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Negative ion photoelectron spectroscopy has been used to study the furanide anion (C4H3O
−),

dihalomethyl anions (CHX−2 , where X = Cl, Br, and I), the cyanopolyyne anions HC4N
− and

HCCN−, propadienylidenide (H2CCC−), and propargylenide (HCCCH−). Using this experimental

technique in combination with calculations and Franck-Condon simulations, we learn about the

electronic and vibrational structures of these molecules.

Furanide is an ideal anion to interrogate using photoelectron spectroscopy. The five-membered

ring structure of furanide constrains it to a relatively small geometry change upon photodetach-

ment. Thus, there is substantial Franck-Condon overlap between the wavefunctions of the ground

vibrational state of the anion and of the ground vibrational state of the neutral. A prominent origin

peak is observed in the photoelectron spectrum, from which we measure its electron affinity (EA).

Our standard Franck-Condon analysis, which assumes uncoupled and harmonic normal modes, re-

produces the observed photoelectron spectrum. The excellent agreement between simulation and

experiment enables the identification of individual vibronic transitions that give rise to the peaks

in the spectrum. With peak assignments, we measure the frequencies of several active vibrational

modes.

In sharp contrast to the rigid furanide anion, the dihalomethyl anions undergo a large geom-

etry change upon photodetachment. When an electron is removed, the pyramidal anion becomes

nearly planar, exciting multiple large-amplitude vibrations. As a result of the large geometry

change between the anion and the neutral, the best Franck-Condon overlap occurs with high vi-

brational levels of the neutral—where mode-coupling and anharmonicity become important. Our

standard Franck-Condon analysis breaks down under these circumstances, and the origin peak is

unobservable. Only by applying sophisticated theoretical methods can we interpret the structure
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of the photoelectron spectra of the dihalomethyl anions.

The cyanopolyyne anions HC4N
− and HCCN− are also challenging to investigate via pho-

toelectron spectroscopy. The bent anions become quasilinear upon photodetachment to the 3A′′

ground states of these neutral cyanopolyynes. However, unlike the spectra of the dihalomethyl an-

ions, the origin peaks of HC4N and HCCN have observable intensity in their photoelectron spectra.

The geometries of the 1A′ excited states are very similar to that of their respective anions, leading

to short vibrational progressions and intense origin peaks of the excited states.

Propadienylidenide and propargylenide, both m/z 38, display very different photoelectron

spectra. The rational synthesis made possible by the flowing-afterglow anion source allows us

to selectively prepare the different isomers by choosing the appropriate precursor. Reacting O−

with allene produces primarily H2CCC−, which is a relatively rigid molecule that exhibits modest,

resolved vibrational progressions with an intense origin peak. Reacting O− with propyne yields

a mixture of both H2CCC− and HCCCH−; we subtract the spectrum of H2CCC− to obtain the

spectrum of HCCCH−. Unlike its isomer, HCCCH− undergoes a significant geometry change when

an electron is detached, and the photoelectron spectrum of the ground state of propargylene is

characterized by an extended vibrational progression. Again, because the best Franck-Condon

overlap occurs with higher vibrational levels of the neutral, assignment of the origin peak is not

straightforward, and our standard Franck-Condon simulations are of no help.

In this work, we investigate several floppy molecules using negative ion photoelectron spec-

troscopy. It is particularly challenging to elucidate the photoelectron spectra of these molecules

because they test the limits of the normal mode analysis that is typically applied to these spectra.

These species illustrate the difficulties involved in probing the electronic and vibrational structure of

floppy molecules, as well as the theoretical methods that are required to understand their complex

spectra.
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Chapter 1

Introduction

1.1 Negative Ion Photoelectron Spectroscopy

Photoelectron spectroscopy is a powerful technique used to study the electronic and vibra-

tional structure of atoms and molecules. In conventional photoelectron spectroscopy, a photon

with fixed energy in excess of the binding energy of an electron is used to detach an electron from

either a charged or neutral species. The kinetic energy of the outgoing electron is then measured.

Conservation of energy dictates that since the energy of the photodetachment radiation and the

kinetic energy of the detached electron are known, the energy with which the electron was bound

can be deduced:

eBE = hν − eKE (1.1)

where eBE is the electron binding energy, hν is the photon energy, and eKE is the electron kinetic

energy.

The probability that a molecule will absorb a photon and undergo a transition is determined

by the transition moment of the molecule.1 The electric and magnetic fields of a photon interact with

the electric and magnetic fields present in the molecule, and the probability of photon absorption

depends on the coupling between these fields. Specifically, the transition probability is |M |2, where

M is the transition dipole moment for the transition from a lower energy level to a higher energy

level. The transition dipole moment describes the instantaneous change in the dipole moment

that results from the movement of electrical charge during the transition. In the electric dipole
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moment approximation, for a molecule with wavefunctions Ψ′′ and Ψ′ of the lower and upper states,

respectively, the transition moment is given by Eq. 1.2,

M =

∫
Ψ′µΨ′′dτ (1.2)

where dτ includes all spatial and spin coordinates, and µ is the electric dipole moment operator.

For a system of n number of particles with charges Qn at positions xn, the electric dipole moment

operator is given by Eq. 1.3.

µ =
∑

Qnxn (1.3)

We will later find it useful to separate the summation into terms involving the electrons and those

involving the nuclei: µ = µe + µn.

If the transition dipole moment is zero, the probability of the transition is zero, and the

transition is forbidden in the electric dipole moment approximation. Using the symmetries of the

wavefunctions of the upper and lower states, we establish selection rules that govern electronic,

vibrational, and rotational transitions. One of the advantages of photoelectron spectroscopy is that

its unique selection rules enable us to investigate electronic states that are inaccessible using other

spectroscopic methods.

The Born-Oppenheimer approximation allows us to factor the total wavefunction of the

molecule. The Born-Oppenheimer approximation states that because the nuclei are orders of mag-

nitude more massive than electrons, electrons can rearrange on a much faster time-scale than the

nuclei. As a result, electrons are able to relax to the ground-state configuration at each nuclear

configuration. Thus, we can separate the electronic, vibrational, and rotational parts of the wave-

function of a molecule with r electronic and R nuclear coordinates as follows (Eq. 1.4):

Ψ(r ,R) = ψe(r ,Re) ψv(R) ψr(R) (1.4)

This expression assumes that during a vibration, the electronic wavefunction ψe can be approxi-

mated by the wavefunction at its equilibrium nuclear coordinates (Re). Substituting Eq. 1.4 into
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the transition dipole moment equation (Eq. 1.2),

M =

∫ ∫
ψ′e(r ,Re) ψ

′
v(R) (µe + µn) ψ′′e (r ,Re) ψ

′′
v(R) dr dR. (1.5)

We can then separate the variables in Eq. 1.5 into the sum of terms involving µn and those involving

µe. The portion involving µn is the product of two integrals, one of which is the integral of ψ′e and

ψ′′e ; because the wavefunctions of different electronic states are orthogonal, this integral is zero.

Thus, only the terms involving µe remain:

M =

∫
ψ′e(r ,Re) µe ψ

′′
e (r ,Re) dr

∫
ψ′v(R) ψ′′v(R) dR. (1.6)

These two integrals form the basis of the electronic and vibrational selection rules.

During an electronic transition, the total spin of the system must be conserved. Upon pho-

todetachment, the ejected electron carries with it a spin of ±1
2~. Thus, the spin of the neutral

daughter must also change by ±1
2~ relative to the parent anion; i.e., ∆S = ±1

2 .2 In this way, pho-

toelectron spectroscopy offers an advantage over traditional absorption spectroscopy: electronic

states with different spin multiplicities can be probed, and term energies can be measured directly.

Using Eq. 1.6, we determine vibrational selection rules. As previously stated, the intensity

of a transition is proportional to the square of the transition dipole moment:

I ∝ M 2 =

[∫
ψ′′v(R) ψ′v(R) dR

]2 [∫
ψ′′e (r ,Re) µe ψ

′
e(r ,Re) dr

]2
. (1.7)

According to the Condon approximation, for a given pair of electronic states the electronic transition

strength,
[∫
ψ′′e (r ,Re) µe ψ

′
e(r ,Re) dr

]2
, is the same for all vibrational transitions. This is a

reasonable assumption because the electronic transition probability is a slowly varying function

of the nuclear coordinates; most transitions arise from the ground vibrational state of the anion,

limiting the range of vibrational overlap.3 Thus, the relative intensities of vibrational transitions are

proportional to the square of the overlap of the vibrational wavefunctions, called Franck-Condon

factors (FCFs). In order to observe a vibrational transition, the product
∫
ψ′′v(R) ψ′v(R) dR must

be totally symmetric. Therefore, any ∆v is allowed for a totally symmetric vibration. For non-
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totally symmetric modes, symmetry dictates that the FCF will be zero for ∆v = ±1, ±3, ±5,...

but may be non-zero for ∆v = 0, ±2, ±4,....

With an understanding of the theory and the selection rules governing photoelectron spec-

troscopy, we will next discuss the great utility of this technique for probing the electronic and

vibrational structure of molecules and the geometry change that takes place upon photodetach-

ment.

1.2 What We Learn from Photoelectron Spectra

The vibronic transitions observed in a photoelectron spectrum are governed by the aforemen-

tioned selection rules, and from the spectrum we obtain information about the final state formed

upon photodetachment. Photoelectron spectroscopy of a neutral molecule yields information about

its cation states, including the ionization energy of the molecule (Eq. 1.8), while negative ion pho-

toelectron spectroscopy (NIPES) yields information about the neutral molecule (Eq. 1.9).4

M + hν → M+ + e−(eKE) (1.8)

M− + hν → M + e−(eKE) (1.9)

In the work presented in this thesis, NIPES is used to measure the electron affinity (EA) and other

valuable spectroscopic quantities of neutral molecules.

NIPES of a simple diatomic AB is illustrated in Fig. 1.1. The potential energy curves of

the ground electronic state of AB− and the ground and excited electronic states of the neutral

AB are shown. Energy is plotted as a function of the internuclear distance, R, and the resulting

photoelectron spectrum is shown along the y-axis. We begin with the anion AB−; in our experiment,

described in detail in Chapter 2, the majority of anions are formed in the ground vibrational state

(v′′ = 0) of the ground electronic state. A photon imparts energy to the anion (green arrow). The

photon energy is greater than the energy with which the excess electron is bound, so an electron is

ejected. The neutral AB molecule is formed in various vibrational levels of the ground X and excited

A electronic states. The electron carries away the energy in excess of its binding energy in the form
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of kinetic energy. We measure the eKE of the ejected electron (blue arrows). Through Eq. 1.1, we

know the energy with which the electron was bound, depicted as a red arrow corresponding to a

quantized vibrational level of the neutral AB.

From the photoelectron spectrum, we learn about several important properties of the molecule.

In the X(AB) ← X(AB−) photoelectron spectrum of Fig. 1.1, the peak corresponding to the tran-

sition between the ground vibrational state of the anion and the ground vibrational state of the

ground electronic state of the neutral (the 0-0 transition) is known as the origin peak. The eBE

of the origin peak corresponds to the adiabatic EA of AB. Peaks in the photoelectron spectrum

correspond to vibrational levels of the neutral. Thus, from the peak spacing we can measure

the harmonic frequency, ωe (red arrows), of the AB stretch. Though most anions are generated

in the ground vibrational state, there is some population—usually determined by the Boltzmann

distribution (Eq. 1.10)—in vibrationally excited states of the anion:

N2

N1
=
g2
g1
exp

[
−(E2 − E1)

kT

]
(1.10)

where N2
N1

is the population ratio in states 1 and 2, g1 and g2 are the degeneracies of the two levels,

and E1 and E2 are the energies of the levels. Photodetachment from a vibrationally excited anion

to the ground vibrational state of the neutral is known as a hot band, and it appears lower in

energy than the origin. The difference in energy between the origin and the hot band corresponds

to the vibrational frequency of the anion.

We may also observe transitions to the excited A state of AB. The difference in energy

between the origin peak of the X state and the origin peak of the A state of AB corresponds to

the term energy, Te. In the X state of AB, the equilibrium bond length is very similar to that

of the anion; however, in the excited A state the bond length is significantly lengthened, and

the potential energy curves are displaced with respect to each other along the x-axis (∆R, purple

arrows). The intensity of the peaks in a photoelectron spectrum is governed by the aforementioned

FCFs, the square of the overlap between the ground vibrational wavefunction of the anion and the

various vibrational levels of the neutral; this concept is discussed more thoroughly in the following
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Figure 1.1: Schematic of negative ion photoelectron spectroscopy.
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section (Section 1.3). Because the equilibrium bond lengths of the anion and the excited-state

neutral are quite different, the best Franck-Condon overlap occurs with high vibrational levels of

the neutral. The eBE of the most intense transition—termed the vertical detachment energy, or

VDE (yellow arrow)—corresponds to the amount of energy required to remove an electron with no

geometry change. Thus, the vibrational structure of the photoelectron spectrum lends insight into

the geometry change, ∆R, that takes place upon photodetachment.

Additional information about the symmetry of the orbital from which photodetachment oc-

curred can also be obtained from the photoelectron spectrum using eKE-dependent photoelectron

angular distributions. The angular dependence of the photoelectron intensity is given by Eq. 1.11,

which relates the observed intensity to the angle θ between the electric field vector of the light and

the photoelectron collection axis:5

dσ

dΩ
=

σ0
4π

(1 + βP2(cos θ)) (1.11)

where σ0 is the total photodetachment cross section, β is the anisotropy parameter, and P2(cos θ) is

the second Legendre polynomial. When θ = 54.7◦ (the so-called “magic angle”), the photoelectron

intensity is independent of β and directly reflects the relative photodetachment cross section. The

relative intensities at θ = 0◦ (I0) and θ = 90◦ (I90) are related by Eq. 1.12.

β =
I0 − I90
1
2I0 + I90

(1.12)

For atoms, the photoelectron angular distribution directly reflects the angular momentum

state of the orbital of the detached electron. Because the total angular momentum of the system

must be conserved, upon photodetachment the angular quantum number l must change by ±1. For

example, an electron detached from a spherical s-orbital (l = 0) will detach as a p-wave (l = 1). In

this case, the maximum peak intensity occurs when the electric field vector and the photoelectron

collection axis are aligned (θ = 0◦), and β = 2. If, instead, an electron is removed from an atomic

p-orbital, the photoelectron will depart as an s- (l = 0) or a d- (l = 2) wave. Close to threshold,

the lower angular momentum state will dominate and yield an isotropic distribution with β = 0.
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At higher energy, the anisotropy distribution will reflect the interference of the s- and d-waves,

resulting in β < 0.5,6

Angular distributions of molecules are not as straightforward to interpret, but they are

nonetheless valuable. Analogous to atomic photodetachment, the angular distribution of photo-

electrons ejected from molecular anions reflects the symmetry of the molecular orbital from which

it was removed.7 Electrons removed from an s-like σ orbital can be expected to have β ≈ 2.

Furthermore, each electronic state has a characteristic β value; interference between the outgoing

waves causes the β value to vary slightly with kinetic energy. Thus, relative β values of peaks in

a photoelectron spectrum are very instructive: a sharp change in the β value indicates a different

electronic state of the neutral.

1.3 Franck-Condon Analysis

In the approximation of separable electronic, vibrational, and rotational parts of the wave-

function and a slowly varying electronic transition moment, transition probabilities are proportional

to the square of the vibrational overlap integrals between the initial and final states (the FCFs).8

The Franck-Condon integral is given by

C(v′, v′′) =

∫
ψv′(Q

′) ψv′′(Q
′′) dQ′, (1.13)

where ψv′(Q
′) is the full, multidimensional vibrational wavefunction of the neutral (final state)

in quantum state v′ as a function of Q′, the mass-weighted normal coordinates of the neutral.

Likewise, ψv′′(Q
′′) is the full, multidimensional vibrational wavefunction of the anion (initial state)

in quantum state v′′ as a function of its mass-weighted normal coordinates, Q′′.3

It is very challenging to solve the Franck-Condon integral exactly, as the true wavefunctions

of polyatomics are extremely complex and difficult or impossible to compute. In order to tackle this

problem and evaluate the Franck-Condon integral for polyatomic molecules, we must make certain

approximations and assumptions. In the next two sections, we will outline the standard normal

mode analysis by which photoelectron spectra are simulated. Within this approximation, there are
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two approaches to computing the FCFs that differ in their representation of the normal modes of

vibration. First, we will discuss the approach most commonly taken for simulating photoelectron

spectra, in which the normal modes are described as displacements in a Cartesian coordinate basis

(Section 1.3.1). We will then review a second approach that better treats molecules undergoing a

large geometry change upon photodetachment, in which a molecule’s internal coordinates are used

to define the normal mode displacements (Section 1.3.2). As we will see in the following chapters,

molecules that undergo a large geometry change upon photodetachment (i.e., the equilibrium ge-

ometries of the anion and neutral are significantly different) test the applicability of these methods

and the validity of their assumptions and approximations.

1.3.1 Normal Mode Analysis using Cartesian Coordinates

The normal mode analysis using orthogonal Cartesian displacement coordinates is easily

implemented computationally for molecules of arbitrary size and connectivity, and therefore has

become the conventional method.9 In this method, we treat the vibrational modes of the molecule

as harmonic normal modes of vibration. In doing so, we assume the following: each normal mode

acts as a simple harmonic oscillator, the normal modes are independent and do not interact, the

center of mass does not move during the vibration, and all atoms pass through their equilibrium

positions at the same time.10 Under the assumption that the normal modes in each electronic state

are uncoupled, the wavefunctions can be expressed as the product of one-dimensional wavefunctions

in each normal coordinate (Eq. 1.14).

ψv(Q) = ψv1(Q1) ψv2(Q2) ψv3(Q3)... (1.14)

In order to evaluate the Franck-Condon integral in Eq. 1.13, the wavefunctions must be expressed

in terms of the same coordinates for both states. Thus, we perform a transformation that relates

the normal coordinates of the neutral (Q′) to those of the anion (Q′′):

Q′′ = J′′Q′ + K′′. (1.15)
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Equation 1.15 is the Duschinsky transformation. The (3N−6)-dimensional vector K′′ describes the

difference in the nuclear equilibrium positions between the anion and neutral in terms of the normal

coordinates of the anion. The (3N−6) × (3N−6) Duschinsky rotation matrix J′′ accounts for the

mixing of normal modes that result from the discrepancy between the normal mode coordinates of

the anion and neutral.8,11

A simple picture can help us understand these two parameters. Fig. 1.2 illustrates Duschinsky

translation and rotation for two normal vibrations of a molecule.11,12 The two orthogonal normal

coordinates of the initial state (Q′′1 and Q′′2) are shown in black, and the corresponding normal

coordinates of the final state (Q′1 and Q′2) are given in red. We can consider this as a picture

of the potential energy surfaces of the states reduced from three dimensions to two (eliminating

the energy axis). In the first case, shown in Fig. 1.2(a), the potential energy surface of the final

state is distorted—as a consequence of different force constants in the initial and final states—and

displaced—resulting from different equilibrium geometries in the two states. There is a one-to-one

correspondence between the normal coordinates of the upper and lower states, and Q′′1 and Q′′2

are independent during the photodetachment process. The K′′ vector is necessary to describe the

difference in geometry between the two states, while J′′ = I, the identity matrix.

In Fig. 1.2(b) we find a more complicated case. Here, the normal coordinates of the final

state are distorted, translated, and rotated by the angle α with respect to the initial state. The

geometry of the upper state has changed such that the character of its normal modes is different

from those of the lower state. The normal mode Q′1 is partially projected onto both Q′′1 and Q′′2; i.e.,

the normal modes are mixed. Therefore, we can think of the K′′-displacement vector as describing

a translation of the upper state potential energy surface with respect to that of the lower state,

while the J′′ matrix accounts for rotation of the neutral potential energy surface with respect to

that of the anion.

We can express the normal mode vectors of a molecule with N atoms in terms of Cartesian

coordinates ξ as

Q = T†m1/2(ξ − ξeq), (1.16)
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Figure 1.2: Illustration of Duschinsky (a) translation and (b) rotation.

2Q 

2Q

1Q 

1Q

d2 

d1 

2Q 

2Q

1Q 

1Q

d2 

d1 

a) b) 

a 



12

where m is the (3N × 3N) diagonal matrix of the atomic masses, T is the normal mode matrix

(containing the vibrational eigenvectors of the appropriate mass-weighted Hessian), and ξeq is the

equilibrium position vector.8,13 Therefore,

J′′(x) = T′′†m−1T′ and K′′(x) = T′′†m−1/2(ξ′eq − ξ′′eq) (1.17)

Finally, a rotation matrix is applied to the normal mode matrix and the equilibrium position

vector structured to ensure that the Duschinsky transformation (Eq. 1.15) does not introduce

rotation or translation of the molecule, thereby satisfying the Eckart conditions.14–19

Treating the vibrations as independent, harmonic, normal modes expressed in Cartesian coor-

dinates, we can compute the FCFs in a couple of ways. First, if we set J′′ = I we ignore Duschinsky

rotation and invoke the parallel-mode approximation.4 In this case, transitions involving combi-

nations of vibrational modes are treated as the product of the FCFs of one-dimensional systems.

Clearly, this approach most accurately simulates the spectra of molecules that undergo very little

geometry change upon photodetachment and whose normal modes are essentially the same in both

electronic states (e.g., Fig. 1.2(a)).

For systems in which the equilibrium geometries of the initial and final states are modestly

different, the character of the normal modes in each state is likely to be different. In these cases, like

the one illustrated in Fig. 1.2(b), Duschinsky rotation is an important consideration. To account for

differences in the normal modes of the anion and neutral, the FCFs are calculated using the Chen

algorithm20 that is based on the generating function method developed by Sharp and Rosenstock8

in the normal-mode approximation. The Fortran program PESCAL21 is used to compute the FCFs

of the photodetachment processes presented in this thesis.

Having computed the FCFs, we can now simulate the photoelectron spectrum. Relative

intensities of the vibronic transitions for anions with vibrational temperature T ′′ are given by

I(ν ′′, ν ′) = C ve FCF(ν ′′, ν ′; K) exp

[
−G′′0(ν ′′)

kT ′′

]
(1.18)

where C is a scaling factor, ve is the electron velocity (or the final eKE), and G′′0(ν ′′) and G′0(ν
′)
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are the initial and final vibrational energies, respectively, calculated according to the harmonic-

oscillator model. The peak positions of the transitions are given by Eq. 1.19

eKE(ν ′′, ν ′) = hν − EA−G′0(ν ′) +G′′0(ν ′′) (1.19)

Using these equations, we can generate a stick spectrum in terms of eKE.2

The independent harmonic-oscillator model, in which the normal modes are described in

terms of nuclear Cartesian displacements, is extremely useful: it can be applied to any molecule of

arbitrary size or geometry, very accurately simulating electronic spectra that involve relatively small

displacements of equilibrium geometries.13,22–24 When a small geometry change takes place upon

photodetachment, as in the X(AB) ← X(AB−) detachment shown in Fig. 1.1, the most prominent

features in the photoelectron spectrum arise from overlap between the lowest vibrational levels of

each state, where the vibrations are well described as decoupled harmonic oscillators. Furthermore,

if the equilibrium geometries and bonding of the two states are very similar, the character of their

normal modes is essentially the same, and the Duschinsky rotation may be minor.

Difficulties arise, however, when a molecule undergoes a large geometry change upon pho-

todetachment, as in the A(AB) ← X(AB−) detachment shown in Fig. 1.1. In this case, the best

Franck-Condon overlap occurs with high vibrational levels of the neutral, where anharmonicity and

coupling between vibrational modes can become important factors. Molecules with very different

geometries will have qualitatively different normal modes, and the Duschinsky rotation will be

significant. The use of rectilinear Cartesian coordinates to represent the normal modes can lead

to the additional problem of mode mixing.10,13,19,25,26 Mode mixing occurs when a large geome-

try displacement in one coordinate is partially projected onto the others, resulting in a spurious

displacement in another mode. This results in the appearance of non-physical vibrational pro-

gressions in the simulation that are not experimentally observed. We can avoid mode mixing by

instead defining the normal modes of a molecule in terms of curvilinear internal coordinates (its

bond lengths and angles), discussed in the following section.
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1.3.2 Normal Mode Analysis using Internal Coordinates

Alternatively, we can express the normal modes in terms of internal coordinates, using changes

to a molecule’s bond lengths and angles to define the geometry difference between the anion and

neutral. This method essentially eliminates mode mixing and artificial nuclear displacements that

are introduced when a large geometry change is represented in a Cartesian coordinate basis. The

use of curvilinear internal coordinates in normal mode analysis has been shown to yield more ac-

curate Franck-Condon simulations of systems with large geometry changes.13,19,24 Though internal

coordinates more naturally represent the vibrational potential energy surfaces, this treatment10,27

is not commonly used because it requires calculations specific to each system and therefore cannot

be generally applied.

To compute the Franck-Condon integrals in the harmonic approximation, one must obtain

the vibrational frequencies of the normal modes of the initial and final states (from electronic

structure calculations), along with the J′′ matrix and K′′ vector expressed in terms of a set of the

3N - 6 nonredundant internal coordinates s of a molecule with N atoms. To compute the J′′(s)

matrix and K′′(s) vector in internal coordinates, we first define the following:

Q = L−1(s− seq), (1.20)

where Q is the normal mode vector, seq is the vector of the equilibrium internal coordinates, and

L is the matrix whose columns contain the eigenvectors for the normal coordinates in terms of the

internal coordinates. If the same set of internal coordinates s is used for the initial and final states,

J′′(s) = (L′′)−1L′ and K′′(s) = (L′′)−1(s′eq − s′′eq). (1.21)

Most electronic structure calculations generate vibrational normal mode vectors in Cartesian

coordinates. The matrix L can be found by expanding the internal coordinates in a power series

of Cartesian coordinates about the equilibrium position and truncating the expansion at the first

order:10

s = seq + B(ξ − ξeq) (1.22)
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where B is the first derivative matrix, known as the Wilson matrix, and ξeq is the equilibrium

position vector.28

Using the inverse transformation,

ξ = ξeq + G−1B†m1/2(s− seq) (1.23)

with

G = B†m−1/2B (1.24)

where m is the diagonal matrix of the atomic masses. Using Eqs. 1.16 and 1.21, we arrive at the

following expressions for the J′′(s) matrix and K′′(s) vector in internal coordinates:13,19

J′′(s) = T′′†m−1/2B′′(G′′)−1B′m−1/2T′ (1.25)

and

K′′(s) = T′′†m−1/2B′′(G′′)−1(s′′eq − s′eq), (1.26)

where, again, T is the normal mode matrix in Cartesian coordinates. With the J′′(s) matrix

and K′′(s) vector and the harmonic normal mode frequencies obtained from electronic structure

calculations, the Franck-Condon integrals can be computed using recurrence relations.29,30 The

Fortran program PESCAL21 is used to compute the FCFs for the photoelectron spectra presented

in this thesis.

Although this method addresses the issue of mode mixing—an artifact of using Cartesian

coordinates to represent the geometry change—it does not treat the very real problem of vibrational

mode coupling within one electronic state. To treat the mode coupling that can arise when multiple

vibrational modes of similar frequencies are active, we must take a more sophisticated approach.

For example, in Chapter 4 we show that a multidimensional anharmonic coupled-mode approach

is required to interpret the photoelectron spectra of the dihalomethyl anions.24 Such methods are

significantly more computationally expensive and are, like normal mode analysis using internal

coordinates, specific to each molecule studied.
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1.4 Dissertation Preview

This dissertation is organized into several chapters describing the experimental apparatus,

theoretical methods employed for the analysis of the data, and the results of investigations of several

different molecular systems. First, the experimental apparatus used to collect the data presented

in subsequent chapters is described in detail in Chapter 2. Various theoretical approaches were

taken to interpret the photoelectron spectra, and these methods are also discussed in Chapter 2.

With an understanding of the methods used to collect and interpret our data, we proceed

with the results of investigations of several molecular systems. In Chapter 3, furanide (C4H3O
−)

provides a nice example of the information one can obtain from the photoelectron spectrum of a

well-behaved molecule that does not undergo a significant geometry change upon photodetachment.

Because the gas-phase acidity of furan is known,31,32 we employ a well-established thermochemical

cycle33 to determine the C-H bond energy of furan. The decomposition mechanisms of furan are of

particular interest to the biomass community, and knowledge of its C-H bond dissociation energy

validates the current decomposition models.

The photoelectron spectra of the dihalomethyl anions CHX−2 , where X = Cl, Br, and I, are

presented in Chapter 4. Upon photodetachment, the pyramidal anions become nearly planar. This

large geometry change effects activity of multiple large-amplitude vibrations. These vibrations

couple, and the standard normal-mode, uncoupled, harmonic oscillator approximations no longer

apply to the spectra of these challenging molecules. Various methods for calculating the spectra

of these molecules are examined, and the difficulties associated with analyzing the photoelectron

spectra of such molecules is discussed.

The photoelectron spectra of the cyanopolyyne anions HC4N
− and HCCN− are shown in

Chapter 5. In both cases, a large geometry change occurs upon photodetachment from the bent

anion to the quasilinear 3A′′ ground state, resulting in an extended vibrational progression. Unlike

the dihalomethyl anions, however, the origin peaks of these molecules have observable intensity,

enabling measurement of their EAs. There is little geometry change between the bent anion and
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the bent 1A′ excited state, and its origin is very prominent. We measure the singlet-triplet splitting

of these molecules, as well as the frequency of the CN stretch, which displays unexpected condition-

dependent behavior.

We take a brief interlude from the floppy molecules to examine the photoelectron spectrum

of propadienylidenide (H2CCC−) in Chapter 6. Because the excess electron is localized primarily

on the terminal carbon of this chain, only modest geometry changes occur upon photodetachment.

The photoelectron spectrum of the 1A1 ground state is straightforward to analyze. This work was

done in collaboration with Velocity-map Imaging (JILA) and Slow Electron Velocity-map Imaging

(Berkeley) experiments, enabling the observation of several higher-lying excited states. Significant

vibronic coupling in the excited states leads to complex spectra of the higher-lying states of this

astrophysically-relevant molecule.

We conclude with the spectrum of propargylene anion (HCCCH−) in Chapter 7. As another

floppy molecule, the photoelectron spectrum of HCCCH− is difficult to model, and assignment of

the origin is difficult. A large change in the ∠CCH upon photodetachment leads to significant

activity of the “W” bending mode, resulting in an extended vibrational progression in the 3B

ground state. By comparing the photoelectron spectra of HCCCH− and DCCCD−, we assign the

origin peak and measure the EA. We observe three distinct electronic states in the NIPES spectra;

using calculations of the orbitals involved in photodetachment, along with our chemical intuition,

we assign the vibrational progressions to the X̃ 3B, ã1A, and b̃1B states of HCCCH. Velocity-

map Imaging of HCCCH− reveals additional vibronic structure at higher binding energies, but a

conclusive assignment of these features is not made.



Chapter 2

Methodology

2.1 Experimental Methods

2.1.1 Introduction

The negative-ion photoelectron spectrometer consists of four main parts: a negative-ion

source, elements for focusing and mass selecting ions, an ultraviolet (UV) laser, and an electrostatic

energy analyzer. A schematic overview of the photoelectron spectrometer is given in Fig. 2.1.

Anions are born and thermalized in a flowing afterglow ion source, accelerated and focused into

a Wien velocity filter for mass selection, and then decelerated into the interaction region, where

they meet the output of an Ar-ion laser operating in the near-UV. Electrons are detached from the

anions; those that exit orthogonal to both the anion and laser beams are focused into a hemispherical

energy analyzer, where they are separated on the basis of their electron kinetic energies (eKEs). In

this way, a photoelectron spectrum is collected as a function of eKE.

2.1.2 Flowing Afterglow Ion Source

A flowing afterglow microwave discharge source was used to generate the negative ions studied

in this thesis. The flowing afterglow is very versatile; it can be used in conjunction with various ion

sources, including electron impact ionization, metal cathode discharge, and microwave discharge.

In contrast to other gas discharge sources, we can selectively prepare the desired ion by carrying

out rational ion-molecule syntheses.34 Furthermore, the microwave discharge source provides a
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Figure 2.1: Schematic of photoelectron spectrometer.
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continuous source of thermalized (approximately 300 K) negative ions. This suppresses hot bands,

reducing congestion in the photoelectron spectrum and facilitating peak assignment.

The microwave discharge source consists of a brass microwave cavity with a quartz cylinder,

depicted in Fig. 2.2. Helium buffer gas is purified using a molecular sieve trap cooled with liquid

N2; purified He flows through the cylinder at a rate of approximately 7 – 10 std. L sec−1, controlled

by a Tylan flow controller. The flow is maintained by a 330 L sec−1 Stokes Roots blower such that

the pressure in the source region is approximately 0.5 Torr. A trace amount of O2 is also added at

a rate of approximately 5 – 10 std. cm3 min.−1

Figure 2.2: Microwave discharge flowing afterglow ion source.
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To light the discharge, approximately 70 W of forward power from the Opthos MPG 4

Microwave Power Generator is supplied to the discharge cavity, and an energized Tesla coil makes

contact with the quartz tube. Power from the 2.45-GHz microwave discharge is transferred to the

gas in the quartz tube. A plasma containing metastable He atoms, He ions, and free electrons is

produced. Once the stable plasma has been formed, the forward power is reduced to approximately

10 W. The resonant microwave discharge cavity increases the electric field in the gas; the tuning stub

(see Fig. 2.2) is used to fine-tune the resonant frequency of the cavity, while the coupling slider

is adjusted to match the impedance of the cavity to that of the coaxial cable of the microwave

power supply to minimize the reflected power.35 The reflected power should be nearly zero during
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operation so as to protect the magnetron in the microwave power supply.

The ion-molecule reactions used to prepare the anions presented here employ O−. O− is

generated in the flowing afterglow via dissociative electron attachment (Eq. 2.1), in which a low

energy electron formed in the plasma attaches to O2, causing it to dissociate into O− and neutral

O.36

O2 + e− → (O∗2)
− → O− + O. (2.1)

O− has been shown to react efficiently and often with good specificity with neutral hydrogen-

containing species36 to abstract H+ or H+
2 . Neutral reagents are added downstream of O− formation

through the movable ring inlets shown in Fig. 2.2, and the following reactions take place:

O− + RH2 → R− + H2O (2.2)

O− + RH2 → RH− + OH (2.3)

O− + RH2 → RH + OH− (2.4)

O− + RH2 → RHO− + H (2.5)

If removal of only one proton is desired, O− is first reacted with methane (CH4) to produce hy-

droxide (OH−) through a hydrogen transfer reaction:

O− + CH4 → OH− + CH3. (2.6)

The appropriate neutral precursor is added and undergoes the following H+ abstraction:

OH− + RH2 → H2O + RH−. (2.7)

Flow rates of He, O2, and neutral precursors are optimized, and the positions of the movable ring

inlets are adjusted to maximize the ion current of the desired anion.

Anions undergo 104 – 105 collisions with the He buffer gas and are thermalized to room

temperature.2 The ions can be further cooled to approximately 150 K by flowing liquid N2 through

a jacket surrounding the flow tube.
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2.1.3 Ion Focusing and Mass Selection

An overview of the photoelectron spectrometer is shown in Fig. 2.3. Ions are extracted from

the ion source region through a molybdenum nosecone with an aperture approximately 1 mm in

diameter. The voltage applied to the nosecone (0 – 2 V) is adjusted for maximum ion current. A

2000 L sec−1 6-inch diffusion pump maintains a pressure of approximately 10−4 Torr in what is

referred to as the afterglow lensing region. The purpose of the afterglow lenses, L1 – L6, is to steer,

focus, and accelerate the ion beam. Lenses 1 - 4 are independently adjusted daily to maximize

ion current, while L5 and L6 are fixed at 400 V and 735 V, respectively. The first deflector, D1,

has independent vertical and horizontal deflectors; it is referenced to the L3 voltage. The second

deflector (D2) is referenced to the voltage applied to L4, and it also has independent deflectors

in both the horizontal and vertical directions. The final deflector in the afterglow lensing region

is D3. This lens controls the horizontal deflection only, steering anions through the 10◦ bend.

The purpose of the 10◦ bend is to separate the anions from neutrals, as the undesired neutrals

and photons generated in the flowing afterglow will not be steered by D3 and will instead hit the

chamber walls and be pumped away.

After the 10◦ bend, the ions enter the first of four triple quadrupoles (Q1). Unlike quadrupoles

that are used for mass selection, the triple quadrupole einzel lenses in this apparatus act to steer and

focus the anions.37 Each triple quadrupole consists of three quadrupole elements, with a total of 12

poles, as illustrated in Fig. 2.4. The poles are supplied with six separate voltages: outer horizontal

(OH), outer vertical (OV), center up (CU), center down (CD), center left (CL), and center right

(CR). The center elements primarily steer the ion beam, while the outer elements focus the ions.

After Q1, the focused ions pass through aperture A2, which has a diameter of approximately

1.5 mm. A Keithley 600A electrometer is used to measure the ion current on the A2 plate. Ions can

be directed onto the plate or through the aperture using Q1, thereby enabling the user to maximize

the total ion current arriving at A2 and to focus the ions through the aperture. Typically, 10 nA of

total ion current reaches A2, and at least 75% exits the skimmer. An 8-inch, 3000 L s−1 diffusion
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Figure 2.3: Detailed overview of the negative-ion photoelectron spectrometer.
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Figure 2.4: Diagram of a triple quadrupole lens. Six separate voltages are supplied to the 12 poles
of the triple quadrupole einzel lens: outer vertical (OV), outer horizontal (OH), center up (CU),
center down (CD), center left (CL) and center right (CR). The center elements primarily steer the
ions, while the outer elements focus the beam.
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pump maintains a pressure of 10−6 Torr in this region.

After A2, the ions travel through a fourth deflector, D4, and into the Wien filter assembly.

The Wien filter assembly comprises the Wien velocity filter and two triple quadrupoles (Q2 and

Q3), sandwiching the Wien filter. The entire Wien filter assembly was rebuilt in 2010.38 A photo

showing the new Wien filter assembly is provided in Fig. 2.5. Q1 and Q2 were refurbished and the

Wien filter was rebuilt using a completely new design. Additionally, electrically isolated faceplates,

each with a 5 mm aperture, were added at the entrance and exit of the Wien filter to give the

operator additional places to measure ion current. The Q1 and Q2 elements function as a pair to

tightly focus the ion beam into the Wien filter; specifically, Q1 focuses more tightly in the horizontal

direction, while Q2 focuses more tightly in the vertical direction.

Figure 2.5: A photo of the rebuilt Wien filter assembly. The ions first enter (a) Q2, where they are
focused into (b) the Wien filter. Plates are mounted at the entrance and exit of the Wien filter on
which ion current can be measured. Ions then enter (c) Q3.

(a) Q2 (b) Wien filter (c) Q3 

The Wien filter utilizes perpendicular electric and magnetic fields to separate ions on the

basis of their mass-to-charge ratio (m/z ). The force ~F felt on a particle with charge q in an electric

field ~E is

~FE = q ~E. (2.8)

The force on a charged particle in a magnetic field ~B is given by Eq. 2.9:

~FB = q~v × ~B (2.9)

where ~v is the velocity of the charged particle. Thus, anions travelling through the Wien filter will

feel forces in opposite directions from the perpendicular electric and magnetic fields. If these forces
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are equal, an ion will pass through the filter undeflected. All ions have the same charge q and

therefore feel the same ~FE . They also have the same kinetic energy (KE); because KE = 735 eV

= 1
2mv

2, the force from the magnetic field is different for ions of different mass. In this way, the

Wien filter separates ions on the basis of their m/z ratio.

In the newly rebuilt Wien filter, shown in Fig. 2.6, the electric field is supplied by two

electrodes (+50 V and -50 V relative to the float voltage of 735 V) separated by silicon-coated glass

so that the electrodes will mimic infinite plates.38 Voltage to the electrodes is provided by a voltage

divider with a 0 – 40 mA, 0 – 500 V power supply. The magnetic field is supplied by a water-cooled

electromagnet external to the Wien filter assembly with a Kepco DC voltage supply (0 – 10 A, 0 –

60 V). To select ions of the desired mass, the magnetic field is varied while the electric field is held

constant. The m/∆m mass resolution of the new Wien filter is routinely 60. This is a significant

improvement over the previous Wien filter (m/∆m ∼ 40). The resolution can be further improved

by increasing ~E.

Figure 2.6: A cartoon of the rebuilt Wien filter. Panel (a) shows the side view; the electrodes are
located at the top and bottom of the Wien filter, and silicon-coated glass plates are located on
either side of the filter. Ions of different masses travelling through the Wien filter are dispersed,
and only those for which the forces from the ~E and ~B fields balance pass through undeflected.
Panel (b) shows a cross-sectional view of the Wien filter. Purple arrows indicate the electric field
lines.

(a) Wien filter: side view (b) Wien filter: cross-section 
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After exiting Q3 of the Wien filter assembly, the ions pass through a short field-free region

before reaching the A3 aperture. The on-axis A3 aperture selects the ions of the desired m/z

ratio from the spatially dispersed ion beam; therefore, the size of the A3 opening affects the mass

resolution of the Wien filter. A3, shown in Fig. 2.7, was recently rebuilt and now consists of a

series of three electrically isolated plates with apertures of decreasing diameter: 10 mm, 6 mm, and

2 mm. While monitoring the ion current on each plate, the lenses and quadrupoles can be adjusted

to focus the ion beam through A3. Typically, a total of 3 nA is measured on the A3 assembly.

After A3, the mass-selected ion beam enters the fourth quadrupole (Q4) and another set of

horizontal and vertical deflectors (D5). These elements focus and steer the ions into the deceleration

stack. This set of four deceleration lenses (DL1 – 4) decelerates and focuses the ions to 35 eV in

order to reduce the effects of Doppler broadening and increase the residence time of the ions in the

interaction region.34 DL1 is held at the beam velocity of 735 eV, and DL4 is kept at 35 eV. DL2

and DL3 are adjusted to optimize ion current and spectral resolution.

A Faraday cup, on which ion current is measured, is situated beyond the interaction region.

Ion currents as low as 1 pA to upwards of 1 nA are measured using a Kiethley 602 Electrometer.

Two Varian turbomolecular pumps—a 6-inch, 250 L sec−1 pump and an 8-inch, 280 L sec−1 pump—

backed by a Varian SH-110 scroll pump maintains a pressure of 10−9 Torr in the interaction region.

2.1.4 Ar-ion Laser System

The ion beam next enters the interaction region, where it meets a fixed-frequency, 363.8-

nm or 351.1-nm laser beam. Because photodetachment cross sections are small (< 10−18 cm2),

laser power in excess of 10 W is necessary to observe sufficient photoelectron signal.2 In order to

achieve the high power required from a continuous-wave UV source, an external buildup cavity39,40

is used in conjunction with an Ar-ion laser.2,41 At resonance, the circulating power in the buildup

cavity is at least a hundred times that of the incoming laser beam. The external buildup cavity

is fundamentally a Fabry-Perot interferometer locked to its resonant frequency. A servoamplifier

system actively adjusts the lengths of the buildup and laser cavities using piezoelectric translators
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Figure 2.7: Photos of the rebuilt A3 assembly. A3 consists of three separate plates with diameters
of decreasing size: 10 mm, 6 mm, and 2 mm. Ion current can be measured on each plate separately.
The inset shows the head-on view of A3, as seen by the ions.
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to maintain resonance. The optical setup is depicted in Fig. 2.8.

The Ar-ion laser (Spectra Physics 2085-25) emits at several frequencies in the UV, visible, and

infrared. We choose to use either the 363.8 nm (3.40814 eV) line or the 351.1 nm (3.53119 eV) line in

order to extend the observable spectral range. The desired line is chosen by the wavelength-specific

output coupler. It is necessary to select a single longitudinal mode to amplify in the external buildup

cavity, and this is accomplished with an automated, temperature-controlled etalon (Spectra-Physics

Model 587 Z-Lok Etalon and 5870 Controller). A Coherent 300 MHz FSR spectrum analyzer is

used to ensure that the laser output is single-mode. The high reflector at the rear of the laser is

mounted on a piezoelectric translator, controlled by the servoamplifier system, that can adjust the

length of the laser cavity to compensate for noise up to approximately 5 kHz.

As shown in Fig. 2.8, the 1 – 2 W laser beam is steered and coupled into the buildup cavity.

The laser beam radius and wave-front curvature are adjusted using the telescope and mirrors to

efficiently couple the beam into the buildup cavity. Light transmitted through the buildup cavity

is monitored on a photodiode (PD1) to achieve the best match of spatial parameters. A half-wave

plate is located before the entrance to the buildup cavity. The laser light is approximately vertically

polarized exiting the laser, and it is rotated by the periscope to become nearly horizontal. The

half-wave plate enables collection of photoelectron spectra at any polarization, from which we can

measure the anisotropy of the photoelectrons (see Section 1.2).

The buildup cavity mirrors are mounted to the vacuum chamber using bellows and kinematic

mounts; the input mirror is 99.6% reflective, and the output mirror is 99.8% reflective at 351 nm.

Like the high reflector on the laser cavity, the input mirror of the buildup cavity is mounted on a

piezoelectric translator and controlled by the servoamplifier system. This piezoelectric translator

corrects for thermal drift and noise up to 100 Hz.2 It also maintains the resonant frequency of the

buildup cavity within the free spectral range (FSR) of the laser:

FSR =
c

2l
(2.10)

where c is the speed of light, and l is the length of the cavity. For the Ar-ion laser used in these
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Figure 2.8: Diagram of the optical setup.
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experiments, l = 178 cm, and FSR = 84 MHz.

The servoamplifier system maintains resonance between the laser and external buildup cav-

ities.41 The acousto-optic modulator (AOM) plays a central role in locking the laser cavity to the

buildup cavity. The AOM (Inter-Action AOM 704) contains a quartz crystal to which an acoustic

frequency is applied, generating a standing wave that acts as a Bragg diffraction grating.42 The

applied frequency, 50 – 80 MHz, shifts the laser light to optically isolate the laser and buildup

cavities. A 1-MHz dither is also added to the laser frequency. The servoamplifier system extracts

an error signal from the modulated light reflected from the buildup cavity (and measured on photo-

diode PD2). Using this error signal, the servoamplifier system adjusts the laser and buildup cavity

piezoelectric translators, as well as the frequency offset of the AOM, to ensure that the resonance

condition is met. The AOM is capable of making the fastest corrections—greater than 5 kHz—to

the laser frequency.

2.1.5 Electron Kinetic Energy Analyzer

When the laser and ion beams intersect perpendicularly in the interaction region, electrons

are ejected in all directions. Only those ejected orthogonal to both beams are collected and analyzed

on the basis of their kinetic energy by an electrostatic hemispherical energy analyzer. The energy

analyzer consists of two concentric hemispheres; the electric field gradient disperses the electrons

according to their kinetic energies.43

The hemispherical energy analyzer is shown in Fig. 2.9. It has an acceptance half-angle of

5◦, collecting only 0.2% of the detached electrons. The hemisphere is set to transmit a fixed energy

(approximately 4 eV); electrons within 2% of the transmission energy are transmitted through the

analyzer (a window of approximately 150 meV at this transmission energy). The cylindrical lenses

VIR, V1, V2, and VHC form two zoom lenses that accelerate the photoelectrons to the transmission

energy. The first stage of the zoom lens (VIR, V1, and V2) magnifies the initial kinetic energy. The

second zoom lens consists of V1, V2, and VHC; the voltage on the center focusing element (V2) has

been optimized for resolution and collection efficiency at each eKE.
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Figure 2.9: Diagram of the electrostatic hemispherical energy analyzer. Ions are decelerated to
35 eV (VIR) into the interaction region, where they meet the amplified laser beam. Ions are ejected
in all directions; only those ejected orthogonal to both the ion and laser beams enter the energy
analyzer. A series of lenses accelerates and magnifies the photoelectrons. The potentials applied
to the inner and outer hemispheres separate the ions on the basis of their kinetic energies. After
acceleration and magnification, the electrons are imaged onto a position-sensitive array detector.
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There are no entrance or exit slits to the hemispherical energy analyzer. Herzog correction

lenses (VHC) correct for fringe fields at the entrance and exit of the analyzer. Photoelectrons exiting

the analyzer are accelerated and magnified by lenses V4 – V6 (Fig. 2.9). They are then imaged

onto a two-dimensional position-sensitive array detector, which comprises a five-stage microchannel

plate electron multiplier in front of a resistive anode (Quantar Technology 3318A). Photoelectrons

with different eKEs are detected at different points on the resistive anode.

2.1.6 Data Acquisition and Processing

The position-sensitive detector is accompanied by a position analyzer (Quantar 2401B) that

determines the spatial position of the detected electrons from the voltage outputs measured on the

four corners of the anode.44 The two-dimensional resistive anode contains 256 x-channels in the

energy-dispersing direction and 16 y-channels; for a given x-channel, the photoelectron counts in

the y-dimension are summed, yielding the number of photodetachment events as a function of eKE.

The computer output is connected to an oscilloscope—for real-time viewing of the photo-

electrons’ positions—and to a PC equipped with a DAQ card (National Instruments DIO 6533,

PCI-DIO-32HS), where the data are recorded by a LabVIEW program. To collect a photoelectron

spectrum over the entire eKE range, the center eKE of the 150-meV segment is scanned, and the

overlapping segments are combined to produce the full photoelectron spectrum as a function of eKE.

Because the transmission energy of the analyzer is fixed, the center eKE of the segment is changed

by adjusting the voltages applied to the elements in the detection region. To do so, the LabVIEW

program sends digital signals to a home-built Voltage Programmer box (JILA LC036).44 Photo-

electrons with eKE < 0.3 eV are not efficiently collected. The energy resolution of the analyzer is

approximately 10 meV.

The electron kinetic energy scale is calibrated before and after each data set using the well-

known EA of oxygen.45 The kinetic energy scale of the analyzer is slightly compressed. To empir-

ically determine this compression factor, we collect the photoelectron spectrum of an anion with

transitions spanning the eKE range of the analyzer.2 Recently, W− and O−2 have been used.46,47
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The spectral simulation Fortran program PESCAL21 is capable of fitting the experimental O−2

spectrum and extracting the compression factor, which is less than 1.0%.

2.2 Theoretical Methods

2.2.1 Electronic Structure Calculations

In order to analyze the photoelectron spectra, it is helpful to know the equilibrium geometries

and vibrational frequencies of the initial and final states. Often, these are not known experimen-

tally; to obtain the best estimate of the frequencies, geometries, and normal mode vectors of the

states involved in photodetachment, we perform electronic structure calculations using the Gaus-

sian 03 program package.48 Geometries are optimized and frequencies are calculated with density

functional theory using the B3LYP hybrid functional.49,50 Generally, the calculations employ the

6-311++G(d,p) basis set.51,52

The theoretical EA, vertical detachment energy (VDE), and term energy (Te) are calculated

using Gaussian output. The EA is the difference between the energy (including the zero-point

energy, ZPE) of the ground-state neutral at its equilibrium geometry, Eeq,neutral, and the energy

(including ZPE) of the anion at its equilibrium geometry, Eeq,anion:

EA = Eeq,neutral − Eeq,anion. (2.11)

The vertical detachment energy is the energy of the most intense transition, corresponding to the

amount of energy required to remove an electron with no geometry change. The VDE is calculated

using Eq. 2.12:

VDE = Eneutral(anion eqm geom)− Eeq,anion, (2.12)

where Eneutral(anion eqm geom) is the energy of the neutral at the equilibrium geometry of the

anion. The Te is the difference in energy between the ground state and an excited state of the

neutral. The Te is calculated using the following equation:

Te = Eeq,neutral′ − Eeq,neutral, (2.13)
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where Eeq,neutral′ is the energy, including ZPE, of an excited state of the neutral. For comparison

with experiment, we report theoretical EAs, VDEs, and Tes calculated using the above equations.

2.2.2 Franck-Condon Simulations

We typically use a Franck-Condon analysis of the vibrational structure in photoelectron

spectra to obtain frequencies and equilibrium geometries of the neutral species and to identify the

origin transition. For more information on Franck-Condon analysis, see Section 1.3. Briefly, the

intensity of a vibronic transition IFC is proportional to the square of the Franck-Condon overlap

integral

IFC =

[∫
Ψv′(Q

′)Ψv′′(Q
′′)dQ′

]2
(2.14)

where Ψv′(Q
′) is the vibrational wavefunction of the neutral in quantum state v ′ as a function of the

normal coordinates of the neutral Q′, and Ψv′′(Q
′′) is the corresponding vibrational wavefunction

of the anion in terms of its normal coordinates Q′′. The normal modes are treated as uncoupled

and harmonic.3

The Franck-Condon profiles of the photoelectron spectra are simulated using the PESCAL

program,21 as detailed by Ervin et al.4 Simulations use theoretical geometries, normal mode vec-

tors, and vibrational frequencies of the anion and neutral states calculated using the Gaussian 03

software package.48 The Fortran program FCFGAUS uses the Gaussian output to determine K′′

vectors and J′′ matrices, generating files that are used as input for PESCAL. The output files from

FCFGAUS express the normal mode eigenvectors (Q′, Q′′) in terms of mass-weighted Cartesian

atomic displacement coordinates.

PESCAL is capable of simulating the photoelectron spectrum in a number of ways (e.g.,

using the parallel-mode approximation, including Duschinsky rotation, etc.). For the simulations

presented here, the Franck-Condon intensities are computed in the harmonic-oscillator approxima-

tion including Duschinsky rotation using the Sharp-Rosenstock-Chen method.4,8,20 This method

requires input files containing vibrational frequencies, normal mode vectors, and displacements gen-

erated by FCFGAUS and extracted from Gaussian output. The individual vibronic peak contours
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are approximated as a Gaussian function with a full-width at half-maximum that is consistent with

the instrumental resolution (11 – 12 meV). Alternatively, the stick spectrum can be convoluted

with the rotational contours calculated by the Fortran program ROTCONT.21

The simulated spectrum is used to aid in the interpretation of the measured photoelectron

spectrum. The vibrational modes observed in a photoelectron spectrum generally correspond to

those that mimic the geometry change that occurs upon photodetachment. When the vibrational

structure of the simulation displays good agreement with the experiment, the simulation can be used

as a tool to assign peaks in the experimental spectrum. In addition, the extent of the vibrational

progression is determined by the difference in the equilibrium geometries of the anion and neutral: a

short vibrational progression arises from a small geometry difference, while an extended progression

is the result of a large geometry change. By adjusting the K′′ displacements to match the observed

spectral envelope, we can determine the net change in geometry between the anion and the neutral.

PESCAL is equipped with a least-squares optimization option in which the user can select the

input parameters (vibrational frequencies, K′′ displacements, temperature, EA, etc.) to optimize

in order to obtain the best fit to the experimental data.

The normal-mode analysis in Cartesian coordinates that is employed by PESCAL is the stan-

dard method of simulating photoelectron spectra. It can be arbitrarily applied to molecules of any

size or geometry, generally producing near-quantitative agreement with the experimental spectrum.

However, when a large geometry change takes place upon photodetachment, the approximations

invoked in normal-mode analysis are no longer valid. In such cases, the upper portion of the neutral

potential energy surface is sampled, where vibrations do not resemble independent harmonic oscil-

lators. The molecules presented here test the limits of normal-mode analysis, and many require a

more sophisticated approach to interpret their photoelectron spectra.



Chapter 3

Furanide Anion

3.1 Introduction

Furan, C4H4O, has attracted considerable attention due to its key role in combustion chem-

istry as well as to some intriguing aspects of its thermochemistry—namely, to its unusually high

calculated C-H bond strength.53–55 Furan is one of the primary structural units of coal;56,57 con-

sequently, knowledge of its reactivity has the potential to improve current technology of coal com-

bustion.58 Furan is also an important intermediate in the pyrolysis of biomass,59–62 where it is

generally thought to originate in the breakdown of polysaccharides that make up cell walls.63–65

Conversion of biomass (and, more specifically, its major components: lignin, cellulose, and hemicel-

lulose66) into ethanol or other fuels has recently stimulated strong interest as a potential alternative

to petroleum-based energy production.67–69 However, at present, thermal biomass processing is not

commercially viable because it is inefficient and plagued by undesired reaction products,70 such as

polycyclic aromatic hydrocarbons (PAH).71–74 Furan chemistry is central to biomass decomposi-

tion; thus, understanding its bond-specific reactivity has far-reaching implications for commercial

fuel production, the environment, and the energy economy.

Because of its importance in combustion chemistry and biomass pyrolysis, the thermochem-

istry of furan has been the subject of several experimental and theoretical investigations. Initial

studies focused on thermal decomposition of furan in shock tubes,75–77 flow reactors,78,79 and via

laser pyrolysis.80 These experiments established that the two primary product channels of uni-

molecular furan decomposition are (1) CO + CH3C≡CH, and (2) CH2=C=O + HC≡CH.75–80
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More recently, Vasiliou et al. used photoionization mass spectrometry and matrix IR spectroscopy

to examine the thermal decomposition products of furan.81 In addition to the products mentioned

above, they detected propargyl radicals (CH2CCH). Benzene, which is known to form from propar-

gyl radicals,82 and other aromatic species were also observed in the study,81 demonstrating the role

of furan in the chemistry of PAH formation.

Although the primary decomposition products of furan have been characterized, the mecha-

nisms of their formation are not yet fully known. Several computational studies have been aimed at

determining the relative energies of chemical bonds in furan to better understand the mechanistic

details of furan decomposition.53,54,83 One possible pathway begins with the loss of a hydrogen

atom bonded to the alpha-carbon in the furan ring; i.e., the cleavage of the C-Hα bond. Yet, the

first comprehensive theoretical investigation of the unimolecular decomposition channels of furan83

concluded that cleavage of the C-Hα bond requires too much energy and therefore cannot be the

initial step in any of the major decomposition pathways. Since then, multiple high-level calcula-

tions (CBS-QB3,54 CBS-APNO,54 G3,54,55 B3LYP,55 and CASPT253) agree that the C-Hα bond is

prohibitively strong, approximately 121 kcal mol−1. However, this is an unusually high C-H BDE,

which makes its experimental verification a particularly valuable contribution. Because there has

been no experimental determination of the C-Hα BDE of furan (DH298(C4H3O- Hα)) until now,

current decomposition models are based on the calculated C- Hα BDE and assume that pathways

involving cleavage of the C- Hα bond or H abstraction are unimportant.

The C- Hα BDE of furan can be determined through the well-established methodology of a

thermochemical cycle33 involving the electron affinity (EA) of the α-furanyl radical (α-C4H3O),

the gas-phase acidity of furan, and the ionization energy of hydrogen. The latter quantity is well-

known.84 Likewise, in 1988, DePuy et al. investigated the gas-phase acidities of the two distinct

hydrogen atoms in furan.31 As in our experiment, they prepared furanide in a flowing afterglow

apparatus by deprotonation of furan with OH−, and they reported H+ loss from both the α-

and β-positions. They showed that the α-position was the more acidic of the two, but the exact

acidity of the β-position was not determined. Calculations and our own observations confirm
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the higher relative acidity of the α-site, since under our experimental conditions we only observe

photodetachment from the α-furanide species. A more precise measurement of the gas-phase acidity

of furan was subsequently made by Grabowski and Owusu.32 In the present work we determine

the remaining thermodynamic quantity necessary to obtain the C-Hα BDE of furan: the EA of the

α-furanyl radical.

We report a photoelectron spectroscopy study of the furanide anion, which provides several

new spectroscopic constants and allows the first direct measurement of the C-Hα BDE of furan. We

collect the 364-nm negative ion photoelectron spectrum of C4H3O
−. From the spectrum, we make

the first experimental determination of the EA and of several vibrational frequencies of α-C4H3O.

We observe both the X̃ 2A′ σ-radical ground state and Ã2A′′ π-radical excited state of α-C4H3O

and determine the term energy (Te) of the excited state.

3.2 Experimental Methods

The negative ion photoelectron spectrometer used in this experiment has been described in

detail elsewhere.2,34,41 The apparatus consists of four main sections: an ion source, a mass filter,

an interaction region with crossed laser and ion beams, and an electrostatic electron kinetic energy

analyzer. Negative ions are formed in a flowing afterglow ion source. A microwave discharge

containing trace amounts of O2 gas in He buffer gas (∼0.4 Torr) generates atomic oxygen radical

anion, O−. Methane is added downstream of O− to form hydroxide anion (OH−), which then

reacts with furan (C4H4O, ≥99%, Sigma-Aldrich) to generate furanide anions: OH− + C4H4O →

C4H3O
− + H2O. Because the Hα of furan is more acidic,31 we deprotonate predominantly at the

α-position under our experimental conditions to produce the α-furanide anion. We confirm the

absence of β-furanide using experimental observations in conjunction with theoretical simulations

(see Section 3.4.1.3). We do not generate C4H2O
−; the m/z 66 peak is absent from our mass

spectrum, and it has been shown that C4H2O
− is not produced efficiently in the reaction of O−

with furan.85 Collisions with He buffer gas cool the ions to approximately 300 K. The flow tube can

be further cooled with a liquid nitrogen jacket to obtain a “cold spectrum” of ions with temperatures
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near 150 K. Anions are extracted into a differentially pumped region and are accelerated to 735 eV

before entering a Wien velocity filter with a mass resolution of m/∆m ∼ 60. The mass-selected

ion beam (typically 200 pA) is decelerated to 35 eV and focused into the laser interaction region.

Here, the 1 W output from a single-mode continuous-wave argon ion laser operating at 364 nm

(3.40814 eV) is built up to approximately 100 W of circulating power in an optical buildup cavity

located within the vacuum system. Photoelectrons ejected in the direction orthogonal to both the

laser and ion beams enter a hemispherical energy analyzer. The photoelectron signal is recorded

as a function of electron kinetic energy with a position-sensitive detector. The energy analyzer has

a resolution of approximately 11 meV under the conditions used for the present experiments.

The electron kinetic energy (eKE) can be converted to electron binding energy (eBE) through

the relationship eBE = hν - eKE. The absolute kinetic energy scale is calibrated2,43 before and

after each experiment using the well-known EA of atomic oxygen.45 Additionally, the energy scale

is corrected for a slight linear compression (<1%)2 using the photoelectron spectrum of O−2 , which

provides a number of known transitions spanning the photoelectron energy range.21,47 After making

these corrections and accounting for the resolution of the spectrometer and rotational peak profiles,

absolute electron binding energies can be determined with an accuracy of better than 5 meV.

A rotatable half-wave plate positioned outside the buildup cavity varies the polarization of

the photodetachment radiation in order to control the angle θ between the electric field vector of

the laser beam and the photoelectron collection axis. The photoelectron angular distribution is

described by the equation5

I(θ) =
σ0
4π

(1 + βP2(cos θ)) (3.1)

where σ0 is the total photodetachment cross section, β is the anisotropy parameter, and P2(cos θ)

is the second Legendre polynomial. We measure the anisotropy parameter explicitly by recording

the photoelectron signal at the kinetic energy of one suitable intense peak in the photoelectron

spectrum as a function of θ (between θ = 0◦ and θ = 360◦ in steps of 10◦). The photoelectron

angular distribution is fit with Eq. 3.1, and full spectra collected at θ = 0◦ and θ = 90◦ are scaled to
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match β at the energy at which it was measured. Separately, we collect a photoelectron spectrum

at θ = 54.7◦ (the so-called “magic angle”), where the photoelectron intensity is independent of β

and directly reflects the relative photodetachment cross section.

3.3 Theoretical Methods

All electronic structure calculations were performed using the Gaussian 03 program pack-

age.48 Optimized geometries, harmonic vibrational frequencies, and normal mode coordinates were

calculated at the B3LYP/6-311++G(d,p) level of theory/basis52 for the X̃ 2A′ state of both the

α- and β-furanide anion, as well as for the X̃ 2A′ and Ã2A′′ states of the neutral α- and β-furanyl

radical. All molecules were constrained to Cs symmetry.

We use a Franck-Condon analysis of the vibrational structure in the furanide photoelectron

spectrum to identify the active vibrational modes of the furanyl radical and the geometry change

upon photodetachment. The Franck-Condon profiles of the photoelectron spectra are simulated

using the PESCAL program,21 using as a point of departure the calculated geometries, normal

mode vectors, and vibrational frequencies of the anion and neutral states. The normal modes and

the Duschinsky J′′ matrix and K′′ displacements are calculated. The Franck-Condon factors are

computed in the harmonic oscillator approximation including Duschinsky rotation using the Sharp-

Rosenstock-Chen method.4 The individual vibronic peak contours are simulated by a Gaussian

function with a FWHM of 11 meV, consistent with instrumental resolution. Comparison of the

simulations to the experimental spectra enables the determination of experimental frequencies.

3.4 Results

3.4.1 Photoelectron Spectra of the Furanide Anion

Chemical intuition suggests that the rigid five-membered ring structure constrains furanide

to a relatively small geometry change upon photodetachment. Thus, we expect substantial Franck-

Condon overlap near the bottom of the X̃ 2A′ potential well, making the determination of the
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Table 3.1: Measured and calculated (B3LYP/6-311++G(d,p)) electron affinities and term energies
(Te) of the α- and β-furanyl radicals.

 1 

TABLE 1.  Measured and calculated (B3LYP/6-311++G(d,p)) electron affinities and term 

energies (Te) of the - and -furanyl radicals. 

 X
~ 2

A′ ← X
~ 1

A′ Te 

-furanyl radical Experiment 1.853(4) eV 0.68(7) eV 

Theory 1.8866 eV 0.61647 eV 

-furanyl radical Experiment -- -- 

Theory 1.6712 eV 1.0713 eV 

 

 

 

origin—and hence the EA—straightforward. We also expect the most significant changes in the

geometry of α-furanide upon photodetachment to be localized near the site from which the electron

is removed; therefore, we anticipate the active vibrational modes in the photoelectron spectrum to

be limited to only a few normal modes involving changes in the bond lengths and angles surrounding

the deprotonated Cα.

This simple picture is supported by the well-resolved nature of the photoelectron spectrum

we observe. The 364-nm, magic angle, cold (about 150 K) photoelectron spectrum of C4H3O
− is

presented in Fig. 3.1(a). We assign the intense, sharp peak at the lowest eBE to the transition

from the ground vibrational state of α-furanide to the ground vibrational state of X̃ 2A′ α-furanyl

radical. The eBE of this origin peak, 1.853(4) eV, directly corresponds to the EA of furanyl radical

(Table 3.1). The photoelectron spectrum is dominated by only a few active vibrational modes.

From the spectrum we can directly extract three vibrational frequencies of the furanyl radical:

855(25) cm−1, 1064(25) cm−1, and 1307(40) cm−1. These frequencies are typical of in-plane ring-

distortion and ring-breathing modes.

The photoelectron spectra of C4H3O
− collected at 300 K with the laser polarization set at

90◦ and 0◦ relative to the direction of photoelectron collection are displayed in Fig. 3.1(c). In these

spectra, a hot band resulting from photodetachment of vibrationally excited anions is visible at

lower binding energy than the origin peak. Comparison of the θ = 0◦ and θ = 90◦ spectra reveals

two distinct spectral regions with different anisotropies. Specifically, the anisotropy parameter,
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plotted in Fig. 3.1(b), changes near eBE = 2.5 eV from positive values at lower binding energies to

negative values at higher binding energies. In the simplest view, the anisotropy parameter depends

on the electronic orbital from which photodetachment occurred. Therefore, a significant variation

in β for different features in a photoelectron spectrum is often a signature of different neutral

electronic states. Evidently, two different electronic states of neutral C4H3O are observed in the

photoelectron spectra: the ground state at lower binding energy, and an excited state that appears

at higher binding energy and is suppressed at θ = 0◦.

The electronic orbitals and valence electrons of α-furanide anion are presented in Fig. 3.2.

Intuitively, we expect the ground state of the α-furanyl radical to result from the removal of an

electron from the in-plane σ orbital of the deprotonated Cα, corresponding to a 2A′ σ-radical.

Higher in energy lies the 2A′′ π-radical resulting from the removal of an electron from the out-of

plane π orbital of a′′ symmetry (see Fig. 3.3 for an illustration of the π molecular orbitals). Between

0 and 3 eV of kinetic energy, “s-like” electrons give rise to β > 0 and “p-like” electrons yield β < 0.

These labels reflect the character of the parent orbital: s-like electrons originate from orbitals with

greater symmetry or fewer nodes than those that generate p-like electrons.7 In other words, electrons

removed from in-plane σ orbitals tend to have the greatest photodetachment cross-sections parallel

(θ = 0◦) to the laser polarization, whereas electrons in out-of-plane π orbitals have a maximum

photodetachment cross-section at θ = 90◦. As a result, positive β values are often associated with

photoelectrons detached from in-plane orbitals of aromatic systems,7,86,87 and negative β values

are often found for photoelectrons detached from π orbitals of aromatic systems.7,86,88,89 Thus, the

positive β values observed at lower eBE in our spectra confirm that the lower energy vibrational

progression corresponds to the 2A′ σ-radical ground state of the furanyl radical, i.e. the removal of

an electron from the in-plane σ orbital of furanide. In contrast, β < 0 for the higher-lying Ã2A′′

features because in this case the electron is detached from an out-of-plane π orbital. Furthermore,

using the same simple picture, we can rule out the possibility that the two progressions represent

the ground states of α- and β-furanyl radicals. Regardless of the deprotonation site, the ground-

state furanyl radical is generated when an electron is removed from an in-plane σ orbital; thus, we
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Figure 3.1: (a) The 364-nm, magic angle, cold photoelectron spectrum of the furanide anion. The
fundamental transitions of the ν6, ν9, and ν13 vibrational modes are marked. (b) β values of the
major photoelectron peaks, indicating which features are due to the X̃ 2A′ ground state (β > 0)
and which are attributed to the Ã2A′′ excited state of α-furanyl radical (β < 0). (c) Spectra of the
furanide anion, taken at 0◦ and 90◦ polarizations at room temperature and scaled to match the β
anisotropy parameter of the origin peak (1.853 eV).

n6 

n9 

n13 



45

expect β > 0 for the ground states of both α- and β-furanyl radicals.

Figure 3.2: Electronic orbitals and valence electrons of α-furanide, X̃ 1A′. Photodetachment from
the in-plane σ orbital of the deprotonated Cα yields the X̃ 2A′ σ-radical ground state of the neutral
furanyl radical. Photodetachment from the out-of-plane π cloud yields the Ã2A′′ π-radical excited
state of the neutral furanyl radical.

3.4.1.1 The 2A′ σ-radical ground state of the α-furanyl radical

Calculations and simulations of the photoelectron signal (plotted in Fig. 3.4) confirm our

spectral assignments and enable a quantitative determination of several spectroscopic parameters.

Table 3.1 lists the calculated and measured relative energies of the α- and β-furanyl species. The

measured EA is in accord with the calculated origin of the α-furanyl radical. Fig. 3.4(b) shows the

Franck-Condon simulation of α-furanide photodetachment. The simulated X̃ 2A′ ← X̃ 1A′ photo-

electron spectrum, bracketed with a purple bar, reproduces the lower binding energy portion of the

magic angle spectrum shown in Fig. 3.4(a). The agreement between the simulated and observed

spectra further substantiates our assignment of the lower binding energy progression to the X̃ 2A′

state of α-furanyl radical.

The relatively modest geometry change upon photodetachment implied by the well-resolved

nature of the spectrum is supported by DFT calculations. Table 3.2 shows that detachment of an

in-plane σ electron to generate the X̃ 2A′ σ-radical distorts the ring to increase the O-•C-C angle

about the radical center (•C) and shortens several bonds, especially the •C-C bond. Because the

largest geometry change is the increase in the O-•C-C angle, the modes calculated to be most
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Figure 3.3: Generalized valence bond diagrams of the π orbitals of Ã2A′′ α-furanyl radical.
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Figure 3.4: (a) The 364-nm magic angle, cold photoelectron spectrum of the furanide anion. (b) The
simulated photoelectron spectrum of α-furanide anion. The simulation employs the experimentally
measured EA (Table 3.1) and the three experimental frequencies of the neutral ν6, ν9, and ν13
listed in Table 3.3, determined from the comparison of the ab initio simulation to the experimental
spectrum; we use calculated values for the remaining harmonic frequencies and all K′′ displacements
(Table 3.3). (c) The simulated photoelectron spectrum of β-furanide anion. The simulation uses
ab initio EA, Te, harmonic vibrational frequencies, and K′′ displacements, listed in Table 3.1 and
Table 3.5. In panels (b) and (c), the photoelectron signal due to the ground-state furanyl radical
is marked with a purple bar, and the excited-state features are designated with a blue bar.

2A′ 

2A″ 

2A′ 

2A″ 
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active in the Frank-Condon simulation are ν13 (a ring deformation mode dominated by the O-•C-

C bend), ν12 (ring deformation that involves the C-C-C bend), and ν9 (a ring breathing mode),

illustrated in Fig. 3.5. Frank-Condon activity of the various vibrational modes is indicated by their

calculated K′′ displacements, which are vectors describing the difference in the nuclear equilibrium

positions between the anion and the neutral radical. A large K′′ value indicates a vibrational

normal mode vector that plays a large part in the net geometry change between the anion and

the neutral. The calculated K′′ displacements are listed in Table 3.3; as we intuitively expect, the

largest K′′ displacements are for the ν9, ν12, and ν13 ring breathing and ring deformation modes.

The excellent agreement between the α-furanide X̃ 2A′ ← X̃ 1A′ Franck-Condon simulation

and the lower energy vibrational progression allows for partial characterization of the X̃ 2A′ state.

Despite most peaks in the spectrum arising from multiple congested vibronic transitions (gray sticks

in Fig. 3.4(b)), comparison of the ab initio simulation to the experimental spectrum enables us to

assign features and measure vibrational frequencies based on photoelectron peaks dominated by a

single vibronic transition. In this way, we extract three experimental vibrational frequencies of the

ground-state radical (ν6, ν9, ν13) and one experimental vibrational frequency of the anion (ν13),

which are listed along with the unscaled calculated frequencies in Table 3.3. Though ν6 is not one

of the most active vibrational modes mentioned above, its fundamental transition is sufficiently

well-resolved in the photoelectron spectrum to allow a confident determination of its frequency.

The calculated and measured frequencies give rise to a simulated spectrum with peak positions

that agree reasonably well with the observed vibrational structure. This is especially true at

lower binding energy, which corresponds to the portion of the X̃ 2A′ potential energy surface where

anharmonic effects are not significant. This suggests that the calculated harmonic vibrational

frequencies accurately represent the vibrational frequencies of the X̃ 2A′ state of α-furanyl radical.

In addition, the extent of the vibrational progression in the simulation, governed by the computed

K′′ displacements (Table 3.3), matches the observed spectral envelope. This agreement indicates

that the calculated geometry change upon photodetachment is also consistent with the experimental

spectrum.
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Table 3.2: Optimized geometries of α-furanide anion (X̃ 1A′) and α-furanyl radical (X̃ 2A′, Ã2A′′),
and the calculated net geometry change upon photodetachment (B3LYP/6-311++G(d,p)). Bond
lengths are in units of Å, and bond angles are in units of degrees. The net geometry change is
defined as the difference in the values of the internal coordinates for the anion and the radical. The
bond lengths and angles that undergo the greatest change are boldfaced.

 2 

TABLE 2.  Optimized geometries of -furanide anion ( X
~ 1

A′) and -furanyl radical ( X
~ 2

A′, 

A
~ 2

A″), and the calculated net geometry change upon photodetachment (B3LYP/6-311++G(d,p)).  

Bond lengths are in units of Å, and bond angles are in units of degrees.  The net geometry 

change is defined as the difference in the values of the internal coordinates for the anion and the 

radical.  The bond lengths and angles that undergo the greatest change are boldfaced. 

 

  

 

 

 
 

    

 -Furanide -Furanyl Radical Geometry Change 

Internal Coordinate X
~ 1

A′ X
~ 2

A′ A
~ 2

A″ X
~ 2

A′ ← X
~ 1

A′ A
~ 2

A″ ← X
~ 1

A′ 

O1 – C2 1.431 1.329 1.398  0.012 0.033 

C2 – C3 1.392 1.354 1.468  0.038 + 0.076 

C3 – C4 1.440 1.446 1.384 + 0.006 0.056 

C4 – C5 1.362 1.357 1.393  0.005 + 0.031 

O1 – C5 1.366 1.385 1.350 + 0.019 0.016 

C3 – H 1.084 1.076 1.080  0.008 0.004 

C4 – H 1.084 1.079 1.079  0.005 0.005 

C5 – H 1.082 1.076 1.081  0.006 0.001 

O1 – C2 – C3 103.3 114.1 102.5 + 10.8 0.8 

C2 – C3 – C4 110.9 103.4 110.7  7.5 0.2 

C3 – C4 – C5 105.4 107.3 105.0 + 1.9 0.4 

C4 – C5 – O1 109.9 109.6 110.9  0.3 + 1.0 

C5 – O1 – C2 110.5 105.7 110.9  4.8 + 0.4 
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Table 3.3: α-Furanide anion (X̃ 1A′) and α-furanyl radical (X̃ 2A′, Ã2A′′) vibrational frequencies.
All but four of the frequencies listed in the table are unscaled calculated harmonic frequencies
(B3LYP/6-311++G(d,p)). The ν6, ν9, and ν13 neutral frequencies and the ν13 anion frequency
were determined from the Frank-Condon simulation of the C4H3O

− photoelectron spectrum; these
frequencies are listed in italics directly below the calculated value. The most active modes, based
on the calculated geometry change and experimental peak intensities, are boldfaced.

 3 

 

TABLE 3.  -Furanide anion ( X
~ 1

A′) and -furanyl radical ( X
~ 2

A′, A
~ 2

A″) vibrational 

frequencies.  All but four of the frequencies listed in the table are unscaled calculated harmonic 

frequencies (B3LYP/6-311++G(d,p)).  The 6, 9, and 13 neutral frequencies and the 13 anion 

frequency were determined from the Frank-Condon simulation of the C4H3O

 photoelectron 

spectrum; these frequencies are listed in italics directly below the calculated value.  The most 

active modes, based on the calculated geometry change and experimental peak intensities, are 

boldfaced. 

 

Mode Description Frequencies  

X
~ 1

A′, cm
-1

 

X
~ 2

A′ ← X
~ 1

A′ A
~ 2

A″ ← X
~ 1

A′ 

K″
 

X
~ 2

A′, cm
-1 K″

 
A
~ 2

A″, cm
-1 

A′ 1 C-H stretch 3202.5 -0.0055219 3288.8 -0.0039291 3248.8 

2 C-H stretch 3172.9 -0.0043554 3274.1 -0.0053742 3232.4 

3 C-H stretch 3157.6 1.7468x10
-4

 3238.7 3.2151x10
-4

 3224.8 

4 C-C str + H-wag 1537.2 -0.0096266 1568.1 0.013785 1400.0 

5 C-C str + H-wag 1369.2
 
 -0.14452 1453.2 0.16825 1096.9 

6 C-C str + H-wag 1347.5
 
 0.036363 1356.7 

1307(40)
a
 

-0.016990 1475.3 

7 C-C str + H-wag 1161.1
 
 -0.011293 1229.9 0.081375 1332.1 

8 H-wag 1105.5
 
 0.079981 1167.5 -0.025052 1008.4 

9 C-O stretch 802.0
 
 -0.18952 1093.7 

1064(25)
a
 

-0.081214 718.62 

10 C-O str + H-wag 1072.6
 
 -0.0067749 1019.9 -0.099751 1132.2 

11 C-O str + H-wag 982.1
 
 0.036308 1000.3 0.068089 1029.0 

12 C-C-C bend 897.5 0.19493 875.0 -0.062708 913.4 

13 O-C-C bend 852.0 

815(30)
a
 

0.35265 867.7 

855(25)
a
 

0.10232 865.5 

A″ 14 o-o-p H-wag 765.0 2.8862x10
-5

 861.5 -5.9561x10
-6

 919.4 

5 o-o-p H-wag 740.8 2.4088x10
-6

 777.3 8.1634x10
-6

 813.8 

16 o-o-p H-wag 628.2 -2.2699x10
-6

 711.2 -1.6492x10
-5

 901.7 

17 o-o-p ring 

deformation 

604.1 -9.2735x10
-6

 602.3 2.3750x10
-7

 499.8 

18 o-o-p ring 

deformation 

591.3 1.4156x10
-6

 482.2 -3.7229x10
-6

 699.9 

a
 Experiment, this work 

 

a Experiment, this work
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Figure 3.5: Vector diagrams of the most active vibrational modes upon photodetachment to the
X̃ 2A′ ground state and the Ã2A′′ excited state of α-furanyl radical.
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3.4.1.2 The 2A′′ π-radical excited state of the α-furanyl radical

We assign the higher energy vibrational progression to the Ã2A′′ π-radical excited state of

α-furanyl, in which an electron has been removed from the out-of-plane π molecular orbital of a′′

symmetry (Figs. 3.2 and 3.3). The Franck-Condon simulation of the excited state is bracketed in

blue in Fig. 3.4(b). The origin transition of the Ã2A′′ state of α-furanyl radical is predicted to be an

intense peak at eBE = 2.5031 eV. The onset of the first intense feature for which β < 0, appearing

at eBE = 2.53(7) eV, is assigned to the origin of the Ã2A′′ state. Accordingly, its term energy is

0.68(7) eV, also in good agreement with the calculated Te value. The ground-state α-furanyl radical

lends some intensity to the photoelectron spectrum above 2.5 eV, as well; there is an underlying

unresolved continuum resulting from transitions to high vibrational levels of the X̃ 2A′ σ-radical.

This continuum can be seen in the θ = 0◦ spectrum (Fig. 3.1(c)), which minimizes contribution

from the π-radical, and it is reproduced in the ground state Franck-Condon simulation.

The Ã2A′′ features predicted by the Franck-Condon simulation appear in the experimental

spectra, but are much broader than expected. Broad, diffuse spectral bands, such as those ob-

served in the higher binding energy portion of the C4H3O
− spectrum, are often characteristic of

nonadiabatic effects.90 Vibronic coupling between the X̃ 2A′ and Ã2A′′ states of α-furanyl radical

via their A′′ vibrational modes can result in a large number of vibronic levels into which inten-

sity can be distributed. The generally forbidden A′′ modes of α-furanyl radical have frequencies

between approximately 500 and 900 cm−1; activity of these modes would fill in the excited state

spectrum and broaden the resolved peaks predicted in the simulation by approximately 50 meV,

which is consistent with the width of the peaks in the Ã2A′′ progression. Such broadening of ex-

cited state features has also been observed in the photoelectron spectra of pyrrole (C4H5N) and

thiophene (C4H4S),91–94 as well as N -methyl-5-pyrazolide.87 In all three cases, the width of the

structure that could not be accounted for using Franck-Condon analysis95,96 was attributed to

vibronic coupling.87,97

We thus conclude that the higher binding energy vibrational progression in the C4H3O
−
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magic angle spectrum is due to the Ã2A′′ π-radical state of α-furanyl radical. The experimental

Te agrees well with calculations, and the discrepancy between the simulation and the observed

spectrum is attributed to nonadiabatic effects.

3.4.1.3 Contribution from the β-Furanyl Radical

Calculations and Franck-Condon simulations of β-furanide photodetachment are shown in

Fig. 3.4(c). Calculated equilibrium structures of the β-furanyl anion and radical states are given

in Table 3.4; vibrational frequencies and K′′ displacements used in the simulation are listed

in Table 3.5. The simulation predicts a significantly more structured β-furanide photoelectron

spectrum than the one observed experimentally, as well as a higher excited-state term energy,

Te(Ã
2A′′) = 1.07 eV. Even more importantly, the calculated EA of β-furanyl radical is 182 meV

below that of the α-furanyl radical (Table 3.1). We expect the calculated EA of β-furanyl radical

to be reasonably reliable, as analogous calculations for the α-furanide species predict the EA to

within 35 meV of the actual value. Likewise, the success of the Franck-Condon simulation of the

α furanide photoelectron spectrum lends credibility to the simulation of β-furanide. Thus, the dis-

crepancies between the experimental C4H3O
− spectrum and the calculated energy and vibrational

structure of the β-furanide spectrum indicate that we do not observe significant signal from the

β-furanyl radical under our experimental conditions. Furthermore, we observe no change in the rel-

ative intensity of features in the C4H3O
− spectrum when experimental conditions are varied, which

one might expect if signal from two different species were present in the photoelectron spectrum.

Lastly, as noted earlier, the negative β values above 2.5 eV binding energy rule out the possibility

that the higher energy progression is due to the ground state of β furanyl radical.

3.4.2 C-Hα Bond Dissociation Energy

One of the most significant results of this study is a direct measurement of the C-Hα BDE

in order to evaluate the plausibility of various decomposition pathways of furan. The C-Hα BDE

of furan, or DH298(C4H3O-Hα), can be determined through the following thermochemical cycle:33
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Table 3.4: Optimized geometries of β-furanide anion (X̃ 1A′) and β-furanyl radical (X̃ 2A′, Ã2A′′),
and the calculated net geometry change upon photodetachment (B3LYP/6-311++G(d,p)). Bond
lengths are in units of Å, and bond angles are in units of degrees. The net geometry change is
defined as the difference in the values of the internal coordinates for the anion and the radical. The
bond lengths and angles that undergo the greatest change are boldfaced.

 4 

TABLE S1.  Optimized geometries of -furanide anion ( X
~ 1

A′) and radical ( X
~ 2

A′, A
~ 2

A″), and 

the calculated net geometry change upon photodetachment (B3LYP/6-311++G(d,p)).  Bond 

lengths are in units of Å, and bond angles are in units of degrees.  The net geometry change is 

defined as the difference in the values of the internal coordinates for the anion and the radical.  

The bond lengths and angles that undergo the greatest change are boldfaced. 

 

 

 

 









  

-Furanide -Furanyl Radical Geometry Change 

Internal Coordinate X
~ 1

A′ X
~ 2

A′ A
~ 2

A″ X
~ 2

A′ ← X
~ 1

A′ A
~ 2

A″ ← X
~ 1

A′ 

O1 – C2 1.430 1.377 1.374  0.053 0.056 

C2 – C3 1.361 1.348 1.433  0.013 + 0.072 

C3 – C4 1.465 1.422 1.428  0.043 0.037 

C4 – C5 1.366 1.363 1.376  0.003 + 0.010 

O1 – C5 1.362 1.364 1.373 + 0.002 + 0.011 

C2 – H 1.083 1.075 1.082  0.008  0.001 

C4 – H 1.087 1.077 1.082  0.010 0.005 

C5 – H 1.083 1.077 1.081  0.006 0.002 

O1 – C2 – C3 114.9 107.7 115.4  7.2 + 0.5 

C2 – C3 – C4 100.7 109.9 99.7 + 9.2 1.0 

C3 – C4 – C5 110.3 103.8 110.4  6.5 + 0.1 

C4 – C5 – O1 110.4 111.4 111.3 + 1.0 + 0.9 

C5 – O1 – C2 103.6 107.2 103.2 + 3.6  0.4 
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Table 3.5: α-Furanide anion (X̃ 1A′) and α-furanyl radical (X̃ 2A′, Ã2A′′) vibrational frequen-
cies. All frequencies listed in the table are unscaled calculated harmonic frequencies (B3LYP/6-
311++G(d,p)). The modes predicted to be most active, based on the geometry change upon
photodetachment and the calculated K′′ displacements, are boldfaced.

 5 

TABLE S2.  -Furanide anion ( X
~ 1

A′) and -furanyl radical ( X
~ 2

A′, A
~ 2

A″) frequencies.  All 

frequencies listed in the table are unscaled calculated harmonic frequencies (B3LYP/6-

311++G(d,p)).  The modes predicted to be most active, based on the geometry change upon 

photodetachment and the calculated K″ displacements, are boldfaced. 

Mode K″ Displacements Frequencies, cm
-1

 

X
~ 2

A′ ← X
~ 1

A′  A
~ 2

A″ ← X
~ 1

A′
 

X
~ 1

A′ X
~ 2

A′ A
~ 2

A″ 

A′ 1 -0.0098619 -0.0044959 3191.3 3296.4 3237.8 

2 0.0032261 0.0034002 3186.0 3274.5 3227.9 

3 -0.0063679 -0.0052879 3127.3 3253.9 3206.1 

4 0.038371 -0.019575 1490.5 1542.3 1457.5 

5 -0.0079697 0.12618 1432.2 1486.0 1204.2 

6 -0.0055620 0.083905 1319.5 1372.1 1054.4 

7 -0.0076154 0.059351 1240.5 1238.5 1319.1 

8 -0.056815 0.019551 1135.2 1170.2 1121.2 

9 -0.096202 -0.011265 1069.8 1136.9 1357.7 

10 0.063479 0.0077681 1030.0 1043.3 1013.8 

11 -0.37625 -0.083552 785.5 1012.6 688.7 

12 0.28587 0.055680 861.5 873.74 878.2 

13 -0.13114 0.17189 911.7 865.8 935.9 

A″ 14 5.7696x10
-5

 6.1224x10
-6

 832.5 848.2 920.9 

5 -4.6103x10
-5

 -1.0604x10
-5

 711. 7 762.1 870.5 

16 8.1657x10
-6

 9.0672x10
-6

 664.8 700.8 792.8 

17 -1.1655x10
-5

 -8.1271x10
-6

 600.6 613.0 477.5 

18 -1.8384x10
-5

 -6.3188x10
-6

 608.9 540.7 598.9 

 

 

a Experiment, this work
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RH −→ R− + H+ ∆acidH298 (C4H3O−Hα)

R− −→ R + e− EA (α− C4H3O)

+ H+ + e− −→ H −IE (H)

DH298 (RH) DH298 (C4H3O−Hα) (3.2)

The gas-phase acidity of furan was first measured in 1988 by DePuy, et al.,31 to be 388(3)

kcal mol−1, and more recently by Grabowski and Owusu32 to be 390.7(2) kcal mol−1. The ionization

energy of hydrogen is well known: 313.6 kcal mol−1.84 Now, our measured value for the electron

affinity of the α-furanyl radical (1.853(4) eV) enables the first experimental determination of the

C-Hα BDE of furan: 119.8(2) kcal mol−1.

In the currently accepted model of the unimolecular decomposition of furan, there are two

fragmentation pathways that lead to the experimentally observed products, both of which involve

H-rearrangement to a carbene intermediate as the initial step (Fig. 3.6).53,81 In one pathway,

an Hα migrates to the β-position of furan to form the α-carbene, which directly separates into

HC≡CH + CH2=C=O. Alternatively, an Hβ can move to the α-position to form the β-carbene; fur-

ther isomerization and decomposition of the β-carbene yields CO + CH3C≡CH. The CH2=C=CH-

CHO intermediate could also lead to the formation of propargyl radical, CH2=C=CH.81 Our result

for the C-Hα BDE substantiates the calculated value53–55 and validates the accepted decomposition

model of furan, in which C-Hα bond scission is prohibitively high in energy to be a viable route to

furan decomposition.

This unusually high C-Hα BDE is more than 7 kcal mol−1 greater than the C-H BDE of

the prototypical aromatic molecule benzene.33 However, it is in accordance with other five-member

heterocycles, which, like furan, have been shown to have very high C-H BDEs. For example, the

C-Hα BDE of pyrrole (C4H5N) is 118(1) kcal mol−1.98 The C-Hα BDEs of the C3H4N2 isomers

imidazole88 and pyrazole86 are 119(4) kcal mol−1 and 121(4) kcal mol−1, respectively. As in the

case of the azoles, we attribute the high C-Hα BDE of furan to thermodynamic instability of the



57

Figure 3.6: Unimolecular decomposition pathways of furan.

resulting radical. A computational study by Barckholtz et al. examined the effects of geometry

and spin density on C-H BDEs of aromatic heterocycles99 and concluded that the primary cause

of the instability of the furanyl radical involves the localization of the unpaired electron. As a

general rule, a radical is stabilized, thereby decreasing the C-H BDE, when its unpaired electron is

delocalized over multiple atoms. In the case of furan, the unpaired electron of the α-furanyl radical

is calculated to be almost completely localized on the •Cα. In fact, the excess spin density at the

•Cα radical center of furanyl radical is calculated to be slightly higher than the excess spin density

at the radical center of phenyl radical, indicating that the extent of localization of the unpaired

electron of the furanyl radical is slightly greater than that of the phenyl radical.99 This effectively

destabilizes the furanyl radical, leading to the high C-Hα BDE of furan.

3.5 Conclusion

We report the 364-nm photoelectron spectrum of the α-furanide anion. Two electronic states

of the α-furanyl radical are observed. At lower binding energy, we find a well-resolved vibrational

progression due to α-furanide X̃ 2A′ ← X̃ 1A′ photodetachment. The adiabatic EA of the α-furanyl

radical is determined to be 1.853(4) eV. Agreement between the X̃ 2A′ ← X̃ 1A′ Franck-Condon

simulation and the observed spectrum enables identification of several vibrational frequencies of

the X̃ 2A′ σ-radical ground state, given in Table 3.3.
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At higher binding energy, the photoelectron spectrum is dominated by photodetachment to

the Ã2A′′ π-radical excited state of α-furanyl radical. The Ã2A′′ state lies 0.68(7) eV higher in

energy than the X̃ 2A′ state of the α-furanyl radical. The excited state signal is suppressed when the

laser is polarized parallel to the direction of photoelectron collection (θ = 0◦). We see no evidence

of C-Hβ deprotonation, as Franck-Condon simulations for Hβ removal have a significantly different

structure and energy from the observed photoelectron spectrum.

Using the EA of α-furanyl radical measured in this work, together with the measured gas-

phase acidity of furan32 and the well-known ionization energy of H,84 we determine the C-Hα BDE

of furan to be 119.8(2) kcal mol−1 through a thermochemical cycle.33 This experimental value

is consistent with high-level calculations53–55 that predict an exceptionally high C-Hα bond dis-

sociation energy. The high C-Hα bond dissociation energy—7 kcal mol−1 greater than that of

benzene33—can be attributed to thermodynamic instability of the resulting radical upon Hα loss.



Chapter 4

Dihalomethyl Anions

4.1 Introduction

Dihalomethyl radicals CHX2 (X = Cl, Br, I) play significant roles in atmospheric chemistry,

combustion, and organic synthesis. They are potential players in the depletion of atmospheric ozone.

Partially halogenated chlorofluorocarbons—commonly used in refrigerants, fire suppressants, and

pesticides—are oxidized in the troposphere to form, among other species, short-lived dihalomethyl

radical products.100–102 These radicals are then photolyzed by near-UV solar radiation to produce

halogen atoms,103,104 that have been implicated in ozone loss and climate change.105,106 Addition-

ally, dihalomethyl radicals are byproducts of the incineration of hazardous industrial waste such as

halogenated hydrocarbons, prompting research into the kinetic and thermodynamic properties of

halomethyl radicals.107 Halomethyl radicals are also of importance in several synthetic reactions,

such as cyclopropanation of olefins and diiodomethylation of carbonyl compounds.108–116

Even though halomethyl radicals have been investigated by many groups over the past forty

years, much is still unknown about the dihalomethyl anions and their corresponding radicals. There

have been a considerable number of matrix-isolation infrared spectroscopy studies of dihalomethyl

radicals, specifically dichloromethyl radical, where several vibrational frequencies have been de-

termined.117–124 However, almost all of the observed modes are asymmetric vibrations, which are

generally inactive in photoelectron spectroscopy. There has been only one spectroscopic observation

of the dichloromethyl anion (FTIR Ar matrix isolation spectroscopy), from which two symmetric

vibrational frequencies were determined.125
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The thermochemistry of CHCl2 and CHBr2 radicals has also been studied by several groups.126–128

The most recent and extensive experimental investigation was conducted by Nibbering and cowork-

ers,128 who performed bracketing experiments using FTICR mass spectrometry to study the oc-

currence or nonoccurrence of electron transfer between a dihalomethyl radical anion and a neutral

electron acceptor molecule with a known electron affinity (EA). In this way they determined the

EAs of CHCl2 and CHBr2 to be 1.47(4) eV and 1.71(8) eV, respectively. One extensive theoretical

study of halomethyl radicals and anions was performed by Li et al.129 They published a compu-

tational review of the EAs, molecular structures, and thermochemistry of fluorine-, chlorine-, and

bromine-substituted methyl radicals, comparing four independent density functional methods to

known experimental values.

We study the dihalomethyl radicals using anion photoelectron spectroscopy. In anion pho-

toelectron spectroscopy, a photon is used to detach an electron from a negative ion to produce

a neutral radical. To a first approximation, the intensity of the neutral vibrational levels in a

photoelectron spectrum is governed by the Franck-Condon overlap between the ground vibrational

wavefunction of the anion with the wavefunctions of the various vibrational levels of the neutral.

If there is little difference between the geometry of the anion and neutral, the best Franck-Condon

overlap occurs between the ground vibrational wavefunction of the anion and the ground vibrational

wavefunction of the neutral. This transition—the origin—appears as the most prominent peak in

the spectrum, from which one can readily obtain the adiabatic EA. Also, the width of the photo-

electron spectral envelope is minimal in the case of a small geometry change; the Franck-Condon

region of the spectrum is confined to an area near the potential minimum of the neutral molecule,

where vibrational modes can be well-approximated as harmonic and uncoupled. For larger but still

modest geometry changes between the two electronic states, long progressions of the vibrational

modes will be observed and the Franck-Condon intensity for the origin peak may be much smaller

than for the higher vibrational levels of the neutral corresponding to the vertical transition. Never-

theless, as long as the origin transition can be assigned, such spectra readily yield the quantitative

spectroscopic quantities we hope to obtain from photoelectron spectroscopy.2
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If a very large geometry change occurs between the anion and the neutral, however, spectral

analysis becomes more difficult. When the Franck-Condon overlap for the origin transition is

insignificant, only the transitions to high vibrational levels of the neutral are observed. At these

higher vibrational levels, anharmonicity and mode coupling often become significant. In order to

obtain vibrational frequencies and the EA, it is necessary to rely on theory and simulations for

guidance. Even if vibrational progressions are well-resolved, it may be impractical to extrapolate

to the origin to find the EA.

In this work we examine the photoelectron spectra of CHCl−2 , CHBr−2 , CHI−2 , and their

deuterated analogs. The spectra exhibit extended, partially resolved vibrational progressions that

arise from the large geometry change that takes place when an electron is detached from the pyra-

midal anion, producing an essentially planar neutral radical. The observed vertical detachment

energy (VDE), or the binding energy at the maximum of the vibrational progression, of each di-

halomethyl radical is in good agreement with the calculated values,129 providing us with confidence

that theory can be used to accurately describe the electronic energies of these species. In contrast,

a standard Franck-Condon analysis using normal modes in a Cartesian displacement coordinate

system is inadequate for modeling these spectra. The partially resolved vibrational progressions

in the simulated spectra do not agree with those observed, and deuteration yields changes in peak

spacing opposite to what is predicted with simulation. Most important, the width of the envelope

in the simulation is much greater than that which is observed. This failure of the harmonic nor-

mal mode simulation to reproduce the width of the measured spectral envelope is not normally

observed.

These systems represent a very challenging case for Franck-Condon simulation and analysis,

both because there is no detectable Franck-Condon intensity at the origin and because of the very

different nature of the vibrational motions in the neutral compared with the anion. As we look

to move beyond the standard normal mode treatment, we first consider the use of an internal

coordinate system as the basis for the harmonic normal mode analysis, which can be expected to

provide a better description of the geometry displacements than Cartesian coordinates but still does
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not adequately treat the anharmonicity of the vibrational potentials and coupling between modes.

To treat those effects more accurately, we employ a multidimensional, anharmonic coupled-mode

analysis for the key active modes. This investigation of dihalomethyl radicals explores the limits

of conventional normal-mode analysis and illustrates the approaches required for transitions with

a large geometry change and with multiple active, coupled, anharmonic vibrational modes.

4.2 Experimental Methods

The negative ion photoelectron spectrometer used in this experiment has been described in

detail elsewhere.2,34,41 The apparatus consists of four main sections: an ion source, a mass filter,

an interaction region with crossed laser and ion beams, and an electrostatic electron kinetic en-

ergy analyzer. Negative ions are formed in a flowing afterglow ion source. A microwave discharge

containing trace amounts of O2 gas in He buffer gas (∼0.4 Torr) generates atomic oxygen radical

anion, O−. The O− anion abstracts an H atom from methane that is added downstream, form-

ing hydroxide anion (OH−), which then deprotonates the appropriate dihalomethane precursor

(CH2Cl2, CH2Br2, or CH2I2, Sigma-Aldrich) to generate dihalomethyl anions: OH− + CH2X2 →

CHX−2 + H2O. The deuterated anion CDX−2 is produced by starting with perdeuterated di-

halomethane CD2X2 (CD2Cl2, CD2Br2, and CD2I2, Sigma-Aldrich). Sufficient methane is added to

ensure complete removal of O− before CH2X2 is introduced, guaranteeing that CHX−2 is produced

exclusively, rather than having some CX−2 contaminant, which would be formed by the reaction

O− + CH2X2 → CX−2 + H2O.130 Collisions with He buffer gas cool the ions to approximately

300 K. The flow tube can be further cooled with a liquid nitrogen jacket to obtain a “cold spec-

trum” of ions with temperatures near 150 K. The photoelectron spectra of CHCl−2 and CDCl−2

were collected at 150 K, while the spectra of CHBr−2 , CDBr−2 , CHI−2 , and CDI−2 were collected

at 300 K. Anions are extracted into a differentially pumped region and are accelerated to 735 eV

before entering a Wien velocity filter with a mass resolution of m/∆m ∼ 40. The mass-selected

ion beam (typically 100–500 pA) is decelerated to 35 eV and focused into the interaction region.

Here, the ∼0.5 W output from a single-mode continuous-wave argon ion laser operating at 364 nm
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(3.40814 eV) is built up to approximately 50 W of circulating power in an optical buildup cavity

located within the vacuum system. Photoelectrons ejected in the direction orthogonal to both the

laser and ion beams enter a hemispherical energy analyzer. The photoelectron signal is recorded

as a function of electron kinetic energy with a position-sensitive detector. The energy analyzer has

a resolution of approximately 12 meV under the conditions used for the present experiments.

The electron kinetic energy (eKE) can be converted to electron binding energy (eBE) through

the relationship eBE = hν - eKE. Absolute kinetic energies are calibrated43 before each experiment

using the well-known EA of O.45 Additionally, the electron energy scale is corrected for a slight

linear compression (< 1%)2 using the photoelectron spectrum of W−, which provides a number of

known transitions spanning the photoelectron energy range.46 After making these corrections and

accounting for the resolution of the spectrometer and rotational peak profiles, absolute electron

binding energies can be determined with an accuracy of 5 meV or better.2

A rotatable half-wave plate positioned outside the buildup cavity controls the polarization of

the photodetachment radiation. When the angle between the laser polarization and the direction

of the collected electrons is 54.7◦, referred to as the magic angle, the photoelectron spectrum is

independent of the anisotropy parameter of the ejected electrons.5 Therefore, spectra collected at

the magic angle directly reflect the total photodetachment cross section. All spectra shown here

were collected with magic angle polarization.

4.3 Theoretical Methods

4.3.1 Computational Chemistry

In this work, we perform all electronic structure calculations using the Gaussian 03 program

package.48 The geometry optimization and frequency calculations were performed with density func-

tional theory using the B3LYP hybrid functional.49,50 The calculations employ the 6-311++G(d,p)

basis set for hydrogen, carbon, and chlorine,51,52 and pseudopotentials for bromine and iodine

that have been shown to work well for halogen-containing compounds.131–133 Geometries were op-
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timized, and harmonic vibrational frequencies and normal mode coordinates were calculated for

the doublet anion and the singlet neutral states. The calculated equilibrium structures, relative

energies, and frequencies of CHCl2 and CDCl2 are reported in Tables 4.1 and 4.2; results of analo-

gous calculations for CHBr2 and CHI2 are provided in Tables 4.3, 4.4, 4.5, and 4.6. In addition to

the non-planar minimum energy structures of the anionic and neutral CHCl2 and CDCl2, we also

consider the low-lying saddle point on the neutral surface in which all four atoms are coplanar. This

structure is calculated to be only 162 cm−1 above the minimum on this surface at the present level

of theory. This energy is smaller than half the harmonic frequency of the CH (CD) pyramidal bend,

leading us to expect that when zero-point motion is considered the ground state wavefunction will

be delocalized and will have significant amplitude at the transition state geometry. The inversion

barriers for CHBr2 and CHI2 (160 cm−1 and 1 cm−1, respectively) are likewise smaller than half

the harmonic frequency of the CH (CD) pyramidal bend in both of these systems (Table 4.7).

4.3.2 Franck-Condon Analysis using Cartesian Coordinates

We typically use a Franck-Condon analysis of the vibrational structure in photoelectron

spectra to obtain frequencies and equilibrium geometries of the neutral species and to identify the

origin transition. This method is used to simulate the photoelectron spectrum of the furanide anion

(C4H3O
−), which we will use as prototype for analysis of photoelectron spectra. The intensity of

a vibronic transition IFC is proportional to the square of the Franck-Condon overlap integral

IFC =

[∫
Ψv′(Q

′)Ψv′′(Q
′′)dQ′

]2
(4.1)

where Ψv′(Q
′) is the full, multidimensional vibrational wavefunction of the neutral in quantum state

v ′ as a function of the normal coordinates of the neutral Q′, and Ψv′′(Q
′′) is the corresponding

vibrational wavefunction of the anion in terms of its normal coordinates Q′′. The normal modes

are treated as uncoupled and harmonic.3

It is necessary to express the wavefunctions of both the anion and the neutral states in terms

of the same set of normal coordinates in order to calculate the Franck-Condon overlap integral.
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Table 4.1: Calculated, unscaled harmonic vibrational frequencies of CHCl−2 , CHCl2, CDCl−2 , and
CDCl2 (B3LYP/6-311++G(d,p)), given in units of cm−1. Experimental frequencies (where avail-
able) are listed in italics.

 

 1 

TABLE 1.  Calculated, unscaled harmonic vibrational frequencies of CHCl$_2^-$, CHCl$_2$, 

CDCl$_2^-$, and CDCl$_2$ (B3LYP/6-311++G(d,p)), given in units of cm$^{-1}$.  

Experimental frequencies (where available) are listed in italics. 

 

Vibrational Mode CHCl2

 

CHCl2 
CDCl2


 

CDCl2 

Pyramidal, Cs Planar, C2v Pyramidal, Cs Planar, C2v 

A′ ClCCl bend 212.5 304.4 310.4 (A1) 211.5 302.4 308.5 (A1) 

 ClCCl sym str 497.2, 532
a
 748.1, 845

b
 741.0 (A1) 494.0 715.1, 814

b
 720.2 (A1) 

 CH pyram bend 1029.4 469.5 352.3i (B1) 768.3 384.6 285.6i (B1) 

 CH stretch 2917.8, 2764
a
 3216.7 3255.8 (A1) 2146.4 2368.8 2398.6 (A1) 

A″ ClCCl asym str 399.8 865.6, 902
c
 897.5 (B2) 396.8 805.1, 814

c
 818.0 (B2) 

 CH asym wag 1172.2 1249.7, 1226
c
 1242.5 (B2) 846.5 965.0, 974

c
 979.3 (B2) 

 

a 
Experiment, Ar matrix: Richter et al., 1997

26
 

b 
Experiment, REMPI: Long and Hudgens, 1987

67
 

c
 Experiment, Ar matrix: Carver and Andrews, 1969

18-19
 

 

 

  

a Experiment, Ar matrix125

b Experiment, REMPI134
c Experiment, Ar matrix117

Table 4.2: Calculated equilibrium structures of CHCl−2 (CDCl−2 ) and CHCl2 (CDCl2) obtained
using B3LYP/6-311++G(d,p). Bond lengths are in units of Å, and angles are in units of degrees.
The geometry change upon photodetachment is defined as the difference in the values of the internal
coordinates for the anion and the radical.

 

 2 

TABLE 2.  Calculated equilibrium structures of CHCl$_2^-$ (CDCl$_2^-$) and 

CHCl$_2$ (CDCl$_2$) obtained using B3LYP/6-311++G(d,p).  Bond lengths are in units of 

\AA, and angles are in units of degrees.  The geometry change upon photodetachment is defined 

as the difference in the values of the internal coordinates for the anion and the radical. 

 

Internal 

Coordinate CHCl2

 (CDCl2


) 

Geometry Change, neutral – anion 

Pyramidal, Cs Planar, C2v 

rCH 1.105 -0.025 -0.028 

rCCl 1.958 -0.239 -0.249 

θHCCl 96.0 20.7 23.6 

θClCCl 105.2 14.1 15.6 

τClCHCl′ 106.0 44.2 74.0 

 

 

  



66

Table 4.3: Calculated, unscaled harmonic vibrational frequencies of CHBr−2 , CHBr2, CDBr−2 , and
CDBr2, given in units of cm−1. Results were obtained using B3LYP/6-311++G(d,p) for C and H,
and basis set and pseudopotentials for Br developed by Stoll et al.131–133

 

 4 

TABLE S1.  Calculated, unscaled harmonic frequencies of CHBr$_2$ and CDBr$_2$ given in 

units of cm$^{-1}$.  Results were obtained using B3LYP/6-311++G(d,p) for C and H, and basis 

set and pseudopotentials for Br developed by Stoll et al.
a
  

 

Vibrational Mode CHBr2

 

CHBr2 
CDBr2


 

CDBr2 

Pyramidal, Cs Planar, C2v Pyramidal, Cs Planar, C2v 

A′ BrCBr bend 127.4 183.5 186.4 (A1) 127.2 183.0 185.8 (A1) 

 BrCBr sym str 432.3 614.9 597.5 (A1) 426.9 577.1 577.7 (A1) 

 CH pyram bend 957.1 410.4 318.9i (B1) 710.9 337.9 256.3i (B1) 

 CH stretch 2935.1 3205.8 3235.8 (A1) 2158.2 2359.6 2382.4 (A1) 

A″ BrCBr asym str 373.9 752.9 779.5 (B2) 368.9 703.7 720.2 (B2) 

 CH asym wag 1110.7 1173.8 1170.8 (B2) 801.3 894.6 902.9 (B2) 

 

a
 See references 44 – 46 in main text. 

 

  

Table 4.4: Calculated equilibrium structures of CHBr−2 (CDBr−2 ) and CHBr2 (CDBr2). Results
were obtained using B3LYP/6-311++G(d,p) for C and H, and basis set and pseudopotentials for
Br developed by Stoll et al.131–133 Bond lengths are in units of Å, and angles are in units of degrees.
The geometry change upon photodetachment is defined as the difference in the values of the internal
coordinates for the anion and the radical.
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TABLE  S2.  Calculated equilibrium structures of CHBr$_2^-$ (CDBr$_2^-$) and 

CHBr$_2$ (CDBr$_2$).   Results were obtained using B3LYP/6-311++G(d,p) for C and H, and 

basis set and pseudopotentials for Br developed by Stoll et al.
a
  Bond lengths are in units of \AA, 

and angles are in units of degrees.  The geometry change upon photodetachment is defined as the 

difference in the values of the internal coordinates for the anion and the radical. 

 

Internal 

Coordinate 
CHBr2


 (CDBr2


) 

CHBr2 (CDBr2) Geometry Change 

Pyramidal, Cs Planar, C2v Pyramidal, Cs Planar, C2v 

rCH 1.106 1.081 1.079 -0.025 -0.027 

rCBr 2.097 1.862 1.852 -0.235 -0.245 

θHCBr 95.5 116.4 118.9 20.9 23.4 

θBrCBr 106.4 120.6 122.1 14.2 15.7 

τBrCHBr′ 107.1 151.7 180.00 44.6 72.9 

 

a
 See references 44 – 46 in main text. 
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Table 4.5: Calculated, unscaled harmonic vibrational frequencies of CHI−2 , CHI2, CDI−2 , and CDI2,
given in units of cm−1. Results were obtained using B3LYP/6-311++G(d,p) for C and H, and
basis set and pseudopotentials for I developed by Stoll et al.131–133
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TABLE S3.  Calculated, unscaled harmonic frequencies of CHI$_2$ and CDI$_2$ given in units 

of cm$^{-1}$.  Results were obtained using B3LYP/6-311++G(d,p) for C and H, and basis set 

and pseudopotentials for I developed by Stoll et al.
a
  

 

Vibrational Mode CHI2

 

CHI2 
CDI2


 

CDI2 

Pyramidal, Cs Planar, C2v Pyramidal, Cs Planar, C2v 

A′ ICI bend 93.7 129.1 132.0 (A1) 93.6 117.7 131.7 (A1) 

 ICI sym str 377.1 508.7 506.4 (A1) 372.1 489.2 489.0 (A1) 

 CH pyr bend 875.3 151.7 88.4i (B1) 648.5 133.9 68.2i (B1) 

 CH stretch 2935.8 3210.0 3213.4 (A1) 2157.8 2362.0 2364.6 (A1) 

A″ ICI asym str 372.6 720.7 724.0 (B2) 365.9 670.9 673.1 (B2) 

 CH asym wag 1067.5 1130.8 1130.0 (B2) 771.8 862.8 863.4 (B2) 

 

a
 See references 44 – 46 in main text. 

 

 

  

Table 4.6: Calculated equilibrium structures of CHI−2 (CDI−2 ) and CHI2 (CDI2). Results were
obtained using B3LYP/6-311++G(d,p) for C and H, and basis set and pseudopotentials for I
developed by Stoll et al.131–133 Bond lengths are in units of Å, and angles are in units of degrees.
The geometry change upon photodetachment is defined as the difference in the values of the internal
coordinates for the anion and the radical.
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TABLE S4.  Calculated equilibrium structures of CHI$_2^-$ (CDI$_2^-$) and 

CHI$_2$ (CDI$_2$).  Results were obtained using B3LYP/6-311++G(d,p) for C and H, and 

basis set and pseudopotentials for I developed by Stoll et al.
a
  Bond lengths are in units of \AA, 

and angles are in units of degrees.  The geometry change upon photodetachment is defined as the 

difference in the values of the internal coordinates for the anion and the radical. 

 

Internal 

Coordinate 
CHI2


 (CDI2


) 

CHI2 (CDI2) Geometry Change 

Pyramidal, Cs Planar, C2v Pyramidal, Cs Planar, C2v 

rCH 1.107 1.081 1.080 -0.026 -0.027 

rCI 2.261 2.029 2.027 -0.232 -0.234 

θHCI 95.9 117.3 117.7 21.4 21.8 

θICI 108.7 124.5 124.7 15.8 16.0 

τICHI′ 109.6 169.6 180.0 60.0 70.4 

 

a
 See references 44 – 46 in main text. 
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Table 4.7: The experimental and calculated (B3LYP/6-311++G(d,p)) electron affinity (EA), ver-
tical detachment energy (VDE), and peak spacing near the VDE for each of the dihalomethyl
radicals. Basis sets and pseudopotentials for Br and I were developed by Stoll et al.131–133

 

 3 

TABLE 3.  The experimental and calculated (B3LYP/6-311++G(d,p)) electron affinity (EA), 

vertical detachment energy (VDE), and peak spacing near the VDE for each of the dihalomethyl 

radicals.  Basis sets and pseudopotentials for Br and I were developed by Stoll et al.
44-46

 

 

  CHCl2 CDCl2 CHBr2 CDBr2 CHI2 CDI2 

EA, eV Experiment 1.3(2)
a
 

1.47(4)
b 

1.3(2)
a
 1.9(2)

a
 

1.71(8)
b
 

1.9(2)
a
 1.9(2)

a
 1.9(2)

a
 

 Calculation 1.430 1.433 1.744 1.747 1.820 1.826 

VDE, eV Experiment 2.6487 2.6815 3.0181 3.0171 2.8287 2.9057 

 Calculation 2.8621 2.8630 2.8829 2.8836 2.8271 2.8271 

Peak Spacing 

Near VDE, cm
-1

 

Experiment 

Normal Mode 

(2 + 1) – D 

190(50) 

240(10) 

150(20) 

231(6) 

361(9) 

240(10) 

520(30) 

205(1) 

-- 

170(40) 

303(9) 

-- 

440(40) 

540(10) 

-- 

380(60) 

511(7) 

-- 

Inversion 

Barrier, cm
-1

 

Calculation 162 162 160 160 1 1 

 

a
 Estimates of EA were obtained by subtracting the calculated difference in energy between the 

VDE and the EA (VDEcalc – EAcalc) from the experimentally measured VDE using Eq. (8). 

b 
Experiment, Fourier transform ion cyclotron resonance mass spectrometry

29
 

 

 

 

 

  

a Estimates of EA were obtained by subtracting the calculated difference in energy between
the VDE and the EA (VDEcalc - EAcalc) from the experimentally measured VDE using
Eq. 4.8.
b Experiment, Fourier transform ion cyclotron resonance mass spectrometry128
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The Duschinsky transformation11 is applied to express the normal mode coordinates of the neutral

in the basis set of the normal mode coordinates of the anion. The transformation is given by

Q′′ = J′′Q′ + K′′. (4.2)

Here, K′′ is the vector that describes the difference in the nuclear equilibrium positions between

the anion and neutral in terms of the normal coordinates of the anion. The Duschinsky rotation

matrix J′′ accounts for mixing of normal modes resulting from the discrepancy between the normal

mode coordinates of the anion and neutral.3

The Franck-Condon profiles of the photoelectron spectra are simulated using the PESCAL

program.21 Since none of the frequencies of the allowed vibrational modes for the dihalomethyl

species are known experimentally, the simulations use theoretical geometries, normal mode vectors,

and vibrational frequencies of the anion and neutral states calculated using the Gaussian 03 soft-

ware package.48 The normal mode eigenvectors (Q′, Q′′) are expressed in terms of mass-weighted

Cartesian atomic displacement coordinates, and the Duschinsky rotation J′′ matrix and displace-

ment vector K′′ are determined using Eq. 4.2. The Franck-Condon intensities for all six modes as

well as their combination bands and hot bands (at 150 K for CHCl−2 and CDCl−2 ; and at 300 K

for CHBr−2 , CDBr−2 , CHI−2 , and CDI−2 ), are computed in the harmonic oscillator approximation

including Duschinsky rotation using the Sharp-Rosenstock-Chen method.4,8,20 The normal mode

simulations of CHCl−2 and CDCl−2 are computed with an EA of 1.3 eV. The individual vibronic

peak contours are approximated as a Gaussian function with a 12 meV FWHM, consistent with

instrumental resolution.

4.3.3 Franck-Condon Analysis using Internal Coordinates

The normal mode analysis using orthogonal Cartesian displacement coordinates is easily

implemented computationally for molecules of arbitrary size and connectivity, and therefore has

become the conventional method.9 These normal modes are, to lowest order, identical to the nor-

mal modes in internal coordinates (bond lengths and angles) for infinitesimal displacements, but
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become less reasonable for large geometry changes. The older GF–matrix techniques using internal

coordinates as described by Wilson et al.,10 as well as more recent formulations,27 require calcu-

lations specific to each system. It has been shown that using curvilinear internal coordinates in

the normal mode analysis is more accurate for Franck-Condon simulations of systems with large

geometry changes.13,19 Because the internal coordinates more naturally represent the vibrational

potential energy surfaces, they are less likely to induce artificial couplings between modes in the

mode displacements, K, and the Duschinsky rotation matrix.

We implement the harmonic normal mode analysis using the internal coordinates represented

by the three bond stretches (CH, CX, and CX′) and three bond angles (HCX, HCX′, and XCX′).

We start from the force constant matrix in internal coordinates from Gaussian 03,48 and derive the

Wilson B–, G–, and F–matrices analytically.10 The Wilson GF method10 is used to compute the

normal modes and frequencies, which are verified to match those calculated using the Cartesian

coordinate system. These analytical calculations were implemented using Mathematica (Wolfram

Research Inc.). The resulting normal mode vectors in the internal displacement coordinate basis

are then used to calculate via Eq. 4.2 the corresponding K′′ displacements and Duschinsky J′′ rota-

tion matrix, which is now a non-orthogonal transformation.13,19 A modified version of PESCAL21

is used to obtain the Franck-Condon factors (FCFs), again in the harmonic oscillator approxima-

tion including Duschinsky rotation using the Sharp-Rosenstock-Chen method.4,8,20 The spectra of

CHCl−2 and CDCl−2 are simulated at 150 K, while the spectra of CHBr−2 , CDBr−2 , CHI−2 , and CDI−2

are simulated at 300 K. As before, the simulations of CHCl−2 and CDCl−2 are computed with an EA

of 1.3 eV, and the individual vibronic transitions are convoluted over the instrumental resolution

function for comparison with experiment.

4.3.4 (2 + 1) – Dimensional Anharmonic Coupled-Mode Analysis

Although the harmonic normal mode analysis using the internal coordinate system is an

improvement over the Cartesian coordinates for systems with large geometry changes, it does not

address either the anharmonicity of the vibrational potentials or coupling between vibrational
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modes within one electronic state. To address these issues, we take a multidimensional anharmonic

coupled-mode approach instead. For this challenging system, we explicitly couple the two bend

modes and convolute the resulting spectrum with the spectrum obtained from a one-dimensional

treatment of the ClCCl stretch in an overall (2 + 1) – dimensional coupled mode analysis.

First, we must choose a reduced set of vibrations to couple and solve collectively that is appro-

priate for the dihalomethyl system. Based on calculated geometry changes between the minimum

energy structure of the anion and neutral species listed in Table 4.2, we anticipate that the three

most important modes contributing to the photoelectron spectrum will be the ClCCl symmetric

stretch, the HCCl (DCCl) symmetric bend, and, most importantly, the out-of-plane distortion of

CHCl2 (CDCl2). We generate a calculated photoelectron spectrum in two parts. The first focuses

on the ClCCl symmetric stretch contribution, while the second involves the HCCl symmetric bend

and out-of-plane bending modes. We explicitly couple the two bending modes because we calculate

a large change in the HCCl angle as the out-of-plane bend is distorted from the planar structure.

This is illustrated in Fig. 4.1, in which the potential energy of CHCl2 (dashed blue) and CHCl−2

(red) are plotted as a function of the out-of-plane distortion, defined as the ClCHCl′ improper

torsion angle τClCHCl′ , minimizing the energy with respect to the displacements of the remaining

coordinates.27 This improper torsion is defined as the angle between the plane containing the car-

bon, hydrogen, and one of the chlorine atoms and the plane that contains the carbon, hydrogen,

and the other chlorine atom, as illustrated in the inset in Fig. 4.1. The minimum energy structure

of the anion corresponds to a value of τClCHCl′ of 106◦. Based on the plots of the other three internal

coordinates along this potential cut (Fig. 4.2), we find that there are large differences in the values

of the HCCl angles (green), and, to a lesser extent, the CCl distance (dashed purple) as τClCHCl′

is decreased from 180◦ to 106◦. The changes in the CH bond length (blue) are much smaller.

Because the equilibrium CH bond length is effectively independent of τClCHCl′ and its frequency

is significantly higher than the other symmetry-allowed vibrational modes, we expect that the CH

stretching vibrational motion will not contribute to the photoelectron spectrum or couple strongly

to active modes. This expectation was further confirmed by reduced dimensional studies involving
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this mode and the out-of-plane distortion.

Once the active modes have been selected, we evaluate cuts through the six-dimensional

potential energy surface as functions of these coordinates. For the two-dimensional cut along the

two bending coordinates, we allow the remaining two symmetric coordinates to vary in order to

minimize the electronic energies. This cut is evaluated over a range from θHCCl = 60◦ to 140◦

(in increments of 10◦, with both HCCl angles kept equal), and from τClCHCl′ = 60◦ to 300◦ (in

increments of 10◦). A bicubic spline interpolation scheme was used to interpolate the potential

between these points. The cut along the ClCCl stretch coordinate was evaluated over a range of

rCCl from 1.2 Å to 2.7 Å in increments of 0.05 Å, with the two CCl distances constrained to be

equal. For this cut the other coordinates are constrained to their equilibrium values on the anion

surface. Two-dimensional cuts through the anion and neutral potentials are shown in Fig. 4.3.

Using these surfaces, we evaluate the vibrational energies and wavefunctions for the two

subsystems. Just as the potentials are evaluated independently, two separate calculations are

performed to obtain these quantities. To examine the ClCCl symmetric stretch, we define the

coordinate s as the symmetric combination of the two CCl distances rCCl, which are constrained

by symmetry to be equal. Thus, for the ClCCl stretch, we define s =
√

2rCCl. As such,

H = −~2

2

 1

mCl
+

1 + cos θ
(α)
CHCl,e

mC

 ∂2

∂s2
+ V (α)(s) (4.3)

where α can represent the potential for either the anion or neutral system. As there is no dependence

of the kinetic energy on the mass of the hydrogen atom, the energies and wavefunctions will be

identical for CHCl2 and CDCl2. The Schrödinger Equation is evaluated in a discrete variable

representation (sinc-DVR), as described by Colbert and Miller.135 Specifically, 500 DVR points are

used with rCCl = s/
√

2 ranging from 1 to 2.5 Å.

In a second calculation, we evaluate the energies and wavefunctions for the two-dimensional

bend problem, where the two bend coordinates are denoted τClCHCl′ for the out-of-plane distortion,

and θs for the symmetric HCCl bend. We define the HCCl symmetric bend as the symmetric
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Figure 4.1: CHCl2 (dashed blue) and CHCl−2 (red) potential energy curves as a function of the
out-of-plane angle (τClCHCl′).
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Figure 4.2: Change in the CHCl2 internal coordinates θHCCl (green), rCCl (dashed purple) and rCH

(blue) as the out-of-plane angle τClCHCl′ is varied.
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Figure 4.3: Two-dimensional cuts through the (a) CHCl2 and (b) CHCl−2 potential energy surfaces.
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combination of the two equivalent θHCCl. Thus, θs =
√

2θHCCl. Here,

H =
1

2

[
pτGτ,τpτ + pτGτ,θpθ + pθGτ,θpτ + pθGθ,θpθ + V

(α)
2d (τ, θs) + V ′(τ, θs)

]
(4.4)

For this expression, the values of the G–matrix elements and V ′ are obtained from the tabulation

of Frederick and Woywod.27 The G–matrix elements depend on the two bend coordinates. The

matrix representation of multiplicative operators, including the G–matrix elements, are diagonal

in the DVR whereas the momentum operators are not. As a result, in a DVR, the matrix elements

have the form

〈nτ , nθ|pipjGi,j(τ, θ)|mτ ,mθ〉 = 〈nτ , nθ|pipj |mτ ,mθ〉Gi,j(τmτ , θmθ
) (4.5)

and

〈nτ , nθ|Gi,j(τ, θ)pipj |mτ ,mθ〉 = 〈nτ , nθ|pipj |mτ ,mθ〉Gi,j(τnτ , θnθ
). (4.6)

Since analytical expressions for 〈nτ , nθ|pipj |mτ ,mθ〉 in a sinc-DVR are known,135–137 expressing

the terms in the kinetic energy operator in this form greatly simplifies the calculation. To ensure

that the kinetic energy operator is Hermitian, we rewrite the kinetic terms in Eq. 4.4 as136

piGij(qi, qj)pj =
1

2

[
pipjGi,j(qi, qj) +Gi,j(qi, qj)pipj − ~2

∂2Gij
∂qi∂qj

]
(4.7)

Finally, the matrix elements of pi in a sinc-DVR have been worked out by Luckhaus.136 In this work,

we use an infinite grid limit of this expression, reported in Gardeinier et al.137 For the calculations

reported here, we use fifty evenly spaced grid points in each dimension and a range that spans the

range of electronic energies.

Within the Franck-Condon approximation, the calculated photoelectron spectrum is obtained

by first evaluating the squared overlaps of the vibrational states of the anion with energies less than

1000 cm−1 above the ground vibrational state with all of the calculated states on the neutral surface

for each of the two potential cuts described above. To account for the increase in the frequency of

the ClCCl stretch between the minimum energy geometry on the neutral surface to the region of the

potential that is sampled in the spectrum (e.g., the minimum energy geometry of the anion), the
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anharmonic energies of the ClCCl stretch are multiplied by 1.08. This is the ratio of the frequency

of this mode when τClCHCl′ and θs are constrained to their values in the vertical and equilibrium

geometries on the neutral surface. We combine the two stick spectra, weighting the product of the

overlaps by a Boltzmann factor of exp[−(Estretch + Ebend)/kbT ], where the energies are obtained

from the one- and two-dimensional calculations and T = 150 K . We then convolute the resulting

spectrum with Gaussian functions with FWHM of 12 meV. The calculated spectra were shifted so

that the adiabatic EA is in agreement with the experimental value of 1.3 eV.

4.4 Results

4.4.1 Experimental Spectra and Qualitative Analysis

The anion photoelectron spectra of CHCl−2 , CHBr−2 , CHI−2 , and their deuterated analogs are

shown in Fig. 4.4. All of the spectra display extensive vibrational progressions resulting from the

large geometry change that takes place upon photodetachment. The most prominent features in

the spectra result from Franck-Condon overlap with high vibrational levels of the neutral. The

calculated EA and calculated VDE of each dihalomethyl radical is marked with a labeled arrow

in Fig. 4.4. The calculated EAs are consistent with previous experimental EA determinations of

CHCl2 and CHBr2 (Table 4.7).128 In each case, the origin is calculated to lie at least 1 eV below

the VDE—approximately the eBE at the peak of the vibronic band—in a region of negligible signal

because of poor Franck-Condon overlap. However, the calculated VDEs, computed by subtracting

the energy of the anion from the energy of the neutral at the equilibrium geometry of the anion,

agree reasonably well with the measured VDEs of the dihalomethyl anions, as shown in Fig. 4.4

and listed in Table 4.7. From the Franck-Condon simulations, the origin transition is calculated

to have approximately 10−5 the intensity of the peak at the VDE. Thus, the origin will not be

experimentally observable. The calculation of the difference in energy between the VDE and the

EA should be fairly accurate in the case of rigid anions like the dihalomethyl anions, so we can use
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the following equation to obtain an estimate of the EA:

EAest = VDEexp − (VDEcalc − EAcalc), (4.8)

where

VDEcalc = E(neutral at anion eqm geom)− E(anion at anion eqm geom) (4.9)

and

EAcalc = E(neutral at neutral eqm geom)− E(anion at anion eqm geom). (4.10)

In this way, an estimate of the EA of each dihalomethyl radical studied is determined using the

experimental VDE and the calculated difference between the energy of the anion and the energy

of the neutral at the anion equilibrium geometry. These results are summarized in Table 4.7. Our

estimates are consistent with the previous EA determinations of CHCl2 and CHBr2.
128 The esti-

mated EA of each dihalomethyl radical obtained from Eq. 4.8 is used as the EA for the simulations

and calculations of that radical.

There are several indications that the structure in the spectra does not result from a single

vibrational progression and instead arises from multiple active vibrational modes with several vi-

bronic transitions lying under each peak. First, the spacing between the peaks in the spectrum

of CDCl−2 does not correspond to the calculated frequency of any of the symmetric vibrational

modes. Second, isotopic substitution has an unexpected effect on the spectrum of CHCl−2 . The

spectrum generally becomes more congested upon deuteration, as seen in the spectra of CHBr−2

and, to a lesser extent, of CHI−2 . However, the spectrum of CDCl−2 has more resolved structure

than that of CHCl−2 , implying that the observed structure is due to accidental resonance among

two or more vibrational modes, rather than to a single vibrational progression. Also, the peak

widths near the VDE are at least 20 meV, significantly greater than our experimental resolution

of about 12 meV. Furthermore, the modulation depth of the peaks and the peak spacings change

across the progression, a result of anharmonicity causing the vibronic transitions to move into and

out of resonance.
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Figure 4.4: Experimental spectra of the dihalomethyl anions (a) CHCl−2 , (b) CHBr−2 , (c) CHI−2 , (d)
CDCl−2 , (e) CDBr−2 , and (f) CDI−2 . The calculated (B3LYP/6-311++G(d,p)) adiabatic electron
affinity (EA) and vertical detachment energy (VDE) for each dihalomethyl radical is marked with
a labeled arrow.
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Although the spectra show that multiple active vibrational modes give rise to the observed

structure, the similarity of the CHBr−2 and CHI−2 spectra suggests that the out-of-plane bend is

active, and that the spacing of the peaks roughly corresponds to the frequency of this motion in the

neutral species. In CHBr2 the average peak spacing is 520(30) cm−1, and in CHI2 it is 440(40) cm−1

near the VDE. All of these observations are summarized in Table 4.7.

Because a large geometry change takes place when an electron is removed from a dihalomethyl

anion to generate the floppy radical, further quantitative analysis of the spectra is difficult. We now

turn to calculations and simulations to elucidate the spectra. To illustrate the challenges involved

in analyzing the photoelectron spectra of molecules that undergo large geometry changes upon

photodetachment, we examine in detail the agreement between experiment and theory for CHCl−2

and CDCl−2 .

4.4.2 Franck-Condon Simulation using Normal Mode Analysis in Cartesian Coor-

dinates

We initially simulate the spectra of CHCl−2 and CDCl−2 with Franck-Condon analysis using

the methods outlined in Section 4.3.2, the harmonic oscillator approximation with normal modes

calculated in the mass-weighted Cartesian displacement coordinate system. The Duschinsky ro-

tation between the normal mode vectors of the anion and neutral is fully treated. This standard

approach very accurately simulates electronic spectra that involve relatively small displacements

of equilibrium geometries of the neutral relative to the anion;13,22,23,138 in those cases, the most

prominent features in the spectra arise from overlap between the lowest vibrational levels of each

state, where the vibrations are well-described as decoupled harmonic oscillators. Furthermore, if

the equilibrium geometries and bonding of the two states are very similar, the character of their

normal modes is essentially the same and the Duschinsky rotation effects may be minor.

The furanide anion illustrates such a case. The Franck-Condon simulation of the photoelec-

tron spectrum of the furanide anion,138 shown in Fig. 4.5(a), quantitatively reproduces the mea-

sured spectral envelope and vibrational structure. In the case of the furanide anion, the relatively
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rigid ring structure constrains the molecule to a modest geometry change upon photodetachment.

Thus, we observe a prominent origin peak from which we directly obtain the EA of the furanyl rad-

ical. Despite the fact that furanyl has 13 allowed symmetric vibrational modes—compared to four

symmetric modes in the dihalomethyl anions—the furanide spectrum is dominated by signatures

from only three of these. As one would intuitively expect, the most active vibrations are ring defor-

mations localized around the radical center, whence the excess electron is detached. The excellent

agreement between the normal-mode based simulation and experiment enables assignment of the

spectral features, allowing unequivocal determination of the EA and identification of the frequencies

of the most active vibrational modes. Furthermore, deviations from the predicted photoelectron

spectrum occur at higher vibrational levels of the furanyl radical and can generally be corrected

by simply accounting for frequency shifts of the transitions due to anharmonicity. Although the

furanide anion is much larger and has many more allowed vibrational modes than the dihalomethyl

anions, the fact that it undergoes a relatively small geometry change upon photodetachment means

that its photoelectron spectrum is relatively straightforward to interpret, and from it we can deter-

mine a great deal of information about the furanyl radical. The Franck-Condon simulation—with

vibrational parameters extracted from Gaussian output files and using the PESCAL program21 to

generate FCFs and convolute over the instrumental resolution and rotational contours—is largely

an automated process in such a case.

Because the normal mode method for modeling photoelectron spectra has proven so powerful

in the past, we first employ a Franck-Condon analysis using normal modes based in Cartesian

coordinates to interpret the photoelectron spectra of the dihalomethyl anions. In Fig. 4.5(b), we

compare the experimental spectrum of CDCl−2 to its Franck-Condon simulation using the Cartesian

coordinate system. In stark contrast to the excellent agreement between simulation and experiment

displayed in the furanide case (Fig. 4.5(a)), the simulation in panel (b) utterly fails to reproduce

the spectral envelope of the observed CDCl−2 spectrum. Similarly broad progressions are calculated

for the other dihalomethyl anions. Examination of the Franck-Condon intensities shows that the

reason for the disparity in the width of the spectral envelope is due to false strong activity of the
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Figure 4.5: Comparison between theory and experiment for two systems: (a) the furanide anion,
C4H3O

−, and (b – d) CDCl−2 . (a) The photoelectron spectrum (300 K, θ = 0◦) of furanide is
compared to its ground state simulation using normal mode analysis in Cartesian coordinates. This
is in sharp contrast to (b) the agreement between the photoelectron spectrum of CDCl−2 (150 K)
and its simulation using normal mode analysis in Cartesian coordinates, which fails to reproduce
the width of the spectral envelope. (c) Improvement in the agreement between experiment and
the normal mode simulation is achieved by switching to an internal coordinate representation. (d)
The width of the calculated spectral envelope is further reduced by using (2 + 1) – dimensional
anharmonic coupled-mode analysis. All CDCl−2 calculated and simulated spectra were calculated
at 150 K and were shifted to match the experimental EA of 1.3 eV.
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CH (CD) stretch vibrational mode. This activity is inconsistent with the calculated geometries

(Table 4.2), which show only a relatively small change in the CH bond length between the anion

and neutral states (an order of magnitude smaller than the CCl bond length change). Evidently,

the only way the rectilinear Cartesian coordinates can reproduce the large geometry change is by

inducing a spurious displacement in the CH stretch normal mode, in combination with other modes.

Thus, there is a non-physical activation of the CH stretch associated with the pyramidal bend.

Similar mode mixing has been observed for other molecules undergoing large geometry changes upon

photodetachment,10,13,19,25,26 where a large geometry displacement in one Cartesian coordinate is

partially projected onto the others, resulting in the appearance of vibrational progressions in the

computed spectrum that are not experimentally observed. For a molecule undergoing a substantial

geometry change upon photodetachment, this effect is exacerbated when the Cartesian coordinate

representation is used, resulting in the dramatically extended vibrational progression in Fig. 4.5(b).

Such poor agreement does not enable quantitative analysis of the photoelectron spectra of the

dihalomethyl anions, so we must take a more sophisticated approach to analyzing these spectra.

4.4.3 Franck-Condon Analysis using Internal Coordinates

For a better approximation of the vibrational displacement between the anion and neutral

in the CHX2 system, we next carry out the normal mode analysis using internal displacement

coordinates as described in Section 4.3.3. The experimental spectrum of CDCl−2 is compared to

its Franck-Condon simulation using normal modes in the internal coordinate representation in

Fig. 4.5(c). The calculated spectral envelope has been dramatically reduced in better agreement

with the experimental spectrum than with the simulation using Cartesian coordinates. The normal

mode simulations of CHCl−2 , CHBr−2 , CDBr−2 , CHI−2 , and CDI−2 using internal coordinates display

a similar quality of agreement with the experimental spectra (Figs. 4.6(a), 4.7, and 4.8). Using

the estimated EAs from the calculations, the band maxima of these simulations are in improved

agreement with the experimental bands. However, the simulations using internal coordinates still

have broader envelopes than what we observe experimentally, and the partially resolved vibrational
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structure in the experiments is not reproduced in the simulations.

The normal mode analysis of molecular vibrations is valid for small displacements from the

equilibrium geometry. For infinitesimal displacements, the normal coordinate vectors are identical

whether represented in terms of internal coordinates (bond stretches and angles) or in terms of

Cartesian atom-displacement coordinates, i.e., the displacement vectors are tangent at the equilib-

rium geometry. For a large change along a normal coordinate, the curvilinear internal coordinates

system and the rectilinear Cartesian displacements lead to different values of the displacement (el-

ement K′′ for the normal mode, Eq. 4.2) for the same molecular geometry change. Because the

vibrational potential energy surface is more naturally described in terms of internal coordinates,

they tend to provide more physically accurate normal coordinate displacements. The curvilinear

internal coordinates provide a much better first-order approximation to the natural nuclear motion.

In particular for these systems, the Franck-Condon intensities using internal coordinates exhibit no

significant contribution from the CH stretch mode.

The extended vibrational progression that is in disagreement with the experimental spec-

tral envelope results from the method used to simulate the spectra, and not from errors in the

electronic structure calculations. This fact is evidenced by the accuracy of the VDE calculation

using B3LYP/6-311++G(d,p), illustrated in Fig. 4.4. Earlier DFT calculations by Li et al.129

demonstrate similar agreement with our experimental results and with previous EA measurements

of CHCl2 and CHBr2.
128 Because the VDE can be accurately calculated using DFT methods, it is

clear that the harmonic normal mode simulation—and not the electronic structure calculations—is

at fault for the failure to reproduce the spectral envelopes of the dihalomethyl anions. Though

the agreement between simulation and experiment is too poor to determine the EA, the calculated

VDEs can be employed without simulation to obtain an estimate of the EA. Using Eq. 4.8, we

obtain EA estimates that are consistent with previous measurements (Table 4.7).

Although the qualitative agreement is reasonable, the simulation using internal coordinates

is still not completely adequate in explaining the experimental band width or vibrational struc-

ture. The failure of this method to reproduce the experimental photoelectron spectra accurately
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Figure 4.6: Comparison of the 150 K photoelectron spectrum of CHCl−2 (black) to its (a) normal
mode simulation in internal coordinates calculated at 150 K (red), and to its (b) calculated spectrum
using (2 + 1) – dimensional analysis (blue) at 150 K.
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Figure 4.7: Photoelectron spectra (300 K) of (a) CHBr−2 and (b) CDBr−2 are compared to their
respective normal mode simulations using internal coordinates and calculated at 300 K.

Figure 4.8: Photoelectron spectra (300 K) of (a) CHI−2 and (b) CDI−2 are compared to their normal
mode simulations using internal coordinates and calculated at 300 K.
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is a result of several factors. The large difference in equilibrium geometries and bonding between

the anion and neutral cause the normal modes of the neutral to be characteristically different than

those of the anion. Thus, when the normal modes of the neutral are expressed in terms of harmonic

normal mode vibrations of the anion, orthogonality of the neutral normal modes is lost, resulting

in mode mixing. Additionally, the neutral out-of-plane bending mode is clearly anharmonic, and

representing this vibration as a harmonic oscillator is another source of discrepancy with experi-

ment. Furthermore, the fact that we are sampling high vibrational levels of the neutral molecule

for which there are multiple active vibrational modes of similar frequency, there is considerable

possibility for coupling between the vibrational modes that are expected to be important. The nor-

mal mode approach to simulating the photoelectron spectra of the dihalomethyl anions has proven

insufficient to elucidate the spectra, and we next take a multidimensional coupled-mode approach

to computing the photoelectron spectra.

4.4.4 Multidimensional Approach for CHCl2 and CDCl2

The CDCl−2 photoelectron spectrum calculated using the multidimensional coupled-mode

approach outlined in Section 4.3.4 is shown in Fig. 4.5(d). The calculated spectrum shown in panel

(d) displays much improved agreement with experiment. Similar improvement over the normal

mode approach in internal coordinates is shown for CHCl−2 (Fig. 4.6(b)). Reduced dimensional

analysis shows that 98 percent of the overlap between the CHCl−2 ground vibrational state in the

CH stretching coordinate (ν ′′CH = 0) occurs with ν ′CH = 0 in CHCl2. Thus, the CH (CD) stretch

contributes negligible intensity above the 0-0 origin transition. Significant reduction in the width

of the spectral envelope compared to the two harmonic treatments discussed above results from a

combination of the inclusion of anharmonicity in each of the three modes that are considered as

well as allowing for mode-mode coupling among the two bending degrees of freedom.

The extent of the coupling between the two bending vibrations τClCDCl′ and θs is illustrated in

Fig. 4.9, which shows the development of the two-dimensional CDCl2 wavefunction (color contours)

with increasing energy. Wavefunctions are plotted as a function of the out-of-plane distortions
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(τClCDCl′) and the symmetric combination of the two DCCl bends (θs = θDCCl). These two

internal coordinates, τClCDCl′ and θs, were chosen because they are a natural pair of vibrations

that are coupled to each other but are reasonably decoupled from other modes, as illustrated in

Fig. 4.2. The wavefunction for the lowest energy state of CDCl2, shown in Fig. 4.9(a), displays

the greatest probability between τClCDCl′ = 150◦ and 210◦ with a maximum at 180◦, indicating

that in its ground vibrational state, the neutral species displays large amplitude displacements

from the equilibrium geometry through the planar structure. The next higher energy state in this

two-dimensional model is depicted in Fig. 4.9(b). Figures 4.9(a) and (b) show the lack of Franck-

Condon overlap between the anion wavefunction (grey contours) and low vibrational levels of the

neutral, resulting in our inability to experimentally observe the origin peak. From these plots, it

is evident that even at low vibrational levels of the neutral, these two modes are strongly coupled,

as activation of the τClCDCl′ bend is accompanied by a comparable change in θs.

Coupling between τClCDCl′ and θs becomes even more pronounced at higher vibrational levels

of the neutral with energies near the VDE, where the Franck-Condon overlap with the ground

vibrational wavefunction of the anion is greatest. Figure 4.9(c) shows the two-dimensional CDCl2

wavefunction that has the largest Franck-Condon overlap with the ground vibrational wavefunction

of CDCl−2 ; this transition contributes the most intensity to the calculated photoelectron spectrum.

The two-dimensional wavefunction of the vibrational level shown in Fig. 4.9(c) displays the greatest

probability at the turning points, which is physically manifested as a large amplitude bending

motion in τClCDCl′ . Also notice that the shape of the wavefunction mimics the shape of the curve

in Fig. 4.2(a); i.e., the two-dimensional wavefunction follows the minimum energy curve in the

θDCCl′ and τClCDCl′ coordinates. In both Figs. 4.9(c) and 4.2(a), we see that the τClCDCl′ bend is

accompanied by a large change in θs, again indicating significant coupling between these vibrational

modes. Coupling of low frequency vibrations along with the highly anharmonic nature of the low

frequency bend provides two sources for the breakdown of the normal mode approximation for the

dihalomethyl radicals, since we can no longer treat the vibrations as products of harmonic oscillator

wavefunctions. While alternative choices of the bend coordinates could reduce the coupling, these



89

Figure 4.9: Plots of the two-dimensional wavefunctions of CDCl2 and CDCl−2 . The wavefunction of
the ground vibrational state of CDCl−2 is shown with gray contours, and the CDCl2 wavefunctions
are shown in color contours. The energy of the CDCl2 wavefunction relative to the zero-point
energy of the anion is given in each panel. There is negligible Franck-Condon overlap of the
ground-state anion wavefunction with the ground-state neutral wavefunction (a) and with the first
excited vibrational level of the neutral (b). The best overlap (c) is calculated to occur 2.424 eV
above the zero-point energy of CHCl−2 . (d) The next higher vibrational level of CDCl2, in which
one quantum of excitation in θs is exchanged for an additional quantum of excitation in τClCDCl′ ,
lies only 5 meV higher in energy. This resonance leads to the highly structured CDCl2 spectrum.
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choices will also affect the separability of the ground state wavefunction on the anionic potential

surface.

The structure of the spectra and the counterintuitive consequences of isotopic substitution

arise from near degeneracies of the frequencies high in the potential well, where the Franck-Condon

overlap is the greatest. This resonance is illustrated in panels (c) and (d) of Fig. 4.9. The vibrational

state with the most intensity in the CDCl−2 photoelectron spectrum (Fig. 4.9(c)) corresponds to one

quantum of excitation in θs and 19 quanta of excitation in the out-of-plane distortion τClCDCl′ . The

next highest energy state within this two-dimensional model, shown in Fig. 4.9(d), also contributes

significantly to the spectrum (93 percent of the intensity of the most intense transition); this state

corresponds to zero quanta of excitation in θs and 20 quanta of excitation in τClCDCl′ . These two

levels are separated by approximately 5 meV; within our instrument resolution, these two transitions

appear as a single peak in the photoelectron spectrum. This is true of the coupled-bend vibrational

levels of CDCl2 near the VDE: “exchanging” one quantum of excitation in θs for an additional

quantum of excitation in τClCDCl′ results in peaks separated by only 5 meV, and thus they appear

as a single peak. The manifestation of this accidental degeneracy is displayed in Fig. 4.10; blue

sticks correspond to the 10 most intense θs and τClCDCl′ transitions. The near-resonance results in a

highly structured CDCl−2 photoelectron spectrum. The bend and out-of-plane distortions account

for half of the observed peaks; the remaining peaks result from excitation of the ClCCl symmetric

stretch.

In the case of CHCl2, such a resonance of the θs and τClCHCl′ transitions does not occur,

and the vibrational structure is significantly more congested. While exchanging one quantum of

excitation in θs for an additional quantum of excitation in τClCDCl′ results in peaks separated by

only 5 meV in CDCl2, such a trade results in peaks separated by approximately 20 meV, as shown

in Fig. 4.11. Figure 4.12 shows the effect of this lack of resonance on the spectrum of CHCl−2 .

Here again, the 10 most intense coupled bend transitions are shown in blue sticks. The 20 meV

spacing between consecutive θs and τClCHCl′ vibrational transitions near the VDE is experimentally

resolvable; when added to the ClCCl symmetric stretch contribution—which is largely unaffected
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Figure 4.10: (a) The 150 K experimental photoelectron spectrum of CDCl−2 is shown in black, and
the multidimensional coupled-mode calculation is overlaid in blue. Dark blue sticks correspond
to the most intense transitions in the two-dimensional coupled bend coordinate. Coincidental
resonances of these transitions account for the highly structured spectrum of CDCl−2 . (b) The
inset shows a close-up of the agreement between the experimental and calculated spectra near the
vertical detachment energy.
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by deuteration—we observe a congested photoelectron spectrum. Thus, the counterintuitive effect

of deuteration on the CHCl−2 and CDCl−2 spectra is a result of the near-resonance, or lack thereof,

between the θs and τClCHCl′ coupled-bend vibrational transitions at the very high vibrational levels

accessed.

The multidimensional coupled-mode analysis qualitatively reproduces the photoelectron spec-

tra of CHCl−2 and CDCl−2 and yields a substantial improvement over normal-mode analysis for these

molecules in terms of both the extent of the spectral envelope and peak spacing. Table 4.7 compares

the average peak spacing near the VDE in the experimental spectra to peak spacing in the calcu-

lated spectra using both the harmonic normal mode and the anharmonic coupled-mode analyses.

While the agreement in the width of the spectral envelope and in the peak spacing is much improved

in the multidimensional approach, it is still not completely sufficient to yield reliable estimates of

EAs or vibrational frequencies. Even after tackling the problem using the most sophisticated and

computationally expensive multidimensional approach, our best estimates of the EAs are obtained

through direct application of the calculated VDEs, via Eq. 4.8, without the aid of any simulations.

4.5 Conclusions

The pyramidal dihalomethyl anions become nearly planar upon photodetachment, resulting

in photoelectron spectra that display extended vibrational progressions with no intensity at the

origin transition. The absence of experimentally observable origins in the spectra and the inability

to accurately reproduce the spectral envelopes preclude the direct determination of EAs or vibra-

tional frequencies of the dihalomethyl anions in this study. While normal mode analysis accurately

simulates the spectra of molecules that experience small displacements of equilibrium nuclear con-

figurations upon photodetachment, false activity of the CH stretch is predicted in the dihalomethyl

radicals when a Cartesian displacement coordinate system is employed. Use of internal coordi-

nates for the normal mode analysis eliminates that problem, but the Franck-Condon simulations

using independent harmonic oscillators are still inadequate. The harmonic Franck-Condon simula-

tion using internal coordinates yields a spectral envelope that is too broad. The calculated VDE
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Figure 4.11: Plots of the two-dimensional wavefunctions of CHCl2 and CHCl−2 . The wavefunction of
the ground vibrational state of CHCl−2 is shown with gray contours, and the CHCl2 wavefunctions
are shown in color contours. The energy of the CHCl2 wavefunction relative to the zero-point
energy of the anion is given in each panel. There is negligible Franck-Condon overlap between
the ground-state anion wavefunction and the ground-state neutral wavefunction (a), resulting in
an unobservable origin peak in the photoelectron spectrum. Likewise, there is minimal overlap
between the ground-state anion and first excited vibrational level of the neutral (b). The best
overlap (c) is calculated to occur 2.382 eV above the zero-point energy of CHCl−2 . The next highest
energy level is shown in panel (d), in which one quantum of excitation in the θs is exchanged for
an additional quantum of excitation in τClCHCl′ . In contrast to the case of CDCl2, in which such
an exchange results in states separated by only 5 meV, the states shown in panels (c) and (d) are
separated by 21 meV—greater than our instrument resolution.
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Figure 4.12: (a) The 150 K experimental photoelectron spectrum of CHCl−2 is shown in black,
and the multidimensional coupled-mode calculated spectrum is overlaid in blue. Dark blue sticks
correspond to the most intense vibronic transitions in the two-dimensional coupled bend coordinate.
(b) The inset shows a close-up of the agreement between the experimental and calculated spectra
near the vertical detachment energy.
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is in agreement with the measured VDE. Therefore, the inability to reproduce the shape of the

vibrational progression must be an artifact of the method used to compute the FCFs.

In order to simulate the spectra of the dihalomethyl radicals with more accuracy, we take

a multidimensional anharmonic coupled-mode approach. The coupling of the multiple active low-

frequency bending vibrations is the source of the breakdown of the normal mode approximation for

the dihalomethyl radicals; consequently, we cannot treat the vibrations as separable, nor compute

FCFs as the product of harmonic oscillators. Instead, using (2 + 1) – dimensional analysis we

calculate negligible contribution from the CH stretch above the 0-0 transition and find that coupled

τClCHCl′ and θs bends plus the ClCCl symmetric stretch fully account for the observed structure in

the CHCl−2 and CDCl−2 spectra.

Unfortunately, there is no reliable, general approach to analyzing the Franck-Condon bands

of transitions involving large geometry changes, such as those of the dihalomethyl anions. Nor-

mal mode analysis in an internal coordinate representation yields much better results than using

rectilinear Cartesian displacement coordinates, but it requires Wilson’s GF method to compute

Duschinsky translation vectors and rotation matrices and still fails to adequately reproduce the

width of the spectral envelope for these systems. Multidimensional anharmonic coupled-mode anal-

ysis achieves reasonable agreement with the observed spectra of the dihalomethyl anions; however,

these simulations are computationally expensive, precluding determination of molecular parameters

by direct fitting to the observed spectra, and are also specific to each molecule studied. In fact,

the best experimental EA estimates of the dihalomethyl radicals are obtained by directly employ-

ing the difference in energy between the calculated VDE and calculated EA. With effort, we can

understand the spectra of the dihalomethyl anions, but we are unable to obtain the quantitative

information that can be determined from the photoelectron spectra of more rigid molecules.

This leaves us with the question of how one can anticipate the breakdown of harmonic treat-

ments. In the absence of prior knowledge of the EAs, there are few clues in the measured photo-

electron spectra of the dihalomethyl anions that would lead one to anticipate the need to perform

anharmonic calculations. A full discussion of this issue is beyond the scope of the present study,
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although this work sheds light on several of the factors that could be used to anticipate difficulties

with harmonic treatments. First, there is a large structural change between the anion and the

neutral, as displayed by the large change in τClCHCl′ upon photodetachment (Table 4.2). This leads

to a change in the definition of the normal modes that are used to expand the wavefunctions for

the anion and for the neutral. The second important factor is the low frequency and large an-

harmonicity in the vibrational mode associated with displacements in τClCHCl′ . This leads to the

sampling of very highly excited bend states on the neutral surface upon electron detachment. In

the dihalomethyl radicals, the low frequency and large anharmonicity of this mode is anticipated

by barriers to planarity that are lower than the harmonic zero-point energy of this mode. The

high level of vibrational excitation of these anharmonic modes makes such systems challenging for

approaches that are based on harmonic treatments.



Chapter 5

Cyanopolyynes

5.1 Introduction

The cyanopolyyne (HCnN) HC4N is a carbene (:CXY), as it contains a neutral divalent

carbon atom with two electrons occupying two orbitals that lie close in energy. Carbenes are

highly reactive and serve as important intermediates in chemical reactions, and their reactivity

is affected by whether the carbene exists as a singlet or a triplet. The carbene’s substituents

determine the electronic ground state of the molecule, as well as the difference in energy between the

singlet and triplet states, known as the singlet-triplet splitting (∆EST).139 The simplest carbene,

methylene (CH2), possesses a triplet ground state because the energy separation between the σ

and π orbitals is less than the electron correlation energy.140 The donation of π electrons, e.g., by

halogen atoms, tends to increase the separation between the σ and π orbitals, leading to a singlet

ground state.130,141 Although CN is considered a “pseudohalogen,” it does not donate π electrons.

Previous experiments have shown that HCCN has a triplet ground state with a relatively large

∆EST.142

In addition to their fundamental importance as carbenes, cyanopolyynes have attracted in-

terest because of their significance in astrophysics. These species are abundant in circumstellar

environments of carbon-rich stars and dense molecular clouds; because nitrogen is a major com-

ponent of interstellar dust, cyanopolyynes are also important constituents of molecular clouds.143

Odd cyanopolyyne chains (HCnN where n = odd) up to HC11N have been detected in space,144

and microwave rotational spectra of odd cyanopolyynes up to n = 17 have been recorded.145 These
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studies have established that, like the isoelectronic polyacetylenes HC2nH, odd cyanopolyynes pos-

sess a linear singlet ground state. The chain has alternating single and triple bonds, giving rise to

alternating bond lengths.146

There have been many reports of the observation of odd cyanopolyynes in circumstellar and

laboratory environments; however, the same situation does not exist for the even cyanopolyynes,

implying that odd cyanopolyynes are more stable than even species.143 In fact, McCarthy and

Thaddeus report a factor of 10 – 100 lower abundance of the even cyanopolyynes HC4N, HC6N,

and HC8N as compared to odd cyanopolyynes of similar length.147 They attribute this discrepancy

to the greater stability of the closed shell singlet odd cyanopolyynes as compared to the reactive

triplet even cyanopolyynes, and to the fact that the mechanisms of carbon chain formation148 favor

the formation of odd cyanopolyynes. Furthermore, while the geometry of odd cyanopolyynes has

been characterized, the geometry of the lowest energy isomers of even cyanopolyynes is not as well

understood.

HC4N is of particular interest to experimental and theoretical groups alike because it is one

of the smallest systems calculated to possess multiple low-lying, highly polar carbene isomers.149

McCarthy et al. generated two singlet isomers of HC4N in a supersonic molecular beam and detected

them with Fourier transform microwave (FTM) spectroscopy: a cyanovinylidene carbene structure,

NC(H)C=C=C:,150 and a ring-chain structure.151 A number of theoretical works have been aimed

at understanding the relative stability of various isomers and electronic states;143,149,152–155 for the

most part, these studies found that the ring-chain (cyclopropenylidene) singlet isomer of HC4N

is lower in energy than the linear chain triplet isomer, but the results were dependent upon the

method employed.

There is also question as to whether the structure of the triplet ground state of the chain

isomer of HC4N is linear or bent; it is useful to compare HCC-C-CN with several other triplet

carbenes (Scheme 5.1).
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Scheme 5.1

In the case of triplet HCC-C-CCH, experiment and theory agree that the triplet is axially symmet-

ric.156 Sanov and coworkers concluded that triplet NC-C-CN is linear or quasilinear.157 Tang et al.

reported the first observation of the triplet ground state of the chain isomer of HCC-C-CN in the

laboratory using FTM spectroscopy; with the aid of calculations, they concluded that triplet HC4N

has a very small barrier to linearity (25 cm−1 at CCSD(T)/6-311G(d,p)) and thus can be considered

a linear molecule.158 Aoki and coworkers, also using CCSD(T), predict a linear triplet.153 Later,

Cernicharo et al. reported the observation of the linear triplet form of HC4N in the carbon-rich

IRC +10216 envelope.159

Here we present a photoelectron spectroscopy study of the HC4N
− anion. From the 364-nm

photoelectron spectrum of HC4N
−, we obtain the first experimental measurement of the electron

affinity (EA) and ∆EST of the chain isomer of HC4N. For comparison and to aid in our under-

standing of the HC4N
− spectrum, we also report the 364-nm photoelectron spectra of HCCN−

and DCCN− with improved signal-to-noise over the previously published spectrum.142 The im-

provement in the HCCN− and DCCN− photoelectron spectra allows for better resolution of the

vibrational progressions and a more precise determination of the EAs and ∆ESTs of HCCN and

DCCN. We compare the HC4N
− and HCCN− (DCCN−) spectra and consider them in the context

of a broader set of carbene carbon chains.

5.2 Experimental Methods

The negative ion photoelectron spectrometer used in this experiment has been described in

detail elsewhere.2,34,41 The apparatus consists of four main sections: an ion source, a mass filter,
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an interaction region with crossed laser and ion beams, and an electrostatic electron kinetic energy

analyzer. Negative ions are formed in a flowing afterglow ion source. A microwave discharge

containing trace amounts of O2 gas in He buffer gas (∼0.4 Torr) generates atomic oxygen radical

anion, O−. To generate HC4N
− anions, tetrolonitrile (H3C4N), prepared in the McMahon lab at

the University of Wisconsin-Madison,160 is added downstream of O− (Scheme 5.2).

Scheme 5.2

To make HCCN− anions, acetonitrile (H3CCN) is added downstream of O−: O− + H3CCN →

HCCN− + H2O. We produce DCCN− using the analogous reaction and beginning with D3CCN.

Collisions with He buffer gas cool the ions to approximately 300 K. The flow tube can be further

cooled with a liquid nitrogen jacket to obtain a “cold spectrum” of ions with temperatures near

150 K. Anions are extracted into a differentially pumped region and are accelerated to 735 eV before

entering a Wien velocity filter with a mass resolution of m/∆m ∼ 60.38,161 With this resolution, we

cannot cleanly resolve HC4N
− and H2C4N

−, both of which are produced in the flowing afterglow

ion source; however, we select the low-mass side of the m/z ∼ 63 – 64 peak to obtain the spectrum

of HC4N
−. We also obtained the photoelectron spectrum of neat H2C4N

− (generated by first

reacting O− with CH4 to produce OH−, which then reacts with H3C4N to produce H2C4N
−) to

ensure that there was no contribution from H2C4N
− in the HC4N

− spectra. The photoelectron

spectrum of H2C4N
− is a broad, featureless progression that appears at lower binding energy than

HC4N
−, as shown in Fig. 5.1.

The mass-selected ion beam (typically 70 pA) is decelerated to 35 eV and focused into the

laser interaction region. Here, the 1-W output from a single-mode continuous-wave argon ion laser

operating at 364 nm (3.40814 eV) is built up to approximately 100 W of circulating power in an



101

Figure 5.1: Photoelectron spectrum (364 nm) of H2C4N
−, collected at the magic angle at 150 K.

H2C4N
- 
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optical buildup cavity located within the vacuum system. Photodetachment of an electron yields

the neutral species, as depicted for HC4N
− photodetachment in Scheme 5.3.

Scheme 5.3

Photoelectrons ejected in the direction orthogonal to both the laser and ion beams enter a hemi-

spherical energy analyzer. The photoelectron signal is recorded as a function of electron kinetic

energy with a position-sensitive detector. The energy analyzer has a resolution of approximately

11 meV under the conditions used for the present experiments.

The electron kinetic energy (eKE) can be converted to electron binding energy (eBE) through

the relationship eBE = hν - eKE. The absolute kinetic energy scale is calibrated2,34,43 before and

after each experiment using the well-known EA of atomic oxygen.45 Additionally, the energy scale

is corrected for a slight linear compression (<1%)2 using the photoelectron spectrum of O−2 , which

provides a number of known transitions spanning the photoelectron energy range.21,47 After making

these corrections and accounting for the resolution of the spectrometer and rotational peak profiles,

absolute electron binding energies can be determined with an accuracy of better than 5 meV.

A rotatable half-wave plate positioned outside the buildup cavity varies the polarization of

the photodetachment radiation in order to control the angle θ between the electric field vector of

the laser beam and the photoelectron collection axis. The photoelectron angular distribution is

described by the equation5

I(θ) =
σ0
4π

(1 + βP2(cos θ)) (5.1)

where σ0 is the total photodetachment cross section, β is the anisotropy parameter, and P2(cos θ)

is the second Legendre polynomial. We measure the anisotropy parameter explicitly by recording
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the photoelectron signal at the kinetic energy of one suitable intense peak in the photoelectron

spectrum as a function of θ (between θ = 0◦ and θ = 360◦ in steps of 10◦). The photoelectron

angular distribution is fit with Eq. 5.1, and full spectra collected at θ = 0◦ and θ = 90◦ are scaled to

match β at the energy at which it was measured. Separately, we collect a photoelectron spectrum

at θ = 54.7◦ (the so-called magic angle), where the photoelectron intensity is independent of β and

directly reflects the relative photodetachment cross section.

5.3 Theoretical Methods

All electronic structure calculations were performed using the Gaussian 03 program pack-

age.48 Optimized geometries, harmonic vibrational frequencies, and normal mode coordinates were

calculated at the ROMP2 level of theory162 with the 6-311++G(d,p) basis set52 for the X̃ 2A′′

states of HC4N
− and HCCN− (DCCN−) as well as for the X̃ 3A′′ and ã1A′ states of the neutrals

HC4N and HCCN (DCCN). All molecules were constrained to Cs symmetry. For the reported scans

along the CCC (HC4N) or HCC (HCCN) angle (Figs. 5.5 and 5.8), the geometries were further

constrained so that all but the scanned angles were 180◦, and the bond lengths were constrained

to their optimized values on the anion surface when all but one of the angles was 180◦.

We employ a Franck-Condon analysis of the vibrational structure in the photoelectron spectra

to identify the active vibrational modes and the geometry change upon photodetachment. The

Franck-Condon profiles of the photoelectron spectra are simulated with the PESCAL program,21

using the calculated geometries, normal mode vectors, and vibrational frequencies of the anion

and neutral states. The normal modes and the Duschinsky J′′ matrix and K′′ displacements are

calculated. The Franck-Condon factors are computed in the harmonic oscillator approximation

including Duschinsky rotation using the Sharp-Rosenstock-Chen method.4 The individual vibronic

peak contours are simulated by a Gaussian function with a full-width half-maximum of 11 meV,

consistent with instrumental resolution.

Activity of a large-amplitude bending vibration upon photodetachment of the bent HC4N
−

anion to the quasilinear X̃ 3A′′ state of HC4N renders our standard independent harmonic oscilla-
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tor approximation unsuitable for simulating X̃ 3A′′ ← X̃ 2A′′ photodetachment of HC4N
−. A more

appropriate treatment of X̃ 3A′′ ← X̃ 2A′′ photodetachment would utilize a curvilinear HCC-C-CN

bending coordinate and a vibration-rotation Hamiltonian that allows for large displacements of

the bending coordinate.163 However, this more sophisticated treatment is beyond the scope of this

work. In our standard Franck-Condon analysis using the Sharp-Rosenstock-Chen method, non-

physical K′′ displacements are computed that result in an inadequate simulation of X̃ 3A′′ ← X̃ 2A′′

photodetachment. For this reason, we will only rely on partial simulations of the HC4N
− and

HCCN− (DCCN−) photoelectron spectra in our analysis; full simulations are shown in Fig. 5.6.

5.4 Results

5.4.1 HC4N
−

5.4.1.1 Photoelectron Spectra of HC4N
−

It is instructive to first consider the valence electronic structure of HC4N (Fig. 5.2) and

its implications for the photoelectron spectrum of HC4N
−. Like HCCN−,142 the ground state of

HC4N
− is X̃ 2A′′. The excess charge resides primarily on the third carbon atom, and the anion is

bent. If an electron is photodetached from the in-plane σ orbital to form the X̃ 2A′′ ground state

of HC4N, the molecule straightens to become quasilinear. However, if an electron is removed from

the out-of-plane π orbital to form the ã1A′ excited state of HC4N, the molecule remains bent in

much the same geometry as the anion. Intuitively, we expect the large geometry change upon

photodetachment of the bent anion to the quasilinear triplet ground state to result in an extended

vibrational progression at low binding energy in the photoelectron spectrum of HC4N
−. We expect

multiple vibrational modes—especially bending modes involving the carbene center—to be active

upon photodetachment and to contribute intensity to the triplet manifold. Since both the anion

and the neutral singlet are bent, we expect significant Franck-Condon overlap between the ground

vibrational state of HC4N
− and the singlet state of HC4N. This will result in an intense “origin”

peak corresponding to the 0-0 transition, and it will appear higher in energy than the triplet state.
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Figure 5.2: Generalized valence bond diagrams of the X̃ 2A′′ state of HCCN−, the X̃ 3A′′ and ã1A′

states of HCCN,142 as well as the X̃ 2A′′ state of HC4N
− and the X̃ 3A′′ and ã1A′ states of HC4N.

2A″ 

3A″ 

1A′ 

HCCN HC4N 
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The 364-nm, magic angle photoelectron spectrum of HC4N
− is shown in Fig. 5.3. The spec-

trum was collected at both room temperature (300 K, blue trace) and at 150 K (black trace). As an-

ticipated, we observe a broad progression at low binding energy, corresponding to photodetachment

to the X̃ 3A′′ ground state of HC4N. The large geometry change that occurs upon X̃ 3A′′ ← X̃ 2A′′

photodetachment precludes the observation of the origin peak. Additionally, because there are mul-

tiple active modes upon photodetachment—particularly the low frequency HCC-C-CN bend—we

observe a congested spectrum and are unable to resolve individual vibronic peaks in the triplet en-

velope. Therefore, we cannot measure vibrational frequencies of the X̃ 3A′′ ground state of HC4N.

Though we do not resolve an origin peak from which we can determine the EA, comparison of

the 300 K and 150 K spectra shows that the EA of HC4N is 2.05(8) eV (Table 5.1). The 300 K

spectrum displays a sharp onset at 2.00 eV; in the 150 K spectrum, the intensity between 2.00 and

2.05 eV is suppressed. This indicates that the intensity observed between 2.00 and 2.05 eV in the

300 K spectrum results from hot bands, or vibronic transitions arising from vibrationally excited

anions. In the 150 K spectrum, we observe intensity above the baseline beginning at approximately

2.05 eV, and we begin to resolve two features between 2.00 and 2.15 eV (see inset of Fig. 5.3). Un-

fortunately, the substantial geometry change in coupled modes means that the independent mode

Franck-Condon simulation is not even qualitatively reliable24,130 and cannot help in estimating a

lower bound for the origin (EA) of the triplet state. Because the features in the origin region are

not well resolved, we assign the EA of HC4N to be 2.05 eV—where we see appreciable intensity

above the baseline in the cooled spectrum—with an uncertainty that encompasses both the shelf

in the 300 K spectrum and the two small features in the 150 K spectrum. Thus, the EA of HC4N

is measured to be 2.05(8) eV.

At higher binding energy, a sharp feature appears at eBE = 2.809(4) eV. The polarization

dependence of the photoelectron spectrum of HC4N
− is given in Table 5.1 and is shown in Fig. 5.4;

the difference in the β anisotropy parameters between the broad progression beginning at 2.05(8) eV

and the sharp feature at eBE = 2.809(4) eV indicates that these features result from two different

electronic states of HC4N. The peak at eBE = 2.809(4) eV corresponds to the origin of the ã1A′
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Figure 5.3: Photoelectron Spectra of HC4N
−. The 364-nm spectra were collected at the magic

angle at 150 K (black trace) and 300 K (blue trace). The partial Franck-Condon simulation of the
150 K HC4N

− photoelectron spectrum is shown in purple, with gray sticks representing individual
vibronic transitions. The calculated geometries, frequencies, and K′′ displacements used in the
ã1A′ ← X̃ 2A′′ photodetachment simulation are listed in Tables 5.2 – 5.3. The simulation uses the
experimental binding energy of the ã1A′ state of HC4N. The equilibrium structures of the X̃ 3A′′

and ã1A′ states of HC4N are also shown.

3A″ 

1A′ 

HC4N
- 
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Table 5.1: Experimental and calculated electron affinities (EA), vertical detachment energies
(VDE), and singlet-triplet splittings (∆EST) of HCCN and HC4N given in eV.

 

   

  X
~ 3

A″ ← X
~ 2

A″ 
  

ã
 1

A′ ← X
~ 2

A″    

  EA VDE   (0-0) VDE   ∆EST 

HC4N Experiment
a
 2.05(8) 2.57(3) +0.2  2.809(4) 2.809(4) -0.3  0.76(8) 

 Calculated
b
 2.229 2.533   2.771 2.784   0.542 

HCCN Experiment
a
 2.001(15) 2.36(2) -0.25  2.511(4) 2.512(4) -0.62  0.510(15) 

 Experiment
c
 2.003(14)  -0.37

d
  2.518(8)  -0.77  0.515(16) 

 Calculated
b
 1.746 2.185   2.512 2.562   0.765 

DCCN Experiment
a
 1.998(15) 2.37(2) -0.28  2.506(4) 2.506(4) -0.63  0.508(15) 

 Experiment
c
 2.009(20)  -0.33

d
  2.527(18)  -0.78  0.518(27) 

 Calculated
b
 1.749 2.184   2.509 2.560   0.761 

 

 

a Experiment, this work
b ROMP2/6-311++G(d,p)
c Experiment, Nimlos et al.142
d β value listed is the average of the β values of the peaks in the triplet progression
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Table 5.2: Calculated (ROMP2/6-311++G(d,p)) equilibrium geometry of X̃ 2A′′ HC4N
− and the

calculated net geometry change upon photodetachment to the X̃ 3A′′ and ã1A′ states of HC4N.
Bond lengths are given in units of angstrom (Å), and bond angles are given in units of degree
(◦). Boldfaced entries highlight the internal coordinates that undergo significant change upon
photodetachment.

 

 

 

 

 

 

 

HC4N

 

  

 

 

 

Geometry Change 

Internal Coordinate X
~ 2

A″ 
 

X
~ 3

A″ ← X
~ 2

A″ ã
 1

A′ ← X
~ 2

A″ 

H-C1 1.062  +0.003 +0.005 

C1-C2 1.223  -0.003 +0.011 

C2-C3 1.377  -0.059 -0.008 

C3-C4 1.402  -0.023 +0.004 

C4-N 1.167  -0.027 +0.017 

H-C1-C2 178.6  +0.4 -1.9 

C1-C2-C3 173.9  +1.5 -2.8 

C2-C3-C4 119.6  +28.2 -1.7 

C3-C4-N 173.6  +4.5 -1.6 
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Table 5.3: Calculated (ROMP2/6-311++G(d,p)) unscaled, harmonic frequencies of X̃ 2A′′ HC4N
−

and the X̃ 3A′′ and ã1A′ states of HC4N. The measured CN stretch frequency is listed in italics
below the calculated value. Computed K′′ displacements (PESCAL) are also listed. The computed
X̃ 3A′′ ← X̃ 2A′′ K′′ displacements do not accurately represent the geometry change that takes
place upon photodetachment and result in a Franck-Condon simulation that does not reproduce
the observed triplet progression (Fig. 5.6(a)).

 

  

   HC4N

  X

~ 3
A″ ← X

~ 2
A″  ã

 1
A′ ← X

~ 2
A″ 

Mode Description 
2
A″, cm

-1
  K″ 

3
A″, cm

-1
  K″ 

1
A′, cm

-1
 

A′ 1 CH stretch 3521.5  -0.0093727 3494.4  0.0025897 3486.5 

 2 CN stretch 2159.8 

 

 -0.12460 2309.5  0.045273 2217.6 

2395(40)
a
 

 3 CCC asym stretch 1937.7  -0.052916 1714.3  0.021984 2111.4 

 4 CCC asym stretch 1215.3  -0.044035 1308.1  -0.027163 1247.1 

 5 CCC sym stretch 812.1  -0.48678 651.6  0.033921 831.3 

 6 HCC-C-CN bend 580.3  0.48465 353.7  -0.065517 579.5 

 7 HCC-C-CN rocking 407.6  0.23376 214.0  0.0093059 409.5 

 8 H wag 283.2  0.29055 589.1  -0.027086 507.8 

 9 HCCC-C-N bend 153.6i  1.7090 286.0i  0.073406 142.4 

A″ 10 H wag 403.4  0 491.8  0 808.2 

 11 N-C-C bend 336.3  0 177.7  0 346.4 

 12 NCC-C-CH bend 155.7  0 297.2  0 291.9 

a Experiment, this work
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excited state of HC4N. Because the geometry of the X̃ 2A′′ state of HC4N
− and the ã1A′ excited

state of HC4N are both bent, we observe a very prominent ã1A′ origin peak. We measure the

singlet-triplet splitting (∆EST) of HC4N to be 0.76(8) eV (Table 5.1).

The most striking—and most curious—difference between the 300 K and 150 K HC4N spectra

shown in Fig. 5.3 is the appearance of an additional sharp feature at 3.106(4) eV in the 150 K

spectrum. The intensity of this peak, which is separated from the ã1A′ origin by 2395 cm−1,

fluctuated with respect to the X̃ 3A′′ and ã1A′ features throughout the day and from day to day,

and it was never observed at room temperature. The eBE of this feature suggests that it is a

CN stretch of the singlet state, but such a temperature dependence of a combination band is not

typically seen in photoelectron spectra. A measurement of the β of this peak would lend insight into

the source of this feature, but unfortunately the intensity fluctuations of this peak made it difficult

to obtain a reliable β measurement of the peak (we measure β(3.106 eV) ∼ 0.3). As discussed in

the following section (5.4.1.2), we employ calculations and simulations to confirm that this feature

does indeed correspond to activation of CN stretch in the ã1A′ state of HC4N.

5.4.1.2 Electronic Structure Calculations for HC4N
−

As discussed in Section 5.3, our standard Franck-Condon analysis of the HC4N
− photoelec-

tron spectrum is inadequate for modeling X̃ 3A′′ ← X̃ 2A′′ photodetachment. Using ROMP2/6-

311++G(d,p), we calculate the EA(HC4N) to be significantly greater than the measured EA of

2.05(8) eV (Table 5.1); Kalchers ACPF/aug-cc-pVTZ calculation also overestimates the EA by

approximately 250 meV.154 The calculated geometry change upon photodetachment is illustrated

in Table 5.2, and the calculated vibrational frequencies are listed in Table 5.3. As expected, a large

geometry change is calculated to occur upon X̃ 3A′′ ← X̃ 2A′′ photodetachment, which results in

the observed extended vibrational progression. Specifically, the C2-C3 bond length decreases by

0.059 Å, while the ∠C2-C3-C4 increases by 28.2◦ as the molecule becomes nearly linear. Previous

studies seem to favor a linear X̃ 3A′′ structure,153,158,159 while our calculations predict a slightly

bent equilibrium geometry. Though we calculate the minimum to occur at a ∠C2-C3-C4 of 147.8◦
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Figure 5.4: Polarization Dependence of the Photoelectron Spectrum of HC4N
−. Photoelectron

spectra were collected at 300 K at θ = 0◦ (cyan trace) and θ = 90◦ (gray trace) and scaled for the
measured β anisotropy at eBE = 2.8 eV.

3A″ 

1A′ 

b = +0.19 

b = -0.31 

HC4N
- 
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(Table 5.2), a one-dimensional potential cut along the ∠C2-C3-C4 bending coordinate (Fig. 5.5) re-

veals that the X̃ 3A′′ state of HC4N is extremely floppy with a barrier to linearity of only ∼24 meV.

The one-dimensional cuts also reveal that as C2-C3-C4 becomes more bent, the triplet and sin-

glet states cross. The unresolved nature of the triplet vibrational progression prevents us from

determining the geometry of the X̃ 3A′′ state from the photoelectron spectrum. Activity of this

large-amplitude bending motion is the source of the breakdown of the independent harmonic oscil-

lator analysis (see Fig. 5.6(a) for the X̃ 3A′′ ← X̃ 2A′′ photodetachment spectrum). Such failure of

the harmonic, normal mode analysis has been observed in other floppy systems undergoing large

amplitude geometry changes upon photodetachment.13,19,24,142

The partial simulated HC4N
− spectrum, which shows only those features arising from ã1A′←

X̃ 2A′′ photodetachment, is shown in Fig. 5.3 in purple, with gray sticks representing individual

calculated vibronic transitions. The simulation uses the calculated geometries, K′′ displacements,

and vibrational frequencies (Tables 5.2 – 5.3). The calculated ã1A′ origin, using either ROMP2 or

ACPF,154 is lower than the measured value of 2.809(4) eV (Table 5.1); therefore, we use the observed

ã1A′ origin in the simulation. The simulation of ã1A′ ← X̃ 2A′′ photodetachment is very successful.

Both the HC4N
− anion and the ã1A′ excited state of HC4N are bent (∠C2-C3-C4 ∼ 120◦). None

of the internal coordinates of HC4N
− undergo a significant change upon photodetachment to the

ã1A′ state, resulting in a very prominent origin peak and a modest vibrational progression. The

simulation reproduces the temperature-dependent peak that appears at 3.106(4) eV. The simulation

confirms that this feature is a combination band arising primarily from activation of the ν2 CN

stretch, as well as activity of ν3 (C1-C2-C3 asymmetric stretch).

We find no evidence of an open-shell singlet state in our spectra. In the case of NCCCN,

Sanov and coworkers calculate the open-shell 1∆g to lie 0.1 – 0.3 eV higher in energy than the

closed-shell 1A1, depending on the level of theory.157 The two singlet states are degenerate at the

linear NCCCN geometry, but upon distortion Renner-Teller coupling results in energy splitting

to make the closed-shell singlet more stable. In the case of the oxyallyl diradical, the open-shell

1B2 is calculated to lie 1.346 eV higher in adiabatic energy than the closed-shell X̃ 1A1.
139,164 To
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Figure 5.5: One-Dimensional Potential Cut along the HCC-C-CN Bend Coordinate. Energies are
relative to the minimum on the anion surface. All internal angles except ∠C2-C3-C4 are constrained
to be linear, while the remaining internal coordinates are set to the values that minimize the energy
of the anion under these constraints. All curves were calculated using ROMP2/6-311++G(d,p) level
of theory/basis set.

HC4N
 

HC4N
- 180° 

90° 
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Figure 5.6: Franck-Condon Simulations of the Photoelectron Spectra of X̃ 3A′′ (a) HC4N
− and

(b) HCCN−. Geometries, frequencies, and K′′ displacements used in the simulation are listed in
Tables 5.2, 5.3, 5.4, and 5.5. The simulation uses the experimental electron affinities and term
energies of the X̃ 3A′′ states of HC4N and HCCN.
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our knowledge, the energy of the open-shell singlet of HC4N has not been computed. There is no

indication of the open-shell singlet state in our spectra, though it is possible that it lies close in

energy to the closed shell 1A′.

5.4.2 HCCN− and DCCN−

The new 364-nm, magic angle photoelectron spectra of HCCN− and DCCN− are shown in

Fig. 5.7. The data shown in Fig. 5.7 display significantly improved signal-to-noise over the previous

data.142 As a result, we more clearly resolve transitions within the vibrational progressions. As

briefly mentioned in connection with HC4N
−, it is extremely difficult to obtain a precise, reliable

measurement of the EA of a molecule exhibiting an extended vibrational progression. In such

cases, the intensity of the origin peak is weak, or even unobservable. Furthermore, normal mode

analysis often fails to accurately represent the photoelectron spectrum, and we therefore cannot

use calculated Franck-Condon factors to help assign the origin or to anticipate its relative inten-

sity. Like HC4N
−, the photoelectron spectra of HCCN− and DCCN− display extended vibrational

progressions in the ground state. Through comparison of the HCCN− and DCCN− spectra, we

assign the origins of HCCN− and DCCN− to the peaks marked with arrows in Fig. 5.7. We mea-

sure the EA of HCCN to be 2.001(15) eV and of DCCN to be 1.998(15) eV, in accord with the

measurements of the previous work (Table 5.1). We measure the ∆EST of HCCN as 0.510(15) eV

and the ∆EST of DCCN to be 0.508(15) eV. The stated uncertainties assume that the origin peaks

have been assigned correctly. However, it is notoriously difficult to assign the origin of an extended

progression, and the uncertainties given in the previous study142 were definitely optimistic.

The photoelectron spectra of HCCN− and DCCN− exhibit several similarities to the HC4N
−

spectrum. Both HC4N and HCCN (DCCN) possess a X̃ 3A′′ ground state that is significantly

less bent than the anion. Upon X̃ 3A′′ ← X̃ 2A′′ photodetachment, the ∠H-C1-C2 increases by

35.0◦, and the C1-C2 bond decreases by 0.050 Å(Table 5.4). The large geometry change from the

bent anion to the quasilinear triplet165 results in an extended vibrational progression beginning at

2.0 eV (Table 5.1). The peaks in the X̃ 3A′′ HCCN progression are spaced by roughly 400 cm−1,
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Figure 5.7: Partial Franck-Condon Simulations of the Photoelectron Spectra of HCCN− and
DCCN−. Green arrows mark the origin peaks, and insets of the origin regions show the mea-
sured EAs and uncertainties. The equilibrium structures of the X̃ 3A′′ and ã1A′ states of HCCN
(DCCN) are also shown. The new photoelectron spectra collected in the present work display
improved signal-to-noise, enabling us to resolve additional peaks. Geometries, frequencies, and
K′′ displacements used in the simulation are listed in Tables 5.4 – 5.6. The simulations use the
measured electron affinity and term energy of the X̃ 3A′′ and ã1A′ states of HCCN and of DCCN.
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corresponding to activity of the ν5 HCC bending mode.142

As in the case of HC4N
−, the large geometry change leads to the failure of the harmonic

normal mode analysis to adequately model the X̃ 3A′′ ← X̃ 2A′′ photodetachment photoelectron

spectrum. One-dimensional potential cuts along the H-C-CN bend coordinate are presented in

Fig. 5.8. The simulated X̃ 3A′′ ← X̃ 2A′′ spectrum of HCCN− is shown in Fig. 5.6(b); the calculated

geometries, K′′ displacements, and vibrational frequencies are given in Tables 5.4 – 5.6. In the

HCCN− (DCCN−) case, the large change in the ∠H-C1-C2 is represented in the harmonic normal

mode analysis in Cartesian coordinates by a nonphysical change in the H-C1 bond length.24 This

is manifested in the appearance of a CH (CD) stretch progression in the predicted spectrum.

Like HC4N, the origin of the excited ã1A′ state is the most prominent feature in the spectrum

of HCCN. The ∠H-C1-C2 of both HCCN− and the ã1A′ state of HCCN are strongly bent (∼110◦),

resulting in an intense origin peak and a short vibrational progression. At higher binding energy,

we observe an additional sharp feature at eBE = 2.747 eV, or 1903 cm−1 higher in energy than

the ã1A′ HCCN origin. As in the case of HC4N
−, the eBE of this peak suggests it is a CN stretch

of the ã1A′ state. In the HCCN− and DCCN− spectra, this feature does not display the same

strong temperature dependence as the analogous peak in the HC4N
− 150 K spectrum; however,

the intensity of the peak does vary with time with respect to the ã1A′ origin peak and the X̃ 3A′′

progression. The photoelectron spectra shown in Fig. 5.7 indicate the average intensity of the

eBE ∼ 2.75 eV peak over the data sets collected.

In the previous anion photoelectron spectroscopy study of HCCN− and DCCN−, Nimlos et

al. also report the appearance of a peak at eBE ∼ 2.75 eV.142 In contrast to our findings, however,

they observe this peak in the cold HCCN− spectrum but not at room temperature. Furthermore,

they do not report the appearance of this peak in either the cold or room temperature DCCN−

spectra. The photoelectron spectrum of the isomer HCNC− is also shown in the 2002 work. There

is no indication of a peak at eBE ∼ 2.75 eV due to the HCNC− isomer, confirming that the

eBE ∼ 2.75 eV peak is indeed due to HCCN− (DCCN−). In the 2002 study, the peak is not

assigned.
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Table 5.4: Calculated (ROMP2/6-311++G(d,p)) equilibrium geometry of X̃ 2A′′ HCCN− (DCCN−)
and the calculated net geometry change upon photodetachment to the X̃ 3A′′ and ã1A′ states of
HCCN (DCCN). Bond lengths are given in units of angstrom (Å), and bond angles are given in
units of degree (◦). Boldfaced entries highlight the internal coordinates that undergo significant
change upon photodetachment.

 

 

 

 

 

HCCN

 

  

 

Geometry Change 

Internal Coordinate X
~ 2

A″ 
 

X
~ 3

A″ ← X
~ 2

A″ ã
 1

A′ ← X
~ 2

A″ 

H-C1 1.104  0.030 0.001 

C1-C2 1.382  0.050 +0.026 

C2-N 1.210  0.006 0.026 

H-C1-C2 109.6  +35.0 1.69 

C1-C2-N 172.3  +3.0 1.14 

 

 

Table 5.5: Calculated (ROMP2/6-311++G(d,p)) unscaled, harmonic frequencies of X̃ 2A′′ HCCN−

and the X̃ 3A′′ and ã1A′ states of HCCN. The measured CN stretch frequency is listed in italics
below the calculated value. Computed K′′ displacements (PESCAL) are also listed. The computed
X̃ 3A′′ ← X̃ 2A′′ K′′ displacements do not accurately represent the geometry change that takes
place upon photodetachment and result in a Franck-Condon simulation that does not reproduce
the observed triplet progression (Fig. 5.6(b)).

 

  

   HCCN

  X

~ 3
A″ ← X

~ 2
A″  ã

 1
A′ ← X

~ 2
A″ 

Mode Description 
2
A″, cm

-1
  K″ 

3
A″, cm

-1
  K″ 

1
A′, cm

-1
 

A′ 1 CH stretch 3031.6  0.15904 3379.8  0.0035737 3093.3 

 2 CN stretch 1764.1  0.061446 1631.5  0.066178 2227.7 

1903(40)
a
 

 3 HCC bend 1032.7  0.16846 260.3  5.1113x10
-6

 1065.9 

 4 CC stretch 936.5  0.51123 1071.0  0.047076 979.6 

 5 CCN bend 458.7  0.18347 470.3  0.025295 404.2 

A″ 6 CCN bend 457.2  0 416.5  0 334.8 

a Experiment, this work
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Figure 5.8: One-Dimensional Potential Cut along the H-C-CN Bend Coordinate. Energies are
relative to the minimum on the anion surface. All internal angles except ∠H-C-C are linear, and
bond lengths are set to the values that minimize the energy of the anion. The ∠C-C-N angle is
constrained to be linear in this scan, while the remaining internal coordinates are set to the values
that minimize the energy of the anion when the C-C-N angle was 180◦. All potential curves were
calculated using ROMP2/6-311++G(d,p).
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Table 5.6: Calculated (ROMP2/6-311++G(d,p)) unscaled, harmonic frequencies of X̃ 2A′′ DCCN−

and the X̃ 3A′′ and ã1A′ states of DCCN. The measured CN stretch frequency is listed in italics
below the calculated value. Computed K′′ displacements (PESCAL) are also listed. The computed
X̃ 3A′′ ← X̃ 2A′′ K′′ displacements do not accurately represent the geometry change that takes
place upon photodetachment and result in a Franck-Condon simulation that does not reproduce
the observed triplet progression.

 

  

   DCCN

  X

~ 3
A″ ← X

~ 2
A″  ã

 1
A′ ← X

~ 2
A″ 

Mode Description 
2
A″, cm

-1
  K″ 

3
A″, cm

-1
  K 

1
A′, cm

-1
 

A′ 1 CD stretch 2226.0  0.20592 2498.0  0.0062980 2280.4 

 2 CN stretch 1759.4  0.046471 1620.9  0.066722 2216.5 

1936(40)
a
 

 3 DCC bend 998.4  0.089994 204.5  0.020164 984.4 

 4 CC stretch 776.0  0.61268 1011.3  0.046367 825.2 

 5 CCN bend 418.0  0.43067 466.1  0.012876 378.4 

A″ 6 CCN bend 450.4  0 410.0  0 328.2 

 

 

 

 

 

a Experiment, this work



122

One important outcome of our reexamination of the HCCN− and DCCN− spectra is the iden-

tification of the eBE ∼ 2.75 eV peak, which was previously left unassigned. The harmonic normal

mode analysis successfully predicts the ã1A′ ← X̃ 2A′′ photodetachment photoelectron spectra of

HCCN− and DCCN− (Fig. 5.7) to verify the identity of the eBE ∼ 2.75 eV peak. The simulation

shows a peak at eBE = 2.77 eV resulting from excitation of CN stretch in the ã1A′ state of HCCN.

We resolve additional features in the DCCN− 150 K spectrum (Fig. 5.7(a)) between 2.55 and

2.65 eV that are reproduced in the simulation, giving us further confidence in the Franck-Condon

simulations of the ã1A′ ← X̃ 2A′′ photoelectron spectra of these species.

The fact that this condition-dependent peak appears at a similar energy relative to the ã1A′

origin in both the HC4N
− and HCCN− (DCCN−) spectra (2395 and ∼1920 cm−1, respectively)

and that there is no significant isotope shift upon deuteration of HCCN−, confirms that these peaks

result from CN stretch excitation of the ã1A′ state of the neutral.

5.5 Discussion

We observe several similarities between the HC4N and HCCN (DCCN) systems, but it is

useful to also examine them in the context of a broader series of molecules.

First, we observe that the EAs of HCCN and HC4N are similar, but they are very different

from the EA of HC3N. The EAs of HCCN and HC4N are both approximately 2.0 eV, whereas

the EA of HC3N is considerably lower: ∼ 0.5 eV.166 This is perhaps not surprising, as trends in

abundance, structure, and reactivity that depend on whether n is even or odd have been noted

among HCnN cyanopolyynes. This difference may be due in part to the carbene nature of the even

cyanopolyynes, as compared to the closed-shell singlet odd cyanopolyynes. The neutral n = odd

cyanopolyyne molecules are considered to be more stable than the even ones; thus, the greater EA

of the even cyanopolyynes implies that—unlike their neutral counterparts—the odd cyanopolyyne

anions are not more stable than the even cyanopolyyne anions.

We also observe that exchanging an alkyne group for a nitrile raises the vertical detachment

energy (VDE) by approximately 1 eV, which is clearly a result of the CN group shifting the spectrum
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to higher eBE. The VDE is the energy at which the greatest Franck-Condon overlap occurs, and

it appears as the maximum of the vibrational progression. The VDE of the triplet ground state of

HCCCH is 1.714 eV,? of HCCN is 2.36 eV, and of NCCCN157 is 3.53 eV. As a pseudohalogen, the

CN group acts to stabilize negative ions.157,166–168 Because the CN group stabilizes the negative

charge of the anion more than it stabilizes the corresponding neutral, the addition of CN groups

has the effect of increasing the VDE.

5.6 Conclusions

We report the 364-nm photoelectron spectrum of HC4N. At lower binding energy, we observe

a broad progression corresponding to photodetachment from the X̃ 2A′′ HC4N
− anion to the X̃ 3A′′

ground state of HC4N. The large geometry change upon photodetachment—specifically, an increase

of 28.2◦ in the ∠C2-C3-C4—precludes the observation of an origin peak. The adiabatic EA of HC4N

is measured to be 2.05(8) eV. At 2.809(4) eV, we observe the ã1A′ origin of HC4N. The ∆EST of

HC4N is measured to be 0.76(8) eV, with an uncertainty primarily due to our inability to resolve

the origin of the triplet state.

For comparison, we also report the photoelectron spectra of HCCN− and DCCN−. The

photoelectron spectra of HCCN− and DCCN− also exhibit an extended progression corresponding

to X̃ 3A′′ ← X̃ 2A′′ photodetachment. In this case, however, the origin transition can be resolved,

giving EA(HCCN) = 2.001(15) eV, which is very similar but more accurate than the EA(HC4N).

The ã1A′ origin of HCCN appears at 2.511(4) eV, yielding a ∆EST of HCCN of 0.510(15) eV. Like

HC4N
−, the photoelectron spectra of HCCN− and DCCN− reveal peaks ∼ 2000 cm−1 higher in

energy than the singlet origin that vary in intensity depending on experimental conditions. In each

case, these peaks result from CN stretch excitation of the ã1A′ state of the neutral.

The HC4N and HCCN (DCCN) systems display several similarities, but through comparison

with other organic chains, we gain insight into how they relate to a broader series of molecules.

While the EA of HC4N is essentially the same as that of HCCN, the EA of HC3N is much lower.

In addition, exchanging an alkyne group for a nitrile raises the VDE by approximately 1 eV.



Chapter 6

Propadienylidene

6.1 Introduction

Not only is the carbene propadienylidene (:C=C=CH2) interesting from a fundamental point

of view, it also has astrophysical relevance. It is abundant in the interstellar medium169 and has

been detected in multiple astronomical sources.170,171 Early laboratory studies produced rotational

spectra of gas-phase H2CCC.172–174 In conjunction with calculations,175 these experiments indi-

cated the ground state geometry of H2CCC to be a near-prolate top with C2v symmetry. Electronic

spectra of H2CCC in Ar and Ne matrices have been collected by McMahon and coworkers.176,177

Using cavity ring-down spectroscopy, Maier and coworkers collected electronic spectra of gas-phase

H2CCC.178,179 The interesting electronic properties of propadienylidene were evidenced in these

studies,176–179 as the symmetry-forbidden Ã1A2 ← X̃ 1A1 transition was observed as a result of

vibronic coupling.

Oakes and Ellison were the first to publish the photoelectron spectrum of H2C
−
3 (m/z 38).180

In their experiment, H2C
−
3 was prepared in a high pressure, direct current, electrical discharge

containing propene (C3H6) and oxygen; the 488 nm photoelectron spectrum of m/z 38 was col-

lected. They did not observe much vibrational structure in the H2C
−
3 spectrum, indicating that the

anion and the neutral formed upon photodetachment had similar geometries; thus, they concluded

that they had prepared and collected the photoelectron spectrum of the propadienylidene isomer.

Had signal from another H2C
−
3 isomer, propargylene (HCCCH), been present in the spectrum, one

would expect to see a vibrational progression corresponding to the C-C-H bend, which is antici-
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pated to be active when an electron is removed from the bent HCCCH− anion to become a more

planar neutral. They measured EA(H2CCC) to be 1.794(25) eV; they were unable to resolve any

vibrational frequencies, nor did they observe excited states.

Propadienylidene was revisited in 1995 by Robinson et al.181 H2CCC− anions were gener-

ated using a flowing afterglow ion source by reacting O− with allene, H2CCH2. In their 351-nm

photoelectron spectrum, they observe transitions to both the X̃ 1A1 and ã3B1 states of H2CCC.

They measure the EA (1.794(8) eV) and the singlet-triplet splitting, ∆EST (29.7(2) kcal mol−1).

Further analysis of the spectrum is not performed.

Here, we reexamine the photoelectron spectrum of H2CCC−. As in the previous study, we

form H2CCC− in a flowing afterglow by reacting O− with allene. We collect the 364-nm photo-

electron spectrum of H2CCC−. The data presented here display improved vibrational resolution, a

result of vibrational cooling of the ions. We also present the photoelectron spectrum of D2CCC−

for the first time. Detailed analysis of these spectra is reported herein.

6.2 Experimental Methods

The negative ion photoelectron spectrometer used in this experiment has been described in

detail elsewhere.2,34,41 The apparatus consists of four main sections: an ion source, a mass filter,

an interaction region with crossed laser and ion beams, and an electrostatic electron kinetic energy

analyzer.

Negative ions are formed in a flowing afterglow ion source. A microwave discharge containing

trace amounts of O2 gas in He buffer gas (∼0.4 Torr) generates atomic oxygen radical anion, O−.

Allene (H2CCCH2) is added downstream of O− to generate propadienylidene (H2CCC−) anions:

O− + H2CCCH2 → H2CCC− + H2O.180,181 Similarly, D2CCC− is produced by reacting O− with

allene-d4 (D2CCCD2). Collisions with He buffer gas cool the ions to approximately 300 K. The

flow tube can be further cooled with a liquid nitrogen jacket to obtain a “cold spectrum” of ions

with temperatures near 150 K.
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Anions are extracted into a differentially pumped region and are accelerated to 735 eV before

entering a Wien velocity filter for mass selection. The recently rebuilt Wien filter has a mass resolu-

tion of m/∆m ∼ 60.38,161 Great care is taken to ensure that there is no contribution from propargyl

or 1-propynyl anions (H2CCCH− and H3CCC−, respectively; m/z 39) in the photoelectron spectra

of propadienylidene (m/z 38).

The mass-selected ion beam (typically 70 pA) is decelerated to 35 eV and focused into the

laser interaction region. Here, the 1-W output from a single-mode continuous-wave argon ion

laser operating at 364 nm (3.40814 eV) is built up to approximately 100 W of circulating power

in an optical buildup cavity located within the vacuum system. Photoelectrons ejected in the

direction orthogonal to both the laser and ion beams enter a hemispherical energy analyzer. The

photoelectron signal is recorded as a function of electron kinetic energy (eKE) with a position-

sensitive detector. The energy analyzer has a resolution of approximately 11 meV under the

conditions used for the present experiments.

The eKE is then converted to electron binding energy (eBE), which is independent of photon

energy: eBE = hν - eKE. The absolute kinetic energy scale is calibrated2,34,43 before and after

each data set using the well-known electron affinity of atomic oxygen.45 Additionally, the energy

scale is corrected for a slight linear compression (<1%)2 using the photoelectron spectrum of O−2 ,

which provides a number of known transitions spanning the photoelectron energy range.21,47 After

making these corrections and accounting for the resolution of the spectrometer and rotational peak

profiles, absolute eBEs can be determined with an accuracy of better than 5 meV.

A rotatable half-wave plate positioned outside the buildup cavity varies the polarization of

the photodetachment radiation in order to control the angle θ between the electric field vector of

the laser beam and the photoelectron collection axis. The photoelectron angular distribution is

described by the equation5

I(θ) =
σ0
4π

(1 + βP2(cos θ)) (6.1)

where σ0 is the total photodetachment cross section, β is the anisotropy parameter, and P2(cos θ)
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is the second Legendre polynomial. We measure the anisotropy parameter explicitly by recording

the photoelectron signal at the kinetic energy of one suitable intense peak in the photoelectron

spectrum as a function of θ (between θ = 0◦ and θ = 360◦ in steps of 10◦). The photoelectron

angular distribution is fit with Eq. 6.1, and full spectra collected at θ = 0◦ and θ = 90◦ are scaled to

match β at the energy at which it was measured. Separately, we collect a photoelectron spectrum

at θ = 54.7◦ (the “magic angle”), where the photoelectron intensity is independent of β and directly

reflects the relative photodetachment cross section.

6.3 Theoretical Methods

All electronic structure calculations were performed using the Gaussian 03 program pack-

age.48 Optimized geometries, harmonic vibrational frequencies, and normal mode coordinates were

calculated at the B3LYP level of theory49,50 with the 6-311++G(d,p) basis set52 for the X̃ 2B1

state of H2CCC− as well as for the X̃ 1A1 and ã3B1 states of the neutral H2CCC. All molecules

were constrained to C2v symmetry.

We employ a Franck-Condon analysis of the vibrational structure in the photoelectron spectra

to identify the active vibrational modes and the geometry change upon photodetachment. The

Franck-Condon profiles of the photoelectron spectra are simulated with the PESCAL program,21

using the calculated geometries, normal mode vectors, and vibrational frequencies of the anion

and neutral states. The normal modes and the Duschinsky J′′ matrix and K′′ displacements are

calculated. The Franck-Condon factors are computed in the harmonic oscillator approximation

including Duschinsky rotation using the Sharp-Rosenstock-Chen method.4 The individual vibronic

peak contours are simulated by a Gaussian function with a full-width half-maximum of 11 meV,

consistent with instrumental resolution.
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Figure 6.1: Generalized Valence Bond Diagrams of the X̃ 2B1 state of H2CCC− and the X̃ 1A1 and
ã3B1 states of H2CCC.

2B1 

1A1 

3B1 

H2CCC- H2CCC 

6.4 Results

6.4.1 Photoelectron Spectroscopy of H2CCC− and D2CCC−

The geometry change that takes place upon photodetachment dictates the vibrational struc-

ture of the photoelectron spectrum. As depicted in the generalized valence bond diagrams of the

ground X̃ 2B1 state of H2CCC− and the ground X̃ 1A1 and excited ã3B1 states of H2CCC in Fig. 6.1,

the excess electron of the anion resides primarily on the terminal C, and all three states have C2v

symmetry with a linear C-C-C backbone. If an electron is removed from the out-of-plane π orbital,

the ground X̃ 1A1 state is formed. The excited ã3B1 state is generated when an electron is photode-

tached from the in-plane σ orbital. Upon either X̃ 1A1 ← X̃ 2B1 or ã3B1 ← X̃ 2B1 photodetachment,

we expect the primary geometry changes to involve the C-C bond lengths and the H-C-H bond

angle. Thus, we anticipate the C-C stretching modes and H-C-H bending modes to be active in

the photoelectron spectrum. Furthermore, we predict that the modest geometry change will result

in a short, resolved vibrational progression for each state of the neutral H2CCC.

The 364-nm, 150 K photoelectron spectra of H2CCC− are shown in Fig. 6.2. The θ = 0◦

(blue) and θ = 90◦ (red) spectra are shown, with the measured β values plotted above the major
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Table 6.1: Experimental and calculated electron affinity, singlet-triplet splitting, and vertical de-
tachment energies of H2CCC (B3LYP/6-311++G(d,p)) given in eV.TABLE 1.  Experimental and calculated electron affinities, singlet-triplet splittings, and vertical 

detachment energies of H2CCC and D2CCC (B3LYP/6-311++G(d,p)) given in eV.   

 

  
   

1
A1 ←    

2
B1 

  

  
3
B1 ←    

2
B1 

   

  (0-0) VDE   (0-0) VDE   ∆EST 

H2CCC Experiment 1.794(4) 1.794(4) 0.86  3.076(4) 3.078(4) 0.61  1.282(4) 

 Calculated 1.945 2.011   3.224 3.334   1.279 

D2CCC Experiment 1.786(4) 1.786(4)   3.072(4) 3.072(4)   1.286(4) 

 Calculated 1.937 2.001   3.219 3.333   1.282 

 

 

  

peaks. As anticipated, we observe well-resolved, relatively short vibrational progressions. The

difference between the θ = 0◦ and θ = 90◦ spectra, as quantified by the drastic shift in β values of

peaks with eBE greater than 3 eV, clearly indicates that there are two electronic states detected in

the 364-nm spectra. In accord with the previous study,181 we assign the lower energy progression

to the X̃ 1A1 ground state of H2CCC. The cooled spectra obtained in this work display improved

energy resolution, enabling a more precise determination of the EA: 1.794(4) eV (Table 6.1).

At higher binding energy, we observe a short vibrational progression corresponding to pho-

todetachment to the ã3B1 excited state of H2CCC. The origin of the ã3B1 state appears at

3.076(4) eV, and we obtain the ∆EST of 1.282(4) eV (Table 6.1). Using this photon energy, we are

able to see the origin of the triplet manifold as well as the fundamentals of the lowest-frequency

active modes.

The 364-nm, magic angle photoelectron spectrum of D2CCC− is shown in Fig. 6.3(b). Com-

parison of the D2CCC− (purple, panel (b)) and H2CCC− (black, panel (a)) spectra confirm our

spectral assignments and lend additional insight into the photodetachment process. The EA of

D2CCC is measured to be 1.786(4) eV, and the ∆EST is measured to be 1.286(4) eV. The energies

of the observed vibronic transitions indicate that stretching modes of the C-C-C backbone and the

D-C-D bend are active upon photodetachment. Deuteration lowers the frequency of the vibrations,
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Figure 6.2: Photoelectron spectra of H2CCC− taken at θ = 0◦ and θ = 90◦ and scaled for
β anisotropy.
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especially those involving significant H (D) displacements. With the aid of simulations, detailed

in the following section (Section 6.5), we identify the individual vibronic transitions underlying

the peaks in the spectrum and determine experimental frequencies for the most active vibrational

modes.

6.5 Electronic Structure Calculations of H2CCC (D2CCC) and H2CCC−

(D2CCC−)

As indicated by the short, resolved vibrational progression observed in the photoelectron spec-

tra of H2CCC− and D2CCC−, we calculate only a modest geometry change upon photodetachment

(Table 6.2). Unlike many of the molecules presented in this thesis, the rigidity of propadienylidene

makes it well-suited for our standard Franck-Condon analysis, which assumes vibrational modes

are uncoupled and harmonic. Such assumptions are valid near the bottom of the potential en-

ergy well; in the case of a molecule that does not undergo a substantial geometry change upon

photodetachment—like propadienylidene—the most intense vibronic transitions access the bottom

of the potential well. Thus, treating the vibrational modes as uncoupled and harmonic is a reason-

able approximation.

The simulated photoelectron spectra of H2CCC− and D2CCC− are presented in Figs. 6.4(a)

and (b), respectively. Like another rigid molecule furanide,138 the Franck-Condon simulation us-

ing Cartesian coordinates reproduces the observed spectrum very well. In the simulations shown

in Fig. 6.4, the K′′ displacements and vibrational frequencies have been optimized to obtain the

best agreement between simulation and experiment. With minor adjustments to the ab initio

K′′ displacements and vibrational frequencies, we achieve excellent agreement between theory and

experiment (Tables 6.3 and 6.4). The agreement between the simulation and the observed pho-

toelectron spectrum enables assignment of the major peaks, labeled in Fig. 6.4. In the H2CCC−

spectrum, we primarily observe activity of the ν2 symmetric and ν4 asymmetric C-C-C stretching

modes upon X̃ 1A1 ← X̃ 2B1 photodetachment; in the D2CCC− spectrum, we also resolve vibronic

transitions involving excitation of the ν1 D-C-D bending mode. Below 3.25 eV, we observe only the



132

Figure 6.3: Comparison of the 364-nm, magic angle photoelectron spectra of (a) H2CCC− and (b)
D2CCC−.

a) 

b) 
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Table 6.2: Calculated (B3LYP/6-311++G(d,p)) equilibrium geometry of X̃ 2B1 H2CCC− and the
calculated and experimental net geometry change upon photodetachment to the X̃ 1A1 and ã3B1

states of H2CCC. The experimental geometry change upon detachment to the X̃ 1A1 state is ob-
tained from the experimental K′′ displacements (Table 6.3). Bond lengths are given in units of
angstrom (Å), and bond angles are given in units of degree (◦). Boldfaced entries highlight the
internal coordinates that undergo significant change upon photodetachment.

TABLE 2.  Calculated (B3LYP/6-311++G(d,p)) equilibrium geometry of 
2
B1 H2CCC


 and the 

calculated and experimental net geometry changes upon photodetachment to the 
1
A1 and 

3
B1 

states of H2CCC.  Bond lengths are given in units of angstrom (Å), and bond angles are given in 

units of degree (°).  Boldfaced entries highlight the internal coordinates that undergo significant 

change upon photodetachment. 

 

 

 

  

 

H2CCC

 

  

 

Geometry Change 

   
 2

B1 
 

  
 1

A1 ←   
 2

B1    
3
B1 ←   

 2
B1 

Internal Coordinate  Calculated  Calculated Experiment  Calculated 

H-C1  1.090  -0.001 0.002  -0.007 

C1-C2  1.371  -0.047 0.072  -0.010 

C2-C3  1.269  +0.015 +0.031  -0.036 

H-C1-H  115.9  +0.8 +3.4  +2.7 

H-C1-C2  122.0  -0.4 1.7  -1.3 

C1-C2-C3  180.0  +0 +0  +0 
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origin and the ν4 fundamental of the ã3B1 excited state of H2CCC. Upon deuteration the frequency

of ν3 is lowered such that we can detect the origin and the ν4 and ν3 fundamentals of the ã3B1

excited state of D2CCC. The Franck-Condon simulation is unable to reproduce the peaks approx-

imately 300 cm−1 higher in energy than the ã3B1 origin in the H2CCC− and D2CCC− spectra.

These peaks are assigned to the first overtone of ν9; vibronic coupling with the higher-lying b̃3A2

state lends intensity to this transition.182

From the least-squares optimization of the Franck-Condon simulation, we determine the ex-

perimental frequencies of the most active modes upon X̃ 1A1 ← X̃ 2B1 photodetachment. Tables 6.3

and 6.4 list the ab initio calculated K′′ displacements and vibrational frequencies (B3LYP/6-

311++G(d,p)), along with the experimental values (in italics) obtained through least-squares op-

timization of the simulation to experiment. In the X̃ 1A1 state of H2CCC, ν2 = 1957 cm−1 and

ν4 = 1103 cm−1. The ν2 frequency determined in this work is in excellent agreement with the ν2

frequency of H2CCC in an Ar matrix measured by Seburg et al.: 1960 cm−1.183,184 We measure

the frequency of ν4 in the ã3B1 excited state of H2CCC to be 1075 cm−1. In the X̃ 1A1 state of

D2CCC, ν2 = 1940 cm−1, ν3 = 1202 cm−1, and ν4 = 944 cm−1. In the ã3B1 state of D2CCC, we

measure the harmonic frequency of ν3 to be 1186 cm−1 and of ν4 to be 941 cm−1.

6.6 Discussion

These experiments were conducted in conjunction with Velocity-map Imaging (VMI – JILA)

and Slow-Electron Velocity-map Imaging (SEVI – Berkeley) to gain additional insight into the

rich electronic structure of the propadienylidene radical.182 The composite H2CCC− photoelectron

spectrum containing data obtained from all three experiments is shown in Fig. 6.5. In accord with

our measured values, the EA and ∆EST of H2CCC are measured with SEVI to be 1.7957(10) eV

and 1.2837(14) eV, respectively. The two lowest lying excited states of H2CCC are the ã3B1 and

b̃3A2 triplet states. As noted in the discussion of the peak assignments of the ã3B1 state of H2CCC

(Section 6.4.1), vibronic coupling between ã3B1 and b̃3A2 lends intensity to the ν9 fundamental in

our spectra. Above our experimental cut-off of 3.25 eV, strong vibronic coupling between the ã3B1
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Figure 6.4: Comparison of the magic angle, 150 K photoelectron spectra of (a) H2CCC− and (b)
D2CCC− with their respective Franck-Condon simulations.
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Table 6.3: Calculated (B3LYP/6-311++G(d,p)) unscaled, harmonic frequencies of X̃ 2B1 H2CCC−

and the X̃ 1A1 and ã3B1 states of H2CCC. Computed K′′ displacements (PESCAL) are also listed.
Experimental harmonic frequencies and displacements are listed in italics below the calculated
value.

TABLE 3.  Calculated (B3LYP/6-311++G(d,p)) unscaled, harmonic frequencies of 
2
B1 H2CCC


 

and the 
1
A1 and 

3
B1 states of H2CCC.  Computed K″ displacements (PESCAL) are also listed.  

Experimental harmonic frequencies and displacements are listed in italics below the calculated 

value. 

 

   
Frequencies   

 1
A1 ←   

 2
B1   

3
B1 ←   

 2
B1 

Mode Description 
H2CCC


, cm

-1
 K″ 

1
A1, cm

-1
 K″ 

3
B1, cm

-1
 

A1 1 CH sym stretch 3054.4 -2.125E-4 3093.8 -0.007153 3138.8 

 2 CCC asym stretch 1891.6 0.06896 

0.1204
a
 

2041.3 

1957
a
 

-0.06014 1982. 9 

 3 HCH bend 1457.3 0.001219 

0.03123
a
 

1484.1 0.01479 1450.5 

 4 CCC sym stretch 1077.0 -0.1092 

-0.1586
a
 

1145.3 

1103
a
 

-0.1206 1110.9 

1075
a
 

B1 5 OOP CH flap 578.4 0.0 1045.0 0.0 710.5 

 6 OOP CCC bend 398.7 0.0 250.6 0.0 429.6 

B2 7 CH asym stretch 3105.8 0.0 3172.0 0.0 3230.5 

 8 CCC bend + CH wag 1033.1 0.0 1051.0 0.0 903.9 

 9 CCC bend + CH wag 327.1 0.0 298.8 0.0 336.1i 

 

a
 Experiment, this work 

  a Experiment, this work
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Table 6.4: Calculated (B3LYP/6-311++G(d,p)) unscaled, harmonic frequencies of X̃ 2B1 D2CCC−

and the X̃ 1A1 and ã3B1 states of D2CCC. Computed K′′ displacements (PESCAL) are also listed.
Experimental harmonic frequencies and displacements are listed in italics below the calculated
value.

TABLE 4.  Calculated (B3LYP/6-311++G(d,p)) unscaled, harmonic frequencies of 
2
B1 D2CCC


 

and the X
1
A1 and a

3
B1 states of D2CCC.  Computed K″ displacements (PESCAL) are also listed.  

Experimental harmonic frequencies and displacements are listed in italics below the calculated 

value. 

 

   
Frequencies   

 1
A1 ←   

 2
B1   

3
B1 ←   

 2
B1 

Mode Description 
D2CCC


, cm

-1
 K″ 

1
A1, cm

-1
 K″ 

3
B1, cm

-1
 

A1 1 CD sym stretch 2215.5 0.008722 

0.02728
a
 

2270.5 

2270
a
 

-0.01173 2277.3 

 2 CCC asym stretch 1887.2 0.06795 

0.09963
a
 

2013.1 

1940
a
 

-0.05960 1980.1 

 3 DCD bend 1183.7 -0.05568 

-0.09362
a
 

1242.7 

1202
a
 

-0.04755 1199.5 

1186
a
 

 4 CCC sym stretch 940.7 -0.1047 

-0.1335
a
 

970.4 

944
a
 

-0.1264 952.0 

941
a
 

B1 5 OOP CD flap 486.7 0.0 836.6 0.0 572.7 

 6 OOP CCC bend 365.5 0.0 241.3 0.0 410.8 

B2 7 CD asym stretch 2310.8 0.0 2362.4 0.0 2403.7 

 8 CCC bend + CD wag 834.1 0.0 848.7 0.0 688.6 

 9 CCC bend + CD wag 300.9 0.0 274.5 0.0 327.5i 

 

a
 Experiment, this work 

a Experiment, this work
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and b̃3A2 states results in a congested spectrum characterized by significant activity of the ν4, ν8,

and ν9 vibrational modes of ã3B1, as well as ν2 of b̃3A2.

Higher in energy are the coupled singlet states, Ã1A2 and B̃1B1. These states are particularly

interesting to the chemical physics and astrophysics communities. The strong vibronic coupling be-

tween these states has been recognized for over a decade.176,178,179,183–185 Furthermore, absorptions

from these states of H2CCC have been identified in diffuse interstellar bands (DIBs).176,186 The

prominent origin of the Ã1A2 state is observed at 3.4916(10) eV. The position of the ν2 band of

Ã1A2 is consistent with the assertion that the absorption observed at 5450 Å in acetylene discharges

and in DIBs is due to H2CCC. Further analysis of the band is complicated by vibronic coupling

and low signal. The significant vibronic coupling between the Ã1A2 and B̃1B1 states diminishes

the intensity of the B̃1B1 state. A weak feature just below 4.1 eV is assigned to the B̃1B1 state,

but the origin is unobservable.

The highest energy excited state observed in these spectra is the c̃3A1 state, appearing at a

term energy of 2.5968(14) eV. This state is not significantly coupled to any other electronic state.

Therefore, the vibrational structure of the c̃3A1 ← X̃ 2B1 photoelectron spectrum is straightforward

to interpret. The dominant vibrational progression is the ν4 C-C stretch, as the C-C bonds are

calculated to lengthen upon photodetachment to the c̃3A1 state of H2CCC.

6.7 Conclusions

In this work, we have collected the 364-nm photoelectron spectra of H2CCC− and D2CCC−.

We observe photodetachment from X̃ 2B1 H2CCC− (D2CCC−) to the X̃ 1A1 and ã3B1 states of

H2CCC (D2CCC). The photoelectron spectrum of H2CCC− presented here displays improved res-

olution over earlier studies,180,181 enabling a more precise measurement of the EA and ∆EST of

H2CCC: 1.794(4) eV and 1.282(4) eV, respectively. From the photoelectron spectrum of D2CCC−,

reported for the first time here, we measure EA(D2CCC) = 1.786(4) eV and ∆EST(D2CCC) =

1.286(4) eV.
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Figure 6.5: Composite photoelectron spectrum of H2CCC− using PES, VMI, and SEVI. Labels
indicate the origins of the electronic states of H2CCC.

c ̃3A1 

B̃ 1B1 

Ã 1A2 

b ̃3A2 

ã 3B1 
X̃ 1A1 
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Because there is only a modest geometry change upon photodetachment—primarily short-

ening of C-C bonds—we observe a readily analyzable photoelectron spectrum. The origin peaks

of the ground and excited states are prominent, and we observe a resolved vibrational progression

corresponding to C-C stretching. The observed photoelectron spectrum can be reproduced using

the standard Franck-Condon analysis, assuming harmonic and uncoupled vibrational modes. As a

result of the good agreement between simulation and experiment, we determine several harmonic

vibrational frequencies of H2CCC and D2CCC. Such problems are well-suited for photoelectron

spectroscopy!

Though the photoelectron spectrum of the ground state is straightforward to analyze, the

higher-lying excited states of H2CCC, accessed using the more energetic photons available in VMI

and SEVI, present more of a challenge.182 Strong vibronic coupling between the ã3B1 and b̃3A2

states and between the Ã1A2 and B̃1B1 states yields complex spectra. The Ã1A2 and B̃1B1 states

are of particular interest to the astrophysical community, as DIBs profiles have been suggested as

due to absorptions in these states. The energy of the ν2 fundamental of Ã1A2 is consistent with

DIB absorptions that have previously been ascribed to H2CCC.



Chapter 7

Propargylene

7.1 Introduction

Carbenes, hydrocarbons in which one carbon atom has two electrons not involved in bonding,

are a ubiquitous and fascinating class of compounds that play central roles in organic chemistry,

combustion chemistry, and astrochemistry. The simplest carbene, methylene (H2C:), has only one

isomer, whereas carbenes containing two carbons, vinylidene (H2C=C:) and ethylidene (H3CC̈H),

have only one carbene isomer in addition to their more stable forms (HC≡CH and H2C=CH2). The

addition of a third carbon atom dramatically broadens the carbene landscape, with C3H2 the best

prototype of this expanded complexity. In addition to many structural isomers that now become

plausible, more than one carbon atom may act as the carbene center, and conjugation among π

orbitals is possible. Propargylene 1, propadienylidene 2, and cyclopropenylidene 3, represent three

of the possible structures of C3H2 (Schemes 7.1 and 7.2). For these reasons the C3H2 system has

been the subject of many investigations to determine molecular and electronic structures, both

for fundamental understanding and for the clues this knowledge provides in elucidating reaction

mechanisms.

In this work we use negative ion photoelectron spectroscopy in the gas phase to investigate

the HCCCH isomer, known as propargylene or propynylidene, and its fully deuterated isotopologue

DCCCD.187 We measure the electron affinity (EA) of propargylene and observe vibrational progres-

sions in four electronic states of this molecule. We compare these results with high level electronic

structure calculations for additional insight. Together, our photoelectron spectra, their angular
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dependence, and the calculations characterize the molecular structure of propargylene anion and

neutral and the quasilinear nature of the ground state of HCCCH.

7.2 Background

Propargylene 1 is the simplest acetylenic carbene and has several plausible electronic struc-

tures (1a – 1c), as shown in Scheme 7.1.

Scheme 7.1, Possible valence bond structures of propargylene.

Scheme 1: Different electronic structures of propargylene, HCCCH, with their 

calculated relative energies. 

Scheme 7.2 shows two additional C3H2 isomers; propadienylidene 2 is the simplest vinylidene

carbene, while cyclopropenylidene 3 is the smallest aromatic carbene.184
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Scheme 7.2, Two additional isomers of C3H2: propadienylidene 2 and cyclopropenylidene 3.

Scheme 2: Different nuclear structures of C3H2 with their calculated relative energies. 

Automerization processes have been observed that connect these C3H2 isomers. The lowest energy

isomer is cyclopropenylidene (c-C3H2) 3, one of the most abundant carbenes in the interstellar

medium (ISM), where carbon chains derived from c-C3H2 have been also been detected by radio

astronomy. In the laboratory, c-C3H2 was first studied using matrix isolation and later via pho-

toelectron spectroscopy and microwave spectroscopy.188 It has a singlet ground state with a rigid

structure in C2v symmetry.

Propadienylidene 2, the focus of Chapter 6, is also abundant in the ISM169 and is a carrier

of the diffuse interstellar bands (DIBs).185 It has been detected in both dense clouds (IRC+10216

and TMC-1)170,171 and the diffuse ISM.189 Microwave spectroscopy172–174 in combination with

theory175 indicate the equilibrium geometry of H2CCC is a near prolate top in C2v symmetry, with

a singlet ground state and a large dipole moment. Propadienylidene has been studied extensively in

the laboratory using photoelectron spectroscopy,190 negative ion photoelectron spectroscopy,180–182

and absorption spectroscopy.191

Returning to the focus of this study, propargylene 1 was first observed by Bernheim and Skell

in 1965 by electron spin resonance (ESR) spectroscopy following photolysis of diazopropyne in a

solid matrix at 77 K.192 They assigned a triplet ground state of HCCCH with a linear geometry.

Vibrational fundamentals of HCCCH were first measured via matrix isolation infrared spectroscopy

by Chi in 1972,193 and later by Jacox and Milligan in 1974.194 Seburg, McMahon, and co-workers,

in a series of elegant site-specific 13C and 2H isotopic labeling experiments, used both matrix

isolation infrared spectroscopy and ESR spectroscopy to provide substantial evidence that despite

the small barriers to linearity in all bending coordinates, the ground electronic state of HCCCH is

a triplet diradical with a bent geometry in the C2 point group; i.e., it most resembles the structure

1b.183,184,195
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Isomers of C3H2—particularly HCCCH—are important to combustion chemistry and have

been implicated in the formation of polycyclic aromatics and soot.196,197 C3H2 has been detected

in C2H4/O2 flames198 and identified as an intermediate in the formation of C2H from C2H2/O/H

flames.199 In a photoionization efficiency study of C3H2 in a rich cyclopentene flame, Taatjes et

al. measured the ionization energy (IE) of 3HCCCH and found evidence for the presence of both

HCCCH and cyclopropenylidene in a cyclopentene flame.200 C3H2 isomers have been observed

as products of the crossed molecular beam reaction of CH and C2H2.
201 Ab initio calculations

and RRKM analysis show 3HCCCH is a primary product of the reaction of C2H2 with CH and

other hydrocarbons.202–205 In contrast, c-C3H2 is detected as the main product of the CH + C2H2

reaction, studied using VUV photoionization and time-resolved mass spectrometry.206

Aside from its relevance to combustion chemistry and its fundamental importance as the

smallest acetylenic carbene, substituted propargylene derivatives are used as ligands in organometal-

lic chemistry,207,208 and their interesting reactivity has been applied to organic synthesis.209,210

The technique of gas-phase negative ion photoelectron spectrometry is a powerful comple-

ment to the matrix IR and ESR approaches. Whereas these latter techniques provide fundamental

frequencies of the IR active vibrations, and information on the locations and couplings of unpaired

electrons in the molecule, they have been conducted in a low temperature solid state environment.

Gas-phase negative ion photoelectron spectroscopy accesses higher lying vibrational and electronic

states of the isolated molecule, providing valuable information on the shape of the potential energy

surface without the potential perturbations of a solid matrix. This technique also measures the

electron affinity (EA) and singlet-triplet splitting (∆EST) of HCCCH, both fundamentally impor-

tant values. The configuration of the anion, both nuclear and electronic, provides a single reference

to which all neutral electronic states may be compared. Finally, the angular distribution of the

electrons relative to the electric field of the detachment laser provides important clues to the nature

of the molecular orbitals and hence the molecular structure of HCCCH.
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7.3 Experimental Methods

The negative ion photoelectron spectrometer (NIPES) used in this experiment has been

described in detail elsewhere.2,34,41 The apparatus consists of four main sections: an ion source, a

mass filter, an interaction region with crossed laser and ion beams, and an electrostatic electron

kinetic energy analyzer.

Negative ions are formed in a flowing afterglow ion source. A microwave discharge containing

trace amounts of O2 gas in He buffer gas (∼ 0.4 Torr) generates atomic oxygen radical anion, O−.

Propyne (H3CC≡CH) is added downstream of O− to generate both propargylenide (HCCCH−)

and propadienylidenide (H2CCC−) anions:

Scheme 7.3

   HCCCH- + H2O 

O- + H3CCCH 

   H2CCC- + H2O 

In a separate experiment we react O− with allene (H2C=C=CH2), a reaction that generates pre-

dominantly propadienylidenide: O− + H2C=C=CH2 → H2CCC− + H2O.180,181 Subtraction of the

latter spectra (appropriately scaled) from the former spectra yields photoelectron spectra of the

propargylenide isomer. Similarly, propyne-d4 (D3CC≡CD) and allene-d4 (D2C=C=CD2) are used

to produce DCCCD− and D2CCC−. Collisions with He buffer gas cool the ions to approximately

300 K. The flow tube can be further cooled with a liquid nitrogen jacket to obtain a “cold spec-

trum” of ions with temperatures near 150 K. In the case of propargylene, vibrational quenching of

the anions with liquid nitrogen dramatically improves our ability to resolve vibrational structure;

thus, with one exception to demonstrate this effect, all the photoelectron spectra shown in this

work were collected at 150 K.

In addition to formation of C3H
−
2 isomers, we also observe formation of the allenyl anion

(H2C=C=CH−) at m/z = 39. Beginning with very low propyne flows, increasing propyne concen-

tration in the flowing afterglow source significantly increases production of the allenyl anion until all

O− anions are consumed. By contrast, the concentration of C3H
−
2 isomers first increases modestly,
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and then decreases. The optimal propyne concentration for production of C3H
−
2 isomers is small

and is achieved when a significant proportion of the O− anions do not react. This observation is

evidence that the reaction proceeds by hydrogen atom abstraction (not proton abstraction)

O− + H3CCCH→ OH− + H2CCCH ∆H0 = −21.0kcal mol−1 (7.1)

where the exothermicity is sufficient that the OH− product escapes from the [OH− • H2CCCH]

Langevin complex. If propyne were in great excess of O−, the OH− would react primarily with

propyne, forming H2C=C=CH− + H2O, rather than reacting with the H2CCCH radical from

Eq. 7.1, which would give the desired C3H
−
2 product. The need to keep the propyne concentration

low restricts the quantity of C3H
−
2 ions that can be produced.

Anions are extracted into a differentially pumped region and are accelerated to 735 eV be-

fore entering a Wien velocity filter for mass selection. The recently rebuilt Wien filter has a mass

resolution of m/∆m ∼ 60.38,161 Great care is taken to ensure that there is no contribution from

propargyl or 1-propynyl anions (H2CCCH− and H3CCC−, respectively; m/z = 39) in the photo-

electron spectra of either propargylenide or propadienylidenide (m/z = 38).

The mass-selected ion beam (typically 70 pA) is decelerated to 35 eV and focused into the

laser interaction region. Here, the 1-W output from a single-mode continuous-wave argon ion

laser operating at 364 nm (3.40814 eV) is built up to approximately 100 W of circulating power

in an optical buildup cavity located within the vacuum system. Photoelectrons ejected in the

direction orthogonal to both the laser and ion beams enter a hemispherical energy analyzer. The

photoelectron signal is recorded as a function of electron kinetic energy (eKE) with a position-

sensitive detector. The energy analyzer has a resolution of approximately 11 meV under the

conditions used in the present experiments.

The eKE is then converted to electron binding energy (eBE), which is independent of photon

energy: eBE = hν - eKE. The absolute kinetic energy scale is calibrated2,34,43 before and after

each data set using photoelectron spectra of atomic oxygen anion because the EA of oxygen atom

is known accurately.45 Additionally, the energy scale is corrected for a slight linear compression



147

(<1%)2 using the photoelectron spectrum of O−2 , which provides many known transitions spanning

the photoelectron energy range.21,47 After making these corrections and accounting for the reso-

lution of the spectrometer and rotational peak profiles, absolute eBEs can be determined with an

accuracy of better than 5 meV.

A rotatable half-wave plate positioned outside the buildup cavity varies the polarization of

the photodetachment radiation in order to control the angle θ between the electric field vector of

the laser beam and the photoelectron collection axis. The photoelectron angular distribution (the

relative differential photodetachment cross section) is described by the equation5

I(θ) =
σ0
4π

(1 + βP2(cos θ)) (7.2)

where σ0 is the total photodetachment cross section, β is the anisotropy parameter, and P2(cos θ)

is the second Legendre polynomial. We measure the anisotropy parameter explicitly by recording

the photoelectron signal at the kinetic energy of a few intense peaks in the photoelectron spectrum

as a function of θ (between θ = 0◦ and θ = 360◦ in steps of 10◦). The photoelectron angular

distribution is fit with Eq. 7.2, and full spectra collected at θ = 0◦ and θ = 90◦ are scaled to match

β at the energy at which it was measured. Separately, we collect a photoelectron spectrum at θ

= 54.7◦ (the “magic angle”), where the photoelectron intensity is independent of β and directly

reflects the relative photodetachment cross section.

To access higher lying electronic excited states, we employ a negative ion velocity-map imag-

ing211,212 (VMI) photoelectron spectrometer.213 This experimental apparatus uses a pulsed anion

beam that is mass selected via a Wiley-McLaren time-of-flight mass spectrometer (TOF MS).214

Anions are excited by a tunable laser, allowing broad control of the kinetic energies of the de-

tached electrons. The following description details the major differences of the VMI and NIPES

instruments.

For anion preparation, we follow the same ion-molecule reaction180,181,215 as above and form

HCCCH− in a pulsed supersonic entrainment reactor.216 Photoelectron spectra of the m/z = 38

anions arising from both reactions (O− + propyne and O− + allene) are taken under the same
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experimental conditions in the present experiment. The entrainment reactor consists of a central

and two side pulsed General Valves operating at a repetition rate of 80 Hz with separate timings

and pulse widths. The middle valve provides the main expansion using 1% propyne or 1% allene

seeded in Ar at a stagnation pressure of 45 psig. One of the side valves entrains neat N2O into

the main expansion. Collisions of the gas expansion with a guided 1-keV electron beam yield slow

secondary electrons that form the O− reactant through dissociative electron attachment of N2O.

Subsequently, the O− reacts with propyne or allene to form the m/z = 38 anion. If the N2O

entrainment valve is turned off, the m/z = 38 signal disappears.

The anions are perpendicularly extracted and mass-selected using a Wiley-McLaren TOF

MS. Anions of m/z = 38 are photodetached by spatially and temporally overlapping them with

a tunable-light pulse (240 or 527 nm) from the frequency-doubled or fundamental signal output

of a 355-nm pumped optical parametric oscillator. The kinetic energy distribution of the ejected

electrons is then acquired by the VMI photoelectron spectrometer. The energy scale for the reported

images is calibrated using the well-known photoelectron spectrum of I−.217 The spectra reported

here cover an eKE range from 0 to 1.2 eV, with a declining energy resolution of 10 to 60 meV across

this range.

7.4 Theoretical Methods

We use two electronic structure methods to calculate geometries, harmonic vibrational fre-

quencies, and energies extrapolated to the complete basis set limit for anions and neutrals. We

calculate the lowest electronic state of each symmetry using coupled cluster (CCSD(T)) theory.

Geometries and frequencies are calculated at the CCSD(T)/aug-cc-pVTZ level, with energies cal-

culated up to the aug-cc-pV5Z basis set, extrapolated to the complete basis set limit. These states

and higher lying electronic states are also calculated using multi-reference configuration interac-

tion (MRCI) theory, with geometries and frequencies at the (6e,6o)-CAS+1+2+QC/aug-cc-pVTZ

level of theory, and energies up to the aug-cc-pV5Z basis set extrapolated to the complete basis

set limit. We utilized the Gaussian09 package218 with unrestricted wavefunctions to calculate the
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ground electronic states of the anions and neutrals. For all other electronic states, and all MRCI

calculations, we employed restricted wavefunctions using the MolPro package.219 If one considers

HCCCH as a linear molecule, with its symmetry axis along the z-axis, the 6-electron/6-orbital

active space is composed of three px and three py atomic orbitals that together form three πx and

three πy molecular orbitals, with zero, one, and two nodes perpendicular to the z-axis, respectively.

We calculate the Franck-Condon factors for detachment of HCCCH− with ab initio geometries

and force constants for the anion and the neutral ground state using the PESCAL program.21 To

compare with the experimental photoelectron spectrum, we simulate the spectrum of HCCCH−

within the normal mode approximation in Cartesian coordinates, including Duschinsky rotation.4

Optimized geometries, vibrational frequencies, and normal mode vectors used in the simulations

were calculated at the B3LYP level of theory49,50 with the 6-311++G(d,p) basis set.52 Simulations

use the experimental values for the EA and ã(1A) origin transition. Vibrational stick spectra are

convolved with a Gaussian of 11 meV FWHM to account for the instrumental resolution.

7.5 Results

7.5.1 Isomer-specific Chemistry

When O− reacts with a hydrocarbon, it usually removes a hydrogen atom and a proton,

forming neutral H2O and a hydrocarbon anion. In the case of the O− + C3H4 reaction, we observe

that the isomer distribution of the C3H
−
2 anion depends on the isomeric form of the C3H4 reactant.

Upon reaction with allene (H2C=C=CH2), we observe, using the NIPES apparatus, the relatively

simple photoelectron spectra in Fig. 7.1(a), which arise almost exclusively from electron detachment

of the propadienylidene anion, H2CCC:−, in agreement with previous results.177,181 By contrast,

when O− reacts with propyne (HC≡CCH3), the resulting spectra in Fig. 7.1(b) show many new

features in addition to all the peaks observed in Fig. 7.1(a). This observation is strong evidence

that the reaction of O− with propyne forms at least one additional isomer of C3H
−
2 in significant

yield in addition to H2CCC:−. We will show below that all the new features in Fig. 7.1(b) can be
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conclusively assigned to production of the propargylene anion, HCCCH−.

A close inspection of the peak widths as a function of anion temperature in the magic angle

spectra in Fig. 7.1(b) provides further evidence for the presence of two different isomers of C3H
−
2 .

With decreasing anion temperature, the peak at eBE = 1.796 eV, assigned to the ground electronic

state of H2CCC, shows only modest narrowing, in contrast to the dramatic narrowing of the peak

at 1.656 eV. This behavior is evidence that the latter feature cannot arise from H2CCC but is

instead consistent with the quasilinear, “floppy” nature of the HCCCH isomer. Corresponding

photoelectron spectra from the reactions of O− with allene-d4 and propyne-d4 are shown in Fig. 7.2.

These results pose the intriguing question of why, when O− reacts with allene, the hydrogen

atom and proton are almost always taken from the same end of the molecule, yielding H2CCC:−,

whereas reaction with propyne demonstrates the ability of O− to react at both ends of this C3H4

isomer. The distance between hydrogen atoms on opposite ends of allene is essentially identical to

that in propyne, hinting that the difference in electronic structure (two double bonds vs. one single

and one triple bond) may control the reactivity. The answer to this question is outside the scope

of this work.

Figure 7.3 shows spectra from the VMI photoelectron spectrometer, which provides higher

photon energies compared to the NIPES spectrometer, allowing access to higher-lying electronic

states of HCCCH. The right portion of Fig. 7.3, acquired at a photon energy of 2.335 eV, provides

a direct comparison with the NIPES spectra in Fig. 7.1. Although the anion source in the VMI

instrument is quite different from that in the NIPES instrument, comparing features from 1.4 to

2.1 eV binding energy between the two instruments shows the same isomer-specific chemistry in

both sources. Therefore we assume, at all binding energies, that the black spectra in Fig. 7.3 arise

primarily from detachment of H2CCC−, whereas features in the red spectra that were not present

in the black spectra arise from HCCCH−. Using a higher photon energy of 5.165 eV, we observe

the photoelectron spectra in the left portion of Fig. 7.3, which could not be acquired on the NIPES

instrument. We attribute the peaks in the red spectrum (propyne reactant) that are not present

in the black spectrum (allene reactant) to higher electronic states of HCCCH.
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Figure 7.1: Photoelectron spectra of the product anions from (a) O− + allene and (b) O− +
propyne. θ is the angle between the electric field polarization vector and the axis of electron
detection. Structural assignments shown here are justified in the text.

Figure 1:  Photoelectron spectra of the product anions from (a) O + allene, and (b) O + 
propyne.   is the angle between the electric field polarization vector and the axis of 
electron detection.  Structural assignments shown here are justified in the text. 

(a) (b) 

00 H2CCC a(3B1) 0 ~ 
00 H2CCC X(1A1) 0 ~ 00 HCCCH a(1A) 0 ~ 

00 HCCCH X(3B) 0 ~ 

HCCCH b(1B) ~ 

O + H2C=C=CH2  H2CCC + H2O O + HCCCH3  H2CCC + H2O 
     HCCCH + H2O 
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Figure 7.2: Photoelectron spectra of the product anions from (a) O− + allene-d4 and (b) O− +
propyne-d4. θ is the angle between the electric field polarization vector and the axis of electron
detection. Structural assignments shown here are justified in the main text.

Figure S1:  Photoelectron spectra of the product anions from (a) O + d4-allene, and (b) O 
+ d4-propyne.  is the angle between the electric field polarization vector and the axis of 
electron detection. Structural assignments shown here are justified in the main text. 

(a) (b) 

00 D2CCC a(3B1) 0 ~ 
00 D2CCC X(1A1) 0 ~ 00 DCCCD a(1A) 0 ~ 

00 DCCCD X(3B) 0 ~ 

DCCCD b(1B) ~ 

Supplemental Figure 

O + D2C=C=CD2  D2CCC + D2O O + DCCCD3  D2CCC + D2O 
    DCCCD + D2O 
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Figure 7.3: Photoelectron spectra of the product anions from O− + allene (black), and O− +
propyne (red) acquired with the velocity-mapped imaging photoelectron spectrometer. Spectra on
the right side were acquired with hν = 2.335 eV, and on the left side with hν = 5.165 eV. The
low binding energy spectra(right) provide strong evidence that the isomer distributions of product
anions using this ion source are similar to the distributions obtained from O− + allene and O− +
propyne in the flowing afterglow source.

Figure 2:  Photoelectron spectra of the product anions from O + allene (black), and O + 
propyne (red) acquired with the velocity-mapped imaging photoelectron spectrometer.  
Spectra on the right side were acquired with h = 2.335 eV, and on the left side with h = 
5.165 eV.  The low binding energy spectra(right) provide strong evidence that the isomer 
distributions of product anions using this ion source are similar to the distributions 
obtained from O + allene and O + propyne in the flowing afterglow source.    
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7.5.2 Photoelectron Angular Distributions

Figures 7.1 and 7.2 show the change in peak intensities with respect to the angle between the

electric field of the detachment laser and the axis of electron collection. The angular distribution

of photoelectrons enables two aspects of our analysis. First, the groups of vibrational peaks arising

from each electronic state of the neutral generally have distinct angular distributions, allowing a

purely experimental method for delineating different electronic states of the neutral even if their

spectra overlap in electron binding energy. Second, because the reaction of O− with allene happens

to produce mostly the H2CCC:− isomer of C3H
−
2 , whereas the reaction with propyne shows contri-

butions from both H2CCC:− and HCCCH−, we can subtract the allene spectra from the propyne

spectra to isolate the contributions of HCCCH−.

However, because some electronic states of H2CCC and HCCCH produce overlapping pho-

toelectron spectra, we must first scale the allene-derived spectra to the propyne-derived spectra

using a spectral peak of H2CCC that does not overlap any peaks arising from HCCCH. This prac-

tice will ensure that we complete subtraction of H2CCC contributions even at electron binding

energies where the isomers’ spectra do overlap. Fortunately, the relative spectral intensities in

Figs. 7.1(a) and 7.1(b) are identical from eBE = 3.0 – 3.25 eV, implying that only H2CCC con-

tributes to this section of the spectra. The strong peak at eBE = 3.076 eV was assigned to the

origin transition of H2CCC ã(3B1) by Robinson et al.,181 and we use its angle-dependent intensity

to scale the spectra in Fig. 7.1(a) to corresponding spectra in Fig. 7.1(b) in order to quantitatively

subtract contributions of H2CCC from the propyne-derived spectra. We note that the capability

of the NIPES spectrometer to provide photoelectron spectra over wide eBE ranges (> 2 eV) with

constant collection efficiency and excitation energy is critical to this isomer separation approach.

Figure 7.4(b) shows the differential detachment cross sections obtained from product anions

of the O− + propyne reaction in 150 meV-wide windows centered at eBE = 3.076 eV (the origin

of the H2CCC ã(3B1) state) and at eBE = 1.671 eV, where the signal arises primarily from the

ã(1A) state of HCCCH. We extract anisotropy parameters β[H2CCC ã(3B1)] = +0.60 ± 0.04 and
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β[HCCCH ã(1A)] = -0.69 ± 0.02 by fitting Eq. 7.2 to the data in Fig. 7.4(b). Such measurements,

at many different electron ejection angles, are the most robust method for obtaining β but are too

time consuming for measurements of the energy dependent anisotropy parameter β(E).

Figure 7.5(a) shows photoelectron spectra from the O− + propyne reaction normalized to

the differential cross section for electron detachment from H2CCC− at 3.076 eV using the value

of β from the previous paragraph. These three spectra allow a three-point fit to Eq. 7.2 at each

electron binding energy, providing β(E), which is plotted above the spectra.

7.5.3 Pure Spectra of HCCCH and DCCCD

Subtracting the contributions of H2CCC from the O− + propyne (and O− + propyne-d4)

data provides the photoelectron spectra that arise from HCCCH− and DCCCD− in Figs. 7.6(a) and

7.6(b). (Note that Ikuta calculates a negative EA for cyclopropenylidene,220 precluding its presence

in negative ion photoelectron spectroscopy. Nothing in our results contradicts this conclusion.) The

energy-dependent anisotropy parameter, β(E), is also shown in Fig. 7.6 and is only available for

the HCCCH isotopologue. The same photoelectron spectra for HCCCH can be seen in Fig. 7.5(b),

normalized to the differential cross section. This presentation of the data emphasizes that at all but

the highest electron binding energies, the detachment cross section of HCCCH− is largest at θ =

90◦, i.e., at negative values of β(E). Such negative values correspond to detachment from a p orbital

in an atomic anion, resulting in s and d partial waves of the outgoing electron. In a molecule the

correspondence is more complicated, but negative anisotropy parameters generally correspond to

detachment from a π orbital, whereas positive values are consistent with detachment from orbitals

with σ character. In addition, the abrupt changes in β as a function of binding energy (e.g., at

1.803 eV vs. 1.773 eV) are evidence that multiple electronic states of the neutral contribute to the

spectra for eBE above 1.65 eV.

Returning to Fig. 7.6(a), we can make some initial observations about electronic states of

HCCCH that are populated when different electrons are removed from the anion. The angular

distributions are critical to this endeavor. The red spectrum at θ = 0◦ shows a long progression
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Figure 7.4: Photoelectron spectrum (a) and differential cross sections (b) from product anions of
the O− + propyne reaction. The red data at electron binding energy of 3.076 eV arise from the
origin of the H2CCC ã(3B1) state. The blue data at electron binding energy of 1.671 eV arise
primarily from the origin of the HCCCH ã(1A) state.

Figure S2:  Photoelectron spectrum (a) and differential cross sections (b) from product 
anions of the O + propyne reaction.  The red data at electron binding energy of 3.076 eV 
arise from the origin of the H2CCC a(3B1) state. The blue data at electron binding energy of 
1.671 eV arise primarily from the origin of the HCCCH a(1A) state.  

Supplemental Figure 

(a) 

(b) 
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Figure 7.5: Photoelectron spectra normalized to the differential cross section of H2CCC− at eBE =
3.076 eV for (a) HCCCH− and H2CCC− produced from the O− + propyne reaction, and (b)
HCCCH− with the contributions from H2CCC− subtracted. θ is the angle between the electric
field polarization vector and the axis of electron detection. Ion temperature is ∼ 150 K. The
energy-resolved anisotropy parameter β(E) is shown above each set of spectra.

(a) (b) 

Figure S3:  Photoelectron spectra normalized to the differential cross section of H2CCC at 
eBE = 3.076 eV for (a) HCCCH and H2CCC produced from the O + propyne reaction, and 
(b) HCCCH with the contributions from H2CCC subtracted.  is the angle between the 
electric field polarization vector and the axis of electron detection.  Ion temperature is ~ 
150 K.  The energy-resolved anisotropy parameter (E) is shown above each set of spectra. 

Supplemental Figure 

O + HCCCH3  H2CCC + H2O 
     HCCCH + H2O 

[O + HCCCH3] – [O + H2C=C=CH2] 
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Figure 7.6: Photoelectron spectra of (a) HCCCH−, and (b) DCCCD− with contributions from
H2CCC− and D2CCC− subtracted. θ is the angle between the electric field polarization vector
and the axis of electron detection. Ion temperature is ∼ 150 K. The artifacts at 3.076 eV arise
from imperfect subtraction of the propadienylidene contributions. The energy-resolved anisotropy
parameter β(E) is shown for HCCCH−.

Figure 3:  Photoelectron spectra of (a) HCCCH, and (b) DCCCD with contributions from 
H2CCC, and D2CCC subtracted.  is the angle between the electric field polarization 
vector and the axis of electron detection.  Ion temperature is ~ 150 K.  The artifacts at 
3.076 eV arise from imperfect subtraction of the propadienylidene contributions.  The 
energy-resolved anisotropy parameter (E) is shown for HCCCH.  

00 HCCCH a(1A) 0 ~ 

00 HCCCH X(3B) 0 ~ 

HCCCH b(1B) ~ 

00 DCCCD a(1A) 0 ~ 

00 DCCCD X(3B) 0 ~ 

DCCCD b(1B) ~ 

(a) (b) 

HCCCH 

DCCCD 
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with a smooth envelope apparently beginning at 1.249 eV, reaching a maximum near 1.7 eV, and

tapering back to baseline at ∼ 2.3 eV. Strikingly, this progression is dwarfed in the black magic

angle spectrum by a strong peak at 1.656 eV. The anisotropy parameter has an average value of

-0.45 from 1.25 – 1.59 eV but becomes more energy dependent for eBE ≥ 1.65 eV. Based on these

observations it seems reasonable to assign the ground electronic state of HCCCH X̃ (3B) to the long

progression prominent in the red spectrum, and the sharp peak at 1.656 eV to the origin of the

first excited state ã(1A). Evidently, the geometry of the ground state neutral is quite different from

that of the anion, whereas the geometry of the excited ã(1A) state is similar to the anion. The

term symbols will be justified in Section 7.6.1, and the experimental determination of the X̃ (3B)

origin in Section 7.5.4. Finally, we assign a third electronic state, the b̃(1B) state, to the series of

peaks from ∼ 2.4 – 2.95 eV, which are most prominent in the θ = 0◦ spectra, and for which a large

geometry change from the anion seems clear due to the long vibrational progression. Note that this

state shows an energy-dependent anisotropy parameter that rises from -0.1 to +0.2 with increasing

eBE. Based on the intensities of the features in this progression there is little hope of locating the

origin transition of the b̃(1B) state, but we assign the vertical detachment energy (VDE) of this

state, determined at the peak of the progression envelope, as 2.648 ± 0.020 eV.

Comparing the spectra of HCCCH− to DCCCD− supports these assignments of electronic

states. Although the peak spacing in vibrational progressions attributed to each electronic state

becomes smaller upon deuteration, the sharp peak assigned to the ã(1A) origin does not shift, as

expected if it represents the origin of a higher-lying electronic state. The HCCCH X̃ (3B) state

appears to support at least two vibrational progressions, as shown by the peak splittings for eBE >

1.7 eV, whereas in DCCCD the second progression is less obvious.

It is more difficult to draw conclusions purely from experiment about the spectra in Fig. 7.3

that probe higher-lying electronic states of HCCCH. Focusing on the peaks in the propyne-derived

(red) spectra that are not present in the allene-derived (black) spectra, there appear to be four

peaks that arise from HCCCH at eBE = 4.456, 4.589, 4.743, and 4.877 eV.
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7.5.4 Experimental Assignment of the HCCCH X̃ (3B) Origin

It is challenging to experimentally assign the origin of an electronic transition with a large

geometry change from anion to neutral. We adopt the approach taken by Robinson et al.181 in

determining the EA of the propargyl radical (HCCCH2), where NIPES spectra from the allenyl

(HCCCH−2 ) and the allenyl-d3 (DCCCD−2 ) anions were compared. The binding energy of the origin

transition should be essentially independent of deuterium substitution because, upon deuteration,

the electronic part of the transition energy is unchanged, while the lowering of zero point energy

(ZPE) in the neutral is almost exactly matched by the lowering of ZPE in the anion, leaving

the overall transition energy essentially unchanged. The same cancellation will not occur when

transitions from the zero point level of the anion terminate in excited vibrational levels of the

neutral, in which case the peak positions of a deuterated isotopologue, for identical vibrational

quantum numbers, will occur at lower transition energies compared to the undeuterated molecule.

One therefore needs to compare spectra of HCCCH− to DCCCD− in the expected region of the

origin transition. Peaks of the two isotopologues that have nearly identical energies are candidates

for the origin transition.

With this approach in mind, Fig. 7.7 shows photoelectron spectra of HCCCH− and DCCCD−

in the region of the expected X̃ (3B) origin transition, with a shorter scan range allowing greater

signal averaging. Cooling of the anions to ∼ 150 K should diminish the intensity of hot band

transitions from vibrationally excited anions. Peak positions for the two isotopomers, taken from

Figs. 7.6 and 7.7, are shown in Table 7.1. Near matches of peak positions between the two isotopo-

logues occur at 1.409 and 1.249 eV. The choice of 1.409 eV as the origin would require assignment

of all peaks at lower binding energies as hot bands: an unlikely scenario for anions at 150 K.

The peaks near 1.249 eV are much better candidates for the origin transition, yet in the HCCCH

spectrum there are two peaks at even lower binding energies. Figure 7.8 shows a graph of peak

spacings for the data in Fig. 7.7. The peak spacings increase smoothly from 360 to 500 cm−1 for

HCCCH (310 – 400 cm−1 for DCCCD) with increasing quantum number, indicating a negative
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anharmonicity in this progression. We observe no abrupt change in spacing for the peaks below

1.249 eV (peak n = 2 of HCCCH). An abrupt change in peak spacing might be expected if peaks

n = 0, 1 were hot bands, with spacings determined by the energy levels of the anion, instead of the

neutral. Furthermore, while one hot band might have noticeable intensity at T ∼ 150 K, it is hard

to justify a second hot band with sufficient intensity to be observed.

Therefore we assign the origin transition in HCCCH to the peak with the lowest observed

binding energy and assign the experimental EA(HCCCH) = 1.156 ±
(
0.010
0.050

)
eV. The asymmetric

error bar acknowledges the possibility that our assignment may be in error by one quantum of the

active vibrational mode. The peak with the lowest binding energy for DCCCD occurs at 1.208 eV.

It is unlikely that this peak represents the origin transition for the reasons explained above of the

changes in detachment energies expected upon deuteration. Assuming a very small isotope shift

in the origin transition, we assign the first peak observed in DCCCD to two quanta of the main

vibrational progression. The ramifications of this assignment will be discussed in Section 7.6.4.

Based on this assignment, the singlet-triplet splitting between the ã(1A) and the X̃ (3B) state is

determined to be ∆ETS = 1.656 1.156 = 0.50 ±
(
0.050
0.011

)
eV.

7.5.5 Theoretical Results

Given our experimental determination that the lowest three electronic states of HCCCH span

a range of only ∼ 1 eV, and the multiple valence bond structures shown in Scheme 7.1, it is not sur-

prising that the electronic structure of HCCCH has significant multi-reference character. Adiabatic

and vertical detachment energies (ADE, VDE) resulting from our CCSD(T) and MRCI calcula-

tions, extrapolated to the complete basis set limits, are shown in Table 7.2, along with comparisons

to our experimentally derived transition energies. To evaluate the accuracy of these calculations,

we have calculated other 21-electron anions and 20-electron neutral systems at the same levels of

theory, specifically for H2CCC, HCCN,160 and NCN221 (the latter two being isoelectronic with

HCCCH), and compared the calculated values with experimental detachment energies when pos-

sible. Geometries and frequencies for the propargylene anion and lowest three electronic states of
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Figure 7.7: Photoelectron spectra of HCCCH− and DCCCD− with θ = 90◦ laser polarization and
anion temperature of ∼ 150 K. Near matches of peak positions between the two isotopologues occur
at eBE ∼ 1.409 and 1.249 eV.

Figure 4:  Photoelectron spectra of HCCCH and DCCCD with  = 90 laser polarization and 
anion temperature of ~ 150 K.  Near matches of peak positions between the two 
isotopologues occur at eBE ~ 1.409 and 1.249 eV.   
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Table 7.1: Peak assignments, electron binding energies, and anisotropy parameters [β] in the pho-
toelectron spectra of HCCCH− and DCCCD−.

 42 

 

Table 3.  Peak assignments, electron binding energies, and anisotropy parameters [] in 

the photoelectron spectra of HCCCH

 and DCCCD


. 

   

Electronic State Mode 

assignment 
HCCCH


 (eV) 

[] 

DCCCD

 (eV) 

   (
3
B) 5 = 0 1.156   

 5 = 1 1.201  

 5 = 2 1.249 [-0.36] 1.208 

 5 = 3 1.300 [-0.51] 1.246 

 5 = 4 1.353 [-0.53] 1.286 

 5 = 5 1.410 [-0.46] 1.327 

 5 = 6 1.467 [-0.49] 1.368 

 5 = 7 1.526 [-0.39] 1.412 

 5 = 8 1.588 [-0.42] 1.456 

 5 = 9  1.502 

 5 = 10  1.549 

 5 = 11  1.599 

  (
1
A1) 6 = 0 1.656 [-0.79]  

 6 = 1 1.803 [-0.46]  
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Figure 7.8: Vibrational peak spacings in the HCCCH and DCCCD X̃ (3B) state. The positive slope
indicates a negative anharmonicity in this vibrational mode. For HCCCH, peak n = 0 denotes the
origin transition at 1.156 eV eBE. The frequency of the ν5 = 1 ← ν5 = 0 vibrational transition of
HCCCH is 361 cm−1.

Figure S4:  Vibrational peak spacings in the HCCCH and DCCCD X(3B) state. The positive 
slope indicates a negative anharmonicity in this vibrational mode.  The origin peak is 
assigned as n = 0.  The frequency of the 5 = 1  5 = 0 vibrational transition derived from 
this work is 361 cm-1.   

Supplemental Figure 
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the neutral are given in Table 7.3, with representations of the geometries in Figs. 7.9. The ratio of

vibrational frequencies for HCCCH : DCCCD are also given in Table 7.3.

The adiabatic detachment energies of H2CCC, HCCN, and NCN, calculated at the CCSD(T)/CBS

level, deviate at most by 19 meV from experiment, even when excited electronic states of the neutral

are included. Although the T1 diagnostic values for these calculations (a measure of the multiref-

erence character of the electronic wavefunction) provide reason for caution, the very favorable

comparison to experiments provides confidence in the CCSD(T) calculations. Whereas CCSD(T)

as implemented here is only valid for the lowest electronic state of a given symmetry, MRCI calcu-

lations can provide adiabatic and vertical detachment energies for all electronic states. Our results

show that the MRCI calculations are on average ∼ 0.14 eV lower than the CCSD(T) calculations.

Adding this offset to the MRCI value for the HCCCH X̃ (3B) state (1.01 eV) brings it into excellent

agreement (1.15 eV) with the CCSD(T) value of 1.146 eV. The VDEs compare favorably with

the peaks of the Franck-Condon envelopes from the experimental NIPES spectra when the same

offset is applied to these MRCI values. We therefore conclude that the MRCI state energies, when

increased by 0.14 eV, should provide accurate estimates of the electronic state energies of HCCCH.

Figure 7.10 plots the unrestricted Hartree Fock frontier orbitals of X̃ (2B) HCCCH−, together

with an energy level diagram that qualitatively explains the origin and ordering of the neutral states

of HCCCH; corresponding plots for Ã(2A) HCCCH− are given in Fig. 7.11. Finally, Fig. 7.12

shows unrelaxed scans of the potential energy surface along all three bending coordinates (∠CCC,

∠CCH, and ∠HCCC) in C2 symmetry of the HCCCH− Ã(2A) and the HCCCH X̃ (3B) states.

The potentials are upper limits to the potentials that would be obtained if fully optimized in the

eight orthogonal coordinates. Nevertheless, they provide a qualitative picture of the dramatically

different potential surfaces along these bending coordinates.

In the ∠CCC coordinate, the barriers to linearity are only 1081 and 142 cm−1 in the anion and

neutral states, respectively, with a modest increase in ∠CCC by 8◦ upon detachment. Differences

between anion and neutral are more pronounced in the ∠CCH coordinate, where the barriers to

linearity are 7125 and 239 cm−1, with ∠CCH increasing 36◦ upon detachment. The much deeper
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Table 7.2: Geometric parameters and detachment energies of 21-electron anions and their corre-
sponding neutrals.

Tables 

Table 1.  Geometric parameters and detachment energies of 21-electron anions and their 

corresponding neutrals. 

 

    Detachment Energy (eV) Term Energy 

(eV) 

    CCSD(T)/CBS MRCI/CBS Experiment Experiment 

Species State CCC 

() 

HCC 

() 

Adiabatic
a
  

(Vertical) 

Adiabatic  

(Vertical) 

Adiabatic  

HCCCH

    (

2
B) 179 126 0.00 (0.00) 0.00 (0.00)   

   (
2
A) 163 123 0.026 0.026   

HCCCH    (
3
B) 173 161 1.146 1.00

a
 (1.54) 1.156 010.0

050.0  0.0 

   (
1
A) (

1
A1) 159 125 (1.66) 1.49

a
 (1.45) 1.656 ± 0.005 0.50 050.0

011.0  

    (
1
B) (

1
) 180 180  1.80

a
 (2.54) 2.648

d
 ± 0.02 0.94  0.08 

    (
1
A) (

1


+
) 180 180  2.45

a
 (4.15)  

 

 

4.456 ± 0.02 

 

   (
3
B) (

3
B2) 108 131  4.24

a
 (4.63)  

    (
1
A) (

1
A2)

e
 160 135  4.27

c
 (4.38)  

    (
3
A) (

3
A2) 161 132 (4.79) 4.46

 c
 (4.51) 3.30 054.0

022.0  

H2CCC    (
1
A1)   1.80 (1.83) 1.62

a,b
 (1.65)

b
 1.793 ± 0.005  

   (
3
B1)   3.08 (3.16) 2.95

a,b
 (3.02)

b
 3.076 ± 0.005  

HCCN    (
3
A)   2.02 (2.46) 1.89

a,b
 (2.34)

b
 2.001

f
 ± 0.015  

   (
1
A)   2.521 (2.533) 2.53

b
 (2.55)

b
 2.511

f
 ± 0.004  

NCN    (
3
g


)   2.47 (2.51) 2.36

a,b
 (2.40)

b
 2.484

g
 ± 0.006  

   (
1
g)    (3.34)

b
 3.491

g
 ± 0.013  

    (
1
g


)    (3.90)

b
 4.110

g
 ± 0.013  

 

a
 Includes zero point energy 

b
 Energy extrapolated to the complete basis set limit 

c 
Does not include zero point energy 

d
 Vertical detachment energy 

e
 The dominant configuration of this state is only accessible by a two-electron transition 

f
 Negative ion photoelectron spectroscopy

63
 

a Includes zero point energy
b Energy extrapolated to the complete basis set limit
c Does not include zero point energy
d Vertical detachment energy
e The dominant configuration of this state is only accessible by a two-electron transition
f Negative ion photoelectron spectroscopy160

g Negative ion photoelectron spectroscopy221
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Table 7.3: Calculated geometries and vibrational frequencies of HCCCH−, HCCCH, and their
deuterated isotopologues.

 41 

Table 2.  Calculated geometries and harmonic vibrational frequencies of HCCCH

, 

HCCCH, and their deuterated isotopologues. 

 

 

 

Vibrational Frequencies  

(cm
-1

) 

UCCSD(T)/ 

aug-pVTZ 

UCCSD(T)/ 

aug-pVTZ 

 

 

UCCSD(T)/ 

aug-pVTZ 

MRCI/ 

aug-pVTZ 

MRCI/ 

aug-pVTZ 

Mode HCCCH

    (

2
B) 

 

HCCCH

   (

2
A) 

(DCCCD

) [D/H] 

 

 

HCCCH    (
3
B) 

(DCCCD

) [D/H] 

HCCCH   

(
1
A) 

HCCCH    

(
1
B) 

1A (out-of-plane CCH bend) 173  154 (121) [.78]
1
  237 (186) [.78] 290 113 

2B (in-plane asym. CCH bend) 298 349 (271) [.78]  114 (89) [.78] 310 113 

3A
2
 (out-of-plane CCC bend) 437  452 (433) [.96]  402 (370) [.92] 453 234 

4B
3
 (in-plane CCC bend) 554  468 (383) [.82]  407 (389) [.96] 799 234 

5A (in-plane sym. CCH bend) 741  818 (709) [.87]  351 (265) [.75] 933 413
4
 

6A (symmetric CCC stretch) 1149  1157 (1129) [.98]  1257 (1191)[.95] 1202 1276 

7B (asymmetric CCC stretch) 1650  1612 (1561) [.97]  1623 (1570)[.97] 1814 1842 

8B (asymmetric CH stretch) 3160  3162 (2343) [.74]  3399 (2532)[.74] 3249 3459 

9A (symmetric CH stretch) 3160  3166 (2338) [.74]  3408 (2550)[.75] 3253 3468 

Geometry       

CC (Å) 1.313 1.316  1.279 1.300 1.273 

CH (Å) 1.085 1.086  1.066 1.081 1.062 

CCC () 179.0 165.2  173.3 161.7 180.0 

HCC () 126.1 124.4  160.7 127.6 180.0 

HCCC dihedral () 97.1 174.1  145.6 180.0 180.0 

 

 

 

                                                 

1
 Numbers in brackets are the ratios of DCCCD : HCCCH frequencies. 

2
 In all states other than the ground state of the anion, the symmetry for mode 3 is B.  

3
 In all states other than the ground state of the anion, the symmetry for mode 4 is A. 

4
 Mode 5 is doubly degenerate in the b

~
(1B) state, which has a linear geometry and 10 

vibrational modes. 

1 Numbers in brackets are the ratios of DCCCD : HCCCH frequencies.
2 In all states other than the ground state of the anion, the symmetry for mode 3 is B.
3 In all states other than the ground state of the anion, the symmetry for mode 4 is A.
4 Mode 5 is doubly degenerate in the b̃(1B) state, which has a linear geometry and 10
vibrational modes.
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Figure 7.9: Side-on and end-on views of equilibrium geometries calculated at the MRCI(6e,6o)/aug-
cc-pVTZ level for the X̃ (2B) and Ã(2A) states of HCCCH−, and for the X̃ (3B), ã(1A), and b̃(1B)
states of HCCCH.

A(2A) 

b(1B) 

Figure 5:  Side-on and end-on views of equilibrium geometries calculated at the 
MRCI(6e,6o) / aug-cc-pVTZ level for the two lowest states of HCCCH and the three lowest 
states of HCCCH. 

X(3B) a(1A) 

HCCCH  

HCCCH  

X(2B) ~ ~ 

~ ~ ~ 
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Figure 7.10: Unrestricted Hartree-Fock frontier orbitals of X̃ (2B) HCCCH− at its CCSD(T)/aug-
cc-pVTZ equilibrium geometry. The C2 axis is oriented vertically and tilted 20◦ out of the plane
of the figure. Orbital energies and symmetries are shown below each panel. The right side of the
figure shows the electronic states produced upon removal of different electrons from the anion in a
Koopmans theorem approach.

 orbitals 

11 (B) 

-2.76 eV 

 orbitals 

 10 (A) 

-1.66 eV 

B 

A 

B 

A 

  
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~ 

a (1A) ~ 

B (3A) 
~ 

b (1B) 
~ 

c (1A) ~ 

A (3B) 
~ 

anion geometry 

C2 symmetry 

10 (A) 

-3.22 eV 

9 (B) 

-6.15 eV 

8 (A) 

-6.87 eV 

8 (B) 

-5.82 eV 

9 (A) 

-5.54 eV 

Figure 6:  Unrestricted Hartree-Fock frontier orbitals of HCCCH X(2B) at its CCSD(T)/aug-
cc-pVTZ equilibrium geometry.  The C2 axis is tilted 20 degrees from the normal of the 
figure plane.  Orbital energies and symmetries are shown below each panel.  The right side 
of the figure shows the electronic states produced upon removal of different electrons 
from the anion in a Koopmans’ theorem approach.   

~ 
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Figure 7.11: Unrestricted Hartree-Fock frontier orbitals of Ã(2A) HCCCH− at its CCSD(T)/aug-
cc-pVTZ equilibrium geometry. This state lies 0.026 eV above the HCCCH− X̃ (2B) state at the
CCSD(T)/CBS limit. The C2 axis is oriented vertically and tilted 20◦ out of the plane of the figure.
Orbital energies and symmetries are shown below each panel. The right side of the figure shows
the electronic states produced upon removal of different electrons from the anion in a Koopmans
theorem approach.
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Figure S5:  Unrestricted Hartree-Fock frontier orbitals of HCCCH A(2A) at its CCSD(T)/aug-
cc-pVTZ equilibrium geometry.  This state lies 0.026 eV above the HCCCH X(2B) state at 
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plane of the figure.  Orbital energies and symmetries are shown below each panel.  The 
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Figure 7.12: Unrelaxed bending potentials of HCCCH− Ã(2A) and HCCCH X̃ (3B), calculated
at UCCSD(T)/aug-cc-pVTZ. Coordinates other than the scanned coordinate are fixed at their
equilibrium value. The zero of energy is the minimum of X̃ (3B) state. Note the difference of
energy scales in the bottom panel.

Figure 7:  Unrelaxed bending potentials of HCCCH X(2A) and HCCCH X(3B), calculated at 
UCCSD(T)/aug-cc-pVTZ.  Coordinates other than the scanned coordinate are fixed at their 
equilibrium value.  The zero of energy is the minimum of X(3B) state.  Note the difference 
of energy scales in panel (c). 

(a) 

(b) 

(c) 
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anion well in this coordinate provides a more rigid structure for the anion, whereas the large

change in geometry and well depth should lead to significant excitation in this coordinate. Finally,

in the dihedral angle ∠HCCC, the barriers to linearity are only 2 and 29 cm−1 in the anion and

neutral states, with a decrease in ∠HCCC by 28◦ upon detachment. The anion potential along

this coordinate is flat-bottomed and highly anharmonic, with a strong quartic term. Noting the

change in scale in the upper half of Fig. 7.12(c), the potential is very flat along all three bending

coordinates in the neutral. Based on these plots one might assume that the vibrationally averaged

structure of the HCCCH X̃ (3B) state will be linear, although this conclusion does not agree with the

infrared (IR) and electron spin resonance (ESR) data of Seburg and McMahon, who find substantial

evidence for a C2 structure of HCCCH X̃ (3B).195

Due to the large geometry change upon photodetachment to the X̃ (3B) state, the standard

normal-mode Franck-Condon simulations are of no assistance in assigning the origin transition.

Figure 7.13(a) shows an ab initio Cartesian normal coordinates Franck-Condon simulation of the

photoelectron spectrum terminating in the X̃ (3B) state. The simulation qualitatively fails to repro-

duce experiment. The main progression in the simulation is the totally-symmetric C-H stretching

mode ν9, with a secondary progression in ν5. Inspection of Table 7.3 shows only a modest change in

the C-H bond length of -0.02 Å, inconsistent with the very long progression seen in the simulation

(even if the C-H stretch is removed from the PES simulation, the remaining main active mode, ν5,

does not account for the observed FC envelope). This type of artifact arises from large amplitude

vibrations in the CCH bond angle.24 The Cartesian normal mode vectors displace atoms in straight

lines, an approximation usually sufficient for small amplitude vibrations. In large amplitude vi-

brations, such as observed upon X̃ (3B) ← X̃ (2B) photodetachment, curvilinear coordinates form

a more appropriate basis set, so that bending motions do not artificially excite stretching motions.

Creating appropriate internal, curvilinear coordinates is challenging and outside the scope of this

paper.

Simulated photoelectron spectra of ã(1A)← X̃ (2B) photodetachment are shown in Fig. 7.13(b)

and Figs. 7.14(a) – (b). We expect that photodetachment from the trans X̃ (2B) anion to the cis
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Figure 7.13: Simulated photoelectron spectra using normal mode analysis in mass-weighted Carte-
sian coordinates compared with the θ = 54.7◦ polarization spectrum of HCCCH−. (a) Simulated
spectrum of X̃ (3B) ← X̃ (2B) photodetachment. (b) Simulated spectrum of ã(1A) ← X̃ (2B) pho-
todetachment, where the initial anion state is trans and the final neutral state is cis.

← 

← 
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isomer of the ã(1A) state of HCCCH will yield an extended vibrational progression with relatively

little intensity at the origin. Indeed, the ã(1A) (cis) ← X̃ (2B) (trans) simulation (Fig. 7.13(b))

shows an extremely long vibrational progression with nearly no intensity at the origin, exaggerated

by the inability of the normal-mode simulation in Cartesian coordinates to model large geometry

changes. This simulation is inconsistent with the measured spectrum; thus, we do not see any

evidence of ã(1A) (cis) ← X̃ (2B) (trans) photodetachment in our data.

The normal-mode Franck-Condon simulation is much more successful when the geometry

change upon photodetachment is small, as illustrated in Figs. 7.14(a) and (b). The simulation of

ã(1A) ← X̃ (2B) photodetachment, in which both the initial anion state and the final neutral state

have a trans geometry, is shown in Fig. 7.14(a); likewise, the simulation of ã(1A) ← Ã(2A) pho-

todetachment, in which both the initial anion state and the final neutral state have a cis geometry,

is shown in Fig. 7.14(b). In these cases, the small geometry change upon photodetachment to the

ã(1A) state leads to significant Franck-Condon overlap with vibrational levels near the bottom of

the neutral potential well, where vibrations can be approximated as independent harmonic oscilla-

tors. Because the cis and trans isomers of HCCCH− and of the ã(1A) state of HCCCH lie close

in energy, we expect that both ã(1A) (trans) ← X̃ (2B) (trans) and ã(1A) (cis) ← Ã(2A) (cis)

photodetachment contribute signal to the observed photoelectron spectrum of HCCCH−.

Although the harmonic approximation is clearly inadequate for the bending modes of HC-

CCH, it is still useful to consider the magnitude of the zero point energy in relation to the bending

potentials of Fig. 7.12. At the CCSD(T)/aug-cc-pVTZ level, the zero point energies are 0.703 eV

(5669 cm−1) and 0.694 eV (5599 cm−1), respectively, for HCCCH− Ã(2A) and HCCCH X̃ (3B).

Considering that the bending potentials in Fig. 7.12 are unrelaxed, we conclude that the zero point

energy is generally greater than (or at least comparable to) the barriers to linearity in all the

coordinates shown.
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Figure 7.14: Simulated photoelectron spectra using normal mode analysis in mass-weighted Carte-
sian coordinates compared with the θ = 54.7◦ polarization spectrum of HCCCH−. (a) Simulated
spectrum of ã(1A) ← X̃ (2B) photodetachment, where both states are trans. (b) Simulated spec-
trum of ã(1A) ← Ã(2A) photodetachment, where both states are cis.

← 

← 
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7.6 Discussion

7.6.1 Electronic Structure of HCCCH

The simplest carbene, methylene (CH2), provides a good starting point for the discussion of

propargylene. The ground state of CH−2 is X̃ (2B1), with two electrons in an a1 symmetry σ-type

carbene orbital, and one electron in a b1 symmetry π orbital perpendicular to the molecular plane

(Scheme 7.4). In the first approximation, the detachment of each of these electrons produces the

lowest three electronic states of neutral CH2.

Scheme 7.4

HCX- 

X̃ (2B1) 

HCX 

ã (1A1)
 

HCX 

X̃ (3B1)
 

h 

- e- 

Detachment of the β electron from the σ orbital produces the X̃ (3B1) state (EA = 0.652 ±

0.006 eV); detachment of the α electron from the π orbital creates the ã(1A1) state (T0 = 0.392

± 0.002 eV); detachment of the α electron from the σ orbital produces the higher lying open-shell

singlet state b̃(1B1) (T0 = 1.02 ± 0.05 eV).34,222–226 The two electrons in the a1 σ-type carbene

orbital of the anion repel the C-H bonds, leading to a small HCH angle, whereas the single b1

electron in the π orbital has no effect on the HCH angle. In this simple picture, removal of either

σ electron (forming the X̃ (3B1) or b̃(1B1) states) should increase ∠HCH, whereas removing the π

electron to form the ã(1A1) state should have little influence on ∠HCH.

The propargylene molecule is simply an ethynyl-substituted methylene, HC-CCH. The rich-

ness of this molecule stems from the fact that both the C1 and C3 carbons can serve as carbene
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centers, as shown in Scheme 7.1, with the added complexity that each center may have σ or π

character, forming triplet and closed- or open-shell singlet states.

Given the electronic structure of CH2 just described, assignment of the main features in the

NIPES spectra of HCCCH and DCCCD (Fig. 7.6) is straightforward. Based on the work of Seburg

and McMahon,195 we assume that HCCCH belongs to the C2 point group. Resolving the higher

symmetry C2v group of methylene to the C2 point group is accomplished by removing the subscript

on the symmetry labels (e.g., 3B1 → 3B). We assign the lowest energy electronic state of HCCCH

as X̃ (3B), with an experimental origin of 1.156 ±
(
0.010
0.050

)
eV and a long vibrational progression

indicative of a large geometry change compared to the anion. We expect, by analogy to CH2, that

a substantial increase in ∠HCC is the genesis of the long vibrational progression. From the spectra

we estimate that the peak at 1.71 eV represents the maximum of the Franck-Condon envelope of

the X̃ (3B) state and assign a VDE of 1.71 ± 0.06 eV, in reasonable agreement with the CCSD(T)

VDE of 1.66 eV.

The sharp peak at eBE = 1.656 ± 0.005 eV, with β = -0.79, is consistent with the origin peak

of the ã(1A) state of HCCCH, providing a singlet-triplet splitting of ∆ETS = 0.50 ±
(
0.050
0.011

)
eV.

Noting the β ∼ -0.41 value of the strong X̃ (3B) peaks at 1.588 and 1.526 eV, we can use the

negative peaks of β(E) at higher binding energy to assign vibrational transitions belonging to the

ã(1A) state. Comparing the red spectrum in Fig. 7.6(a) (where transitions to ã(1A) are disfavored)

with the magic angle spectrum in black, the peak at 1.803 eV is the only other peak that can be

conclusively assigned to the ã(1A) state. The energy of this peak is 1186 ± 40 cm−1 above the

ã(1A) origin, consistent with the totally-symmetric CCC symmetric stretch vibration; the Franck-

Condon simulation (Fig. 7.14) verifies this assignment. The experimental spectra are consistent

with a small geometry change from anion to neutral for the ã(1A) electronic state, consistent with

our analogy to CH2.

Finally, we assign a third electronic state, the b̃(1B) state, to the series of peaks from ∼ 2.4 –

2.95 eV with a VDE of 2.648 ± 0.020 eV. If the analogy with CH2 holds, we expect the geometry of

the b̃(1B) state to be similar to the X̃ (3B) state, because they both arise from removal of an α or



178

β electron, respectively, from the same σ-type carbene orbital. This expectation is consistent with

the red spectra in Figs. 7.6(a) and (b). If the geometries of these two neutral states are similar, it

is reasonable to expect the energy difference between the VDEs and the ADEs to be similar. Using

this energy difference from the X̃ (3B) state, the approximate origin of the b̃(1B) lies at 2.648 -

(1.71 - 1.156) ∼ 2.09 ±
(
0.06
0.08

)
eV. This value is in good agreement with the ADE calculated using

MRCI (offset by +0.14 eV, as discussed in Section 7.5.5) of 2.05 eV. As a result, our experimental

estimate of the term energy for the third electronic state of HCCCH is T0[b̃(1B)] = 0.94 ± 0.08 eV.

The assignment of the first three electronic states of neutral HCCCH by analogy with methy-

lene is completely consistent with the electronic states predicted by a Koopmans’ theorem analysis

of our UCCSD(T)/aug-cc-pVTZ calculations. Figure 7.10 shows the seven highest orbitals of the

HCCCH− anion, along with their orbital energies and symmetries. The anion geometry, while

strictly C2, is nearly planar. In the planar limit, the α11, α8, and β9 orbitals are π orbitals,

whereas the α10, β10, α9, and β8 orbitals are σ orbitals. If we make a further (small) distortion of

the molecular frame so that it is linear, the lowest four orbitals become fully bonding, degenerate

πx and πy orbitals with no transverse nodes. The highest three orbitals become approximately

non-bonding, degenerate πx and πy orbitals with one transverse nodal plane. The shapes of these

orbitals are reminiscent of the π system of the resonance-stabilized allyl radical (H2C-CH-CH2),

where the unpaired electron is delocalized in a non-bonding orbital, with equal density on the

two outer carbon atoms. The case of linear HCCCH is similar, except that this species is “dou-

bly allylic,” due to the delocalization of the three least bound electrons among the π orbitals in

both the x- and the y-planes. Such delocalization should provide additional resonance stabilization

compared with singly allylic species.

Remembering that the point group is in fact C2 but close to planar and linear will provide

several insights when interpreting the photoelectron spectra and angular distributions. Removal of

the least bound electron (from the β10 orbital) creates a neutral state of (3B) symmetry, consistent

with our assignment of the ground electronic state. Furthermore, the σ-type β10 orbital is dominated

by carbene lone pairs on the bottom of the molecule (as oriented in Fig. 7.10), but also shows a
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bonding interaction on the top side that will reduce the CCH angle in the anion. Ejection of an

electron from β10 (or α10) implies a significant increase in the CCH angle in the neutral, consistent

with the long vibrational progressions we observe for transitions to the X̃ (3B) and b̃(1B) states.

By contrast, removal of the second least bound electron from the π-type α11 orbital of the anion,

creating an electronic state of (1A) symmetry, is expected to create very little geometry change,

because this orbital is essentially non-bonding, or slightly CCC anti-bonding. In fact, Table 7.2

shows a slight increase in the CC bond length upon detachment to the ã(1A) state, but overall only a

minor geometry change, consistent with the short vibrational progression observed experimentally.

7.6.2 Interpretation of Photoelectron Angular Distribution Measurements

In the context of the molecular orbitals, the experimental angular distributions provide ev-

idence that HCCCH− should not be described as a planar structure, despite the relatively flat

potential energy surfaces in the dihedral angle coordinate (see Fig. 7.12). To summarize, the ex-

perimental values of the anisotropy parameter upon detachment to different HCCCH electronic

states are β[X̃ (3B)] ∼ -0.45, β[ã(1A)] ∼ -0.8, and β[b̃(1B)] = -0.1 to +0.2 with increasing eBE

(decreasing eKE). In the limit that the anion is planar (a distortion of only 5.9◦ in the dihedral

angle and 2 cm−1 in energy), the α10, and β10 orbitals are σ orbitals, whereas the α11 orbital is a

π orbital. Although not exact in molecules, in atomic systems detachment from an s orbital ejects

an electron with a pure p-wave (l = 1) and β = +2, independent of eKE. Detachment from an

atomic p-orbital creates both s-wave (l = 0; β = 0), and d-wave (l = 2; β = -1) partial waves,

which will interfere with each other to create anisotropy parameters between -1 and 0. At low eKE

s-waves dominate, with d-waves dominating at eKE ∼ 1 eV. Applied to the present case with a

planar molecular frame, we expect detachment from the π orbital α11 to be similar to an atomic

p-orbital, and because the eKE of the ã(1A) state origin is 1.752 eV, d-wave detachment should

dominate, consistent with the observed very negative anisotropy parameter β = -0.8.

For detachment from the β10 orbital (which would be purely σ-type if the anion were planar),

we would expect β ∼ +2 in the atomic case and β > 0 in the molecular case. For the X̃ (3B) state,
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however, we observe the opposite sign: β = -0.4, a qualitatively different result, implying that

there is substantial π character in the β10 orbital. If the molecule were linear, we would expect

pure π character for both the β10 and α11 orbitals and identical anisotropy parameters for the X̃

and ã states. Our observations are most consistent with a non-planar, non-linear structure, in

which the β10 orbital will have both σ- and π-type contributions, the latter being responsible for

d-wave character resulting in β < 0. However, the more negative anisotropy parameter for the ã

state implies that the α11 orbital has more π character than β10, again consistent with a somewhat

non-planar, C2 symmetry structure.

Finally, the b̃(1B) state is formed by removal of the α10 electron, again of purely σ character

in the planar molecule, but with π-type contributions in the non-planar molecule adding s- and d-

symmetry partial waves. However, in the b̃(1B) state the anisotropy parameter ranges from β(eKE

= 1.0) = -0.1 to β(eKE = 0.46) = +0.2. The lower eKEs resulting from this higher-lying electronic

state are again consistent with detachment from an orbital that has π character (a negative β

component that decreases in magnitude as kinetic energy decreases) and σ character (contributing

a positive β component independent of eKE, and dominating all other components at very low

kinetic energy). These orbital characters, in turn, are consistent with a C2 symmetry structure.

7.6.3 Higher Lying Electronic States of HCCCH

Assignments of the higher lying peaks from the VMI spectrometer (at eBE = 4.456, 4.589,

4.743, and 4.877 eV) are not as straightforward as in the NIPES spectra. Based on the intensities, it

seems reasonable to assign the 4.456 eV peak as the origin of an electronic state. Due to background

signals inherent in these experiments, the angular distributions from the VMI apparatus are not

quantitative, which removes a key observable in the assignment of electronic states. The MRCI

results in Table 7.2, corrected for the 0.14 eV offset, predict adiabatic detachment energies of

c̃(1A) = 2.70 eV, Ã(3B2) = 4.10 eV, d̃(1A2) = 4.17 eV, and B̃(3A2) = 4.34 eV. Inspection of the

molecular orbitals of these states shows that all states are accessible by removal of one electron from

the anion except the d̃(1A2) state. The best match energetically with experiment is the B̃(3A2)
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state. However, the VDE is calculated to be 0.3 eV above the ADE for this state, implying a fairly

large geometry change. This prediction is somewhat at odds with the fact that the experimental

peak at 4.456 eV in Fig. 7.3 is the strongest of the peaks in this range, implying a modest geometry

change from the anion. All the other calculated electronic states in this region have even larger

VDE - ADE gaps.

A final point can be raised about the high energy red spectra in Fig. 7.3. The spacing between

the first and second peak is 0.133 eV (1070 cm−1), a value consistent with a CCC stretching mode.

However, the third peak is located 0.287 eV (2315 cm−1) above the origin peak. It is difficult to

rationalize this spacing as a vibrational fundamental or, based on the intensities, as a combination

band built off the 4.456 eV origin peak. Therefore it seems likely that the peak at 4.743 eV

represents the origin of an additional electronic state. In the absence of additional experimental

observables, it is difficult to determine more about these high-lying electronic states of HCCCH.

7.6.4 Vibrational Assignments in the X̃ (3B) State of HCCCH

The vibrational peak spacings in the main progressions of the X̃ (3B) state of HCCCH and

DCCCD are shown in Fig. 7.8 and can be derived from Table 7.1. Based on our assignment of the

origin transition in the X̃ (3B) state, the fundamental frequency of the main progression in HCCCH

is 360 cm−1, (n = 0 in Fig. 7.8). Note that peak spacings in both isotopologues increase with

increasing energy in the potential well. This negative anharmonicity is arises from quartic terms in

the 1-D vibrational potential and is indicative of a bending mode. The shapes of the potentials in

both the CCH and the CCC coordinates of the neutral X̃ (3B) state (Fig. 7.12) are consistent with

negative anharmonicity.

Frequency changes upon deuteration may aid the assignment of vibrational modes. The ratios

of DCCCD : HCCCH peak spacing for the main progression in the X̃ (3B) state can be calculated

from the data in Fig. 7.8. These ratios range from 0.76 – 0.71, with an average of 0.74. This value

is only slightly larger than the 0.707 value expected for a vibrational mode involving pure H(D)

motion, implying that the active mode has significant hydrogen atom displacement. Because the
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peak spacings range from 360 to 500 cm−1 for HCCCH (306 – 403 cm−1 for DCCCD), a bending

mode is the only reasonable choice for the active mode, and the only plausible choices consistent

with the experimental isotopologue frequency ratios are 1(A), 2(B), and 5(A), as shown in Table 7.3.

Mode 2(B) is non-totally symmetric, and therefore should not appear in the spectrum with the

exception of even overtones. The 237 cm−1 calculated harmonic frequency of mode 1(A) appears too

small to match the experimental progression, although the true, anharmonic fundamental frequency

may be higher. The mostly likely assignment of the active mode is ν5, the in-plane symmetric

CCH bend. Both the calculated fundamental frequency (351 cm−1) and the DCCCD : HCCCH

frequency ratio (0.75) are in good agreement with our experimental measurements, supporting the

assignment of the main progression to this mode. Nimlos et al., in their analysis of the isoelectronic

HCCN molecule, identified a similar progression and assigned it to the ν5 semi-rigid bender in this

isoelectronic molecule.142

Our 360 cm−1 fundamental frequency of ν5 is difficult to reconcile with the infrared matrix

spectra of Seburg and McMahon,184 where they observe four bending mode bands: 550 cm−1

(m), 403 cm−1 (m), 249 cm−1 (s), and 246 cm−1 (m). With the exception of a (normally) small

matrix shift, the matrix isolation experiment should measure the true, anharmonic vibrational

fundamental frequencies. One way to reconcile the two experiments is to invoke a 42 cm−1 matrix

shift to the blue in this system. A shift of such magnitude is unusual, but there are few comparisons

of gas phase vs. matrix frequencies below 400 cm−1. It may be that at such low frequencies, large

amplitude motions have dramatically increased matrix shifts. A blue shift in the matrix would also

be consistent with significant repulsive interactions arising from confinement of large amplitude

motions by the matrix.

7.7 Conclusions

We have used negative ion photoelectron spectroscopy to investigate the electronic and vi-

brational structure of propargylene. We prepare HCCCH− via removal of H+
2 from propyne, which

produces the C3H
−
2 isomers propargylene and propadienylidene anions (m/z 38). The reaction of
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O− with allene, on the other hand, generates predominantly propadienylidene.180,181 By subtracting

the scaled propadienylidene spectra from the former spectra, we obtain the 364-nm photoelectron

spectrum of the desired isomer: HCCCH−.

It is notoriously difficult to assign the origin of a molecule that undergoes a substantial

geometry change upon photodetachment. A large change in the ∠CCH of 36◦ results in significant

activity of the ν5 symmetric CCH bend, which is manifested as an extended vibrational progression

in the X̃ (3B) ground state. Through comparison of the photoelectron spectra of HCCCH− and

DCCCD−, we assign the origin transition and measure the EA(HCCCH) = 1.156 ±
(
0.010
0.050

)
eV, in

excellent agreement with our best calculated value of 1.146 eV.

At higher binding energy we observe transitions to the ã(1A) excited state. Because the

electron removed upon ã(1A) ← X̃ (2B) photodetachment is essentially non-bonding in character,

the geometry of the anion and the ã(1A) state are very similar. Thus, we observe a sharp, intense

peak at 1.656 eV corresponding to the origin of the ã(1A) state. We measure ∆ETS = 0.50 ±(
0.050
0.011

)
eV.

A third state of the neutral, with VDE of 2.648 ± 0.020 eV, is seen in the NIPES spectra

(most prominently at θ = 0◦). The low signal intensity of this progression makes detailed analysis

of this state difficult; however, the extended nature of the spectral envelope indicates that its

geometry is quite different from that of the anion. Through comparison of the calculated ADE and

VDE with the observed progression, we assign these features to the b̃(1B) state.

Considering the first three electronic states of neutral propargylene, we find both similari-

ties and discrepancies with the simpler case of methylene. The geometry changes implied by the

vibrational progressions we observe argue that the electronic structure of the carbene centers in

propargylene are similar to that in methylene. In particular, removal of a σ-type electron from

the anion leads to a large change in ∠CCH, whereas removal of a π-type electron has little ef-

fect on ∠CCH. In contrast with methylene, where β is positive for the origin of the ground state

but negative for the excited ã state,227 we measure a negative β for the two lowest states of HC-

CCH. Presumably, this difference arises from the π character present in all the frontier orbitals of
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HCCCH−, whereas in methylene there is a strict delineation of σ and π orbital characters.

It is likely that a higher resolution photoelectron spectrum of the X̃ (3B) state would reveal

much more complicated vibrational structure due to the quasilinear nature of HCCCH. In fact there

are signs even in our spectra that more than one vibrational mode contributes to this progression,

especially at high binding energies. However, a more sophisticated analysis awaits higher resolution

spectroscopy.
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