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Abstract

Programming models are useful programming tools because they allow the recognition
of patterns that are common to many applications and that are not committed to any
particular language or machine. In this paper, we survey the different kinds of models
and present some examples of them. We also introduce a new programming paradigm
called PMESC that assists programmers in the design and implementation of problems on
distributed-memory computers. The PMESC paradigm recognizes different phases in the
computation involving different programming issues. Structuring programs via the PMESC
paradigm allows programmers to separate the code into modules and to develop the modules
independently. We show how the PMESC paradigm applies to the different categories of
parallel problems, and we derive the frameworks that illustrate salient features in their
implementation. We also discuss how to combine PMESC with other models in order to
make the most effective use of those abstractions.
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1 Introduction

~ As the use of parallel computers becomes accepted as the only plausible way to solve very
complex or large problems, it is becoming increasingly important to develop tools that help
programmers to take advantage of this computing power. Programming tools are fundamental
to the spread of parallel computing because parallelism significantly complicates the develop-
ment of code. The programmer must now be concerned with many issues for which there
are no direct counterparts in sequential programming such as the number and the physical
interconnection of the processors, load distribution, and data sharing.

However, the rapidly changing technology of these computers and the lack of standards
have made it difficult to develop a sufficient set of tools. The advent of MPI (Message Passing
Interface) [21, 36] is an important step toward dramatically reversing this process for it provides
a basis for building efficient and portable libraries. In this paper, we discuss another approach
that complements this effort: the use of programming models for using parallel computers.
In particular, we present a new programming paradigm as a programming tool that assists
programmers in the design and implementation of problems on distributed-memory computers.

The PMESC paradigm provides a high-level abstraction that encompasses all the stages
involved in the computation. This structurization allows programmers to recognize the modules
that compose their applications and to attack them as independent units. It also allows the
separation of the machine-dependent aspects of the computation from those that are machine
independent and the identification of those modules that should be built on top of MPI. Finally,
it provides the basis for highly tuning an application without having to substantially rework
the code each time a new machine is introduced.

This paper is organized as follows. In section 2, we discuss the advantages of programming
models in general and describe the different kinds of models in particular. We also present
examples of each kind of model. In section 3, we describe the current efforts in using program-
ming models. We also discuss the need for a new abstraction that covers at a high level all
the steps involved in parallel implementations on distributed-memory computers. In section
4, we introduce the PMESC programming paradigm. In section 5, we present a taxonomy of
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the parallel algorithms and discuss the different approaches for parallelization. In sections 6,
7, and 8, we describe these approaches in more detail, give some examples, and show how the
PMESC paradigm applies to each one of them. In section 9, we analyze the composition of
programming models. Finally, we draw our conclusions in section 10.

2 The Programming Models

Programming models are useful programming tools. First, they allow the recognition of pro-
gramming issues that are common to many applications and that are independent of the ap-
plications themselves. These abstractions facilitate the transfer of experience and knowledge
gained from previous implementations as well as the reuse of code. Second, programming mod-
els are not committed to any particular machine, and, therefore, they promote the writing of
portable code. Third, they are not committed to any particular language. Rather, they are
represented by pseudo-codes that are easy to read and understand. Because these models are
not associated with any language or machine, they allow users to finely tune their codes as
much as they want. ,

Programming models are both educational and research tools. They are educational tools
because they bring together the ideas about the different algorithms that exist and the different
approaches for parallelization. Thus, they help programmers to identify the essence of a problem
and to use known methodologies to attack that problem. Programming models are research
tools because they help scientists to recognize the building blocks that compose large-scale
applications. Consequently, they facilitate the writing of code that is highly customized but
that can be modified and ported without significant redesign.

Programming models come in different variations. Some are programming paradigms, some
archetypes, and some others templates. Next, we describe each one of these variations.

2.1 Programming Paradigms

Programming paradigms are a combination of problem-solving methodologies and the program
design techniques associated with them. Programming paradigms are not actual algorithms
but rather the strategies that can be used for structuring the algorithms. Thus, paradigms are
the high-level abstractions that are common to many algorithms [27, 31] and that can be used
as starting points when developing new ones. Because the essential computational structure of
these methodologies is already known, programmers using paradigms only need to work on the
problem-specific details in order to produce a new program design.

Paradigms represent the algorithms in the same way as higher-order functions, i.e., functions
that take functions as arguments, represent general computational frameworks in the context
of functional programming languages [32]. Like higher-order functions, paradigms are not
concerned with the lowest level details of particular problems. Instead, they capture the higher-
level computational structure of whole classes of algorithms. Implementations of particular
problems are mere instances of these general frameworks [8].

As experience in parallel processing has grown, a number of programming paradigms have
arisen, each of which represents the structure of a particular programming style or technique
that can be efficiently applied to a particular class of problems. Next, we describe some examples
of those programming paradigms.



2.1.1 The Divide-and-Conquer Paradigm

This paradigm is used both in sequential and parallel computing. It applies to problems that
can be divided into two or more smaller subproblems of the same type. Thus, the subproblems
are just smaller instances of the original problem. They are divided recursively until they
reach a threshold size. Once these smallest base-case problems are solved, their solutions are
combined to produce the solutions to the larger ones. This process repeats recursively until
the solution to the original problem is found. The divide-and-conquer strategy can be used to
solve a wide variety of problems such as sorting [2, 7, 31}, matrix multiplication [31], Fourier
transforms [28, 31], and eigenvalue problems [10, 12, 37].

In a parallel computation based on the divide-and-conquer paradigm, the problem is sub-
divided into independent subproblems of the same type that can be solved in parallel. Be-
cause the data and the results are distributed among the processors, their combination requires
interprocessor communication. Figure 1 shows the framework corresponding to the parallel
divide-and-conquer paradigm.

When using the divide-and-conquer paradigm, the programmer is responsible for addressing
the following issues:

e Determining the size of the base-case problems, making sure that they are large enough
to justify the overhead of communication for data exchange and scheduling processors,

¢ Implementing the function Solve that solves the base-case problems,

¢ Implementing the procedure Split that takes a problem and subdivides into smaller sub-
problems,

e Implementing or using an existing procedure Combine that combines the solutions to the
subproblems to obtain the solution to the original problem.

2.1.2 The CAB Parédigm

The CAB paradigm [31] consists of three phases: Compute, Aggregate, and Broadcast. The
problem is partitioned into subproblems, and each processor is responsible for the solution of
a subproblem. This solution corresponds to the Compute phase. The Aggregate phase is a
gathering operation that combines data from the processors, producing a global value. This
global value, or some information based upon it, is sent to the processors in the Broadcast
phase. Depending on this information, processors may proceed or not with the next stage.
Thus, this paradigm applies to those computations that can be divided into the C, A, and B
stages. Examples of the CAB paradigm are given by the parallel implementation of iterative
methods such as Jacobi and Gauss-Seidel [31]. Figure 2 depicts the framework corresponding
to the CAB paradigm.

When using the CAB paradigm, the programmer is responsible for addressing the following
issues:

e Partitioning the problem into subproblems,
e Implementing the function Compute that solves the subproblems,

¢ Deciding what information needs to be shared by all the processors,



procedure Divide-and-Conquer (in Problem T, out Solution S)
begin

Problem T1, T2, ..., Tn;

Solution S1, S2, ..., Sn;

if ( T = base-case )
S = Solve (T);
else
Split (in T, out T1, T2, ..., Tn);
begin parallel computation
Divide-and-Conquer (in T1, out S1);
Divide-and-Conquer (in T2, out S2);

Divide-and-Conquer (in Tn, out Sn);
end parallel computation
Combine (in S1, S2, ..., Sn, out S);
end if
end

Figure 1: Framework for the Parallel Divide-and-Conquer Paradigm. Source: [6]

o Implementing or use an existing Combine routine for gathering the partial results
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¢ Implementing or use an existing Broadcasting routine,

¢ Deciding when to terminate.

In the CAB paradigm what is important is the identification of the phases that compose
any problem, not the order in which they appear in the computation. Thus, the paradigm may
also be Broadcast-Compute-Aggregate (BCA) or any other combination of the three.

2.1.3 The PCAM Paradigm

The PCAM paradigm [15] is a design methodology that separates issues that should be con-
sidered early in the program design process from those that should be considered late. PCAM
structures this process as four distinct stages that must be analyzed in this order: Partitioning,
Communication, Agglomeration, and Mapping. The Partitioning stage deals with the decom-
position of the computation to be performed and the data to be operated upon into small
tasks. The Communication stage determines the intertask communication necessary and de-
fines the corresponding communication structures. The algorithm or algorithms resulting from
the Partitioning and Communication stages are not specific to any parallel computer.

The next two phases, Agglomeration and Mapping, take into consideration the machines
to use. They revise the algorithms determined in the Partitioning and Communication stages,
selecting those that are efficient on a particular class of parallel computer. Thus, the Agglom-
eration stage combines the tasks identified in the Partitioning stage into larger tasks in order to
reduce communication costs and improve the performance. Observe, that although Partitioning



procedure CAB (in Problem T, out Solution S)

begin

end

Problem Ti;
Solution Si;

\* Split Problem T into subproblems Ti *\
Partition (in T, out Ti);

do

\* Processor i computes problem Ti *\
Si = Compute (Ti);

\* Processor 0 gathers the partial results Si and combines them in S *\
Aggregate (in 0, Si, out S);

\* Processor 0 broadcasts global result S *\
Broadcast (in 0, inout S);

if (S meets the solution requirements)
continue;

else
terminate;

end if

until (termination)

Figure 2: Framework for the CAB paradigm



and Agglomeration are both concerned with the splitting of the work into pieces, Partitioning
takes place at an early stage of the design process while Agglomeration comes later and takes
into account the machine or machines to be used for the implementation. Finally, the Mapping
stage analyzes the assignment of tasks to processors in such a way that maximizes load balance
and minimizes communication costs. Thus, the first two stages of the PCAM paradigm focus
on natural parallelism and scalability while the last two stages focus on practical parallelism,
locality, and other ways to pursue performance. ‘

Unlike the other paradigms described in this paper, PCAM represents steps involved in the
design process, rather than in the more concrete process of writing code. Because it organizes
the design, rather than the code itself, it is not suitable for representation with a pseudo-code.

Examples of programs that can be designed using the PCAM paradigm are those for the
solutions of a set of partial differential equations by a finite difference method and of a floorplan
optimization problem by the branch-and-bound method [15].

2.1.4 Other Paradigms

Other examples of programming paradigms include the mesh paradigm [6], the queue paradigms
[8, 13, 40], and the systolic paradigm [31]. The mesh paradigm is used in sequential and par-
alle] computing. It provides the basis to implement some iterative methods that present an
n-dimensional mesh structure. These methods compute the new values of some variables at
each point of the mesh, based on the old values and the values at neighboring points. The par-
allel approach includes the following steps. First, the mesh is partitioned into regions that are
assigned to the processors. Neighboring regions share a boundary. Then, processors solve the
problem in their assigned regions as well as on the corresponding boundaries. Finally, neigh-
boring processors exchange information about the boundaries they share. The computation in
the regions and their boundaries repeats in a loop until the values of the computed variables
reach the desired accuracy.

The queue paradigms provide the abstractions to deal with a common programming issue
that arises in distributed-memory computing: how to decompose the original problem into
subproblems and distribute them among the processors. These subproblems, which can be
created dynamically during the computation, are stored in a queue. Depending on which
processors store and handle the queue, the queue paradigm can be centralized, distributed, or
a combination of both.

The systolic paradigm addresses another typical problem in distributed-memory computing:
how to redistribute data among the processors efficiently. The paradigm provides an efficient
communication structure that lets data flow through the processors so they can all have access
to them. Instances of this paradigm are computations involving large matrices that are stored
by blocks in the processors’ memories. The blocks flow through the processors, and processors
perform their computations in response to the data received.

2.2 Programming Archetypes

An archetype is a combination of a problem-solving method, a program design strategy asso-
ciated with that method, and sample problems to which the method can be applied written
in one or more programming languages for one or more target machines. In other words, an
archetype is a programming paradigm accompanied by a set of examples and suggestions for
turning the high-level abstraction provided by the paradigm into a real application. These



suggestions are intended to reduce the effort required to implement correct code as they come
from the experience of others who have developed similar applications. They may cover a wide
range of aspects involved in the implementation process, such as common problems and errors,
test suites, debugging, and performance tuning for different target machines.

For example, the divide-and-conquer archetype proposed in [6, 14, 31] defines the divide-
and-conquer paradigm but also provides discussion of several important programming issues
including approaches to parallelization, language to use, performance, debugging, and execu-
tion. In addition, it illustrates the use of the divide-and-conquer paradigm via such applications
as merge sort. This corroborates the idea that archetypes are designed to provide support to
programmers in every step of the program development process.

Another example of an archetype is the mesh archetype proposed in [6, 14]. It includes a
description of the mesh paradigm as well as some applications based on it. It also supplies
subroutines and functions to perform global reductions, exchange of boundary data, and some
parallel I/O (the latter is still in experimental stage.) Languages and libraries provided for
this archetype are Fortran M [15, 16], Fortran 77, and PVM [17]. Applications that fit this
archetype include some fluid dynamics computations that use iterative and/or finite-element
solvers. In particular, the archetype includes an application that simulates flow in a toroid.

2.3 Templates

Among the abstractions discussed in this paper, templates are the lowest-level ones and the
closest ones to the actual algorithms. In fact, templates are general descriptions of algorithms
that can be translated directly into code by substituting a programming language for the natural
language in which the template is expressed. As do programming paradigms and archetypes,
templates provide a framework on which to build a program. However, the frameworks provided
by the latter are more detailed and low-level than those provided by the former. Consequently,
because they provide a higher level of detail, templates cannot be as general as paradigms and
archetypes. Nevertheless, templates are becoming popular because they provide pseudo-code
versions of the algorithms while still offering whatever degree of customization the user may
desire.

A number of templates have been proposed in the literature [1]. An example is given by
the Jacobi method. This provides an iterative mechanism for solving the linear system Az = b
based on the relation

%) = (bi — Zai,]’wgk_l))/ai,i.
J#1
Figure 3 shows the template corresponding to the Jacobi method.

Given this template, the programmer has to translate the pseudo-code into the target lan-
guage such as Fortran or C. Using the Basic Linear Algebra Subprograms [11] facilitates this
process. Although the pseudo-code closely resembles the actual code, it still allows the program-
mer a great deal of freedom. For instance, it allows programmers to tune the data structures
for their applications. The Jacobi template leaves the programmers with even more to decide
in the parallel case. Some of these decisions include how to partition the work among the
processors and how to combine the partial results to check for convergence. The CAB and .
mesh paradigms, which also apply to parallel implementations of Jacobi, provide more insight
on how to handle these issues than the template does. The template, however, provides a more
detailed description of the Compute phase that takes place in every processor.



procedure Jacobi (in Solution z(%), out Solution z)
\* 2(®) initial guess to solution z *\

begin
fork=1,2,...
fori=1,n
yi =0
for j=1,n;j#1
yi = v + a2 Y,
¥i = (bi — i)/ ais;
end
ak) = y;
check convergence; continue if necessary;
end
=1
end

Figure 3: Template for the Jacobi method. Source: [1]

3 Current Efforts in Using Programming Models

The prbgramming models described in section 2 are all well-suited to certain types of problems
but are inappropriate for others. A natural question is whether it is possible to create a universal
model, i.e., one that could be applied without restriction to solve any parallel problem on any
parallel machine. Unfortunately, this.is an impossible goal as different types of computers and
problems require different approaches for parallelization. Furthermore, the provision of a single,
universal programming framework is incompatible with the goal of efficiency.

In his book Algorithmic Skeletons: Structured Management of Parallel Computation [8], M.
Cole proposes an alternative solution: to build a system that presents not a single model but
rather a collection of them. In this system, the user would be presented with a menu listing the
available models. The user would select the model that is appropriate for the problem at hand
as well as the language in which she or he wants to write the code. The system would respond by
displaying the generic program that describes the structure of the model in the chosen language.
Finally, the system would ask the user to provide problem specific details of the data structures
and procedures so that it can turn the generic model into the user application. ;

Although Cole’s notion of an abstract machine based on algorithmic skeletons is in an em-
bryonic state, there is a great deal of work being done directed at gathering different collections
of skeletons and strategies of resolution. Rather than providing an automatic way to produce
code from specifications these libraries provide program development methods which require
ample user participation and creativity.

One of these projects is being developed at the University of Tennessee [1]. It provides a
collection of templates for solving large sparse systems of linear equations by iterative methods.
The templates are accompanied with useful information, such as discussions of convergence and
stopping criteria, suggestions on how to choose and implement an efficient method, and tips on
parallel implementations [1].



Another effort directed at building high-level libraries is taking place at Mississippi State
University [35]. The Multicomputer Toolbox is a set of parallel libraries for solving linear
systems. The Toolbox includes sparse, dense, direct and iterative linear algebra, and a stiff
ODE/DAE solver. These diverse methods are linked together through a uniform calling inter-
face. An important concept involved in the design of the Toolbox is that of poly-algorithms.
A poly-algorithm consists of the use of two or more algorithms to solve the same problem and
a high level decision-making process that determines which algorithm performs best in a given
situation. Such poly-algorithms are the key to performance and portability of these libraries
[35].

A third project has been initiated at the California Institute of Technology [6, 14]. It aims
at studying the usability of a library of parallel programming archetypes as a tool to reduce
the efforts required to produce correct and efficient programs. The project is monumental for
it does not circumscribe itself to any particular category of problem like the Tennessee one.

This archetype library covers three categories including scientific applications, combinatorics
and optimization, and reactive systems. The scientific applications category is composed of the
mesh-based archetype. The combinatorics and optimization category is represented by the
divide and conquer archetype. Finally, the category of reactive distributed systems deals with
archetypes for more specific problems such as multiprocess synchronization, distributed clocks,
collective communication operations, and mutual exclusion. Future plans include archetypes
for commercial applications that help small business to operate through the network.

3.1 What is needed

The programming models presented in the literature do not represent all the kinds of problems
that exist in distributed-memory computing. For instance, the divide-and-conquer, CAB, and
mesh paradigms support computations that require synchronization among the processors. In
all these paradigms, the computation is divided up into stages, cycles or iterations. Processors
need to wait for the partial results computed by other processors before they can proceed
with the next cycle. However, there are other kinds of problems for which no cycles can be
distinguished and no synchronization points are necessary. Moreover, synchronization should
be eliminated in these problems for it introduces a source of unnecessary overhead.

Another type of problem that is not represented by these models is one in which the work
is generated dynamically and unpredictably. These problems are difficult to partition and
distribute among the processors in such a way that keeps the load balanced. One of the queue
paradigms supports a centralized approach in which a master processor handles the pieces of
work or tasks as they are generated and assigns them to the other processors upon request.
However, this approach can only be efficiently applied to applications involving a small number
of processors [26]. The distributed queue paradigm, on the other hand, provides a scalable
approach in which each processor is responsible for its own work but does not resolve the load
imbalance problem that may arise among them.

The PCAM paradigm provides a more general approach that applies to all of these problems.
However, it represents the steps that programmers have to go through in the design process
rather than the modules that they need to implement when writing their codes. Therefore, it
is desirable to find a general model that represents, at a high level, the methodologies to design
and implement a wide variety of scientific problems on distributed-memory computers. This
‘model should help programmers to understand the big picture first and then to identify how



their problems fit within it. Thus, the mesh, divide-and-conquer, queue, and CAB paradigms,
would be particular instances of this main structure. Although general, this model should
provide enough detail to help programmers understand the main categories of problems and
to recognize their basic structure. It should also provide enough ground to go to a finer level
of detail and study the building blocks that comprise those structures and the programming
issues involved. Finally, this programming model should provide the basis we need to organize
the software support that is already available and to determine what needs to be done.

In the next section, we present the PMESC paradigm that serves as this more general pro-
gramming model. Although this new paradigm and PCAM have been developed independently,
they complement each other well. In fact, while PCAM analyzes the main stages involved in the
design process, PMESC separates the main building blocks or modules that compose a parallel
code. Thus, the results of all the analyses made at the Partition and Agglomeration stages of the
PCAM process, should be considered in the implementation of the Partition module of PMESC.
Likewise, the conclusions about convenient algorithms for Mapping and Communication made
in the PCAM analyses, should be used in the implementation of the Map and Communicate
modules of PMESC. PMESC then completes the implementation process by adding two more
modules: one that takes care of the computation itself, called Solve, and other that takes care
of embedding the communication structures used for the implementation onto the machine ar-
chitecture, called Embed. The addition of these modules allows us to derive frameworks or
pseudo-codes that help programmers to visualize the approaches to use and the different ways
of putting the building blocks together.

4 The PMESC Paradigm

Parallel programming on distributed-memory computers presents several
sources of difficulty. The first is the task of identifying the processes that can operate con-
currently during the process of achieving a correct solution. The second is that of specifying
a mapping of processes onto the available processors and indicating the mechanisms by which
the mapping can be performed dynamically if necessary. In the most favorable situation, the
decomposition and distribution of a problem will lead to a situation in which processors receive
roughly equal amounts of independent work and can proceed with the execution until complete.
However, in most cases, processors need to communicate either to share some data or to share
some work. It is necessary to consider the mechanisms by which both kinds of sharings are
to be performed. A final problem is the separation of the applications from the underlying
characteristics of the hardware.

~ To better deal with all of these issues, we present a new programming paradigm. It is called
Partition-Map-Embed-Solve-Communicate
(PMESC), and it is composed of five phases bearing those names. The Partition phase splits
a problem into subproblems. The Map phase distributes those subproblems among the virtual
graph of processors interconnected by some convenient virtual topology. The Embed phase
embeds the virtual interconnecting topology of the processors into the actual machine archi-
tecture. The Solve phase performs the computation necessary to solve the subproblems, and
the Communicate phase takes care of the interprocessor communication necessary for sharing
data. Note that because these mechanisms of data communication and task communication
are so different we rather treat them as two separate phases: Communicate and Map. The
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five phases of the PMESC paradigm become the building blocks of distributed algorithms. To
better understand this paradigm we next describe the computational model to which it applies.

4.1 The Computational Model

Distributed-memory computing consists of partitioning the work into units of work or tasks
and assigning those tasks to the processors. Data is shared through message passing instead
of through common memory. Let us assume a set of tasks 7' and a set of processors P =
{Po, P1,...,P,_1}. Let us call (P, M) a graph whose vertices P are connected by edges M such
that each edge in M joins two processors in P. Let the graph (P, M) represent the physical
interconnecting topology of the processors, i.e., the actual machine architecture.

The problem is represented in terms of a graph (7', G), whose vertices correspond to the tasks
in T and whose edges, G, correspond to their communication requirements. The graph of tasks
(T, G) is mapped onto the set of processors (P, M). Thus, a program for that problem consists
of a graph (7, G) and a mapping function that assigns those tasks to the processors. In some
cases, a program consists of multiple graphs, as tasks and their communication requirements
evolve and change with the computation.

However, this model is still incomplete. We need to make it more flexible in order to
deal with two seemingly conflicting goals: efficiency and portability. On one hand we want to
separate the application from the machine architecture, i.e., to separate the low-level details
of the parallel computation from the high-level ones, in order to create portable code. On the
other hand, in order to develop highly efficient code we need to program the computer explicitly,
matching the data-dependency graph of tasks (T, G) with the physical interconnection topology
of the processors (P, M).

In order to be able to choose any variation between high efficiency and maximal portability,
experienced programmers introduce a third graph
(P, V) which corresponds to the set of processors interconnected by some virtual topology.
Under this new model, a program consists of the graphs (T,G), (P,V), and (P, M) and two
mapping functions: one that assigns tasks to the processors interconnected by some convenient
virtual topology and the other that maps this virtual machine into the real machine architecture.

The programming model supported by PMESC provides the freedom of choosing between
maximal efficiency and portability. The programmer can program the computer explicitly,
matching the data-dependency topology of the tasks with the interconnection topology of the
processors or assume a virtual architecture and embed it into the actual one. The first choice,
which allows the writing of highly efficient but non-portable code, corresponds to the case when
no virtual topology is used, i.e., (P,V) = (P, M). The second choice, which allows the writing
of portable but possibly less efficient code, corresponds to the case when the code is designed
on a virtual machine that changes dynamically at the designer’s convenience.

In section 3 we establish the need for a general model that fits a wide range of scientific
applications on distributed-memory computing. To prove that PMESC is such model we now
examine the different categories of problems and the different approaches to parallelizing them.

5 The Problems and the Approaches to Parallelization

In this section, we present a taxonomy of the problems. Our goal is to identify the approaches
to parallelizing different problems according to a small set of salient features.
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5.1 The Problems

Three categories of problems can be distinguished in parallel computing depending on the way
they can be divided up among the processors: data parallel, task parallel, and a combination
of both [15, 23]. Each of these categories can be classified as regular or irregular.

5.1.1 Data vs. task parallel.

Data parallel computations are those that present a large data domain that can be decomposed
into subdomains to be assigned to the processors. The subdomains can be operated upon in
parallel by performing the same computation on each. However, processors must exchange data
periodically and synchronously in order to achieve correct results. Because data in neighbor-
ing subdomains are usually related, adjacent subdomains are usually assigned to neighboring
processors (in the actual machine) in an attempt to control communication costs.

In contrast, task parallel computations do not necessarily present a large amount of data to
split but rather are comprised of a large task that can be partitioned into asynchronous subtasks
to be assigned to the processors. Different subtasks may involve different computations. These
tasks may need to share some data, but usually they can do it asynchronously. Because the
tasks are essentially uncoordinated and because the communication between them (if any) is
not significant (compared to the data parallel case), tasks can be assigned and reassigned to
any processor.

Observe that some applications may involve the two paradigms, data and task parallel. An
example is given by those large scale applications implemented on heterogeneous computers. In
this case, the original problem may be split into heterogeneous subproblems that are assigned
to the different computers, following a task parallel approach. Each computer, in turn, applies
the appropriate paradigm —data or task parallel— to the corresponding subproblems.

5.1.2 Regular vs. irregular.

Data and task parallel problems can be regular or irregular. Regular computations are those
whose computational requirement can be determined or at least estimated a priori. In contrast,
the computational requirement of irregular computations becomes evident only during their
execution. Irregularity appears in some data parallel computations when it is difficult (if not
impossible) to make an a priori partition of the data structure in such a way that each processor
receives roughly the same amount of work. Irregularity appears in task parallel computations
because the number of tasks and usually their computation times vary during program execution
in an unpredictable manner.

5.2 The Approaches to Parallelization

Different types of problems may require different approaches for their efficient implementation
on distributed-memory computers. These approaches can be classified as static and adaptive.
The latter can be quasi-dynamic and dynamic [39]. In this section, we briefly describe each one
of these categories and the differences between them.

The static approach splits and assigns work to the processors without any regard for the
system state. This subdivision is made only once, usually at the beginning of the execution,
and it is based on information that the programmer has about the application. For that reason,
it is well suited to regular computations. Adaptive methods are an interesting alternative to
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this straightforward approach. They apply to those computations that are irregular and for
which no a priori estimates of load distribution are possible. In this case, it is only during
program execution that different processors can become responsible for different amounts of
work. Adaptive approaches are especially appropriate for these problems because they react to
the variations in the system state, concentrating efforts on those areas that look more promising
and making work transfer decisions to keep the load balanced. ‘

Adaptive approaches can be quasi-dynamic and dynamic. Quasi-dynamic approaches apply
to those computations that are synchronous and
predictable in stages and that may require periodic load balancing checks to achieve good
performance. Dynamic approaches apply to those computations that are asynchronous and
unpredictable and that may require load balancing checks at any time during the computation.

Next, we describe each category in more detail and present some examples. We also discuss
the PMESC framework that corresponds to each one of the approaches.

6 The Static Approach

The static approach can be successfully applied to those problems, data or task parallel, that
exhibit regular structure. Because these computations allow one to get an a priori estimate of
the workload, they can be efficiently partitioned and mapped to the processors at the beginning
of the execution. This initial partition and assignment of work achieves good load balance and
no adjustments need to be made to improve the efficiency of the parallel implementation.

6.1 Example: the solution of Laplace’s equation on a rectangle

An example of the static approach is given by the solution of Laplace’s equation

v v
0%z 0%y

on a rectangle. The solution of this equation on a continuous space is approximated by studying
the behavior of a finite set of points in that space. Typically, the domain is discretized by laying
a grid on top of it. The numerical solution is obtained by following an iterative procedure that
computes the value V;; at the point (7,;) in the grid as the average of the values of its four
neighbors at the previous iteration [15]

1
Vii’“ = Z(Vzt—lj + Vz’t+1j + Vi?—l + Vz‘tj+1)~

The iteration proceeds until the global error estimate, obtained as the maximum of the
differences between the new and the old values over all points, is less than a given tolerance.
Thus, the problem requires a static approach that assigns equal numbers of points to all the
processors.

The efficiency of a static implementation depends heavily on the use of a good partitioning
strategy that divides the work evenly and also on an efficient mapping strategy that assigns
the pieces of work to the processors in such a way that keeps the communication costs low.
Although these are straightforward procedures in this PDE example (as we will see in the next
section), other problems require more sophisticated techniques. Many researchers have been
working on efficient strategies for domain decomposition of PDE problems [19, 20, 33, 34] and
for efficiently mappings of the subdomains onto the processors [3, 4, 5, 23, 29].
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Initialize;
begin
Partition;
Map;
Embed; \* topology or topologies used in Map and Communicate *\
begin iterative procedure
Solve;
Communicate;
end iterative procedure
Communicate;
end

Figure 4: PMESC framework for the static approach

6.2 Applying PMESC to static problems

Figure 4 shows the PMESC framework for the static approach. It begins with the Partition
of the work into units. In the PDE example, this phase corresponds to the partition of the grid
into subgrids of identical size. There are as many subgrids as processors to be used.

The next task is to assign the subgrids to processors. In order to make the approach
independent of the computer architecture, the problem should be formulated in terms of a
virtual machine whose processors are interconnected by virtual communication channels. As
the data in the PDE example form a grid, the most natural virtual machine to use for that
problem is a grid or mesh of processors. The Map phase assigns the subgrids to the processors
of the virtual mesh. The Embed phase embeds the virtual machine into the actual machine
architecture. In addition to allowing a straightforward mapping, the virtual mesh turns out
to be a good one for an efficient program. Neighboring processors in the virtual mesh need
to communicate to exchange the data values along the edges of their assigned subgrids. The
virtual mesh may be mapped onto both hypercube and mesh machines so that neighboring
processors in the virtual mesh are mapped onto neighboring processors in the actual machine.

Next, each processor proceeds independently with its assigned part of the computation.
In the PDE example, each processor must execute an iterative procedure that is composed of
two phases: Solve and Communicate. The Solve phase computes the values of V at the
assigned points of the grid. The Communicate phase exchanges values at the boundaries of
the subgrids between neighboring processors in the mesh so that processors can proceed with
the next iteration. It also performs some global combine operation to check for convergence.

At the end, processors may communicate again to gather the partial results. This is also
taken care of by the Communicate phase. Note that the Communicate phase (like other
phases in PMESC) may be composed of different modules. In the PDE example, Communi-
cate comprises a module for exchanging of data between neighboring processors and one for
globally combining results. These modules may use different virtual topologies which need to
be embedded by different procedures.
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7 The Quasi-Dynamic Approach

The quasi-dynamic approach applies to those computations that can be divided into stages.
FEach stage is composed of the following steps. First, the problem is decomposed into subprob-
lems. Second, the set of subproblems is mapped into the set of processors. Then, processors
execute their assigned subproblems. To do so, processors may need to exchange some data.
In the quasi-dynamic approach, this exchange is synchronous to guarantee determinism. Be-
sides exchanging data, processors may need to transfer work to keep the load balanced. These
transfers are also synchronous. Because in these computations the workload redistributes itself
gradually, the transfers of work are only necessary periodically. When the workload becomes
imbalanced the current stage ends and the work estimate of the next stage is estimated. Based
on that estimate, the work is redistributed and mapped among the processors, and another
stage begins.

7.1 Example: adaptive irregular multigrids

There are some PDE problems where the computational effort needs to be concentrated on
some regions of the domain. Because the domain is discretized by a mesh, there are some
regions where the mesh needs to be more refined than others. Because the location of these
regions is not known in advance, adaptive irregular grids that allow localized refinement are
necessary. In particular, there are some methods called adaptive multigrid methods, where
the domain may be discretized by a hierarchy of grids that have different resolutions [25, 30].
As the computation goes on, the collection of grids may be changed from coarser to finer by
applying the refinement procedure.

The adaptive solutions to these irregular problems attempt to balance the load periodically,
remapping the adapting grids as they change. These changes are called grid refinements, and
they separate the computation into stages. In each stage, a grid is decomposed into units
(aggregates of nodes). Units that do not have dependencies or temporal precedence constraints
—i.e., those that can be executed simultaneously— are mapped onto the set of processors
arranged as a virtual mesh. This virtual topology needs to be embedded into the real machine.
With the units assigned to the processors, the problem is solved for that grid using some
iterative procedure. During that procedure, processors computing neighboring units may need
to exchange some data.

The optimal load distribution for each stage is determined by minimizing the estimated par-
allel execution time of that stage. This is done by assigning computation and communication
costs to the units and using these values as input parameters to some approximate cost func-
tion. Several optimization algorithms are proposed in the literature based on the minimization
of the estimated parallel execution time of the next stage. Among them, recursive bisection,
orthogonal bisection, and simulated annealing are commonly used in many PDE implementa-
tions [3, 24, 33, 39]. Any of these procedures requires global synchronization of processors at
the end of each stage.

7.2 Applying PMESC to quasi-dynamic problems

Figure 5 shows the PMESC framework for the quasi-dynamic approach. The computation is
divided in stages, each with its corresponding Partition, Map, Embed, Solve and Communicate
procedures. In the multigrid example, each stage deals with the solution of the problem in a
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Initialize;
begin
for ¢ = 1 : number of stages
begin stage
Partition;
Map;
Embed;
Solve;
Communicate;
end stage
end
end

Figure 5: PMESC framework for the quasi-dynamic approach

particular grid. Partition represents the domain decomposition. It may be global or it may
run sequentially on a single processor, depending on the method used. The mapping procedure
corresponds to the initial assignment of work to the processors of a virtual machine as well
as to the subsequent reassignments that may be needed to keep the load balanced. These
reassignments are always synchronous to guarantee deterministic results. In the example, the
virtual topology used is a mesh. Thus, the Embed phase represents the embedding of the mesh
into the actual machine architecture.

After partitioning, mapping, and embedding, processors can proceed with the computation.
These computations correspond to the Solve phase. The Solve phase may represent a simple
procedure or a very complex one. In the multigrid case, it corresponds to an iterative procedure
to evaluate the solution on a grid. This phase can be represented in turns, by another pro-
gramming model such as the CAB paradigm [31] or the mesh archetype [14, 6]. We discuss this
issue in more detail in section 9. Because data dependencies are so strong in these problems,
exchange of data between processors is a very important ingredient in the computation. This
exchange is associated with the Communicate phase.

A new stage begins when redistribution of work is necessary. In the multigrid case, this
occurs when the procedure requires a grid refinement. The process repeats until computation
is completed.
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8 The Dynamic Approach

There is another kind of unpredictable computation for which no stages can be distinguished
‘and no a priori estimates of load distribution are possible. Dynamic approaches are especially
well-suited to these problems because they assume no prior knowledge of the workload and
allow work redistribution at any time. Thus, like quasi-dynamic approaches, dynamic ones are
adaptive. Like quasi-dynamic approaches, they evaluate the changes in the system state in order
to make work transfer decisions. However, unlike quasi-dynamic approaches, they make these
evaluations continuously rather than periodically, interleaving remapping with computation.

The dynamic approach is asynchronous as it allows each part of the computation to proceed
independently of the other parts. It applies to those applications that can be split into parts
that are as autonomous as possible. Therefore, the approach is especially appropriate for task
parallel computations, where tasks vary dynamically in size and number.

8.1 Example: branch-and-bound

Examples of problems that need a dynamic approach can be found in those computations
involving some type of tree search. This type of computation is difficult to partition and map
to a distributed-memory computer because different branches of the tree may have different
number of nodes and levels. In addition, trees evolve dynamically, making it impossible to
achieve an efficient initial mapping of the work among the processors. To illustrate the situation,
let us consider the solution of the traveling salesman problem (TSP) by the branch-and-bound
procedure. This problem consists of a set {1,2,...,n} of cities connected by a graph. An edge
(,7) of the graph represents the distance d;; between cities i and j. A tour is a traversal
of the graph in which each city appears exactly once. A solution to the traveling salesman
problem is the tour of least cost. Thus, a solution is given by a permutation ¢ of the set of
cities {1,2,...,n} that minimizes Y7, d; ;).

The branch-and-bound procedure associates a rooted tree with the problem. The execution
of the algorithm corresponds to the traverse of that tree to find the leaves. A leaf represents
either a solution of the problem, i.e., a goal leaf, or an unproductive partial solution, i.e., a
partial solution that cannot lead to a solution. The nodes of the tree are generated by using the
branching procedure, which applied to any problem P, either solves it directly or derives a set
of subproblems such that the solution of P can be found from the solution of the subproblems.
Thus, when a branching procedure is applied to node v, it either determines that v is a leaf
or produces the children of v. The search recursively branches nodes until a set of leaves is
identified as the desired solution of the problem.

The bounding procedure uses a global bound to prune those branches of the tree that cannot
produce a solution [18, 38, 41]. It does so by defining a cost function ¢ that assigns a value
¢(v) to each node v based on the values of the nodes in the path from the root to v. The
solution of the problem is given by the leaf with the minimum cost function. The global bound
is the solution of least cost found so far. The bounding procedure is based on the monotonicity
property of the lower bounds that states that the lower bound of a subproblem of P is at least as
large as the lower bound of P. This property ensures that any subproblem with associated cost
bigger than the cost of one solution found does not lead to a feasible solution, and, therefore,
it can be ruled out.

An efficient parallel branch-and-bound algorithm not only distributes the subproblems
among the processors but also checks that processors do not waste time exploring unproductive

17



subproblems. Therefore, a parallel branch-and-bound algorithm may not achieve good speedup
by merely keeping the load balanced. In branch-and-bound algorithms, the order in which
nodes are expanded matters. Thus, nodes are given priorities according to the costs associated
with them. Nodes with lower cost have higher priorities because they are more likely to produce
a solution. A priority queue must be maintained to implement these problems so that the node
with the highest priority can be easily found.

The parallel implementation of this algorithm is clearly task-parallel. Processors split their
work into units or tasks and store them in a priority queue from where they .select them for
execution. Processors execute the tasks asynchronously and independently until they become
overloaded or idle, in which case they activate the load balancing mechanism to transfer tasks.
Processors having some work to give away split their local queues and send one part to another
processor. Because the send is asynchronous, the sending processor can proceed with execution
immediately. The communication necessary to share information is also asynchronous. That
is one of the main characteristics of the dynamic problems that distinguishes them from the
quasi-dynamic ones. In this particular example, communication is necessary to update the
bound that processors use to prune some branches of the tree and to concentrate on the most
promising ones.

8.2 Applying PMESC to dynamic problems

Figure 6 shows the PMESC framework for the dynamic approach. First comes the Partition
phase with the initial subdivision of the work into units of work or tasks. In the branch-and-
bound algorithm, the Partition phase corresponds to the expansion of the root to create a set
of frontier nodes. Then comes the Map phase, which distributes the units of work among the
processors of a convenient virtual machine. In the example, the virtual topology used is a tree.
The Embed phase embeds that tree into the actual machine.

Once processors receive their tasks, they create a queue of tasks ready for execution. In the
TSP example, the queue is prioritized according to the cost function associated with the nodes.
Because the queue stores the tasks, its handling is represented by the Partition phase. Thus,
Partition represents the process of selecting a task from the queue as well as that of storing a
task in the queue. According to the queue paradigms, queues can be centralized, distributed,
and a combination of both [8, 15, 22]. We assume the distributed case for it represents the
most scalable as well as the most challenging approach for distributed-memory computers [26].
In this case, processors maintain a local queue of tasks. Processors execute the tasks in their
local queue as long as the system is moderately loaded —i.e., the queue length is between some
lower and upper bounds.

While moderately loaded, each processor takes for execution the task with the highest
priority —i.e., the node with the least expensive cost— it has available in the queue. The
execution of the tasks corresponds to the Solve phase. Processors may also need to share
some information. In the branch-and-bound example, this corresponds to the updating of the
bound based on the solution of least cost that the processor knows so far. To this end, upon
finding such solution, a processor sends a message to the other processors so that they can
update their bounds. This is essential to discarding unproductive work. Updating of variables
or, in general, sharing of information, is taken care of by the Communicate phase. Also, the
virtual topology used for transferring tasks may not be necessaryly the same as the one used
to sharing information. Thus, each phase involving interprocessor communication —i.e., Map
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Initialize;

begin
Partition;
Map;
Embed;

while (queues are not empty)
while (lower bound < local queue length < upper bound)

Partition;
Solve;
if (exchange of data is required)
Communicate;
end
Map;
end
Communicate;

end

Figure 6: PMESC framework for the dynamic approach

and Communicate— may need a different virtual machine. Embedding these virtual machines
into the real ones is taken care of by the Embed phase.

When a processor becomes overloaded —i.e., when the queue length exceeds the upper
bound— or underloaded —i.e., when the queue length is less than the lower bound— the
processor activates the load balancing mechanisms to transfer some work to or to get some
work from another processor. This is work redistribution and, therefore, it corresponds to the
Map phase.

The cycle repeats until all the local queues become empty. In that case, the processors may
invoke some mechanism to combine the partial results. This corresponds to the Communicate
phase.

9 Composing Models

The programming paradigms or models that we describe in this paper are not mutually exclu-
sive. In fact, one model can be nested into another model, allowing a hierarchy or composition
of programming abstractions. A typical case of model composition occurs when one applies a
model to describe a problem and then uses other models to describe some of its subproblems.

Programming models are meant to provide programmers with a better understanding of
the problems and their characteristics. Therefore, model composition is important for making
the most effective use of these abstractions. The more models we can apply to a problem the
better understanding we may have about how to efficiently implement that problem.

Next, we describe one example that shows how the composition of two models describes a
problem better than each one of them.
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Initialize;
begin
for : = 1 : number of grid refinements
begin new grid
Partition of the grid into units;
Map units to the processors interconnected as a virtual grid;
Embed grid into real machine;
Solve iterative method
begin Solve phase
for i = 1 : number of iterations
Compute solution on units;
Aggregate neighbors’ boundaries;
Broadcast own boundaries;
end
end Solve phase
Communicate data for new refinement;
[Embed if topology used is other than grid;]
“end grid
end
end

Figure 7: PMESC and CAB frameworks for the multigrid example

9.1 Composing PMESC with the CAB Paradigm to Solve Adaptive Irregu-
lar Multigrids

The problem of adaptive multigrids presented in section 7 provides us with a good case where we
can apply model composition. For this example, the PMESC framework provides a high level
description of the problem structure, which separates the work in stages. PMESC highlights
the main steps involved in the computation of the whole problem, i.e., the set of grids. However,
although it structures the computation of all the grids, it does not specify how to organize the
computation of each one of them. The solution of the individual grids can be explained in more
detail by another structure: the CAB paradigm.

In fact, the grid problem is about computing the values of variables at every point of a grid
based on the values at neighboring points by following a iterative procedure. This is composed
of three phases: (1) a compute phase in which processors estimate the solution of the problem
on the different units and their boundaries, (2) an aggregate phase in which each processor
receives the values of the boundaries from its neighbors in the grid, and (3) a broadcast phase
in which each processor sends its values to their neighbors in the grid. “

Figure 7 shows the framework for the adaptive multigrid example that combines PMESC
and the CAB paradigm.
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10 Conclusions

In this paper, we analyze the programming models that have arisen in distributed-memory
computing as a consequence of theoretical research and practical experience. Emerging from
this review are three key results: a new abstraction for structuring the algorithms on distributed-
memory computers, a set of methodologies for implementing those algorithms, and a library for
managing task-parallel algorithms that need a dynamic approach for parallelization. Of these,
the present paper addresses the first two results. We present and evaluate the library in [9].

Our efforts are driven by several goals: to enforce the development of high quality algorithms,
to support the development of libraries, to enforce good programming techniques, and to make
the overall program design and implementation less time consuming. We believe that the
PMESC programming paradigm and other concurrent efforts mentioned in this paper as well
as tools such as MPI are fundamental to achieving these goals.
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