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Mixing of a passive scalar in a fluid flow results from a two part process in which large

gradients are first created by advection and then smoothed by diffusion. We investigate methods

of designing efficient stirrers to optimize mixing of a passive scalar in a two-dimensional nonau-

tonomous, incompressible flow over a finite time interval. The flow is modeled by a sequence of

area-preserving maps whose parameters change in time, defining a mixing protocol. Stirring effi-

ciency is measured by the mix norm, a negative Sobolev seminorm; its decrease implies creation

of fine-scale structure. A Perron-Frobenius operator is used to numerically advect the scalar for

three examples: compositions of Chirikov standard maps, of Harper maps, and of blinking vortex

maps. In the case of the standard maps, we find that a protocol corresponding to a single vertical

shear composed with horizontal shearing at all other steps is nearly optimal. For the Harper maps,

we devise a predictive, one-step scheme to choose appropriate fixed point stabilities and to control

the Fourier spectrum evolution to obtain a near optimal protocol. For the blinking vortex model,

we devise two schemes: A one-step predictive scheme to determine a vortex location, which has

modest success in producing an efficient stirring protocol, and a scheme that finds the true optimal

choice of vortex positions and directions of rotation given four possible fixed vortex locations. The

results from the numerical experiments suggest that an effective stirring protocol must include not

only steps devoted to decreasing the mix norm, but also steps devoted to preparing the density

profile for future steps of mixing.
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applied. Plot (b) shows the contours of the Hamiltonian (4.8). . . . . . . . . . . . . . . . . . 77



Chapter 1

Introduction

The design of an efficient mixer for a passive scalar in an incompressible flow requires effective

mechanical “stirring” of the fluid that eventually will lead to homogenization through diffusion.

When stirring gives rise to fine-scale filaments, even a small diffusivity can be highly effective in

homogenization. As was noted by Spencer and Wiley [43]:

When the materials to be mixed are very viscous liquids. . . neither diffusion nor
turbulence can assist very much in mixing. Rather, mixing must be effected by
some complex, continuous deformation which serves to disperse the components to
the desired degree.

Thus, as a first step in designing a mixer one can ignore diffusion and study only advection by an

incompressible flow. The results are expected to be “transportable” to the diffusive case. Cortelezzi

conducted experiments to support to this claim by devising stirring schemes first by taking diffusion

into account and then by ignoring diffusion [10]. He found that, provided the Péclet number, or

the ratio of the rate of advection to diffusion, is sufficiently large, the stirring schemes produced by

the pure advection case closely resembled those of the full advection-diffusion problem.

1.1 Finite-Time Mixers

In this thesis we are interested in the finite-time case: How can one design the best mixer for

a given initial state and a given finite time? There have been previous investigations of finite-time

mixers in which fluid is injected at one end of a cylindrical pipe, flows past a finite number of

mixing elements, and is emitted at the other end. For example, the Kenics Static Mixer discussed
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in Galaktionov et al. consists of a cylindrical pipe with twisted blades placed at fixed locations

along the pipe [22]. The twist directions and angles of the blades are the parameters that can

be modified to improve mixing efficiency. Examples of the mixer with different blade angles and

orientations are shown in Fig. 1.1(a). Another example is the rotated-arc mixer (RAM) discussed

in Speetjens et al., which consists of two cocentric cylinders: a stationary inner cylinder and a

rotating outer cylinder [42]. A window is cut into the inner cylinder, so that the fluid is mixed by

drag created by exposure to the outer cylinder. A picture of the RAM mixer is shown in Fig. 1.1(b).

Other examples of this type of mixing include “making up rubber formulations on compounding

rolls, using an extruder as a mixer, kneading bread dough, and pulling taffy” [43]. Our goal is to

develop methods that can be used to optimize the geometry of the elements to maximize mixing.

Figure 1.1: Examples of finite-time mixers in which discrete mechanisms are used to mix fluid flowing through

three-dimensional pipe. Plot (a) shows the Kenics Static Mixer [22]. Plot (b) shows the rotated-arc mixer (RAM)

[42].

We view the stirring process as a finite sequence of steps; each corresponding to one element of

the mixer. The design corresponds mathematically to the selection of a finite sequence ft : D → D,

t = 1, 2, . . . , T , of maps on a domain D. Each map can be thought of as the result of a flow for



3

a time τt of an incompressible fluid so that each ft is a volume-preserving diffeomorphism. Such

a blinking flow could be a reasonable model of a low Reynolds number fluid in a cavity where the

side walls are alternatively moved, or for flows with magnetohydrodynamic forcing [33, 10].

We will study compositions of time dependent transport maps, see §2.3 and §2.4. The mixer

acts on a passive scalar, represented by a density ρ : D → R. Our goal is to find a sequence

{ft} that takes a fixed “unmixed” initial state, ρ0, to one that is “optimally mixed” after flowing

through the full system, i.e., under the composition

FT = fT ◦ fT−1 ◦ · · · ◦ f2 ◦ f1.

Ignoring diffusion, sources, and reactions, the evolution of the density is determined by the Perron-

Frobenius operator P,

ρt(z) = Pt[ρt−1](z) = ρt−1(f−1
t (z)), t = 1, 2, . . . , T. (1.1)

It is common to study mixing using autonomous dynamics, where the maps ft are either

identical or repeated in a periodic sequence. Mixing for this case can be measured using concepts

appropriate for the infinite-time limit, i.e., Lyapunov exponents or measure-theoretic entropy. Lya-

punov exponents indicate the presence of chaos, so they can be used as an indicator of effective

mixing. D’Alessandro, Dahleh, and Mezić consider a two-dimensional piecewise flow and use a

control theory approach to maximize the entropy of the system [12]. They show that the entropy

can be found by computing the positive Lyapunov exponents of the flow. Entropy is an intuitive

measure of mixing because it describes the randomness of a system. They conclude that alternating

maps of vertical and horizontal shears maximizes the entropy.

Aref noted that effective stirring can arise from chaotic dynamics [2]. He used a piecewise

constant blinking vortex model to stir particles in a two-dimensional circular domain. He inves-

tigated the emergence of chaos relative to the period of switching between activation of the two

vortices. He discovered that as the period approaches zero, the flow approaches an integrable sys-

tem, and therefore the regions of chaotic orbits shrink to zero, resulting in very poor mixing. He
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concluded that a large enough period was required so that the dynamical instability created by

the vortex switching would increase the size of the chaotic regions. In §2.4, we introduce a stirring

model very similar to Aref’s blinking vortices, and we present results for this model in Chapter 4.

The effect of regular islands in the phase space on mixing is discussed in [16] and [17], where

it is observed that the emergence of islands in “a sea of chaos” greatly detracts from the mixing

efficiency. These works use symmetries of the stirring maps to identitiy elliptic points that will

indicate the emergence of an island, then use this knowledge to recursively rotate and manipulate

the symmetries to destroy the islands. The first work applies this method to a cavity flow, in which

two walls of a cavity containing a fluid are moved in opposite directions. The second work applies

the method to egg beater flows, which use piecewise alternating vertical and horizontal shearing

similar to the model discussed in D’Alessandro, Dahleh, and Mezić [12].

There are a number of works that investigate the relationship between chaos and mixing with

applications to the optimal design of a periodic sequence of obstacles in a channel or pipe. One is

the Kenics Static Mixer discussed above [22]. Others include Micro Total Analysis Systems, which

use twisting microchannels to mix miniscule quantities of fluid [29]. The Anisotropic Unstructured

Meshes Mapping Method attempts to mix microfluids by specifying a spatial pattern of bends in

a pipe to induce chaos [23]. A longitudinal vortex generators approach can be used to design a

T-shaped channel micromixer [28].

It is less clear what role chaos plays in the finite-time, nonautonomous case. The study

of aperiodic protocols was initiated by [33], using as a model, the “sine flow”, equivalent to the

Harper map in §2.3. The flow is modeled by a succession of horizontal or vertical shears with

fixed amplitudes. The mixing is optimized for a discrete set of possibilities: a choice to switch—or

not—from one shear to another with a fixed time step. This work is extended in [10], where short-

time horizons are used to determine an optimal scheme for switching, in which the algorithm only

looks a few steps in the future to reduce the number of protocols to choose from. These studies

found that even though a periodic switching protocol can have a large Lyapunov exponent (when

repeated for infinite time), it is typically not the optimal choice for mixing. Later studies allowed
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continuous shifts in the phase of the shears [26] and its shape [25]. We will extend their results

below by considering more general protocols in which the shear amplitudes, or equivalently their

actuation times, can vary.

An alternative approach to finite-time optimization, based on control theory, was used in [19]

for the advection-diffusion problem; in this work the advective part is fixed and diffusion is allowed

to locally vary to enhance mixing. The authors describe a target equilibrium density profile that

is invariant under advection, and they seek to to minimize the L2 distance from the target density

to the computed density after some finite time.

Another approach is to fix the diffusivity and use control theory to optimize a time-dependent

linear combination of two vortical flows [11]. The problem becomes to minimize a function that

consists of the sum of the measure of mixedness with the cost of the energy of the flows. The

process is approximated by discrete operations, and then subjected to a control feedback loop to

determine the optimal advective scheme. The approach of optimizing mixing with limits on the

allowed energy of the advective action will be introduced in §2.3, and used for the results in Chapter

3.

More recently, Sturman and Thiffeault have investigated the bounding of Lyapunov exponents

for random products of two shear matrices [46]. These random products can be thought of as non

autonomous composition of shearing maps. The Lyapunov exponents can be a good indication of

mixing, so computing bounds for them is a way of predicting the decay of mixing.

1.2 A Measure of Mixing

In order to select an “optimal” mixing protocol, we must define the stirring effectiveness in

some way. Mixing, in a measure theoretic sense, is defined through an infinite time limit [31]. A

transformation f : D → D that preserves a measure µ is mixing if for any two measurable sets A

and B, the measure of the overlap µ(A∩ f−t(B))→ µ(A)µ(B)/µ(D) as t→∞. Equivalently, f is

mixing if for any initial density ρ0 ∈ L1(D), ρt(x), determined by (1.1), converges weakly as t→∞
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to its mean

〈ρ〉 =
1

|D|

∫
D
ρ dµ, (1.2)

where |D| = µ(D) is the volume of D.

For our purposes, measure-theoretic mixing is not an appropriate yardstick for two reasons.

First, mixing implies that every L2 initial state, not just those of physical interest, approaches a

uniform state. Moreover, even if the entropy is zero, a physical state may still develop fine-scale

structure [36]. Second, we are interested in a given state becoming “mixed-up” after a finite number

of different transformations, not in the limit t→∞ for a single map.

As was noted by Danckwerts, in the presence of diffusion, the decrease of variance

Var(ρ) =
〈
ρ2
〉
− 〈ρ〉2 , (1.3)

is one measure of mixing [13]. Indeed, diffusion will cause Var(ρ) to decrease at a rate proportional

to ‖∇ρ‖2, the L2 norm of the gradient (See §2.1) [48]. Thus to be effective, a stirrer should increase

gradients so that diffusion is activated. This “intensity of segregation” has been used to optimize

mixing in diffusive flows [30, 22, 23]. However, in the absence of diffusivity and sources, the variance,

and each Lp-norm, of the density is constant.

One class of mixing measures include the mix-norm of Mathew, Mezić, and Petzold [36] and

equivalent Sobolev seminorms [48]. For functions that have zero mean, the squared Hq-seminorm

is defined by

‖ρ‖2q = ‖(−∆)
q
2 ρ‖2.

When q is not a positive integer, the Laplacian ∆ is to be interpreted by its Fourier symbol. A

more extensive discussion of the mix norm is given in §2.1.

1.3 Two-Dimensional Maps

Our primary interest is the design of efficient, finite-time mixers in a three-dimensional do-

main. However, in this thesis, we treat a simpler problem: we assume that the axial velocity is
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constant and that f corresponds to the map from a two-dimensional cross-section, through a mix-

ing element, to another such cross-section. Since the geometry of the mixing elements will vary,

subsequent maps will differ. Each of the ft will be chosen from a given family that satisfies some

geometric constraints. For example the RAM consists of an inner pipe surrounded by a spinning

outer pipe, and the mixing elements correspond to windows cut into the inner pipe [22]. Each map

represents the effect of the angularly sheared flow induced by the boundary drag. The maps, ft,

will depend on parameters that represent the window width, length, and rotation rate.

In this thesis, we study two families of shearing maps in a square domain, Chirikov and

Harper maps, see §2.3 and Chapter 3, and a family of blinking vortex maps, see §2.4 and Chapter

4, inspired by Aref’s blinking vortex model [2]. Each map depends on one or more parameters, say

at. Optimization then corresponds to selecting the best sequence from a given family, that is, to

select a vector a = (a1, a2, . . . , aT ) of parameters for maps in the family. Each family of maps will

have certain constraints on the parameter choices. In the case of the standard and Harper maps,

we assume that the total energy expended in the mixing process is bounded. The simple version

of this is to assume that some norm, ‖a‖, is fixed. When the norm is small, any fixed map in

one of our families is only weakly chaotic on a small subset of phase space. However, varying the

parameters from step-to-step can nevertheless result in effective stirring. In the case of the blinking

vortex maps, there are more parameter choices, such as vortex location, strength, and rotation

direction. We consider different schemes in which we allow some parameters to vary and others to

be held fixed.

For the shear maps, the simplest method to find an optimal protocol is to exhaustively search

all possible cases. This corresponds to selecting an optimal parameter vector a that satisfies an

energy constraint. Thus, we can simulate the optimization process by a random optimization

method: simply select the best result from a large number of trials that are equidistributed on the

sphere ‖a‖2 = E, corresponding to a fixed energy. For the blinking vortex maps, there are two many

parameters for a random optimal approach to be effective. One method used is to devise a one-step

predictive scheme. Another is to limit the parameter choices, so that the possible parameter vectors
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become finite and can be explored through an exhaustive search.

Our investigation seeks to understand mixing by focusing only on advection created by a

sequence of stirring events, accounting for diffusion in the mixing measure itself. Through numerical

simulations using simple area-preserving maps, and through analytical considerations based on

Fourier analysis and key characteristics of the maps, we gain some understanding of how to design

efficient stirrers.

In Chapter 2 we describe the action of advection in terms of compositions of maps. We show

how the shearing and blinking vortex maps can be derived from flows, and we explain how we

carry out the application of the maps numerically. In Chapter 3 we present results from numerical

experiments with the Chirikov standard and Harper maps. In Chapter 4 we present results from

numerical experiments with the blinking vortex map. In Chapter 5 we summarize the results and

suggest courses for future study.



Chapter 2

Mathematical Formulation

In this section, we justify and explain the implementation of the mathematical and numerical

methods used in this thesis. In §2.1 we justify the use of the negative Sobolev seminorm (2.1) in the

place of tracking diffusion. In §2.2 we show how a continuous flow described by the pure advection

equation can be represented by the composition of discrete maps. In §2.3 and §2.4 we explain the

mathematics and numerics associated with applying the two mixing models: the shear maps and

the blinking vortex map.

2.1 The Mix Norm

In this section, we justify the use of negative Sobolev-seminorms as a measure of mixing for

a passive scalar subjected to an incompressible flow with small diffusion. For an understanding of

what is meant by “small diffusion”, see [10]. For simplicity, we assume ρ has zero mean, such that

〈ρ〉 = 0, since if 〈ρ〉 = 0 we could redefine the function ρ = ρ−〈ρ〉. The mean of the density profile

is irrelevant when measuring mixing, so we need not consider it when computing the mix norm.

Recall the general definition of the Hq Sobolev norm:

‖ρ‖2q = ‖(−∆)
q
2 ‖2 =

1

|D|

∫
D
|(−L2∆)q/2ρ|2 dµ, (2.1)

where ρ(x, y, t) is a passive scalar defined over two-dimensional domain D at time t, and L is a

normalizing length scale. Recall from §1.2 that |D| = µ(D). For the case q < 0, the operator ∆ is

interpreted by its Fourier symbol.
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Let’s consider the incompressible velocity field u(x, y, t) which represents the stirring mecha-

nism, and diffusion coefficient κ. The evolution of ρ through time can be described by the advection-

diffusion equation with the incompressiblity constraint:

∂

∂t
ρ+ u · ∇, ρ = κ∆ρ. (2.2)

∇ · u = 0 (2.3)

We apply a no-flux boundary condition, where if ∂D describes the boundary of D, we require that

∇ρ · n̂ = 0 on ∂D

where n̂ is the outward pointing unit normal of the surface ∂D. In addition, we assume we always

either have a Dirichlet boundary condition

ρ = 0 on ∂D,

or a Neumann boundary condition

∇ρ = 0 on ∂D.

The variance (1.3) seems to be an intuitive way of measuring mixing because it measures

deviations from the mean, so small variance indicates that the concentration is mostly uniform

throughout the domain. To understand how the variance Var(ρ) decays in time, we recall the

definitions (1.2) and (1.3) from Chapter 1. First, we can show that the mean of the concentration

remains constant, by substituting (2.2) into (1.2) to get

d

dt
〈ρ〉 =

1

|D|

∫
D

∂ρ

∂t
dµ

(2.2)
=

1

|D|

∫
D

(κ∆ρ− u · ∇ρ)dµ =
1

|D|

κ (1)∫
D

∆ρdµ −
(2)∫

D
u · ∇ρdµ

 .

The integral (1) becomes zero by applying the divergence theorem and the boundary conditions:

(1) =

∫
D
∇ · ∇ρdµ Dv Thm

=

∫
∂D
∇ρ · n̂dS Bnd Cnd

= 0.

The integral (2) becomes zero by applying product rule, the incompressibility condition (2.3), the

divergence theorem, and the boundary conditions:

(2)
Prd Rl

=

∫
D

(∇ · (ρu)− ρ(∇ · u)dµ
(2.3)
=

∫
D
∇ · (ρu)dµ

Dv Thm
=

∫
∂D

ρu · n̂dS Bnd Cnd
= 0.
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Therefore,

〈ρ〉 = 0.

A similar calculation, which uses Green’s Theorem, will show that d
dt‖ρ‖

2 = −2κ‖∇ρ‖2, since

d

dt
‖ρ‖2 =

d

dt

1

|D|

∫
D
ρ2dµ = 2

1

|D|

∫
D

(κρ∆ρ− ρ(u · ∇ρ))dµ

Prd Rl
(2.3)
= 2

1

|D|

∫
D

(κρ∆ρ−∇ · (ρu))dµ

Dv Thm
Bnd Cnd

= 2κ
1

|D|

∫
D
ρ∆ρdµ

Grn Thm
= 2κ

1

|D|

∫
∂D

ρ(∇ρ · n̂)dS − 2κ
1

|D|

∫
D
∇ρ · ∇ρdµ

Bnd Cnd
= −2κ‖∇ρ‖2.

Combining the results gives the decay rate of the variance:

d

dt
Var(ρ) =

d

dt
〈ρ〉2 +

d

dt
‖ρ‖2 = −2κ‖∇ρ‖2.

For κ near zero, as in the types of problems we are concerned with, the calculation of the rate

of change of the variance will become more difficult, as it will depending on the computation of

gradients on small scales. Moreover, if κ = 0, then the variance is conserved, so we require a

different measure of mixing. To understand why the H−1 norm in particular accomplishes this, we

consider the time evolution of the H1 norm, defined as

‖ρ‖H1 = ‖(−∆)
1
2 ρ‖ = ‖∇ρ‖,

so that the time derivative of the square norm is

d

dt
‖ρ‖2H1 =

1

|D|

∫
D

d

dt
|∇ρ|2dµ = 2

1

|D|

∫
D
∇ρ · d

dt
(∇ρ) dµ = 2

1

|D|

∫
D
∇ρ · ∇

(
∂ρ

∂t

)
dµ

Prd Rl
= 2

1

|D|

∫
D

(
∇
(
∂ρ

∂t
∇ρ
)
−∆ρ

∂ρ

∂t

)
dµ

Dv Thm
Bnd Cnd

= −2
1

|D|

∫
D

∆ρ
∂ρ

∂t
dµ

= −2

〈
∆ρ

∂ρ

∂t

〉
.
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Substituting (2.2) gives

1

2

d

dt
‖ρ‖2H1

= −
〈

∆ρ
∂ρ

∂t

〉
= − 1

|D|

∫
D

∆ρ(κ∆ρ− u · ∇ρ)dµ

= −κ‖∆ρ‖2 +
1

|D|

∫
D

∆ρ(u · ∇ρ)dµ

Prd Rl
= −κ‖∆ρ‖2 +

1

|D|

∫
D

[∇ · ((u · ∇ρ)∇ρ)−∇ρ · ∇(u · ∇ρ)] dµ

Dv Thm
Bnd Cnd

= −κ‖∆ρ‖2 − 1

|D|

∫
D
∇ρ · ∇(u · ∇ρ)dµ

= −〈∇ρ · ∇(u · ∇ρ)〉 − κ‖∆ρ‖2.

Therefore, as gradients on fine scales get large, as would be the case with effective mixing, the

H1 norm will diverge. Applying the Cauchy-Schwartz inequality gives the following relationship

between the H1 and H−1 norms:

‖ρ‖2 =
〈
∇ρ · ∇−1ρ

〉
≤ ‖ρ‖H1‖ρ‖H−1 .

If we consider the pure advective case with κ = 0, the quantity ‖ρ‖2 will remain constant. We

know that good mixing requires the H1 norm to diverge. If the norm H−1 were to converge to

zero, the H1 would diverge to satisfy the inequality above. Therefore the convergence of the H−1

norm to zero implies good mixing [48].

For the purposes of this thesis, we use the H−1 norm, abbreviated as ‖·‖−1, though any

negative Sobolev seminorm can be used as a measure of mixing. The following theorem, presented

and proved in [32], states that convergence of any negative Sobolev norm to zero implies weak

convergence to the mean.

Theorem 1 A time-dependent function ρ(z, t), where ρ(·, t) ∈ L2(D) has mean zero and is

bounded in L2 uniformly in time, is weakly convergent to zero if and only if

lim
t→∞
‖ρ(·, t)‖Hq = 0, for any q < 0.

There are numerical implications for different choices of negative q values. Define ρ′ to be the

density profile ρ with length scales half the size. Thiffeault notes in [48] that

‖ρ′‖Hq = 2q‖ρ‖Hq .
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Halving the length scales will cause the norm to decay at a rate of 2q. For q closer to zero, this

will require the use of finer scales to get an accurate measure of mixing. For large negative q, the

norm decays dramatically with decreasing length scales. Figure 2.1 shows the time evolution of Hq

norms for different values of q for a particular stirring protocol. As q becomes a larger negative

number, the high order mode terms of (2.1) decay more rapidly, and stirring applied to density

with fine scale structure will have no significant impact. While the norms for q = −1
2 ,−1 continue

to decay for steps t = 8, . . . , 12, the norms for q = −5
2 ,−3 stay almost the same. Using a norm

with q as too large a negative number is not advisable, since this simulates high diffusion, which is

not within the scope of the problems we are interested in.
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Figure 2.1: Decay of Hq norms for q = − 1
2
,−1,− 3

2
,−2,− 5

2
,−3 for a particular stirring protocol applied for

t = 1, . . . , 12.

Mathew, Mezić and Petzold define their mix norm to be the H−
1
2 norm, by defining the

following functions on an n-dimensional torus Tn:

d(ρ, z, %) =

∫
B%(z) ρdµ

|B%|
, π(ρ, %) =

(∫
Tn
d2(ρ, z, %)dµ

) 1
2

, Π(ρ) =

(∫ 1

0
π2(ρ, %)dµ

) 1
2

,

where B%(z) is the closed ball of radius % centered around the point z ∈ Tn [36]. The function

d(ρ, z, %) is the mean value of ρ in the ball B%(z), π(ρ, %) is the L2 norm of d(ρ, z, %) for a fixed ball

size %, and Π(ρ), the mix norm, is the L2 norm of π(ρ, %). Mathew et al. explain, “The basic idea

behind the mix norm is to parametrize all sub-intervals of [Tn] and to take the root mean square
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of the average values of [ρ] over these sub-intervals” [36]. In other words, the norm computes local

averages throughout the domain for different length scales, then measures the total impact of all

these averages. They refer to the application of Φ on the function ρ−〈ρ〉 as the mix variance. The

mix norm and the mix variance are equivalent for the case 〈ρ〉 = 0. Since ρ − 〈ρ〉 has zero mean,

the quantity Π(ρ − 〈ρ〉) will give a measure of the total difference between local means and the

global mean 〈ρ〉. By rewriting the above equations with inner products, and providing a spectral

form of a mix-norm operator, Mathew et al. show that Π(ρ) is equivalent to the H−
1
2 norm [36].

2.2 Advection by Two-Dimensional Maps

Consider the pure advection equation defined by

∂

∂t
ρ+ u · ∇ρ = 0, (2.4)

over a two-dimensional domain D, where ρ(x, y, t) = ρt(x, y) is the concentration of a passive scalar,

and u(x, y, t) = (ux(x, y), uy(x, y)) is an incompressible velocity field. We now ignore diffusion when

evolving ρ in time, recall §2.1. Given the initial condition ρ(x, y, 0) = ρ0(x, y), the velocity field u

produces the flow ϕ such that (xt, yt) = ϕt(x0, y0). The general solution of (2.4) is

ρt(x, y) = ρ0(ϕ−t(x, y)).

We define a map f : D → D to carry out the discrete action of the flow for a unit time interval:

(xt, yt) = f(xt−1, yt−1) = ϕ1(xt−1, yt−1).

We allow the velocity field u to change at each time step, so we consider the sequence of

velocity fields (u1, u2, . . . , uT ) and the corresponding sequence of maps (f1, f2, . . . , fT ). To find

ρt(x, y) we apply the Perron-Frobenius operator P which takes compositions of the sequence of
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inverse maps in reverse order:

ρt(x, y) = Pt[ρt−1(x, y)]

= ρt−1(f−1
t (x, y))

= ρ0(f−1
1 ◦ · · · ◦ f−1

t (x, y)).

2.3 Compositions of Shears

As a simple model, we study a family of two-dimensional maps given by the composition

of a pair of shears on a periodic domain. Taking the domain to be the torus with unit period,

D = T2 = [0, 1)2, and z = (x, y) ∈ T2, the vertical and horizontal shears have the forms

sy(x, y) = (x , y +X(x)),

sx(x, y) = (x+ Y (y) , y),

(2.5)

where X,Y : S→ S are circle maps. Composing the shears (2.5) gives the one-element map

f(x, y) = sx ◦ sy(x, y) = (x+ Y (y +X(x)) , y +X(x)). (2.6)

When the shears are smooth, (2.6) is an area-preserving diffeomorphism with the inverse

f−1(x, y) = (x− Y (y) , y −X(x− Y (y))).

The map (2.6) is the solution of the advection problem

(ẋ, ẏ) = v(x, y, t) =

 (0, g(x)), 0 ≤ t ≤ τy

(h(y), 0), τy < t ≤ τy + τx

, (2.7)

where X(x) = τyg(x) and Y (y) = τxh(y). Thus, the amplitudes of the functions X and Y represent

both the elapsed times, τy and τx, and the strengths of the components of the velocity field v.

The family (2.6) includes many well-studied cases, including Arnold’s cat map [3] withX(x) =

x and Y (y) = y, Chirikov’s standard map [9, 37], depicted in Fig. 2.2, for which

X(x) = −a sin(2πx),

Y (y) = y,

(2.8)
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and the Sine-flow or Harper map [33, 4, 39, 6], depicted in Fig. 2.3, for which

X(x) = −a sin(2πx),

Y (y) = b sin(2πy).

(2.9)

Figure 2.2: Depiction of the shearing maps (2.5) for the Chirikov standard map (2.8) with a = 0.75.

Figure 2.3: Depiction of the shearing maps (2.5) for the Harper map (2.9) with a = b = 0.75.

The design of a mixer consists of the choice of a mixing protocol, that is, to a sequence of T

maps fT ◦ fT−1 ◦ · · · ◦ f2 ◦ f1. Formally, T may be infinite, but we will typically take T = O(10).

The goal is to optimize the mixing for some maximal total “energy” of the flow. As a measure of

this energy we take a squared norm of the shear:

Es = sup
D
‖s(x, y)− (x, y)‖2. (2.10)
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For example, for the Harper maps, Esx = b2, Esy = a2. Since sx corresponds to the velocity (2.7),

the energy is proportional to the kinetic energy of the fluid. The parameters (at, bt) of the Harper

maps are constrained by
T∑
t=1

(a2
t + b2t ) = EH , (2.11)

where EH is some given maximum energy. The energy for a sequence of Chirikov maps includes

that required to create the horizontal shear sx, thus for (2.8)

T∑
t=1

a2
t + T = EC . (2.12)

2.3.1 Computing the Perron-Frobenius Operator and the Mix Norm

To compute the image ρt(x, y) and the seminorm (2.1) numerically, one must represent the

density in some finite basis set. One possible technique is the “mapping” [43] or “Ulam” method

[49, 18, 20, 15]: choose a grid of N ×N points (xi, yj) = ( i
N ,

j
N ) on the torus, with ρij = ρ(xi, yj)

and approximate the operator P (1.1) by an N2 ×N2 stochastic matrix P ,

ρti,j = Pij,i′j′ρ
t−1
i′j′ .

Here Pij,i′j′ is the fraction of the i′j′ cell that is mapped onto the ij cell by f . This can be

estimated—for a fixed map f—by a one step iteration of a large number of trial points in each cell.

Such a discretization introduces an effective diffusion that will decrease the variance (1.3) [30], and

explicit diffusion can also be included in the process [24]. However, this method is not practical for

our purposes, since the stochastic matrix would need to be recomputed for each new map in the

sequence f1, . . . , fT .

A second discrete method is to use a Fourier basis. This seems natural since the Sobolev

norm that we seek to minimize is most easily evaluated in Fourier space. On the two-dimensional

periodic domain T2 = [0, 1)2, the H−1 norm which we use as the mix norm becomes

‖ρ‖−1 =

∑
m∈Z2

|m|6=0

|ρ̂m|2

|m|2


1
2

, (2.13)
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where ρ̂m are the Fourier coefficients of ρ defined by

ρ̂m =

∫
T2

ρ(z)e−i2πmzd2z, (2.14)

so that

ρ(z) =
∑
m∈Z2

ρ̂me
i2πmz, (2.15)

and m = (m1,m2) is a two-dimensional vector containing horizontal wave numbers m1 and vertical

wave number m2. We exclude the (0, 0) term, since this represents the mean of ρ and does not

impact the mixing measure. Each shear (2.5) has a relatively simple representation in Fourier

space. Using (2.14), we obtain

(P̂sy [ρ])m =

∫
T2

ρ(x, y −X(x))e−2πim·zd2z =
∑
n∈Z

ρ̂n,m2Fn−m1,m2 [X],

(P̂sx [ρ])m =

∫
T2

ρ(x− Y (y), y)e−2πim·zd2z =
∑
n∈Z

ρ̂m1,nFn−m2,m1 [Y ],

(2.16)

where for each (j, k) ∈ Z2, we define a functional Fj,k : C0(S)→ C that gives a Fourier coefficient

of the exponential of a function:

Fj,k[g] ≡
∫ 1

0
e2πi(jx−kg(x))dx.

For a linear shear id(x) = x this gives

Fj,k[id] = δj,k, (2.17)

the Kronecker-delta, while for a sinusoidal shear such as X(x) in (2.8) and (2.9) we have

Fj,k[−a sin(2πx)] = Jj(−2πka) = J−j(2πka), (2.18)

using the standard identity eiz sin θ =
∑

j∈Z Jj(z)e
ijθ for the Bessel function. In general, Fj,0[g] =

δj,0, which implies, in particular, that the (0, 0)-Fourier mode is preserved—as expected for any

volume-preserving map.

Composing the two results (2.16) gives the general formula for updating Fourier coefficients

for the map (2.6):

ρ̂tm = P̂sx ◦ P̂sy [ρt−1] =
∑
n∈Z2

ρ̂t−1
n Fn1−m1,n2 [X]Fn2−m2,m1 [Y ], (2.19)
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since f−1 = s−1
y ◦ s−1

x . For example, for the Chirikov map, (2.19) becomes, using (2.18),

ρ̂tm =
∑
n∈Z2

ρ̂t−1
n Jm1−n1(2πn2a)δn2−m2,m1 =

∑
k∈Z

ρ̂t−1
k,m1+m2

Jm1−k (2π(m1 +m2)a) . (2.20)

For the Harper map, (2.19) becomes

ρ̂Tm =
∑
n∈Z2

ρ̂t−1
n Jm1−n1(2πn2a)Jn2−m2(2πm1b). (2.21)

To implement this method numerically, one must truncate the Fourier basis, keeping say, the

N2 = (2M+1)2 modes with mi ∈ [−M,M ]. Since the sums in (2.19) naturally generate modes that

are not in the basis set, these must be discarded. Conversely, modes that are not in the truncated

basis also may contribute to those in the truncation, and these give errors in the numerical scheme.

A final technique for implementing (1.1) is to simply evaluate an analytically defined function

ρ0 at a point f−1(x, y). Given a grid of points (xi, yj) we can define

ρti,j = ρt(xi, yj) = ρ0(f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
t (xi, yj)) (2.22)

whenever the initial state ρ0 is known everywhere. Numerically, this is efficient if one is interested

only in the final mixed state, ρT , but less so if one would also like intermediate states t < T , since

ρtij cannot be used to compute the next image. Nevertheless, to the extent that one can accurately

compute the composition of the maps—subject to the growth of errors due to sensitive dependence

on initial conditions—the resulting values of ρt are accurate when ρ0 is Lipchitz, though of course

we only know the values on the selected grid. This is the method used subsequently in this thesis.

We choose a regular grid of N2 points, so that the mix norm (2.13) can be easily evaluated

using a fast Fourier transform. Using a discrete lattice with N2 points, we have zk = k
N for

k ∈ [0, N)2, and ρk = ρ(zk), with

ρ̂m =
∑

k∈[0,N)2

ρke
−2πim·k

N , ρk =
1

N2

∑
m∈[0,N)2

ρ̂me
2πim·k

N . (2.23)

2.4 Blinking Vortices

Another map considered is based on Aref’s blinking vortex model [2]. For convenience we

describe the map in the complex plane, since it is equivalent to the two-dimensional real plane. We
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place a rotating point vortex at position v ∈ C, defined in polar coordinates as

v = νeiθ, ν = |v|, θ = arg(v).

Assuming a counterclockwise rotation, the motion of z can be described by the single vortex

equation,

˙̄z =
i

v − z
, (2.24)

where the time-derivative of z is denoted ż. The solution of this simple ODE is that the particle z

traces the path of the circle

|v − z| = p,

where p is the distance between v and the initial point z(0). This can be verified by noting that

when (2.24) is satisfied,

d

dt
|v − z|2 = 0.

Therefore, z can be written in the form z = v + peiφ for some angle φ. Differentiating and

substituting into (2.24) gives

−ipe−iφφ̇ =
i

v − (v + peiφ)
, pe−iφφ̇ =

e−iφ

p
, φ̇ =

1

p2
.

Integrating and applying the initial position angle φ(0) gives

φ(t) = φ(0) +
t

p2
.

The angular speed φ̇ of particles varies inversely with the square distance from the vortex, and

there is a singularity at the vortex itself. If z = x + iy and v = u + iv, we can use the equations

above to derive the following equations for the time evolution of the real and imaginary parts of z:

x(t) = u+ (x− u) cos(
t

p2
)− (y − v) sin(

t

p2
)

y(t) = v + (x− u) sin(
t

p2
) + (y − v) cos(

t

p2
).

The single vortex model (2.24) pertains to the whole complex plane. We wish to consider

a vortex model confined to the unit disc centered at the origin. We place an imaging vortex at
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the position 1
v̄ , where v̄ is the complex conjugate of v. The image vortex 1

v̄ rotates in the opposite

direction of v. Activating v and its image simultaneously creates an invariant boundary at the unit

circle. The new stirring mechanism is described by the equation

˙̄z = is

(
1

z − v
− 1

z − 1
v̄

)
= is

v − 1
v̄

(z − v)(z − 1
v̄ )
. (2.25)

The value s indicates the direction of rotation of v such that

s =

 1 counterclockwise

−1 clockwise

.

Figure 2.4 illustrates the action of a counterclockwise spinning vortex at 0.4 + i0.5 and its image

vortex activated for four time units, along with the trajectories of a few different initial particle

positions. The speed of trajectories slows as the distance between the particle positions and vortex

increases.

Figure 2.4: Diagram of (2.25) with v = 0.4 + i0.5, s = 1, and t = 4. The black curve indicates the invariant

boundary at the unit circle |z| = 1. The blue points mark the vortex and its image. The red curves show the rotation

direction of the vortices. The green curves show resulting trajectories for different initial particle positions. The green

points mark the initial positions of the particles and the green arrowheads show the final positions at time t = 4.
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The particle z traces the path of a circle of the form∣∣∣∣∣ z − vz − 1
v̄

∣∣∣∣∣ = λ, (2.26)

where λ is found by applying the initial position z(0). Similar to the single vortex case, this is

verified by noting that

d

dt

[∣∣∣∣∣ z − vz − 1
v̄

∣∣∣∣∣
]

= 0

is satisfied by (2.25). Recalling that |v| = ν and arg(v) = θ, the circle C described by (2.26) has

radius

p =
λ
(

1
ν − ν

)
1− λ2

,

and center zc

zc =
v − λ2

v̄

1− λ2
,

such that

z = zc + peiφ. (2.27)

To see this, we use the identities v − zc = pλeiθ and 1
v̄ − zc = p

λe
iθ to show that∣∣∣∣∣ z − vz − 1

v̄

∣∣∣∣∣
2

=

∣∣∣∣∣ zc + peiφ − v
zc + peiφ − 1

v̄

∣∣∣∣∣
2

= λ2

∣∣∣∣eiφ − λeiθλeiφ − eiθ

∣∣∣∣2 = λ2

∣∣∣∣1− 2 cos(φ− θ) + λ2

λ2 − 2 cos(φ− θ) + 1

∣∣∣∣ = λ2.

Substituting (2.27) into (2.25) gives

φ̇pe−iφ = −s
v − 1

v̄

(z − v)(z − 1
v̄ )

φ̇e−iφ
(eiφ − λeiθ)(eiθ − 1

λe
iθ)

p(ν − 1
ν )eiθ

= − s

p2

−φ̇
ei(φ−θ) − ( 1

λ + λ) + ei(θ−φ)

1−λ2
λ

= − s

p2

φ̇

(
1− 2λ

1 + λ2
cos(φ− θ)

)
= − s

p2

1− λ2

1 + λ2
.

Integrating, and applying the initial position angle φ(0) gives the following implicit formula for

updating φ:

φ(t)− 2λ

1 + λ2
sin(φ(t)− θ) = φ(0)− 2λ

1 + λ2
sin(φ(0)− θ)− t s

p2

1− λ2

1 + λ2
. (2.28)
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Taking the derivative of the term on the left with respect to φ(t) gives

1− 2λ

1 + λ2
cos(φ(t)− θ),

which is nonnegative, so the left hand side of (2.28) is monotonic and has a unique solution φ(t) for

any φ(0) ∈ R that can be found through an iterative solver, such as Newton’s method. Therefore,

there exists a one-to-one map of the form

φ(t) = Fv,t,s(φ(0)).

Considering that we will be updating an array of vortices in succession, we rewrite this as a

map from φt−1 to φt, where we activate vortex vt at time step t for time τt and rotation direction

st. The map then becomes:

φt = Fvt,τt,st(φt−1).

To recover the point zt, we define the map Gv : [0, 2π)→ Cv, such that

z = Gv(φ) = zc + peiφ, φ = G−1
v (z) = arg(z − zc),

and Cv is the corresponding circle in the complex plane. The inverse function G−1
v can be computed

by means of the atan2 function. We can combine the maps F , G, and G−1 to get the map

Hv,τ,s : Cv → Cv, which carries out the action of (2.25):

zt = Hvt,τt,st(zt−1) = (Gvt ◦ Fvt,τt,st ◦G−1
vt )(zt−1). (2.29)

The inverse of H is

zt−1 = H−1
vt,τt,st(zt) = ([G−1

vt ]−1 ◦ F−1
vt,τt,st ◦G

−1
vt )(zt) = (Gvt ◦ F−1

vt,τt,st ◦G
−1
vt )(zt),

where F−1 is defined by reversing the sign of the last term of the update formula (2.28) such that

φ(t)− 2λ

1 + λ2
sin(φ(t)− θ) = φ(0)− 2λ

1 + λ2
sin(φ(0)− θ) + t

s

p2

1− λ2

1 + λ2
,

or in other words, the inverse map is the forward map with the sign of s switched:

H−1
vt,τt,st = Hvt,τt,−st .
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2.4.1 Computing the Perron-Frobenius Operator and the Mix Norm

In the case of the blinking vortex problem, the domain is the unit disk centered at the origin,

so our passive scalar ρ is defined in terms of polar coordinates (r, θ). To evaluate the mix norm

(2.1) of ρ(r, θ) on the disk, we should consider solutions to the Helmoltz equation:

∆ρ+ k2ρ = 0,

because it is equivalent to diagonalizing the Laplacian operator into its complete set of eigenfunc-

tions, which will make (2.1) a straightforward calculation. Expanding the Helmoltz equation in

polar coordinates gives

∆ρ+ k2ρ = ρrr +
1

r
ρr +

1

r2
ρθθ + k2ρ = 0. (2.30)

We impose the periodicity constraint: ρ(r, θ) = ρ(r, θ + 2π) to ensure continuity, and we assume

the Dirichlet boundary condition

ρ(1, θ) = 0.

Our only constraint is that the boundary r = 1 is invariant, so we choose the Dirichlet condition

out of convenience. The results below are easily generalized to a Neumann boundary condition,

ρr(1, θ) = 0.

Equation (2.30) can be solved by separation of variables by assuming ρ(r, θ) = R(r)Θ(θ) and

substituting to get

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ + k2RΘ = 0

1

R
(r2R′′ + rR′ + r2k2R) = −Θ′′

Θ
= n2,

where n is a constant. The angular part becomes

Θ′′ = −n2Θ.

Applying the periodicity constraint, the solution is

Θn(θ) = Ane
inθ, (2.31)
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where n ∈ Z and An ∈ C. The radial part becomes Bessel’s equation

r2R′′ + rR′ + (r2k2 − n2)R = 0,

which has the (bounded) solution

Rn(r) = BnJn(kr), (2.32)

where Bn ∈ R and Jn is the nth-order Bessel function of the first kind. Applying the Dirichlet

boundary condition gives

0 = Rn(1) = BnJn(k).

This is satisfied for k = um,n, where um,n is the mth (positive) root of Jn. Combining these results

with (2.31) and (2.32), we get the general solution

ρ(r, θ) =
∑

m∈N,n∈Z
ρ̂m,nJn(um,nr)e

inθ. (2.33)

To compute the coefficients ρ̂m,n, we use the orthogonality relation [1]:∫ 1

0
Jn(um,nr)Jn(uk,nr)rdrdθ = δm,k

1

2
[Jn+1(um,n)]2. (2.34)

Applying (2.34) to (2.33) gives∫ π

−π

∫ 1

0
ρ(r, θ)Jn(um,nr)e

−inθrdrdθ =
∑

k∈N,l∈Z
ρ̂k,l

∫ π

−π
eiθ(l−n)dθ

∫ a

0
Jl(uk,lr)Jn(um,nr)rdr

=
∑
k∈N

ρ̂k,n2π

∫ r

0
Jn(uk,nr)Jn(um,nr)rdr = ρ̂m,nπ[Jn+1(um,n)]2.

By rearranging the above result, we obtain the following formula for finding the coefficients of

(2.33):

ρ̂m,n =
1

π[Jn+1(um,n)]2

∫ π

−π

∫ 1

0
ρ(r, θ)Jn(um,nr)e

−inθrdrdθ. (2.35)

For the unit disk domain, the squared Hq-seminorm (2.1) can be expanded as

‖ρ‖2Hq =

∫ π

−π

∫ 1

0
|(−1)

q
2Lq∆

q
2 ρ|2rdrdθ = (−1)qL2q

∫ π

−π

∫ 1

0
|∆

q
2 ρ|2rdrdθ.
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Recall that ρm,n(r, θ) satisfies ∆ρm,n = −(um,n)2ρm,n. Defining L = 1 and substituting (2.33),

(2.35), and the orthogonality (2.34) gives

‖ρ‖2Hq = (−1)q12q

∫ π

−π

∫ 1

0

∣∣∣∣∣∣
∑

m∈N,n∈Z
(−1)

q
2 (um,n)q ρm,n(r, θ)

∣∣∣∣∣∣
2

rdrdθ

=

∫ π

−π

∫ 1

0

 ∑
m∈N,n∈Z

uqm,nρ̂m,nJn(um,nr)e
inθ

 ∑
k∈N,l∈Z

uqk,lρ̂
∗
k,lJl(uk,lr)e

−ilθ

 rdrdθ

=
∑

m∈N,n∈Z
k∈N,l∈Z

uqm,nu
q
k,lρ̂m,nρ̂

∗
k,l

∫ π

−π
eiθ(n−l)dθ

∫ 1

0
Jn(um,nr)Jl(uk,lr)rdr

= 2π
∑

m∈N,n∈Z
k∈N

uqm,nu
q
k,nρ̂m,nρ̂

∗
k,n

∫ 1

0
Jn(um,nr)Jn(uk,nr)rdr

= π
∑

m∈N,n∈Z
u2q
m,n[Jn+1(um,n)]2|ρ̂m,n|2.

Therefore, the H−1 norm defined on the radius-one disk is

‖ρ‖−1 =

π ∑
m∈N,n∈Z

1

u2
m,n

[Jn+1(um,n)]2|ρ̂m,n|2
 1

2

. (2.36)

The norm (2.36) must be applied to a function with zero mean. In the case of a function

with nonzero mean, we define the mix norm as ‖ρ− 〈ρ〉‖−1. To compute (2.36) numerically, we

define the grid sizes Nr to be the number of radial points, and Nθ to be the number of angular

points, so that the total number of grid points will be Nr ×Nθ. We choose the radial points such

that they are equally spaced. The use of polar coordinates means that the grid will be distorted,

in that points will be closer together near the origin and farther apart near the edge of the disc.

Figure 2.5 shows the polar grids for different values of Nr and Nθ.

To evaluate (2.35) numerically, first we arrange the integral so that we evaluate the angular

part first and the radial part second:

ρ̂m,n =
1

π[Jn+1(um,n)]2

∫ 1

0

(∫ π

−π
ρ(r, θ)e−inθdθ

)
Jn(um,nr)rdr.

The inner integral is simply a one-dimensional Fourier coefficent that can be evaluated by a fast
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Figure 2.5: Grids of polar coordinates for Nr = Nθ = 32, 64, 128, 256.

Fourier transform as in (2.23) to get

ρ̂m,n =
1

π[Jn+1(um,n)]2

∫ 1

0

2π
∑

k∈[0,Nθ)

ρ(r,
k

Nθ
)e
−i2πmk

Nθ

 Jn(um,nr)rdr

=
2

[Jn+1(um,n)]2

∑
k∈[0,Nθ)

e
−i2π k

Nθ

∫ 1

0
ρ(r,

mk

Nθ
)Jn(um,nr)rdr.

The distortion of the grid created by using polar coordinates makes it necessary to use a higher

order integration method to evaluate the radial integral. For the radial component, we apply a

trapezoid method for improved accuracy in the approximated integral. This gives the following

formula for numerically evaluating (2.35):

ρ̂m,n =
2

[Jn+1(um,n)]2

∑
k∈[0,Nθ)

e
−i2πmk

Nθ
1

2

∑
l∈[0,Nr)

(
ρ(

l

Nr
,
k

Nθ
)Jn(um,n

l

Nr
)
l

Nr
+ ρ(

l + 1

Nr
,
k

Nθ
)Jn(um,n

l + 1

Nr
)
l + 1

Nr

)

(2.37)

=
1

[Jn+1(um,n)]2

∑
k∈[0,Nθ)
l∈[0,Nr)

e
−i2πmk

Nθ

(
ρ(

l

Nr
,
k

Nθ
)Jn(um,n

l

Nr
)
l

Nr
+ ρ(

l + 1

Nr
,
k

Nθ
)Jn(um,n

l + 1

Nr
)
l + 1

Nr

)
. (2.38)

Figure 2.6 displays the results of applying the Bessel Fourier transform to the Gaussian

ρ0(z) = exp
(
−ε‖z − zo‖2

)
, zo = (0.5, 0.5), ε = 5, (2.39)

with grid size Nr = Nθ = 128. Figure 2.6(a) shows the Gaussian profile ρ0. Figure 2.6(b) shows ρ̃0, which is

found by applying (2.33) to the coefficents found by evaluating (2.38). Figure 2.6(c) shows the radial error ρe =

ρ0(r, 0)− ρ̃0(r, 0). Note that

ρ0(r, θ)− ρ̃0(r, θ) = ρ0(r, 0)− ρ̃0(r, 0) for all θ ∈ [0, 2π),
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since both ρ0 and ρ̃0 are radially symmetric. The error is very small, except for at a singularity at the origin

and a discontinuity at the boundary that results from the imposed Dirichlet boundary condition. However, this

discontinuities only affect high order modes, and do not have a significant impact on the mix norm.

0 0.2 0.4 0.6 0.8 1
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Figure 2.6: Plot (a) is ρ0 as described by (2.39). Plot (b) is ρ̃0, which is (2.33) applied to the coefficients produced

by (2.38). Plot (c) is the radial error ρe = ρ0 − ρ̃0.



Chapter 3

Results of Chirikov’s Standard Map and the Harper Map

In this chapter, we present results for the shear maps presented in §2.3. In particular, we

investigate the Chirikov standard map (2.8) and the Harper map (2.9). The results presented below

can be found in the author’s and Meiss’s paper [38].

3.1 Chirikov Map

In this section, we discuss various techniques to find optimal mixing protocols for a sequence

of Chirikov maps (2.8). For most of the results in this section, we use an initial Gaussian profile,

ρ0(z) = exp
(
−ε‖z − zo‖2

)
, zo = (0.5, 0.5), ε = 10. (3.1)

This distribution has standard deviation σ =
√

1
2ε ≈ 0.2236. We will also assume that

T = 12, and
12∑
t=1

a2
t = 0.03, (3.2)

so that the total energy (2.12) is EC = 12.03. Unless otherwise specified, we use a 301× 301 grid

and choose the maximum Fourier mode M = 150 for the computations.

3.1.1 Single Step Stirring

If the initial state consists of a single, nonconstant Fourier mode, ρ0(x, y) = ρ̂0
k,le

2πi(kx+ly),

then, using (2.20), the squared seminorm (2.13) at t = 1 is

‖ρ1‖2−1 = |ρ̂0
k,l|2

∞∑
m=−∞

J2
m−k(2πla1)

m2 + (m− l)2
. (3.3)
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This results in a function that asymptotically decreases as the shear amplitude, a1, grows; however,

it does not decrease monotonically because of the oscillations of the Bessel functions, see Fig. 3.1(a).

Indeed, if the total energy (2.10) is small enough, then the optimally mixed protocol, after one step,

may be that with a1 = 0.

When a full spectrum initial condition is used in (2.20), the oscillations seen in Fig. 3.1(a) are

mostly averaged away. Figure 3.1(b) shows the seminorm for Cauchy (black curve) and Gaussian

(red curve) initial spectra. Note that the resulting curves are not symmetric about a1 = 0; for these

real initial spectra, a positive shear is more effective than a negative shear. Of course, even for

a1 = 0, the density is still sheared since sx is not the identity for (2.8). For large shear, the Sobolev

norm decreases, but—though it is not seen in the figure—the decrease saturates. As a1 → ∞,

‖ρ1‖−1 → 0.758, for the Gaussian initial spectrum, and → 0.809 for the Cauchy distribution. It is

not possible to “completely” mix after one step, even with arbitrarily large energy.
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Figure 3.1: The H−1 seminorm (3.3) after one step of the standard map for initial state ρ0(x, y) = exp(2πi(kx+ly))

(left panel) and one that has a Cauchy or Gaussian Fourier spectrum (right panel) as a function of the shear strength

a1.
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3.1.2 Constant Amplitude Stirring

When the amplitude is constant, a = (ao, ao, . . . , ao), and satisfies the energy constraint (3.2),

then a0 = 0.05. If we think of this as the autonomous standard map, then its phase portrait is

almost completely regular; its only large-scale features are elliptic islands around the fixed point at

(x, y) = (0, 0) and the period-two orbit at (1
2 ,

1
2), see Fig. 3.2. The initial density (3.1) is centered

over this period-two orbit, and evolves as shown in Fig. 3.3. The computations were done using

the grid method (2.22) on an N = 2M + 1 = 301 squared grid. It is clear from the figure that the

stirring is dominated by the horizontal shear sx with Y (y) = y from (2.8), though some stretching

from the saddle fixed point at (1
2 , 0) can also be seen.

0
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0.4

0.4

0.6
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0.8

0.8x

y

Figure 3.2: Phase portrait of the autonomous Chirikov standard map with at = a0 = 0.05.

Figure 3.4 shows the decay of the Sobolev norm (2.13) with time. Here the computations

were done with a varying number of grid points N , as shown in the figure. Note that as N is

increased, the computations quickly converge: the value of ‖ρ12‖−1 varies by less than 10−3 for

N ≥ 51. This indicates that our standard choice N = 301 gives sufficient accuracy for T = 12.

The decrease in the mix-norm saturates with time, just as the single step case of §3.1.1 saturated

with increasing amplitude. Repeatedly reapplying the same shear amplitudes may not be the best

mixing strategy. This constant case will serve as the benchmark of comparison for our optimization

methods.
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Figure 3.3: Evolution of the density ρt(x, y) for t = 0, 1, 2, 3, applying the standard map (2.8) with constant

amplitude at = 0.05 with initial condition (3.1) using N = 301 grid points. For a movie of all 12 steps, see

http:/amath.colorado.edu/faculty/jdm/movies/ChirikovConst.mp4.
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Figure 3.4: Decay of ‖ρt‖−1 for the standard map (2.8) with constant amplitude (a0, a0, . . . , a0). The different

curves are computed with grid sizes N , as shown in the legend.

3.1.3 Varying Amplitudes: Random Optimization Method

Choosing parameters at random from some distribution can serve as a crude optimization

scheme: simply select the best protocol—the solution with smallest seminorm (2.13)—from the

trials. For the standard map (2.8), there is one parameter, at, for each step of the map, so the

parameter space will have n = T dimensions. For convenience we think of the stirring parameters

as a vector, letting

a = (a1, a2, . . . , aT )

http:/ amath.colorado.edu/faculty/jdm/movies/ChirikovConst.mp4


33

denote a given stirring protocol. The energy (2.12) then becomes

T + ‖a‖2 = EC .

To satisfy the energy constraint, we must sample amplitude vectors from the surface of

a ball in Rn. To ensure uniform sampling on Sn−1, we randomly select n-dimensional vectors

with components independently chosen from a normal distribution, centered at zero with standard

deviation one. Scaling each realization to ensure it has the correct energy then gives a distribution

that is uniform on the energy sphere [34]. Of the samples, we select the protocol that achieves the

smallest mix norm. This process will be referred to as the Random Optimal (RO) algorithm.

Figure 3.5(a) shows the distribution of ‖ρT ‖−1 for some two million randomly chosen am-

plitude vectors with the fixed energy (3.2) using the Gaussian initial profile (3.1). Almost all of

the trials, 94.8%, perform better than the constant protocol, and the best case achieves the norm

‖ρT ‖−1 = 0.0545, which is 3.35 times smaller than the constant protocol. We will refer to this

vector as the “random optimal protocol”, even though it is certainly not truly optimal.

The evolution of ‖ρt‖−1 is shown in Fig. 3.5(b) for the constant protocol, the RO protocol,

and the worst performing solution of the random trials, which we call “RW”. Though the seminorm

for the RW case decreases on the first step, it remains essentially constant after that. Aside from

the first step of the map, the optimal trial significantly outperforms the constant case.

The twenty most successful amplitude vectors are shown in Fig. 3.6. For these vectors, the

largest magnitudes of at occur primarily in steps t = 2 or 3; the first step and all following steps

have smaller amplitudes. This suggests a simple scheme: concentrate the energy in the vertical

shear in a small number of key steps of the map. We investigate this next.

3.1.4 Sparse Stirring

Since the most successful protocols found at random have energy concentrated in a small

number of map steps, we can modify the optimization scheme to assume sparsity in a. Fixing

d ≤ T to be the number of nonzero at, we first randomly select d values from the set {1, 2, . . . , T}
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Figure 3.5: (a) Histogram of ‖ρT ‖−1 for ∼ 2.2× 106 trials of the RO algorithm applied to the standard map (2.8)

with EC = T + 0.03, T = 12, and initial condition (3.1). The green curve indicates the best fit normal distribution

with mean 0.1429 and standard deviation 0.03704. The red point indicates the norm achieved for the constant case

(a0, . . . , a0). (b) Comparison between the mix-norms as a function of time for the constant, RO, and RW protocols.
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Figure 3.6: Amplitude vectors for the best twenty protocols found from the RO algorithm described in Fig. 3.5. The

black curve indicates the RO protocol and a movie of the spatial evolution of this case is at http:/amath.colorado.

edu/faculty/jdm/movies/ChirikovMC.mp4

to correspond to the nonzero at, and then perform the random optimization as described above,

but with n = d. For d = 1, there are simply 2 × 12 = 24 discrete choices, since exactly one of

the at = ±
√

0.03. For d > 1, in addition to the discrete selection of
(

12
d

)
shearing times, we must

choose sparse vectors on Sd−1 to fix the energy. Consequently the number of trials should increase

http:/amath.colorado.edu/faculty/jdm/movies/ChirikovMC.mp4
http:/amath.colorado.edu/faculty/jdm/movies/ChirikovMC.mp4
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with d. The best amplitude vectors that we found for each case are shown in Fig. 3.7; the optimal

protocol for d = 1 corresponds to shearing on the second step with a2 = −
√

0.03 ≈ −0.173. The

performance of the optimal protocols as d varies is shown in Fig. 3.8; note that ‖ρt‖−1 does not not

depend significantly on d. Moreover, the optimal sparse protocols achieve even a slightly smaller

mix-norm than the full set of random trials. This shows that the latter technique did not find the

true optimum, even with more than two million trials.
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Figure 3.7: Amplitude vectors of the best (d = 1) and the best twenty (d > 1) protocols found from the sparse RO

method. The open circles/black line indicates the optimal protocol for each case.
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Figure 3.8: Comparison of ‖ρt‖−1 for the random optimal protocol with the sparse optimal protocols for d =

1, 2, 3, 4.

If we think of the composite map FT = fT ◦ · · ·◦f1 as a single, area-preserving map, for d = 1
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and a2 6= 0 it has the form

FT (x, y) =

 x+ y + (T − 1)[y − a2 sin(2π(x+ y))]

y − a2 sin(2π(x+ y))

(3.4)

when T ≥ 2. Defining new variables (ξ, η) = (x+ y, Ty), this reduces to a single Chirikov standard

map in (ξ, η) with effective amplitude Ta2. Several phase portraits of the map (3.4) are shown in

Fig. 3.9. As T increases the elliptic regions for this map decrease in size in contrast to the regularity

of the constant amplitude case which has the same total energy. Indeed, when T = 12 the dynamics

are nearly uniformly chaotic since, 12|a2| ≈ 2.08� 0.972/(2π) ≈ 0.155, which is the threshold for

global chaos for the standard map [37]. This is one reason why the sparse case is such an effective

stirrer.

Figure 3.9: Phase portraits of the map (3.4) for T = 2, 3, and 4 with a2 = −0.1732. For T ≥ 6 (not shown), the

dynamics appears to be nearly uniformly chaotic, except for small period-six island chains along lines of slope −1.

The sparse amplitude vectors which performed the worst are shown in Fig. 3.10. In general,

the sparse amplitude vectors, a, that maximize the final mix-norm have a2 > 0, the opposite of the

optimal sparse. These protocols vary more with d than the optimal protocols did, but the difference

in the final mix-norms is small. For the worst d = 1 case ‖ρT ‖−1 = 0.2041, which is less than that

of the full RW case shown in Fig. 3.5. A sparse amplitude vector is not as effective in inhibiting

mixing as one that is more nearly constant.

To further understand stirring in the d = 1 sparse case, we can observe the effects of the
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Figure 3.10: Amplitude vectors for the worst (d = 1) and the worst twenty (d > 1) stirring protocols up to d = 4.

The open circles/black line indicates the worst protocol for each case.

horizontal shear in Fourier space. When a = 0, (2.20) gives

ρ̂tm =
∑
k∈Z

ρ̂t−1
k,m1+m2

Jm1−k(0) = ρ̂t−1
m1,m1+m2

.

This implies that each Fourier coefficient has its y-wavenumber shifted by m1 and, in particular,

that the coefficients ρ̂t0,m2
remain unchanged. The effect of applying the map with a = 0 is that the

Fourier amplitudes withm1 > 0 are shifted up in y-wavenumber; thus, for a smooth initial condition,

the amplitudes of the low modes become asymptotically small. The effect of one step of horizontal

shear is shown in real space and Fourier space in Fig. 3.11. Of course the m1 = 0 amplitudes are

unaffected, so an optimal protocol must use the nonzero at to minimize the magnitude of these

coefficients. Conversely, a poor protocol must accomplish the opposite.

Let us now consider the effect of a single nonzero at on the amplitudes with zero y wave

number. Since the horizontal shear has no effect on these modes, we may write the updated

coefficients in terms of the initial vertically shearing step. Using (2.20) the coefficients ρ̂0,m2 are

given by

ρ̂t0,m2
=
∑
k∈Z

ρ̂t−1
k,m2

Jk(−2πm2at).

After one step with a0 = 0 (Fig. 3.11), the largest Fourier coefficients from the initial condition

(3.1) with m1 = 0 are ρ̂0,±1 ≈ −0.1204. For a nonzero a2, the (0, 1) mode becomes

ρ̂2
0,1 ≈ ρ̂1

−2,1J−2(−2πa2)+ρ̂1
−1,1J−1(−2πa2)+ρ̂1

0,1J0(−2πa2)+ρ̂1
1,1J1(−2πa2)+ρ̂1

2,1J2(−2πa2), (3.5)
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Figure 3.11: Evolution of ρt(x, y) after one step of shear (a = 0). Top row shows evolution in real space. Bottom

row shows the evolution of magnitudes of Fourier coefficients of degree up to 2. One step of shear results in a vertical

shift of the Fourier coefficients, except for those corresponding to x wavenumber = 0, which remain constant.

where we truncate at the second mode number. For the optimal case, a2 = −0.1732, (3.5) gives

ρ̂2
0,1 ≈ (−0.0008)(0.1340) + (−0.1204)(−0.4675) + (−0.1204)(0.7251)

+ (−0.0008)(0.4675) + (0.0000)(0.1340)

≈ −0.0315.

For this negative a2, the Bessel functions J−1 and J0 have opposite signs. This causes the largest

terms to nearly cancel, causing the value ρ̂2
0,1 to decrease by a factor of 4. This can be seen in

Fig. 3.12, which shows the progression of the density in both physical space (top row) and Fourier

space (bottom row). The larger Fourier amplitudes in the figure are shown as darker squares, and

moving from the t = 1 column, to the t = 2 column, shows that the (0,±1) mode amplitudes
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decrease significantly. The following steps of shear then push the other large coefficients, the

(±1,∓2) modes in the figure, to larger y-wavenumbers, so that the magnitude of the low Fourier

modes diminishes significantly after just the four time steps shown.

By contrast, the d = 1 RW protocol has the opposite effect. When a2 = +0.1732, (3.5) gives

ρ̂2
0,1 ≈ (−0.0008)(0.1340) + (−0.1204)(0.4675) + (−0.1204)(0.7251)

+ (−0.0008)(−0.4675) + (0.0000)(0.1340)

≈ −0.1433

The sign change causes this mode amplitude to grow in magnitude, resulting in a clumping of

density that cannot be undone by the remaining steps of purely horizontal shear. This is illustrated

in Fig. 3.13, which shows the first four steps of the sparse RW protocol in physical and Fourier

space.
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Figure 3.12: Evolution of ρt(x, y) for the d = 1 sparse RO protocol of Fig. 3.7. Top row shows the evolution in
physical space. Bottom row shows the evolution of magnitudes of Fourier coefficients with mode numbers up to 2; the
value of the invariant (0, 0) mode, ρ̂0,0 set to zero. The numbered pairs indicate the wave numbers and the greyscale
indicates the coefficient magnitude, black being the maximum and white being zero. For a movie of all 12 steps, see
http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparse.mp4.

http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparse.mp4
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Figure 3.13: Evolution of ρt(x, y) for the d = 1 sparse RW protocol. The eight panels are otherwise equiv-
alent to those in Fig. 3.12. For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/jdm/movies/

ChirikovSparseBad.mp4.

3.1.5 Other Initial Conditions

Given this intuition for optimizing mixing for the Gaussian initial density (3.1), we now

determine if the sparse protocol is still effective for other initial conditions. We study initial

densities constructed by randomly superimposing periodic bump functions of the form

f(x, y;C, ε, u, v) = Ce−ε sin2[π(x−u)]−ε sin2[π(y−v)], (3.6)

so that the center of the bump can range over the torus. Adding a set of sinusoidal perturbations,

we construct the density by defining

ρ0(x, y) =

K∑
k=1

f(x, y;Ck, εk, uk, vk) +

L∑
l=1

Cl sin(2πnl · z − φl). (3.7)

We randomly choose the centers (u, v) ∈ [0, 1)2, the widths ε ∈ [0.1, 5], and K and L from 1 to

5. The wavenumbers nl ranged over {−10, 10}2 and the phases φl over [0, 2π). The amplitudes Cl

of the sine terms are kept smaller than 20% of the maximum bump amplitude (to create a noisy

effect), and each of the function (3.7) is scaled so that ‖ρ0‖−1 = 1. Examples of density profiles of

http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparseBad.mp4
http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparseBad.mp4
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the form (3.7) are shown in Fig. 3.14
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Figure 3.14: Density profiles of the form (3.7), with the randomly chosen parameters (u, v) ∈ [0, 1)2, ε ∈ [0.1, 5],

K,L ∈ {1, 5}, nl ∈ {−10, 10}2, φl ∈ [0, 2π], Cl less that 20% of the maximum bump amplitude. Each density profile

is scaled such that ‖ρ0‖−1 = 1.

The question becomes: Is a d = 1 sparse protocol, in which we apply all the energy at a

single step, still nearly optimal for varying initial conditions? If this is the case, then the optimal

d = 2 case, in which we divide the energy between two steps, should resemble a d = 1 protocol,

in that the energy at one step should be much larger than that at the second. For each of the

1200 initial conditions, we found the best d = 2 protocol from 104 random trials with the energy

(3.2). Figure 3.15(a) shows a histogram of step times tmax at which the larger of the two nonzero

amplitudes, |atmax |, was applied. The majority of these optimal protocols have tmax ≤ 2: as for

(3.1) the largest amplitude is used early in the twelve applications of the map. Figure 3.15(b) shows

the fraction of protocols for which a2
tmax > rE; that is, the fraction of trials for which the largest

amplitude step contains more than a fraction r of the available energy. Nearly three-quarters of

protocols apply more than 70% of the available energy in one step. This supports the conclusion

that the scheme applying a large shear early in the evolution is nearly optimal for the majority of

initial conditions.

3.2 Harper Map

The Harper map (2.9) differs from the standard map in that the horizontal shear is nonlinear

with the additional amplitude parameter b. The mixing protocol is now determined by two param-
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Figure 3.15: (a) Histogram of time at which largest |at| occurs for d = 2 RO protocols. (b) The fraction of the RO

protocols that satisfy a2tmax > rE as a function of r. We perform 104 trials to find the d = 2 RO protocols for 1200

different initial conditions of the form (3.7) on a grid of size N = 128 with (3.2).

eter vectors a and b so that the dimensionality of the optimization problem is doubled, allowing for

more flexibility. Moreover, since bt can vary, the energy (2.11) in the horizontal shear is no longer

fixed as it was for (2.12). In this section, we search for an optimal mixing protocol by means of the

random optimization method and also develop other methods that require less computation.

For most of the results in this section, we again use the Gaussian density profile (3.1), the

time constraint T = 12, and fix

EH = ‖a‖2 + ‖b‖2 = 0.5.

Unless otherwise specified, we use a 301× 301 grid, setting M = 150.

3.2.1 Fixed Points

Whenever ab 6= 0, the Harper map has exactly four fixed points, (0, 0), (0, 1
2), (1

2 , 0) and

(1
2 ,

1
2). For small a and b the map can be approximated by the Hamiltonian system

(ẋ, ẏ) = (∂yH,−∂xH), H(x, y) = − a
2π cos(2πx)− b

2π cos(2πy). (3.8)

Contours of this Hamiltonian are shown in Fig. 3.16 for various parameters. For the flow, the

stability of the fixed points depends only on the relative signs of a and b. When a and b are of the
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same sign, the points (0, 0) and (1
2 ,

1
2) are elliptic and (0, 1

2) and (1
2 , 0) are hyperbolic. When a and

b are of opposite sign, the stabilities are reversed. Note that (1
2 ,

1
2), the center of the domain, is

elliptic when ab > 0 and hyperbolic when ab < 0. When |a| > |b| there is more vertical shearing;

conversely, when |b| > |a|, the horizontal shear is dominant.

The dynamics of the map (2.6) with (2.9)—for fixed parameter values—is similar to the

Hamiltonian flow when |a|, |b| � 1, except for chaotic layers near the separatrices; two examples

are shown in Fig. 3.17. For the map, the elliptic fixed points undergo a period doubling bifurcation

at |ab| = π−2, becoming hyperbolic with reflection. However, for the total energy levels that we

will choose, none of the shear amplitudes will be large enough for this to occur.
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Figure 3.16: Level sets of the Hamiltonian (3.8) with various relative values of (a, b).

3.2.2 Constant Shear Amplitude

If the shears have constant amplitudes |at| = |bt| = γo, then the energy constraint (2.11)

implies that γo =
√
EH/2T . It would seem to be counterproductive to have successive signs

of the horizontal (or vertical) shears oscillate, so we will consider here two characteristic cases,
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Figure 3.17: Phase portraits of the Harper map (2.9) with constant amplitudes, (a) at = bt = 0.1443 and (b)

(at, bt) = (−0.211881, 0.15726). With the relatively small amplitudes in (a) the evolution resembles the Hamiltonian

flow shown in Fig. 3.16, with a thin chaotic separatrix layer. For the larger amplitudes in (b) there is more chaos.

at = bt = γo, shown in the linked movie (http:/amath.colorado.edu/faculty/jdm/movies/

HarperConst.mp4), and at = −bt = γo, shown in the linked movie (http:/amath.colorado.

edu/faculty/jdm/movies/HarperConstNeg.mp4) The contours of the Hamiltonian (3.8) are also

shown in these movies to indicate the approximate dynamics of the next map to be applied—indeed

as Fig. 3.17(a) shows, these contours reasonably approximate the dynamics since the amplitude,

γo = 0.1443, is small when EH = 0.5.

Since the initial density is centered at (1
2 ,

1
2), which is elliptic when a and b have the same

sign, and the standard deviation of the Gaussian profile (3.1) is 0.2236, which is not too large, the

dominant dynamics seen for at = bt is a sheared rotation about the center which results in very

little mixing, as shown in Fig. 3.18. By contrast, when a and b have opposite signs, the point (1
2 ,

1
2)

is a saddle, so the density is stretched along the unstable manifold until it reaches the saddle at

(0, 0) ≡ (1, 1), where it divides and then moves back towards (1
2 ,

1
2) along its stable manifolds, as

shown in Fig. 3.19.

Figure 3.20 shows the decay of the mix-norm for these two cases and various values of the

maximum mode number, M . As with the standard map, the decrease in the mix-norm slows as t

increases. As the grid size increases, the values of ‖ρT ‖−1 converge—little difference is seen when

M > 25, well below our standard resolution.

Among the four possible constant amplitude cases, (at = ±0.1443, bt = ±0.1443) for EH =

http:/amath.colorado.edu/faculty/jdm/movies/HarperConst.mp4
http:/amath.colorado.edu/faculty/jdm/movies/HarperConst.mp4
http:/amath.colorado.edu/faculty/jdm/movies/HarperConstNeg.mp4
http:/amath.colorado.edu/faculty/jdm/movies/HarperConstNeg.mp4
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Figure 3.18: Evolution of ρt(x, y) for the Harper map (2.9) with initial condition (3.1) for t = 0, 1, 2, 3 (top row)
and t = 6, 8, 10, 12 (bottom row) with constant strengths at = bt = 0.1443. Contours correspond to the Hamiltonian
(3.8). For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/jdm/movies/HarperConst.mp4.
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Figure 3.19: Evolution of ρt(x, y) for the Harper map (2.9) with initial condition (3.1) for t = 0, 1, 2, 3 (top row)
and t = 6, 8, 10, 12 (bottom row) with constant strengths at = −bt = 0.1443. Contours correspond to the Hamiltonian
(3.8). For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/jdm/movies/HarperConstNeg.mp4.

http:/ amath.colorado.edu/faculty/jdm/movies/HarperConst.mp4
http:/ amath.colorado.edu/faculty/jdm/movies/HarperConstNeg.mp4
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Figure 3.20: Decay of ‖ρt‖−1 for the Harper map (2.9) with initial condition (3.1) for twelve iterates with constant

strength at = bt = 0.1443 (left) and at = −bt = 0.1443 (right). The values in the legend denote the maximum mode

number, M , with grid size N = 2M + 1.

0.5, the optimal mixing protocol for the centered Gaussian (3.1) corresponds to the opposite sign

case, achieving ‖ρT ‖−1 = 0.0636. Of course, since the initial condition is symmetric about the

fixed point, flipping both signs results in the same Sobolev norm. This raises the question: will

the opposing amplitude stirring scheme be optimal for different energy budgets? The mix-norm as

function of constant amplitudes (at, bt) = (a, b) is shown in Fig. 3.21. It is interesting that though

the optimal protocols for both large and small energy have a ≈ −b, there is an intermediate regime

where this scheme is not optimal.

3.2.3 Random Optimal Protocol

Computing the optimal mixing protocol for the Harper map requires choosing the n = 2T

dimensional vector (a, b) on the energy sphere

‖a‖2 + ‖b‖2 = EH

that has the smallest ‖ρT ‖−1. Following the same procedure as §3.1.3, Fig. 3.22 shows a histogram

of the mix-norm for our standard Gaussian initial density. Note that the two constant amplitude

protocols (orange and red dots in the figure) correspond to near extremes of the range of ‖ρT ‖−1.
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Figure 3.21: Level sets of constant mix-norm for (at, bt) = (a, b) with T = 12 and initial condition (3.1) for a grid

of amplitudes in the square −0.2 ≤ a, b ≤ 0.2. The color bar shows the value of the mix-norm: dark colors correspond

to less mixing, and the optimal case is white. The blue points indicate the optimal protocol as a function of energy

EH = T (a2 + b2).
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Figure 3.22: Distribution of ‖ρT ‖−1 after∼ 1.4×106 trials of the random optimization method applied to the Harper

map (2.9) with T = 12 and initial condition (3.1). The green curve indicates the best fit normal distribution with

mean 0.1486 and standard deviation 0.05636. The red and orange dots indicate ‖ρT ‖−1 for the constant amplitude

elliptic, Fig. 3.18, and hyperbolic, Fig. 3.19, cases respectively.

The evolution of the density for the best protocol from 1.7× 106 trials is shown in Fig. 3.23;

again we call this the RO protocol. Note that for this protocol a1 and b1 have opposite signs,

causing the initial density to be stretched along the unstable manifold of the point (1
2 ,

1
2); this



48

is as expected from our earlier discussion of the constant case. It is interesting that the density

evolution in Fig. 3.23 exhibits not only the stretching seen in the opposite amplitude hyperbolic

case, of Fig. 3.19, but also considerable folding, the second hallmark of chaos.
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Figure 3.23: Evolution of ρt(x, y) for the Harper map (2.9) with initial condition (3.1) for t = 0, 1, 2, 3, 6, 8, 10, 12
with best protocol of ∼ 1.7 × 107 random trials. Overlaid on each frame, except the last, are the contours of the
Hamiltonian (3.8) for the upcoming map step. For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/

jdm/movies/HarperMC.mp4.

It is also important that the amplitudes of the RO protocol do not have equal magnitudes.

Indeed, for several of the steps (t = 5, 8, 10, and 12) one of the amplitudes is at least three times

smaller than the other, so that the dynamics are nearly a horizontal or vertical shear (Recall that

the Hamiltonian contours for these steps are overlaid on the previous density.). In §3.2.5, we exploit

this by examining stirring protocols that allow only one of the shear amplitudes to be nonzero for

each step.

In addition, the energy of the shears in the RO protocol varies considerably with time.

Defining the one-step energy by

EROt = a2
t + b2t , (3.9)

http:/amath.colorado.edu/faculty/jdm/movies/HarperMC.mp4
http:/amath.colorado.edu/faculty/jdm/movies/HarperMC.mp4
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we see in Fig. 3.24 that most of the energy is expended in steps t = 1, 2, 10, and 11.

1 2 3 4 5 6 7 8 9 10 11 12
t

0

0.04

0.08

ERO
t

Figure 3.24: Energy profile of the RO solution for initial density (3.1), EH = 0.5, and T = 12.

The evolution of ‖ρt‖−1 for the RO protocol is shown in Fig. 3.25(a); this figure also includes

the two constant amplitude cases from §3.2.2. As seen in Table 3.1, at t = 12, the RO protocol

just outperforms the hyperbolic constant case, showing that it is possible to do better than just

stretching the density along the manifolds of the central fixed point. It is interesting, however, that

the constant amplitude case has lower mix-norm when 4 < t < 9. During this period, as can be

seen in Fig. 3.23, the RO protocol is setting up improved stirring for the last three steps by folding

the density contours; this is accomplished using disparate amplitudes of the two shears.

Scheme ‖ρT ‖−1/‖ρ0‖−1 % Protocols better

Elliptic Constant 0.953 99.74
CS SW 0.277 0.46
CS FS 0.271 0.37
Hyperbolic Constant 0.254 0.09
CS Full 0.217 0.02
SW 0.160 0.00
RO 0.145 0.00
CS RO 0.133 0

Table 3.1: Mix norms for the Harper map with initial condition (3.1), energy EH = 0.5, and total steps T = 12 for

the optimization schemes discussed in §3.2.2-3.2.5. The initial condition has ‖ρ0‖−1 = 0.2505. The last column gives

the percentage of protocols from the random trials of Fig. 3.22 that perform better, i.e., have a smaller mix-norm.

As the energy varies, so does the achievable minimum mix-norm. The optimal protocol as a

function of energy gives a Pareto frontier, shown in Fig. 3.25(b). This figure was constructed using

6.5 × 105 trials for the initial condition (3.1) spread over 20 values of EH ∈ [0, 2]. Also shown,
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for each energy, are the mix-norms for the worst trial and for the constant amplitude, hyperbolic

protocol. Note that the latter protocol appears to be optimal when EH < 0.3; however, for larger

energies the RO protocol beats the constant case.
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Figure 3.25: (a) Mix-norm as a function of time for the RO protocol for the Harper map (2.9) with EH = 0.5, solid

(black) curve. Also shown are the elliptic constant, at = bt = γo, (dashed red curve) and the hyperbolic constant,

at = −bt = γo (dotted blue curve) protocols of §3.2.2. (b) Pareto frontier, showing the attainable mix-norm as a

function of energy for the Harper map, solid (black) curve. The dashed (red) curve shows the worst trial, RW, and

the mix-norm achieved by the hyperbolic constant protocol is shown as the dotted (blue) curve.

3.2.4 Stepwise Minimization

The decay of the mix-norm for the RO protocol shown in Fig. 3.25(a) is not monotone.

Though ‖ρ‖−1 decreases sharply during the first three steps, it appears to increase slightly during

steps four and five, finally decreasing for the remaining steps. This is odd, since one might expect

the optimal twelve-step protocol to minimize the mix-norm at each step as much as possible. Instead

of considering the time-history as a whole, could it be as effective to choose at and bt independently

to maximize the decrease in the mix-norm from step t − 1 to step t? This approach corresponds

to the “short time horizon” optimization method used in [10, 25, 26]. For these studies, which

assumed (at, bt) = (0, τ) or (τ, 0) for a fixed τ > 0, the one-step optimization performed nearly as

well as multistep look-ahead protocols.
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For simplicity, we will look for a protocol that has same stepwise values of the energy as the

RO protocol. Thus, if the amplitudes (at, bt) for the RO protocol at time t have energy (3.9), then

we will search on this circle for the optimal one-step protocol: for each time t, we apply (1.1) to

find

(at, bt) = argmin{‖ρt−1 ◦ f−1
at,bt
‖−1 : a2

t + b2t = EROt }. (3.10)

Recall that the time evolution of the energy EROt was shown in Fig. 3.24. Since (3.10) requires

succession of a one-dimensional searches at each time, it is much quicker than the full random

optimization. However, the restriction to a known energy distribution means that we will not be

looking for more general protocols. We call this new stepwise minimization protocol “SW”.

Figure 3.26 illustrates the stepwise minimization by comparing the RO protocol of §3.2.3 to

a SW protocol at three times. For this illustration, we used the density ρt−1 obtained by the RO

protocol as the initial state for the SW minimization, shown in the second column. So to obtain

the stepwise minimization at t, we perform t−1 steps of the RO protocol and then use (3.10). The

amplitudes (a1, b1) for the SW protocol are essentially the same as those for RO–this can be seen

in the third column which shows ‖ρt‖−1 as a function of (a, b). The RO amplitudes, the green dot

in this panel, and the selected SW amplitudes nearly overlap.

This is also true at t = 3, though there is a larger difference, presumably because none of

the selected random trials landed on the best point. However the difference at t = 2 is nontrivial:

the sign of b2 flips between the RO and SW cases. The central point (1
2 ,

1
2) is elliptic for the RO

amplitudes, whereas it is a saddle for the SW amplitudes. This supports our hypothesis that the

RO protocol, by looking ahead, does not minimize the mix-norm at every step: for this step it has

emphasized folding instead of stretching.

Fully implementing (3.10) (without reinitializing to the RO solution at every step) for the

initial density (3.1) gives ‖ρt‖−1 shown in Fig. 3.27(a). This figure also shows the mix-norm of the

RO protocol from Fig. 3.25 for comparison. Though the overall performance of the two protocols

is about the same at t = 12, the SW protocol reaching ‖ρT ‖−1 = 0.0401, the RO protocol does
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Figure 3.26: Comparison of RO and SW protocols of the Harper map for t = 1, 2, 3 using the initial condition (3.1).
The first column shows ρt(x, y) for first three steps of the RO protocol, and the second gives that of the stepwise
protocol applied to the RO state ρt−1. The color scale shows the mix-norm as a function of (a, b) for step t. The
dotted circle is (3.9), from which the parameters for the SW protocol are selected. The green point on this circle
corresponds to the RO and the blue point to the SW parameters.

slightly outperform the stepwise minimizer. It seems that an optimal mixing scheme cannot simply

consider each step of the map independently, but must instead forgo a one-step improvement to

setup the density for future steps of the map.
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Figure 3.27: (a) Progression of ‖ρt‖−1 for the RO and SW protocols described in Figure 3.26. For a movie of the

SW protocol steps, see http:/amath.colorado.edu/faculty/jdm/movies/HarperSW.mp4. (b) Progression of ‖ρt‖−1

for the RO, CS SW, and CS RO protocols. The latter used ∼ 4 × 105 trials. The two constant shear protocols are

identical until t = 3.

3.2.5 Horizontal or Vertical Shearing

For many of the time steps of the RO protocol, as illustrated in Fig. 3.23, one of the shear

amplitudes is much smaller than the other, giving either primarily horizontal or vertical shearing.

In this section we investigate protocols in which there is only one nonzero shear at each step.

To further simplify the problem, we assume that the energy per step is constant. Defining the

amplitude γo =
√
EH/T , there are now just four options for the parameter pair at a given step:

(a, b) ∈ {(γo, 0), (−γo, 0), (0, γo), (0,−γo)}.

To find an optimal stirring protocol with the new constraints is easier than a full RO since

there are only four choices for parameters at every step. In fact, except for t = 1, only three of these

can decrease the mix-norm. For example if (a1, b1) = (γo, 0), then the choice (a2, b2) = (−γo, 0)

simply undoes the previous step, so it cannot be an optimal choice. Therefore, only the three

options (γo, 0), (0, γo), (0,−γo) need be considered at t = 2. In this way, there are 4× 3T−1 distinct

shear protocols to consider, i.e., ∼ 7 × 105 when T = 12. The protocol found from randomly

sampling this discrete space is compared to the RO protocol in Fig. 3.27(b). The optimal shear

http:/amath.colorado.edu/faculty/jdm/movies/HarperSW.mp4


54

protocol (labeled “CS RO” for Constant Shear Random Optimal in the figure) just beats the full

RO protocol, as shown in Table 3.1.

An even simpler method is to do a stepwise minimization, as in §3.2.4, now imposing the

single-shear restriction. In this case there are only 4 + (T − 1)3 choices, i.e., 40 when T = 12.

The optimal result in this case gives the mix-norm curve labelled CS SW (Constant Shear SW)

in Fig. 3.27(b). This simplified protocol achieves ‖ρT ‖−1 = 0.0693, which is not comparable to

the better performing protocols. Nevertheless, it still performs better than 99.6% of the randomly

sampled amplitude vectors shown in Fig. 3.22. Note that, for this specific initial density profile,

the hyperbolic constant scheme is slightly better (see Table 3.1); however, its effectiveness depends

strongly on the localization of (3.1) near the saddle point.

To gain some insight into how to choose the direction of shear based on the current density

distribution, we can consider what the optimal one-step parameter choice would be when the density

can be described by a single sinusoid. Consider the initial condition

ρ0(x, y) = 2 cos(2πn · z − φ) (3.11)

for wave vector n, and phase shift φ. The resulting Fourier expansion will have only two nonzero

terms, both of modulus one. Using this initial condition and fixing the amplitude γo = 0.2041,

we compute the mix-norm ‖ρ1‖−1 as a function of mode numbers for 200 randomly chosen phase

shifts. Figure 3.28 shows a density plot of the number of times choosing a 6= 0 results in better

one-step mixing than choosing b 6= 0. The results are remarkably simple: whenever |n1| < |n2|, we

should choose a 6= 0, and if |n1| > |n2| we should choose b 6= 0. The lines |n1| = |n2| are ambiguous.

To understand why this is true, consider the simple case of (3.11) with φ = 0, so that the

Fourier expansion will contain the only nonzero terms ρ̂0
n = ρ̂0

−n = 1. Recalling (2.21), the Fourier

coefficients at t = 1 will be

ρ̂1
m1,m2

= Jm1+n1(−2πn2a)J−n2−m2(2πm1b) + Jm1−n1(2πn2a)Jn2−m2(2πm1b).

When b = 0 and a is nonzero, the only terms that survive are those that satisfy m2 = ±n2 so that

ρ̂1
k,±n2

= Jm1∓n1(±2πn2a), (b = 0),
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Figure 3.28: Density plot of the number of times choosing a 6= 0 results in better one step mixing than choosing

b 6= 0 with respect to mode numbers (n1, n2) for initial condition (3.11) with 200 random choices of phase shift φ.

Here the shear amplitudes, |a| or |b|, are fixed to γ0 = 0.2041, but varying γ0 within reasonable bounds does not

meaningfully change the results.

for k ∈ Z. On the other hand, if a = 0 and b is nonzero, we are left with the terms in which

m1 = ±n1, giving

ρ̂1
±n1,k = J±n2−m2(±2πn1b), (a = 0).

Since the H−1 norm (2.13) has the wavenumber in the denominator, the implication is that we

would then want to choose b = 0 when |n1| < |n2|, since the resulting terms ρ̂k,±n2 will have

higher combined wave number than the terms ρ̂±n1,k. The Bessel function terms will also tend to

be smaller, at least when the shears have comparable amplitude and the mode numbers are large.

This supports the more general results of the numerical experiments.

To apply this insight to more general density profiles which have a full Fourier spectrum, we

define the partial sums

S< =
∑

|n1|<|n2|

|ρ̂n1,n2 |2

n2
1 + n2

2

, S> =
∑

|n1|>|n2|

|ρ̂n1,n2 |2

n2
1 + n2

2

.

The shear choice is then determined by the relative sizes of these partial norms: if S< is smaller

we choose (|a|, |b|) = (0, γo); otherwise, if S> is smaller we choose (|a|, |b|) = (γo, 0).
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To make this a complete protocol, we must also select the signs of the shears. Note that

successive steps (at, 0) to (0, bt+1) are equivalent to one step with amplitudes (at, bt+1), so that

the choice of sign is equivalent to the selection of the location of elliptic and saddle points of the

map. The opposite switch, from (0, bt) to (at+1, 0), does not give a single Harper map of the form

(2.9), but is instead equivalent to its inverse with the signs of both parameters switched. Thus the

locations of the elliptic and saddle cases are still the same as those shown in Fig. 3.16.

If the density is concentrated in a specific location, then it seems reasonable that a sign choice

that makes the nearest fixed point a saddle will beat the sign choice that makes it elliptic. Indeed,

for the Gaussian centered at (1
2 ,

1
2), it was important to choose opposite signs to allow this fixed

point to be hyperbolic, since making it elliptic would result in virtually no mixing.

To determine the relationship between the location of density peaks and the optimal sign

choice, we can do a simple one-step experiment with various localized initial densities—we use the

initial state (3.6), varying the center (u, v) of the profile. Figure 3.29 shows the best sign choice as

a function of (u, v). The color at a given point indicates the sign choice that most often resulted in

the best one-step mixing under randomly chosen values of the width parameter ε. As expected, if

the density is localized near (1
2 ,

1
2), we should choose a and b of opposite sign. This generalizes: If

the density is localized near any fixed point, the relative signs should be chosen to make that fixed

point hyperbolic. The regions in which we choose a given sign combination form nearly perfect

squares around each fixed point. To understand why this is, consider the approximate eigenvalues

and eigenvectors given by the Hamiltonian (3.8). The fixed point (1
2 ,

1
2) has eigenvalue-eigenvector

pairs

λ = ±2π
√
−ab, v =

(
∓ b√
−ab

, 1

)
.

Now assume that we are using the constant shearing scheme such that |a| = |b| = γo. Also assume

that the density is concentrated near (1
2 ,

1
2) so that we at least know we want a = −b to make the

point hyperbolic. This causes the eigenpairs to reduce to

λ = ±2πγo, v = (∓sign(b), 1).
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The vector (sign(b), 1) corresponds to the stable manifold and (−sign(b), 1) to the unstable. The

closer the concentration of density is to a hyperbolic fixed point, the more it gets stretched along

the unstable manifold of that point. Ideally, the density should be localized to straddle the stable

manifold so that it gets pushed towards the fixed point and then spread out along the two branches of

the unstable manifold. This implies that if the concentration is located in the 1st or 3rd quadrants,

relative to (1
2 ,

1
2), we should choose b > 0 to make the local stable manifold have positive slope.

By contrast, if the concentration lies in the 2nd or 4th quadrants, we choose b < 0 to make the

local stable manifold have negative slope. Performing a similar analysis for each of the fixed points

implies the results obtained experimentally in Fig. 3.29.
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Figure 3.29: The intensity of the color at a given point (u, v) is proportional to the percentages of sign choices that

yielded the best mixing over different ε ranging from 0.1 to 5 using the initial density (3.6).

From this we can extract an algorithm to determine effective sign choices. We denote the 16

regions in Fig. 3.29 by R1, R2, . . . , R16, and define the indicator functions

χi(x, y) =

 1, (x, y) ∈ Ri

0, (x, y) /∈ Ri
.
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For each region we compute a partial mix-norm

Si = ‖ρ · χi‖−1, i = 1, 2, . . . , 16.

Under the hypothesis that region with the largest Si dominates the need for mixing, we pick the

signs of (a, b) for this region according to Fig. 3.29.

A combination of the Fourier and sign algorithms gives a full protocol choice for the multistep

shear problem. We attempt two different schemes. The first allows for the signs of (a, b) to change

between steps of the map if the location of the density has changed. We refer to this as the “CS

Full” method. The second scheme chooses signs for (a, b) based solely on the initial condition,

maintaining this sign choice throughout the protocol. We refer to this as the “CS FS” (Fixed

Signed) method. the CS Full method has the advantage of tracking the density and switching the

fixed points accordingly. However, the CS FS method allows for more consistency in the direction

of stirring.

In the case of the initial condition (3.1), the CS Full and CS FS algorithms produce the same

protocol, depicted by Fig. 3.30, which is almost qualitatively identical to the Hyperbolic constant

case shown in Fig. 3.19, in that it alternates between steps of (0, γo) and (−γo, 0). Figure 3.31

compares the decay of the mix norms for the RO, SW, and CS FS protocols. The CS FS protocol

matches the SW solution in performance, though both are significantly outperformed by the RO

protocol.

The CS Full algorithm performs better when we limit the instances in which a sign change

can occur. Switching the signs, and thereby changing the direction of stirring, often causes a

momentary increase in the mix-norm. Performing a sign change when it is not strictly necessary

can negatively affect the results. However, forgoing a sign change can cause the mix-norm to level

off. Recall that the RO solution outperformed the Hyperbolic Constant scheme because it sacrificed

some steps for folding, which allowed for more effective stretching later. Experimentally, we find

that CS Full performs the best when we only switch signs if the difference between the two largest

Si values is more than 10% of the total mix-norm.
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Figure 3.30: Evolution of ρt(x, y) for the stirring protocol produced by CS Full and CS FS: alternating steps of
(0, γo) and (−γo), γo =≈ 0.204, with initial condition (3.1) for t = 1, 2, 3, 4 (top row) and t = 6, 8, 10, 12 (bottom
row) on a 128× 128 grid.
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Figure 3.31: Decay of ‖ρt‖−1 for the RO protocol, the SW minimizing protocol, and the CS FS protocol shown in

Fig. 3.30.

Figure 3.32 shows the performance of the algorithm over 105 random choices of initial con-

ditions (3.7) normalized such that ‖ρ0‖−1 = 1. The minimum, mean, and standard deviation of

‖ρT ‖−1 for each distribution depicted in Fig. 3.32 can be found in Table 3.2. The scheme with sign
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Figure 3.32: (a) Distribution of ‖ρT ‖−1 using the three shearing techniques, for random choices of (3.7) where

(u, v) ∈ [0, 1)2, ε ∈ [0.1, 5.0], and n ∈ {−10, 10}2. We use energy EH = 0.5 and T = 12. (b) Means and (c) standard

deviations of ‖ρt‖−1 for the CS SW, CS Full, and CS FS solvers.

switching beats out the one with fixed signs slightly in terms of mean final mix-norm. However, the

SW minimizer outperforms both analytic solvers. The standard deviation of mix-norms using the

sign switching methods is smaller than that for fixed signs. Indeed, the distribution of mix-norms

for the fixed sign method has a right tail that extends nearly to ‖ρT ‖−1 = 1, suggesting that for

some initial conditions, the solver performs extremely poorly and results in virtually no mixing.

Using sign switching helps to reduce the size of this tail.

‖ρT ‖−1

Optimal Mean Std. Dev.

Elliptic Constant 0.1191 0.4905 0.1924
CS SW 0.1085 0.2110 0.0462
CS FS 0.1449 0.3395 0.0801
CS Full 0.1449 0.3338 0.0666

Table 3.2: Optimal, mean and standard deviations of the mix-norms at time T = 12 for the Harper map from the

distributions of Fig. 3.32(a). The initial conditions are normalized such that ‖ρ0‖−1 = 1.



Chapter 4

Results of Blinking Vortex Map

In this chapter, we present results for the blinking vortex model described in §2.4. There

are multiple parameter choices we can manipulate to find the sequence of blinking vortex maps

{Hvt,τt,st}, defined by (2.29), for n = 1, . . . , N that optimizes the mix norm on the disk (2.36).

These include, N , the total number of vortex switches, vt, the position of the vortex at step t, τt,

the time vortex vt is activated, and st, the direction that vortex vt is spinning. For all results, we

use the initial Gaussian profile,

ρ0(z) = C exp
(
−ε‖z − zo‖2

)
, zo = (0, 0), ε = 5, C ≈ 8.9574. (4.1)

The normalizing coefficient C is chosen such that ‖ρ0‖−1 = 1. Figure 4.1 shows the evolution of

the density profile for the initial condition (4.1) with N = 3 and stirring protocol vectors

v = (0.5,−0.6 + 0.6,−0.2− i0.3), τ = (0.1, 0.5, 0.02), s = (1,−1, 1). (4.2)

The vortices at t = 1, 3 rotate counterclockwise, and the vortex at t = 2 rotates clockwise. The

second vortex is activated for the longest amount of time, the first vortex activated for a medium

amount of time, and the third vortex for a very short amount of time. The size of the “spirals” is

proportional to the amount of time a given vortex is activated.

We consider two different optimization problems. The first will be referred to as the Roaming

Vortex Problem (RV), in which N , tt, and st are held fixed and the position vt is allowed to vary to

any point in the unit disk at each step. For the numerical results, we fix N at 12, τt at 0.1, and st

at 1, so that the vortices always spin counterclockwise. The numerical methods and results of this
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Figure 4.1: Evolution of ρt for t = 0, . . . , 3 with initial density (4.1), Nr = Nθ = 128, and blinking vortex protocol

vectors (4.2).

problem are discussed in §4.1. The second problem considered is called the Four Vortex Problem

(FV). For this problem, we consider only four possible vortex locations at 1
2 , i

2 , −1
2 , and − i

2 . We

hold the total time T that the vortices are activated fixed and force the time τt to remain constant

for each vortex so that τt = T/N , where we allow the total number of vortex switches N to vary.

We also allow st to vary so that there is a total of eight possibilities at each step: four vortex

position choices, and two vortex direction choices. For the numerical results, we hold T fixed at 1.

The methods and results of the Four Vortex Problem are discussed in §4.2.

4.1 Roaming Vortex Problem

Unlike the periodic shear maps discussed in Chapter 4, the vortex model (2.25) is a more

concentrated stirring mechanism. The stirring action of the Chirikov (2.8) and Harper (2.9) maps

affected every point in the domain, whereas the vortex stirring action causes a swirling of points

nearby, but has virtually no affect on points far away from the vortex position. Recalling (2.28),

we know that dφ
dt is proportional to 1

p2
. Therefore, for the vortex position to be chosen optimally, it

must be placed in a way so that it has the maximum disruption of the most “unmixed” region of

the domain. There are multiple parts to this choice that make it difficult. The first is, how does one

identify the most unmixed region of the domain; where is it located and what is its size and shape?

Secondly, once the most unmixed region is identified, how does one choose the vortex location? It
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is clear that the vortex should be chosen near to this region, but shouldn’t be placed at its center,

since this will result in the concentrated density being rotated and sheared, but not distributed.

Figure 4.2 illustrates the effect of vortices at different distances from the unmixed region. Fig. 4.2

(a) shows a vortex too close to the center of the unmixed region, only resulting in a 0.2% decrease

in the mix norm (2.36). Fig. 4.2 (b) shows a vortex closer to the optimal distance, resulting in a

5.4% decrease mix norm. Fig. 4.2 (c) shows a vortex too far from the unmixed region, resulting in

a 3.6% decrease in mix norm. Since the stirring action of the vortex is so concentrated, choosing

the right location at every step is essential to deriving an effective mixer.

Figure 4.2: Initial Gaussian density profile (4.1) with Nr = Nθ = 128 subjected to vortices at different distances:

(a) v = 0.05, ‖ρ‖−1 defined by (2.36) decreases by 0.2%, (b) v = 0.35, ‖ρ‖−1 decreases by 5.4%, (c) v = 0.65, ‖ρ‖−1

decreases by 3.6%.

One way to determine the optimal vortex locations would be to systematically compute the

one-step mix norm (2.36) for each vortex location and choose the one that minimizes the norm.

However, the mix norm is a more expensive calculation on the disk than the box [0, 1)2 because it

requires the computation of a Bessel Fourier transform, recall §2.4.1. For the angular direction, we

can use the fast Fourier transform, but for the radial part, we us the trapezoid rule for numerical

integration, which is considerably slower. Computing many instances of the mix norm to find every

vt is not a reasonable approach. Instead, we use a cheaper method that fits an ellipse to the most

unmixed region, and then finds a near optimal vortex location that best spreads the points the

contained in the ellipse.
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To locate the unmixed region of the density profile ρt at step t, we consider the difference

between local medians and the global median. We use the median as opposed to the mean to avoid

local medians being skewed by a few outlier density points. Given a uniform grid of Nz points and

a disc radius % at each point zi, i = 1, . . . , Nz, we compute the quantity

Ai = median
z∈B%(zi)

[ρ(z)− µ] ,

where µ is the median of ρt and B%(z) is the open ball of radius % centered at z. We choose the

center of the unmixed region zC to be the point that corresponds to the maximum Ai value and

satisfies the condition

min
z∈B 1

Nr

(zi)
[ρ(z)] ≥ 1

2
max

[
ρt
]
.

Recall from §2.4.1 that 1
Nr

is the interval size of the radial discretization. This is to ensure that that

we do not choose the point to be the center in a region that is not empty, and not too granulated.

Once the location of the most unmixed region is identified, the next step is to determine the

shape and size of the region. This is done by using the covariance to fit an ellipse to the region.

For all points zi = (xi, yi), i = 1, . . . , NzC ,% contained in B%(zC), we compute the 2× 2 covariance

matrix Mcov:

Mcov =

 ∑NzC,%
i=1 ρt(zi)(xi − xC)2

∑NzC,%
i=1 ρt(zi)(xi − xC)(yi − yC)∑NzC,%

i=1 ρt(zi)(xi − xC)(yi − yc)
∑NzC,%

i=1 ρt(zi)(yi − yC).2

 .
The matrix Mcov has the two eigenpairs (λ1, w1) and (λ2, w2), where λ1 is the largest eigenvalue.

The eigenfunctions w1 and w2 give the directions of major and minor axes of the ellipse respectively.

To determine the lengths of the axis, the vectors are scaled according to

|wmaj| =
√
χ2

2,αλ1, |wmin| =
√
χ2

2,αλ2,

where χ2,α refers to the two-dimensional chi squared value and α is the confidence level of a local

Gaussian, so that 100(1 − α)% of ρt defined over B%(zC) is contained within the fitted ellipse.

Define Φ to be the angle between wmin and the x-axis. Then the fitted ellipse EzC ,%,α has the



65

parametrization

z(s) = zc +

 cos Φ − sin Φ

sin Φ cos Φ


 |wmin| cos s

|wmaj| sin s

 , s ∈ [0, 2π].

Figure 4.3 shows the initial density profile

ρ0(r, θ) = exp

[
−r2

(
1

a2
cos2 θ +

1

b2
sin2 θ

)]
, (4.3)

with a = 0.5 and b = 1
4a = 0.125, along with the fitted covariance ellipse EzC ,%,α with zC = 0,

% = 0.5, and α = 0.01, so that the ellipse contains 99% of the density within the ball B0.5(0).

Figure 4.3: Density profile (4.3) with (a, b) = (0.5, 0.125) with fitted covariance ellipse EzC ,%,α with zC = 0, % = 0.5.

The black point marks zC and the black curve marks EzC ,%,α.

With an ellipse fitted to the unmixed region, the third and final step is to determine the

location for the vortex vt+1 to give the optimally mixed density profile at the following step ρt+1.

We find the vortex v that optimizes the one-step variance of the points contained in EzC ,%,α. Define

EzC ,%,α to be the set of points on the grid contained within EzC ,%,α. Recalling the definition (1.3) and

the map (2.29), we make the claim that the quantity Var(Ht+1(EzC ,%,α)) will be nearly maximal for

the vortex that optimizes the one-step mix norm ‖ρt+1‖−1, because maximizing the variance means
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we are allowing for the largest possible “spreading-out” of the unmixed region. Numerically, we

find that choosing a confidence level of α = 0.25, such that the covariance ellipse contains 75%, or

about one standard deviation, of the density of the unmixed region, gives similar vortex locations

that maximize the variance and minimize the mix norm. Figure 4.4 compares the vortex solution

that minimizes the mix norm of ρ1(r, θ) = ρ0(H−1
v1 (r, θ)) with ρ0 defined by (4.3), and the vortex

solution that maximizes the quantity

Var(H1(EzC ,%,α)). (4.4)

The parameters of the initial condition are (a, b) = (0.5, 0.125). The variance (Fig. 4.4(a)) and the

mix norm (Fig. 4.4(b)) appear to be inversely related: where one plot has a local maximum, the

other has a local minimum, and vice versa. This supports our claim that maximizing the variance

of the points within the unmixed region will come close to minimizing the mix norm. The distance

between the variance maximizing vortex v = −0.2381 − 0.1429i and the mix norm minimizing

vortex v = −0.3333− 0.2381i is 0.1347. With an initial mix norm of 0.0543, the optimal one-step

mix norm value is 0.0448, and the vortex that maximizes the variance achieves a mix norm of

0.0461, which is only a 2% increase of the true optimal. This indicates that, should the covariance

ellipse be a good fit for the most unmixed section of density, we can use the much cheaper variance

computation to approximate the vortex location that will minimize the mix norm. By symmetry,

there are two optimal positions, assuming the ellipse is far enough from the boundary. In some

cases there is only one because the reflected point falls outside of the disk.

The steps above can be summarized as follows:

(1) Given a grid of Nz points and radius %, search through the Nz points to find the center zC

of the unmixed region.

(2) Given the point zC , search radius %, and confidence level α, find the covariance elliptic

region EzC ,%,α centered at zC containing the specified proportion of density.

(3) Given a grid of Nv possible vortex positions, and elliptic region EzC ,%,α, determine a near
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Figure 4.4: Optimizing one-step mixing of the RV Problem for an elliptic unmixed region with initial condition

(4.3) and (a, b) = (0.5, 0.125) depicted by Fig. 4.3. Plot (a) shows the variance (4.4). Plot (b) shows the mix norm

ρ1 with respect to v. Plot (c) shows the density profile ρ1 after applying the variance optimizing vortex. Plot (d)

shows ρ1 after applying the mix norm optimizing vortex. The purple point marks the variance optimizing vortex

v = −0.2381− 0.1429i. The green point marks the mix norm optimizing vortex v = −0.3333− 0.2381i.

optimal choice of vortex location v that maximizes the quantity (4.4).

At this point, it should be clear why the RV algorithm described above will be problematic.

For one thing, it depends on the choices of the parameters Nz, %, α, and Nv. If any of these

parameters are chosen poorly, it could compromise the result. The parameters may need to change
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as the number of stirring steps increases, because the length scales of uniform regions of density

will decrease as the density becomes more mixed up. In addition, the algorithm is based on a

number of assumptions and approximations. For example, it depends on the assumption that we

are able to approximate the unmixed region by fitting an ellipse, which may not be the case if the

unmixed region is oddly shaped. We also rely on the assumption that maximizing the variance

of the positions of the discrete points contained within the fitted ellipse gives a similar result as

minimizing the mix norm, which will result in at least some error. Figure 4.5 shows the evolution of

density with initial condition (4.1) normalized such that ‖ρ0‖−1 = 1 and the RV algorithm with a

constant choice of parameters: Nz = 1005, % = 0.2, α = 0.75, and Nv = 88. The algorithm performs

poorly, achieving a mix norm of 0.8551, only about a 15% decrease. Because the parameters % and

α stay constant, the sizes of the fitted ellipses stay about the same despite the length scales getting

finer with increasing t.

Figure 4.5: Evolution of ρt for t = 0, 1, 2, 4, 6, 8, 10, 12 with initial condition (4.1) and Nr = Nθ = 128. Parameters
of the RV algorithm are Nz = 1005, % = 0.2, α = 0.75, and Nv = 88.

Since it seems the algorithm could be improved by allowing more flexibility in the ellipse size,

we allow some of the parameters to change with t. Figure 4.6 shows the evolution of density with
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the same parameters as Fig. 4.5, but with % decaying and α growing according to

%(t) = 0.5 exp(−0.1t), α(t) = 1− 0.5 exp(−0.5t). (4.5)

With the varying parameters, the performance of the RV algorithm improves, achieving a mix norm

of 0.6050, about a 40% decrease. By allowing the ellipse to be larger at low n, the vortex targets

features at larger scales, then focuses in on smaller scale structures as t increases and the ellipses

shrink, allowing for more effective mixing.

Figure 4.6: Evolution of ρt for t = 0, 1, 2, 4, 6, 8, 10, 12 with initial condition (4.1) and Nr = Nθ = 128. Parameters
of the RV algorithm are Nz = 1005, Nv = 88 and % and α vary according to (4.5).

The mix norm evolution for the RV algorithm with constant and nonconstant parameters is

compared in Figure 4.7. The mix norm decays vary slowly in the case of the constant parameters,

even increasing at t = 4, 6, 8. The version with the varying parameters decays much faster and

more consistently. However, there still seem to be flaws in the method, as the mix norm does not

decrease sharply until t = 6, and stays mostly constant at t = 7, 9. Though there appears to be

good mixing where the density is localized, the algorithm struggles to distribute the density to the

entire domain, as it tends to stay mostly centralized near the origin. This is especially clear in

the final plot of Fig. 4.5, where the majority of the density is clumped into a disc. There are two
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possible explanations for this. One is that the algorithm itself is designed to work locally rather

than globally, and therefore will be biased towards stirring where the most density is located. This

approach is inherently flawed because mixing is a global process, and trying to address it as a local

process is an oversimplification.

The other explanation for the density clumping effect is that the algorithm only considers one

step in the future. It may be more optimal to forgo the largest decrease in mixing at the current

step in order to setup the density profile for more effective mixing in future steps. In the next

section, we will consider a stirring scheme that takes a more global approach to the vortex model.

0 2 4 6 8 10 12
0.6

0.65

0.7

0.75

0.8
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0.95

1

Constant RV Parameters

Varying RV Parameters

Figure 4.7: Decay of ‖ρt‖−1 for the RV stirring protocols with constant parameters (Fig. 4.5) and nonconstant

parameters (Fig. 4.6).

4.2 Four Vortex Problem

The Roaming Vortex Problem was challenging because of too much freedom in choice of

vortex location at each step. The Four Vortex Problem addresses this issue by only allowing four

fixed locations for a vortex to appear: 1
2 , i

2 , −1
2 , and − i

2 . For this problem we will allow a choice

of either counterclockwise (s = 1) and clockwise (s = 1) spin for each vortex. Thus, at a given

step t there are eight choices of stirring action: four choices of vortex location vt and two choices
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of rotation direction st. The eight stirring actions will be labeled as follows:

+r

+t

+l

+b

−r

−t

−l

−b



=



v = 1
2 , s = 1

v = i
2 , s = 1

v = −1
2 , s = 1

v = − i
2 , s = 1

v = 1
2 , s = −1

v = i
2 , s = −1

v = −1
2 , s = −1

v = − i
2 , s = −1



, (4.6)

where r, t, l, and b, stand for right, top, left, and bottom respectively. The value ωt will be used

to denote the vt and st pair label from (4.6). We will allow the total number of vortex switches N

to vary, but hold the total time T the vortices are activated to remain constant. We will also hold

the time between vortex switches constant, so that τt = T
N .

For a given choice of N , the total possible stirring protocols will be 8N . When searching for

the optimal protocol, we can narrow down some of these choices. For example, it is obvious that

the optimal protocol will not have vn+1 = vt and sn+1 = −st, i.e. it will never be the case that

(ωt, ωt+1) = (+r,−r), (−r,+r), (+t,−t), . . . That would put a vortex in the same location as the

previous step, but spinning in the opposite direction, which is the same as applying the inverse map

and canceling out the stirring action. This means that there are eight choices for the first vortex

and only seven for all following vortices, reducing the number of possible protocols to 8(7N−1). For

all results we will use the initial density profile (4.1). The vortices are symmetric with respect to

this initial condition, so the initial choice of vortex location and rotation is trivial. We shall always

choose ω1 = +r with v1 = 1
2 and s1 = 1. The one-step action of this vortex is shown in Fig. 4.8.

We are left with only 7N−1 protocols to search through. Therefore, finding the true optimal

protocol is computationally feasible for small N . Figure 4.9 shows the optimal stirring protocols

for N = 2, . . . , 8. There are many interesting things to note about the vortex choices. One is

that a vortex will never be chosen twice in a row, suggesting that an optimal scheme must change
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Figure 4.8: One-step evolution of initial density (4.1) with default first vortex choice ω1 = +r and Nr = Nθ = 28.

Plot t = 0 shows ρ0 with a square marking the vortex v1 = 1
2
. Plot t = 1 shows ρ1 after vortex at v1 was applied

counterclockwise.

the vortex location at every opportunity. This seems reasonable, since the initial activation of a

vortex accomplishes a large shift in density, but continuing to activate that same vortex will only

accomplish a spiraling effect near the vortex and have little impact on overall mixing. Instead, the

vortex locations should be alternated in order to continue moving the unmixed regions throughout

the domain.

Another important observation of Fig. 4.9 is that opposite vortices share a rotation direction

that differs from that of the adjacent vortices. Figure 4.10 illustrates why this scheme outperforms

the other six choices for relative rotation choice for the four vortices. To create these plots, we

activate the vortex locations in the same order as the optimal N = 4 protocol, but vary the relative

rotation directions. The common feature in the less optimal schemes is two adjacent vortices that

have the same rotation direction. Anytime two neighboring vortices stir in the same direction, the

majority of density gets shifted to that quadrant of the disc, causing it to be less effected by the

action of the other vortices. Keeping adjacent vortices of opposite sign will ensure that the density
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N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

Figure 4.9: Evolution of ρt for the optimal stirring protocols of the FV problem for N = 2, . . . , 8 with initial
condition (4.1) and Nr = Nθ = 27. Squares mark where a vortex will be activated counterclockwise, diamonds mark
where a vortex will be activated clockwise.

remains centralized enough that all four vortices remain effective.

The shape of the final plots for the rows corresponding to N = 2 and N = 3 of Fig. 4.9 are

very similar, since they both result from the vortex choices ω = +r,+l. Since two vortex locations

are activated, we see the formation of two “bulbs”. For the N = 4 case, we see four bulbs because

all four vortex locations are used. The N = 5 solution only uses three of the vortices. The rightmost

plots for N = 6, 7, 8 appear very similar to N = 4, with the same four bulb shape. Figure 4.11 (a)
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Figure 4.10: ρ4 after applying the same vt as the optimal 4-step FV scheme (Third row of Fig. 4.9), with all

possible other choices of rotation direction st.

compares the decay of mix norm for the optimal N = 1, . . . , 8 solutions. Figure 4.11 (b) shows how

‖ρN‖−1 decays with respect to N , quickly at first, but then it begins to level off. This suggests

that allowing more and more vortex switches may not cause a notable decrease in mix norm.

To get an indication of how the mix norm will decay for larger N , we consider the case

where we allow N to tend towards infinity. At large N , the discrete action of the blinking vortices

resembles a Hamiltonian flow in which we are applying all four vortices simultaneously at a quarter

strength. The Hamiltonian of (2.25) can be easily derived to be

H(z) = −s log

∣∣∣∣∣ z − vz − 1
v̄

∣∣∣∣∣ . (4.7)

For the infinite four vortex case, the Hamiltonian becomes

H4(z) = −1

4

(
s 1

2
γ 1

2
log

∣∣∣∣∣z − 1
2

z − 2

∣∣∣∣∣+ s i
2
γ i

2
log

∣∣∣∣∣ z − i
2

z − i2

∣∣∣∣∣+ s− 1
2
γ− 1

2
log

∣∣∣∣∣z + 1
2

z + 2

∣∣∣∣∣+ s− i
2
γ− i

2
log

∣∣∣∣∣ z + i
2

z + 2i

∣∣∣∣∣
)
,

(4.8)
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Figure 4.11: Mix norms of the FV optimal stirring protocols for N = 1, . . . 8 shown in Figures 4.8 and 4.9. Plot

(a) shows the decay of ‖ρt‖−1 with respect to t . Plot (b) shows the decay of ‖ρN‖−1 with respect to N .

where γv specifies the proportion of time that vortex v is activated. We require that γv ∈ [0, 1] and

that

γ 1
2

+ γ i
2

+ γ− 1
2

+ γ− i
2

= 1. (4.9)

We make the assumption that the sign sv of a given vortex remains constant, since switching the

direction of rotation would result in “unstirring” and would be inefficient. Once again we set s 1
2

= 1

to be the default. This leaves the following eight choices for the four stirring directions:

{
s 1

2
, s i

2
, s− 1

2
, s− i

2
)
}

=



1, 1, 1, 1

1, 1, 1,−1

1,−1, 1, 1

1, 1,−1,−1

1,−1, 1,−1

1,−1,−1, 1

1,−1,−1,−1



. (4.10)

We use a Random Optimal algorithm, similar to the RO algorithm described in §3.1.3, by randomly

sampling vectors (γ 1
2
, γ i

2
, γ− 1

2
, γ− i

2
) from the section of four dimensional hyperplane (4.9), such that
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γv ∈ [0, 1], selecting randomly from the eight sign choices (4.10) and choosing the proportion and

sign vectors that minimize ‖ρ∞‖−1. We approximate the infinite case by setting N to be a large

number, and activate each vortex for time γv
T
N . The proportions of time the vortices are activated

for each time step must match the proportions of the total time T . This uniform application of the

vortices is necessary to simulate the infinite case, since it should be as if we are activating all four

vortices at once. We continue to fix T at 1, and we set N = 100.

Figure 4.12 shows the results of the Random Optimal algorithm applied for 104 trials. The

near optimal solution produced by the algorithm is γ = (0.47, 0.4, 0.01, 0.11) and s = (1,−1, 1,−1),

which achieves a mix norm of 0.4129. The relative direction choices echo that of the optimal solution

from Fig. 4.9. What is surprising is that the scheme favors two of the vortices heavily, barely using

the other two. In the case of the schemes from Fig. 4.9, it was best to activate all vortices relatively

equally so as to keep the density centralized. However, in the infinite case, it seems more optimal

to weight the density towards one half of the domain where two vortices can have the most effect.

The most important takeaway from the Roaming Vortex Problem was that a local approach

to a global problem will not yield good results, and too much freedom in parameter choices makes

it difficult to produce any valid conclusions. The Four Vortex Problem addressed these issues with

a simplified model in which we limited the possible locationss of the vortices, but introduced new

elements of rotation direction and number of vortex switches. The optimized stirring protocols of

this scheme were far more successful than those of the RV Problem, able to achieve a mix norm

of about 0.37 in the case of the 8 step protocol as opposed to a mix norm of 0.6 in the case of

RV solution with varying parameters. It became clear that it is not enough to use the action of

the vortices to induce good one-step mixing, but it also important to use them to keep the density

positioned in a way so that other vortices can be most effective in future steps.
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Figure 4.12: Results of the Random Optimal algorithm applied with 104 trials to find the proportion vector

(γ 1
2
, γ i

2
, γ− 1

2
, γ− i

2
) which satisfies γv ∈ [0, 1] and (4.9) and the sign vector (s 1

2
, s i

2
, s− 1

2
, s− i

2
) which minimize ‖ρ100‖−1

with T = 1 and τ = 1
100

. The vectors produced by the algorithm are γ = (0.47, 0.4, 0.01, 0.11) and s = (1,−1, 1,−1).

Plot (a) shows the density profile after the scheme is applied. Plot (b) shows the contours of the Hamiltonian (4.8).



Chapter 5

Conclusions

We investigated the design of mixers by studying the optimization of stirring behavior of a

two-dimensional device modeled by a finite number of nonlinear shears, under a constraint of fixed

energy, and with a finite number of blinking vortex models, varying vortex location, rotation direc-

tion, and number of “blinks” between vortices. The minus-one Sobolev seminorm, one example of

a “mix-norm”, provides a cost-effective way to measure mixing efficiency without explicitly com-

puting diffusion. We computed the results of stirring by evaluating the Perron-Frobenius operator

on a uniform grid, assuming that the initial density profile is known analytically. This allowed us

to avoid the aliasing errors and numerically induced diffusivity of other methods.

One of the most important insights from the results of Chapter 3 is that effective mixing

is highly dependent on the behavior of the lower order Fourier modes: in order to construct a

good stirring scheme, one must target the low-order modes with the highest amplitudes. For the

first model, a composition of Chirikov standard maps, concentrating the nonlinear shear energy

in a small number of steps was shown to give an efficient mixing scheme. For this map, the

horizontal shear is assumed fixed, and using the energy for vertical shearing early in the protocol

takes maximal advantage of the shift in Fourier coefficients to higher mode numbers. It is probable

that this approach would also maximize the effects of any nonzero diffusivity, since the striations

are formed early in the evolution.

For the Harper map model, both vertical and horizontal shears can be controlled, allowing

for more diverse stirring mechanisms and more interesting behaviors. A simplified scheme assumed
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that each step corresponds to either a horizontal or a vertical shear with constant energy. Within

this reduced parameter space, we devised an algorithm that combines insight on the action of the

shears in Fourier space with knowledge of the character of the fixed points, to produce a near-

optimal stirring protocol. The method was shown to remain effective when applied to a variety of

initial density profiles.

Table 3.1 compares the optimal stirring protocols produced by the different methods when

applied to the initial condition (3.1), and Table 3.2 compares the overall performance of solvers

for varying initial conditions (3.7). Our results suggest that both consistency and change—

contradictory requirements—are necessary to produce an optimal stirring protocol. While the

former leads to stretching near saddle points, the latter can result in enhanced folding. Both were

required to obtain the optimal protocol for the Harper map. With only stretching, the mix-norm

tends to level off; but with too much folding, stirring can be reversed, causing the mix-norm to

grow. An optimal protocol will tend to use hyperbolic behavior if a smooth portion of the den-

sity is concentrated near a fixed point—if a nearby fixed point is elliptic, mixing efficiency can be

decreased even though there will be (weak) shearing. Though it is clear that both stretching and

folding are required to design an effective mixer, it is less clear how to best combine these processes

to optimize mixing. Observing stretching and folding in a wider variety of mixing problems may

lead to more general results about how one should balance the two mechanisms to induce mixing.

The shearing models studied have their fixed points at fixed locations. The blinking vortex

model studied in Chapter 4 allows for the fixed points of the map to change locations at every

step. Advection created by the shearing problems was more uniform, but in the case of vortices

the advection was more localized. This offered a more complex investigation with more choices of

parameters. Since the complexity of the problem was too large, we limited the parameter choices

in two ways: by means of the Roaming Vortex Problem and the Four Vortex Problem.

The parameters where chosen in the Roaming Vortex Problem by fixing the rotation direction,

time, and number of vortex switches, and allowing the location of the vortex to be free. We devised a

scheme in which we tracked the movement of the most unmixed region and chose the vortex location
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to optimize the variance of this region. The algorithm was problematic because it depended on many

numerical parameters that determined how to identify the location, size, and shape of the unmixed

region. The main issue was that, as the density became more mixed, the length scales shrank,

requiring these numerical parameters to change as the number of steps increased. In addition,

the localized approach was not conducive for spreading the density throughout the domain. The

algorithm achieved modest success, allowing for a 40% decrease in mix norm. Experiments with

the RV Problem made it clear that it would be worthwhile to simplify the complexity of the model,

so as to allow for a more focused approach.

To remedy the numerical problems that arose from the RV Problem, we devised the Four

Vortex Problem by confining the vortices to four possible locations, holding the total time fixed,

and allowing a choice of number of vortex switches and vortex rotation direction. This confined the

possible stirring protocols to a finite set, which could be searched through exhaustively to find the

true optimal protocol for a given number of vortex switches. The main result of the experiments

with the FV model was that the most effective protocols oriented the stirring direction of the

vortices so as to keep the density centralized and allowed all vortex locations to remain effective as

the mixing progressed.

A key observation that arose from both the shear maps and the blinking vortex map was

that, to devise an effective finite-time stirring scheme, it is not enough to try to optimize the mixing

at every step. This is evidenced by the fact that algorithms that only looked one step in the future,

the SW minimizer in the case of the Harper map, and the Roaming Vortex algorithm in the case of

the blinking vortex model, performed worse than algorithms that took a global approach, i.e. the

full Random Optimal algorithm for the Harper map and the Four Vortex algorithm for the blinking

vortex model. Schemes that were most effective included steps of “setup” in addition to steps of

mixing, i.e., steps that were devoted to reorienting the density, so that future steps of mixing could

be more effective. More generally, any mixer being applied to a fluid with little diffusion most use a

combination of stretching and folding actions. As a future avenue of study, it would be worthwhile

to investigate more general results about what ratio of setup and mixing steps is required for a
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mixer to be effective, and how to identify which steps should do which.

Though interesting, the problems studied in this investigation are simplified two-dimensional

stirring models. It would be worthwhile to study models that are more physically applicable. In

particular, it would be interesting to study three dimensional models such as the Kenics Static

Mixer and the rotated arc mixer discussed in Chapter 1 [22, 42]. Our investigation resulted in the

design of adaptive mixing algorithms that changed stirring parameters as they went along based

on the current density profile. It would be interesting to attempt to devise such adaptive schemes

for these three dimensional problems and attempt to understand what sort of physical mechanisms

could implement the adaptive scheme. The challenge for three-dimensional problems would be to

devise an efficient model, rather than resorting to solving the full Navier-Stokes equation.
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[36] G. Mathew, I. Mezić, and L. Petzold. A multiscale measure for mixing. Physica D, 211(1-
2):23–46, 2005. http://dx.doi.org/10.1016/j.physd.2005.07.017.

[37] J.D. Meiss. Symplectic maps, variational principles, and transport. Rev. Mod. Phys.,
64(3):795–848, 1992. http://dx.doi.org/10.1103/RevModPhys.64.795.

[38] R.A. Mitchell and J.D. Meiss. Designing a finite-time mixer: Optimizing stirring for two-
dimensional maps. in Press, 2017. http://adsabs.harvard.edu/abs/2017arXiv170105620M.

[39] S. Shinohara. The threshold for global diffusion in the kicked Harper map. Phys. Lett. A,
298(5):330–334, 2002. http://dx.doi.org/10.1016/S0375-9601(02)00579-0.

[40] M. K. Singh, O. S. Galaktionov, H. E. H. Meijer, and P. D. Anderson. A simplified approach
to compute distribution matrices for the mapping method. Computers & Chemical Eng.,
33(8):1354–1362, 2009. http://dx.doi.org/10.1016/j.compchemeng.2009.01.021.

[41] T. H. Solomon, S. Tomas, and J.L. Warner. Role of lobes in chaotic mixing of miscible and
immiscible impurities. Phys. Rev. Lett., 77:2682–2685, 1996. https://doi.org/10.1103/

PhysRevLett.77.2682.

[42] M.F.M. Speetjens, E.A. Demissie, G. Metcalfe, and H.J.H. Clercx. Lagrangian transport
characteristics of a class of three-dimensional inline-mixing flows with fluid inertia. Phys.
Fluids, 26(11):113601, 2014. http://dx.doi.org/10.1063/1.4901822.

http://dx.doi.org/10.1016/j.cej.2013.09.010
http://dx.doi.org/10.1016/j.cej.2013.09.010
http://dx.doi.org/10.1039/B211091A
http://dx.doi.org/10.1039/B211091A
http://dx.doi.org/10.1002/aic.690470507
http://dx.doi.org/10.1017/S002211201000563X
http://dx.doi.org/10.1016/0960-0779(94)90129-5
http://dx.doi.org/10.1016/0960-0779(94)90129-5
http://dx.doi.org/10.1214/aoms/1177692644
 https://doi.org/10.1017/S0022112007005332
 https://doi.org/10.1017/S0022112007005332
http://dx.doi.org/10.1016/j.physd.2005.07.017
http://dx.doi.org/10.1103/RevModPhys.64.795
http://adsabs.harvard.edu/abs/2017arXiv170105620M
http://dx.doi.org/10.1016/S0375-9601(02)00579-0
http://dx.doi.org/10.1016/j.compchemeng.2009.01.021
https://doi.org/10.1103/PhysRevLett.77.2682
https://doi.org/10.1103/PhysRevLett.77.2682
http://dx.doi.org/10.1063/1.4901822


85

[43] R. S. Spencer and R. M. Wiley. The mixing of very viscous liquids. J. Colloid Science,
6(2):133–145, 1951. http://dx.doi.org/10.1016/0095-8522(51)90033-5.

[44] R. Sturman, S.W. Meier, J.M. Ottino, and S. Wiggins. Linked twist map formalism in two and
three dimensions applied to mixing in tumbled granular flows. J. Fluid Mech., 602:129–174,
2008. http://dx.doi.org/10.1017/S002211200800075X.

[45] R. Sturman, J.M. Ottino, and S. Wiggins. The Mathematical Foundations of Mixing: The
Linked Twist Map as a Paradigm in Applications : Micro to Macro, Fluids to Solids, volume 22
of Cambridge monographs on applied and computational mathematics. Cambridge University
Press, Cambridge, 2006.

[46] R. Sturman and J.-L. Thiffeault. Lyapunov exponents for the random product of two shears.
ArXiv e-prints, 2017. https://arxiv.org/abs/1706.03398.

[47] J.-L. Thiffeault. Stretching and curvature of material lines in chaotic flows. Physica D, 198(3-
4):169–181, 2004. http://dx.doi.org/10.1016/j.physd.2004.04.009.

[48] J-L. Thiffeault. Using multiscale norms to quantify mixing and transport. Nonlinearity,
25(2):R1–R44, 2012. http://dx.doi.org/10.1088/0951-7715/25/2/R1.

[49] S.M. Ulam. A Collection of Mathematical Problems, volume 8 of Interscience Tracts in Pure
and Applied Mathematics. Interscience, New York, 1960.
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