
water

Article

Asymmetric Response of Land Storage to ENSO
Phase and Duration

Hrishikesh A. Chandanpurkar 1,*, John T. Fasullo 2 , John T. Reager 1, Robert S. Nerem 3 and
James S. Famiglietti 4

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
John.Reager@jpl.nasa.gov

2 National Center for Atmospheric Research, Boulder, CO 80305, USA; fasullo@ucar.edu
3 Colorado Center for Astrodynamics Research, Ann and H.J. Smead Department of Aerospace Engineering

Sciences, University of Colorado, Boulder, CO 80309, USA; nerem@colorado.edu
4 Global Institute for Water Security, Department of Geography and Planning, University of Saskatchewan,

Saskatoon, SK S7N 3H5, Canada; jay.famiglietti@usask.ca
* Correspondence: hrishi.chandanpurkar@jpl.nasa.gov; Tel.: +1-818-3543709

Received: 30 July 2019; Accepted: 17 October 2019; Published: 27 October 2019
����������
�������

Abstract: Emergence of global mean sea level (GMSL) from a ‘hiatus’ following a persistent La Niña
highlights the need to understand the causes of interannual variability in GMSL. Several studies link
interannual variability in GMSL to anomalous transport of water mass between land and ocean—and
subsequent changes in water storage in these reservoirs—primarily driven by El Niño/Southern
Oscillation (ENSO). Despite this, asymmetries in teleconnections between ENSO mode and land
water storage have received less attention. We use historical simulations of natural climate variability
to characterize asymmetries in the hydrological response to ENSO based on phase and duration.
Findings indicate pronounced phase-specific and duration-specific asymmetries covering up to 93
and 50 million km2 land area, respectively. The asymmetries are seasonally dependent, and based
on the mean regional climate are capable of influencing inherently bounded storage by pushing the
storage-precipitation relationship towards nonlinearity. The nonlinearities are more pronounced in
dry regions in the dry season, wet regions in the wet season, and during Year 2 of persistent ENSO
events, limiting the magnitude of associated anomalies under persistent ENSO influence. The findings
have implications for a range of stakeholders, including sea level researchers and water managers.
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1. Introduction

Teleconnections, in climate literature, refer to phenomena where changes in climate variables are
related over remote distances, typically driven by large scale atmospheric circulation. Using global
terrestrial water storage (TWS) anomalies from the Gravity Recovery and Climate Experiment (GRACE)
mission, recent studies have linked changes in global TWS to the interannual variability in global
mean sea level (GMSL) [1,2]. Recent studies highlight the contribution of regional land storage in
emergence of GMSL from the apparent ‘hiatus’ [3] following the 2010–2012 La Niña [4,5], with the El
Niño/Southern Oscillation (ENSO) being the biggest driver of the water mass exchanges between land
and ocean interannually. Generally, El Niño corresponds to a decrease in global terrestrial precipitation
(henceforth referred to as ‘P’) [6] and TWS [7,8], and an increase in GMSL [9]. La Niña sees an increase
in P and TWS, and a decrease in GMSL [4]. The relationship between TWS and the ENSO mode
(usually represented by sea surface temperature) have been studied at basin [10–13], regional [14], and
global scales [7,8,15–17]. The ENSO-P relationship is not necessarily linear. For instance, a positive
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response of P to El Niños over a certain region doesn’t necessarily correspond to an opposite response
of similar magnitude to La Niñas. Such asymmetries in P responses [18,19] to the ENSO phases [20]
and ENSO types [21], as well as interference of other climate variability modes such as Pacific Decadal
Oscillation [22,23], are well documented. However, few studies have looked at asymmetries in the
ENSO-TWS teleconnections.

Precipitation being the main source of water over land, it is reasonable to assume that ENSO-TWS
teleconnections generally follow ENSO-P teleconnections [6,24]. However, precipitation-storage
relationship, while being positive, is not linear throughout. Figure 1 (top left panel) shows a conceptual
relationship between precipitation and storage, often implicitly represented in rainfall-runoff or unit
hydrograph curves [25]. The mid-section of the curve is linear. The upper bound corresponds to
saturation-excess, where the basin is saturated and additional precipitation no longer corresponds
to more storage. The lower bound corresponds to the basin drying out, where outflow rate from
mechanisms such as surface and subsurface runoff and evapotranspiration fluxes exceed precipitation
rates, and a further decrease in precipitation no longer corresponds to decrease in storage. All basins
can be represented by this curve, but their exact range would vary depending on their mean hydrologic
state. It is likely that the storage limits may be reached during anomalous perturbations due to
ENSO, especially when such events extend for multiple years, such as the recent 2010–2012 La Niña.
Since 1870, there have been 28 observed instances (10 El Niños and 18 La Niñas)—five of which
occurred after 2000—when ENSO anomalies (based on Climate Prediction Center at National Oceanic
and Atmospheric Administration http://origin.cpc.ncep.noaa.gov/) persisted into the second year.
Given that anomalous storage response to ENSO is relevant to a range of stakeholders from global
mean sea level researchers to water resources managers, it is important to understand the asymmetries
and nonlinearities in the ENSO-TWS teleconnections. However, the lack of a long-term observational
record limits investigating the TWS response to extended ENSO events. In this context, well simulated
teleconnections in reliable climate models can be particularly useful.
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Figure 1. (top left) Conceptual relationship between terrestrial precipitation (P) and terrestrial water
storage (TWS). (top center) Maximum lagged correlation between P and TWS change, and the
corresponding lag (top right). (bottom) Example time series of Community Earth System Model
(CESM) Large Ensemble (LE) Niño 3.4 SSTA (average sea surface temperature anomalies within Nino
3.4 region) during austral summer (December-January-February) for Years 410–460 from the simulation.
Shaded areas categorize the years into El Niño (red) and La Niña (blue), and markers further categorize
the El Niño/Southern Oscillation (ENSO) years into Year 1 (blue), Year 2 (orange), and Year 3 (green).
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In this paper, using a long, multi-century simulation of natural climate variability, we provide, for
the first time, asymmetries in TWS response to ENSO duration and phase, as well as ENSO influence on
the P-TWS relationship itself. The next section describes the model dataset and methods. In Section 3,
we provide limited evaluation of simulated teleconnections against observations and characterize
the spatio-temporal nature of the season-, phase-, and duration-specific asymmetries, as well as the
combined influence of ENSO on the P-TWS relationship. Finally, we discuss the key results and
summarize the study in Section 4.

2. Materials and Methods

Among current major global climate models, the Community Earth System Model (CESM) has
been consistently found to be among the best at reproducing observed climatic mean fields and
variability in several model intercomparison studies [26]. It has been noted for being one of the best
models at representing ENSO asymmetry and its representation of ENSO variability has been found
to be comparable to observations [27]. CESM has been widely used in projecting changes in ENSO
variability in a changing climate [28–33]. Additionally, unlike several climate models, CESM’s land
component Community Land Model (CLM) [34] features a 3.8 m deep soil column discretized over 10
layers, and a 42 m deep unconfined aquifer capable of storing 5000 mm of water. The scheme allows
for an exchange between the aquifer and soil column, depending on the location of the water table
depth. Thus, CESM is well suited to conduct teleconnection studies between land storage and ENSO.
The CESM Large Ensemble (LE) project [35], which uses CESM version 1 [36], has been specifically
designed to study internal climate variability and its separation from a forced response. CESM
LE has been used to study linkages between water cycle changes, ENSO, and global warming [37].
Fasullo and Nerem (2016) [11] provide a rationale for applying CESM LE to global studies on terrestrial
water cycle and sea level, and evaluate ENSO-P teleconnections from the model with observations.
CESM LE includes a 2200-year, fully coupled control simulation that is well suited to study land storage
response to multi-year ENSO events, otherwise difficult to study by observations alone.

The CESM LE control experiment (b.e11.B1850C5CN.f09_g16.005, available at http://www.cesm.
ucar.edu/experiments/cesm1.1/LE/) was conducted to provide a reference for intrinsic climate variability
in the absence of anthropogenic climate change. The simulation involved running a fully coupled
configuration of CESM at approximately 1◦ horizontal resolution, and was forced with constant
pre-industrial climate forcing. The forcing, which represented the radiative conditions during the year
1850, was indicative of natural climate before its anthropogenic perturbation. The climate was allowed
to evolve for 2200 years. After allowing the first 400 years for model spin up, we used the remaining
1800 years for analysis.

Our choice to use the CESM LE was guided by: (1) The availability of an extended control
simulation, which provided a unique way of assessing the occurrences and influences of multi-year
ENSO events that observations do not permit; (2) the demonstration by previous studies of reliable
representation of TWS [11]; and (3) improvement of CESM 1 over its predecessor and other
climate models at representing observed ENSO power spectra and teleconnections, including their
duration [32,36]. However, limitations of the model were also acknowledged including (but not limited
to) its lack of an explicit human water management component (such as reservoirs, irrigation, and
groundwater abstraction).

Total land precipitation and TWS are computed from other CESM LE output variables as
follows [11]:

Total Precipitation = PRECC + PRECL (1)

where PRECC is the convective precipitation rate for liquid and ice, and PRECL is the large-scale
(stable) precipitation rate for liquid and ice, and

TWS =

∫ sur f ace

bedrock
(SOILLIQ + SOILICE) + WA + H2OSNO + H2OCAN + VOLR (2)

http://www.cesm.ucar.edu/experiments/cesm1.1/LE/
http://www.cesm.ucar.edu/experiments/cesm1.1/LE/
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where SOILLIQ and SOILICE are soil liquid and ice storage, respectively, while WA, H2OSNO,
H2OCAN, and VOLR are storage in aquifers, snow cover, canopy, and rivers, respectively. SOILLIQ
and SOILICE were integrated across the depth of the soil column in CLM4. From TWS, the long-term
mean was removed to generate TWS anomalies (TWSA). Terrestrial water storage change (TWSC), a
monthly derivative of TWSA, was computed based on the terrestrial water balance equation

TWSC =
d(TWSA)

dt
= Precipitation− Evapotranspiration−Runoff (3)

A local lag-correlation (at each land grid-point) between seasonally averaged TWSC and P
(Figure 1, top center and right) shows that maximum correlation was achieved at zero lag over most
ENSO-influenced regions [24]. Computing TWSC also accounted for observed lag between ENSO and
TWS [7]. The Niño 3.4 SSTA (average sea surface temperature anomalies within Nino 3.4 region) were
used to represent ENSO variability and were obtained for years 401–2200 from the Climate Variability
Diagnostic Package (CVDP) [38].

The monthly time series of precipitation, TWSC, and Niño 3.4 SSTA were then seasonally averaged
across December-January-February (DJF), March-April-May (MAM), June-July-August (JJA), and
September-October-November (SON). They were then detrended by removal of the linear trend to
focus on year-to-year variability. As demonstrated in Figure 1 (bottom), the time series were separated
into non-ENSO or ‘neutral’ years when Niño 3.4 SSTA were within ±0.5 ◦C, and ENSO years when
the SSTA anomalies were beyond these thresholds. The ENSO years were further separated into El
Niño and La Niña years. Finally, the ENSO years were also separated based on event duration: ENSO
events following a neutral year or consecutive ENSO years of opposite phases were considered Year 1
(blue markers in Figure 1 bottom). If the subsequent year was also an ENSO event of same phase, then
it was indexed as Year 2 (orange markers in Figure 1 bottom). Defining ENSO events this way differed
from the canonical definition of ENSO, which typically considers only DJF anomalies, and enabled
inclusion of events peaking in other seasons. Instances of ENSO persisting into Year 3 or more are
relatively uncommon, and hence were ignored. Following this method, in all 3775 events (749 Year
1 and 356 Year 2 events in DJF, 627 Year 1 and 262 Year 2 events in MAM, 568 Year 1 and 182 Year 2
events in JJA, and 740 Year 1 and 291 Year 2 events in SON) were extracted from the CESM Large
Ensemble experiment between Years 401 and 2200.

In this study, teleconnections were denoted by the slope coefficients of ordinary least squares
regression ( y = a0 + a1x), where x and y were independent and dependent variables, and a0 and a1

were intercept and slope of their linear equation. Seasonal anomalies in Niño 3.4 SSTA were then
regressed against those in TWSC at each land grid-point to provide teleconnections as ∆TWSC

∆Niño3.4 SSTA .
Figure 2 provides an example of regression teleconnections computed between Niño 3.4 SSTA and
TWSC for Year 1 El Niños over a single location (3.3◦ S, 58.75◦ W) in the Amazon. The average
teleconnection for Year 1 El Niño events for the example location was −34.5 mm/month/K (K being the
abbreviation for Kelvin). Significance in the local regression coefficients were tested with a Student
T-test at 90% confidence interval. Since testing regression significance at each land grid could result in
rejection of the null hypothesis just by chance [39], the analyses were corrected for a false discovery
rate (FDR) associated with multiple significance testing following Benjamini and Hochberg (1995) [40].

In this study, we denoted asymmetries in teleconnections as statistically significant differences in
the regression coefficients. Asymmetries occurring when differencing regression coefficients between
the two ENSO phases (during a given season and ENSO year) were considered as phase-specific
asymmetries. Similarly, asymmetries occurring between ENSO Year 1 and Year 2 (for a given season
and ENSO phase), were considered duration-specific asymmetries. Statistically significant differences
in the regression coefficients were computed using a permutation test. A permutation test [41,42] is a
widely used statistical technique in genomics that is particularly suited for our purpose of computing
regression slope differences, since it provides a sampling distribution and accounts for size differences
between the sample data points. As a walk-through for the permutation test, consider computing
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phase-specific asymmetries in the Niño 3.4 SSTA-TWSC teleconnections during DJF Year 1 El Niño and
DJF Year 1 La Niña events. First, DJF TWSC datasets Year 1 El Niño and Year 1 La Niña events were
appended together into a single dataset. Similarly, Niño 3.4 SSTA data corresponding to DJF Year 1 El
Niño and DJF Year 1 La Niña were joined together into a single dataset. Random samples equaling
the length of the original datasets were drawn from these joined datasets, and regression coefficients
and their differences were computed. The resampling process was repeated 1000 times, providing a
distribution of (n = 1000) regression slope differences. The distribution was then corrected for FDR
and differences significant at 90% confidence interval were considered as asymmetries.
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Figure 2. (top) Regression scatter between Niño 3.4 SSTA and TWSC from CESM LE for Year 1 El Niño
events over an example location (3.3◦ S, 58.75◦ W) in the Amazon. (bottom) Normalized time series of
Niño 3.4 SSTA and inverted terrestrial water storage change (TWSC) over the example location.

When describing P-TWS relationships, we fit quadratic curves (in addition to linear curves) to the
P-TWSC scatter using least squares method to quantify nonlinearity in the scatter. To remove outliers, the
scatter points were subjected to two-dimensional kernel density estimation (KDE) [43], a nonparametric
method of computing a probability density function between two variables. Points with density less
than the 10th percentile of KDE were ignored as outliers.

3. Results

A thorough comparison of the CESM LE control run with observations of several variables,
including SST and global precipitation, as well as several climate variability modes including ENSO
were provided by CVDP at http://webext.cgd.ucar.edu/Multi-Case/CVDP_ex/CESM1-LENS-Controls/.
While detailed model evaluation was beyond the scope of this study, we provided a limited evaluation
of the simulated ENSO-TWSC teleconnections with observed teleconnections between TWS from

http://webext.cgd.ucar.edu/Multi-Case/CVDP_ex/CESM1-LENS-Controls/
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GRACE Jet Propulsion Laboratory Mascon solution [44] and Niño 3.4 SSTA index based on Met
Office Hadley Centre sea ice and SST data set (HadISST1) [45]. In Figure 3, the spatial patterns and
the amplitude of the annual SSTA-TWSC regression coefficients simulated by CESM LE and those
observed using GRACE and Nino 3.4 SSTA compare reasonably well despite the short observation
record (15 years). Australia, South America, southern North America, southern Africa, and South,
Southeast, and Central Asia show excellent agreement between model and observations. These results
were consistent with Fasullo and Nerem (2016) [11] who provided further detailed evaluation of
the simulated teleconnections in CESM LE between the ENSO mode and land hydrology against
observations. Among regions of poor agreement (regions where teleconnection sign differs between
model and observations) were the northern higher latitudes including Russia and parts of northern
and central Africa. However, most of these regions also corresponded with insignificant regression
coefficients in the model (overlapping hatches and stipples). We removed these regions from the
analysis, and focused on well-simulated relationships.
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Figure 3. Local regression coefficients between annually (June-May) averaged time series of Niño
3.4 SSTA and TWSC from CESM LE control experiment (top) and from observations from Met Office
Hadley Centre sea ice and SST data set (HadISST1) and the Gravity Recovery and Climate Experiment
(GRACE) (bottom). Stippling indicates locations with statistically insignificant (p-value > 0.1) slope
values after correcting for false discovery rate. Hatching indicates regions where the sign of regression
coefficients differs between model and observations.

Regression coefficients between Niño 3.4 SSTA and TWSC are analyzed separately for each season
and ENSO phase during ENSO Year 1 (Figure 4) and Year 2 (Figure 5). While the broader spatial pattern
seen in the annual teleconnections (Figure 3 (top)) is retained in Figures 4 and 5, the differences due to
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season, phase, and duration are apparent. Significant teleconnections that are absent in Figure 3, likely
due to averaging out the asymmetries, are seen in several regions such as eastern and northwestern
North America, Central America, China, and Papua New Guinea. Several regions showed an opposing
sign of regression coefficients across seasons such as Brazil during MAM, South and Southeast Asia,
and South Africa in Figure 4.
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Phase-specific asymmetries (shown by stippling) were widespread in Year 1, and covered an area
ranging between 84 and 93 million km2, with the largest area (80% of total land area analyzed) in
DJF and JJA. Year 2 phase-specific asymmetries covered a slightly smaller area on an average (74%
of total land area), and the inter-season spread among the area covered also reduced. In Figure 4,
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the teleconnection sign reversal is seen in South and Southeast Asia and Central America during JJA
and DJF, central South America during JJA, Indonesia during JJA and SON, and Australia during
non-DJF seasons. Duration-specific asymmetries (shown by hatching) occurred over a relatively
smaller area (averaging to 28% of total land area) compared to phase-specific asymmetries. They
were most widespread during DJF and SON El Niños, followed by MAM and JJA El Niño. During
La Niña, the asymmetries were most widespread during JJA and covered about 1.75 times more area
than during other seasons. Dominant asymmetries occurred over Argentina and South Africa in DJF,
southern Brazil over MAM and JJA, and Australia. The land areas covered by these asymmetries are
summarized in Table 1.
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Since ENSO influences TWSC primarily through precipitation, the asymmetries highlighted in
Figures 4 and 5 could also be due to asymmetries in ENSO-P teleconnections. Examining the P-TWSC
relationship as a function of ENSO phase enables understanding of the ENSO influence of land storage
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relative to precipitation. At the same time, it provides insight into ENSO’s influence on the fundamental
P-TWSC relationship (Figure 1, top left). Hence, we investigated P-TWSC relationships over two
key land regions known to be influenced by ENSO: Australia and South East (SE) Asia comprised
of Thailand, Cambodia, Vietnam, and Laos. We fit a quadratic curve (denoted in the figure as ‘a’) to
the P-TWSC scatter as a metric of nonlinearity. We found significant departures from linearity over
Australia during SON (Figure 6, top) as compared to the rest of the seasons (not shown). The quadratic
coefficient increased progressively from 0.0015 month/mm during neutral years to 0.003 month/mm
during ENSO Year 1 to 0.0051 month/mm during Year 2. Similarly, over SE Asia during SON (Figure 6,
bottom), the P-TWSC relationship became increasingly nonlinear during ENSO Year 1 (a = −0.0015
month/mm) and Year 2 (a = −0.0028 month/mm). The likely physical mechanisms behind these
nonlinearities are discussed in the next section.

Table 1. Area under Niña 3.4 SSTA-TWSC teleconnection asymmetries based on ENSO phase and
duration. Values in parenthesis indicate percentage of total land area considered in the analysis.

Asymmetry Type
Area under Asymmetry in 1 × 106 km2. Values
in Parenthesis Indicate % of Total Land Area.

DJF MAM JJA SON

Phase-specific:

Year 1 El Niño—Year 1 La Niña 93 (80) 86 (74) 93 (81) 84 (73)

Year 2 El Niño—Year 2 La Niña 88 (76) 87 (75) 86 (75) 82 (71)

Duration-specific:

Year 1 El Niño—Year 2 El Niño 31 (27) 25 (22) 23 (20) 31 (27)

Year 1 La Niña—Year 2 La Niña 30 (26) 30 (26) 53 (46) 32 (28)
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Figure 6. Scatter between the average precipitation and TWSC from the CESM LE control experiment
over Australia during the dry season (SON, top row), SE Asia during wet season (SON, bottom row).
Columns indicate neutral years, ENSO Year 1, and ENSO Year 2, respectively. The marker colors
indicate Niño 3.4 SSTA index anomalies. The ‘a’ indicates coefficient value of a quadratic fit (black
curve). Phase-specific linear regression coefficients (slope_nino and slope_nina) are mentioned during
ENSO years. Gray dashed lines indicate scatter quadrants.
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4. Discussion

In this study, asymmetries in the ENSO-TWSC teleconnections are characterized for the first time
as a function of ENSO phase and duration. Since several of the ENSO-influenced regions were also
monsoonal, breaking down the teleconnections seasonally (Figures 4 and 5) highlights the seasonal
dependence of the asymmetries that were otherwise averaged out during annual averaging (Figure 3).
Phase-specific asymmetries occurred over predominantly tropical and subtropical monsoon regions
known to be influenced by ENSO, such as S and SE Asia, South America, southwest North America,
Central America, southern Africa, and Australia. Duration-specific asymmetries were prominent
during JJA La Niñas over Australia, parts of S and SE Asia, northern South America, and southwest
North America. Phase-specific asymmetries were more widespread compared to duration-specific
asymmetries, covering about three times the area covered by the latter. In other words, TWSC generally
showed a much more widespread differential (asymmetric) response to ENSO phases than it did to
back-to-back persistent ENSO events. Compared to duration-specific asymmetries, phase-specific
asymmetries (1) were more prominent in terms of magnitude, (2) covered a larger area in Year 1
of ENSO than Year 2, and (3) were spread across the year more consistently showing comparable
occurrences in all seasons.

We found the combined response from the seasonal ENSO-TWSC phase- and duration-specific
asymmetries to be nonlinear over several regions (with overlapping stippling and hatching in Figures 4
and 5), such as Australia, S and SE Asia, and parts of South America and North America. Furthermore,
we found that this combined response brought about ENSO-induced nonlinearity in the P-TWSC
relationship. Consistent with the expected deviations from linearity in the P-TWSC relationship
(Figure 1, top left), we found that the nonlinear response was pronounced in dry regions in the
dry season (demonstrated over Australia during SON in Figure 6, top), and in wet regions in wet
season (demonstrated over SE Asia during SON in Figure 6, bottom). During SON over Australia, the
nonlinearity increased progressively from neutral years to ENSO Years 1 and 2. The departures from
linearity were suggestive of having a physical basis: Australia is an overall arid region, with a slight
nonlinearity in the P-TWSC relationship existing even during neutral years (a = 0.0015 month/mm).
This average nonlinearity was likely due to low rainfall amounts evaporating quickly and having little
impact on TWS. Furthermore, SON over Australia is a dry season, and the storage tendency is already
well below the annual average (Figure 6 top). In other words, P-TWSC curve for Australia in SON sits
on the lower half of the theoretical curve from Figure 1. The teleconnections over Australia in Figures 4
and 5 strengthened during Year 2 La Niñas, while they weaken during Year 2 El Niños. These changes
are well reflected in P (x axis) in the Figure 6 scatter plots: Year 2 El Niños were drier while Year 2
La Niñas were wetter. However, with the land likely drying out (storage change reaching zero), no
further drying from Year 2 El Niños was observed in TWSC. This caused further separation of ENSO
phases in the scatter, as TWSC continued increasing due to wetter La Niñas but it no longer decreased
from drier El Niños. This growing differential response to ENSO phase drives the P-TWS relationship
closer to the lower threshold in the theoretical curve from Figure 1.

Contrasting against Australia, SE Asia is a seasonally wet region, with a distinct rainy season
during SON. The storage, likely not yet recovered from the pre-monsoon season, corresponds linearly
to the increase in precipitation during SON during average years (neutral years, a = 0.0001 month/mm).
However, due to above-average precipitation during La Niñas and below-average precipitation during
El Niños, the P-TWSC relationship becomes increasingly nonlinear during ENSO Year 1 (a = −0.0015
month/mm) and Year 2 (a = −0.0028 month/mm) as it moves towards the saturation-excess limit shown
in Figure 1. While the overall nonlinearity during both ENSO phases increased in Year 2, unlike
Australia the separation of the scatter between phases was less distinct in the ENSO Year 1 and more
so in ENSO Year 2. A likely cause of this lack of distinction between phases can be found in Figures 4
and 5: Over SE Asia during SON (third row), the teleconnections over El Niños (right panel) are
less homogenous and not as strong in magnitude compared to those during La Niñas (left panel).
Thus, the decrease in storage during El Niños was only slight compared to the increase in storage
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during La Niñas. A possible explanation for this was the combined interaction of the seasonal cycle
and ENSO variability on TWS, which according to Hamlington et al. (2019) [8] can cause more than
20% changes in variance over parts of SE Asia. In the present case, the dominant rainy season likely
overshadowed relatively drier conditions during El Niño years and pushed the P-TWSC relationship
towards saturation-excess limit. This suggests that local seasonality and mean climatic state continue
to remain important governing factors of the P-TWSC relationship.

The asymmetries, and the nonlinearity that they bring about, are likely to be of interest for global
mean sea level researchers. The ENSO-induced nonlinearity demonstrated in P-TWSC relationship
provides insight on the limits of TWS to modulate the interannual variability in global mean sea level.
With the ENSO forecasting capabilities getting better, water resource managers and planners can
consider the regional and seasonal asymmetries from phase and ENSO duration to better prepare and
plan for the ENSO-influenced changes in the water storage systems.
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