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Abstract

The paper aims to clarify the stress tensor definition and its symmetry prop-
erty that applies to granular media, and conducts 3D Discrete Element
Method (DEM) inspection of the stress tensor definitions provided in the
literature. Various stress tensor formulas under static and dynamic condi-
tions are summarized, compared and numerically inspected through differ-
ent types of simulation, such as gravitational deposition, isotropic/oedometer
compression and high-strain-rate (HSR) oedometer impact. The stress tensor
symmetry is particularly discussed from the perspective of applying classical
continuum mechanics to granular media. It is proved analytically and nu-
merically that the stress tensor should be calculated by Bagi’s formula, not
Weber’s formula or Drescher’s formula, for a particle assembly or represen-
tative volume element (RVE) in static equilibrium. We propose to modify
the De Saxcé and Nicot formulas by incorporating the boundary-radius-gap
term such that they are consistent with Bagi’s formula, which is particularly
well-suited for studying granular phenomena that transition between static,
quasi-static and dynamic conditions.

It is shown from the perspective of stress tensor calculation that the num-
ber of particles in the RVE does not need to be large. Symmetry of averaged
stress tensor can be accurately satisfied in static equilibrium of the granular
DEM RVE, however it cannot in quasi-static or dynamic states due to imbal-
ance of angular momentum of the granular DEM RVE (in comparison to the
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balance of angular momentum which is always satisfied in classical continuum
mechanics). When the stress tensor definition is extended to “discontinuous”
state with regard to discrete granular DEM RVEs, the calculated values need
to be treated with caution.

Keywords: granular media, averaged stress tensor, symmetry and
asymmetry, discrete element method, static equilibrium, dynamic
conditions

1. INTRODUCTION

The microstructural definition of the averaged stress tensor over a gran-
ular particle assembly has been a controversial topic (Weber, 1966; Christof-
fersen et al., 1981; Rothenburg and Selvadurai, 1981; Bagi, 1996, 1999, 2003;
Kuhn, 2003; Bardet and Vardoulakis, 2001; Fortin et al., 2003; De Saxcé
et al., 2004; Balevičius and Markauskas, 2007; Nicot et al., 2013), and can
still be regarded as an open question, especially when the dynamic effect is
considered (Bagi, 1999; Fortin et al., 2003; De Saxcé et al., 2004; Nicot et al.,
2013). Furthermore, when micropolar continuum theory is adopted in which
a local rotation of points is incorporated as well as the translation assumed in
classical continuum mechanics (CCM), the stress tensor definition becomes
even more complicated and disputable (Eringen, 1968; Nowacki, 1974; Fortin
et al., 2003; Nowacki and Olszak, 2014).

Weber (1966) calculated a stress tensor by averaging the contact forces in
the vicinity of a spatial point, which turns out to be asymmetric. Christof-
fersen et al. (1981) derived the same formula for the macroscopic stress in
terms of volume average of the product of contact forces and branch vectors
by applying the principle of virtual work.

Drescher and De Jong (1972); Cowin (1977); Cundall and Strack (1983)
presented a stress definition which considers the relation between the volume
average of stress and a surface integral of traction in continuum mechanics.
Such a definition is made without using the principle of virtual work.

Bagi (1996) pointed out that there are two approaches to defining the
stress tensor in granular materials: (1) the continuum-mechanical approach,
which treats a particle assembly as a continuous domain, accepts the concept
of infinitesimally small representative volume element (RVE), and applies
stress and strain as fundamental variables; and (2) microstructural approach,
which finds macro-level state variables that are based on micro-variables such
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as contact force, grain displacements and local geometrical characteristics.
Approach (1) is used in conventional constitutive relationships with limited
validity due to experimental condition difficulty and mathematical form com-
plications, and approach (2) has been commonly accepted to date with the
availability of high-precision 3D Discrete Element Method (DEM) and com-
putational power. Bagi (1996) presented definitions of stress and small strain
in terms of local, micro-level variables with the help of two complementary
geometrical systems. Bagi (1999) presented the stress tensor definition of
particle assemblies with volumetric loads in addition to boundary forces,
and clearly defined branch vectors: for internal contacts, the branch vec-
tor connects the centroids of two particles; for external contact points, the
branch vector points from the centroid of the boundary particle to its external
contact point.

Bardet and Vardoulakis (2001) studied the stress tensor definition using
virtual work in granular media. They showed that the average stress tensor is
always symmetric, when it is alternately defined by using statics and no con-
tact moment. The stress asymmetry, which results from external moments,
has an amplitude that decreases with an increasing volume size. A contra-
dictory phenomenon was found: the stress asymmetry is obtained when the
stress is defined from virtual work, but is lost when the stress is defined from
statics.

Bagi (2003) analyzed why Bardet and Vardoulakis (2001) found differ-
ent results with the two nominally different, but theoretically equivalent,
methods (static equilibrium equations versus the principle of virtual dis-
placements), and pointed out that they replaced the discrete system with an
equivalent continuum whose boundary intersects the boundary grains and
goes through their centroids, when applying the principle of virtual displace-
ments.

Bardet and Vardoulakis (2001) pointed out that symmetry of the stress
tensor has significant implications in computational granular mechanics, par-
ticularly for simulations using dynamic relaxation (DR) to solve the equi-
librium equations of statics: the computed asymmetry of stress tensor im-
plies inaccurate calculation and/or lack of static equilibrium. The conclu-
sion should also be applicable to dynamic simulations which eventually reach
static equilibrium.

Fortin et al. (2003); De Saxcé et al. (2004) constructed an averaged
Cauchy stress tensor for a granular medium which takes into account the
contact reactions and the body forces acting at the grain level, by averaging
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stresses from all of the individual grains to the full granular assembly. They
pointed out that the constructed stress tensor is automatically symmetric
and invariant by translation. In particular, “in dense granular materials,
the velocity of the particles is generally small, but their acceleration and the
corresponding inertia forces cannot be neglected because they balance the
contact and gravity forces. Then, even for very small velocities, the con-
tact reactions, gravity and inertia forces have the same order of magnitude
and must be considered together in the calculation of the mean stress ten-
sor.” De Saxcé et al. (2004) presented a rigorous proof of the stress tensor
symmetry by incorporating the equations of balance of angular momentum.

Nicot et al. (2013) studied the internal effect on stress tensor definition
based on an equivalent continuum medium but using different decomposition
of dynamic contributions. They concluded that the stress tensor can be
expressed as a sum of two contributions: (i) the standard term by Love-Weber
formula in quasi-static regime; and (ii) dynamic effects related to rotational
velocities and accelerations of the particles. It is interesting to observe from
their numerical simulation of silo discharge that the inertial terms of stress do
not have the same order of magnitude as that of the static stress, being much
lower. It should be noted that the balance of linear momentum is relied on
in the derivation, whereas the balance of angular momentum is not involved.

Smith and Wensrich (2014) demonstrated that the dynamic component
of stress can be further separated into two parts: a component expressed in
terms of the net moment arising from contact; and a symmetric term arising
from the centripetal acceleration of material within the particle.

Lin and Wu (2016) pointed out that the stress symmetry is only an as-
sumption for macroscale problems in which the microstructure can be ne-
glected, and “if a length scale equivalent to the particle scale is used, the
stress asymmetry becomes significant comparing to other stress component.
Therefore, asymmetric stress tensors should be used to obtain enhanced con-
tinuum model to describe scale dependent phenomena.”

In this paper we present our work on the definition and symmetry of static
and dynamic stress tensor in granular media, which serves as clarification of
concepts and numerical verification of the quantities, before extending in fu-
ture work the study of stress-strain relations, especially to objective rate-form
stress and deformation tensors in granular media within large-scale parallel
computing of 3D DEM for complex-shaped particles. Section 1 has reviewed
the history of stress tensor definition for granular materials; Section 2 summa-
rizes various formulas for the stress tensor; Section 3 compares the formulas,
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pointing out the importance of a boundary-radius-gap term and uses this
term to modify other formulas to achieve consistency between the formulas;
Section 4 discusses the stress tensor symmetry and its premise in continuum
and granular media, and proposes “in-contact” and “out-of-contact” states;
Section 5 presents numerical inspection of the stress formulas and symmetry
using DEM simulations that cover static, quasi-static and dynamic condi-
tions; the last section gives conclusion and outlook.

2. ANALYTICAL STRESS TENSOR EXPRESSION

Weber (1966); Christoffersen et al. (1981); Rothenburg and Selvadurai
(1981) calculated the stress tensor at a point by averaging the contact forces
in the vicinity using the following formula:

〈σij〉Weber =
1

V

∑

c∈I

f c
i l

c
j (1)

where V denotes volume of the RVE, c the particle contacts, and I particle
contacts internal to the RVE. The force vectors f c

i are the contact forces
transmitted at the internal contacts, as illustrated in Fig.1(a), and the vec-
tors lcj are the branch vectors for internal contact points which connect the
centroids of two adjoining particles. Christoffersen et al. (1981) derived this
formula in terms of volume average of the product of contact forces and
branch vectors by applying the principle of virtual work.

Drescher and De Jong (1972); Cowin (1977); Cundall and Strack (1983)
used the following stress definition which is analogous to a surface integral
of traction in continuum mechanics:

〈σij〉Drescher =
1

V

∑

e∈E

f e
i x

e
j (2)

where E denotes particle contacts external to or on the boundary of the
RVE, f e

i the contact force vectors on the boundary of the RVE, as shown in
Fig.1(a), and xe

j the current space coordinate vector of contact points on the
boundary.

Bagi (1996, 1999, 2003) presented a stress tensor definition which includes
both internal and external contact forces:

〈σij〉Bagi =
1

V

(

∑

c∈I

f c
i l

c
j +
∑

e∈E

f e
i l

e
j

)

(3)
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(a) Internal and external forces (b) Boundary-radius-gap

Figure 1: Schematic of RVE.

where the forces f e
i are the contact force vectors on the boundary of the RVE,

and the vectors lej are the branch vectors associated with the external contact
points, also called boundary-radius gaps, which point from the centroids
of the boundary particles to the external contact points, as illustrated in
Fig.1(b).

Fortin et al. (2003); De Saxcé et al. (2004) constructed an averaged
Cauchy stress tensor in integral form which takes into account the contact
reaction forces and the body forces:

〈σij〉De Saxcé =
1

V

(

∑

c∈V

xc
if

c
j +

∫

V

xiρ
(

gj − aj

)

dV

)

(4)

where V = I ∪E, f c
j denotes internal and boundary contact force vectors, gj

the gravitational acceleration, aj the inertial acceleration, and xj the current
spatial coordinate vector within V .

Nicot et al. (2013) derived the following stress tensor definition which
takes into account inertial effect:

〈σij〉Nicot =
1

V

∑

c∈I

f c
i l

c
j −

1

V

∑

p∈V

(

εiklΩ̇
p
kχ

p
jl + Ωp

i Ω
p
kχ

p
jk − (Ωp)2χp

ij

)

(5)
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where V = I ∪ E, p denotes particles within V , εikl is the permutation
symbol, Ωp is the magnitude of angular velocity of particle ‘p’, and χp

ij is the
inertia matrix. It should be noted that angular velocity, angular acceleration
and inertia tensor are written with respect to the global coordinate system
(GCS) in this equation; i.e., they must be converted into GCS if calculated
in local coordinate system (LCS).

3. IMPORTANT NOTES ON THE FORMULAS

Firstly, we prove that Eq.(2) and Eq.(3) are not equivalent in static equi-
librium:

〈σij〉Drescher − 〈σij〉Bagi =
1

V

∑

p∈I,c∈I

f c
i x

p
j (6)

where xp
j denotes the centroid coordinate of particle ‘p’, and the sets p ∈

I, c ∈ I represent interior particles, which are surrounded by the outermost
exterior particles. For example, there are only three of this type of particle
as shown in Fig.1(b). The inequality of these two formulas is numerically
verified in Section 5.3.

Secondly, Nicot et al. (2013) presented a rigorous derivation of stress
tensor formula, however it is worth noting that they neglected a boundary-
radius-gap (see Fig.1(b)) term in Eq.(5) on purpose. The term seems to be
negligible with regard to other terms for specimens containing a sufficiently
large number of grains. However, there are three reasons that it should not
be discarded:

1. In many granular materials, the grains cover a wide range of sizes.
For example, for geo-materials such as sand and gravel, the size ratio
between the largest and smallest particle can be as high as 105. The
boundary-radius-gap term for a large particle located on the boundary
of the RVE can have significant bearing on the stress calculation, and
discarding it leads to inaccurate results.

2. As shown in Section 5.2, the number of particles in a RVE does not
need to be large for accurate stress tensor calculation. For example,
for a 5 × 5 × 5 particle cluster, the boundary-radius-gap can influence
the stress tensor calculation appreciably.
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3. The boundary-radius-gap term plays a critical role in maintaining stress
symmetry, and discarding it leads to asymmetry of the stress tensor for
statics. This is shown in the following sections.

We derive a modification to Eq.(5) with the boundary-radius-gap term in-
corporated. We start from Eq.(5) in Nicot et al. (2013) or Eq.(4) in De Saxcé
et al. (2004). These two equations are exactly the same, and they were orig-
inally due to Chree (1892), shown by Eq.(7):

〈σij〉 =
1

V

∫

∂V

f ext
i xjdS −

1

V

∫

V

(ρẍi − γi)xjdV (7)

where γi denotes the gravitational acceleration vector per unit volume, and
f ext
i the external traction vector.

In granular media this equation is expressed as:

〈σij〉 =
1

V

∑

p∈∂V

f ext,p
i xp

j −
1

V

∫

V

(ρẍi − γi)xjdV (8)

where the external force f ext,p applies at xp on boundary particle ‘p’. For
boundary particle ‘p’, xp = xGp + rp, where Gp is the center of gravity of
particle ‘p’, and rp is the radius vector pointing from xGp to xp. Then Eq.
(8) can be rewritten as:

〈σij〉 =
1

V

∑

p∈∂V

f ext,p
i xGp

j +
1

V

∑

p∈∂V

f ext,p
i rpj

−
1

V

∫

V

(ρẍi − γi)xjdV

(9)

where the 2nd term on the RHS is the so called boundary-radius-gap term.
Following the derivation in Nicot et al. (2013) that converts the equation

from boundary force form to internal contact force form, we reach:

〈σij〉 =
1

V

∑

c∈I

f c
i l

c
j +

1

V

∑

e∈E

f e
i l

e
j

+
1

V

∑

p∈V

(f p
i − wp

i )xGp
j −

1

V

∫

V

(ρẍi − γi)xjdV
(10)

where f p denotes the resultant force on particle ‘p’ centroid, and wp the
gravity force vector of particle ‘p’ acting at xGp.
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Note the 2nd term in Eq.(10),

1

V

∑

e∈E

f e
i l

e
j ,

stems exactly from the 2nd term (boundary-radius-gap term) in Eq.(9),

1

V

∑

p∈∂V

f ext,p
i rpj ,

where lej is the branch vector to the boundary point e, defined in Bagi (1999,
2003).

As a result, Eq.(5) becomes

〈σij〉Nicot−2 =
1

V

(

∑

c∈I

f c
i l

c
j +
∑

e∈E

f e
i l

e
j

)

−
1

V

∑

p∈V

(

εiklΩ̇
p
kχ

p
jl + Ωp

i Ω
p
kχ

p
jk − (Ωp)2χp

ij

)

,

(11)

which we call modified Nicot’s formula.
It is clear that Eq.(11) is equivalent to Eq.(3) in static equilibrium condi-

tions for the particles in 3D DEM. Namely, the static part of modified Nicot’s
formula (11) is just Bagi’s formula, not Weber’s formula (which does not con-
tain the boundary-radius-gap term). In a dynamic simulation that eventually
reaches static equilibrium, the inertial terms vanish so that Nicot’s and Bagi’s
formulas give the same stress state.

In addition, the following equation holds in static equilibrium following
the derivation, and serves as an analogy to Eq.(18) in Nicot et al. (2013):

〈σij〉 =
1

V

∑

p∈∂V

f ext,p
i xGp

j +
1

V

∑

p∈V

wp
i x

Gp
j

=
1

V

∑

c∈I

f c
i l

c
j +

1

V

∑

e∈E

f e
i l

e
j

(12)

Equation (12) reveals an important mechanical interpretation on the
stress tensor of a particle assembly or RVE which is subjected to bound-
ary forces and gravity forces in static equilibrium: the stress tensor should
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be calculated via Bagi’s formula, not Weber’s formula. We call it equation of
stress equivalence. It is proved later that the averaged stress tensor calculated
from equation of stress equivalence exhibits symmetry.

Thirdly, the De Saxcé’s formula, Eq.(4), should be modified as well in
terms of Eq.(12). Note Eq.(7) in De Saxcé et al. (2004) is essentially the
same as Eq.(7) in this paper, so Eq.(4) becomes

〈σij〉De Saxcé−2 =
1

V

(

∑

c∈I

f c
i l

c
j +
∑

e∈E

f e
i l

e
j

)

−
1

V

(

∫

V

xiρajdV

)

(13)

where the gravity term vanishes. We call it modified De Saxcé’s formula. It
is seen that the static part of modified De Saxcé’s formula is exactly Bagi’s
formula.

4. ON THE SYMMETRY OF STRESS TENSORS

4.1. In classical continuum

In classical continuum mechanics (CCM), the balance of linear momen-
tum and angular momentum for a continuum are expressed in Eq.(14) and
Eq.(15), respectively.

∫

∂V

tdS +

∫

V

fdV = 0, (14)
∫

∂V

x× tdS +

∫

V

x× fdV = 0, (15)

σn = t or σijnj = ti (16)

where x denotes current coordinate in V or on ∂V , and f body force per
unit volume, f = ρ(g − a), including both gravity acceleration g and in-
ertial acceleration a, and t the traction on ∂V . Equation (16) represents
Cauchy’s stress theorem and gives the definition of Cauchy’s stress tensor in
a continuous body.

It is well known that on the basis of Eq.(16), σij = σji if Eq.(14) and
(15) are satisfied simultaneously; σij 6= σji if Eq.(15) is not satisfied (typi-
cally because of the existence of external moment or imbalance of angular
momentum, which may occur in DEM RVEs, and also in micropolar contin-
uum mechanics). This property holds for both static and dynamic conditions
pointwise in classical continuum mechanics. That is,

σij = σji ⇔ balance of angular momentum (17)
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Equation (17) implies that there is no stress couple or local rotational accel-
eration in the body of classical continuum mechanics (CCM), whereas they
exist in micropolar continuum mechanics. In essence, the balance of angular
momentum of an infinitesimally small element within a classical continuum
ensures that there exists no “external” or unbalanced moment on that ele-
ment.

It must be emphasized that the premise of the above equations is that the
body is continuous, namely, f and t are continuous vector fields. Moreover,
divergence theorem is used in the proof, which requires that volume V is
compact and has a piecewise smooth boundary ∂V , and that the vector
fields are continuously differentiable.

4.2. In granular media

In granular media and their numerical modeling using the Discrete Ele-
ment Method (DEM), each particle satisfies the balance of linear momentum
and angular momentum, therefore the overall particle assembly or RVE satis-
fies the balance of linear momentum and angular momentum simultaneously.
Hence, the Cauchy stress tensor calculated for the particle assembly or RVE
should be symmetric. De Saxcé et al. (2004) proved Cauchy stress tensor
symmetry in terms of De Saxcé’s formula utilizing the equations of balance
of linear and angular momenta. Note the modified De Saxcé’s formula is re-
duced to Bagi’s formula for static equilibrium, so the proof of Cauchy stress
symmetry in terms of Bagi’s formula is incorporated as well. The proof is
briefly summarized below.

The balance of linear and angular momenta are expressed in index nota-
tion as,

∫

∂V

tidS +

∫

V

fidV = 0, (18)
∫

∂V

(xitj − xjti)dS +

∫

V

(xifj − xjfi)dV = 0, i 6= j, (19)

and the averaged stress is defined as

〈σij〉 =
1

V

(

∫

∂V

xitjdS +

∫

V

xifjdV

)

. (20)
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Then

〈σij〉 − 〈σji〉 =
1

V

(

∫

∂V

(xitj − xjti)dS +

∫

V

(xifj − xjfi)dV

)

=0.

(21)

Obviously, the symmetry of averaged stress tensor relies on the validity
of balance of angular momentum of the particle assembly, in this case via
DEM simulations. Equations (15) and (19) can be rewritten as follows,
respectively:

∫

V

x× fdV = −

∫

∂V

x× tdS, (22)
∫

V

(xifj − xjfi)dV = −

∫

∂V

(xitj − xjti)dS, i 6= j. (23)

For granular media, the LHS (internal or volume moment) and RHS (ex-
ternal or boundary moment) of Eq.(23) can be computed and compared in
DEM simulations: if they are equal, then the stress tensor should be sym-
metric, otherwise the stress tensor is asymmetric. There are various factors
that affect the equality of Eq.(23).

It is important to realize that this proof of granular media differs from
that of classical continuum mechanics (CCM): f and t are not necessarily
continuous vector fields; and neither Cauchy’s stress theorem nor divergence
theorem is required or obeyed. In granular media, there exist gaps between
particles or RVEs, and one particle may move between two other particles
that are previously in contact. Moreover, two particles could overlap to a cer-
tain extent numerically in DEM simulations. We make this point because the
underlying physics and mathematics between continuous CCM and discrete
granular mechanics are different even though the equations look alike.

To evaluate the asymmetry of the stress tensor, we define a quantity, rel-
ative asymmetry index (RAI), as the ratio of L2-norm of the skew-symmetric
matrix to that of the symmetric matrix with diagonal elements set to zero:

RAI =

(

1
2

(

〈σij〉 − 〈σij〉
T
)

)L2
−norm

(

1
2

(

〈σij〉 + 〈σij〉T
)

)L2−norm

diag=0

(24)
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The RAI serves as an estimate of relative deviation of the averaged stress
tensor from a symmetric tensor. It only involves non-diagonal elements of
the stress tensor matrix according to Eq.(24). As shown in later sections,
various stress tensor matrices are calculated and reported, and corresponding
RAIs are listed to reveal the relative asymmetry.

In terms of Eq.(21), we define absolute asymmetry (AA) as

AA =
(

〈σij〉 − 〈σji〉
)L2

−norm

(25)

4.3. Other factors

When the particles form a “continuous” state, the stress definition is valid
and satisfies symmetry. However, there are other factors that may influence
the calculation of stress tensor and its symmetry in a DEM simulation system.

4.3.1. Damping mechanism

A particle in a granular assembly is subjected to contact forces, gravity,
boundary force, and damping forces. For each particle the equation of motion
can be expressed as

Ma + Cv + P = F (26)

where a denotes generalized acceleration, v generalized velocity, M gen-
eralized mass matrix, C generalized global damping matrix, P generalized
contact force, and F generalized external force. For example,

M =

















m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz

















(27)

C = αM (28)

where m denotes mass, I moment of inertia, and α coefficient of global damp-
ing.

The equation of motion (26) is integrated in time using central differ-
ence method for its simplicity and second order accuracy, and the following
midstep velocity is obtained as

vn+1/2 =
1 − α∆t/2

1 + α∆t/2
vn−1/2 +

1

1 + α∆t/2
∆tM−1[F n − P n] (29)
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where n denotes the nth time, and ∆t is the time step. Equation (29) can be
evaluated at any time n to obtain the midstep generalized velocity vn+1/2,
and then the generalized displacement (including translation and rotation).

A dynamic relaxation (DR) procedure (Key et al., 1980; Underwood,
1983) is often performed in quasi-static DEM simulations, whereby only P

and F must represent the physical forces and moments, while C and M are
fictitious values such that the static solution is obtained using a minimum
number of steps.

The generalized global damping C = αM is also referred to as back-
ground damping, which is sometimes necessary to apply to individual parti-
cles to dissipate their energy. Aside from that, interparticle contact damping
is essential and physical to model the mechanical interaction between par-
ticles. The contact interface is illustrated in Fig.2, characterized by normal
stiffness kn, tangential stiffness kt, friction coefficient µ, and normal contact
damping coefficient cn. The interparticle damping mechanism is incorpo-
rated in the term P , the generalized contact force, depending on the specific
damping model.

kn

kt

µ

cn

Figure 2: Model of contact interface.

Both damping mechanisms may be applied in a DEM simulation sys-
tem. The global damping is usually applied to each individual particle and
unavoidably affects the linear and angular momenta of the particle; the in-
terparticle contact damping is applied to each pair of in-contact particles as
a pair of action and reaction “force,” which has no bearing on the linear mo-
mentum, yet may have slight influence on angular momentum of the particle
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assembly. Obviously, the stress tensor formulas presented in this paper do
not take this into account. As a result, dynamic and quasi-static simulations
may demonstrate asymmetric or slightly asymmetric stress tensors because
of a chosen damping mechanism.

The effect of damping can hardly be eliminated, because doing so may
make the DEM simulation system unstable or unable to dissipate energy
when friction is not present. Static simulations or static equilibrium state
obtained by dynamic simulations do not have this problem, because the
damping mechanism normally vanishes at the instant of reaching static equi-
librium.

4.3.2. Stress wave propagation effect

Something more important than the damping mechanisms in affecting
stress calculation is the stress wave effect. In dynamic simulations, forces
exerted on the boundary of the particle assembly in each time step are not
perceived instantaneously by the interior of the particle assembly, because
it takes a certain number of time steps for the DEM system to transmit
boundary forces. No doubt this also holds true for quasi-static simulations
to a certain degree. When the stress wave effect is pronounced, the balance of
linear and angular momenta in DEM are not satisified at an instant of discrete
time, namely, Eq.(23) does not hold, and the stress tensor is asymmetric.

To put it simpler, when a dynamic boundary condition (force condition,
displacement condition, or a combination) is applied to a particle assembly,
it actually exerts an external moment, or more accurately, an imbalance
of angular momentum, to the particle assembly, and the particle assembly
undergoes an overall “rotational” acceleration, or so called “intrinsic spin.”
This phenomenon does not exist in an infinitesimally small element within
a continuous body of CCM, for which it always holds σij = σji pointwise,
since it assumes that the balance of angular momentum is always satisfied
at a material point (or infinitesimal differential volume); namely, there are
no stress couples or local rotational accelerations.

The overall “rotation” or intrinsic spin of a particle assembly may not be
intuitive; for example, it even exists during oedometer/uniaxial compressions
in which the specimen only undergoes axial strain. Actually, any form of de-
formation of granular media implies or includes independent rotation, which
is an essential difference from classical continuum mechanics (CCM). How
to define the rotation and associate it to stress may need micropolar contin-
uum theory and goes beyond the scope of this work, but clearly the overall
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rotation is related to the rotation of each individual particle: at the coarsest
scale the particle assembly rotates (CCM misses); at the finest scale each
particle rotates (CCM misses); and in-between scales exist, which consist of
clusters of particles that undergo rotation as well (CCM misses).

Lin et al. (2015) used a micropolar hypoplastic framework (including a
characteristic length as a regularization parameter) to capture the develop-
ment and propagation of a persistent shear band in a rectangular specimen
of silicaconcrete sand with spatially varying density. The results showed that
FEM mesh sizes associated with different internal length parameters (1x, 2x
and 4x of the mean grain diameter of the sand sample) produced nearly the
same load-compression responses.

Lin and Wu (2016) showed that the stress asymmetry depends on the
size of the averaging volume, which can be linked to the characteristic length
scale in continuum models. They pointed out: “If the characteristic length
is much larger than the mean particle diameter, the stress averaging volume
is also very large so that the stress asymmetry can be neglected. However, if
a length scale equivalent to the particle scale is used, the stress asymmetry
becomes significant comparing to other stress component. Therefore, asym-
metric stress tensors should be used to obtain enhanced continuum model to
describe scale dependent phenomena.”

Omidvar et al. (2012) pointed out that stress is non-uniform in high-
strain-rate oedometer/uniaxial compression, and two approaches have been
used to overcome the problem in stress measurement: (1) reduce the thickness
of the sample, and (2) allow stress wave to propagate and reflect many times
before the impact stress is fully applied to the specimen. However, DEM
has the advantage to capture the whole process of stress wave propagation
in granular media at any instant in time.

5. NUMERICAL INSPECTION USING DEM

In this section, numerical simulations are performed using a DEM code,
ParaEllip3d (Yan, 2008; Yan et al., 2010; Yan and Regueiro, 2018a,b), to
verify the stress tensor and its symmetry. ParaEllip3d is a 3D DEM code
developed at the University of Colorado Boulder with general capacity to
simulate a wide range of laboratory experiments and in-situ field tests that
involve a large number of complex-shaped grains or particles. The interpar-
ticle contact mechanism is based on the nonlinear Hertzian normal contact
model and history-dependent Mindlin’s shear contact model, combined with
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Coulomb friction and interparticle contact damping. The simulated parti-
cle shapes range from spherical to three-axis ellipsoidal (with variation of
1st and 2nd aspect ratios), to non-axisymmetric ploy-ellipsoidal (with vari-
ation of 1st and 2nd aspect ratio, and variation of three non-axisymmetry
ratios). It is capable of modeling particulate assemblies that are composed
of up to 10 million complex-shaped grains or CPU-demand equivalent to 1
billion spheres. The simulation types include but are not limited to: grain
number/size/mass distribution and filtering; gravitational deposition (pluvi-
ation or raining); degravitation response; isotropic compression; oedome-
ter/uniaxial compression; conventional triaxial compression; true triaxial
compression; plane-strain compression; quasi-static and dynamic penetra-
tion; high-strain-rate impact and deformation; compressive and shear wave
propagation; constrained and unconstrained collapse; hierarchical multiscale
coupling with Finite Element Method (FEM); two-way multiphysics coupling
with Computational Fluid Dynamics (CFD) for shock wave or explosive wave
interaction, etc.

5.1. A simple 2D case

A simple 2D case is studied using dynamic DEM simulation: a 10x10
horizontal sphere matrix is isotropically compressed in horizontal direction
by applying a constant inward force (0.05 N) on each boundary sphere. The
radius of each particle is 5 mm, and particles are weightless and frictionless.
Interparticle contact damping is adopted for the system to achieve static
equilibrium. Figure 3 plots the spatial distribution, energy process and final
state of the contact forces between particles for this particulate system. Note
the contact forces are plotted using unarrowed vectors for which the line
segment centers coincide with the contact points between particles.

Then a matrix of 181 large and small spheres is tested, as shown in Fig.4.
The small particles have the exact size to fit in the void space between large
particles before compression, with centroids located at the same horizontal
level.

Lastly, 9 randomly-selected small particles are removed, and the remain-
ing 172 particles are tested, as shown in Fig.5.

Table 1 lists the 3x3 matrix of stress tensors calculated from the three
tests. Note the stresses in this paper use sign convention of solid mechanics
(tension positive and compression negative). It is seen that the shear stresses
do not exist in cases 1 and 2. The non-zero small values of shear stress are
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(a) 3D view (b) Top view

(c) Energy process (d) Contact forces

Figure 3: Isotropic compression of 100 spheres.
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(a) Top view (b) Contact forces

Figure 4: Isotropic compression of 181 spheres.

due to the limitation of numerical precision. In case 2, the oblique contact
forces between large and small particles are canceled out in stress calculation.

However, the oblique contact forces in case 3 are not canceled out and
result in a shear component in the stress tensor, due to the random voids
created by removal of 9 small particles, which is clearly observed from the
zoomed-in contact force distribution shown in Fig.5(c,d). Actually, the final
state of the 172 particle system is not exactly in 2D isotropic compression
because the boundary particles have moved non-uniformly. Through this
simple case we show how shear stress is generated in this frictionless system.
It is anticipated that shear components exist in an assembly composed of
particles with a variety of size, shape, gradation and spatial distribution.

The stress tensor with non-zero shear stress for case 3 (172 particles) ex-
hibits symmetry, which agrees with Bardet and Vardoulakis (2001)’s state-
ment: “ the computed asymmetry of stress tensor in statics implies inaccurate
calculation and/or lack of static equilibrium.”

The stress tensor calculated from cases 1 and 2 are the same, namely, the
stress tensor is not affected by the “density” of the particle system. If even
smaller particles are used to fill in the remaining space in case 2 regularly, the
stress tensor will remain the same. The stress is objective and independent
of density of the particulate system.
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(a) Top view (b) Contact forces

(c) Zoomed-in contact forces (d) More zoomed-in contact forces

Figure 5: Nearly isotropic compression of 172 spheres.
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Table 1: Stress tensor of 2D compression

particles stress tensor

-5.00E+04 1.96E-08 -2.84E-21
100 1.96E-08 -5.00E+04 -2.84E-21

-2.84E-21 -2.84E-21 4.60E-23

-5.00E+04 4.01E-08 -1.43E-21
181 4.01E-08 -5.00E+04 -1.48E-21

-1.48E-21 -1.43E-21 1.89E-23

-5.00E+04 -6.52E+00 2.02E-15
172 -6.52E+00 -5.00E+04 1.94E-15

-8.34E-17 2.02E-15 1.27E-21

5.2. Static state from gravitational deposition

In this test, the particles are initially “floated” in space without interac-
tion and then gravitationally deposited into a rigid container. At the end,
all particles come to rest and are packed under gravity. The parameters are
listed in Table 2. Note that all simulations in this paper only use interpar-
ticle damping, and do not apply any global damping in order to eliminate
the influence of damping “force” on the linear and angular momenta of the
particle assembly in dynamic or quasi-static state.

Young’s modulus E (Pa) 4.5 × 1010

Poisson’s ratio ν 0.25
specific gravity Gs 2.65
interparticle coef. of friction µ 0.5
particle-wall coef. of friction µ2 0.5
interparticle contact damping ratio ξ 0.85
particle radii (m) 0.001 ∼ 0.0025
particle shape (aspect ratio) 1:1:1 or 1:0.8:0.6
time step △t (sec) 5.0 × 10−7

Table 2: Numerical parameters used in DEM pluviation simulation.
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5.2.1. Monodisperse spherical particle assemblies

Firstly, monodisperse spherical particle assemblies (1.5 mm radius) are
tested with different number of particles: 68, 153, 600, 1,176, 1,536, 2,400
and 3,456, respectively. The final rested state for each of these particle
assemblies are illustrated in Fig.6. The processes of boundary contact forces
and assembly energy for 68 and 3,456 particles are plotted in Fig.7, and it is
observed that the rotational energy takes a very small fraction relative to the
translational energy during the process of particle packing and rebounding.

(1) 68 (2) 153 (3) 600 (4) 1,176

(5) 1,536 (6) 2,400 (7) 3,456

Figure 6: Rested state of monodisperse spherical particle assemblies.

Table 3 lists the 3x3 matrix of stress tensors calculated by Weber’s and
Bagi’s formulas for the 7 cases. It is clear that the stress tensor by Weber’s
formula is asymmetric for small number of particles, and the asymmetry
decreases with an increasing number of particles; whereas stress tensor by
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(a) 68 particles (b) 3,456 particles

Figure 7: Boundary contact forces and assembly energy in gravitational deposition.

Bagi’s formula exhibits excellent symmetry from 68 particles to 3,456 parti-
cles. Even at the level of 3,456 particles, the stress gap between Weber’s and
Bagi’s formulas is still apparent.

The RAI’s are calculated for all cases. By Weber’s formula, it is as high
as 15.1% for 68 particles and as low as 1.1% for 1,176 particles, while it is
below 0.03% by Bagi’s formula. As a technical index, the RAI value of 1%
indicates clear asymmetry, and 5% represents strong asymmetry. A stress
tensor matrix with RAI below 0.03% may be regarded as symmetric.

When the number of particles becomes sufficiently large, Weber’s formula
may or may not generate a very close result to Bagi’s formula, depending on
particle size gradation and spatial distribution. Its stress symmetry cannot
be proved, while Bagi’s formula guarantees stress tensor symmetry, as proved
in Section 4.

In numerical simulations to study particulate systems, it is challenging to
use sufficiently large number of particles. As an estimate, modern supercom-
puters are typically capable of computing up to 15, 000 ∼ 30, 000 particles
per core (PPC) of spheres, and 150 ∼ 300 PPC of complex-shaped particles
such as ellipsoid or poly-ellipsoid with optimal computational granularity
(CG) for large-scale MPI simulations (Yan and Regueiro, 2018a).

5.2.2. Polydisperse ellipsoidal particle assemblies

Secondly, polydisperse ellipsoidal particle assemblies (1.0 to 2.5 mm ra-
dius) are tested with different number of particles: 69, 179, 476, 1,071, 1,904
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Table 3: Static stress tensor of monodisperse spherical particle assemblies.
Weber’s formula Bagi’s formula

particles stress tensor RAI (%) stress tensor RAI (%)
-6.44E+01 -1.15E+01 -2.72E+00 -9.07E+01 -9.70E+00 -1.19E+00

68 -8.11E+00 -6.16E+01 -5.34E+00 15.1 -9.70E+00 -8.76E+01 -4.44E+00 8.03E-05
-1.37E+00 -5.50E+00 -1.09E+02 -1.19E+00 -4.44E+00 -1.25E+02

-8.12E+01 -2.31E-01 2.55E+00 -1.01E+02 4.87E-01 2.82E+00
153 -1.35E-04 -7.86E+01 -8.39E+00 2.2 4.87E-01 -9.84E+01 -9.15E+00 2.33E-03

2.54E+00 -8.09E+00 -9.68E+01 2.82E+00 -9.15E+00 -1.15E+02

-1.46E+02 -2.85E+01 8.86E+00 -1.71E+02 -2.83E+01 7.75E+00
600 -2.72E+01 -1.51E+02 1.48E+01 2.2 -2.83E+01 -1.76E+02 1.50E+01 5.29E-05

9.21E+00 1.56E+01 -2.54E+02 7.75E+00 1.50E+01 -2.80E+02

-2.35E+02 3.97E+01 -8.45E+00 -2.66E+02 3.95E+01 -8.25E+00
1,176 3.96E+01 -2.34E+02 -1.42E+01 1.1 3.95E+01 -2.65E+02 -1.39E+01 1.74E-05

-7.88E+00 -1.34E+01 -3.05E+02 -8.25E+00 -1.39E+01 -3.27E+02

-1.88E+02 -9.42E+00 4.69E+00 -2.09E+02 -9.84E+00 5.25E+00
1,536 -9.95E+00 -1.90E+02 -1.05E+00 5.2 -9.84E+00 -2.11E+02 -4.00E-01 2.71E-02

5.62E+00 -5.35E-01 -2.55E+02 5.25E+00 -4.00E-01 -2.76E+02

-2.42E+02 -3.77E+00 -8.39E+00 -2.65E+02 -3.84E+00 -8.16E+00
2,400 -4.24E+00 -2.43E+02 2.18E+00 4.0 -3.84E+00 -2.66E+02 2.56E+00 2.94E-04

-8.16E+00 2.81E+00 -3.32E+02 -8.16E+00 2.56E+00 -3.55E+02

-2.29E+02 1.11E+01 -2.17E+00 -2.47E+02 1.10E+01 -1.98E+00
3,456 1.14E+01 -2.29E+02 -1.89E+00 1.7 1.10E+01 -2.48E+02 -1.64E+00 2.07E-03

-2.07E+00 -1.57E+00 -3.56E+02 -1.98E+00 -1.64E+00 -3.79E+02

and 2,975 respectively. The final rested state of these particle assemblies are
illustrated in Fig.8.

Table 4 lists the 3x3 matrix of stress tensors calculated by Weber’s and
Bagi’s formulas for the 6 cases. It exhibits a trend similar to that of monodis-
perse spherical particle assemblies. The stress from Bagi’s formula exhibits
excellent symmetry when the number of particles goes beyond 179 in these
tests. It is worth noting that the contact geometry resolution between ellip-
soids is numerically challenging. Yan et al. (2010) developed a robust contact
resolution algorithm for three-axis ellipsoidal particles by constructing an ex-
treme value problem of finding the deepest penetration of one particle into
the other. Such an extreme value problem results in a sixth order poly-
nomial equation. Conventional polynomial root finders cannot satisfy the
high-precision numerical requirement in the 3D DEM computation. For ex-
ample, the elastic overlap between two particles of typical quartz sand may
vary between 10−8 to 10−5 meters depending on particle size, shape and ex-
ternal force, and a low-precision solver can lead to numerical instability or
spurious explosion of particles. Therefore, an iterative eigenvalue method is
selected to find roots of the polynomial and determine the contact geometry.
The algorithm and its implementation has been shown to be robust such
that it is applicable to not only regularly bulky ellipsoidal shapes but also
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(1) 69 (2) 179 (3) 476

(4) 1,071 (5) 1,904 (6) 2,975

Figure 8: Rested state of polydisperse ellipsoidal particle assemblies.

Table 4: Static stress tensor of polydisperse ellipsoidal particle assemblies.
Weber’s formula Bagi’s formula

particles stress tensor RAI (%) stress tensor RAI (%)
-2.83E+01 1.76E+00 9.77E-02 -4.12E+01 -5.52E-01 1.77E+00

69 1.39E+00 -3.77E+01 1.30E+01 3.9 -6.30E-01 -5.75E+01 1.57E+01 2.80E-01
-3.45E-01 1.39E+01 -6.30E+01 1.74E+00 1.57E+01 -8.10E+01

-4.62E+01 5.09E-01 3.03E-01 -5.81E+01 7.73E-01 9.67E-01
179 1.44E+00 -4.10E+01 2.27E+00 30.0 7.73E-01 -5.09E+01 8.39E-01 2.47E-03

-4.20E-01 1.66E+00 -5.61E+01 9.67E-01 8.39E-01 -6.98E+01

-8.36E+01 5.66E+00 1.58E+00 -9.81E+01 3.67E+00 1.57E+00
476 3.58E+00 -8.39E+01 2.35E+00 20.3 3.67E+00 -9.74E+01 2.62E+00 3.29E-03

1.90E+00 3.94E+00 -1.09E+02 1.57E+00 2.62E+00 -1.26E+02

-1.19E+02 7.53E+00 2.66E+00 -1.36E+02 8.36E+00 3.67E+00
1,071 6.95E+00 -1.18E+02 3.81E-01 6.3 8.36E+00 -1.33E+02 -3.01E-01 9.05E-03

3.41E+00 7.62E-01 -1.51E+02 3.68E+00 -3.00E-01 -1.66E+02

-1.32E+02 -2.81E+00 8.30E+00 -1.47E+02 -1.49E+00 9.85E+00
1,904 -2.27E+00 -1.29E+02 -7.09E-02 4.8 -1.49E+00 -1.43E+02 -8.66E-01 2.23E-02

8.36E+00 -7.34E-01 -1.79E+02 9.85E+00 -8.62E-01 -1.96E+02

-1.60E+02 1.49E+00 -5.74E-01 -1.75E+02 1.25E+00 5.09E-01
2,975 1.09E+00 -1.71E+02 3.43E+00 6.3 1.24E+00 -1.85E+02 4.35E+00 2.37E-02

-1.00E-01 3.80E+00 -2.13E+02 5.07E-01 4.35E+00 -2.29E+02
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extreme-shaped ellipsoidal particles such as disks and needles.
The RAI by Weber’s formula ranges from 3.9% to 30.0%, indicating strong

asymmetry; while it is typically below 0.03% by Bagi’s formula.
From the perspective of stress tensor calculation, the number of particles

in the RVE does not need to large, namely, tens or hundreds of particles
would be adequate provided that high-precision contact geometric resolution
is assured.

Göncü and Luding (2013) studied the effect of particle ploydispersity on
the macroscopic stress-strain relationship using 1 ∼ 5mm spherical particles.

5.2.3. Cauchy’s stress theorem

It is interesting to see if the averaged stress follows the Cauchy’s stress
theorem, which is based on the concept of an infinitesimally small element
in CCM, namely, a material point. The stress tensor calculated in granular
materials differs in that it is an averaged value among multiple or many
individual particles in a DEM RVE.

As an example, the static stress of the assembly composed of 3,456
monodisperse spherical particles in Section 5.2.1 is inspected. Figure 9 il-
lustrates these particles with a 3D and side view.

(a) 3D view. (b) Side view.

Figure 9: Boundary contact force distribution of 3,456 spheres at rest.

The internal contact forces, and boundary contact forces along the five
walls of the rigid container are captured in Fig.10. Note the contact forces
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include both normal and tangential components, and the tangential compo-
nents are much smaller than the normal ones. Clearly the boundary contact
forces along the gravity direction do not exhibit a uniform distribution be-
cause it should increase with increasing depth, illustrated by Fig.10(c). In
the horizontal direction shown in Fig.10(d), the contact forces are not uni-
formly distributed either, and the contact forces in the corners seem to be
higher.

(a) Side view of internal contacts (b) 3D view of boundary contacts

(c) Side view of boundary contacts (d) Top view of boundary contacts

Figure 10: Boundary contact force distribution of 3,456 spheres at rest.

The tractions on the side wall in +y direction and the bottom wall in −z
direction are calculated by summation of all of the contact forces acting on
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the walls, respectively. Note that sign convention in solid mechanics is used
and the unit is Pa.

τ+y =


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From Table 3, the stress tensor is

σ =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz





=
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Clearly, in −z direction,
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And in +z direction the traction is nil, and the inequality holds. Averaging
between +z and −z directions reduces the degree of inequality significantly,
for example, −σzz = 379 ≈ (753 + 0)/2, but the inequality still holds.

In +y direction,

[σ]





0
1
0



 =
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

11.0
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−1.64



 6=





8.89
−242
−9.73



 , (33)

where the values are closer, for example, σzz = −248 ≈ −242 and shear
components are different, so the inequality still exits.

Obviously, the Cauchy’s stress theorem is not accurately satisfied in gran-
ular media, because the averaged stress is a quantity of volume average (not
a pointwise value), and may contain gradient of stress that should not appear
in the definition of stress pointwise in continuum mechanics. The averaged
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stress tensor is more like a quantity that is obtained for a “microelement”
or “microvolume” in micropolar continuum theory. The “microelement” is
small enough and its motion consists of a translation, a “rotation” about its
center of mass, and an affine deformation (Eringen, 1968),

5.3. Bagi’s vs Weber’s vs Drescher’s formulas

The static stress tensor as calculated from Weber’s, Drescher’s and Bagi’s
formulas are compared in Table 5, using the assembly of 1,536 monodisperse
spherical particles.

Table 5: Stress calculated from various formulas

formula stress tensor RAI (%)

-2.09E+02 -9.84E+00 5.25E+00
Bagi -9.84E+00 -2.11E+02 -4.00E-01 0.028

5.25E+00 -4.00E-01 -2.76E+02

-1.88E+02 -9.42E+00 4.69E+00
Weber -9.95E+00 -1.90E+02 -1.05E+00 5.2

5.62E+00 -5.35E-01 -2.55E+02

-2.09E+02 -9.84E+00 5.25E+00
Drescher -9.84E+00 -2.11E+02 -4.74E-01 94.7

2.19E+02 2.14E+02 1.88E+01

Firstly, the stress calculated from Weber’s and Drescher’s formula are
asymmetric, and they are different from the result of Bagi’s formula. This
helps to verify Eq.(6) in Section 3, namely, Drescher’s formula is not equiv-
alent to Bagi’s formula.

Secondly, the RAI by Bagi’s formula is low (below 0.03%); the RAI by We-
ber’s formula is 5.2% and indicates strong asymmetry; the RAI by Drescher’s
formula is 94.7% representing high asymmetry. In addition, the σzz com-
ponent by Drescher’s formula seems to deviate significantly from that by
Weber’s and Bagi’s formulas.

5.4. Quasi-static isotropic compression

The assembly of 3,456 monodisperse spherical particles is trimmed to
3,008 particles from the top, placed in a six-wall rectangular box, and then
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applied with isotropic confining pressure that increases from 1 kPa to 100
kPa. Figure 11 displays the configurations, and the compression deformation
is so small that it is hardly observed from the figures.

(a) 3D view initial. (b) Side view initial. (c) Side view final.

Figure 11: Isotropic compression of 3,008 spheres.

Figure 12: Force and energy in isotropic compression.

Figure 12 plots the process of contact forces and energy of the assembly:
the left figure shows normal component and shear component of the average
contact forces, and average overlap between particles; and the right figure
shows the translational, rotational and kinetic energy (sum of the transla-
tional and rotational energy). All of these quantities increase during the
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process of isotropic compression. The rotational energy is much lower than
the translational energy and takes approximately 15% of the kinetic energy.

Table 6: Stress tensor calculated from isotropic compression
early stage (005) late stage (021)

formula stress tensor RAI (%) stress tensor RAI (%)
-2.63E+03 -4.34E+02 3.06E+02 -7.68E+04 -2.00E+03 -6.49E+03

Bagi -4.55E+02 -2.62E+03 2.57E+02 1.8 -1.97E+03 -7.57E+04 -5.43E+03 0.3
3.09E+02 2.45E+02 -3.58E+03 -6.49E+03 -5.39E+03 -8.27E+04

-2.63E+03 -4.37E+02 3.03E+02 -7.68E+04 -2.00E+03 -6.49E+03
De Saxcé -4.58E+02 -2.62E+03 2.53E+02 1.7 -1.97E+03 -7.57E+04 -5.43E+03 0.3

3.08E+02 2.44E+02 -3.58E+03 -6.49E+03 -5.39E+03 -8.27E+04

-2.63E+03 -4.34E+02 3.03E+02 -7.68E+04 -2.00E+03 -6.52E+03
Nicot -4.53E+02 -2.62E+03 2.57E+02 1.5 -2.01E+03 -7.57E+04 -5.43E+03 0.2

3.09E+02 2.54E+02 -3.58E+03 -6.49E+03 -5.43E+03 -8.27E+04

-2.79E+00 -2.50E+00 -3.46E+00 -5.00E-02 -4.80E-02 -6.80E-02
De Saxcé inertia term -2.91E+00 -2.61E+00 -3.61E+00 34.6 8.49E-01 7.60E-01 1.10E+00 56.7

-1.21E+00 -1.08E+00 -1.49E+00 7.60E-01 6.85E-01 9.80E-01

3.00E-03 1.00E-04 -3.04E+00 1.00E-02 0.00E+00 -3.43E+01
Nicot inertia term 1.44E+00 3.00E-03 -3.00E-04 95.9 -3.83E+01 1.00E-02 0.00E+00 86.7

-2.00E-04 8.84E+00 3.00E-03 0.00E+00 -3.47E+01 1.00E-02

Table 6 lists the 3x3 matrix of stress tensor at an early and late stage of the
compression. For both stages, the Bagi stress, De Saxcé stress, Nicot stress,
De Saxcé’s inertial term, Nicot’s inertial term are calculated, respectively.
Overall, the three stress tensors (not the inertial terms) exhibit not exact
but fairly acceptable symmetry. The RAI’s at the early stage are 1 ∼ 2%,
and drop below 0.3% at the late stage.

The L2-norm’s of the five 3x3 matrices at the early stage are calculated:
3.80E+3, 3.79E+3, 3.80E+3, 7.7 and 8.8, respectively; and the L2-norm’s of
the five 3x3 matrices at the late stage are 8.92E+4, 8.92E+4, 8.93E+4, 2.1
and 38.3, respectively. It is a bit surprising to find that the inertial terms
are nearly negligible in quasi-static isotropic compression. Nicot et al. (2013)
conducted a 2D numerical simulation of silo discharge using 5,250 circular
disks, and the results of von Mises stress contour distribution show that the
inertial terms are approximately two or more orders of magnitude smaller
than that of the stress, as shown for our simulations in Table 6.

Figure 13(a) plots the volume and boundary moments, which correspond
to the LHS and RHS of Eq.(23), respectively, during the process of isotropic
compression. It is clear that the volume and boundary moments are not
exactly the same, therefore stress asymmetry arises. Figure 13(b) shows the
difference between volume and boundary moments and absolute asymmetry
(AA) of stress according to Eq.(25). Overall the AA increases with the
increasing moment difference. From Fig.13(c) it is observed that RAI in
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terms of Eq.(24) turns out to decrease with the increasing moment difference
in the process of quasi-static isotropic compression, dropping from 5% to
0.5% approximately.

From the perspective of classical continuum mechanics, there does not
exist rotation over the isotropically compressed sample. However, the imbal-
ance of internal and external moments of the DEM RVE that undergoes a
quasi-static process indicates an overall rotation or spin of the RVE, which re-
sults in an asymmetric stress tensor. In this example, the overall rotation can
be delineated at a characteristic length that matches the RVE dimensions.
In general, the characteristic length may be smaller than that. The Cauchy
stress tensor symmetry is only an assumption for macroscale problems in
which the microstructure can be neglected (Lin and Wu, 2016).

(a) Moment. (b) AA.

(c) RAI.

Figure 13: Moment and stress asymmetry in isotropic compression.

32



5.5. Quasi-static oedometer compression

A quasi-static uniaxial compression is applied to the gravitationally de-
posited particle assembly composed of 7,093 monodispersed ellipsoidal par-
ticles in a rigid container, as shown in Fig.14. The friction between the rigid
walls and particles is assumed to be zero. The top wall moves downward at
a constant low speed of 1.5E-5 m/s (loading stage) and stops when the axial
strain reaches 25% (resting stage).

(a) 3D view initial. (b) 3D view final.

(c) Side view initial. (d) Side view final.

Figure 14: Oedometer compression of 7,093 monodisperse ellipsoidal particles.

Figure 15(a) shows that the average normal force, average shear force
and average contact penetration between particles increase in the process of
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oedometer compression. They increase faster at early stage and slow down at
late stage. The energy process reveals the same trend as shown in Fig.15(b).
The tractions on the six walls of the rigid container are plotted in Fig.15(c):
they increase in the compression process; the top and bottom wall tractions
fluctuate at the instant of strain termination, and rest eventually. Beware the
time shown in Fig.15(b,c) only represents numerical meaning in quasi-static
simulations.

(a) Internal forces. (b) Energy.

(c) Tractions

Figure 15: Force, energy and traction in quasi-static oedometer compression.

Table 7 lists the 3x3 matrices of modified Nicot stress tensor at stages 10,
30, 52 and 90 of 100 snapshots in the simulation process. The stress tensors
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exhibit fairly good symmetry for these stages, but they are actually higher
if checked in Fig.16(c).

Table 7: Stress tensor calculated from oedometer compression
stage stress tensor RAI (%) AA

-6.64E+05 2.16E+02 3.44E+03
10 2.52E+02 -6.59E+05 1.74E+03 0.97 7.60E+01

3.41E+03 1.68E+03 -1.28E+06

-1.32E+06 -6.47E+03 1.41E+04
30 -6.60E+03 -1.30E+06 6.81E+03 0.41 1.57E+02

1.42E+04 6.81E+03 -2.26E+06

-1.74E+06 1.75E+03 1.49E+04
52 1.74E+03 -1.73E+06 1.02E+04 0.21 7.78E+01

1.48E+04 1.02E+04 -2.67E+06

-1.74E+06 1.47E+03 1.34E+04
90 1.47E+03 -1.73E+06 9.70E+03 0.06 1.98E+01

1.34E+04 9.69E+03 -2.66E+06

Figure 16(a) plots the volume and boundary moments, which correspond
to the LHS and RHS of Eq.(23), respectively, during the process of oedometer
compression. It is clear that the volume and boundary moments are not
exactly the same, and in particular, they differ substantially after the strain
termination.

As pointed out in Section 4.3.1, global damping in DEM may result in
inaccurate computation of linear and angular momenta of the RVE particles,
so only interparticle contact damping is applied in combination with particle
mass scaling in order to achieve quasi-static simulations. Such a damping
mechanism allows capture of stress wave after the strain termination: the
top and bottom boundary tractions differentiate but converge eventually, as
indicated by Fig.15(c). It is interesting to find from Fig.16(a,b) that the
difference between internal and external moments jumps up at the instant of
strain termination, which exactly reflects the stress wave propagation effect.

Again, there does not exist rotation over the oedometerly compressed
sample in the sense of classical continuum mechanics, but the imbalance
of internal and external moments implies an overall rotation or spin of the
sample, which results in an asymmetric stress tensor.

Figure 16(b) shows the difference between volume and boundary moments
and absolute asymmetry (AA) of stress according to Eq.(25). It is observed
that moment difference is very low while AA is high in loading stage, and mo-
ment difference is high while AA is very low in resting stage. From Fig.16(c)
it is observed that RAI exhibits a similar overall trend as AA, but it decreases
in the loading stage.
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(a) Moment. (b) AA.

(c) RAI.

Figure 16: Moment and stress asymmetry in oedometer compression.
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5.6. High-strain-rate (HSR) oedometer impact

A HSR uniaxial impact is now applied to the same assembly composed
of 7,093 monodispersed ellipsoidal particles in a rigid container. The friction
between the rigid walls and particles is assumed to be zero. The top wall
moves downward at a constant high strain rate (250 /s) and stops when the
axial strain reaches 25%. Only the loading stage of 1 ms is simulated.

(a) Internal forces. (b) Energy.

(c) Tractions

Figure 17: Force, energy and traction in HSR oedometer compression.

Figure 17(a) shows that the average normal force, average shear force
and average contact penetration between particles increase in the process of
impact. The energy process is revealed in Fig.17(b): the kinetic energy of
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the particle assembly exhibits a flucutating process with decreasing magni-
tude, and the rotational energy is nearly negligible. The tractions on the
six walls of the rigid container are plotted in Fig.17(c): they increase in the
impact process; the top and bottom wall tractions reveal that the stress wave
propagation and reflection in the vertical direction of the particle assembly.

Table 8: Stress tensor calculated from HSR impact.
stage stress tensor RAI (%) AA inertial term ratio

-2.38E+06 -8.47E+03 3.15E+04
20 -9.51E+03 -2.32E+06 9.12E+04 2.07 4.48E+03 3.50E-04

3.15E+04 8.69E+04 -5.00E+06

-7.09E+06 9.64E+03 -7.37E+04
40 9.10E+03 -7.02E+06 -2.68E+03 5.70 5.65E+03 1.04E-04

-7.09E+04 2.23E+03 -1.62E+07

-1.58E+07 -1.18E+04 -8.21E+04
60 -1.61E+04 -1.56E+07 -3.13E+04 3.22 4.71E+03 8.50E-05

-8.13E+04 -2.97E+04 -3.70E+07

-2.86E+07 -9.73E+03 -1.93E+05
80 -1.20E+04 -2.85E+07 -1.22E+05 1.90 2.94E+03 1.70E-05

-1.91E+05 -1.21E+05 -6.64E+07

Table 8 lists the 3x3 matrices of Nicot stress tensor at stages 20, 40, 60
and 80 of 100 snapshots in the simulation process. The RAI’s are clearly
higher than that in the quasi-static oedometer compression. The L2-norm
ratios between inertial terms and stress tensor for the 4 stages are 3.5E-4,
1.0E-4, 8.5E-5, 1.7E-5, respectively: the inertial terms are negligible in HSR
oedometer impact.

Figure 18(a) plots the volume and boundary moments during the high-
strain-rate impact process: they agree overall, however they differ slightly as
seen in Fig.18(c). There is no clear relationship between moment difference
and AA shown in Fig.18(b). From Fig.18(c) it is seen the RAI is decreasing
even though the moment difference remains in late stage.

Although they look the same in Fig. 18(a) , the internal and external
moments in the HSR impact test still differ, as shown in Fig. 18(b). The
imbalance of internal and external moments in this dynamic process implies
an overall rotation of the sample and results in asymmetric stress tensors.

5.7. Stress tensor in discontinuous state

Stress tensor in out-of-contact or “gapped” states is examined by checking
different stages of gravitational deposition of 3,456 monodisperse spherical
particles into a rigid container. The simulation time is reduced to 1/5 of that
shown in Fig.7(b) in order to observe more details. One hundred snapshots
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(a) Moment. (b) AA.

(c) RAI.

Figure 18: Moment and stress asymmetry in HSR oedometer impact.
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are taken at equal time interval in the process, and Fig.19 illustrates six of
them: 001-initial, 005-deposit, 006-deposit, 009-rebound, 010-rebound and
100-rested.

(1) 001-initial (2) 005-deposit (3) 006-deposit

(4) 009-rebound (5) 010-rebound (6) 100-rested

Figure 19: Sequential snapshot of gravitational deposition, rebound and rest.

Table 9 lists stress tensors calculated by Nicot’s formula at the instant
of the four snapshots. It is zero at the initial stage when the particles have
not formed any contacts; at stage 005, some particles have packed at the
bottom of the container while some are still free falling, the stress tensor is
asymmetric and RAI is as high as 9.2%; at stage 010, most particles have
packed while some particles are rebounding above the surface of the particle
assembly, the stress tensor is asymmetric but close to symmetric (RAI is
1.7%); in the rested state (stage 100), the stress exhibits excellent symmetry.

Figure 20(a) plots the volume and boundary moments during the process
of gravitational deposition. It is seen that the volume and boundary moments
differ at the stages of deposition, packing and rebound, but they become
equal at the rested stage. Figure 20(b) reveals that absolute asymmetry (AA)
of stress decreases with the decreasing moment difference, and it becomes nil

40



(a) Moment. (b) AA.

(c) RAI.

Figure 20: Moment and stress asymmetry in gravitational deposition.
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Table 9: “Stress” at various stages of gravitational deposition.
stage stress tensor RAI (%)

0.00E+00 0.00E+00 0.00E+00
001 0.00E+00 0.00E+00 0.00E+00 0

0.00E+00 0.00E+00 0.00E+00

-2.63E+02 -7.72E+00 -2.81E+01
005 -3.53E+00 -2.64E+02 -1.28E+01 9.2

-2.88E+01 -8.58E+00 -4.73E+02

-5.38E+02 -2.69E+01 8.52E+01
006 -2.54E+01 -5.28E+02 6.42E+01 2.7

8.69E+01 5.82E+01 -7.64E+02

-2.21E+02 9.56E+00 -2.57E+00
009 9.62E+00 -2.21E+02 -3.57E+00 1.5

-2.91E+00 -3.61E+00 -3.43E+02

-2.15E+02 1.07E+01 -3.53E+00
010 1.07E+01 -2.14E+02 -3.32E+00 1.7

-3.68E+00 -2.92E+00 -3.28E+02

-2.47E+02 1.10E+01 -1.98E+00
100 1.10E+01 -2.48E+02 -1.64E+00 0

-1.98E+00 -1.64E+00 -3.79E+02

when the latter becomes zero. Figure 20(c) shows that the RAI decreases
during the process: it is 23% at depositing stage and becomes nil at rested
state.

As pointed out in Section 4, the stress tensor is defined only when the
granular medium is in “continuous” state. When the granular medium is in
out-of-contact state, like stages 005 or 010 (partially in-contact and partially
out-of-contact), the calculated stress only represents a numerical value, losing
its original mechanical implication. However, it still provides a measure of
stress. The question is whether to adjust the RVE domain, and split into
two: (i) gapped, (2) not-gapped.

6. CONCLUSION AND OUTLOOK

Based on the analytical and numerical work in the paper, the following
conclusions can be made:

• Weber’s, Drescher’s and Bagi’s formulas are not equivalent for static
equilibrium.

• There are three important reasons for the boundary-radius-gap term to
be not neglected: wide range of particle sizes in some granular materi-
als, relatively small number of particles needed in a RVE for accurate
stress tensor calculation, and symmetry attribute of stress tensor.
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• From the perspective of stress tensor calculation, the number of par-
ticles in the RVE does not need to be large, namely, tens or hundreds
of particles would be adequate provided that high-precision contact
geometric resolution is assured.

• Cauchy’s stress theorem is not accurately satisfied using averaged stress
tensor defined for granular media, or for other materials with “granu-
lar” microstructure, such as polycrystalline metals. The averaged stress
tensor is more like a quantity that is obtained for a microelement or
microvolume in micropolar continuum theory, rather than a pointwise
value in classical continuum mechanics.

• The inertial terms in the averaged stress tensor are nearly negligible in
quasi-static compression and dynamic impact.

• Any form of deformation of granular media implies or includes rotation,
which is an essential difference from classical continuum mechanics. To
define the rotation and associate it to stress in granular media may
need micropolar continuum theory.

• Symmetry of averaged stress tensor calculated from DEM RVEs can be
accurately satisfied in static equilibrium; however, it cannot in quasi-
static or dynamic states due to imbalance of angular momentum over
the discrete RVEs.

• The stress tensor is normally defined when the granular medium is
in a “continuous” state. When it is extended to “discontinuous” or
“gapped”state, the calculated stress may lose its original mechanical
interpretation.

It is clealy seen from Section 5 that the imbalance of angular momentum
exists under quasi-static and dynamic loading conditions for discrete granular
media mechanics via 3D DEM RVE simulations, and it results in asymmetry
of the averaged stress tensor. This phenomenon is not easily interpreted by
classical continuum mechanics, as pointed out by Eringen (1968): “ If the
response of the body to an external physical effect is sought, in which the
length scale is comparable to the average grain or molecular size contained
in the body, the granular or molecular constituents of the body are excited
individually. In this case, the intrinsic motions of the constituents (microele-
ments) must be taken into account. This point becomes clear especially in
connection with the propagation of waves having high frequencies or short
wavelengths. When the wavelength is of the same order of magnitude as
the average dimension of the microelements, the intrinsic motions of the mi-
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croelements of ∆V with respect to the center of mass of ∆V can affect the
response appreciably.”

In micropolar continuum theory, Cauchy’s stress tensor is asymmetric
in general, and the imbalance of angular momentum of classical continuum
mechanics is generalized to include terms (surface couple, body couple and
intrinsic spin) such that they become balanced.

It is of great interest to extend the averaged stress and relevant rate form
tensors to large-scale parallel computing of 3D DEM for granular materi-
als (which normally provides adaptive compute grids for particle assembly
partitioning), and upscale the granular medium to continuum for study of
stress-strain relations. A proper implementation and application of the aver-
aged stress tensor in domain-decomposed parallelism of 3D DEM relies on the
stress definition and requires careful treatment. For example, if Bagi’s for-
mula is adopted, it is not only necessary to collect boundary-particle contact
information, but also requires processing particle-particle contact informa-
tion between adjacent compute grids and define branch vectors accurately;
if Weber’s formula is adopted, then it becomes unnecessary to do so.
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