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In the simulation and analysis of atom-laser interactions that involve a large Hilbert space,

and in particular laser cooling processes for systems containing multiple energy levels, the majority

of papers have relied on semiclassical approximations and analytic solutions to simplified models.

However, recent developments in computational speed and power have allowed us to study fully

quantum numeric results in more complex systems than previously possible. This maintains the

ability to study the effects of superpositions and atomic coherences that become increasingly im-

portant at low temperatures. We present a fully quantum Monte Carlo wave function simulation

method that allows us to model the wave function in three dimensions, and in limited systems

with arbitrary non-degenerate energy manifolds. We employ this technique to examine multiple

atomic systems in including Doppler, polarization gradient, and gray molasses cooling. We also

develop analytic descriptions for the resonance effects of dark states and velocity selective coherent

population trapping using an Adiabatic elimination technique that employs an effective operator

formalism. Our work is motivated by the desire to understand laser cooling in complex systems

such as molecules that possess many internal degrees of freedom.



Dedication

To my family.



iv

Acknowledgements

I am incredibly grateful for the opportunity I received as an undergraduate at University of

Colorado, Boulder. I arrived at CU without any plan except that I wanted to study physics. I

chanced upon a poster for a presentation given by Jarrod Reilly through the CU Prime organization

in Duane. That was my first exposure to laser physics, and ignited a deep passion for this field.

It wasn’t long before I joined Dr. Murray Holland’s theory group. Murray spent many hours

mentoring me as I learned the fundamentals of atomic, molecular and optical physics. During my

first few months with the group, I also received a great deal of mentorship from John Bartolotta,

a fifth year graduate student in the group. He introduced me to Gray Molasses Cooling, and led

me through the early stages of the project. As I progressed, I also worked closely with Jarrod.

His advice and intuition for laser cooling was invaluable for my progression through this project.

Finally, I would like to thank Simon Jaeger, John Wilson, Gage Harmon, and Lilian Chih for all

of conversations and advice I received along the way.



v

Contents

Chapter

1 Introduction and Background 1

1.1 Monte Carlo Wave Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Doppler Cooling in One-Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Polarization Gradient Cooling in a Lin ⊥ Lin Configuration . . . . . . . . . . . . . . 5

1.4 Polarization Gradient Cooling in a σ+ - σ− Configuration . . . . . . . . . . . . . . . 7

1.5 Sub-recoil cooling by Velocity Selective Coherent Population Trapping . . . . . . . . 9

2 Methods 14

2.1 Extending Monte Carlo Wave Functions to Three-Dimensions and Multiple Energy

Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Time-Reversal Symmetry in our code . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Adiabatic Elimination of the Excited States . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Three-Level System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Phases Between the Lasers in the Three-Level system . . . . . . . . . . . . . 21

3 Analysis and Results 24

3.1 Cooling Lithium in One-Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Six-Level Lithium System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Fano Profiles of the Simplified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Summary & Conclusion 37



vi

Bibliography 39

Appendix

A The Interaction Picture for a Two-Level Atom 41

B Adiabatic elimination of lithium excited states 44



vii

Figures

Figure

1.1 Doppler cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Jg = 1/2 and Je = 3/2 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Polarization Gradient Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Polarization Gradient Momentum Distribution . . . . . . . . . . . . . . . . . . . . . 10

1.5 Λ Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Velocity Selective Coherent Population Trapping . . . . . . . . . . . . . . . . . . . . 13

2.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Cooling lithium with δ = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Lithium 7 Level Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Cooling lithium with a random phase on the Repumpers . . . . . . . . . . . . . . . . 27

3.3 Cooling lithium with δ = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Temperature vs. δ in lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Cooling lithium with δ = 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Fano Profiles for Lithium and YO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



Chapter 1

Introduction and Background

Atomic, molecular, and optical physicists have been studying ultra-cold clouds of atoms

and molecules for over half a century. Since first theoretically predicting [9] and demonstrating

Doppler cooling in an experimental setup [26], leading physicists in the field have been striving to

create colder, longer lived, and larger samples of ultra-cold particles with more complex internal

structures. Not long after the first Doppler cooling schemes were developed, experimental groups

began observing sub-Doppler temperatures in their labs [14]. Sub-Doppler cooling was quickly

explained with theories such as coherent population trapping and polarization gradient cooling [4]

[3].

Even as physicists explained new phenomena, experimentalists delved deeper into more com-

plex systems, achieving colder temperatures. Recently, experimentalists have achieved some of

the lowest temperatures of directly laser-cooled ensembles yet, employing a technique called Λ-

enhanced gray molasses cooling (GMC). This technique couples traditional polarization gradient

cooling with velocity selective coherent population trapping (VSCPT), resulting in large friction

forces and low scattering rates in low momentum states. This technique has been experimentally

verified in potassium, rubidium, lithium, and yttrium monoxide (YO) [5][8] [24][22].

While current theory qualitatively describes the behavior of Λ-enhanced gray molasses cool-

ing, we currently have no model to precisely predict temperatures. Additionally, certain charac-

teristics common to atoms and molecules cooled under this laser scheme remain unexplained. In

particular, as the Raman condition is varied near resonance, experimental groups observe dra-
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matic increases in temperature. In this thesis, I will employ numerical simulations and analytical

techniques to describe the behavior gray molasses cooling systems.

1.1 Monte Carlo Wave Functions

In this thesis, I use Monte Carlo wave-functions (MCWF) or the quantum jump method

to numerically simulate laser cooling. I will also discuss theoretical explanations for the results

observed in experiments that motivated this study, and the simulations that I conduct. The MCWF

method is equivalent to the Lindblad form of the master equation when infinite trajectories are

taken, and so our simulations must use a sufficient number of trajectories to produce reliable results.

At its simplest, the MCWF tracks each of the internal and external degrees of freedom of an atom or

molecule. MCWF employs an numeric integration scheme by operating an interaction Hamiltonian

upon a tensor containing an atom’s internal state population and momentum wave function.

I will begin with a brief description of MCWF, and from there expand the procedure to the

more complex systems necessary for GMC. First presented in 1992 [17], MCWF works by separating

the equations of motion into a Hermitian and non-Hermitian Hamiltonian. The prior represents

the evolution of an atom or molecule with the laser field, and the latter represents the non-unitary

evolution due to spontaneous emission.

For simplicity, I begin by calculating a Hamiltonian for a two level atom, evolving in one

dimension, following the procedure outlined in [25], [23], and similarly employed in [20]. This

Hamiltonian may be employed to study Doppler Cooling. The Hermitian portion of the calculation

takes the form

Ĥ =
ℏωa

2
σ̂z +

p̂2

2m
+ Ĥint , (1.1)

where I have defined the atomic Pauli z-operator as σ̂z = |e⟩⟨e|−|g⟩⟨g|, and the momentum operator

as p̂ = p|p⟩⟨p|. The interaction Hamiltonian Ĥint after the dipole and rotating wave approximations

can be written as

Ĥint =
ℏΩ
2

(
σ̂−e

−i[kx̂−ωt] + h.c.
)
+

ℏΩ
2

(
σ̂−e

i[kx̂+ωt] + h.c.
)

. (1.2)
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In this calculation, I defined the raising (lowering) operator as σ̂+ = |e⟩⟨g|, (σ̂− = |g⟩⟨e|). I have

defined the position operator x̂ such that the momentum raising (lowering) operator is eikx̂ =

|p + ℏk⟩⟨p|, (e−ikx̂ = |p − ℏk⟩⟨p|). Finally we define the Rabi frequency Ω under the assumption

that the left and right oriented lasers have the same frequency and intensity, such that

Ω = −E0

ℏ
⟨g|ε̂ · d̂|e⟩. (1.3)

In this equation, E0 is the magnitude of the electric field, ε is the polarization of the field, and d̂

is the dipole operator. In order to numerically solve the Hamiltonian, it is necessary to move into

the interaction picture, or a rotating frame of reference. The rotating frame allows us to disregard

large frequencies in the calculation, and instead focus on the much smaller relative values. In other

words, while the the atomic frequency may be on the order of gigahertz, we are only concerned

with the difference (detuning) between the atomic and laser frequencies, which tends to be many

orders of magnitude smaller. Moving into this frame allows for an elegant mathematical depiction

of the Hamiltonian, and far more efficient numeric integration, due the smaller frequencies. By

defining an interaction picture

Ĥ ′ =
ℏωl

2
σ̂z +

p̂l
2

2m
, (1.4)

where ωl is the laser frequency, such that our new Hamiltonian is
˜̂
H = e

iĤ′t
ℏ [Ĥ − Ĥ ′]e

−iĤ′t
ℏ , which

is equivalent to

˜̂
H =

ℏ∆
2
σ̂z +

ℏΩ
2

(
σ̂−e

−iωrt(2β+1)|β⟩⟨β + 1|+ h.c.
)
+

ℏΩ
2

(
σ̂+e

iωrt(2β−1)|β⟩⟨β − 1|+ h.c.
)
. (1.5)

The first term corresponds to the effect of detuning between the laser and the atoms such that

∆ = ωa − ωl. The second (third) term corresponds to the left (right) laser, such that the recoil

frequency ωr = ℏk2
2m , and the dimensionless momentum β̂ = p̂

ℏk . A rigorous derivation of this

Hamiltonian is given in appendix A.

Now that we have derived the Hermitian Hamiltonian, we must add in spontaneous emission

in order to have a complete picture of the atomic evolution. We generate spontaneous emission

events according to the methods outlined in [10]. The norm of the wave function undergoes expo-

nential decay according to the spontaneous emission rate Γ, and the excited state population, such
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that the non-Hermitian Hamiltonian for the two level system corresponds to Ĥnh = −iℏΓ
2 |e⟩⟨e|. We

then apply the total Hamiltonian Ĥtot =
˜̂
H + Ĥnh to the momentum wave function, and evolve the

system over sufficiently small time steps by employing fourth-order Runge-Kutta integration. The

jump operator is simulated in the system by generating a uniform random variable. When the norm

decays below this value, the excited state population is transferred into the ground, indicating that

the excited state has emitted a photon. Another pair of random variables are then generated, and

used to simulate the direction of the photon emission according to the dipole radiation pattern.

The momentum grid is then shifted by ℏk away from the direction of emission, corresponding to

the momentum kick the atom experiences from spontaneous emission.

1.2 Doppler Cooling in One-Dimension

The most fundamental form of laser cooling is Doppler cooling. This cooling mechanism

works on simple atoms and molecules by applying a pair of counter-propagating lasers to the

system. Each of these lasers drive absorption and stimulated emission along the direction of laser

propagation. Each laser is red detuned from resonance, resulting in stronger interaction with the

laser the atom is moving towards as it is blue-shifted near resonance. This effect is coupled with the

fact that over infinite spontaneous emissions, the average change in momentum is zero. Thus, as

the atom moves toward a laser, there is a higher probability that it absorbs a photon from the laser

it is moving into than the one it is moving away from, reducing the magnitude of its momentum.

The rate of absorption is also greater than the rate of stimulated emission, due to spontaneous

emission, which has a net zero effect on momentum. By combining all of these effects, an average

force on the atom can be derived, driving the atom toward zero momentum.

Although the force in Doppler cooling is driving the temperature toward zero momentum, the

theoretical temperature limit is in fact much greater. This comes from the fact that the atom laser

interaction, and the randomness of spontaneous emission results in momentum diffusion. Although

the momentum distribution is centered at zero momentum, it has a nonzero variance, resulting in

a temperature of kbT = ℏΓ
4

1+(2∆/Γ)2

(−2∆/Γ) . We find the temperature minimum when ∆ = −Γ/2, which
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yield the Doppler cooling limit kbT = ℏΓ
2 . In depth explanations for calculating temperature from

the diffusion coefficients are given in [1, 4, 16, 25]. Similar techniques are employed in calculating

temperature limits in the sub-Doppler cooling regime.

In our code, we evolve the dimensionless Hamiltonian such that ωr = 1. Thus, in order to

find the dimensionless temperature, T
′
= T kb

ℏ , in one dimension, we begin with

1

2
kbT =

1

2
ma⟨v2⟩ , (1.6)

where kb is Boltzmann’s constant and ma is the atomic mass. We can then substitute in v = nℏk
ma

and the recoil frequency, and rearrange to find

T
′
= n2

ℏk2

ma
= 2n2ωr . (1.7)

Finally, we extract the n2 value from a Gaussian fit of the momentum distribution. Because

ωr = 1, the dimensionless temperature of a distribution calculated in our code corresponds to twice

its variance. We demonstrate this in Fig. 1.1, where we evolve a single atomic trajectory, and

histogram its momentum distribution once it has reached equilibrium. In this simulation we fixed

Γ = 100, so we predict T
′
d = 50. Instead we find T

′
= 30.3, which is slightly below the theoretical

Doppler cooling limit, but remains on the same order of magnitude.

1.3 Polarization Gradient Cooling in a Lin ⊥ Lin Configuration

After initial Doppler techniques were demonstrated experimentally, scientists began to ob-

serve temperatures well below the theoretical temperate limit. These sub-Doppler cooling effects

were first explained by Dalibard and Tannoudji [4]. Polarization gradient cooling techniques rely

on spatial variations in the polarization of the laser field. These techniques can generally be divided

into two categories, Lin ⊥ Lin and σ+ - σ−, both of which we will qualitatively demonstrate in this

section and section 1.4.

Lin ⊥ Lin cooling requires two counter propagating lasers, which are linearly polarized with

respect to one another and the axis of propagation. The simplest configuration where this form
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Figure 1.1: This plot shows the momentum distribution for a V type system, with Jg = 0 and
Je = 1, such that there is one ground state connected to two excited states with σ+ - σ− light.
There are two counter-propagating circularly polarized beams with intensity Ω = 20. In this system
Γ = 100, and ∆ = −50. The histogram (blue) is the momentum distribution of eight trajectories
averaged over a time 7000

Γ . The Gaussian fit (red) yields the dimensionless temperature from twice

its variance T
′
= 2σ2 = 30.3
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of cooling occurs is in Fg = 1/2 and Fe = 3/2, shown in Fig. 1.2, from [4]. With some clever

rearrangements, the atom field interaction Hamiltonian for this system can be written as

Ĥaf =
ℏΩ√
2
sin kz

[
|e3/2⟩⟨g1/2|+

1√
3
|e1/2⟩⟨g−1/2|

]
e−iωlt

+
ℏΩ√
2
cos kz

[
|e−3/2⟩⟨−g1/2|+

1√
3
|e−1/2⟩⟨g−1/2|

]
e−iωlt + h.c.

(1.8)

The polarization gradient effect manifests in the spatial dependence of the laser field in the

sinusoidal terms, as shown in Fig. 1.3 from [4]. The varying field creates a large velocity-dependent

force at low momentum. The atom is driven up the potential well, and spontaneously emits to

the bottom of the well, resulting in a net decrease in energy. The cooling from this process is

exceptionally strong, resulting in an equilibrium temperature of

kbT ≈ ℏΩ2

8|δ|
. (1.9)

However, due to the velocity sensitivity of this process, significant cooling only occurs when kv ≪ Γ.

This is because at greater velocities, the atom is no longer more likely to emit into a low energy

state, as the spatial dependence of the field is averaged out. Because this cooling occurs only at

very low velocities, it becomes quite difficult to simulate, as trajectories not trapped within just a

few recoil frequency tend to diverge, and interact with the boundary of the momentum grid. In

order to account for this effect, a very large momentum grid is required, allowing for the significant

population loss that occurs in this configuration. Extracting the momentum would be done by

creating a momentum histogram of all these trajectories, calculating the variance when it reaches

equilibrium. A momentum grid of this scale takes a great deal of time to simulate. For this reason,

we omit numerical analysis in this configuration.

1.4 Polarization Gradient Cooling in a σ+ - σ− Configuration

Another polarization gradient effect in laser cooling arises in systems comprised of two

counter-propagating beams of circularly polarized light. The combination of the two circularly

polarized beams results in a linear polarization, which rotates in space at an angle of θ = kz, as
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Figure 1.2: Note. This figure was created by J. Dalibard and C. Cohen-Tannoudji, Laser cooling
below the Doppler limit by polarization gradients: simple theoretical models [4]. It depicts the
degeneracy of both the excited and ground state manifolds, and the Clebsch-Gordon Coefficients
connecting these manifolds.

Figure 1.3: Note. This figure was created by J. Dalibard and C. Cohen-Tannoudji, Laser cooling
below the Doppler limit by polarization gradients: simple theoretical models [4]. The figure (a)
depicts the polarization gradient in σ+ - σ− light, where the helical shape is the field as experienced
by the atom. The figure (b) depicts polarization gradient in the Lin ⊥ Lin configuration. The parts
(c) and (d) depict the spatially dependent shift in ground state energy for the σ+ - σ− and Lin ⊥
Lin configuration respectively.
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shown in Fig. 1.3. The varying polarization causes the atom or molecule to interact with each

laser at different rates, resulting in a velocity-dependent force of greater magnitude than Doppler

cooling at very low velocities. Unlike the Lin ⊥ Lin configuration, this force is not restricted to

the low velocity limit because it does not depend on emitting into the bottom of velocity induced

potential wells. This means that simulating this cooling is significantly easier, as the higher velocity

trajectories are still cooled. The cooling from this polarization gradient is calculated extensively in

[4], resulting in a theoretical temperature limit of

kbT =
ℏΩ2

|δ|

[
29

300
+

245

74

Γ2/4

δ2 + Γ2/4

]
. (1.10)

This force arises in the Fg = 1 to Fe = 2 transition, as well as a fictional W-type transition, with

three excited states, and two ground states. As we will show later in this thesis, both of these

transitions occur in gray molasses configurations. Polarization gradients have been demonstrated

experimentally in [12, 11, 6]. We demonstrate the occurrence of sub-Doppler polarization gradient

cooling on a W-type transition in Fig. 1.4. In this simulation, we set Γ = Ω = 100, and ∆ = 4.5Γ.

Because the lasers are far detuned, we expect to see no Doppler cooling in this system. After

evolution, we can extract three temperatures. The first corresponds to a Gaussian fit where T
′
=

66.1. Note that this temperature actually increased from the Doppler limit. The other temperatures

correspond to a double Gaussian fit where in Fig. 1.4, the tighter Gaussian corresponds to T
′
= 6.3,

and the wider Gaussian corresponds to T
′
= 102.91. This indicates that in the parameter regime of

the simulation, the high velocity force is much smaller than in Doppler cooling, but the low velocity

force is much greater. If we choose parameters in which Doppler cooling occurs with ∆ = −Γ
2 , we

can achieve much lower temperatures, however it is less clear that these values derive from the

polarization gradient, as traditional Doppler cooling may occur.

1.5 Sub-recoil cooling by Velocity Selective Coherent Population Trapping

Another essential ingredient to the ultra-cold temperatures observed in gray molasses con-

figurations is velocity selective coherent population trapping (VSCPT) [3]. VSCPT occurs when a
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Figure 1.4: This plot shows the momentum distribution for W type system, with two ground
states, m = ±1, and three excited states, m = 0,±2. The σ+ - σ− transitions between these states
form a W shape. In the histogram, we have set Γ = 100, ∆ = 450, Ω = 100. In the histogram,
we have averaged the momentum distributions of 400 different trajectories between times 440

Γ and
660
Γ . The two lines correspond to (red) a single Gaussian fit with T

′
= 66.1, and a (green) double

Gaussian fit with the narrower fit having T
′
= 6.3, and the wider having T

′
= 102.91.
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population of atoms or molecules ceases to interact with a laser field due to interference effects in

the system. The most common and simplest system wherein this effect is observed is the Jg = 1

to Je = 1 configuration interacting with σ+ - σ− light. This configuration results in the system

being pumped into a Λ-system with one excited state and two ground states, illustrated in Fig. 1.5.

The dark state occurs in this system when the Raman condition is met, ∆1 = ∆2, and when the

population is in the state

|ψnc⟩ =
1√
2
(|g1,−ℏk⟩ − |g2, ℏk⟩) . (1.11)

This calculation has been extended into two and three dimensions, and demonstrated experimen-

tally in [13, 18]. In essence, the dark state observed in the Λ-configuration derives from the extreme

symmetry of the system. Each ground state is driving populations of equal magnitude and opposite

amplitude into the excited state, resulting in a net zero evolution. Furthermore, there is no popu-

lation in the excited state, so the system does not spontaneously emit. This sub-recoil cooling is

demonstrated in our code in Fig. 1.6. Although this configuration results in a small portion of the

population being cooled below the recoil limit, there is quite a bit of population loss, because there

are no other cooling effects in the Λ-system. We will conduct deeper analysis of the VSCPT effects

in later sections of this thesis by introducing phases between the lasers, altering the intensities, and

perturbing the detuning from the Raman condition.
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Figure 1.5: This figure shows the Λ configuration found in the Jg = 1 to Je = 1 system. The
arrows represent the transitions addressed by the σ+ - σ− lasers. The left laser interacts with only
m = -1 to m = 0 transition, and the right laser interacts with only the m = 1 to m = 0 transition.
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Figure 1.6: This plot shows the momentum distribution after sufficient spontaneous emissions
to disperse the bright states, in the Λ system. Note that while the majority of the population
diverges, about a quarter remains at ±ℏk, due to VSCPT. This small population is cooled to below
the one recoil limit, while the remainder of the population remains unaddressed. This population
distribution is averaged over 800 trajectories.
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Chapter 2

Methods

In this chapter, we discuss the extension to the Monte Carlo wave function method that we

employ in our code. The Monte Carlo extension and code serves as the backbone for the numerical

analysis that we conduct throughout this thesis. We begin by calculating the Hamiltonian for

our system. We then show a brief proof for time-reversal symmetry in the Hamiltonian, and

demonstrate how this can be used to significantly simplify the code. We also introduce an effective

operator formalism for elimination of the excited states developed by Reiter and Sørenson [21], and

identify the characteristics of dark states in the Λ-system.

2.1 Extending Monte Carlo Wave Functions to Three-Dimensions and Mul-

tiple Energy Manifolds

We begin this chapter by solving the interaction Hamiltonian for three energy manifolds, two

ground states, and one excited state, with arbitrary degeneracy. The two ground state manifolds

are written as |g1⟩ and |g2⟩, and the excited manifold is |e⟩. The interaction is driven by two pairs

of counter-propagating lasers, with Rabi frequencies Ω1 and Ω2. Furthermore, we assume that the

lasers address only their intended transitions, so laser one interacts only with |g1⟩⟨e|, and laser two
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interacts only with |g2⟩⟨e|. We begin with a Hamiltonian of the form

Ĥorg =
∑

l=x,y,z

p̂2l
2m

− ℏωa,1|g1⟩⟨g1| − ℏωa,2|g2⟩⟨g2|

+
∑

l=x,y,z

ℏΩ1,l

2

(
σ̂−1 e

−i[kx̂l−ω1t] + h.c.
)
+

ℏΩ1,l

2

(
σ̂−1 e

i[kx̂l+ω1t] + h.c.
)

+
∑

l=x,y,z

ℏΩ2,l

2

(
σ̂−2 e

−i[kx̂l−ω2t] + h.c.
)
+

ℏΩ2,l

2

(
σ̂−2 e

i[kx̂l+ω2t] + h.c.
)
,

(2.1)

where we define the Pauli operators σ̂−i = |e⟩⟨gi| and define all internal energies relative to the

excited state. We also assume that k ≈ k1 ≈ k2, so that the momentum shift from the raising and

lowering operators are equal, allowing us to evolve the wave function on a fixed grid in momentum

space. We define ∆i = ωi − ωa,i and then move into the rotating frame defined by

Ĥ ′ =
∑

l=x,y,z

p̂2l
2m

− ℏω1|g1⟩⟨g1| − ℏω2|g2⟩⟨g2| , (2.2)

with the resulting interaction picture

˜̂
H = e

iĤ′t
ℏ

(
Ĥorg − Ĥ ′

)
e

−iĤ′t
ℏ , (2.3)

where Ĥorg − Ĥ ′ can be rewritten as

Ĥorg − Ĥ ′ =
∑

l=x,y,z

ℏ∆1|g1⟩⟨g1|+ ℏ∆2|g2⟩⟨g2|

+
∑

l=x,y,z

ℏΩ1,l

2

(
σ̂−1 e

−i[kx̂l−ω1t] + h.c.
)
+

ℏΩ1,l

2

(
σ̂−1 e

i[kx̂l+ω1t] + h.c.
)

+
∑

l=x,y,z

ℏΩ2,l

2

(
σ̂−2 e

−i[kx̂l−ω2t] + h.c.
)
+

ℏΩ2,l

2

(
σ̂−2 e

i[kx̂l+ω2t] + h.c.
)
.

(2.4)

Following a similar procedure to appendix A, we find the raising and lowering operators in

the rotating frame

˙̃
σ̂+i =

i

ℏ
e

iĤ′t
ℏ [Ĥ ′, σ+i ]e

iĤ′t
ℏ = iωi

˜̂σ+i . (2.5)

From here, it is straightforward to demonstrate that ˜̂σ+i = σ̂+i e
iωit and by the same process the
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lowering operator is ˜̂σ−i = σ̂−i e
−iωit. Substituting these values into the Hamiltonian gives us

˜̂
H =

∑
l=x,y,z

ℏ∆1|g1⟩⟨g1|+ ℏ∆2|g2⟩⟨g2|

+
∑

l=x,y,z

ℏΩ1,l

2

(
σ̂−1 e

−ik ˜̂xl + h.c.
)
+

ℏΩ1,l

2

(
σ̂−1 e

ik ˜̂xl + h.c.
)

+
∑

l=x,y,z

ℏΩ2,l

2

(
σ̂−2 e

−ik ˜̂x + h.c.
)
+

ℏΩ2,l

2

(
σ̂−2 e

ik ˜̂xl + h.c.
)
.

(2.6)

Applying the Baker-Campbell formula in a similar fashion as in appendix A, substituting in the

recoil frequency, and substituting β̂ = p̂
ℏk , we find a final Hamiltonian for the three manifold system

˜̂
H =

∑
l=x,y,z

ℏ∆1|g1⟩⟨g1|+ ℏ∆2|g2⟩⟨g2|

+
∑

l=x,y,z

ℏΩ1,l

2

(
σ̂−1 e

−iωrt(2β+1)|β⟩⟨β + 1|+ h.c.
)
+

ℏΩ1,l

2

(
σ̂−1 e

iωrt(2β−1)|β⟩⟨β − 1|+ h.c.
)

+
∑

l=x,y,z

ℏΩ2,l

2

(
σ̂−2 e

−iωrt(2β+1)|β⟩⟨β + 1|+ h.c.
)
+

ℏΩ2,l

2

(
σ̂−2 e

iωrt(2β−1)|β⟩⟨β − 1|+ h.c.
)
.

(2.7)

Simply including the degenerate levels of each manifold and considering the dipole operator element

of the field yields the Hamiltonian for the Hermitian portion of the atom-laser interaction. The

non-Hermitian portion of Hamiltonian derives directly from the spontaneous emission rates of each

of the ground states that a given excited state may decay into via single-photon emission.

2.1.1 Time-Reversal Symmetry in our code

Because the atom-field interaction Hamiltonian must be Hermitian by definition, this means

that each transition in the Hamiltonian must be time reversible. This means that the |g, β⟩⟨e, β+1|

term is the Hermitian conjugate of the |e, β + 1⟩⟨g, β| term. In our Hamiltonian, these transitions

take the form e−iωrt(2β+1)|β⟩⟨β + 1| and eiωrt(2β−1)|β⟩⟨β − 1|. It is easy to see that these terms are

Hermitian conjugates from

(
e−iωrt(2β+1)|β⟩⟨β + 1|

)†
= eiωrt(2β+1)|β + 1⟩⟨β| . (2.8)
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By noting that |β + 1⟩⟨β| = |β⟩⟨β − 1|, if we make the proper adjustment in the exponential term,

Eq. (2.8) can be rearranged to read

(
e−iωrt(2β+1)|β⟩⟨β + 1|

)†
= eiωrt(2β−1)|β⟩⟨β − 1| . (2.9)

While we could hard code this symmetry in our Monte Carlo code, it is beneficial to simplify the

form of the Hamiltonian, making the field terms more manageable and easily extendable. We begin

by noting that each atomic trajectory is evolved on a momentum grid in a given dimension, which

takes the form

p = ⟨k − n, k − n+ 1, ..., k, ..., k + n− 1, k + n⟩ , (2.10)

where k is the center of the momentum grid, and n is an integer value denoting the width of the

grid. The momentum raising and lowering operators move the trajectory along this grid, such that

the β values must correspond to points on the grid. We can now divide vector Eq. (2.10) into two

vectors of equal length 2n:

N = ⟨−n,−n+ 1, ..., 0, ..., n− 1, n⟩ ,

K = ⟨k, k, ..., k, ..., k, k.⟩ .
(2.11)

Thus, p = N + K. From here, we can define a momentum shift vector S, such that S is the 2n

elements of 2p + 1. In other words we define S as the vector excluding the final element of the

vector 2p+ 1. Expanding S, we find

S = 2K + 2N + 1 . (2.12)

We further define P1 and P2 as the first and last 2n elements of P , excluding the last and first

element, respectively, giving

S = P1 + P2 . (2.13)

The vector elements of the vector S can then be substituted into the exponential term in Eq. (2.8),

because β = 2(n + k). We need only multiply this vector by −1, to conjugate the complex expo-

nential and move from the momentum raising to the lowering operator. This allows us to write
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the field terms of the Hamiltonian in the code as Eq. (2.1), where this calculates the z-component

of the evolution along the momentum grid. The momPhase function corresponds to the vector S,

and fieldZ calculates a single laser operating on the state |ψ⟩. This format allows us to account for

arbitrarily many internal states, transitions, and lasers.

2.2 Adiabatic Elimination of the Excited States

In this section, we derive the Hamiltonians for VSCPT and lithium using an effective operator

formalism for open quantum systems developed in [21]. This method allows us to calculate effec-

tive transitions between the ground states through the adiabatic elimination of the excited state

manifold. This formalism is ideal for the study of dark states because the excited state population

in these states is zero, and there is no spontaneous emission out of these states. For systems with

multiple non-degenerate energy manifolds, we solve the effective Hamiltonian defined by

Ĥeff = −1

2

[
V̂−

1∑
l=0

(Ĥ
(l)
nh)

−1V̂
(l)
+ +H.c.

]
+ Ĥg . (2.14)

In this Hamiltonian, Ĥg is diagonalizable and can be written Ĥg =
∑

lEl|F = l, β⟩⟨F = l, β|, where

El corresponds to the energy difference between the ground and the excited manifolds. The internal

raising (lowering) portion of the Hamiltonian are written V+ (V−). The non-Hermitian Hamiltonian

is addressed on the excited state such that Ĥnh = ℏ
∑

l(∆l − iγ
2 )|e, β⟩⟨e, β| = ℏ∆̃l|e, β⟩⟨e, β|.

2.2.1 Three-Level System

We begin by addressing a simple three-level system, defined by two ground states |g1⟩ and |g2⟩

connected to an excited state |e⟩ by σ+ and σ− light, respectively. This transition is the simplest

system wherein VSCPT occurs. We move into the same frame that we use for multiple energy

manifolds in Monte Carlo wave functions, where Ĥg = −ℏ∆0|g0⟩⟨g0| − ℏ∆1|g1⟩⟨g1|. We define V̂+

and V̂−, noting that we have disregarded the Clebsch Gordon coefficients in this example, giving
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Figure 2.1: Code

VectorXcd momPhase( const VectorXd& mom, const double t )
{

VectorXd momHalf = mom. head (mom. s i z e ( ) − 1)
+ mom. t a i l (mom. s i z e ( ) − 1 ) ;

return ( I ∗ momHalf ∗ t ) . array ( ) . exp ( ) ;
}
AtomState f i e l d Z ( const VectorXd& mom, const AtomState &psi ,

const double t , Arrow arrow , const Laser& l a s e r )
{

AtomState ps ip ( p s i ) ;
s e tZero ( ps ip ) ;
int n = mom. s i z e ( ) ;
VectorXcd amplitude = momPhase(mom, t ) ;
Vector3cd pol = l a s e r . po l ;
amplitude ∗= exp ( I ∗ l a s e r . phase∗ t )∗ arrow . weight

∗ t r an s i t i onVec [ arrow . l a b e l ] . dot ( po l ) ;
i f ( abs ( t r an s i t i onVec [ arrow . l a b e l ] . dot ( po l ) ) > pow(10 . , −3 . ) )
{
for ( int i = 0 ; i < p s i [ arrow . from ] . s i z e ( ) ; i++)
{

for ( int j = 0 ; j < p s i [ arrow . from ] [ 0 ] . s i z e ( ) ; j++)
{

ps ip [ arrow . from ] [ i ] [ j ] . head (n−1) =
amplitude . conjugate ( ) . cwiseProduct (
p s i [ arrow . to ] [ i ] [ j ] . t a i l (n−1)) ;

ps ip [ arrow . from ] [ i ] [ j ] [ n−1] = ZERO;
ps ip [ arrow . to ] [ i ] [ j ] . t a i l (n−1) =

amplitude . cwiseProduct (
p s i [ arrow . from ] [ i ] [ j ] . head (n−1)) ;

ps ip [ arrow . to ] [ i ] [ j ] [ 0 ] = ZERO;
ps ip [ arrow . to ] ∗= −I ∗ 0 .5 ∗ l a s e r . i n t e n s i t y ;
ps ip [ arrow . from ] ∗= −I ∗ 0 .5 ∗ l a s e r . i n t e n s i t y ;

}
}
}

return ps ip ;
}
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V̂+ =
Ω0

2
eit(2β+1)|e, β + 1⟩⟨β, 0|+ e−it(2β+1)|e, β − 1⟩⟨β, 1|

V̂− =
Ω0

2
e−it(2β+1)|0, β⟩⟨β + 1, e|Ω1

2
eit(2β−1)|1, β⟩⟨β − 1, e| .

(2.15)

Finally, we define the non-Hermitian terms as Ĥ
(0)
nh = ℏ(∆0 − iγ

2 )|e⟩⟨e| = ℏ∆̃0|e⟩⟨e| and

Ĥ
(1)
nh = ℏ∆̃1|e⟩⟨e|. Combining these terms, we begin solving Eq. (2.14) by writing

V̂−

1∑
l=0

(Ĥ
(l)
nh)

−1V̂
(l)
+ = ℏ

[Ω0

2
e−it(2β+1)|0, β⟩⟨β + 1, e|+ Ω1

2
eit(2β−1)|1, β⟩⟨β − 1, e|

]
×
[ Ω0

2∆̃0

eit(2β+1)|e, β + 1⟩⟨β, 0|+ Ω1

2∆̃1

e−it(2β−1)|e, β − 1⟩⟨β, 1|
]
.

(2.16)

Rearranging gives us

V̂−

1∑
l=0

(Ĥ
(l)
nh)

−1V̂
(l)
+ =

ℏΩ2
0

4∆̃0

|0, β⟩⟨β, 0|+ ℏΩ2
1

4∆̃1

|1, β⟩⟨β, 1|+ ℏΩ0Ω1

4∆̃0

|1, β + 1⟩⟨β − 1, 0|eit(2β−1)eit(2β+1)

+
ℏΩ0Ω1

4∆̃1

|0, β − 1⟩⟨β + 1, 1|e−it(2β−1)e−it(2β+1) .

(2.17)

Finally, we can find the effective Hamiltonian by adding the Hermitian conjugate and ground state

Hamiltonian

Ĥeff = Ĥg −
ℏ∆0Ω

2
0

4∆2
0 + γ2

|0, β⟩⟨β, 0| − ℏ∆1Ω
2
1

4∆2
1 + γ2

|1, β⟩⟨β, 1|

−eit4β ℏΩ0Ω1(∆0 +∆1)

8∆̃0∆̃
†
1

|1, β + 1⟩⟨β − 1, 0| − e−it4β ℏΩ0Ω1(∆0 +∆1)

8∆̃†
0∆̃1

|0, β − 1⟩⟨β + 1, 1|.
(2.18)

This provides an accurate approximation of the three level system. In order to study the dark

states of this system, we simplify this equation by setting γ = 0, because there is no dissipation

by spontaneous emission in the dark states. Furthermore, we let ∆0 = ∆1 = ∆ to ensure that the

Raman condition is met. Applying these simplifications to the system gives

Ĥeff = Ĥg −
ℏΩ2

0

4∆
|0, β⟩⟨β, 0| − ℏΩ2

1

4∆
|1, β⟩⟨β, 1|

−ℏΩ0Ω1

4∆
|1, β + 1⟩⟨β − 1, 0| − ℏΩ0Ω1

4∆
|0, β − 1⟩⟨β + 1, 1|.

(2.19)

We now identify the dark state by searching for the kernel of the effective Hamiltonian. In other

words, we want to find the non-evolving state, |ψ⟩dark = a|β − 1, 0⟩ + b|β + 1, 1⟩, where a and
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b correspond to the population in each of the ground states that remain constant as the system

evolves. This occurs when β = 0 and the following system of equations is satisfied:

Ω2
0

4∆
a = −Ω0Ω1

4∆
b,

Ω2
1

4∆
b = −Ω0Ω1

4∆
a.

(2.20)

These equations are solved to find

|a| = Ω1√
Ω2
0 +Ω1

1

,

|b| = Ω0√
Ω2
0 +Ω1

1

.

(2.21)

where a is rotated 180 degrees around the complex unit circle from b. When Ω1 = Ω2, this solution

agrees with Eq. (1.11). Thus, the dark state occurs around zero momentum, with the population

in each state corresponding to the lasers Rabi frequencies. We have already shown this dark state

and population transfer in Fig. 1.6. If we solve this same system with Ω1 = Ω2, but do not set

β = 0, we find

a = −e−4itβb ,

b = −e4itβa .

(2.22)

This system is clearly not dark, as there is a time-dependent population transfer between the ground

states, except for when β = 0 such that the system is on resonance.

2.2.2 Phases Between the Lasers in the Three-Level system

In the previous section we demonstrated VSCPT in the three-level system, and found that

the ground states exchange population at a rate of 4βt. In this section, we demonstrate that this

phase can be eliminated, and dark states at varying momentum may be achieved, by introducing a

term of the form eiδt onto one of the lasers. This term corresponds to a relative detuning between

the lasers, which cannot be rotated out. We can extract this term by selecting a rotating frame of

reference such that ∆1 = ∆2, but where one of these lasers is tuned slightly above or below this



22

resonance. Our interaction Hamiltonian then assumes the form

V̂ =
Ω0

2

(
e−it(2β+1)eiδt|0, β⟩⟨β + 1, e|+ eit(2β+1)e−iδt|e, β + 1⟩⟨β, 0|

)
+
Ω1

2

(
eit(2β−1)|1, β⟩⟨β − 1, e|+ (e−it(2β+1)|e, β − 1⟩⟨β, 1|

)
.

(2.23)

The procedure for adiabatic elimination of the excited states remains unchanged, with the

exception of the non-Hermitian term, which is modified to read Ĥ
(0)
nh = ℏ(∆0 − δ − iγ

2 )|e⟩⟨e|. By

assuming that ∆0 = ∆1 ≫ δ, the non-Hermitian Hamiltonian remains approximately unchanged

as Ĥ
(0)
nh = ℏ(∆0 − δ − iγ

2 )|e⟩⟨e| ≈ ℏ(∆0 − iγ
2 )|e⟩⟨e|. Letting Ω1 = Ω2, Eq. (2.22) becomes.

a = −eiδte−4itβb,

b = −e−iδte4itβa.

(2.24)

It is clear that this state is dark when δ = −4β. Therefore, we can select the velocity at which

dark states occur by introducing this detuning term between the lasers as shown in Fig. 2.2. This

system is incredibly simple compared to YO and lithium 7, where we are concerned with 11 and 13

states, respectively. However, the necessity to introduce a detuning of similar form to Eq. (2.23)

will become apparent in the subsequent sections, and the velocity selection this detuning allows

will inform our solutions to the more complex systems.
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Figure 2.2: In this plot each color corresponds to a different δ value on the right laser in the
Λ-system.
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Chapter 3

Analysis and Results

In this chapter we apply the code to systems roughly equivalent to lithium-7 [8], where gray

molasses cooling has been experimentally demonstrated, and compare our theoretical predictions

from Monte Carlo wave functions to experimental observations. We analyze these results by em-

ploying an effective operator formalism for elimination of the excited states developed by Reiter

and Sørensen [21], and identify the characteristics of dark states in the lithium system. Finally, we

introduce Fano [15, 7] profiles to explain the characteristic temperature spikes observed when the

lasers are detuned to either side of the Raman resonance condition.

3.1 Cooling Lithium in One-Dimension

We begin our analysis of gray molasses cooling systems by simulating systems analogous to

lithium in one dimension. This system is ideal for simulation, because it has a relatively narrow

transition. In theD1 line of lithium, Γ ≈ 100ωr [16]. In the experimental paper where gray molasses

was first observed in lithium 7 [8], the largest values used were Ωp ≈ ∆p ≈ ∆r ≈ 4.5Γ, where ∆p

and ∆r are the detunings of the principal and repumper lasers, respectively. When ∆p = ∆r, the

Raman condition, δ = ∆p−∆r = 0, is met, and we anticipate the formation of dark states. We will

discuss exactly why this condition is required for dark states to form in section 3.2. In order for

cooling to occur, there must be a phase introduced between the lasers addressing each manifold. If

no phase is introduced between the manifolds, we find that the system quickly ceases to evolve as

it enters velocity independent dark states. The nature of these dark states will be also be discussed
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in section 3.2.

Lithium consists of three internal energy manifolds, two ground state manifolds separated

by a microwave frequency, and an excited manifold. As illustrated in Fig. 3.1, these manifolds are

defined by the higher energy ground state Fg = 2, and lower energy ground state Fg = 1, and an

excited state Fe = 2. A pair of low power σ+ - σ− repumping lasers address the Fg = 1 to Fe = 2

transition, and a pair of higher powered principle laser address the Fg = 2 to Fe = 2 transition.

First, in order to disrupt velocity independent dark states, we generate a random phase

at every time step and apply it to each repumping laser. This results in the system continuing to

evolve. However, we find in Fig. 3.2 that the system does not cool successfully as the variance of the

distribution continues to increase. We find that although this configuration does not successfully

cool the system, some population appears to be trapped at low velocities, indicated by the spikes

in the momentum distribution at the center of the distribution, with peaks separated by one ℏk.

One possible explanation for the failure to cool under this configuration is that we can only alter

the random phase once per time step. In a real system, this alteration could be made arbitrarily

frequent throughout the experiment. If this result is physical, it indicates that the system’s cooling

is strongly related to the velocity dependent dark states, which are disrupted by the random phase.

We will discuss these states in more detail in sections 2.2.1 and 3.2.

Next, we analyze a system wherein rather than a random phase, we introduce a detuning δ

on each repumping laser. So, Eq. (2.7) is modified to read

˜̂
H =

∑
l=x,y,z

ℏ∆1|g1⟩⟨g1|+ ℏ∆2|g2⟩⟨g2|

+
∑

l=x,y,z

ℏΩ1,l

2

(
e−iδtσ̂−1 e

−iωrt(2β+1)|β⟩⟨β + 1|+ h.c.
)
+

ℏΩ1,l

2

(
eiδtσ̂−1 e

iωrt(2β−1)|β⟩⟨β − 1|+ h.c.
)

+
∑

l=x,y,z

ℏΩ2,l

2

(
σ̂−2 e

−iωrt(2β+1)|β⟩⟨β + 1|+ h.c.
)
+

ℏΩ2,l

2

(
σ̂−2 e

iωrt(2β−1)|β⟩⟨β − 1|+ h.c.
)
.

(3.1)

The time dependent phase may be considered a detuning term, loaded onto the field, rather

than rotated out in the interaction picture. In this system, we observe significant time dependent



26

effects demonstrated in Fig. 3.3. Furthermore, we find the system reached temperatures well below

the Doppler limit, at T
′
= 10.8 nearing the recoil limit itself. There appears to be Rabi oscillations

between the two manifolds, with each cycle driving the temperature lower. Furthermore, there

are notable spikes in the population at momentum states separated by ℏk, indicating the presence

of relatively stable dark states. We will provide further analysis for the time dependence of this

system in section 3.2.

Figure 3.1: This figure denotes the level structure of lithium 7. There are five excited states in a
single manifold Fe = 2, separated from eight ground states in two manifolds, Fg = 1 and Fg = 2.
These two manifolds are separated by a microwave transition, and there is no spontaneous emission,
or atom field interaction driving transitions between them. Each ground manifold is connected to
the excited state by a separate pair of σ+ - σ− lasers.

3.2 Six-Level Lithium System

In this section we extend Reiter and Sørenson operator formalism to address the lithium

system. We provide some basic analysis of the dark states of the system, compare these derivations

to our Monte Carlo wave function results, and create a platform for future analysis using this

method. Unlike the previous section, our state kets must now account for manifold degeneracy, so

we write the atomic state |F,m, β⟩, where F corresponds to the manifold degeneracy, m corresponds

to the magnetic quantum number, and β corresponds to the dimensionless momentum.

We begin by defining our ground state Hamiltonian, assuming we have moved into a rotating

frame where the lasers addressing each manifold are equally detuned from the excited state:
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Figure 3.2: In this plot we have fixed Γ = 100, the repumping laser Ωr = 134, the principle laser
Ωp = 450, and ∆r = ∆p = 4.5Γ. The top plot is the momentum distribution, averaged over 800
trajectories, between times 2000

Γ and 2200
Γ . The red line is a Gaussian fit of this distribution, with a

temperature corresponding to T
′
= 68.0. The bottom plot is the dimensionless temperature value

with respect to time, extracted from the variance at each time step.
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Figure 3.3: In these plots we have fixed Γ = 100, the repumping laser Ωr = 134, the principal
laser Ωp = 450, and ∆r = ∆p = 4.5Γ. We have introduced a δ = 2 detuning between the lasers.
The top left plot is the dimensionless temperature over time, extracted from the variance of the
distribution. The top right is the population in each manifold over time. The bottom plot is the
momentum distribution, averaged over 800 trajectories, between times 2000

Γ and 2200
Γ . The red line

is a Gaussian fit of this distribution, with a temperature corresponding to T
′
= 10.8.

0 500 1000 1500 2000
0

20

40

60

T
'

0 500 1000 1500 2000
0.2

0.3

0.4

0.5

0.6

0.7

P
op

ul
at

io
n

F = 1 Population
F = 2 Population

-20 -15 -10 -5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05
Momentum Distribution
Single Gaussian Fit



29

Ĥg = −∆
1∑

l=−1

|F = 1,m = l, β⟩⟨F = 1,m = l, β| −∆
2∑

l=−2

|F = 2,m = l, β⟩⟨F = 2,m = l, β| .

(3.2)

With the ground state defined, we note that there are 21 possible transitions connecting the

various ground states to the excited states. For the interaction Hamiltonian, we are only concerned

with σ+ and σ− transitions, so it takes takes the form:

V̂ =

1∑
l=−2

cl
Ω2

2

(
e−it(2β+1)|F = 2,m = l, β⟩⟨β + 1,m = l + 1, e|

+eit(2β+1)|e,m = l + 1, β + 1⟩⟨β,m = l, F = 2|
)

+
2∑

l=−1

cl
Ω2

2

(
eit(2β−1)|F = 2,m = l, β⟩⟨β − 1,m = l − 1, e|

+e−it(2β+1)|e,m = l − 1, β − 1⟩⟨β,m = l, F = 2|
)

+

0∑
l=−1

cl
Ω1

2

(
eiδte−it(2β+1)|F = 1,m = l, β⟩⟨β + 1,m = l + 1, e|

+e−iδteit(2β+1)|e,m = l + 1, β + 1⟩⟨β,m = l, F = 1|
)

+
1∑

l=0

cl
Ω1

2

(
e−iδteit(2β−1)|F = 1,m = l, β⟩⟨β − 1,m = l − 1, e|

+eiδte−it(2β+1)|e,m = l − 1, β − 1⟩⟨β,m = l, F = 1|
)
.

(3.3)

The cl terms are the Clebsch-Gordon coefficients of each transition. Because the raising and lowering

operators result in an increase and decrease in the magnetic quantum number, effective transitions

between ground states occur only between magnetic quantum numbers separated by two, or of the

form |m = l ± 1⟩⟨m = l ∓ 1|. This means that even magnetic states are connected to evens, and

odds to odds. These two families of quantum states are connected to one another via spontaneous

emission. For the sake of simplicity and brevity, we will address only the even family of states. This

means that after the adiabatic elimination of the excited states, we will be concerned only with

the population of four ground states, |F = 2,m = −2, β⟩, |F = 2,m = 0, β⟩, |F = 2,m = 2, β⟩,

|F = 1,m = 0, β⟩, and the transitions between these states. We find that, after each transition is
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accounted for, the effective Hamiltonian takes the form

Ĥeff = Ĥg −
1

3

Ω2
2

4∆
|F = 2,m = −2, β⟩⟨β,m = −2, F = 2|

−Ω2
2

4∆
|F = 2,m = 0, β⟩⟨β,m = 0, F = 2|

−eit4β 1√
6

Ω2
2

4∆
|F = 2,m = 0, β + 1⟩⟨β − 1,m = −2, F = 2|

−e−it4β 1√
6

Ω2
2

4∆
|F = 2,m = −2, β − 1⟩⟨β + 1,m = 0, F = 2|

−1

3

Ω2
2

4∆
|F = 2,m = 2, β⟩⟨β,m = 2, F = 2|

−e−it4β 1√
6

Ω2
2

4∆
|F = 2,m = 0, β − 1⟩⟨β + 1,m = 2, F = 2|

−eit4β 1√
6

Ω2
2

4∆
|F = 2,m = 2, β + 1⟩⟨β − 1,m = 0, F = 2|

−Ω2
1

4∆
|F = 1,m = 0, β⟩⟨β,m = 0, F = 1|

−Ω1Ω2

8∆
(eiδt + e−iδt)|F = 1,m = 0, β⟩⟨β,m = 0, F = 2|

−Ω1Ω2

8∆
(eiδt + e−iδt)|F = 2,m = 0, β⟩⟨β,m = 0, F = 1|

−eit4βeiδt 1√
6

Ω1Ω2

4∆
|F = 1,m = 0, β + 1⟩⟨β − 1,m = −2, F = 2|

−e−it4βe−iδt 1√
6

Ω1Ω2

4∆
|F = 2,m = −2, β − 1⟩⟨β + 1,m = 0, F = 1|

−e−it4βe−iδt 1√
6

Ω1Ω2

4∆
|F = 1,m = 0, β − 1⟩⟨β + 1,m = 2, F = 2|

−eit4βeiδt 1√
6

Ω1Ω2

4∆
|F = 2,m = 2, β + 1⟩⟨β − 1,m = 0, F = 1| .

(3.4)

A more rigorous derivation for this effective Hamiltonian can be found in appendix B. In the

above Hamiltonian, it must be noted that β corresponds to the intermediate momentum value of

the given transition, and may be different for various transitions. For example, if at m = 0, we had

β = 0, the β value for the m = 0 to m = ±2 transitions would be β = ±1.

We can now construct a system of four coupled equations, describing to the population in

each of the four even ground states, aFM , where F indicates the manifold and M indicates magnetic

number. First, we note the constraint (a10)
2 + (a20)

2 + (a2−2)
2 + (a22)

2 = 1, which indicates that

our population is normalized. We further specify that we are only concerned with the family of
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momentum states centered around a given momentum k, at the m = 0 state. Thus, the m = 2

state would have momentum k+2, and m = - 2 has momentum k− 2. Our equations now become,

− a20
Ω2
2

4∆
= a10

Ω1Ω2

4∆
cos δt+ a2−2

Ω2
2

4
√
6∆

e4itk + a22
Ω2
2

4
√
6∆

e−4itk , (3.5)

− a10
Ω2
1

4∆
= a20

Ω1Ω2

4∆
cos δt+ a2−2

Ω1Ω2

4
√
6∆

eiθte4itk + a22
Ω1Ω2

4
√
6∆

e−iθte−4itk , (3.6)

− a2−2
1

3

Ω2
2

4∆
= a20

Ω2
2

4
√
6∆

e−4itk + a10
Ω1Ω2

4
√
6∆

e−iδte−4itk , (3.7)

− a22
1

3

Ω2
2

4∆
= a20

Ω2
2

4
√
6∆

e4itk + a10
Ω1Ω2

4
√
6∆

eiδte4itk . (3.8)

Due to the symmetry in this system, if we allow a2−2 = a22 = b, our equations become

− a20
Ω2
2

4∆
= a10

Ω1Ω2

4∆
cos δt+ b

Ω2
2

8
√
6∆

cos 4kt , (3.9)

− a10
Ω2
1

4∆
= a20

Ω1Ω2

4∆
cos δt+ b

Ω1Ω2

4
√
6∆

cos (δ + 4k)t , (3.10)

− b
1

3

Ω2
2

4∆
= a20

Ω2
2

4
√
6∆

e−4itk + a10
Ω1Ω2

4
√
6∆

e−iδte−4itk , (3.11)

− b
1

3

Ω2
2

4∆
= a20

Ω2
2

4
√
6∆

e4itk + a10
Ω1Ω2

4
√
6∆

eiδte4itk . (3.12)

We begin by studying the case where b = 0, and δ = 0. The system easily reduces into a dark state

where a10 = −a20 Ω2
Ω1

. This dark state is completely velocity independent. Because of these velocity

independent dark state, the system ceases to evolve and fails to cool the atoms. The introduction

of a δ ̸= 0 disrupts the dark state by introducing a time-dependence to these equations, resulting

and population transfer, and consequentially spontaneous emission.

Similarly to the previous section, the introduction of the δ term results in velocity dependent

dark states. By letting δ = −4k, a20 = 0, and keeping the assumption that a2−2 = a22 = b, we find

− a10
Ω1Ω2

4∆
= b

Ω2
2

2
√
6∆

, (3.13)

− a10
Ω2
1

4∆
= b

Ω1Ω2

2
√
6∆

, (3.14)



32

− b
1

3

Ω2
2

4∆
= a10

Ω1Ω2

4
√
6∆

, (3.15)

− b
1

3

Ω2
2

4∆
= a10

Ω1Ω2

4
√
6∆

. (3.16)

The solution to this system of equation a10 = −b
√
6Ω2
3Ω1

. Therefore, we have selected a dark state

in the system at momentum k = − δ
4 . We note that a similar calculation can be done on the odd

magnetic numbers, by following the procedure in appendix B.

We have predicted that introducing a detuning between the lasers will shift the resonant

momentum of the dark state, which will affect the equilibrium temperature of the system. This

represents a possible explanation for the off resonant momentum spikes in gray molasses configu-

ration. In Fig. 3.4, we find that indeed, the temperature tends to increase with δ. We note that

calculating this plot for greater detuning values becomes increasing difficult, as it requires smaller

time steps, and wider momentum grids as temperature increases. We can qualitatively confirm our

findings of velocity selective dark states from the momentum histogram when δ = 16. In Fig. 3.5

it is clear that some of the population has shifted in the negative direction by approximately 4ℏk,

which agrees with our prediction that the dark state will be centered around k = − δ
4 .

3.3 Fano Profiles of the Simplified Model

Another explanation for the off-resonance temperature spikes in gray molasses derives from

Fano profiles. These mathematical objects are found by solving the optical Bloch equations (OBEs),

for a three level system. Originally solved in [2], the OBEs differ greatly from the fully quantum

solution employed in Monte Carlo wave functions, and adiabatically eliminated solution from Reiter

and Sørensen, because the OBEs are a semi-classical approximation of the wave function. Although

the OBEs are a useful approximation of wave function, particularly in identifying equilibrium

temperatures, we will not go into depth on their solutions in this thesis. Following the procedure

given by [15, 7], and assuming that the decay rate Γ into both ground states is equivalent, the fano

profiles for lithium and YO take the form Fig 3.6.

The width between the spikes in these profiles corresponds almost exactly to the width
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Figure 3.4: In this plot we calculate the equilibrium temperature for δ = 2, 4,&16. Each point is
averaged over 800 trajectories from time 2000

Γ to 2200
Γ . The error bars indicate 95% confidence of

the least squares Gaussian fit.
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Figure 3.5: In this plot we have fixed Γ = 100, the repumping laser Ωr = 134, the principal laser
Ωp = 450, and ∆r = ∆p = 4.5Γ. We have introduced a δ = 16 detuning between the lasers. The
momentum distribution, averaged over 800 trajectories, between times 2000

Γ and 2200
Γ . The green

line is a Gaussian fit of this distribution, with a temperature corresponding to T
′
= 56.1.
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between the spikes in temperatures around resonance found in the Lithium and YO experiments.

In general, equilibrium temperatures when calculated from the OBEs are linearly proportional to

the excited state population. This indicates that there is there is Fano resonance akin to that

found in [19]. Extending the three level qualitative model to the complete YO and lithium systems

requires a rigorous solution to the OBEs, and is beyond the scope of this thesis.
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Figure 3.6: In this plot we have fixed have assumed that the emission rate into both ground states
are equivalent. On the left plot, we have let ∆r = −4.5Γ, Ωr = 1.34Γ, and Ωp = 4.5Γ. On the right
plot we have let ∆r = −12.5Γ, Ωr = 0.86Γ, and Ωp = 1.26Γ.
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Chapter 4

Summary & Conclusion

In Chapter 1 of this thesis we present motivation for a project to provide a theoretical frame-

work for off-resonant temperature phenomena that occur in Gray Molasses Cooling systems such

as lithium, rubidium, and YO. We also review the basics of laser cooling in Doppler, Polarization

Gradient, and VSCPT configurations. In chapter 2 we extend the Monte Carlo wave function

technique to multiple energy manifolds and dimensions. We demonstrate a simplification in the

algorithm, which employs the Hamiltonian’s time reversal symmetry to allow for easy modification

of the atomic system. We also introduce Reiter and Sørensen adiabatic elimination of the excited

state as a technique to analytically study Hamiltonians for systems near resonance. In chapter 3 we

apply both the Monte Carlo wave function methodology and the adiabatic elimination technique to

a lithium-7 GMC configuration, in order to study the system’s behavior near the Raman resonance

condition. We also qualitatively compare our results to the Fano profile of simplified three-level

systems.

To achieve our goals we derived a widely applicable Hamiltonian for Monte Carlo wave

functions, and wrote flexible code capable of simulating arbitrarily many energy manifolds and

degenerate states, in one, two and three dimensions. We added momentum dependence to the

Reiter and Sørensen operator formalism, and demonstrated a simple technique for constructing large

Hamiltonians. Using these techniques, we were able to analytically and numerically describe GMC

in lithium. However, more work is required to construct a complete theory of the gray molasses

configuration. Due to the narrow transition of YO, which is less than twice the recoil frequency,
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and the unique internal structure, we have not yet simulated this configuration. A combination

of longer integration times, analytic approximations, and fictional parameters may be required in

order to simulate the YO configuration. A formal description of the equilibrium temperatures for

gray molasses is still required in order for us fully understand the physical mechanisms at play.

Such a description will allow us to predict the ideal parameter regime for maximally cooling these

systems. Detuning dependent dark states and Fano profiles show promise for developing a complete

theory of gray molasses cooling, and more work is required in this area to convert the qualitative

descriptions at equilibrium into rigorous theory. Since the the momentum distributions are non-

Gaussian, an alternative approach to defining temperature may be required. Next steps will include

analytically linking these momentum distributions to parameters such as detuning and intensity,

and deriving an expression for temperature based upon these distributions.
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[9] T.W. Hänsch and A.L. Schawlow. Cooling of gases by laser radiation. Optics Communications,
13(1):68–69, 1975.

[10] M. Holland, S. Marksteiner, P. Marte, and P. Zoller. Measurement induced localization from
spontaneous decay. Phys. Rev. Lett., 76:3683–3686, May 1996.

[11] J Javanainen. Polarization gradient cooling in three dimensions: comparison of theory and
experiment. 27(3):L41–L47, feb 1994.

[12] Zhong-Hua Ji, Jin-Peng Yuan, Yan-Ting Zhao, Xue-Fang Chang, Lian-Tuan Xiao, and Suo-
Tang Jia. Systematically investigating the polarization gradient cooling in an optical molasses
of ultracold cesium atoms. Chinese Physics B, 23(11):113702, nov 2014.



40

[13] J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-
Tannoudji. Two-dimensional subrecoil laser cooling. Phys. Rev. Lett., 73:1915–1918, Oct
1994.

[14] Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, William D. Phillips, Phillip L. Gould,
and Harold J. Metcalf. Observation of atoms laser cooled below the doppler limit. Phys. Rev.
Lett., 61:169–172, Jul 1988.

[15] B. Lounis and C. Cohen-Tannoudji. Coherent population trapping and fano profiles. Journal
De Physique II, 2:579–592, 1992.

[16] Harold J. Metcalf and Peter Van der Straten. Laser cooling and trapping. Graduate Texts in
Contemporary Physics, 1999.

[17] Klaus Mølmer, Yvan Castin, and Jean Dalibard. Monte carlo wave-function method in quan-
tum optics. J. Opt. Soc. Am. B, 10(3):524–538, Mar 1993.
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Appendix A

The Interaction Picture for a Two-Level Atom

We begin with the simplest laser cooling model, Doppler cooling. In this configuration, a

two-level atom with an electronic ground state |g⟩ and excited state |e⟩ separated by frequency ωa,

interacts with 6 red-detuned classical fields, one from each positive and negative spatial direction.

We represent the particles external degrees of freedom in a discrete momentum space, spaced by

units of ℏk, in each spatial direction: |px⟩, |py⟩, and |pz⟩. Thus, in the lab frame, the Hamiltonian

is given by

Ĥorg =
ℏωa

2
σ̂z ⊗ Îp +

∑
l=x,y,z

(
Îa ⊗ Îp

) p̂2l
2m

+ Ĥint,l, (A.1)

where we have defined the atomic Pauli z operator as σ̂z = |e⟩⟨e|−|g⟩⟨g|, the momentum operator in

direction l as p̂l =
∑

pl
pl|pl⟩⟨pl|, and the identity operator of the internal and external subspaces as

Îa = |g⟩⟨g|+ |e⟩⟨e| and Îp =
⊗

l=x,y,z

∑
pl
|pl⟩⟨pl|. The interaction Hamiltonian in spatial direction

l after the dipole and rotating-wave approximations is given by

Ĥint,l =
ℏΩl

2

(
σ̂−e

−i[kx̂l−ωlt] + h.c.
)
+

ℏΩl

2

(
σ̂−e

i[kx̂l+ωlt] + h.c.
)
, (A.2)

where we have assumed that the right and left lasers in spatial direction l have the same frequency

ωl that is time-independent. Here, x̂l is the position operator for spatial direction l, the internal

Pauli lowering (raising) operator is defined as σ̂− = |g⟩⟨e| (σ̂+|e⟩⟨g|), the momentum shift operator

can be written as exp [ikx̂l] =
∑

pl
|pl + ℏk⟩⟨pl|, and the Rabi frequency is given by [25]

Ωl = −
E0,l

ℏ
⟨g|ε̂l · d̂|e⟩, (A.3)
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where E0,l is the magnitude of the electric field, ε̂l is the unit polarization vector of the field, and

d̂ = −er̂ = ⟨g|d̂|e⟩ (|g⟩⟨e|+ |e⟩⟨g|) , (A.4)

is the dipole operator with electron position r̂.

Dropping the identity operators from our calculation, we now move into an interaction picture

defined by

Ĥ ′ =
ℏω
2
σ̂z +

∑
l=x,y,z

p̂l
2

2m
, (A.5)

where we have assumed each laser has the same frequency ω and defined ωr = ℏk2/(2m) as the

recoil frequency. We thus obtain [20]

Ĥ = −ℏ∆
2
σ̂z +

∑
l=x,y,z

ℏΩl

2

(
σ̂−e

−ik
[
x̂l+

p̂lt

m

]
+ h.c.

)
+

ℏΩl

2

(
σ̂−e

ik
[
x̂l+

p̂lt

m

]
+ h.c.

)
, (A.6)

where ∆ = ω − ωa is the detuning of every laser in the lab frame. Using the Baker-Campbell-

Hausdorff lemma, specifically the Zassenhaus formula

et(Â+B̂) = etÂetB̂e−
t2

2 [Â,B̂]e
t3

6 (2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) . . . (A.7)

where
[
Â, B̂

]
= ÂB̂ − B̂Â is the commutator, we can separate the exponentials to obtain

Ĥ = −ℏ∆
2
σ̂z +

∑
l=x,y,z

ℏΩl

2

(
σ̂−e

iωrte−ikx̂le−i
kp̂lt

m + h.c.
)
+

ℏΩl

2

(
σ̂−e

iωrteikx̂lei
kp̂lt

m + h.c.
)
. (A.8)

We now define β̂l = p̂l/(ℏk) =
∑

βl
βl|βl⟩⟨βl| with momentum number βl = pl/(ℏk) and eigenstates

|βl⟩ = |pl/(ℏk)⟩ such that

Ĥ =− ℏ∆
2
σ̂z +

∑
l=x,y,z

ℏΩl

2

(
σ̂−e

−ikx̂le−2iωrβ̂lteiωrt + h.c.
)
+

ℏΩl

2

(
σ̂−e

ikx̂le2iωrβ̂lteiωrt + h.c.
)
(A.9)

Since the momentum shift operators is now given by exp [ikx̂l] =
∑

βl
|βl⟩⟨βl−1| and exp [−ikx̂l] =∑

βl
|βl⟩⟨βl + 1|, we can write

Ĥ =− ℏ∆
2
σ̂z +

∑
l=x,y,z

ℏΩl

2

σ̂−∑
βl

|βl⟩⟨βl + 1|e−iωr(2βl+1)t + h.c.


+
ℏΩl

2

σ̂−∑
βl

|βl⟩⟨βl − 1|eiωr(2βl−1)t + h.c.

 .

(A.10)
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From this Hamiltonian, we can calculate the momentum coefficients needed to evolve our code at

each time step, by operating on a state vector |ψ⟩

|ψ⟩ =
∑
s=g,e

∑
βx

∑
βy

∑
βz

csβxβyβz |s⟩ ⊗ |βx⟩ ⊗ |βy⟩ ⊗ |βz⟩, (A.11)

It is trivial to extend our simulation to account for more than two internal energy levels, allowing

us to solve more complex internal structures in three dimensions.
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Adiabatic elimination of lithium excited states

In this appendix we go through the full derivation for the four level Hamiltonian in 3.2.

The employed here can easily be extended to other systems. We begin with the ground state

Hamiltonian

Ĥg = −∆

1∑
l=−1

|F = 1,m = l, β⟩⟨F = 1,m = l, β|−∆

2∑
l=−2

|F = 2,m = l, β⟩⟨F = 2,m = l, β| (B.1)

and the the interaction Hamiltonian

V̂ =

1∑
l=−2

cl
Ω2

2

(
e−it(2β+1)|F = 2,m = l, β⟩⟨β + 1,m = l + 1, e|

+eit(2β+1)|e,m = l + 1, β + 1⟩⟨β,m = l, F = 2|
)

+
2∑

l=−1

cl
Ω2

2

(
eit(2β−1)|F = 2,m = l, β⟩⟨β − 1,m = l − 1, e|

+e−it(2β+1)|e,m = l − 1, β − 1⟩⟨β,m = l, F = 2|
)

+

0∑
l=−1

cl
Ω1

2

(
eiδte−it(2β+1)|F = 1,m = l, β⟩⟨β + 1,m = l + 1, e|

+e−iδteit(2β+1)|e,m = l + 1, β + 1⟩⟨β,m = l, F = 1|
)

+
1∑

l=0

cl
Ω1

2

(
e−iδteit(2β−1)|F = 1,m = l, β⟩⟨β − 1,m = l − 1, e|

+eiδte−it(2β+1)|e,m = l − 1, β − 1⟩⟨β,m = l, F = 1|
)
.

(B.2)
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As we do in section 3.2, we focus entirely on the family of even magnetic states. We define the

effective Hamiltonian as

Ĥeven
eff = −1

2

[
V̂−

∑
l=even

(Ĥ
(l)
nh)

−1V̂
(l)
+ +H.c.

]
+ Ĥg (B.3)

where the non Hermitian terms are Ĥ
(l)
nh = (∆l − δ − iγ

2 )|e⟩⟨e|. Assuming |∆l| ≫ |δ|, then Ĥ(l)
nh ≈

(∆l − iγ
2 )|e⟩⟨e|. This calculation is incredibly tedious to conduct term by term, and it is easy to

lose track of terms. We present a method wherein the Hamiltonian can be solved in terms of more

manageable blocks. Consider a Hamiltonian where three ground |1⟩, |2⟩, and |3⟩, states are coupled

to an excited state.
3∑

l=1

(Ĥ
(l)
nh)

−1V̂
(l)
+ = c1+ |e⟩⟨1|+ c2+ |e⟩⟨2|+ c3+ |e⟩⟨3| (B.4)

Where cl+ indicates the transition rate from each ground to the excited state, and cl− the transition

rate from the excited to ground state. Applying the lowering operator to this system gives

V̂−

3∑
l=1

(Ĥ
(l)
nh)

−1V̂
(l)
+ = (c1− |1⟩⟨e|+ c2− |2⟩⟨e|+ c3− |3⟩⟨e|)

(
c1+ |e⟩⟨1+|+ c2+ |e⟩⟨2|+ c3+ |e⟩⟨3|

)
(B.5)

which is equivalent to

V̂−

3∑
l=1

(Ĥ
(l)
nh)

−1V̂
(l)
+ =

3∑
l=1

3∑
k=1

cl−ck+ |l⟩⟨k| (B.6)

What this shows is that each raising and lowering operator is commutative under addition. We

can group them however we want, so long as each transition is ultimately accounted for. We

therefore elect to separate the Hamiltonian into four portions. Ĥ1 includes the transitions between

|F = 2,m = 0⟩ and |F = 2,m = −2⟩. Ĥ2 includes the transitions connecting |F = 1,m = 0⟩ to

|F = 2,m = 0⟩ and |F = 2,m = −2⟩. Ĥ3 is the mirror image of Ĥ1, and includes the transitions

from |F = 2,m = 0⟩ and |F = 2,m = 2⟩. Finally Ĥ4 is the mirror of Ĥ2 and includes the transitions

connecting |F = 1,m = 0⟩ to |F = 2,m = 0⟩ and |F = 2,m = 2⟩. Note that the |F = 1,m = 0⟩

to |F = 2,m = 0⟩ transitions are double counted. This is by design, as the Ĥ2 transitions pass

through the |E,m = −1⟩ state, while the Ĥ4 transitions pass through the |E,m = 1⟩ state. We

now define

Ĥeven
eff = Ĥg + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 (B.7)
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Ĥ1 takes the form a similar form as the three level Hamiltonian, because we are only considering

two ground states and one excited state

Ĥ1 = −1

3

Ω2
2

4∆2
|F = 2,m = −2, β⟩⟨β,m = −2, F = 2|

−1

2

Ω2
2

4∆2
|F = 2,m = 0, β⟩⟨β,m = 0, F = 2|

−eit4β 1√
6

Ω2
2

4∆2
|F = 2,m = 0, β + 1⟩⟨β − 1,m = −2, F = 2|

−e−it4β 1√
6

Ω2
2

4∆2
|F = 2,m = −2, β − 1⟩⟨β + 1,m = 0, F = 2| .

(B.8)

We now add in Ĥ2, which includes the third ground state, and its effective transitions to the other

two

Ĥ2 = −1

2

Ω2
1

4∆1
|F = 1,m = 0, β⟩⟨β,m = 0, F = 1|

−eiδt 1
2

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 1,m = 0, β⟩⟨β,m = 0, F = 2|

−e−iδt 1

2

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 2,m = 0, β⟩⟨β,m = 0, F = 1|

−eiδteit4β 1√
6

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 1,m = 0, β + 1⟩⟨β − 1,m = −2, F = 2|

−e−iδte−it4β 1√
6

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 2,m = −2, β − 1⟩⟨β + 1,m = 0, F = 1| .

(B.9)

Ĥ3 is the mirror image of Ĥ1

Ĥ3 = −1

3

Ω2
2

4∆2
|F = 2,m = 2, β⟩⟨β,m = 2, F = 2|

−1

2

Ω2
2

4∆2
|F = 2,m = 0, β⟩⟨β,m = 0, F = 2|

−e−it4β 1√
6

Ω2
2

4∆2
|F = 2,m = 0, β − 1⟩⟨β + 1,m = 2, F = 2|

−eit4β 1√
6

Ω2
2

4∆2
|F = 2,m = 2, β + 1⟩⟨β − 1,m = 0, F = 2| ,

(B.10)
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and Ĥ4 is the mirror image of Ĥ2

Ĥ4 = −1

2

Ω2
1

4∆1
|F = 1,m = 0, β⟩⟨β,m = 0, F = 1|

−e−iδt 1

2

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 1,m = 0, β⟩⟨β,m = 0, F = 2|

−eiδt 1
2

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 2,m = 0, β⟩⟨β,m = 0, F = 1|

−e−iδte−it4β 1√
6

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 1,m = 0, β − 1⟩⟨β + 1,m = 2, F = 2|

−eiδteit4β 1√
6

Ω1Ω2(∆1 +∆2)

8∆1∆2
|F = 2,m = 2, β + 1⟩⟨β − 1,m = 0, F = 1| .

(B.11)

Summing the constituent parts of the effective Hamiltonian, letting γ = 0, and ∆1 = ∆2 = ∆,

yields equation (3.4). This same strategy can be employed to solve other Hamiltonians, including

that corresponding to the odd magnetic terms in the lithium configurations. Furthermore, if we

allow γ ̸= 0 and ∆1 ̸= ∆2, this formalism could be used to numerically integrate atomic evolution,

with the caveat that the Lindblad operators would change according to the technique outlined in

[21].
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