variability. Although numerous studies

on flare events of individual stars have been published, there are no comprehensive studies

on the longer-term temporal variability of cool stars. As a result, little is known about the

UV variability of planet-hosting stars on timescales of stellar rotation or planetary orbits,

e.g., timescales of months to years.

In efforts to address this gap, a study on the temporal variance of the UV profile of host

stars has become necessary for the further research and development of models concerning the

habitability of exoplanetary atmospheres. This particular study aims to provide information

on the longer-term temporal variability of cool stars, which can aid in the prioritization of

stars for the observation of habitable exoplanets. With the use of direct imaging techniques

planned for the Habitable Worlds Observatory (HWO), NASA requires information that

better determines which stars are the most promising targets to maximize the chances of

detecting and characterizing habitable exoplanets. This study will provide inputs to NASA’s

target selection and habitable planet detection strategies for future missions.

This honors thesis presents the first comprehensive investigation of the temporal UV

variability of cool stars on timescales of months to years with an archival study of UV

spectroscopic observations made over the long missions of the Hubble Space Telescope (HST)

and the International Ultraviolet Explorer (IUE). This study analyzes the emission lines Si

III, N V, C II, and Si IV, spectral features formed in the hot upper atmospheres of cool stars.

By analyzing how these spectral emission features evolve in time, this study characterizes the
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Figure 1.1: Example HST -STIS spectra of Proxima Cen (M5.5 V) showing the emission
line measurement regions around Si III, N V, C II, and Si IV. The black histogram is the
STIS E140M data. The final emission fluxes are the numerically-integrated on-line region

(shown in red) with the nearby instrumental/continuum background subtracted (the
background region is shown in orange).

Figure 1.2: Example IUE spectrum of ϵ Eri (K2 V) showing the emission line
measurement regions around C II and Si IV. The black histogram is the IUE data. The
final emission fluxes are the numerically-integrated on-line region (shown in red) with the
nearby instrumental/continuum background subtracted (the background region is shown in
orange). We do not measure Si III and N V in the IUE data owing to a large contribution

from scattered geocoronal and stellar Lyman-α.

UV variability of these stars and explores the correlation with the degree of UV variability
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with the mass and magnetic activity levels of the stellar sample.



Chapter 2

UV Spectroscopic Observations and Data Reduction

Measurements were performed via a comprehensive search of the Mikulski Archive for

Space Telescopes (MAST) to identify multi-epoch far-ultraviolet spectroscopic observations

of cool stars of spectral types F – M. There was strict criteria imposed on the search, being

that the mission must contain long-term data observation of a star with simultaneous cover-

age over a range of formation temperatures (ranging from ∼ 20 – 150kK, corresponding to

observation of C II, Si III, Si IV, N V emission lines). The missions that met the requirements

were the Hubble Space Telescope (HST )-Space Telescope Imaging Spectrograph (STIS) and

-Cosmic Origins Spectrograph (COS) instruments, as well as the International Ultraviolet

Explorer (IUE). Unfortunately, many other FUV spectroscopic instruments, such as the

Hopkins Ultraviolet Telescope, and earlier generation UV spectrographs on HST lacked ei-

ther the necessary long-term multi-epoch data sets, or spectral coverage, which hindered

a uniform data set for emission line monitoring. Following France et al. (2018), our cen-

tral focus remains ion emission bands for Si III, N V, C II, and Si IV, which are visible

at wavelengths, 1206 Å, 1238 & 1243 Å, 1335 Å, and 1394 & 1403 Å, and corresponding

log10 (Tform)’s of 4.7, 5.2, 4.5, and 4.8, respectively (Tform is the formation temperature of

the ion that generates the emission line). Reasoning for this select focus is because of the

wide-spread of formation temperature, spanning nearly an order of magnitude (assuming

collisional electron excitation; Dere et al. (2009)), and they are the brightest metal lines

available in the FUV spectrum of FGKM stars covered by IUE, the HST -STIS E140M
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mode, and the most widely used HST -COS mode for cool star observations, G130M.

Measurements were further constrained, by utilizing the different object classifications

of cool stars available within MAST. As a result, only objects with FUV spectroscopic data

sets covering a temporal baseline of at least one year (the average returned data set spans:

3793 days), with a minimum of five individual visits to the target in total. Following this, an

initial visual inspection was then conducted on a subset of each target’s spectroscopic data

to ensure the data quality would be high enough for reliable emission line measurements.

With these filters and inspections in place, numerous cool star monitoring programs from

IUE (Ayres, 1991; Teal et al., 2022), and exoplanet host star monitoring or transit programs

with HST (MacGregor et al., 2021; Loyd et al., 2023), were identified. The final list of

potential targets then underwent an additional screening for interacting binary stars (e.g.

RS CVn systems) before downloading the full multi-epoch data sets from MAST. Ultimately,

this process had yielded us a final sample of 9 stars from HST and 29 stars from IUE,

with some stars overlapping both data sets. The stellar sample is presented in Table 2.2,

leaving us with all the data sets that met the criteria, with temporal baselines ranging from

approximately 1 to 20 years and 5 – 200 visits per star.

Given the FUV spectroscopic data, further analysis was on a per-exposure basis, in

order to extract the relevant emission line fluxes of the four ionic trandsitions tracing the

chromosphere and transition region activity studied here. For the instruments employing

first-order spectrometers (HST -COS and IUE), the flux and wavelength-calibrated data

were able to be directly analyzed. However, for HST -STIS echelle data, the multiple orders

of data were combined into a single one-dimensional flux and wavelength-calibrated spectrum

before analysis took part. In order to measure the emission line fluxes, numerical integration

was performed on the wavelength region containing the line of interest (visible in the red

regions in Figures 1.1 and 1.2) and stored as Fion. The uncertainty within the measurement

is stored as Errion, before subtracting a nearby continuum/background region of the same

spectral width (visible in the orange regions in Figures 1.1 and 1.2) and stored as Bion. In
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efforts to minimize randomized noise and poor data measurements, further data refinement

occurred. Setting a detection threshold for including an individual measurement of k, a filter

for data points is as provided: Fion,k − Errion,k > 1.3 – 2.0× Bion,k, depending on the spectral

type of the target star. Subsequently, arrays of line fluxes measured were analyzed for data

quality issues, such as guide star acquisition failures that result in the stellar flux being

comparable to the background level, as the telescope is most likely misaligned to the target

(results in excluding points with Fion,k < 0.2 ⟨ Fion ⟩). Finally, these time-resolved emission

line fluxes constitute the spectroscopic lightcurves (Table 2.3) that were then analyzed for

further understanding of the long-term variability of the FUV output of nearby cool stars,

as described in Section 3.
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Table 2.1: Star Parameters

Star B − V Teff Prot log(R′
HK) Sources

α CMi 0.42 6474 23 −4.11 1,2
β Cas 0.34 6959 1.1 −4.27 1,2

BH CVn 0.4 6653 – −3.84 1,2
ϵ Aur 0.54 7395 – – 1
ϵ CrA 0.36 6647 – – 1
h UMa 0.33 7096 0.85 -3.99 1,2

α Centauri A 0.71 5788 – -5.15 1,2
HD 209458 0.58 6118 14.4 -4.88 1,2

E Vir – 5999 3.3 -4.30 1,2
AR Lac 0.72 5342 – – 1
EK Dra 0.639 5845 2.606 -4.02 1,2
ξ Boo 0.777 5511 6.43 -4.30 1,2

α Centauri B 0.88 – 36.2 -4.97 1,2
HD 189733 0.93 5044 13.4 -4.51 1,2
AB Dor 0.857 5273 0.5 -3.88 1,2
CC Eri 1.336 3831 – -3.78 1,2
ϵ Eri 0.88 – 11.7 -4.51 1,2

36 Oph B 0.85 5199 – -4.74 1,2
70 Oph 0.86 5419 19.7 -4.12 1,2

HD 17925 0.86 5115 6.6 -4.30 1,2
LQ Hya 0.87 – 1.6 -3.97 1,2
UX Ari 0.91 5041 6.4 – 1

HD 283750 – 4405 1.8 – 1
AU Mic 1.423 3518 4.85 -3.88 1,2
Ross 905 1.447 3353 48 -5.09 1,2

Proxima Centauri 1.82 2810 83 -4.30 1,2
BD+20 2465 1.3 2991 – -4.00 1,2
BD+19 5116 1.584 3630 1.06 – 1

EV Lac 1.59 3167 – -3.75 1,2
HD 152751 1.57 3441 – -4.20 1,2
V1005 Ori 1.373 3661 4.4 – 1
YY Gem 1.29 3885 – – 1
YZ CMi 1.606 3088 2.77 -3.47 1,2

Star parameter data for each unique star within study. Teff (Effective Temperature) is
measured in (◦K) and Prot (Rotational Period) in (days). Sources: 1. SIMBAD

Astronomical Database 2. Boro Saikia, S. et al. (2018)

https://simbad.u-strasbg.fr/simbad/sim-fbasic
https://simbad.u-strasbg.fr/simbad/sim-fbasic
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Table 2.2: Star Data Collection

Star Instr. N Start End ∆

β Cas IUE 50 43743.2 48822.7 5079.5
BH CVn IUE 6 44024.7 49166.8 5142.1
ϵ Aur IUE 84 43731.7 46156.0 2424.3
h UMa IUE 3 47963.9 49389.9 1426.0
α CMi HST 5 55656.109 55864.76 208.651
ϵ CrA IUE 16 44157.4 45056.7 899.3
AR Lac IUE 223 44011.4 49631.5 5620.1
EK Dra IUE 18 45152.2 49893.3 4741.1

α Centauri A IUE 188 43737.2 49935.6 6198.4
E Vir IUE 20 45011.6 49890.8 4879.2

HD 209458 HST 21 55093.424 57520.977 2427.553
ξ Boo IUE 62 43644.4 49132.9 5488.5

α Centauri A HST 15 55220.219 58011.661 2791.442
ϵ Eri IUE 73 43743.6 48480.7 4737.1

α Centauri B IUE 77 43737.5 49931.6 6194.1
LQ Hya IUE 26 45283.2 49345.1 4061.9
36 Oph B IUE 3 44506.4 48136.5 3630.1
CC Eri IUE 19 47795.8 48251.7 455.9
UX Ari IUE 66 43735.6 50104.9 6369.3

α Centauri B HST 9 55378.037 56862.925 1484.888
HD 189733 HST 8 55090.772 59093.266 4002.494
HD 17925 IUE 13 44892.4 49694.9 4802.5
70 Oph IUE 15 44436.8 48148.0 3711.2
AB Dor IUE 30 45082.0 48255.8 3173.8

HD 283750 IUE 10 44611.0 48660.9 4049.9
HD 152751 IUE 13 44466.0 48314.6 3848.6
HD197481 HST 4 51062.512 51062.704 0.192
Ross 905 HST 15 56101.308 58177.314 2076.006

Proxima Centauri HST 54 51672.04 58665.058 6993.018
BD+20 2465 HST 6 51613.145 52427.233 814.088

EV Lac IUE 20 44849.6 49241.7 4392.1
HD197481 IUE 82 44122.8 48874.6 4751.8

BD+19 5116 IUE 22 43858.0 48861.9 5003.9
Proxima Centauri IUE 14 43921.7 49927.7 6006.0

YZ CMi IUE 40 43922.1 49708.2 5786.1
V1005 Ori IUE 10 44525.7 48677.9 4152.2
YY Gem IUE 63 45303.4 48349.3 3045.9

BD+20 2465 IUE 57 45138.7 48385.2 3246.5

Star data collection statistics. Instr. indicates the instrument used for measurement. N is
number of total measurements. Start and End are the Modified Julian Date days of the

first and last measurement, respectively. ∆ in (days), is the length of observation.
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Table 2.3: Collective Flux Measurements for Select Stars

HST & IUE measurements for various stars, including Si III, N V, C II, and Si IV ion emission
bands.



Chapter 3

FUV Lightcurves and Analysis

3.1 Relative Variability/Maximum Linear Regression Analysis

The calculations for the relative variability and maximum variability were computed by

performing standard statistical techniques on the various samples of data. In practice, these

calculations for the HST and IUE data were processed via the numpy1 software package.

To start, for each star we are provided with a 2-dimensional data set for each ion:

{[t1, f1 ± E[f1]], · · · , [tn, fn ± E[fn]]}ion

where fi denotes some measured flux output (of which there are n measurements), with

associated measurement error, E[fi], corresponding to the time of measurement, ti. We

start with the simplest statistical calculations for the sample mean, µ, standard deviation,

σ, and maximum, α, for each ion:

µ =

∑n
i=1 fi
n

(3.1)

σ =

√∑n
i=1(fi − µ)2

n
(3.2)

α = Max{f1, · · · , fn} (3.3)

1 Scientific computing python package https://numpy.org/.

https://numpy.org/


15

Figure 3.1: Si IV ion emission correlations with parameters for weighted vs. unweighted
distinguished by subscript w & u, respectively. Relative Variability vs Effective

Temperature (top), with linear parameters: β0w = 0.1616± 0.0779,
β1w = (2.9095± 1.4424)10−6, β0u = 0.6476± 0.1148, β1u = (−7.167± 2.3692)10−5. Relative
Variability vs Rotational Period (bottom), with linear parameters: β0w = 0.1968± 0.0143,

β1w = 0.0009± 0.0012, β0u = 0.3076± 0.0485, β1u = 0.000 + /− 0.0018.
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Figure 3.2: Discrete Fourier transform of HST α Centauri A for each ion is displayed in the
left-most column. Each subsequent column represents progressively greater wavelet soft
thresholding. K (Keep coefficient) is % of wavelet coefficients above threshold. The

columns are, from left to right, 100%, 75%, 50%, 25%, respectively.
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Figure 3.3: Discrete Fourier transform of HST α Centauri A, with a wavelet soft threshold
of K = 0.5 (left 4). Root-mean-square combination of all ions (right).
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Figure 3.4: Full C II ion emission correlations with parameters for weighted vs. unweighted
distinguished by subscript w & u, respectively. (A) β0w = 0.2129± 0.0756,
β1w = 0.023± 0.0904, β0u = 0.0662± 0.0888, β1u = 0.1957± 0.0777, (C)

β0w = 0.2363± 0.0754, β1w = (−1.788± 1.4007)10−5, β0u = 0.5351± 0.1039,
β1u = (−6.589± 2.1859)10−5, (E) β0w = 0.1462± 0.0157, β1w = 0.0029± 0.0012,

β0u = 0.1855± 0.0439, β1u = 0.0037± 0.0017, (G) β0w = 0.1265± 0.1525,
β1w = 0.009± 0.0345, β0u = 0.6470± 0.3103, β1u = 0.0986± 0.0718
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Given these simple statistical variables, we define further statistical variables, relative vari-

ability, σrel, and relative maximum, αrel, as:

σrel ≡
σ

µ
(3.4)

αrel ≡
α

µ
(3.5)

In order to get the associated errors with each of these calculated variables, we use the

division and multivariate error propagation formulas. Given some division variable of the

following form:

U(X, Y ) =
X

Y

We have an associated error:

E[U ] = U

√(
E[X]

X

)2

+

(
E[Y ]

Y

)2

(3.6)

Given some multivariate variable:

U (X1, · · · , Xk)

We have an approximate associated error:

E[U ] ≈

√√√√ k∑
i=1

(
∂U

∂Xi

)
E[Xi] (3.7)

Following from this, we can now calculate for the error within the relative variability and

relative maximum. Plugging in the relative variability into Equation 3.6:

E[σrel] = σrel

√(
E[σ]

σ

)2

+

(
E[µ]

µ

)2

(3.8)
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We now must calculate for E[σ] & E[µ], however, the error in a mean is the standard error

of the mean for a particular sample, given by:

E[µ] =
σ√
n

(3.9)

The error in the standard deviation can be derived by plugging in Equation 3.2 into Equation

3.7:

E[σ] ≈

√√√√ n∑
i=1

(
∂σ

∂fi

)2

E[fi]2 (3.10)

To calculate the partial derivative of the standard deviation with respect to each measure-

ment, we plug in Equation 3.2 and get:

∂σ

∂fi
=

∂

∂fi

√√√√ 1

n

n∑
i=1

(fi − µ)2

=
1

2
√
n

(
n∑

i=1

(fi − µ)2

)−1/2
∂

∂fi

n∑
i=1

(fi − µ)2

=
1

2n

(
1

n

n∑
i=1

(fi − µ)2

)−1/2

2 (fi − µ)

which simplifies to:

∂σ

∂fi
=
fi − µ

nσ
(3.11)

Now that we have the partial derivative of the standard deviation, we can solve for the

complete error of the standard deviation by plugging Equation 3.11 into Equation 3.10:

E[σ] ≈

√∑n
i=1 (fi − µ)2E[fi]2

nσ
(3.12)

Given all the pieces of the equation have been solved, we can return to the error in the

relative standard deviation formula, by plugging Equations 3.12 and 3.9 into Equation 3.8:
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E[σrel] ≈ σrel

√√√√√
√∑n

i=1 (fi − µ)2E[fi]2

nσ2

2

+

(
σ√
nµ

)2

which simplifies to our final equation for the error in relative variability:

E[σrel] ≈ σrel

√∑n
i=1 (fi − µ)2E[fi]2

n2σ4
+
σ2
rel

n
(3.13)

In order to obtain the error in relative maximum, we begin with the same process of plugging

in Equation 3.5 into 3.6:

E[αrel] = αrel

√(
E[α]

α

)2

+

(
E[µ]

µ

)2

Utilizing E[α] = E[fj] such that measurement j is the maximum, and Equation 3.9, we get:

E[αrel] = αrel

√(
E[fj]

α

)2

+
σ2
rel

n
(3.14)

Provided with the relative variability, relative maximum, their associated errors, and stellar

parameters, the linear regression fits between the UV observables and the stellar character-

istics were calculated. This is done by compiling complete data set for each ion:

{[X1, σrel1 ± E[σrel1]], · · · , [Xn, σreln ± E[σreln]]}ion

and

{[X1, αrel1 ± E[αrel1]], · · · , [Xn, αreln ± E[αreln]]}ion

where Xi is some star parameter for the ith star in the complete sample. The linear regression

minimizes the sum of the distance2 to every point in the data set to a reference model. The

weighted sum of squares (WSS) is defined to keep track of the sum of the distance2:
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WSS (β) =
n∑

i=1

wi (yi − β0 − xiβ1)
2 (3.15)

where wi = weight of each individual point, xi and yi represent data points, β0 = intercept

of a line, and β1 = slope of a line. For each data set, a plot is made for both a weighted and

unweighted linear fit. The weighted and unweighted fits use the corresponding weights:

wi =
1

E[yi]2

wi = 1

respectively. The solution for the best-fit line comes down to optimizing for the minimum

WSS with respect to the β parameters. This is done by constructing matrices:

y =


y1
...

yn

 ,X =


1 X1

...
...

1 Xn

 , β =

β0
β1

 ,W =


w1 0

. . .

0 wn


where yi = σreli or αreli, wi = corresponding error E[σreli] or E[αreli] raised to the -2, and

Xi = a star parameter of the ith star. This will give us the corresponding simplified matrix

equation analog of Equation 3.15:

WSS (β) = (y −Xβ)TW(y −Xβ) (3.16)

The process for minimization can be simplified by defining a new set of matrices:

ỹ =
√
Wy

X̃ =
√
WX

to once again rewrite Equation 3.16:
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WSS (β) = (ỹ − X̃β)T (ỹ − X̃β) (3.17)

Now that we have a convenient form, the minimization is straightforward as setting the

derivative of WSS with respect to β equal to 0:

∂WSS

∂β
=

∂

∂β
(ỹ − X̃β)T (ỹ − X̃β)

=
∂

∂β

(
ỹT ỹ − 2βT X̃T ỹ + βT X̃T X̃β

)
= 0− 2X̃T ỹ + 2X̃T X̃β

set
= 0

which yields a solution for the best-fit line parameters:

β =
(
X̃tX̃

)−1

X̃T ỹ (3.18)

Using the relative variability, relative maximum, their associated errors, and the solutions

for the weighted best-fit line parameters, we generate a series of plots of relative variability

and relative maximum vs. various star parameters: B-V magnitude (ratio of flux in blue vs.

orange parts of electromagnetic spectrum, which is a tracer of the surface, or photospheric,

temperature of a star), effective temperature, rotational period, and log(R′
HK) (chromo-

spheric contribution to the stellar spectrum near the Ca II H and K lines). Utilizing the

polyfit python package, the solutions for the weighted and unweighted best-fit parameters

for Figure 3.4 are visible within the figure caption.

Upon careful examination of the trends within the best-fit lines, it is apparent that

the linear models produced by the weighted fits do not entirely align with the actual mea-

surements. This can be attributed to the 1
Error2

nature of the weights, which results in the

lines being pulled down towards the flat levels at the bottom of the plots. This is due to the

fact that the lower the relative variability, the higher the precision, and thus the weights are
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increased. Consequently, points with higher precision are assigned greater weight, resulting

in their strong influence within the weighted linear fits. Therefore, it is crucial to consider

the unweighted linear fits in our analysis, as the importance of points within the weighted

linear fits can become inflated due to the way in which the uncertainties on the relative

variability are defined.

Furthermore, close binary star systems were included in the plots but excluded from the

linear fits in the context of this thesis. Close binary systems display enhanced UV activity

owing to the interaction of their magnetospheres, which are not representative of single-star

systems that are the primary focus of this thesis.

Analysis of the unweighted relative variability subplots in Figures 3.4A, C, E, and G,

we observe significant correlations between relative variability and various stellar parameters.

Specifically, Figure 3.4A indicates a positive relationship (∼ 2.5σ) between relative variability

and B-V color, while Figure 3.4C shows a negative relationship (∼ 3σ) between relative

variability and effective temperature (confirming the trend observed in Figure 3.4A). In

addition, Figure 3.4E reveals a positive relationship (∼ 2.2σ) between relative variability and

rotational period, and Figure 3.4G demonstrates a positive relationship (∼ 1.4σ) between

relative variability and log(R′
HK). Therefore, increases in B-V magnitude, rotational period,

and log(R′
HK) generally lead to increases in relative variability.

When looking at the relative maximum subplots shown in Figures 3.4B, D, F, H, there

are certain outlier stars that demonstrate notably large relative maximums, reaching as high

as ∼ 3.5− 5.5µ. These outliers correspond to stars with strong stellar flare activity, partic-

ularly low-mass single star systems (M type dwarfs) and binary systems. The interaction

between companion stars in binary systems, such as the RS CVn systems mentioned in Sec-

tion 2, can lead to enhanced magnetic activity and flare magnitudes, resulting in greater

relative maximums (Osten & Brown, 1999).
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3.2 FUV Periodicity: Lomb-Scargle Analysis

In our analysis of the FUV periodicity for stars within our sample, we utilized two

mathematical techniques for frequency deconstruction and signal denoising: Fourier trans-

forms and wavelet transforms. These mathematical tools are widely used in many scientific

fields and are particularly useful in analyzing complex data sets such as time-series data.

Fourier transforms work on the principle that any periodic function can be broken

down into an infinite sum of sine and cosine waves. The Fourier transform is a mathematical

technique used to decompose a signal into its frequency components. This is done by taking

a function, x(t), and performing a transformation from time domain to frequency domain

using the equation:

X(ω) =

∫ ∞

−∞
x(t)e−iωtdt (3.19)

where X(ω) is the power of coefficient and ω is the continuous frequency. However, since

we are dealing with a discrete data set, we cannot use continuous function mathematics.

Therefore, the discrete analog of the Fourier transform is used, where we transform a discrete

data set, x(n), from n-space to frequency space using the equation:

X(k) =
N−1∑
n=0

x(n)e−iωkn (3.20)

where k = 0, 1, · · · , N − 1 and ωk is the discrete frequency.

Wavelet transforms, on the other hand, decompose a signal into wavelets, which are

localized in both frequency and time domains. Wavelets come in many shapes and sizes,

with specific wavelets optimized for specific tasks. The wavelet transform is a mathematical

technique used to analyze a signal in both time and frequency domains. It is given by:

Xω (τ, s) =
1√
|s|

∫ ∞

−∞
x(t)ψ

(
t− τ

s

)
dt (3.21)
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where s is the scale factor of the wavelet, τ is the temporal translation of the wavelet, and ψ

is the chosen wavelet. Since we are using a discrete data set, we utilize the discrete wavelet

transform. The discrete wavelet transform is given by:

Ψx[n, a
j] =

1√
aj

N−1∑
m=0

x[m]ψ

(
m− n

aj

)
(3.22)

where aj is the scaling factor, ψ is the wavelet function, m represents the timesteps of the

wavelet, and n represents the translation of the wavelet.

Fourier and wavelet transforms are two commonly used mathematical techniques in

signal analysis. One of the key differences between the two is that Fourier transforms provide

excellent frequency resolution but lack time resolution, while wavelet transforms provide a

balance of both time and frequency resolution. This is due to the fact that wavelets are

localized functions that can capture temporal frequencies, allowing for the analysis of non-

stationary signals.

Fourier’s decomposition of a signal into a sum of sine and cosine waves is an excellent

method for analyzing stationary signals that do not change over time. However, it is not as

effective when analyzing signals that change over time, as it fails to provide information on

how the frequency components of the signal evolve over time. In contrast, wavelet transforms

use wavelet functions that are more localized in time and frequency, making them better

suited for analyzing non-stationary signals.

Wavelet transforms can capture both high and low frequency components of a signal, as

well as their temporal evolution. This is achieved by stretching or compressing the wavelet

function in time and frequency domains, thus adjusting the scale of analysis. By using

wavelet transforms, we can detect changes in the signal that may occur over a specific time

period, which is useful for analyzing complex signals that exhibit non-stationary behavior.

Additionally, wavelet transforms can also be used to analyze signals with irregular time

intervals, such as those with missing or unevenly spaced data points.
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In addition to their usefulness in analyzing non-stationary signals, wavelet transforms

also offer a powerful tool known as soft thresholding. When performing wavelet transform

decomposition, the resulting coefficients may be dominated by signal noise, obscuring the

underlying signal. Soft thresholding is a technique used to denoise signals by removing or

shrinking the coefficients that correspond to noise, leaving only the coefficients that represent

the signal. This is achieved by applying a threshold to the coefficients, with values below

the threshold being set to zero, while those that are above being shrunk. Soft thresholding

can be particularly effective when dealing with signals that have a mixture of smooth and

sharp features, as it can preserve the sharp features while removing the noise in the smooth

regions.

As we are searching for periodicities visible within our sample of stars, the Fourier

transform becomes the natural choice for statistical analysis of the frequencies hidden within

each stars’ emission pattern. This allows for an extraction of any relevant frequency infor-

mation that may be encoded within each particular light curve. However, due to the nature

of measurement, there is inevitably noise within a sample, which will permeate through the

Fourier transform. As a result, we can denoise the output of the Fourier transform utilizing

the soft thresholding technique available with wavelet transforms.

To perform discrete Fourier transform computations on our data sets, we utilized the

Lomb-Scargle Periodogram package2 . Additionally, we utilized the PyWavelets package3 for

wavelet denoising. From this, we are able to transform the flux as a function of time, Table

2.3, into a frequency and their associated power graph, Figure 3.2. Visible within Figure

3.2 is the deconstruction of each individual ion into its frequency domain (Given by the

left-most column), as well as increasingly greater levels of soft thresholding. Each successive

column’s threshold is calculated via the keep coefficient, which dictates the percentage of

wavelet coefficients to be kept after the soft thresholding (e.g. 1 indicates no denoising, 0.5

2 https://docs.astropy.org/en/stable/timeseries/lombscargle.html
3 https://pywavelets.readthedocs.io/en/latest/

https://docs.astropy.org/en/stable/timeseries/lombscargle.html
https://pywavelets.readthedocs.io/en/latest/
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indicates 50% of wavelet coefficients are kept).

The method with the most visually appealing results, which minimizes signal loss while

maximizing noise reduction, is selected for further refinement. This process includes utilizing

two discrete data set mathematical techniques: Linear interpolation and root-mean-squares

(RMS). These mathematical tools are widely used on incomplete data sets, or for combining

data sets.

Interpolation is a technique used to estimate the value of a function or data point

between two known values. Although there are many ways of doing this, depending on the

goals and input data set, the linear interpolation method assumes that the data changes

linearly between these known points. The estimation is mathematically described as:

y(x) =
y2 − y1
x2 − x1

x(x− x1) + y1 (3.23)

where x is the value of the desired interpolated point, y is the value at x, (xi, yi) are the 2

known points surrounding x. Given this interpolation scheme, it becomes possible to map a

signal onto any arbitrary frequency map, provided that (xi, yi) exist.

RMS, although a simple mathematical measurement performed by:

RMS =

√√√√ n∑
i=1

x2i (3.24)

where xi is a data point, is an incredibly powerful tool in regards to signal processing. The

RMS value is particularly useful for measuring the strength or amplitude of a signal.

Using linear interpolation, and RMS, it becomes possible to interpolate the ion fre-

quency decompositions of a specified column of Figure 3.2 to a common frequency map.

From here, we can RMS the data points together to get a comprehensive description of the

UV emission periodicity of a particular star. In regards to computation, we use the built-

in interpolation functions of the scipy package4 , to produce the RMS graph illustrated in

4 https://scipy.org/

https://scipy.org/
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Figure 3.3.

Each peak that has a power (P) subtracted by the mean > 2.58σ (Corresponding

to a significance level of 99%) is recorded in Tables 3.1, 3.2, 3.3, 3.4, and 3.5, according

to their respective stars. It should be noted that calculations regarding the presence of

significant peaks can be distorted by sample size and distribution of measurements. This

can lead to artificial period measurements for extremely low and extremely high periods,

and as a result, it should be disregarded if peak period is larger than the total length of

observation for a specific star. Keeping this in mind, the most significant periods for each

star is: HST α Centauri A: 133.5 days (Significance ≈ 2.8), HST α Centauri B: 209.2 days

(Significance ≈ 3), IUE α Centauri B: 210.1 days (Significance ≈ 3.7), IUE ϵ Eri: 156.3 days

(Significance ≈ 3.5), and IUE ξ Boo: 79.0 days (Significance ≈ 6). The concurrence between

the measurements obtained from both HST and IUE for α Centauri B, exhibiting a high

level of statistical significance, strongly suggests the existence of a cycle in the stellar UV

activity of α Centauri B with a period of approximately 210 days.
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Table 3.1. Periodicity Analysis of HST α Centauri A

Ions Peak Period Peak Significance

days P−µ
σ

9304.81 3.34
Si III 5582.88 3.45

3987.77 3.12
3101.60 2.63
9304.81 3.52
5582.88 3.70

NV 3987.77 3.44
3101.60 3.03
133.56 2.67
9304.81 3.22
5582.88 3.38

C II 3987.77 3.21
3101.60 2.90
133.56 2.59
9304.81 3.29
5582.88 3.45
3987.77 3.27

Si IV 3101.60 2.93
133.56 2.86
132.30 2.68
92.74 2.64

9337.92 3.61
5606.74 3.77

RMS 3894.84 3.48
3116.34 3.10
133.51 2.81

Note. — Peaks in corresponding ion emis-
sion bands for HST α Centauri A, and RMS
(root-mean-square). Period in (days), and sig-
nificance is standard normal variable of period
power.

Table 3.2. Periodicity Analysis of HST α Centauri B

Ions Peak Period Peak Significance

days P−µ
σ

Si III 215.20 2.94
209.14 2.86

C II 215.20 2.59
209.14 2.59

Si IV 209.14 2.60
RMS 209.21 2.30

76.12 2.61

Note. — Peaks in corresponding ion emis-
sion bands for HST α Centauri B, and RMS
(root-mean-square). Period in (days), and sig-
nificance is standard normal variable of period
power.
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Table 3.3. Periodicity Analysis of IUE α Centauri B

Ions Peak Period Peak Significance

days P−µ
σ

3643.59 2.30
3260.05 2.82
1015.43 3.35
983.19 3.17
952.94 2.61
848.51 3.35
825.88 3.27
578.89 2.62
568.27 2.93
472.83 2.70
465.72 3.349
327.73 2.62

C II 205.78 2.97
204.43 3.12
203.09 2.77
199.17 2.67
197.89 3.11
40.56 2.81
40.51 3.51
39.58 3.11
39.53 3.52
39.45 3.34
38.12 3.22
37.84 3.14
37.79 3.71
37.75 3.14
812.45 2.84
625.68 2.84
611.62 2.65
227.76 2.97

Si IV 220.38 2.95
210.17 3.51
208.56 2.67
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Table 3.3 (cont’d)

Ions Peak Period Peak Significance

days P−µ
σ

129.91 2.97
129.30 3.13
812.66 3.23
625.73 2.98

RMS 227.79 3.08
220.37 3.07
210.13 3.69
129.31 3.30

Note. — Peaks in corresponding ion emis-
sion bands for IUE α Centauri B, and RMS
(root-mean-square). Period in (days), and sig-
nificance is standard normal variable of period
power.

Table 3.4. Periodicity Analysis of IUE ϵ Eri

Ions Peak Period Peak Significance

days P−µ
σ

1894.84 2.77
1754.48 3.04
1633.48 3.16
1528.10 3.02
158.43 2.72
157.38 3.35
156.34 3.78
155.31 3.57
154.30 3.03

C II 123.68 3.07
123.04 3.02
96.87 3.11
96.48 3.58
96.09 3.66
95.70 3.46
39.77 2.88
39.71 3.43
39.64 3.61
39.57 3.04
35.27 2.65
297.93 2.94
294.23 3.32
238.05 2.69
212.43 3.03
210.54 3.44
181.50 3.03
180.12 3.46
178.76 3.39
177.42 2.86

Si IV 154.30 2.87
153.30 3.23
152.32 3.33
151.35 3.21
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Table 3.4 (cont’d)

Ions Peak Period Peak Significance

days P−µ
σ

127.00 3.58
55.15 3.40
55.02 4.15
54.89 3.53
51.32 2.71
51.21 2.76
48.99 2.68
237.98 2.63

RMS 156.33 3.47
55.02 3.06
39.64 2.81

Note. — Peaks in corresponding ion emis-
sion bands for IUE ϵ Eri, and RMS (root-
mean-square). Period in (days), and signif-
icance is standard normal variable of period
power.

[t]
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Table 3.5. Periodicity Analysis of IUE ξ Boo

Ions Peak Period Peak Significance

days P−µ
σ

512.94 2.69
461.22 3.07
152.88 4.52
152.04 5.41
151.12 5.43
150.37 5.12
149.55 4.17
83.29 2.64

C II 83.03 3.19
82.78 3.19
76.34 3.33
76.12 3.12
40.75 2.66
40.69 3.83
40.63 4.81
40.57 5.02
40.51 4.82
40.45 3.09
211.92 4.25
210.29 3.82
147.94 2.61
123.89 2.60
89.24 2.75
84.05 2.71
83.79 6.04
83.54 5.19
83.29 3.08
78.97 6.31
78.74 5.30

Si IV 78.52 2.95
68.18 2.82
68.01 4.10
67.84 2.77
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Table 3.5 (cont’d)

Ions Peak Period Peak Significance

days P−µ
σ

57.71 2.75
57.59 3.00
57.47 2.71
53.65 2.75
53.55 2.63
44.73 3.78
43.32 3.80
43.25 3.07
211.83 3.93
152.04 3.28
83.79 5.66

RMS 78.96 6.04
68.09 3.92
57.59 2.64
44.73 3.41
43.32 3.53

Note. — Peaks in corresponding ion emis-
sion bands for IUE ξ Boo, and RMS (root-
mean-square). Period in (days), and signif-
icance is standard normal variable of period
power.
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Results: Modest long term FUV variability on most cool stars

Figure 3.4C shows that an increase in the effective temperature of a star, which is an

indication of its mass, is associated with decreased relative variability in the chromosphere

of the star as traced by the observed UV lines. Our sample of stars in this study primarily

comprises of cool stars with spectral types ranging from M to F, corresponding to effective

temperatures of roughly 3000 – 7000 K and stellar masses of approximately 0.1 – 2.0 solar

masses. Each star emits a total flux output known as the Bolometric flux, which is calculated

by integrating the flux measurements over all frequencies.

FBol =

∫ ∞

0

Fνdν (4.1)

where ν is a particular frequency, and Fν is the flux measurement corresponding to said

frequency. As stars age, most spectral types exhibit a significant decline in the magnitude

of fractional power of UV flux compared to Bolometric flux. This decline in fractional UV

flux begins rapidly in most stars, but it remains constant for M type stars up to ages of

240 ± 30 Myr (Loyd et al., 2021). This suggests a slower fractional UV evolution for low-

mass stars. Consequently, many M type stars have higher fractional UV flux than their

more massive counterparts, resulting in higher UV energy per unit power than F, G, and

K stars. UV flux is strongly linked to the magnetic activity within a star, as UV energy

is emitted from the chromosphere and corona of a star. Therefore, greater fractional UV

flux is associated with more magnetically active upper stellar atmospheres (Wood et al.,
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1997), leading to higher relative variability. This higher relative variability would then be

reflected in greater experimentally measured relative variability for these low-mass M type

stars. Given that lower mass stars have lower effective temperatures, this experimentally

derived negative correlation between effective temperature and relative variability confirms

our findings.

In Figure 3.4E, a weak (with a significance of approximately 2σ) positive correlation

between the rotational period (Prot) and relative variability (σrel) is demonstrated, which

contradicts the expected relationship between rotation and UV activity. Previous studies

have shown that cool stars have more intrinsic variability (likely driven by unresolved stellar

flares) and that the rotational period and UV activity have a power law decline with a slope

coefficient of approximately −1.1 (France et al., 2018) (Indicating Prot ∝ UV −1.1). These

studies indicate that stars with longer rotational periods (rotating slower) have lower levels

of UV activity compared to those with shorter rotational periods (rotating faster). Further

investigation of the data revealed that the positive correlation in our model is driven by an

outlier star with high relative variability at a period greater than 80 days (Proxima Centauri).

We also found a weaker positive correlation (with a significance of approximately 1.4σ)

between the relative variability and the strength of the chromospheric Ca II emission lines

in Figure 3.4G, which agrees with accepted correlations but is not statistically significant.

The lack of a strong correlation between stellar activity indicators (Prot and logR′HK) and

relative variability may be due to the small number of objects with multi-epoch observing

campaigns, as there are few objects with low activity (Prot > 30 days or logR′
HK < 5.0) in

the sample used in this study.

Despite the aforementioned limitations, the analysis presented here indicates a lack

of significant far-ultraviolet (FUV) variability among cool stars on a large scale. The large

amplitude peaks in relative maximum values are only observed in very active stars and close

binaries, and there is no corresponding minimum observed. The FUV fluxes observed in

a quiescent spectrum should be representative of the average quiescent flux of the star at
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timescales of years.
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Chapter 5

Summary

Exoplanetary atmospheres are affected by UV radiation inputs from their host stars at

largely varying timescales, which can influence the photochemical equilibrium of exoplanetary

atmospheric conditions and their susceptibility to atmospheric escape. While studies of X-

ray/UV flare properties and long-term stellar evolution of exoplanet host stars have shed light

on constraints regarding stellar inputs to exoplanetary systems, the UV temporal variability

of cool stars on the timescale of stellar cycles has remained unexplored in the astronomical

science society. However, in this honors thesis, we present a comprehensive investigation of

the temporal UV variability of cool stars. The FUV emission lines, analyzed within this

thesis, that trace the chromosphere and transition region activity were analyzed using data

from HST and IUE data archives to evaluate the characteristic variability of cool stars on

the desired timescales. It was found that the relative variability of FUV light curves decreases

with increasing stellar temperature, and a weak positive trend in the temporal variability

with the Ca II R
′
HK stellar activity indicator was observed. Additionally, various periodic

structures within FUV flux of select data sets were detected, requiring further examination

to identify potential false-periodic sources.
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