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Techniques for low energy transfers have been applied to constructing 

trajectories to various locations in the solar system.  Previous techniques have 

concentrated on orbit matching trajectory maneuvers and two-body transfers.  This 

research investigates several strategies for low energy transfers that can be utilized 

to intersect desirable objects or locate to different equilibrium regions in the solar 

system.  The principle tools utilized in this investigation stem from the three-body 

problem and the development of Lagrangian equilibrium points, periodic orbits and 

invariant manifolds.  Another principle tool is the use of low thrust propulsion to 

develop low energy transfer trajectories utilizing long duration flight times.  Of 

primary interest is the transfer to the Sun-Earth triangular equilibrium Lagrange 

points, commonly referred to as L4 and L5.  Given the localized stability of these 

regions leading and trailing the Earth as it orbits the Sun, there is low cost to keep 

a spacecraft in these locations to perform scientific investigations.  Of primary 

interest in the S-E L4/L5 regions is the study of small body Trojan asteroids and 

near Earth objects, stereoscopic solar observations, and various space weather and 

early warning solar storm detection.  This research attempts to minimize the 

trajectory transfer cost in terms of velocity maneuver impacts. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 Motivation 

The primary goal of this research is to find and analyze alternate mission 

transport schemes to reach the Sun-Earth triangular equilibrium Lagrange point 

regions, namely L4 and L5.  The motivation is to utilize low energy and dynamical 

system techniques to obtain minimal delta velocity requirements as the cost 

function and characterize the trade with time of flight for the transfers. 

In 2010, the WISE spacecraft mission observed and identified the first 

Earth orbit Trojan satellite.  Asteroid 2010 TK7 was verified by ground based 

telescopes to be traveling in the Earth’s orbit about the Sun in the leading L4 region 

(NASA/JPL, 2010).  It transits about a periodic orbit near the Sun-Earth L4 

libration point in a “tadpole” orbit, slowly progressing counterclockwise in the 

rotating frame over a long period of time.  It is not such an easy object to visit as the 

orbit has a large inclination to the ecliptic and would require large velocity 

maneuvers to reach.  But this object validates the long held speculation of small 

Trojan bodies being located relatively close by the Earth in stable regions of the 

rotating Sun-Earth system. 

Such objects would hold great scientific value if the ability to rendezvous 

with them if trajectory transfers can be developed to get there within reasonable 

velocity costs.  Many small spacecraft missions have been developed and flown 

utilizing low energy transfers to different places in the solar system, and this 
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research hopes to add to this by analyzing alternate methods to achieve those types 

of results. 

 

1.2 Background Information 

Equilibrium points in the three-body problem equate to finding the points 

where an object could be located with the appropriate velocity in the inertial frame, 

but where it remains stationary in the rotating frame.  This is to say that this point 

is still acted on by forces and follows a Keplerian orbit in the inertial frame, but 

that it stays fixed in the rotating synodic frame of the Circular Restricted Three 

Body Problem (CRTBP), described later in Section 2.1.2.  The location of these 

points in the CRTBP can be found by balancing the forces of the two primary 

masses with the force from the barycenter of the system, which is the only fixed 

point in the inertial frame.  An example of this procedure can be found in (Murray 

& Dermott, 1999). 

The system has an equilibrium point at the apex of an equilateral triangle 

with the base formed by line joining the two masses (the x-axis in the rotating 

frame).  There is a corresponding equilibrium point below the same line.  These are 

the Lagrange equilibrium points L4 and L5, respectively.  In the classical problem 

there are three more equilibrium points, L1, L2 and L3, which lie on the x-axis.  By 

convention, L1 lies between the two primary masses, L2 lies outside of the second 

primary mass and L3 lies outside the first primary mass. 

It turns out that in the CRTBP the location of the Lagrange points is purely 

a function of the mass ratio of the two primary bodies, µ.  For a given value of µ all 

five Lagrange points can be found for the system.  It is seen that the equilibrium 

points get closer to the primary masses as the mass ratio decreases, or as the second 
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primary gets smaller.  Some of these Lagrange points will be used as central points 

for periodic orbits as described in later sections. 

Recently several missions have been designed and launched to small objects 

in the near Earth solar system.  A number of these missions included encounters 

with asteroids, such as the Near Earth Asteroid Rendezvous (NEAR) mission, which 

was launched in 1996 to rendezvous with the minor planet 433 Eros but also made 

a flyby of asteroid 253 Mathilde along the way (see trajectory details in Farquhar et 

al (Farquhar, Dunham, & McAdams, 1995)).  The Hayabusa mission, launched in 

2003, was designed to rendezvous with and collect pieces of asteroid 25142 Itokawa 

and return the samples to Earth (Yano, et al., 2006).  This mission utilized a low 

thrust engine to make the transfer.  Another example is the DAWN mission, 

launched in 2007 and also used low thrust maneuvers, and designed to orbit two 

separate main asteroid belt objects (first Vesta and then Ceres) starting in 2011 

(Rayman, Fraschetti, Raymond, & Russell, 2006).  An example of a low V mission 

design to rendezvous with several NEO asteroids for a potential future mission is 

described by Mitchell (2005) .  The trajectory designs for these and several other 

missions that either fly by or rendezvous with asteroids near Earth utilize orbit 

matching or Hohmann type transfers.  But a survey of the literature has not found 

any past asteroid missions that have flown and included the use of periodic 

Lagrange point invariant manifolds directly in the trajectory design. 

A number of papers have recently been published in the astronomical 

community examining surveys of V requirements to launch from the Earth and 

rendezvous with different types of asteroids.  These surveys have primarily focused 

on applying different types of simplifying assumptions to obtain a statistical 

representation of the types of Vs that might be expected for asteroids in the 

current database and for potentially undiscovered asteroids.  The results are 
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applicable to a wide variety of cases ranging from missions to theoretical asteroids 

to more realistic missions at specific epochs.  They have all depended, however, on 

trajectories computed within the two-body problem.  Christou performed a survey 

using velocity-optimized impulsive Lambert solutions to travel from Earth to the 

asteroids focusing on 27 actual objects over 11 years (Christou, 2003).  The results 

were compared to Yanez et al.’s (2006) study using solar electric propulsion and 

Perozzi et al.’s (Perozzi, Rossi, & Valsecchi, 2001) study including some gravity 

flybys.  Christou notes that these two previous studies were phase-independent and 

examines the corresponding differences in V.  Stacey and Connors examine the V 

required to travel to a large number of asteroids focusing on phase-independent, 

low-inclination trajectories (Stacey & Connors, 2009).  They also include studies of 

theoretical trajectories representing undiscovered asteroids and some phase-

dependent asteroids, all within the two-body problem.  The approach taken here 

follows the approach taken by Stacey and Connors using trajectories particular to 

the three-body problem in place of two-body trajectories.  

 To summarize, these previous surveys of V requirements to travel to 

families of asteroids have primarily focused on computing Vs using two-body 

approximations.  These have ranged from simple schemes for targeting asteroids to 

using solutions of Lambert's problem.  As previously mentioned they have primarily 

focused on phase-independent studies, which is the approach also adopted for a 

portion here.  For this research, however, low-energy trajectories to possible 

rendezvous with various asteroids are computed in the circular restricted three-

body problem rather than using the typical two-body approximations.  These types 

of low-energy trajectories have been previously analyzed by Conley (1968) and 

studied in more detail by Gomez et al.  (Gomez, Llibre, Simo, & Simo, 2001).  A 

number of researchers have examined libration point orbits and the possibility of 
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using invariant manifolds to transfer to them from low Earth orbit (Gomez, Jorba, 

Masdemont, & Simo, 1993) (Howell, Barden, & Lo, Application of Dynamical 

Systems Theory to Trajectory Design for a Libration Point Mission, 1997).  It has 

also been suggested that these libration point orbits may act as a gateway from 

Earth to the rest of the solar system including travel to asteroids and Near Earth 

Objects (Farquhar, Dunham, Guo, & McAdams, 2004) (Lo, 2001).  This research 

seeks to apply these low-energy trajectories in the form of Lyapunov orbits and 

their invariant manifolds, and low thrust transfers to the problem of determining 

transfer trajectories to a wide variety of locations near the Earth. 

Very little research has been identified for transfers directly to the Sun-

Earth L4/L5 regions.  Salazar, et al (Salazar, Macau, & Winter, 2013) develop 

trajectories into triangular Lagrange point orbits but only for the Earth-Moon 

system, and utilize lunar gravity assists.  Llanos, et al (Llanos, Miller, & Hintz, 

2012) developed transfers to the Sun-Earth L4/L5 regions but utilized ballistic 

transfers techniques. 

What makes the Sun-Earth triangular Lagrange point regions interesting 

is the linear stability applied to objects that end up there.  This could be 

advantageous for spacecraft in the regions to lessen the amount of station keeping 

cost needed to remain in the locations.  Other scientific reasons to travel to the L4/L5 

locations would be to observe Trojan and other near Earth objects that could be in 

the locations.  There would be ideal locations to observe the Sun from a stereoscopic 

view if twin spacecraft were located in both the L4 and L5 locations. 

The Sun-Earth L5 location is ideal for observing solar storms, and affords as 

much as 3-5 days early warning prior to hitting Earth.  Coronal Mass Ejections 

(CME’s) can also be observed from this location prior to hitting Earth. 
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1.3 Dissertation Organization 

This writeup is organized first with the tools developed to analyze the 

various principle topics utilized in Section 2.  This section goes through the three-

body problem, definition of the CRTBP and the Jacobi constant derivation.  It then 

follows with similar development of periodic orbits, invariant manifolds and low 

thrust optimization. 

Section 3 then takes the tools and techniques of Section 2 and exercises 

them.  It first looks at the characteristics of the Jacobi constants with different 

three body systems, then transfers to intersect near Earth objects.  Lastly if 

develops a method of using invariant manifolds to transfer from one periodic orbit 

to another. 

Then Section 4 applies the methods to locate minimal transfer costs over 

the various techniques and transfer times to transit to the Sun-Earth triangular 

Lagrange point regions.  Finally Section 5 summarizes the results. 

 



 

CHAPTER 2  

TRANSPORT METHODS 

 

This chapter describes the tools developed as the baseline methods to 

analyze the different transport methods of this research.  These tools describe how 

the transport can work or the method used to develop the design. 

The fundamental principles utilized in this research stem from the 

characteristics of low energy transfers.  The backbone for much of this research is 

derived from the three-body problem, and in particular the circular restricted form 

of this system.  From this, equilibrium points, invariant manifolds and periodic 

trajectories can be developed and utilized in various transport designs.  Another 

form of low energy transfer is developed from the low thrust characteristics of high 

specific energy engines.  The long duration transfer times can lead to variations of 

transfers requiring low energy costs. 

The development of these types of tools for low energy transport is shown in 

the following sections. 

2.1 The Circular Restricted Three-Body Problem (CRTBP) 

The following sections describe, in summary, the basic dynamical problem 

used for much of the analysis in this report.  The applications and unique features 

of this problem are described, and the pieces and tools used in the analysis are 

described in the next sections. 

2.1.1 Summary of the Three-Body Problem 

The full three-body problem includes three masses whose motion is based 

on the mutual gravitation of all three bodies.  Under no restrictions each mass may 
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be of any shape and size and the type of the orbits about each other may be of any 

shape.  When studying small bodies (e.g. a man made spacecraft, or an asteroid or 

comet) in the vicinity of the solar system planets as they both orbit about the even 

larger Sun, analysis of these objects generally falls into the category of the three-

body problem.  Based on these relative sizes, two simplifications may be made in 

the problem. 

First, the mass of the minor body may be assumed to be negligible such that 

its mass won’t affect the orbits of the two larger bodies about themselves.  This can 

be easily realized as the masses of all known spacecraft and asteroids are much 

smaller in comparison to the solar system planets.  This contributes greatly to the 

simplification of the problem.  Second, it is assumed that two larger bodies, or 

primary masses orbit their barycenter in circular orbits.  This is reasonable since a 

quick glance at the eccentricities of nearly all the planets show them to be in nearly 

circular orbits about the Sun.   

The application of these two simplifications to the full three-body problem is 

known as the Circular Restricted Three-Body Problem (CRTBP).  It is considered a 

three-body problem because of the three total bodies.  Restricted in that the mass of 

the smallest (third) body (the spacecraft, asteroid or minor object in this case) is 

considered negligible.  And circular in that the two primary bodies, the Sun and one 

of the planets in this case, are considered to be in a circular orbit about each other.  

This setup can be used to model the motion of a spacecraft, asteroid, or other small 

body in the presence of two larger bodies. 
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2.1.2 Definition of the CRTBP 

For the purposes of studying minor objects in the solar system, the CRTBP 

includes the following assumptions, described by many in the past, but in particular 

following the derivation by Szebehely (1967): 

 

 M1 (Sun) > M2 (planet) >> M3 (spacecraft or asteroid) 

 M1 and M2 orbit their barycenter in circular orbits 

 Gravity is the only force involved and the bodies are all point masses 

 

In a two-body system the most common way to view the motion of the 

bodies is in the inertial frame.  In the three-body system the most common way to 

view the motion of the third body is in the rotating, or synodic frame.  In this frame 

the two primary bodies hold still relative to the coordinate axes.  The rotating 

system is described as follows: 

 

 Synodic frame rotates with the motion of the two primary bodies, that is in a counter-

clockwise fashion relative to the inertial frame 

 Origin is centered at the barycenter of the two primary bodies 

 x-axis extends from the origin through M2 

 z-axis extends in the direction of the angular momentum 

 y-axis completes the right-hand triad 

 

It is convenient to define a normalized mass ratio constant, µ, as 

 

   
  

     
 (2.1) 
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The constant µ is generally very small for any three-body system in the 

solar system.  Using Equation (2.1), several three-body parameters can be 

normalized as follows: 

 

 Total mass (M1 + M2) =  1 

 Mass of larger primary =  1 - µ 

 Mass of smaller primary =  µ 

 Distance between the two primary masses =  1 

 Location of larger primary (M1) =  [-µ, 0] 

 Location of smaller primary (M2) =  [1-µ, 0] 

 G, Gravitational Parameter =  1 

 Orbital period of two primaries =  2 

 

Normalizing the CRTBP is useful in that the only variable parameter in 

moving between one three-body system and another is the mass ratio, µ. 

2.1.3 Equations of Motion 

The normalized equations of motion for the third body in the rotating 

(synodic) frame are equal to (Szebehely, 1967): 

 

               
   

  
   

     

  
  

                
 

  
   

 

  
  

         
 

  
   

 

  
  

(2.2) 
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where r1 and r2 are equal to the distance from the third body to the larger and 

smaller primaries, respectively: 

 

   
                

  
                  

(2.3) 

 

In this form it is clear that the dynamics of the system depend only on the 

mass ratio, µ.  It is also seen that when µ goes to zero (when M2 goes to zero) the 

dynamics of the system approach the two-body dynamics, albeit in a rotating frame. 

2.1.4 Jacobi Integral of Motion 

The dynamics of the CRTBP permit an integral of motion to exist in the 

synodic reference frame, namely the Jacobi constant, C: 

 

         (2.4) 

 

where 

 

    
 

 
        

   

  
 

 

  
 

                

(2.5) 

 

The Jacobi constant, also known as the Jacobi energy or the Jacobi integral 

of motion, is typically only considered in normalized units.  It is nontrivial to 

convert from the normalized units to SI units.  The Jacobi constant is an important 

parameter to consider because the motion of a particle with a certain Jacobi 
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constant may be bound within a certain space and can only transfer out of that 

region using some sort of nonconservative maneuver. 

The Jacobi constant in the three-body system relates non-dimensionally to 

orbit energy in the two-body system.  Larger values of C correspond to lower two-

body energies.  Knowing the relationship between energy and orbit parameters in 

the two-body system, a corresponding mapping to the relationship between the 

Jacobi constant orbit in the three-body system is a feature to be explored 

throughout this study. 

2.1.5 Zero-Velocity Curves 

Forbidden regions can be identified in the CRTBP by mapping the Jacobi 

constant throughout the neighborhood of the primary bodies for particles that are at 

rest in the synodic frame.  Each contour of such a map shows a curve that has a 

constant value of C at zero-velocity.  Each of these curves is known as a zero-

velocity curve, and is calculated using: 

 

      (2.6) 

 

The motion of a particle that has a given Jacobi constant value is bound 

within its zero-velocity curve and is forbidden from traveling beyond that curve in 

the synodic frame.  As an example, Figure 2-1 shows the zero-velocity curves for the 

Jacobi constants corresponding to the L1 and L2 equilibrium points in the Sun-

Neptune (S-N) system.  These figures are blown up around the second primary 

object (Neptune) in the rotating frame and show the forbidden regions in white.  It 

is seen that as the Jacobi constant is decreased the forbidden region opens up 
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around the L1 point allowing particles to travel from around the second primary 

into the interior of the Sun-Neptune system. 

 

 

Figure 2-1.  Zero-velocity curves for the Sun-Neptune system, with Jacobi constant 

values corresponding to the equilibrium L1 (left) and L2 (right) points. 

 

2.2 Periodic Orbits 

Periodic orbits in the CRTBP are orbits that repeat periodically about some 

axis in the rotating frame.  They are not conic and do not exist in the two-body 

system.  But real missions use them for various types of mission designs.  Many 

families of periodic orbits exist in the CRTBP, including families that exist around 

each of the equilibrium Lagrange points, each of the primaries, and even around the 

entire system (Szebehely, 1967). 

In the rotating frame of the CRTBP the small third body can travel along 

paths that appear to orbit around various places.  Certain of these paths can return 

to nearly the same position and velocity in a repeatable fashion and are referred to 

as being periodic orbits in the synodic frame.  While they may appear to be non-

repeatable in the two-body frame, the localized manner of the movement in the 
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rotating frame can lead to desirable mission designs when interested in equilibrium 

points in the three-body realm.  The following sections describe one method of 

determining certain periodic orbits near the Lagrange points. 

2.2.1 Construction of Periodic Orbits in the CRTBP 

There are many varieties and categories of quasi-periodic and periodic 

orbits in the CRTBP, and many analyses exist on their behavior.  This report relies 

primarily on periodic halo orbits about one of the equilibrium Lagrange points in 

the CRTBP, typically L1 or L2.   

The quasi-periodic orbits are often referred to as Lissajous orbits, named for 

the resemblance to the rectangular constrained harmonic motion curves 

investigated in detail by Jules Antoine Lissajous as far back as 1857.  These 

Lissajous orbits are located in three-space, and can drift away from periodicity due 

to slight instabilities.  The periodic form of the Lissajous orbits are usually referred 

to as halo orbits, and are also in three-space.  In particular, periodic halo orbits that 

are located only in the x – y rotating plane of the primary masses are referred to as 

Lyapunov orbits and are the primary version analyzed throughout this study. 

The halo orbits are a function of the mass ratio of the primary bodies, µ, 

and tend to increase in size with increasing µ.  The orbits will be restricted to the 

plane of the two primaries for this analysis, which is the x – y plane in the rotating 

frame.  The common method of differential correction is used to construct periodic 

orbits in the CRTBP, as described in the paper by Howell (1984).  This method 

expands on that technique to apply the shooting method about any radial axis in 

the rotating CRTBP plane. 

 

 

  



15 

 

 

If we define a rotated frame (prime) from the inertial frame (un-primed), it 

acts as a randomly rotated frame in the three-body planar rotating system.  The 

primed axis is then the basis of the shooting technique to find the periodicity about. 

 

 

 

 

Basic rotational coordinate transformation: 

 

  
  

  

  

    
         

          
   

  
 
 
 
  (2.7) 

 

  
 
 
 
    

          
         

   
  

  

  

  

  (2.8) 

 

Assume the following properties: 

Invariant under        

Invariant under      

Symmetric about       plane 

x

y

y'

x'



z, z'
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Intersect    axis exactly twice per orbit 

 

When crossing the       plane the periodic orbit will have the following 

properties: 

Position components in    and    directions 

Velocity only in the    direction 

 

Thus, 

    
      

      
       

    
 
 (2.9) 

For this, the orbit will be periodic if at 
 

 
 another perpendicular       plane 

crossing may be found.  Then, 

 
   

 

                      
(2.10) 

This would then be considered periodic if at 
 

 
 the magnitudes of both       

and        , where typically         

 

If at 
 

 
 the magnitudes of both       and       are too large the initial conditions 

should be corrected by: 

     
       

       
        

      (2.11) 

Now, 

    
 

 
     (2.12) 

Therefore, the only desired changes to the final state at 
 

 
 are: 

            

           
(2.13) 

Utilize the state transition matrix,  , to make adjustments by relating the 

state at the half period to the initial state, or     
 

 
  to       .  Then 
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  (2.14) 
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  (2.15) 

 

From (2-11) it is seen that    
   , then from (2-15) 

 

            
        

         
       

 

 
    (2.16) 

 

If desired change is only in   
  and    

 , leave   
  fixed (and thus    

   ).  

Then the expression for the resultant change in the rotated velocities in    and    

from (2.16) is 

 

  
    

    
   

      

      
  

   
 

    
     

 

 
  

   

   
  (2.17) 

 

But, solving for    

 
  

 

   
 

 
   

 

   
         

   
 

    
   (2.18) 

 

Then (2.17) becomes, after substitution and rearranging to find the initial 

changes in    and     
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  (2.19) 

 

Alternatively, if desired change is only in   
  and    

 , leave   
  fixed (and thus 

   
   ).  Then the expression for the resultant change in the rotated velocities in    

and    from (2.16) is 

 

  
    

    
   

      

      
  

   
 

    
     

 

 
  

   

   
  (2.20) 

 

But, solving for    

 
  with    

    

 

   
 

 
   

 

   
         

   
 

    
   (2.21) 

 

Then (2.21) becomes, after substitution and rearranging to find the initial 

changes in    and     

 

  
   

 

    
     

      

      
  

 

   
 
   

   
          

  

 
    

    
  (2.22) 

 

This method was utilized to generate families of halo orbits about the L1 

and L2 equilibrium points for the Sun-Earth three-body system.  These planar 

Lyapunov orbits correspond to varying values of the Jacobi constant, C, which can 

be used to generate invariant manifolds to transport objects though the three-body 

system.  Examples of some L1 and L2 periodic orbits are shown in Figure 2-2 and 

Figure 2-3. 
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Figure 2-2.  Family of Periodic Lyanpunov Orbits about the S-E L1 Equilibrium 

Point.  The Jacobi constants, C, increase in magnitude the closer to the L1 centroid 

they are. 

 

 

Figure 2-3.  Family of Periodic Lyanpunov Orbits about the S-E L2 Equilibrium 

Point.  The Jacobi constants, C, increase in magnitude the closer to the L2 centroid 

they are. 
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This method can also be utilized to generate families of periodic orbits 

about axes not coincident with the primary axes, such as the L4 equilibrium point 

for the Sun-Earth three-body system.  These planar Lyapunov orbits, shown in 

Figure 2-4 and Figure 2-5, correspond to varying values of the Jacobi constant, C, 

which can be used to generate invariant manifolds to transport objects though the 

three-body system. 

 

 

Figure 2-4.  Family of Periodic Lyanpunov Orbits Concentric about the S-E L4 

Equilibrium Point.   
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Figure 2-5.  Closeup of Family of Periodic Lyanpunov Orbits Concentric about the 

S-E L4 Equilibrium Point.  The Jacobi constants, C, increase in magnitude the 

closer to the L4 centroid they are. 

 

Families of periodic orbits about axes not coincident with the primary axes, 

such as the L5 equilibrium point for the Sun-Earth three-body system, are shown in 

Figure 2-6 and are concentric about the L5 point.   
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Figure 2-6.  Family of Periodic Lyanpunov Orbits Concentric about the S-E L5 

Equilibrium Point.  The Jacobi constants, C, increase in magnitude the closer to the 

L5 centroid they are. 

 

It is also possible to generate periodic orbits about varying radial axes in 

the rotating system that correspond to orbits that will intersect one of the 

triangular Lagrange equilibrium points at one of the apex points in the periodic 

shape.  By choosing the appropriate radial axis angle for the size of the orbit shape 

a family of periodic orbits that intersect with given triangular equilibrium point can 

be generated such as those in Figure 2-7 for the S-E L5 point.  Similar families can 

be generated for the S-E L4 point in the same manor. 
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Figure 2-7.  Family of Periodic Lyanpunov Orbits that Intersect the S-E L5 

Equilibrium Point.  These are all periodic about different radial axes, but all go 

through the L5 point at the lower apex of their shape. 

 

These families of periodic Lyapunov orbits about the linear Lagrange 

equilibrium points (L1 and L2) can be utilized to generate unstable invariant 

manifolds that can be propagated to the families of periodic Lyapunov orbits about 

the triangular Lagrange equilibrium points (L4 and L5).  This transport method will 

be explored in a later section of this document. 
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2.3 Invariant Manifolds 

 

2.3.1 Invariant Manifolds of Unstable Periodic Orbits 

A manifold is an abstract mathematical space in which every point has a 

neighborhood which resembles Euclidian space, but in which the global structure 

may be more complicated.  For example, in six-space where there is a velocity vector 

field for each three-space position, the manifold would be represented by a 

trajectory of each state propagated through time.  The term ‘invariant’ indicates 

that as any point is propagated through time only one trajectory will be generated 

and a point on that manifold will remain on the manifold as time evolves. 

Invariant manifolds can be categorized as stable or unstable.  

Mathematically speaking, for continuous time systems the stable and unstable 

manifolds are defined as: 

 

Stable Manifold (W
s
): The set of initial conditions, 0x , such that 

  *x t x
as t  

Unstable Manifold (W
u
): The set of initial conditions, 0x , such that 

  *x t x
 as t  

 

where 
*x  is a saddle point in the system, or for the CRTBP can be an 

equilibrium point or a periodic orbit. 

Invariant manifolds can be applied to an unstable periodic orbit, such as an 

unstable halo orbit about an equilibrium point in the CRTBP.  An unstable orbit 

has at least one stable and one unstable eigenvector.  An object traveling along an 

unstable periodic orbit that realizes a small perturbation in the direction of the 

unstable eigenvector will fall away from this periodic orbit in an exponential fashion 
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along the unstable invariant manifold.  Conversely, if an object is given the correct 

initial conditions it will travel in an exponential fashion along the stable invariant 

manifold and eventually approach an unstable periodic orbit from the direction of 

the stable eigenvector. 

To construct the invariant manifolds of an unstable periodic orbit in the 

CRTBP, the state transition matrix of the orbit is propagated from the initial time (

0t ) to the time after one period ( 0t T
).  After being propagated for a full orbit the 

matrix contains information about every part of the orbit, and is referred to as the 

monodromy matrix designated as 
 0 0,t T t 

.   

The eigenvectors of the monodromy matrix can be propagated to any state 

along the periodic orbit using the state transition matrix.  After normalizing the 

eigenvectors at the desired point to preserve their initial magnitude, a small 

perturbation in the direction of the unstable eigenvector (with an eigenvalue 

greater than one) will cause an object to be taken onto the unstable invariant 

manifold if propagated forward in time.  The perturbation can be in the direction of 

the eigenvector, as just described, or in the negative of the eigenvector direction.  

One direction typically takes the trajectories toward the second primary object 

while the other direction will typically cause the object to travel away from the 

second primary.  In a similar fashion, the perturbations can be made along the 

stable eigenvector direction (with an eigenvalue less than one) causing the object to 

be taken onto the stable invariant manifold if propagated backward on time. 

Figure 2-8 shows the stable and unstable invariant manifolds emanating 

from a periodic halo orbit about the Sun-Neptune L2 equilibrium point.  The Jacobi 

constant associated with the periodic orbit is 3.00564142, and the green areas 

represent the forbidden regions where the manifolds cannot travel to.  It is seen 

that the manifolds have a tubular type formation as a whole and travel both toward 
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the interior of the system as well as away from the second primary (the light blue 

dot). 

 

 

Figure 2-8.  The unstable (top) and stable (bottom) invariant manifolds for a 

periodic orbit about the Sun-Neptune L2 equilibrium point. 

 

The invariant manifolds of unstable periodic orbits in the CRTBP can be 

utilized to transport an object from one orbit and into another orbit, or to possibly 

intersect another object in a separate orbit.  With the vast number of possible 

periodic orbits and the associated manifolds in the CRTBP, and the very small 

energy cost to get onto these transfers from the periodic orbits, the invariant 

manifolds are a very interesting tool to use for trajectory mission designs. 
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2.4 Low Thrust 

Electric propulsion is becoming very prevalent in space operations and has 

shown use in interplanetary type missions such as Dawn and Hayabusa.  Electric 

propulsion is synonymous with low-energy as well as low-thrust propulsion.  The 

efficiency of most electric propulsion technologies is very high while the mass flow 

and resulting thrust is very low.   

Modern chemical rocket engines, such as those typically found on larger 

launch vehicle second stages, can have thrust magnitudes that vary widely, but can 

be upwards of 100 kN.  The specific impulse, or Isp, values for these engines are in 

the range of up to 470 sec.  Even smaller chemical kick stages used to boost satellite 

orbits typically have thrust magnitudes upwards of 500 N and Isp values only up to 

about 300 sec. 

To take full advantage of long transfer times, low energy propulsion can 

utilize the small size and low propellant weights of typical electric propulsion 

motors that have specific impulse values in the range of 1600 – 4100 sec, while only 

requiring thrust magnitudes in the 50 – 250 mN range.  Given enough transit time 

duration to apply the high Isp/Low thrust to affect the orbit, the low amount of 

required mass change allows small delta velocity changes to achieve the desired 

effect.  This is controlled by the rocket equation: 

 

        
  

  
         

  

  
  

Here, the delta velocity change for a given Isp is directly proportional to the 

mass ratio across the burn length from start to finish.  This is controlled directly by 

the amount of used propellant. 
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2.4.1 Low Thrust Optimization 

To determine the minimal velocity change needed to perform low thrust 

transfers from the Earth region to the Sun-Earth triangular Lagrange points a 

Sims-Flanagan (Sims & Flanagan, 1999) and (Sims, Finlayson, Rinderle, Vavrina, 

& Kowalkowski, 2006) type direct transcription low thrust optimization tool was 

used.  The tool, known as the CCAR Optimal low-Thrust Tool (COLTT), was 

developed at the Colorado Center for Astrodynamic Research (Herman, 2012) for 

use by the researches at that facility. 

The COLTT tool is able to optimize a wide variety of trajectory parameters 

including the thrust magnitude, direction and specific impulse.  It can utilize 

constraint parameters such as launch and arrival times and escape C3 values. 

This tool utilizes the SNOPT optimization routine (Gill, Murray, & 

Saunders, Vol. 47, No. 1, 2005) which is an SQP type optimizer.  After formulating 

and scaling the constrained optimal control problem, SNOPT finds a feasible and 

optimal solution. 

 

2.4.2 Optimized Low Thrust Transfer Examples 

 

The following four figures (Figure 2-9 through Figure 2-12) represent 

examples of low thrust transfers between an Earth escape starting state to the L4 

and L5 locations, given various levels of engine Isp and transfer time.  The figures 

show the trajectories in both the rotating and inertial frame, as well as the thrust 

profile and change in two-body planar orbit parameters.  More detail of the low 

thrust profiles for all the transfer times for various Isp cases are shown in Appendix 

A. 
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Figure 2-9.  Low Thrust Transfer to S-E L4 for Isp = 1500 s and TOF = 1.833 yrs.  

This figure shows (a) rotating frame trace, (b) inertial frame trace, (c) argument of 

perihelion, (d) apohelion and perihelion radii, and (e) thrust profile for this transfer. 
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Figure 2-10.  Low Thrust Transfer to S-E L4 for Isp = 4000 s and TOF = 3.333 yrs.  

This figure shows (a) rotating frame trace, (b) inertial frame trace, (c) argument of 

perihelion, (d) apohelion and perihelion radii, and (e) thrust profile for this transfer. 
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Figure 2-11.  Low Thrust Transfer to S-E L5 for Isp = 2000 s and TOF = 1.667 yrs.  

This figure shows (a) rotating frame trace, (b) inertial frame trace, (c) argument of 

perihelion, (d) apohelion and perihelion radii, and (e) thrust profile for this transfer. 
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Figure 2-12.  Low Thrust Transfer to S-E L5 for Isp = 3000 s and TOF = 5.400 yrs.  

This figure shows (a) rotating frame trace, (b) inertial frame trace, (c) argument of 

perihelion, (d) apohelion and perihelion radii, and (e) thrust profile for this transfer. 



 

CHAPTER 3  

CHARACTERISTICS OF THE 3-BODY SYSTEM 

 

 

3.1 Relationships for Different 3-Body Systems 

The launch of the New Horizons mission to Pluto and beyond in 2006 began 

the close up of the Kuiper Belt region.  New missions to this region with greater 

capabilities would greatly enhance the understanding of this part of the solar 

system and its origins.  Potential exists to utilize low energy methods to open up 

this region of the solar system for exploration.  Objects in the outer solar system are 

vast distances away and current capabilities to send spacecraft to this region is 

limited.  Better understanding of the relationships of the outer planets in the three-

body systems with the sun could lead to unique designs for developing trajectories 

to move about. 

This section uses several of the methods from Chapter 2 to both exercise the 

methods with several different three-body system parameters, and to characterize 

some of the attributes of periodic orbits and invariant manifold transfers in these 

systems. 

3.1.1 Jacobi Constant Characteristics of KBO’s 

As described in Section 2.1.4, the Jacobi constant is a dimensionless 

parameter in the CRTBP that closely relates to the dimensional energy of the orbit 

of an object in the two-body problem.  In the two-body system it is useful to 

understand the energies of the orbits as you trade kinetic energy for potential 

energy when transferring from on orbit to another.  Therefore it seems prudent to 
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try and understand the how an objects Jacobi constant is characterized in the 

CRTBP. 

A larger database of Kuiper Belt Objects (KBO’s) was extracted from the 

JPL HORIZONS (Jet Propulsion Laboratory, 2007) system.  This is a large database 

of solar system data and ephemerides for many types of objects, including KBO’s.  

The Kuiper Belt is a region of space containing many small objects from the early 

solar system formation that orbit the Sun extending from about the orbit of 

Neptune (approximately 30 AU) to approximately 50 AU from the Sun.  One of the 

laregest identified objects in this region is Pluto.  It is believed that many objects 

from the Kuiper Belt get gravitationally pulled inward toward the inner solar 

system and become objects such as comets, asteroids (those not originating from the 

main asteroid belt between Mars and Jupiter), centaurs (orbiting between Jupiter 

and Neptune) and trans-Neptunian Objects (TNO’s, any minor body whose 

semimajor axis is larger than that of Neptune).  It is also theorized that most 

Trojan objects, those that orbit in the vicinity of the leading and trailing 

equilibriaum points of the Sun-planet three body system, generally originate from 

the Kuiper Belt region. 

The states of all the Centaur, Jupiter Trojan, and TNO objects available 

were used to determine their respective Jacobi constants, C.  Figure 3-1 through 

Figure 3-3 show the Jacobi constant values for each of the KBO class for the various 

Sun/outer planet three-body systems.   

It is seen from Figure 3-2 that the Jupiter Trojan objects are closely 

clustered into various values of C for each of the outer planet systems.  Knowing 

that the Jupiter Trojan objects are essentially located in the same orbit, but leading 

and trailing Jupiter about the Sun, it seems plausible that these objects would have 

very similar values of C with that of Jupiter and that it would be relatively efficient 
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to transfer orbits between them.  This may indicate that a value of C just above 3.0 

for a KBO object in the CRTBP is a favorable value in terms of orbit transfer 

energy. 

The values of C for the Centaur objects, as seen in Figure 3-1, show them to 

be near 3.0 as a whole but with a much looser clustering.  This seems to indicate 

that the energy for these objects with respect to nearly all the outer planets is fairly 

constant.  The values of C for the TNO objects (Figure 3-3) show the familial 

clustering about a value similar to the Trojans, but there seems to be more of the 

family values closer to 3.0.  This may indicate that it may be more efficient to 

transfer to these objects from the Uranus, Neptune, or Pluto orbit than from a 

Jupiter orbit. 

 

 

Figure 3-1.  Jacobi constant values for Centaur class KBO’s for the Sun/outer planet 

systems. 
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Figure 3-2.  Jacobi constant values for Jupiter Trojan class KBO’s for the Sun/outer 

planet systems. 

 

 

Figure 3-3.  Jacobi constant values for TNO class KBO’s for the Sun/outer planet 

systems. 
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Another way to try and characterize the KBO objects is to compare their 

Jacobi constant values relative to various orbit parameters in more of a spatial 

sense relative to the primary body.  Figure 3-4 shows the Jacobi constant values for 

the KBO objects, in the Sun-Neptune system for this example, for six different 

orbital elements.  It is sent as above that the Jupiter Trojan and TNO objects 

cluster together in tighter families than the Centaur objects.   

The Centaur objects seem to be in a much broader and less stable family of 

orbits.  This likely correlates with the theorized origin of Centaur objects 

themselves, which is that they were originally TNO’s that have been pulled into the 

inner solar system by gravitational interactions with one of the larger planets 

(Jupiter or Saturn).  This generally leaves them in less stable orbits for a period of 

time until they migrate into more stable regions, such as Trojans.  This type of 

transportation is mechanism is beyond the scope of this analysis. 

The C values compared with the mean motion of the objects (the lower right 

figure) seems to have a somewhat linear trend throughout all the KBO objects, but 

this may be an artifact of the mean motion being directly related to the CRTBP 

formulation.  No other distinguishing characteristics or clear conclusions from this 

data has surfaced at this time. 
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Figure 3-4.  Jacobi constant values for the KBO’s as a function of various orbital 

parameters. 
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3.1.2 Parametric Evaluation of the Jacobi Constant 

Another means of characterizing the Jacobi constant is to try and 

determine what value it should be for the given system from a parametric 

perspective.  For the CRTBP the equation for the Jacobi constant is a function of the 

mass ratio of the two primary bodies in the system, or µ.  The mass ratio can range 

in value from zero to one.  Taking this range of values for µ and further simplifying 

the problem by assuming the third-body object is located somewhere along the x-

axis with zero velocity in the rotating frame (along the line between the two 

primaries and rotating at the same angular rate as the second primary), Figure 3-5 

shows how the Jacobi constant varies. 

The curves represent various values of the objects location on the x-axis in 

the rotating frame.  It is seen from equations (2.4) and (2.5), as well as in Figure 

3-5a, that as µ approaches zero (which approximates the two-body problem) the 

value of C approaches three (although there is the singularity when µ = 0 and x = 

1).  Also, when µ approaches one, the values for C approach three as well. 

Figure 3-5b shows a blowup of the region close to where µ = 0, and the 

region where the mass ratio for the Sun/outer planet mass ratios lie.  It can be seem 

from this figure that from a theoretical sense the third-body objects that have a 

mean motion close to that of the outer planets should have Jacobi constant values 

near 3.0. 

Further analysis on this parameter study could be performed with more 

broad assumptions to gain more insight, but that will have to be done at a later 

date. 
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(a) 

 

(b) 

Figure 3-5.  Jacobi constant values as a function of mass ratio for a stationary object 

in the CRTBP. 
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3.1.3 Invariant Manifold Structure vs. Jacobi Constant 

The invariant manifolds propagated from a periodic orbit in the CRTBP 

take on the Jacobi constant characteristics of that periodic orbit.  Therefore it is of 

benefit to gather insight into the relationship of the given periodic orbit and the 

characteristic structure of the manifolds that are generated from it.  Insight into 

this relationship can be useful in designing unstable manifolds that will intersect 

and rendezvous with a target object or its orbit in the most efficient way.  A first 

look at this relationship is shown in Figure 3-6.   

This figure shows the unstable manifolds propagating from periodic halo 

orbits about the L2 point of the Sun-Saturn system.  The three figures have halo 

orbits with three different Jacobi constants, ranging from 3.01718677 (a) to 

2.99934175 (c).   

It is seen that as the Jacobi constant of the periodic orbit decreases the 

unstable manifolds seem to spread farther away from the primaries in a spatial 

sense (figure (b) vs. figure (a)).  But only to a point.  By decreasing the constant 

value more, the zero velocity curves and the forbidden zones disappear and the 

unstable manifolds seem to collapse inward closer to the primaries.  This is likely 

due to the energy levels of the manifolds and the periodic orbits.   

In (a) the unstable manifolds seem to hold their tubular shape and 

propagate around the outside of the forbidden zone.  As was talked about 

previously, as the Jacobi constant value goes down the energy of the orbit goes up in 

the two-body system.  This allows the forbidden zone to shrink and the manifold 

trajectories to migrate into broader areas in the two-body system and thus grow 

outward in space in the CRTBP, as in (b).  But after the point where the forbidden 

zone disappears from the rotating frame, the manifolds likely have enough energy 

in the two-body system sense that they shrink back into the three-body system. 
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Therefore, it appears that there is some design trade in the values of the 

Jacobi constants for the periodic orbits and the ability of the unstable manifolds to 

intersect with the orbits of the desired third-body targets.  This is by no means a 

thorough quantitative study of this phenomena, but purely a qualitative assessment 

of the characteristics observed this far.  Further insight into this area needs to be 

taken to better understand where benefits lie. 
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(c) 

Figure 3-6.  Unstable invariant manifold structures from various periodic orbits 

about the Sun-Saturn L2. 
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Sun.  The columns in Table 3-1 indicate the required delta velocity to inject into and 

out of the transfer orbit from the Earth to the target orbit for each in the binary 

KBO’s.  The velocity change is indicated in terms of V∞.  The last column indicates 

the half period of the transfer orbit to give some idea of the transit time. 

This data is being generated to use as simple benchmark for the amount of 

velocity change required to arrive at the target object from Earth.  These are not 

detailed estimates but something to use in the early stages of the analysis to 

indicate whether there is benefit from various options. 
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Table 3-1.  Simple Hohmann transfer velocity increments to transfer from Earth to 

various binary KBO orbits. 

 

 

Invariant Manifold Orbit Transfer 

This section presents some preliminary results of how an unstable manifold 

from a periodic orbit can intersect with the desired target third-body KBO.  It is a 

single example of the numerous instances the manifolds intersect with the KBO and 

the difference in the inertial velocities at these intersections.  It is a benefit to 

utilize the unstable manifolds because almost no velocity needs to be spent to get 

TNOs

Semi-Major 

Axis (AU) deltaV 1 deltaV 2

Total 

deltaV

Half-

period of 

TO

full_name spkid a V inf_1 V inf_2 delV tot

(km/s) (km/s) (km/s) (yrs)

 42355 Typhon (2002 CR46) 2042355 37.97635 11.79308 -3.73836 15.53143 43.05

139775 (2001 QG298) 2139775 39.24782 11.81037 -3.69445 15.50482 45.17

 47171 (1999 TC36) 2047171 39.31349 11.81123 -3.69223 15.50346 45.28

134340 Pluto 2134340 39.44507 11.81295 -3.68778 15.50074 45.50

120347 (2004 SB60) 2120347 42.02166 11.84452 -3.60400 15.44852 49.92

 80806 (2000 CM105) 2080806 42.17636 11.84630 -3.59916 15.44546 50.19

       (2003 UN284) 3169275 42.45076 11.84941 -3.59062 15.44003 50.67

       (1999 RT214) 3031906 42.58000 11.85087 -3.58662 15.43749 50.89

       (2003 QY90) 3160777 42.80270 11.85335 -3.57976 15.43311 51.28

134860 (2000 OJ67) 2134860 42.90046 11.85443 -3.57676 15.43120 51.46

136108 (2003 EL61) 2136108 43.28627 11.85866 -3.56501 15.42367 52.14

 66652 (1999 RZ253) 2066652 43.84450 11.86465 -3.54821 15.41286 53.12

       (2003 QW111) 3160800 43.71431 11.86327 -3.55210 15.41537 52.89

 88611 (2001 QT297) 2088611 44.08544 11.86719 -3.54103 15.40822 53.55

       (2001 QW322) 3092511 44.12765 11.86763 -3.53978 15.40741 53.63

 79360 (1997 CS29) 2079360 43.81905 11.86438 -3.54897 15.41335 53.08

       (2000 CF105) 3031933 43.81870 11.86438 -3.54898 15.41335 53.08

       (1998 WW31) 3031823 44.48152 11.87130 -3.52934 15.40064 54.26

       (2005 EO304) 3277443 45.92026 11.88566 -3.48785 15.37351 56.86

 58534 (1997 CQ29) 2058534 45.29110 11.87949 -3.50580 15.38529 55.72

       (2001 QC298) 3092445 46.28336 11.88914 -3.47762 15.36676 57.52

       (2000 CQ114) 3035251 46.16295 11.88799 -3.48100 15.36899 57.30

 26308 (1998 SM165) 2026308 47.55763 11.90096 -3.44244 15.34340 59.86

       (2000 QL251) 3078880 47.72553 11.90247 -3.43789 15.34036 60.17

 48639 (1995 TL8) 2048639 52.25557 11.93960 -3.32179 15.26139 68.75

 82075 (2000 YW134) 2082075 57.68104 11.97650 -3.19770 15.17419 79.52

 60458 (2000 CM114) 2060458 59.69100 11.98848 -3.15528 15.14377 83.64

136199 Eris (2003 UB313) 2136199 67.73155 12.02940 -3.00171 15.03111 100.80

 65489 Ceto (2003 FX128) 2065489 102.23430 12.13244 -2.53572 14.66816 185.55
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onto these trajectories from the periodic orbits.  However, not all intersections 

realize a favorable amount of velocity change that would be required to be captured 

by the target object system once it is rendezvoused with. 

Figure 3-7 shows the intersections between the unstable invariant 

manifolds of an L2 periodic orbit in the Sun-Uranus system with the orbit of the 

binary KBO 2002 CR46.  The top figure (a) shows the full view of the rotating frame 

while the lower (b) figure shows a blowup of the region near the smallest relative 

velocity difference crossing.  For each manifold (red traces) that crosses the KBO 

trajectory (blue traces), a yellow dot indicates the intersection with the smallest 

relative velocity difference.  The relative velocity difference is the vector difference 

of the velocities of both the manifold and the third-body trajectory at that given 

state in the CRTBP, but only in the x-y planar sense.  The minimum of the relative 

velocity difference magnitudes is shown by the blue diamond.   

For this example the minimum relative velocity difference is 1.5968 km/sec.  

As a benchmark comparison, the velocity change for the injection into the target 

object orbit from the Hohmann transfer calculation shown for the first object in 

Table 3-1 is 3.738 km/sec, which is twice as large as this transfer.  If comparing the 

total amount of velocity change needed relative to the Hohmann transfer, some 

nearly 14 km/sec would be available to get from Earth and into the Uranus halo 

orbit.  This is by no means an easy task, but there is room for exploration of ways to 

get there. 

The KBO’s trajectory was propagated out for nearly eight periods to get a 

feel for the amount and size of the intersections that would occur.  The manifolds 

are propagated out far enough for potential intersections, but not necessarily driven 

by a time period since it is assumed that entry onto the manifold could be designed 

to correspond with the time of the desired intersection. 
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Most of the intersections with the lower relative velocity differences occur 

in the interior region of the manifold’s forbidden zone.  This is also the region near 

the point of perigee of the KBO’s orbit about the Sun (the flattened parts of the blue 

trace toward the center of the plot).  This example shows how much trade space 

exists in this problem since at the KBO’s perigee it is closer to the central bodies 

from a special sense, but traveling at its fastest rate in the terms of orbital velocity.  

Whereas, if an intersection occurred near the KBO’s apogee there would be a better 

chance of the relative velocity difference from the manifold being smaller, albeit 

farther away from the central bodies.  But if the intersection occurred anywhere in 

the orbit at a place where the inertial velocities matched closely in magnitude and 

direction, then presumably it would be at a low cost to get captured at that point. 

This is an example where a better fundamental understanding of the 

characteristics of the invariant manifolds and the relationship of the Jacobi 

constants and orbital energies would help find the most beneficial trades in this 

large mission space.  This method of orbit transfer seems loaded with potential for 

mission designs, but much more work need to be performed. 
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(a) 

 
(b) 

Figure 3-7.  Intersections between the unstable invariant manifolds from an L2 orbit 

in the Sun-Uranus system and the binary KBO 2002 CR46. 
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3.1.5 Summary of Method 

This section introduced many of the transport tools from Section 2 and their 

use in examining different three-body systems.  The tools were used to help 

characterize different relationships between three-body objects and the more 

familiar two-body orbital parameters in an attempt to develop a deeper 

understanding of the trends throughout different systems.  The technique of low 

energy manifold transport was also developed to rendezvous with outer system 

KBO’s, and characterize potential coast savings for future missions utilizing such 

low energy techniques. 

 

 

3.2 Manifold Transport to NEO’s 

Near Earth Objects (NEO’s) have become increasingly popular as potential 

targets for future missions.  Previous surveys have concentrated on energy 

requirements to rendezvous with such objects using orbit matching trajectory 

maneuvers and two-body transfers.  Another technique which produces potentially 

lower transfer energy requirements utilizes the propagation of the invariant 

manifolds of libration point orbits in the three-body problem.  At the cost of transfer 

duration these techniques can show potentially improved performance to 

rendezvous with various NEO asteroid orbits. 

NEO’s are made up of Near Earth Asteroids (NEA’s) and Near Earth 

Comets (NEC’s) with perihelion distances of less than 1.3 AU, as described by the 

NASA Near Earth Object Program (NASA/JPL, 2010).  This analysis looks at the 

majority of NEO’s included in the data base, except those objects that are entirely 

inside of the Earth’s orbit. 
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This section exercises several of the tools from the previous chapter by 

looking at the phase-independent orbits in the planar problem to rendezvous with a 

large catalog of nearly planar NEO’s and establishes a baseline for transfer energy 

requirements in the Sun-Earth three-body system. 

3.2.1 Periodic Orbits in the CRTBP 

The periodic orbits in the CRTBP that are of interest here are orbits that 

repeat periodically about an axis in the rotating frame.  They are not conic and do 

not exist in the two-body system.  But real missions use them for various types of 

mission designs.  Many families of periodic orbits exist in the CRTBP, including 

families that exist around each of the Lagrange equilibrium points.  There are many 

varieties and categories of periodic orbits in the CRTBP, but this analysis only 

considers the use of periodic Lyapunov orbits about both of the Sun-Earth L1 and L2 

Lagrange equilibrium points. 

The periodic Lyapunov orbits are a subset of periodic halo orbits that are 

restricted to the plane of the two primary bodies (the x – y plane in the synodic 

frame).  Lyapunov orbits are a function of the mass ratio, , and tend to increase in 

size with smaller Jacobi constant values.  A single-shooting method is used to 

construct periodic orbits in the CRTBP, as described in Howell’s paper (1984) and 

expanded upon in Section 2.2 above. 

These periodic Lyapunov orbits can be generated corresponding to varying 

values of Jacobi constants about both L1 and L2 equilibrium points.  These orbits in 

turn can be used to generate invariant manifolds to transport an object through the 

three-body system.  These are summarized in the following section. 
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3.2.2 Invariant Manifolds of Unstable Periodic Orbits 

A manifold may be defined as an m-dimensional surface embedded in the 

set of real numbers,   , which locally possesses the structure of    (Wiggins, 2003).  

The term “invariant” indicates that a point on the manifold will remain on the 

manifold as time evolves.  Invariant manifolds can be categorized as stable or 

unstable, which is to say that the manifolds will approach a saddle point or 

unstable periodic orbit in the system as time goes to infinity or negative infinity, 

respectively. Invariant manifolds can be applied to an unstable periodic Lyapunov 

orbit (one having at least one stable and one unstable eigenvector) about an 

equilibrium point in the CRTBP. 

An object traveling along an unstable periodic orbit that realizes a small 

perturbation in the direction of the unstable eigenvector will fall away from the 

periodic orbit in an exponential fashion along the unstable invariant manifold.  

Conversely, if an object is given the correct initial conditions it will travel in an 

exponential fashion along the stable invariant manifold and eventually approach an 

unstable periodic orbit from the direction of the stable eigenvector.  The non-

dimensional perturbation size of 110-6 used here is similar to that suggested by 

Gómez et al. (Gomez, Jorba, Masdemont, & Simo, 1993).  

The invariant manifolds of unstable periodic orbits in the CRTBP can be 

utilized to transport an object from one orbit to another orbit or to possibly intersect 

another object in a separate orbit.  With the vast number of possible Lyapunov 

orbits and the associated manifolds, and the essentially zero energy cost to get onto 

these transfers from the Lyapunov orbits, the invariant manifolds can be a very 

useful tool for designing rendezvous trajectories to small objects near Earth. 

Examples of both stable (Ws) and unstable (Wu) invariant manifolds 

traveling to and from periodic Lyapunov orbits in the Sun-Earth three-body system 
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are shown in Figure 3-8 and Figure 3-9 (figures courtesy of (Lathrop & Anderson, 

2010)).  These figures represent the x – y planar view of the rotating reference 

frame centered at the barycenter of the system.  The stable manifolds (shown in 

green) travel from a distance above the Earth (such as a park orbit) to the periodic 

Lyapunov orbit.  The unstable manifolds (shown in red) travel from the Lyapunov 

orbit to regions outside the Earth’s orbit of the Sun.  These are sometimes referred 

to as exterior manifolds because they initially travel outside the region of Earth’s 

orbit.  A negative perturbation in the direction of the unstable eigenvector along the 

periodic orbit can generate similar manifolds that tend to initially go closer toward 

the Earth.  These can be referred to as interior manifolds (not shown on these 

figures) and are useful for traveling into the interior region of the system. 

 

 

 

Figure 3-8.  Periodic L2 Lagrange 

point Lyapunov orbit with Jacobi 

Constant value equal to 3.00051. 

 

Figure 3-9.  Periodic L2 Lagrange 

point Lyapunov orbit with Jacobi 

Constant value equal to 3.00081. 
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3.2.3 Computation for Total ΔV to Rendezvous 

The energy requirements for a spacecraft from the Earth to rendezvous 

with a potential NEO are reflected in terms of V.  The maneuvers needed to leave 

Earth’s orbit and arrive at a matching orbit of the targeted asteroid describe the 

approximate cost in energy.  Each maneuver determined in this analysis is assumed 

to be impulsive.  The total ΔV expressed in this analysis is calculated starting in a 

low Earth park orbit (LEO) at approximately 185 km in altitude.  This LEO is 

assumed to be circular and in the ecliptic plane.  The first component of the total ΔV 

calculation is the impulsive velocity needed to depart the LEO and propagate 

asymptotically into the desired periodic Lyapunov orbit.  This component, VLEO, is 

independent of the desired NEO being targeted and only a function of the desired 

Lyapunov orbit being injected into. 

The VLEO values for this analysis were determined numerically by first 

generating a periodic Lyapunov orbit in the CRTBP system at the desired Jacobi 

constant and then propagating a series of stable manifolds from the periodic orbit 

backward in time until they intersect the LEO.  The components of the velocity 

vector of the circular LEO and the stable manifold at the intersecting point were 

then compared to determine the relative velocity difference and the V required for 

insertion onto the manifold.  The Vs for each intersection were computed, and the 

minimum V was selected.  The relative time of the propagation was also calculated 

for this LEO to Lyapunov orbit portion of the total transit.  Note that this time 

could vary somewhat depending upon the offset distance used to compute the 

invariant manifolds. 
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Table 3-2  Total V from a 185 km Circular LEO Park Orbit to various Sun-Earth 

Lagrange Point Lyapunov Orbits 

 

 

To help show a relationship to the energy level of the periodic Lyapunov 

orbit, a range of Jacobi constants for both L1 and L2 Lyapunov orbits were used in 

this analysis.  Table 3-2 shows the VLEO values required for two bounding values of 

Jacobi constant Lyapunov orbits.  Refer back to Figure 3-8 and Figure 3-9 to see the 

Lyapunov orbits associated with the data in the table.  These Jacobi constant values 

were chosen for this analysis to approximately bound the range of energy values of 

the periodic orbits that allow the stable manifold to intersect the LEO park orbit 

about the Earth in a reasonable time.  Manifolds generated from Lyapunov orbits 

with Jacobi constants higher than approximately 3.00081 pass by the Earth at too 

high of an altitude, while those values lower than approximately 3.00051 tend to 

take a relatively long time before they intersect the desired LEO altitude.  Note that 

the computed VLEO values for transfers to the L1 and L2 Lyapunov orbits for the 

same Jacobi constant are very nearly the same, but they can provide pathways to 

very different regions. 

Also included in Table 3-2 are the associated time-of-flights (TOF) needed to 

travel from the LEO to the particular Lyapunov orbit.  This component can then be 

added to the remaining propagation time along the orbit and the unstable manifold 

to give an approximate determination of the total mission duration required to 

rendezvous with the selected NEO. 
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Since the V to insert onto and leave the periodic Lyapunov orbit is 

generally considered negligible, the spacecraft can travel around the Lyapunov orbit 

at zero cost until the desired point to asymptotically transition onto the proper 

unstable manifold to intersect with the targeted NEO orbit.  Since any number of 

unstable manifolds can be generated from the Lyapunov orbit and there is no ΔV 

cost for the spacecraft to transition onto any of manifolds, it is simply a matter of 

time to propagate around the periodic orbit to get to the desired transition manifold 

to intersect the NEO orbit.  For this analysis the desirable transition manifold from 

the Lyapunov orbit to the NEO orbit is the one yielding the minimum ΔV at the 

intersection point. 

This V needed to transition from the unstable manifold to the NEO orbit 

at the intersection point is the required second component of the total ΔV.  This 

component, Vrend, is referred to as the rendezvous velocity change needed to 

match the NEO orbit velocity from the manifold velocity at the intersection point.  

These components are also restricted to the x – y vector components in the rotating 

frame. 

Similar to the transition from the LEO to the Lyapunov orbit the transition 

away from the periodic orbit is accomplished by generating a series of unstable 

manifolds at various points about the Lyapunov orbit and propagating these out 

until they intersect the NEO orbit.  At the point of intersection the relative velocity 

components were then compared to determine the impulsive V needed to 

transition from the manifold to match the NEO orbit.   

Since this analysis is phase-independent, a series of initial states about an 

entire orbit for each NEO were propagated for multiple orbital periods to account 

for the time dependency of the third body.  The series of unstable manifolds were 

propagated for a period of time equivalent to just over three years and each 

intersection between the manifolds and NEO orbit was determined.    The period of 
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just over three years was used as a manageable mission duration time yet still 

reasonable from a simulation run time upper bound.   

The minimum Vrend for the desired NEO object was determined from all 

the calculated intersections.  Unstable manifolds were generated for Lyapunov 

orbits at the two Jacobi constant levels and from periodic orbits centered around 

both L1 and L2 Lagrange points in the Sun-Earth system.  Unstable manifolds in 

both the interior and exterior directions were examined.  The trajectory times for 

both the TOF about the Lyapunov orbit and the rendezvous transition along the 

manifold were also calculated. 

The minimum total V from the LEO park orbit to the NEO rendezvous 

was then determined by 

Vtot = VLEO + Vrend 

where the Vrend is the minimum value from all the intersections for that NEO 

object and the VLEO is the value associated with the same Lyapunov orbit used to 

get the minimum Vrend. 

 

3.2.4 Limitations of the Analysis 

To gather a statistical database for this analysis certain assumptions and 

process implementations impose limitations to the applicability of the results.  By 

utilizing the planar CRTBP this analysis is restricted to results in the planar case 

only.  The periodic Lyapunov orbits and manifolds are all computed in the x – y two 

dimensional plane defined by the Earth’s orbit about the Sun.  To help reduce the 

out-of-plane effects of the target NEOs, the database of objects (Jet Propulsion 

Laboratory, 2007) was filtered to include only those NEOs with inclinations of less 

than 5 degrees.  Based on these criteria the set of objects analyzed is as follows: 

 115 Atens (ATE) Objects 
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 986 Apollos (APO) Objects 

 491 Amors (AMO) Objects 

The total V determined for each object is calculated assuming the 

spacecraft starts from a circular LEO park orbit in the ecliptic plane at an altitude 

of 185 km.  The velocity cost needed to reach this LEO is assumed to be obtained 

from a potential launch vehicle and is not included in this analysis.  More favorable 

or more realistic park orbits could be used to begin the trajectory and would affect 

the results, but those are not reflected here. 

While multiple Lyapunov orbits over a range of Jacobi constant values are 

used to help characterize where minimum results could be found, to apply the 

analysis to a phase-independent review simulation time has to be limited to 

reasonable durations.  To accomplish this, certain discrete parameters were used.  

To be time-independent the target NEO’s orbit was varied so that it could intersect 

the manifolds at the correct time.  For computational considerations a series of 20 

evenly spaced trajectories for the third body were used to characterize time 

independence.  There are also an infinite number of potential unstable manifolds 

leaving a periodic Lyapunov orbit that could intersect the NEO orbit.  These were 

limited to 20 evenly spaced manifolds propagated for just over three years of 

simulated time to reach any intersections.   

Therefore, the exact minimum results may not be captured in each case, but 

with a large database of objects to analyze, the analysis results hope to characterize 

the trends.  It is also worth noting that the current database of asteroids is 

incomplete, and the simulated asteroids can serve to give an idea of potential 

requirements for the large numbers of asteroids that have yet to be discovered.  

Certainly individual object analysis can be performed in the future to more 

accurately determine minimum results if needed. 
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3.2.5 Results and Analysis 

To aid in comparison, the results from this analysis were compiled similarly 

to the methods used by Stacey and Connors (2009) and Perozzi et al. (Perozzi, Rossi, 

& Valsecchi, 2001)  For an overall statistical analysis of the phase-independent 

rendezvous minimum V needed to deliver a spacecraft from a LEO orbit to a 

targeted NEO, the following summarizes the results based on the methods 

described above.  Given this process and the assumptions described earlier, 

rendezvous intersections between the invariant manifolds and each of the NEOs 

were achieved for all of the objects with semimajor axes closer to that of the Earth’s 

(all of the ATE and APO object sets).  Due, however, to either insufficient 

propagation duration of the unstable manifolds or the lower relative energy of the 

manifolds not allowing them to reach a great enough distance from the Sun to 

intersect the NEO orbit, only 276 of the 491 object AMO set were able to produce 

even a single intersection.  The majority of the minimum V intersections resulted 

from trajectories utilizing external manifolds coming off of the lower energy (Jacobi 

constant = 3.00051) L2 Lyapunov orbit.  This holds true for about 85 percent of the 

ATE and AMO sets which contain objects spanning the lower and upper end of the 

semimajor axis range.  The objects in the APO set with the mid-range values of 

semimajor axes were split about evenly between L1 and L2 Lyapunov orbit manifold 

intersections but were still heavily weighted toward those from the lower energy 

periodic orbit. 

The total transit time from the LEO park orbit to the NEO rendezvous was 

also computed for each object.  These times are associated with the minimum V 

trajectory cases for each object.  The total transit times are made up of three 

components.  The first is the time from the LEO park orbit to the particular 

Lagrange point orbit (see Table 3-2 for these values for the given periodic orbits).  
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The value used from the table corresponds to the particular Lagrange point and 

orbit that produced the minimum V case for each object.  Note that these times 

will also vary based on the offset used to compute the invariant manifolds, and they 

will be refined in future studies. 

The second component is the time spent between entering and then leaving 

the periodic Lagrange point orbit.  Since the stable and unstable manifolds actually 

approach and leave the periodic orbit in an asymptotic manner, the calculation of 

this portion of the total time is somewhat approximate, but should be accurate 

enough for the purposes of this study.  The third component of the total transit time 

calculation is the time propagated along the unstable manifold from the periodic 

orbit to the rendezvous point with the NEO object.  This time was calculated 

numerically and is associated with the minimum V case for each object. 

Based on the ground rule described above limiting the propagation time 

limit for the unstable manifold to just over three years worth of time, the maximum 

total transit time for all of the objects analyzed was approximately 1911 days (about 

5.23 years).  The minimum total transit time for all the cases was approximately 

384 days (1.05 years).  Trajectory durations within these time spans fall in line with 

past and current missions of these kinds. 

A comparison of the minimum total V for each NEO relative to specific 

orbit parameters can be seen in Figure 3-10 through Figure 3-12.  For each of these 

figures the ATE objects are shown in dark blue, the APO objects in red, and the 

AMO objects in green.  Figure 3-10 shows the data versus each object’s semimajor 

axis.  This data suggests, as expected, a strong correlation between an object’s 

semimajor axis and the amount of energy needed to reach it from Earth.  The 

objects that have increased V requirements above the strong lower line are 

possibly those objects needing additional velocity to match other orbital 

characteristics. 
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The velocity needed to reach the NEOs versus their eccentricity value is 

shown in Figure 3-11.  This data also shows a strong correlation between increasing 

eccentricity values and increasing velocity requirements.  This correlation may arise 

from the greater difference from Earth’s orbit and corresponding increases in V 

required to match these different orbits. 

Figure 3-12 shows the same V values versus the object’s inclination.  As 

stated previously this analysis has been limited to planar results and only includes 

the two dimensional velocity components for the maneuver required between the 

manifold and the third body orbit.  It is known that out-of-plane maneuvers can 

require large amounts of velocity, which is the reason this analysis limited the NEO 

set to those objects with inclinations less than five degrees.  This was intended to 

minimize the effect of the out-of-plane velocity component of the third body. The 

results do indicate that some suitable asteroids with low Vs exist with near zero 

degree inclinations for which these planar results would most closely approximate 

real-world Vs.  Two of these cases are selected for further analysis in the next 

section. 
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Figure 3-10.  Total V as function of NEO semimajor axis. 

 

Figure 3-11.  Total ΔV as function of NEO eccentricity. 
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Figure 3-12.  Total ΔV as function of NEO inclination. 

 

Another approach used to analyze the data was to look at the V 

distribution relative to the Jacobi constant.  Figure 3-13 shows the total V as a 

function of the relative difference in the Jacobi constant between the Lyapunov 

orbit and the NEO object for each of the NEO categories.  The top figure shows the 

ATE objects in blue, the middle curve shows the APO objects in red, and the bottom 

curve shows the AMO objects that rendezvoused in green.  All three data sets show 

that the closer the NEO’s Jacobi constant value is to the Jacobi constant value of 

the Lyapunov orbit used to transport the spacecraft to the rendezvous, the lower the 

minimum required V. 

All the values of the Jacobi constant for the ATE and APO data sets used 

had Jacobi constant values less than the Jacobi constant values for the Lyapunov 

orbits used in this analysis.  The data for the ATE and APO objects both show a 

growing velocity cost when the Jacobi constant value for the NEO lies farther away 
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from the Lyapunov value.  The data set of AMO objects that produced intersections 

contained objects both higher and lower in Jabobi constant values than the 

Lyapunov orbits.  That data is shown in the bottom curve on both the positive and 

negative sides of zero, but the data still shows the trend of lower minimum V 

required for closer relative values of Jacobi constant to the Lyapunov orbit.  These 

results support a rule of thumb in the method for choosing the desired Lyapunov 

orbit used to transport the spacecraft along the trajectory to minimize the required 

V.  A closer match to the NEO’s Jacobi constant should yield a lower V. 

Another parameter used by both Stacey et al. and Christou (2003) is the 

Earth relative Tisserand parameter, defined as  

 

   
 

 

This parameter is related to the three-body energy an object would have if 

it were in the Earth’s orbit but can be constructed by the object’s Keplerian orbit 

parameters.  Here  is the object’s semimajor axis,  is the object’s eccentricity and 

 is the inclination.  The V values for the objects in this analysis were plotted 

versus the TE parameter, and the results were nearly identical in shape to those in 

Figure 3-13.  These traces also correspond very closely in shape to the results seen 

in the Tisserand curves shown in the Stacey et al. and Christou papers. 
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Figure 3-13.  Total ΔV as a function of the relative change in Jacobi Constant 

between the Lyapunov periodic orbit and the NEO object. 

 

3.2.6 Specific Cases 

Several specific comparisons were made to the results from previous 

research.  In some cases the Vs obtained using the invariant manifolds were larger 

than the results from this previous research, but many cases showed improvement 

over the two-body techniques.  Specific results from Stacey et al. and Perozzi took 

into account inclination effects, so it is expected that they would generally have 

larger V values.  However, it is worth examining several cases noting as a rough 

guide that a spacecraft in an Earth-like orbit would require approximately 1.3 km/s 

to change inclination by 2.5 degrees.  One case is asteroid 2003 WP25 in the ATE 

group which possesses an inclination of 2.5 degrees.  Stacey et al. obtained a V of 

6.3 km/s while a V of 4.36 km/s was obtained for this analysis.  For asteroid 1991 

VG in the APO group with an inclination of 1.45 degrees, Perozzi obtained a V of 
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4.48 km/s while this study produced a V of 3.41 km/s.  Finally, asteroid 1996 XB27 

in the AMO group with an inclination of 2.47 degrees required a V of 6.22 km/s in 

Perozzi’s study while this study resulted in 4.66 km/s.  As expected these results 

compare favorably with the spatial results, and they are low enough that future 

study is warranted to determine if these results will produce superior Vs even with 

the spatial effects included.  Realistic Vs for the most planar asteroids, however, 

can be obtained by examining these cases further.  As already seen in Figure 3-12, 

there are a number of satellite cases with extremely low inclinations and small Vs.  

The following analysis examines two specific cases in detail.  These cases 

were chosen because their inclination values are relatively small, and consequently 

the planar assumptions of this analysis should yield results for these particular 

objects that are closer to actual V values.  Asteroids from different groups were 

selected for this analysis, with the second producing a very low V. 

The first object is an ATE asteroid referred to as 2004 FH.  It has orbital 

characteristics of semimajor axis = 0.81 AU, eccentricity = 0.2891, and inclination = 

0.021 degrees.  The total V required to rendezvous for this object is 7.4716 km/sec, 

which is made up of 3.2282 km/sec to depart the LEO orbit and 4.2434 km/sec to 

change the orbit of the spacecraft from the manifold to the asteroid final orbit.  The 

total transit time for this trajectory would be approximately 858 days (2.35 yrs).  As 

can be seen in Figure 3-14, the transit includes propagating through a lower energy 

L2 Lyapunov orbit onto an unstable manifold that initially starts off traveling 

toward the interior region near the Earth and between the two Lagrange points, L1 

and L2.  It then travels out to the exterior region where it intersects the asteroid 

orbit.  The transit from LEO to the Lyapunov orbit is shown in green while the 

unstable manifold from the Lyapunov orbit to the asteroid is shown in red.  Figure 

3-14 (a) shows the entire planar system while Figure 3-14 (b) is a blown up section 

near the Earth and Lyapunov orbit. 
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The second example is from an APO object referred to as 2007 UN12.  It has 

orbital characteristics of semimajor axis = 1.05 AU, eccentricity = 0.0604, and 

inclination = 0.235 degrees.  The Jacobi constant for 2007 UN12 is equal to 2.99827. 

The total V required to rendezvous with this object is 3.4112 km/sec, which is 

made up of 3.2282 km/sec to depart the LEO orbit and 0.1830 km/sec to change the 

orbit of the spacecraft from the manifold to the asteroid final orbit.  The total 

transit time is approximately 1168 days (3.20 yrs).  This trajectory, as shown in 

Figure 3-15, travels from the LEO orbit to a lower energy L2 Lyapunov orbit and 

then transitions onto an exterior departing unstable manifold to intersect with the 

asteroid orbit.  This trajectory travels longer to reach a favorable intersection with 

the asteroid but spends less time near the Earth than the ATE example above.  This 

very low V compares favorably with other Vs found in the literature and is 

certainly worthy of more detailed analysis.  

Figure 3-14 and Figure 3-15 are provided courtesy of (Lathrop & Anderson, 

2010). 
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(a) Total View  (b) Expanded View 

Figure 3-14.  Total trajectory from LEO park orbit to rendezvous of example ATE 

asteroid 2004 FH.  This example utilizes an interior region starting unstable 

manifold from an L2 Lyapunov orbit with Jacobi constant value equal to 3.00051.  

 

 

(a) Total View  (b) Expanded View 

Figure 3-15.  Total trajectory from LEO park orbit to rendezvous of example APO 

asteroid 2007 UN12.  This example utilizes an exterior region starting unstable 

manifold from an L2 Lyapunov orbit with Jacobi constant value equal to 3.00051.  

 

3.2.7 Summary of Method 

Many potential asteroid rendezvous trajectories have been computed and 

analyzed using the invariant manifolds of Lyapunov orbits to transfer from LEO to 
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the asteroids.  Analyzing a survey of the required Vs revealed several trends.  The 

minimum required Vs for reaching asteroids tended to occur for those asteroids 

possessing semimajor axes similar to that of the Earth.  Examining the three-body 

Jacobi constant revealed that the Vs required to reach various asteroids were a 

minimum when the Jacobi constant was closest to the Jacobi constant of the 

selected Lyapunov orbit.  As expected, a significant number of the Vs required to 

reach asteroids in this planar analysis were lower than those obtained for low 

inclination orbits in previous studies.  Two specific cases were analyzed showing 

feasible phase-independent rendezvous trajectories that could be computed using 

invariant manifolds.  One of these cases possessed a low total V of 3.4112 km/s in 

addition to a very low inclination of 0.235 degrees.  These results compare quite 

favorably with previously published results, and with this low inclination, the 

results are potentially close to real world values.  The favorable results obtained 

here indicate that this method is worth pursuing with more detailed analyses. 

 

3.3 Periodic to Periodic Orbit Transfer 

The advantage of utilizing transfers from one periodic orbit to another is 

that the velocity cost to leave the initial periodic orbit on an unstable invariant 

manifold it negligible.  The only cost is associated with the arrival and transfer onto 

the final periodic orbit to match the velocity at the intersection point.  This section 

analyzes the cost and transfer time from periodic orbits about the S-E L1 and L2 

locations to the S-E L4 and L5 locations.  The cost does not contain that for getting 

into the initial L1/L2 periodic orbit from the Low Earth Orbit (LEO). 

 



71 

 

3.3.1 Grid Search Method 

The technique developed for this analysis utilizes a two- pass grid search 

method to first run unstable manifolds from the circumference of the initial periodic 

orbit the intersections of the final periodic orbit.  After determining the minimum 

insertion velocity change from those manifolds, a finer grid of unstable manifolds is 

then propagated about the initial minimal location, so a local minimum rendezvous 

is essentially determined. 

Figure 3-16 shoes the initial pass of propagations from several S-E L1 and 

L2 orbits to intersections of L4 and L5 orbits.  Figure 3-17 shows a close up of the 

unstable manifolds leaving the initial orbits, while Figure 3-18 and Figure 3-19 

show the first pass arrival of the intersections at the L4 and L5 periodic orbits.  All 

these plots are shown in the Sun-Earth rotating frame. 

 

 

 

Figure 3-16.  Propagation of Unstable Manifolds from S-E L1/L2 Lyapunov Orbits to 

Intersections with L4/L5 Lyapunov Orbits. 
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Figure 3-17.  Closeup of Propagation of Unstable Manifolds from S-E L1/L2 

Lyapunov Orbits. 
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Figure 3-18.  Closeup of Propagation of Unstable Manifolds Intersecting S-E L4 

Centered Periodic Lyapunov Orbit. 
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Figure 3-19.  Closeup of Propagation of Unstable Manifolds Intersecting S-E L5 

Intersecting Periodic Lyapunov Orbit. 
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The determination of the minimum rendezvous velocity change to transit 

from the manifold onto the arriving periodic orbit is found by taking the difference 

in the velocity of the manifold and periodic orbit at the intersecting state.  This is 

shown on a phase type plot (rotating position magnitude versus rotating velocity 

magnitude) in an example in Figure 3-20.  This indicated the magnitude difference 

at the intersection point.   

 

 

Figure 3-20.  Phase Space Traces of Starting and Ending Periodic Lyapunov Orbits 

and the Connecting Unstable Manifold.  The position axis corresponds to the radial 

magnitude, and the velocity axis corresponds to the total rotational velocity 

magnitude.  The delta V magnitude is applicable at the positional intersection of the 

manifold and the ending Lyapunov orbit. 

 

But what are really needed to minimize the transfer velocity change is the 

vector components of the velocity difference.  This is indicated in an example in 
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Figure 3-21, showing the phase plane for both the rotating x-axis (top) and y-axis 

(bottom) separately.  This measure leads to the minimal value for both the vector x 

and vector y velocity components which indicated the smallest required impulsive 

velocity change.  On the figures, the initial periodic orbit is shown as the green oval 

to the right side, the final periodic orbit as the blue dashed oval on the left side and 

the manifold transfer as the red line in between. 

 

 

Figure 3-21.  Component Phase Space Traces of Starting and Ending Periodic 

Lyapunov Orbits and the Connecting Unstable Manifold.  The position axes 

correspond to the component x (top) and y (bottom) positions, respectively.  The 

velocity axes correspond to the component x (top) and y (bottom) velocities, 

respectively.  The component delta V magnitudes are applicable at the positional 

intersection of the manifold and the ending Lyapunov orbit. 

 

These localized minimal velocity intersections between the unstable 

manifold and the arriving periodic orbit were determined for various initial periodic 
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orbits (from various sizes about L1 and L2) to various arrival periodic orbit (both 

concentric and intersecting the L4 and L5 points) in the Sun-Earth system.  

Examples of the complete locally minimal transfers are shown in Figure 3-22 and 

Figure 3-23.  This method will be used across the entire search space and the 

results shown in Section 4. 

 

 

Figure 3-22.  Case Solution for Locally Minimum Injection into S-E L4 Centered 

Lyapunov Orbit Transferring from an L1 Lyapunov Orbit. 
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Figure 3-23.  Case Solution for Locally Minimum Injection into S-E L5 Intersecting 

Lyapunov Orbit Transferring from an L2 Lyapunov Orbit. 



 

CHAPTER 4  

LOW ENERGY TRANSFERS (APPLICATIONS TO L4/L5) 

 

The following sections take advantage of the methods and tools described in 

the previous sections to develop low energy transfers to the Sun-Earth triangular 

Lagrange points, L4 and L5.  Several methods are explored with the goal of 

determining the delta velocity cost to get from the vicinity of the Earth to points at 

or near the S-E L4 and L5 points. 

First is a theoretical determination to get from the Earth to L4/L5 utilizing 

starting and ending impulsive maneuvers.  Next low thrust transfers to the 

Lagrange points are determined over various impulsive configurations.  The 

utilization of invariant manifolds to transfer from periodic orbits about S-E L1 and 

L2 Lagrange points to various periodic orbits about L4 and L5 is explored.  And 

finally a sampling of low thrust transfers over various times that intersect periodic 

orbits about the L4 and L5 points are analyzed. 

4.1 Impulsive Ballistic Transfers 

From a theoretical perspective, the orbital maneuvering required to go from 

a position representing the Earth in a circular orbit about the Sun to a position 

representing one of the triangular Lagrange points in the same orbit (in the 

rotating frame) can be determined using impulsive starting and stopping velocity 

changes.  While the positions of the Earth and the triangular Lagrange points are 

coplanar in the rotating frame, they are also in the same size orbit and thus an 

ideal Hohmann or Bi-elliptic type transfer does not fit for this type of maneuver 

since there is really no transfer between orbits at the end result. 
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A more appropriate approach is to utilize circular coplanar phasing, or a 

circular rendezvous maneuver since the goal is to simply place the object into 

another angular location in the same orbit.  This is sometimes referred to as the 

coplanar target-interceptor maneuver and is described in Chapter 5 of Vallado 

(1997).  This maneuver utilizes an intermediate or phasing orbit to change the time 

it takes the interceptor (in this case the object leaving the Earth) to arrive back at 

the initial angular position at the same time as the desired target arrives (in this 

case the triangular Lagrange point).  This works well with the assumptions of an 

object in the circular Sun-Earth rotating plane starting at the Earth’s position and 

propagating in a 2-body fashion with the Sun (assumes no Earth gravity). 

The concept is then to utilize initial and final tangential impulsive velocity 

maneuvers at the intersect point to size the intermediate phasing orbit to make up 

a specified amount of time to intercept the target at a corresponding phase angle 

change.  Two cases arise, the first where the target is leading the interceptor in the 

orbit and the second where the target is trailing the interceptor in the orbit.  The 

phase angle is defined in the direction from the initial target position to the 

interceptor initial position, positive in the direction of the targets orbital motion.  

For the case of the target leading the interceptor the phase angle, , would have a 

negative sign as seen in Figure 4-1.   

For the leading target case the phasing orbit will be smaller than the 

circular target orbit in order to make the period of the phasing orbit such that the 

interceptor arrives back at the intersect point at the same time as the target, which 

travels less than a full period of the circular target orbit.  The initial tangential 

velocity maneuver will be directed against the orbital motion to shrink the 

interceptor phasing orbit.  The final tangential velocity maneuver will then be equal 

but in the opposite direction to raise the elliptical phasing orbit back to the circular 

shape. 
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Figure 4-1.  Circular Coplanar Rendezvous for a Target leading the Interceptor.  

The example is for the target representing the L4 Lagrange point located at a phase 

angle of -60 from the initial interceptor point at the Earth. 

 

At the initial state in the circular orbit both the target and interceptor 

angular velocities are equal to the mean motion, n, of the target orbit: 

 

          
 

    
  

(4.1) 

Here  represents the gravitational constant of the central body (in this 

case the Sun, and not to be confused in this section for the mass ratio parameter 

used in the CRTBP described above) and      indicates the semi-major axis of the 

target orbit. 

For the target to complete      revolutions, minus the initial separation 

phase angle, , the interceptor completes      revolutions about the phasing orbit.  

Then the time it takes to go around the phasing orbit and return to the intersect 

point must be: 
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 (4.2) 

 

Because the constraint in this method has the final meeting of the target 

and interceptor at the intersect point, which is equivalent to the initial interceptor 

point, the revolutions for both the target and interceptor must be integers, or       

                           .  Knowing the mean motion of the phasing orbit is 

one revolution divided by the period, the semi-major axis of the phasing orbit is  

 

           
      

        
 

  

 (4.3) 

 

To find the velocity of the maneuver the circular assumption of the problem 

and the intersect point allows the change in velocity to simply be the sum of the 

magnitudes of the impulsive tangential maneuvers into and out of the phasing orbit 

for the interceptor.  From the circular target orbit into the apohelion point of the 

phasing orbit the velocity change is 

                (4.4) 

 

Similarly, from the apohelion point of the elliptical phasing orbit back into 

the circular target orbit 

                (4.5) 

 

Since these two equations yield the same velocity but different signs, the 

total velocity change is the magnitude of both these maneuvers, or 

 

                      (4.6) 
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This works for the case when the target is leading the interceptor in the 

direction of orbital motion.  Such is the case in the Sun-Earth rotating frame going 

from and Earth escape to the L4 Lagrange point with a phase angle       .  A 

second case exists when the target is trailing the interceptor in the direction of 

orbital motion, such as in the Sun-Earth rotating frame going from an Earth escape 

to the L5 Lagrange point with a phase angle        depicted in Figure 4-2. 

In this scenario the interceptor must transfer into a larger period (and thus 

slower mean motion) elliptic phasing orbit to match the target revolution plus the 

phase angle, and meet at the intersect point.  In this instance the intersecting point 

corresponds to the perihelion of the phasing orbit.  Accounting for the sign 

difference in the definition of  all the above described equations hold for this case 

as well. 

The resultant initial impulsive tangential velocity maneuver will be in the 

direction of the orbital motion in order to increase the energy of the larger phasing 

orbit, but the determination of the magnitude of the total velocity maneuver follows 

the same calculations. 
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Figure 4-2.  Circular Coplanar Rendezvous for a Target trailing the Interceptor.  

The example is for the target representing the L5 Lagrange point located at a phase 

angle of +60 from the initial interceptor point at the Earth. 

 

For a given phase angle there are any number of solutions to this problem 

depending on the number of revolutions chosen for both the target and interceptor 

before reaching the intersection point.  The number of revolutions chosen to move 

around the phasing orbit prior to arriving at the intersection point at the same time 

as the target leads into the determination of       , and thus the size of the phasing 

orbit.  This phase orbit size leads directly into the magnitude of the velocity 

maneuver.  By varying both              the number of revolutions for both the 

target and interceptor changes the time it takes to get to the intersecting point  The 

longer it takes to meet, the smaller the period change needs to be to match the 

synodic period and the smaller the velocity maneuver that should be required. 

Applying this method to the Sun-Earth circular coplanar scenario, 

maneuvering from an initial Earth escape point to target points at both L4 and L5, 

the phasing orbit semi-major axis size versus transit time can be seen in Figure 4-3.  
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For the maneuver from Earth to L4, with the leading phase angle equal to +60, the 

transit times revolve into the synodic period of a 5:6 resonance and the intersections 

occur at integer years minus 0.1667 years.  Similarly, for the maneuver from Earth 

to L5, with the trailing phase angle equal to -60 the transit times revolve into the 

synodic period of a 7:6 resonance and the intersections occur at integer years plus 

0.1667 years. 

 

 

Figure 4-3.  Circular Rendezvous Phasing Orbit SMA versus Transit Time.  Larger 

phasing orbits needed to allow L5 target to catch up, while smaller phasing orbits 

needed to speed up and catch the L4 target. 

The resultant total velocity maneuvers for each of the transit time cases is 

shown in Figure 4-4 for both the L4 and L5 target intercepts.  Trending as expected, 

the required total impulsive velocity decreases as the size of the phasing orbit 

change is decreased with the longer transit time cases.  While there is a slight 

difference between the required velocity maneuvers at the shorter transit times, the 

difference in velocity required to maneuver to either L4 or L5 is approximately the 
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same as transit times increase.  This is primarily due to the impulsive nature of the 

velocity changes and the tangential application of them at the apsides points. 

 

 

Figure 4-4.  Total Velocity Needed versus Varying Transit Times for Circular 

Rendezvous to S-E L4/L5 Targets.  Based from impulsive maneuvers from Earth 

escape to the leading and trailing Lagrange points. 

In summarizing the impulsive ballistic transfers, the minimum impulsive 

velocity change was determined across various transit times to intersect the target 

Lagrange point.  The magnitudes of the velocity maneuvers range from about 4 

km/sec to just under 0.5 km/sec as the transit times spread out to about 8 years.  

The impulsive nature of these maneuvers make them somewhat ideal, and can be 

expected to bound on the lower side maneuvers modeled with more realistic finite 

burns.  The orbital changes to the phasing orbit only take into account modifications 

to the in-plane shape of the orbital elements.  The constraining of the apsides to the 

intersection point does not allow any rotational orbit changes to the phasing orbit 

such as argument of perigee, which would contribute to higher required velocity 

maneuvers in more realistic cases. 
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4.2 Low Thrust Transfers 

Transfers from the location of the Earth to the location of both of the 

triangular Lagrange points in the Sun-Earth circular rotating system were 

determined using the tools and methods described in Section 2.4.1, above.  Low 

thrust trajectories were optimized across a range of transit times to intersect the L4 

and L5 points with the goal of minimizing the required total velocity change.  A 

range of engine specific impulse, or Isp characteristics was analyzed to determine 

the effects velocity requirements.   

The assumptions built into this analysis utilize the CRTBP modeling of the 

rotating Sun-Earth system and the location of the triangular L4 and L5 Lagrange 

points.  But the dynamic modeling of the tool used assumes the spacecraft initially 

has achieved and Earth escape trajectory with an Earth relative C3 value equal to 

zero.  This initializes the spacecraft to be in the circular orbit about the Sun 

starting in the location of the Earth, proceeding in a Sun-centered 2-Body trajectory 

from that point in inertial space.  There are no perturbing forces included from the 

secondary Earth body included. 

Therefore the velocity magnitude results shown in this section are an 

indication of that needed to transfer from a zero velocity state in the rotating 

system at the Earth to a zero velocity state in the rotating system at the location of 

one of the triangular Lagrange points.  This does not include any velocity change to 

launch from Earth and achieve an escape C3 equal to zero for the particular 

payload. 
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4.2.1 Direct Transfer to S-E L4 

For direct transfer times from one to six years and Isp ranges from 1500 to 

4000 sec, low thrust transfer trajectories were optimized to achieve the minimum 

velocity impact to transfer from the Earth location to the S-E L4 Lagrange point.  A 

representative trajectory trace in both the rotating and inertial frames is shown in 

Figure 4-5, and represents a 1.833 year transfer case.  The transfer starts at the 

Earth, represented by the small blue circle, and transfers to the L4 point indicated 

with a green plus symbol.  The maximum thrust level for this Isp = 1500 sec case is 

approximately 1.1278 N, and the thrust profile burns for approximately 0.1 years at 

both the start and end of the transfer as is indicated on the plots by the red arrows. 

The initial thrust shrinks the transfer orbit from the initial circular orbit 

(shown as the dashed circle in the inertial frame) to lessen the orbital period and 

make up time before intersecting the L4 point after the 1.833 year transit.  The final 

thrust then raises the transfer orbit back to the size of the circular orbit.  In this 

case the transfer time corresponded to a 5:6 resonance period and the intersection of 

the L4 point occurred at the initial starting point of the Earth.  The total velocity 

change to make this transfer is 1.90 km/sec. 
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Figure 4-5.  Low Thrust Transfer Example to S-E L4 for Isp = 1500 sec and TOF = 

1.833 years.  Example case that departs Earth at C3 = 0 and intersects L4 in the 

rotating frame after 1.833 years.  The trace in the rotating frame is shown in plot 

(a), and the inertial frame in plot (b). 

 

The same type runs were optimized across various transit times, and the 

resultant minimum total velocity change to intersect the S-E L4 point is compiled in 

Figure 4-6.  Once again, this is the delta velocity needed to transfer from an Earth 

location to the L4 location in the S-E rotating frame using low thrust and does not 
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include the velocity needed to launch the payload and achieve an Earth escape C3 

equal to zero km2/sec2.  For comparison the lower bounding impulsive velocity 

change derived from the circular rendezvous method is shown as the dashed black 

line. 

 

 

Figure 4-6.  Total delta V for Low Thrust Transfers to S-E L4 versus Transit Time.  

Multiple cases for engine Isp variances from 1500 to 4000 sec.  Velocity change 

based on an Earth departure at C3 = 0 and intersecting the L4 point in the rotating 

frame.  Lower bound impulsive velocity change shown in dashed black line. 

 

As is seen on Figure 4-6, the total delta velocity is mostly independent of 

the range of Isp values of the motor modeled, due mostly to the long durations 

available for the various thrust levels to affect the needed changes in the transfer 

orbit.  As with the impulsive cases the delta velocity is primarily dedicated to 

changing the in –plane shape of the transfer orbit in the form of shrinking the semi-
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major axis in these cases trying to catch up to the L4 point.  Shrinking the SMA 

more takes more delta velocity. 

Applying the finite delta velocity at the initial and final epochs of the 

transfer or phasing orbit directly affects the apsides  opposed from the intersect 

point for the cases that have transit times equivalent to the 5:6 resonance periods of 

the transfer to L4.  Evidence of this is seen in Figure 4-6 as the delta velocity for the 

low thrust cases very closely matches that of the theoretical impulsive circular 

rendezvous results.  But there is a slightly different dynamic produced for transit 

times that fall between the 5:6 resonance requiring slightly more delta velocity for 

those cases. 

Figure 4-7 shows several in-plane orbital elements for the transfer phasing 

orbit for the low thrust cases plotted against the resultant total delta velocities from 

Figure 4-6.  This gives an indication of what part of the transfer orbit the low thrust 

velocity is trying to change to most efficiently solve the problem. 
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Figure 4-7.  Orbital Parameters versus Total delta V for Low Thrust Transfers to S-

E L4.  Multiple cases for engine Isp variances from 1500 to 4000 sec.  Velocity 

change nearly linearly affects the in-plane shape of the transferring orbit via the 

semi-major axis, but is apportioned differently between the two radii of apsides.  

Comparison to the impulsive velocity change results shown from the dashed black 

line. 

 

The top plot in this figure shows a nearly linear relationship between the 

amount of delta velocity required to affect the semi-major axis and the size of the 

transfer orbit, which correlates well with the impulsive cases shown.  For the 

impulsive cases that always apply the initial and final burns at the intersect point 

in the rotating frame, the affect is only seen in the perihelion value of the transfer 

orbit while the apohelion radius stays the same.  This is shown once again by the 

dashed black trace in the lower two plots in Figure 4-7.   

For the shorter transit time cases the optimizer finds it more beneficial to 

apply the low thrust to actually move the apohelion radius higher, along with 

lowering the perihelion to achieve the proper period change in the transfer orbit.  
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After about the second 5:6 resonance period (or after 1.833 year transit times) the 

longer duration mean motion about the transfer orbit allows the finite low thrust 

change to properly affect the perihelion radius only and no further impacts to the 

apohelion radius are needed. 

For transit times occurring between the 5:6 resonance periods, the final 

intersect point is no longer coincident with the initial point at Earth, and therefore 

a portion of the velocity change must move the transfer orbit apohelion point away 

from the initial point by affecting the argument of perihelion of the transfer orbit to 

align with the new intersect point.  It needs to move farthest at the transit times 

corresponding to the midpoint between the resonant periods, and thus requires the 

most additional delta velocity above that needed to affect the in-plane SMA 

changes.  These effects lead to the characteristic humps between the resonance 

points seen in the total delta velocity curves in Figure 4-6. 

As has been shown for the low thrust transfer cases the total delta velocity 

needed is essentially independent of the Isp of the modeled motor.  But the thrust 

for these cases does vary, and how that leads into the delta velocity needed for a 

given transfer case is based on the motor size and is a function of the proportional 

payload to motor mass.  From the rocket equation, 

 

        
  

  
         

  

  
  

 

Here v is the velocity change, ve is the exit velocity of the propellants and 

is directly related to the thrust of the motor, and g is standard gravity.  The initial 

to final mass ratio about the burn is shown by the fraction mi/mf, and indicates the 

usable propellants during a motor burn.  For the cases seen here where a given v 

is fixed for varying values of Isp, the mass fraction must change proportionally with 
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the change in Isp.  This leads to the required fuel mass to change inversely with the 

change in Isp. 

Lower Isp values then require higher thrust levels and correspondingly 

more fuel mass to produce the same velocity change.  Figure 4-8 shows estimated 

values for the amount of fuel required to produce the corresponding delta velocity 

across a range of transit times for varying motor Isp characteristics.  A motor with a 

lower Isp may cost less to produce the same amount of delta velocity, but would 

require more fuel and be a larger proportion of the total payload mass. 

 

 

Figure 4-8.  Estimated Fuel Mass versus Transit Time required achieving the 

desired delta V for a Transfer to S-E L4.  Fuel mass varies with engine Isp to 

achieve the resultant velocity change and is a greater proportion of total payload 

mass for higher velocity requirements. 
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4.2.2 Direct Transfer to S-E L5 

In similar fashion to the process described for transfers to the L4 Lagrange 

point above, for direct transfer times from one to six years and Isp ranges from 1500 

to 4000 sec, low thrust transfer trajectories were optimized to achieve the minimum 

velocity impact to transfer from the Earth location to the S-E L5 Lagrange point.  A 

representative trajectory trace in both the rotating and inertial frames is shown in 

Figure 4-9, and represents a 4.667 year transfer case.  The transfer starts at the 

Earth, represented by the small blue circle, and transfers to the L5 point indicated 

with a green plus symbol.  The maximum thrust level for this Isp = 4000 sec case is 

approximately 0.0505 N, and the thrust profile burns for approximately 0.7 years at 

both the start and end of the transfer as is indicated on the plots by the red arrows. 

The initial thrust increases the transfer orbit from the initial circular orbit 

(shown as the dashed circle in the inertial frame) to increase the orbital period and 

lose time to let the target catch up before intersecting the L5 point after the 4.667 

year transit.  The final thrust then lowers the transfer orbit back to the size of the 

circular orbit.  In this case the transfer time corresponded to half-way between a 7:6 

resonance period and the intersection of the L5 point occurred one-half a revolution 

from the initial starting point of the Earth.  The total velocity change to make this 

transfer is 0.81 km/sec. 
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Figure 4-9.  Low Thrust Transfer Example to S-E L5 for Isp = 4000 sec and TOF = 

4.667 years.  Example case that departs Earth at C3 = 0 and intersects L5 in the 

rotating frame after 4.667 years.  The trace in the rotating frame is shown in plot 

(a), and the inertial frame in plot (b). 

 

The same type runs were optimized across various transit times, and the 

resultant minimum total velocity change to intersect the S-E L5 point is compiled in 

Figure 4-10.  Once again, this is the delta velocity needed to transfer from an Earth 

location to the L5 location in the S-E rotating frame using low thrust and does not 
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include the velocity needed to launch the payload and achieve an Earth escape C3 

equal to zero km2/sec2.  For comparison the lower bounding impulsive velocity 

change derived from the circular rendezvous method is shown as the dashed black 

line. 

 

 

Figure 4-10.  Total delta V for Low Thrust Transfers to S-E L5 versus Transit Time.  

Multiple cases for engine Isp variances from 1500 to 4000 sec.  Velocity change 

based on an Earth departure at C3 = 0 and intersecting the L5 point in the rotating 

frame.  Lower bound impulsive velocity change shown in dashed black line. 

As is seen on Figure 4-10 the total delta velocity is mostly independent of 

the range of Isp values of the motor modeled, due mostly to the long durations 

available for the various thrust levels to affect the needed changes in the transfer 

orbit.  As with the impulsive cases the delta velocity is primarily dedicated to 

changing the in –plane shape of the transfer orbit in the form of increasing the 

semi-major axis in these cases trying to slow down and let the L5 point catch up.  

Increasing the SMA more takes more delta velocity. 
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Applying the finite delta velocity at the initial and final epochs of the 

transfer or phasing orbit directly affects the apsides opposite from the intersect 

point for the cases that have transit times equivalent to the 7:6 resonance periods of 

the transfer to L5.  Evidence of this is seen in Figure 4-10 as the delta velocity for 

the low thrust cases very closely matches that of the theoretical impulsive circular 

rendezvous results.  But there is a slightly different dynamic produced for transit 

times that fall between the 7:6 resonance requiring slightly more delta velocity for 

those cases. 

Figure 4-11 shows several in-plane orbital elements for the transfer 

phasing orbit for the low thrust cases plotted against the resultant total delta 

velocities from Figure 4-10.  This gives an indication of what part of the transfer 

orbit the low thrust velocity is trying to change to most efficiently solve the problem. 

 

 

Figure 4-11.  Orbital Parameters versus Total delta V for Low Thrust Transfers to 

S-E L5.  Multiple cases for engine Isp variances from 1500 to 4000 sec.  Velocity 

change nearly linearly affects the in-plane shape of the transferring orbit via the 
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semi-major axis, but is apportioned differently between the two radii of apsides.  

Comparison to the impulsive velocity change results shown from the dashed black 

line. 

 

The top plot in this figure shows a nearly linear relationship between the 

amount of delta velocity required to affect the semi-major axis and the size of the 

transfer orbit, which correlates well with the impulsive cases shown.  There is an 

initial period for which a much larger delta velocity impact is needed for transit 

times less than the first 7:6 resonance period, or less than 1.1667 years.   These 

cases are not afforded the time to within one revolution to properly size the 

apohelion, and the optimizer finds it more beneficial to apply the delta velocity to 

moving the near asides to the intersect point by affecting the argument of 

perihelion.   For the impulsive cases that always apply the initial and final burns at 

the intersect point in the rotating frame, the affect is only seen in the apohelion 

value of the transfer orbit while the perihelion radius stays the same.  This is 

shown once again by the dashed black trace in the lower two plots in Figure 4-11.   

After about the first 7:6 resonance period (or after 1.167 year transit times) 

the longer duration mean motion about the transfer orbit allows the finite low 

thrust change to properly affect the apohelion radius only and no further impacts to 

the perihelion radius are needed. 

For transit times occurring between the 7:6 resonance periods, the final 

intersect point is no longer coincident with the initial point at Earth, and therefore 

a portion of the velocity change must move the transfer orbit perihelion point away 

from the initial point by affecting the argument of perihelion of the transfer orbit to 

align with the new intersect point.  It needs to move farthest at the transit times 

corresponding to the midpoint between the resonant periods, and thus requires the 

most additional delta velocity above that needed to affect the in-plane SMA 
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changes.  These effects lead to the characteristic humps between the resonance 

points seen in the total delta velocity curves in Figure 4-10. 

As has been shown for the low thrust transfer cases the total delta velocity 

needed is essentially independent of the Isp of the modeled motor.  But the thrust 

for these cases does vary, and how that leads into the delta velocity needed for a 

given transfer case is based on the motor size and is a function of the proportional 

payload to motor mass.  From the rocket equation, 

 

        
  

  
         

  

  
  

 

Here v is the velocity change, ve is the exit velocity of the propellants and 

is directly related to the thrust of the motor, and g is standard gravity.  The initial 

to final mass ratio about the burn is shown by the fraction mi/mf, and indicates the 

usable propellants during a motor burn.  For the cases seen here where a given v 

is fixed for varying values of Isp, the mass fraction must change proportionally with 

the change in Isp.  This leads to the required fuel mass to change inversely with the 

change in Isp. 

Lower Isp values then require higher thrust levels and correspondingly 

more fuel mass to produce the same velocity change.  Figure 4-12 shows estimated 

values for the amount of fuel required to produce the corresponding delta velocity 

across a range of transit times for varying motor Isp characteristics.  A motor with a 

lower Isp may cost less to produce the same amount of delta velocity, but would 

require more fuel and be a larger proportion of the total payload mass. 
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Figure 4-12.  Estimated Fuel Mass versus Transit Time required achieving the 

desired delta V for a Transfer to S-E L5.  Fuel mass varies with engine Isp to 

achieve the resultant velocity change and is a greater proportion of total payload 

mass for higher velocity requirements. 

4.3 Manifold Transport 

Transfers from unstable periodic staging orbits about the L1 and L2 

Lagrange points to stable periodic orbits about both of the triangular Lagrange 

points in the Sun-Earth circular rotating system were determined using the tools 

and methods described in Sections 2.2 and 2.3, above.  Unstable invariant manifolds 

were propagated freely from various unstable periodic orbits about L1 and L2 until 

they intersected in position space various stable periodic orbits about L4 and L5.  

The delta velocity needed to inject from the manifold onto the stable periodic orbit 

was calculated and the minimum velocity impacts were determined across the 

various staging periodic orbits.  The results are plotted according to the Jacobi 

constant values for the departing unstable staging orbits about L1 and L2, and the 
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Jacobi constant values for the arriving stable periodic orbits about L4 and L5.  The 

corresponding transit time it takes to translate along the given invariant manifold 

is also included on the traces. 

The assumptions built into this analysis utilize the CRTBP modeling of the 

rotating Sun-Earth system and the location of the linear L1 and L2, and triangular 

L4 and L5 Lagrange points.  It is assumed the departing periodic orbits about the 

linear L1 and L2 points are unstable and therefore takes essentially no delta velocity 

to depart from them onto the transiting manifold. 

Therefore the velocity magnitude results shown in this section are an 

indication of that needed to transfer from the unstable manifold state to the stable 

periodic orbit about the triangular Lagrange point at the intersecting position.  This 

does not include any velocity change to launch from Earth to any of the periodic 

staging orbits about S-E L1 or L2 for a particular payload. 

The Jacobi constant values for the departing and arriving periodic orbits 

are indicated on the axes in the following figures, with larger values corresponding 

to orbits closer to the corresponding Lagrange point.  These figures attempt to 

compile on one plot the results of a multitude of initial and arrival conditions, akin 

to “pork chop” type plots that are commonly used to show results from Lambert’s 

solutions.  The following sections step through L1 and L2 departing, and L4 and L5 

arriving (both concentric and intersecting) periodic orbits and the associated transit 

times. 
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4.3.1 Transfer From S-E L1 Staging Orbits to L4 Periodic Orbits 

 

 

 

Figure 4-13.  Delta Velocity and Time of Flight for Manifold Transfers from L1 

Periodic Orbits injecting into L4 Centered Periodic Orbits.   



104 

 

 

Figure 4-14.  Delta Velocity and Time of Flight for Manifold Transfers from L1 

Periodic Orbits injecting into Periodic Orbits that intersect L4.   
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4.3.2 Transfer From S-E L2 Staging Orbits to L4 Periodic Orbits 

 

 

 

Figure 4-15.  Delta Velocity and Time of Flight for Manifold Transfers from L2 

Periodic Orbits injecting into L4 Centered Periodic Orbits.   
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Figure 4-16.  Delta Velocity and Time of Flight for Manifold Transfers from L2 

Periodic Orbits injecting into Periodic Orbits that intersect L4. 
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4.3.3 Transfer From S-E L1 Staging Orbits to L5 Periodic Orbits 

 

 

 

Figure 4-17.  Delta Velocity and Time of Flight for Manifold Transfers from L1 

Periodic Orbits injecting into L5 Centered Periodic Orbits. 
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Figure 4-18.  Delta Velocity and Time of Flight for Manifold Transfers from L1 

Periodic Orbits injecting into Periodic Orbits that intersect L5. 
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4.3.4 Transfer From S-E L2 Staging Orbits to L5 Periodic Orbits 

 

 

 

Figure 4-19.  Delta Velocity and Time of Flight for Manifold Transfers from L2 

Periodic Orbits injecting into L5 Centered Periodic Orbits. 
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Figure 4-20.  Delta Velocity and Time of Flight for Manifold Transfers from L2 

Periodic Orbits injecting into Periodic Orbits that intersect L5. 

 

 



 

CHAPTER 5  

SUMMARY AND CONCLUSIONS 

5.1 Summary of Contributions 

The contributions to research that have been derived from this research 

start with the development of a method for generating families of periodic Lyapunov 

orbits about any radial axis tin the three-body rotating frame.  It has been 

demonstrated that unstable manifolds can eb used to intersect both inner system 

NEO’s and outer system KBO’s within general velocity impact capabilities. 

The development of a grid search method for transferring between various 

Lyapunov orbits to find the localized minimum velocity impact was performed and 

exercised with a wide range of results.  Production of a parametric analysis of low 

thrust transfer capabilities to the Sun-Earth L4/L5 regions were completed with 

strong characterization of the engine results. 

Overall, there was a survey of several methods for transfers to the Sun-

Earth triangular Lagrange point region that can be utilized for potential mission 

designs to these regions in the future. 

 

5.2 Conclusions 

The overall velocity cost for the various transfers complete from the Earth 

LEO orbit to the Sun-Earth L4 and L5 regions can be summarized in Figures 5-1 

and 5-2, below.  The low thrust results are shown as curves, while the transfer 

results are boxed in by the min/max delta velocity (circle and diamond, 

respectively).  The specific transit times are those associated with those specific 

velocity points, and other flight time would need to be determined from the pork 

chop plots in Section 4. 
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Figure  5-1.  Summary of velocity impact versus time of flight for transfers from 

Earth LEO to the S-E L4 region using various techniques. 
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Figure  5-2  Summary of velocity impact versus time of flight for transfers from 

Earth LEO to the S-E L5 region using various techniques. 

 

 

5.3 Future Work 

While a vast amount of results were determined from this research, many 
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of the orbits may change based on those features.  More realistic cases can be looked 

at that contain out-of-plane effects to the transfer and periodic orbits. 

Other techniques to help the transfer maneuvers, such as mid-course 

maneuvers or primer vector theory can be applied to determine if more cost savings 

can be found in the velocity impacts. 

Further analysis on the relationship between the Jacobi constant and its 

affect on the manifold transfers to determine impact to the velocity cost for these 

types of transfers. 
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APPENDIX A 

 

These are detailed plots of the optimized thrust profiles for various times of 

flight for low thrust cases going from an Earth escape state to the respective Sun-

Earth L4/L5 point.  The transit times vary from 1 to 6 years, and the cases shown 

are for Isp levels of both 1500 seconds and 4000 seconds.  See the captions within 

the figures for the respective details. 
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