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Mixing of a passive scalar in a fluid flow results from a two part process in which large

gradients are first created by advection and then smoothed by diffusion. We investigate methods

of designing efficient stirrers to optimize mixing of a passive scalar in a two-dimensional nonau-

tonomous, incompressible flow over a finite time interval. The flow is modeled by a sequence of

area-preserving maps whose parameters change in time, defining a mixing protocol. Stirring effi-

ciency is measured by the mix norm, a negative Sobolev seminorm; its decrease implies creation

of fine-scale structure. A Perron-Frobenius operator is used to numerically advect the scalar for

three examples: compositions of Chirikov standard maps, of Harper maps, and of blinking vortex

maps. In the case of the standard maps, we find that a protocol corresponding to a single vertical

shear composed with horizontal shearing at all other steps is nearly optimal. For the Harper maps,

we devise a predictive, one-step scheme to choose appropriate fixed point stabilities and to control

the Fourier spectrum evolution to obtain a near optimal protocol. For the blinking vortex model,

we devise two schemes: A one-step predictive scheme to determine a vortex location, which has

modest success in producing an efficient stirring protocol, and a scheme that finds the true optimal

choice of vortex positions and directions of rotation given four possible fixed vortex locations. The

results from the numerical experiments suggest that an effective stirring protocol must include not

only steps devoted to decreasing the mix norm, but also steps devoted to preparing the density

profile for future steps of mixing.



Dedication

To Mom and Dad



v

Acknowledgements

Thank you for the support from NSF grant DMS-1211350. Thank you to my advisor, Prof.

Jim Meiss for your guidance, support, and company for the past three years. It’s been a pleasure

working with you. Thank you to my other committee members, Professors Keith Julien, Juan Re-

strepo, John Crimaldi, and Roseanna Neupauer. I greatly appreciate your time and thoughtfulness

in your consideration of my research. Thank you to Prof. Jim Curry for his genuine interest and

his insightful and helpful comments. Thank you to Emily O’Connor for her help and patience, and

to all the Applied Math staff for all the hard work they do. Thank you Mom and Dad for your

unwavering support at confidence in me. Thank you to all my roommates, friends, and peers who

have been with me through this whole process.



vi

Contents

Chapter

1 Introduction 1

1.1 Finite-Time Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Measure of Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Two-Dimensional Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Mathematical Formulation 9

2.1 The Mix Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Advection by Two-Dimensional Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Compositions of Shears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Computing the Perron-Frobenius Operator and the Mix Norm . . . . . . . . 17

2.4 Blinking Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Computing the Perron-Frobenius Operator and the Mix Norm . . . . . . . . 24

3 Results of Chirikov’s Standard Map and the Harper Map 29

3.1 Chirikov Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Single Step Stirring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Constant Amplitude Stirring . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Varying Amplitudes: Random Optimization Method . . . . . . . . . . . . . . 32

3.1.4 Sparse Stirring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Other Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vii

3.2 Harper Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Constant Shear Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Random Optimal Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Stepwise Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.5 Horizontal or Vertical Shearing . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Results of Blinking Vortex Map 61

4.1 Roaming Vortex Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Four Vortex Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusions 78

Bibliography 82



viii

Tables

Table

3.1 Mix norms for the Harper map with initial condition (3.1), energy EH = 0.5, and total steps T = 12

for the optimization schemes discussed in §3.2.2-3.2.5. The initial condition has ‖ρ0‖−1 = 0.2505.

The last column gives the percentage of protocols from the random trials of Fig. 3.22 that perform

better, i.e., have a smaller mix-norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Optimal, mean and standard deviations of the mix-norms at time T = 12 for the Harper map from

the distributions of Fig. 3.32(a). The initial conditions are normalized such that ‖ρ0‖−1 = 1. . . . 60



ix

Figures

Figure

1.1 Examples of finite-time mixers in which discrete mechanisms are used to mix fluid flowing through

three-dimensional pipe. Plot (a) shows the Kenics Static Mixer [22]. Plot (b) shows the rotated-arc

mixer (RAM) [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Decay of Hq norms for q = − 1
2
,−1,− 3

2
,−2,− 5

2
,−3 for a particular stirring protocol applied for

t = 1, . . . , 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Depiction of the shearing maps (2.5) for the Chirikov standard map (2.8) with a = 0.75. . . . . . 16

2.3 Depiction of the shearing maps (2.5) for the Harper map (2.9) with a = b = 0.75. . . . . . . . . 16

2.4 Diagram of (2.25) with v = 0.4 + i0.5, s = 1, and t = 4. The black curve indicates the invariant

boundary at the unit circle |z| = 1. The blue points mark the vortex and its image. The red curves

show the rotation direction of the vortices. The green curves show resulting trajectories for different

initial particle positions. The green points mark the initial positions of the particles and the green

arrowheads show the final positions at time t = 4. . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Grids of polar coordinates for Nr = Nθ = 32, 64, 128, 256. . . . . . . . . . . . . . . . . . . . . 27

2.6 Plot (a) is ρ0 as described by (2.39). Plot (b) is ρ̃0, which is (2.33) applied to the coefficients

produced by (2.38). Plot (c) is the radial error ρe = ρ0 − ρ̃0. . . . . . . . . . . . . . . . . . . 28

3.1 The H−1 seminorm (3.3) after one step of the standard map for initial state ρ0(x, y) = exp(2πi(kx+

ly)) (left panel) and one that has a Cauchy or Gaussian Fourier spectrum (right panel) as a function

of the shear strength a1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



x

3.2 Phase portrait of the autonomous Chirikov standard map with at = a0 = 0.05. . . . . . . . . . . 31

3.3 Evolution of the density ρt(x, y) for t = 0, 1, 2, 3, applying the standard map (2.8) with constant

amplitude at = 0.05 with initial condition (3.1) using N = 301 grid points. For a movie of all 12

steps, see http:/amath.colorado.edu/faculty/jdm/movies/ChirikovConst.mp4. . . . . . . . . 32

3.4 Decay of ‖ρt‖−1 for the standard map (2.8) with constant amplitude (a0, a0, . . . , a0). The different

curves are computed with grid sizes N , as shown in the legend. . . . . . . . . . . . . . . . . . 32

3.5 (a) Histogram of ‖ρT ‖−1 for ∼ 2.2 × 106 trials of the RO algorithm applied to the standard map

(2.8) with EC = T + 0.03, T = 12, and initial condition (3.1). The green curve indicates the best

fit normal distribution with mean 0.1429 and standard deviation 0.03704. The red point indicates

the norm achieved for the constant case (a0, . . . , a0). (b) Comparison between the mix-norms as a

function of time for the constant, RO, and RW protocols. . . . . . . . . . . . . . . . . . . . . 34

3.6 Amplitude vectors for the best twenty protocols found from the RO algorithm described in Fig. 3.5.

The black curve indicates the RO protocol and a movie of the spatial evolution of this case is at

http:/amath.colorado.edu/faculty/jdm/movies/ChirikovMC.mp4 . . . . . . . . . . . . . . . 34

3.7 Amplitude vectors of the best (d = 1) and the best twenty (d > 1) protocols found from the sparse

RO method. The open circles/black line indicates the optimal protocol for each case. . . . . . . . 35

3.8 Comparison of ‖ρt‖−1 for the random optimal protocol with the sparse optimal protocols for d =

1, 2, 3, 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Phase portraits of the map (3.4) for T = 2, 3, and 4 with a2 = −0.1732. For T ≥ 6 (not shown),

the dynamics appears to be nearly uniformly chaotic, except for small period-six island chains along

lines of slope −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Amplitude vectors for the worst (d = 1) and the worst twenty (d > 1) stirring protocols up to d = 4.

The open circles/black line indicates the worst protocol for each case. . . . . . . . . . . . . . . 37

3.11 Evolution of ρt(x, y) after one step of shear (a = 0). Top row shows evolution in real space. Bottom

row shows the evolution of magnitudes of Fourier coefficients of degree up to 2. One step of shear

results in a vertical shift of the Fourier coefficients, except for those corresponding to x wavenumber

= 0, which remain constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

http:/ amath.colorado.edu/faculty/jdm/movies/ChirikovConst.mp4
http:/amath.colorado.edu/faculty/jdm/movies/ChirikovMC.mp4


xi

3.12 Evolution of ρt(x, y) for the d = 1 sparse RO protocol of Fig. 3.7. Top row shows the evolution in

physical space. Bottom row shows the evolution of magnitudes of Fourier coefficients with mode

numbers up to 2; the value of the invariant (0, 0) mode, ρ̂0,0 set to zero. The numbered pairs indicate

the wave numbers and the greyscale indicates the coefficient magnitude, black being the maximum

and white being zero. For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/jdm/

movies/ChirikovSparse.mp4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.13 Evolution of ρt(x, y) for the d = 1 sparse RW protocol. The eight panels are otherwise equivalent

to those in Fig. 3.12. For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/jdm/

movies/ChirikovSparseBad.mp4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.14 Density profiles of the form (3.7), with the randomly chosen parameters (u, v) ∈ [0, 1)2, ε ∈ [0.1, 5],

K,L ∈ {1, 5}, nl ∈ {−10, 10}2, φl ∈ [0, 2π], Cl less that 20% of the maximum bump amplitude.

Each density profile is scaled such that ‖ρ0‖−1 = 1. . . . . . . . . . . . . . . . . . . . . . . . 41

3.15 (a) Histogram of time at which largest |at| occurs for d = 2 RO protocols. (b) The fraction of the

RO protocols that satisfy a2tmax > rE as a function of r. We perform 104 trials to find the d = 2

RO protocols for 1200 different initial conditions of the form (3.7) on a grid of size N = 128 with

(3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.16 Level sets of the Hamiltonian (3.8) with various relative values of (a, b). . . . . . . . . . . . . 43

3.17 Phase portraits of the Harper map (2.9) with constant amplitudes, (a) at = bt = 0.1443 and (b)

(at, bt) = (−0.211881, 0.15726). With the relatively small amplitudes in (a) the evolution resem-

bles the Hamiltonian flow shown in Fig. 3.16, with a thin chaotic separatrix layer. For the larger

amplitudes in (b) there is more chaos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.18 Evolution of ρt(x, y) for the Harper map (2.9) with initial condition (3.1) for t = 0, 1, 2, 3 (top row)

and t = 6, 8, 10, 12 (bottom row) with constant strengths at = bt = 0.1443. Contours correspond to

the Hamiltonian (3.8). For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/jdm/

movies/HarperConst.mp4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparse.mp4
http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparse.mp4
http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparseBad.mp4
http:/amath.colorado.edu/faculty/jdm/movies/ChirikovSparseBad.mp4
http:/ amath.colorado.edu/faculty/jdm/movies/HarperConst.mp4
http:/ amath.colorado.edu/faculty/jdm/movies/HarperConst.mp4


xii

3.19 Evolution of ρt(x, y) for the Harper map (2.9) with initial condition (3.1) for t = 0, 1, 2, 3 (top row)

and t = 6, 8, 10, 12 (bottom row) with constant strengths at = −bt = 0.1443. Contours correspond

to the Hamiltonian (3.8). For a movie of all 12 steps, see http:/amath.colorado.edu/faculty/

jdm/movies/HarperConstNeg.mp4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.20 Decay of ‖ρt‖−1 for the Harper map (2.9) with initial condition (3.1) for twelve iterates with constant

strength at = bt = 0.1443 (left) and at = −bt = 0.1443 (right). The values in the legend denote the

maximum mode number, M , with grid size N = 2M + 1. . . . . . . . . . . . . . . . . . . . . 46

3.21 Level sets of constant mix-norm for (at, bt) = (a, b) with T = 12 and initial condition (3.1) for a

grid of amplitudes in the square −0.2 ≤ a, b ≤ 0.2. The color bar shows the value of the mix-norm:

dark colors correspond to less mixing, and the optimal case is white. The blue points indicate the

optimal protocol as a function of energy EH = T (a2 + b2). . . . . . . . . . . . . . . . . . . . 47

3.22 Distribution of ‖ρT ‖−1 after ∼ 1.4 × 106 trials of the random optimization method applied to the

Harper map (2.9) with T = 12 and initial condition (3.1). The green curve indicates the best

fit normal distribution with mean 0.1486 and standard deviation 0.05636. The red and orange

dots indicate ‖ρT ‖−1 for the constant amplitude elliptic, Fig. 3.18, and hyperbolic, Fig. 3.19, cases

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.23 Evolution of ρt(x, y) for the Harper map (2.9) with initial condition (3.1) for t = 0, 1, 2, 3, 6, 8, 10, 12

with best protocol of ∼ 1.7 × 107 random trials. Overlaid on each frame, except the last, are the

contours of the Hamiltonian (3.8) for the upcoming map step. For a movie of all 12 steps, see

http:/amath.colorado.edu/faculty/jdm/movies/HarperMC.mp4. . . . . . . . . . . . . . . . . 48

3.24 Energy profile of the RO solution for initial density (3.1), EH = 0.5, and T = 12. . . . . . . . . . 49

3.25 (a) Mix-norm as a function of time for the RO protocol for the Harper map (2.9) with EH = 0.5,

solid (black) curve. Also shown are the elliptic constant, at = bt = γo, (dashed red curve) and the

hyperbolic constant, at = −bt = γo (dotted blue curve) protocols of §3.2.2. (b) Pareto frontier,

showing the attainable mix-norm as a function of energy for the Harper map, solid (black) curve.

The dashed (red) curve shows the worst trial, RW, and the mix-norm achieved by the hyperbolic

constant protocol is shown as the dotted (blue) curve. . . . . . . . . . . . . . . . . . . . . . 50

http:/ amath.colorado.edu/faculty/jdm/movies/HarperConstNeg.mp4
http:/ amath.colorado.edu/faculty/jdm/movies/HarperConstNeg.mp4
http:/amath.colorado.edu/faculty/jdm/movies/HarperMC.mp4


xiii

3.26 Comparison of RO and SW protocols of the Harper map for t = 1, 2, 3 using the initial condition

(3.1). The first column shows ρt(x, y) for first three steps of the RO protocol, and the second gives

that of the stepwise protocol applied to the RO state ρt−1. The color scale shows the mix-norm

as a function of (a, b) for step t. The dotted circle is (3.9), from which the parameters for the SW

protocol are selected. The green point on this circle corresponds to the RO and the blue point to

the SW parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.27 (a) Progression of ‖ρt‖−1 for the RO and SW protocols described in Figure 3.26. For a movie of

the SW protocol steps, see http:/amath.colorado.edu/faculty/jdm/movies/HarperSW.mp4. (b)

Progression of ‖ρt‖−1 for the RO, CS SW, and CS RO protocols. The latter used ∼ 4× 105 trials.

The two constant shear protocols are identical until t = 3. . . . . . . . . . . . . . . . . . . . 53

3.28 Density plot of the number of times choosing a 6= 0 results in better one step mixing than choosing

b 6= 0 with respect to mode numbers (n1, n2) for initial condition (3.11) with 200 random choices of

phase shift φ. Here the shear amplitudes, |a| or |b|, are fixed to γ0 = 0.2041, but varying γ0 within

reasonable bounds does not meaningfully change the results. . . . . . . . . . . . . . . . . . . 55

3.29 The intensity of the color at a given point (u, v) is proportional to the percentages of sign choices

that yielded the best mixing over different ε ranging from 0.1 to 5 using the initial density (3.6). . 57

3.30 Evolution of ρt(x, y) for the stirring protocol produced by CS Full and CS FS: alternating steps

of (0, γo) and (−γo), γo =≈ 0.204, with initial condition (3.1) for t = 1, 2, 3, 4 (top row) and

t = 6, 8, 10, 12 (bottom row) on a 128× 128 grid. . . . . . . . . . . . . . . . . . . . . . . . . 59

3.31 Decay of ‖ρt‖−1 for the RO protocol, the SW minimizing protocol, and the CS FS protocol shown

in Fig. 3.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.32 (a) Distribution of ‖ρT ‖−1 using the three shearing techniques, for random choices of (3.7) where

(u, v) ∈ [0, 1)2, ε ∈ [0.1, 5.0], and n ∈ {−10, 10}2. We use energy EH = 0.5 and T = 12. (b) Means

and (c) standard deviations of ‖ρt‖−1 for the CS SW, CS Full, and CS FS solvers. . . . . . . . . 60

4.1 Evolution of ρt for t = 0, . . . , 3 with initial density (4.1), Nr = Nθ = 128, and blinking vortex

protocol vectors (4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

http:/amath.colorado.edu/faculty/jdm/movies/HarperSW.mp4


xiv

4.2 Initial Gaussian density profile (4.1) with Nr = Nθ = 128 subjected to vortices at different distances:

(a) v = 0.05, ‖ρ‖−1 defined by (2.36) decreases by 0.2%, (b) v = 0.35, ‖ρ‖−1 decreases by 5.4%, (c)

v = 0.65, ‖ρ‖−1 decreases by 3.6%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Density profile (4.3) with (a, b) = (0.5, 0.125) with fitted covariance ellipse EzC ,%,α with zC = 0,

% = 0.5. The black point marks zC and the black curve marks EzC ,%,α. . . . . . . . . . . . . . . 65

4.4 Optimizing one-step mixing of the RV Problem for an elliptic unmixed region with initial condition

(4.3) and (a, b) = (0.5, 0.125) depicted by Fig. 4.3. Plot (a) shows the variance (4.4). Plot (b) shows

the mix norm ρ1 with respect to v. Plot (c) shows the density profile ρ1 after applying the variance

optimizing vortex. Plot (d) shows ρ1 after applying the mix norm optimizing vortex. The purple

point marks the variance optimizing vortex v = −0.2381− 0.1429i. The green point marks the mix

norm optimizing vortex v = −0.3333− 0.2381i. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Evolution of ρt for t = 0, 1, 2, 4, 6, 8, 10, 12 with initial condition (4.1) and Nr = Nθ = 128. Param-

eters of the RV algorithm are Nz = 1005, % = 0.2, α = 0.75, and Nv = 88. . . . . . . . . . . . . 68

4.6 Evolution of ρt for t = 0, 1, 2, 4, 6, 8, 10, 12 with initial condition (4.1) and Nr = Nθ = 128. Param-

eters of the RV algorithm are Nz = 1005, Nv = 88 and % and α vary according to (4.5). . . . . . . 69

4.7 Decay of ‖ρt‖−1 for the RV stirring protocols with constant parameters (Fig. 4.5) and nonconstant

parameters (Fig. 4.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 One-step evolution of initial density (4.1) with default first vortex choice ω1 = +r and Nr = Nθ = 28.

Plot t = 0 shows ρ0 with a square marking the vortex v1 = 1
2
. Plot t = 1 shows ρ1 after vortex at

v1 was applied counterclockwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Evolution of ρt for the optimal stirring protocols of the FV problem for N = 2, . . . , 8 with initial

condition (4.1) and Nr = Nθ = 27. Squares mark where a vortex will be activated counterclockwise,

diamonds mark where a vortex will be activated clockwise. . . . . . . . . . . . . . . . . . . . . 73

4.10 ρ4 after applying the same vt as the optimal 4-step FV scheme (Third row of Fig. 4.9), with all

possible other choices of rotation direction st. . . . . . . . . . . . . . . . . . . . . . . . . . 74



xv

4.11 Mix norms of the FV optimal stirring protocols for N = 1, . . . 8 shown in Figures 4.8 and 4.9. Plot

(a) shows the decay of ‖ρt‖−1 with respect to t . Plot (b) shows the decay of ‖ρN‖−1 with respect

to N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Results of the Random Optimal algorithm applied with 104 trials to find the proportion vector

(γ 1
2
, γ i

2
, γ− 1

2
, γ− i

2
) which satisfies γv ∈ [0, 1] and (4.9) and the sign vector (s 1

2
, s i

2
, s− 1

2
, s− i

2
) which

minimize ‖ρ100‖−1 with T = 1 and τ = 1
100

. The vectors produced by the algorithm are γ =

(0.47, 0.4, 0.01, 0.11) and s = (1,−1, 1,−1). Plot (a) shows the density profile after the scheme is

applied. Plot (b) shows the contours of the Hamiltonian (4.8). . . . . . . . . . . . . . . . . . 77



Chapter 1

Introduction

The design of an efficient mixer for a passive scalar in an incompressible flow requires effective

mechanical “stirring” of the fluid that eventually will lead to homogenization through diffusion.

When stirring gives rise to fine-scale filaments, even a small diffusivity can be highly effective in

homogenization. As was noted by Spencer and Wiley [43]:

When the materials to be mixed are very viscous liquids. . . neither diffusion nor
turbulence can assist very much in mixing. Rather, mixing must be effected by
some complex, continuous deformation which serves to disperse the components to
the desired degree.

Thus, as a first step in designing a mixer one can ignore diffusion and study only advection by an

incompressible flow. The results are expected to be “transportable” to the diffusive case. Cortelezzi

conducted experiments to support to this claim by devising stirring schemes first by taking diffusion

into account and then by ignoring diffusion [10]. He found that, provided the Péclet number, or

the ratio of the rate of advection to diffusion, is sufficiently large, the stirring schemes produced by

the pure advection case closely resembled those of the full advection-diffusion problem.

1.1 Finite-Time Mixers

In this thesis we are interested in the finite-time case: How can one design the best mixer for

a given initial state and a given finite time? There have been previous investigations of finite-time

mixers in which fluid is injected at one end of a cylindrical pipe, flows past a finite number of

mixing elements, and is emitted at the other end. For example, the Kenics Static Mixer discussed
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in Galaktionov et al. consists of a cylindrical pipe with twisted blades placed at fixed locations

along the pipe [22]. The twist directions and angles of the blades are the parameters that can

be modified to improve mixing efficiency. Examples of the mixer with different blade angles and

orientations are shown in Fig. 1.1(a). Another example is the rotated-arc mixer (RAM) discussed

in Speetjens et al., which consists of two cocentric cylinders: a stationary inner cylinder and a

rotating outer cylinder [42]. A window is cut into the inner cylinder, so that the fluid is mixed by

drag created by exposure to the outer cylinder. A picture of the RAM mixer is shown in Fig. 1.1(b).

Other examples of this type of mixing include “making up rubber formulations on compounding

rolls, using an extruder as a mixer, kneading bread dough, and pulling taffy” [43]. Our goal is to

develop methods that can be used to optimize the geometry of the elements to maximize mixing.

Figure 1.1: Examples of finite-time mixers in which discrete mechanisms are used to mix fluid flowing through

three-dimensional pipe. Plot (a) shows the Kenics Static Mixer [22]. Plot (b) shows the rotated-arc mixer (RAM)

[42].

We view the stirring process as a finite sequence of steps; each corresponding to one element of

the mixer. The design corresponds mathematically to the selection of a finite sequence ft : D → D,

t = 1, 2, . . . , T , of maps on a domain D. Each map can be thought of as the result of a flow for
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a time τt of an incompressible fluid so that each ft is a volume-preserving diffeomorphism. Such

a blinking flow could be a reasonable model of a low Reynolds number fluid in a cavity where the

side walls are alternatively moved, or for flows with magnetohydrodynamic forcing [33, 10].

We will study compositions of time dependent transport maps, see §2.3 and §2.4. The mixer

acts on a passive scalar, represented by a density ρ : D → R. Our goal is to find a sequence

{ft} that takes a fixed “unmixed” initial state, ρ0, to one that is “optimally mixed” after flowing

through the full system, i.e., under the composition

FT = fT ◦ fT−1 ◦ · · · ◦ f2 ◦ f1.

Ignoring diffusion, sources, and reactions, the evolution of the density is determined by the Perron-

Frobenius operator P,

ρt(z) = Pt[ρt−1](z) = ρt−1(f−1
t (z)), t = 1, 2, . . . , T. (1.1)

It is common to study mixing using autonomous dynamics, where the maps ft are either

identical or repeated in a periodic sequence. Mixing for this case can be measured using concepts

appropriate for the infinite-time limit, i.e., Lyapunov exponents or measure-theoretic entropy. Lya-

punov exponents indicate the presence of chaos, so they can be used as an indicator of effective

mixing. D’Alessandro, Dahleh, and Mezić consider a two-dimensional piecewise flow and use a

control theory approach to maximize the entropy of the system [12]. They show that the entropy

can be found by computing the positive Lyapunov exponents of the flow. Entropy is an intuitive

measure of mixing because it describes the randomness of a system. They conclude that alternating

maps of vertical and horizontal shears maximizes the entropy.

Aref noted that effective stirring can arise from chaotic dynamics [2]. He used a piecewise

constant blinking vortex model to stir particles in a two-dimensional circular domain. He inves-

tigated the emergence of chaos relative to the period of switching between activation of the two

vortices. He discovered that as the period approaches zero, the flow approaches an integrable sys-

tem, and therefore the regions of chaotic orbits shrink to zero, resulting in very poor mixing. He
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concluded that a large enough period was required so that the dynamical instability created by

the vortex switching would increase the size of the chaotic regions. In §2.4, we introduce a stirring

model very similar to Aref’s blinking vortices, and we present results for this model in Chapter 4.

The effect of regular islands in the phase space on mixing is discussed in [16] and [17], where

it is observed that the emergence of islands in “a sea of chaos” greatly detracts from the mixing

efficiency. These works use symmetries of the stirring maps to identitiy elliptic points that will

indicate the emergence of an island, then use this knowledge to recursively rotate and manipulate

the symmetries to destroy the islands. The first work applies this method to a cavity flow, in which

two walls of a cavity containing a fluid are moved in opposite directions. The second work applies

the method to egg beater flows, which use piecewise alternating vertical and horizontal shearing

similar to the model discussed in D’Alessandro, Dahleh, and Mezić [12].

There are a number of works that investigate the relationship between chaos and mixing with

applications to the optimal design of a periodic sequence of obstacles in a channel or pipe. One is

the Kenics Static Mixer discussed above [22]. Others include Micro Total Analysis Systems, which

use twisting microchannels to mix miniscule quantities of fluid [29]. The Anisotropic Unstructured

Meshes Mapping Method attempts to mix microfluids by specifying a spatial pattern of bends in

a pipe to induce chaos [23]. A longitudinal vortex generators approach can be used to design a

T-shaped channel micromixer [28].

It is less clear what role chaos plays in the finite-time, nonautonomous case. The study

of aperiodic protocols was initiated by [33], using as a model, the “sine flow”, equivalent to the

Harper map in §2.3. The flow is modeled by a succession of horizontal or vertical shears with

fixed amplitudes. The mixing is optimized for a discrete set of possibilities: a choice to switch—or

not—from one shear to another with a fixed time step. This work is extended in [10], where short-

time horizons are used to determine an optimal scheme for switching, in which the algorithm only

looks a few steps in the future to reduce the number of protocols to choose from. These studies

found that even though a periodic switching protocol can have a large Lyapunov exponent (when

repeated for infinite time), it is typically not the optimal choice for mixing. Later studies allowed
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continuous shifts in the phase of the shears [26] and its shape [25]. We will extend their results

below by considering more general protocols in which the shear amplitudes, or equivalently their

actuation times, can vary.

An alternative approach to finite-time optimization, based on control theory, was used in [19]

for the advection-diffusion problem; in this work the advective part is fixed and diffusion is allowed

to locally vary to enhance mixing. The authors describe a target equilibrium density profile that

is invariant under advection, and they seek to to minimize the L2 distance from the target density

to the computed density after some finite time.

Another approach is to fix the diffusivity and use control theory to optimize a time-dependent

linear combination of two vortical flows [11]. The problem becomes to minimize a function that

consists of the sum of the measure of mixedness with the cost of the energy of the flows. The

process is approximated by discrete operations, and then subjected to a control feedback loop to

determine the optimal advective scheme. The approach of optimizing mixing with limits on the

allowed energy of the advective action will be introduced in §2.3, and used for the results in Chapter

3.

More recently, Sturman and Thiffeault have investigated the bounding of Lyapunov exponents

for random products of two shear matrices [46]. These random products can be thought of as non

autonomous composition of shearing maps. The Lyapunov exponents can be a good indication of

mixing, so computing bounds for them is a way of predicting the decay of mixing.

1.2 A Measure of Mixing

In order to select an “optimal” mixing protocol, we must define the stirring effectiveness in

some way. Mixing, in a measure theoretic sense, is defined through an infinite time limit [31]. A

transformation f : D → D that preserves a measure µ is mixing if for any two measurable sets A

and B, the measure of the overlap µ(A∩ f−t(B))→ µ(A)µ(B)/µ(D) as t→∞. Equivalently, f is

mixing if for any initial density ρ0 ∈ L1(D), ρt(x), determined by (1.1), converges weakly as t→∞
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to its mean

〈ρ〉 =
1

|D|

∫
D
ρ dµ, (1.2)

where |D| = µ(D) is the volume of D.

For our purposes, measure-theoretic mixing is not an appropriate yardstick for two reasons.

First, mixing implies that every L2 initial state, not just those of physical interest, approaches a

uniform state. Moreover, even if the entropy is zero, a physical state may still develop fine-scale

structure [36]. Second, we are interested in a given state becoming “mixed-up” after a finite number

of different transformations, not in the limit t→∞ for a single map.

As was noted by Danckwerts, in the presence of diffusion, the decrease of variance

Var(ρ) =
〈
ρ2
〉
− 〈ρ〉2 , (1.3)

is one measure of mixing [13]. Indeed, diffusion will cause Var(ρ) to decrease at a rate proportional

to ‖∇ρ‖2, the L2 norm of the gradient (See §2.1) [48]. Thus to be effective, a stirrer should increase

gradients so that diffusion is activated. This “intensity of segregation” has been used to optimize

mixing in diffusive flows [30, 22, 23]. However, in the absence of diffusivity and sources, the variance,

and each Lp-norm, of the density is constant.

One class of mixing measures include the mix-norm of Mathew, Mezić, and Petzold [36] and

equivalent Sobolev seminorms [48]. For functions that have zero mean, the squared Hq-seminorm

is defined by

‖ρ‖2q = ‖(−∆)
q
2 ρ‖2.

When q is not a positive integer, the Laplacian ∆ is to be interpreted by its Fourier symbol. A

more extensive discussion of the mix norm is given in §2.1.

1.3 Two-Dimensional Maps

Our primary interest is the design of efficient, finite-time mixers in a three-dimensional do-

main. However, in this thesis, we treat a simpler problem: we assume that the axial velocity is
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constant and that f corresponds to the map from a two-dimensional cross-section, through a mix-

ing element, to another such cross-section. Since the geometry of the mixing elements will vary,

subsequent maps will differ. Each of the ft will be chosen from a given family that satisfies some

geometric constraints. For example the RAM consists of an inner pipe surrounded by a spinning

outer pipe, and the mixing elements correspond to windows cut into the inner pipe [22]. Each map

represents the effect of the angularly sheared flow induced by the boundary drag. The maps, ft,

will depend on parameters that represent the window width, length, and rotation rate.

In this thesis, we study two families of shearing maps in a square domain, Chirikov and

Harper maps, see §2.3 and Chapter 3, and a family of blinking vortex maps, see §2.4 and Chapter

4, inspired by Aref’s blinking vortex model [2]. Each map depends on one or more parameters, say

at. Optimization then corresponds to selecting the best sequence from a given family, that is, to

select a vector a = (a1, a2, . . . , aT ) of parameters for maps in the family. Each family of maps will

have certain constraints on the parameter choices. In the case of the standard and Harper maps,

we assume that the total energy expended in the mixing process is bounded. The simple version

of this is to assume that some norm, ‖a‖, is fixed. When the norm is small, any fixed map in

one of our families is only weakly chaotic on a small subset of phase space. However, varying the

parameters from step-to-step can nevertheless result in effective stirring. In the case of the blinking

vortex maps, there are more parameter choices, such as vortex location, strength, and rotation

direction. We consider different schemes in which we allow some parameters to vary and others to

be held fixed.

For the shear maps, the simplest method to find an optimal protocol is to exhaustively search

all possible cases. This corresponds to selecting an optimal parameter vector a that satisfies an

energy constraint. Thus, we can simulate the optimization process by a random optimization

method: simply select the best result from a large number of trials that are equidistributed on the

sphere ‖a‖2 = E, corresponding to a fixed energy. For the blinking vortex maps, there are two many

parameters for a random optimal approach to be effective. One method used is to devise a one-step

predictive scheme. Another is to limit the parameter choices, so that the possible parameter vectors
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become finite and can be explored through an exhaustive search.

Our investigation seeks to understand mixing by focusing only on advection created by a

sequence of stirring events, accounting for diffusion in the mixing measure itself. Through numerical

simulations using simple area-preserving maps, and through analytical considerations based on

Fourier analysis and key characteristics of the maps, we gain some understanding of how to design

efficient stirrers.

In Chapter 2 we describe the action of advection in terms of compositions of maps. We show

how the shearing and blinking vortex maps can be derived from flows, and we explain how we

carry out the application of the maps numerically. In Chapter 3 we present results from numerical

experiments with the Chirikov standard and Harper maps. In Chapter 4 we present results from

numerical experiments with the blinking vortex map. In Chapter 5 we summarize the results and

suggest courses for future study.



Chapter 2

Mathematical Formulation

In this section, we justify and explain the implementation of the mathematical and numerical

methods used in this thesis. In §2.1 we justify the use of the negative Sobolev seminorm (2.1) in the

place of tracking diffusion. In §2.2 we show how a continuous flow described by the pure advection

equation can be represented by the composition of discrete maps. In §2.3 and §2.4 we explain the

mathematics and numerics associated with applying the two mixing models: the shear maps and

the blinking vortex map.

2.1 The Mix Norm

In this section, we justify the use of negative Sobolev-seminorms as a measure of mixing for

a passive scalar subjected to an incompressible flow with small diffusion. For an understanding of

what is meant by “small diffusion”, see [10]. For simplicity, we assume ρ has zero mean, such that

〈ρ〉 = 0, since if 〈ρ〉 = 0 we could redefine the function ρ = ρ−〈ρ〉. The mean of the density profile

is irrelevant when measuring mixing, so we need not consider it when computing the mix norm.

Recall the general definition of the Hq Sobolev norm:

‖ρ‖2q = ‖(−∆)
q
2 ‖2 =

1

|D|

∫
D
|(−L2∆)q/2ρ|2 dµ, (2.1)

where ρ(x, y, t) is a passive scalar defined over two-dimensional domain D at time t, and L is a

normalizing length scale. Recall from §1.2 that |D| = µ(D). For the case q < 0, the operator ∆ is

interpreted by its Fourier symbol.
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Let’s consider the incompressible velocity field u(x, y, t) which represents the stirring mecha-

nism, and diffusion coefficient κ. The evolution of ρ through time can be described by the advection-

diffusion equation with the incompressiblity constraint:

∂

∂t
ρ+ u · ∇, ρ = κ∆ρ. (2.2)

∇ · u = 0 (2.3)

We apply a no-flux boundary condition, where if ∂D describes the boundary of D, we require that

∇ρ · n̂ = 0 on ∂D

where n̂ is the outward pointing unit normal of the surface ∂D. In addition, we assume we always

either have a Dirichlet boundary condition

ρ = 0 on ∂D,

or a Neumann boundary condition

∇ρ = 0 on ∂D.

The variance (1.3) seems to be an intuitive way of measuring mixing because it measures

deviations from the mean, so small variance indicates that the concentration is mostly uniform

throughout the domain. To understand how the variance Var(ρ) decays in time, we recall the

definitions (1.2) and (1.3) from Chapter 1. First, we can show that the mean of the concentration

remains constant, by substituting (2.2) into (1.2) to get

d

dt
〈ρ〉 =

1

|D|

∫
D

∂ρ

∂t
dµ

(2.2)
=

1

|D|

∫
D

(κ∆ρ− u · ∇ρ)dµ =
1

|D|

κ (1)∫
D

∆ρdµ −
(2)∫

D
u · ∇ρdµ

 .

The integral (1) becomes zero by applying the divergence theorem and the boundary conditions:

(1) =

∫
D
∇ · ∇ρdµ Dv Thm

=

∫
∂D
∇ρ · n̂dS Bnd Cnd

= 0.

The integral (2) becomes zero by applying product rule, the incompressibility condition (2.3), the

divergence theorem, and the boundary conditions:

(2)
Prd Rl

=

∫
D

(∇ · (ρu)− ρ(∇ · u)dµ
(2.3)
=

∫
D
∇ · (ρu)dµ

Dv Thm
=

∫
∂D

ρu · n̂dS Bnd Cnd
= 0.
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Therefore,

〈ρ〉 = 0.

A similar calculation, which uses Green’s Theorem, will show that d
dt‖ρ‖

2 = −2κ‖∇ρ‖2, since

d

dt
‖ρ‖2 =

d

dt

1

|D|

∫
D
ρ2dµ = 2

1

|D|

∫
D

(κρ∆ρ− ρ(u · ∇ρ))dµ

Prd Rl
(2.3)
= 2

1

|D|

∫
D

(κρ∆ρ−∇ · (ρu))dµ

Dv Thm
Bnd Cnd

= 2κ
1

|D|

∫
D
ρ∆ρdµ

Grn Thm
= 2κ

1

|D|

∫
∂D

ρ(∇ρ · n̂)dS − 2κ
1

|D|

∫
D
∇ρ · ∇ρdµ

Bnd Cnd
= −2κ‖∇ρ‖2.

Combining the results gives the decay rate of the variance:

d

dt
Var(ρ) =

d

dt
〈ρ〉2 +

d

dt
‖ρ‖2 = −2κ‖∇ρ‖2.

For κ near zero, as in the types of problems we are concerned with, the calculation of the rate

of change of the variance will become more difficult, as it will depending on the computation of

gradients on small scales. Moreover, if κ = 0, then the variance is conserved, so we require a

different measure of mixing. To understand why the H−1 norm in particular accomplishes this, we

consider the time evolution of the H1 norm, defined as

‖ρ‖H1 = ‖(−∆)
1
2 ρ‖ = ‖∇ρ‖,

so that the time derivative of the square norm is

d

dt
‖ρ‖2H1 =

1

|D|

∫
D

d

dt
|∇ρ|2dµ = 2

1

|D|

∫
D
∇ρ · d

dt
(∇ρ) dµ = 2

1

|D|

∫
D
∇ρ · ∇

(
∂ρ

∂t

)
dµ

Prd Rl
= 2

1

|D|

∫
D

(
∇
(
∂ρ

∂t
∇ρ
)
−∆ρ

∂ρ

∂t

)
dµ

Dv Thm
Bnd Cnd

= −2
1

|D|

∫
D

∆ρ
∂ρ

∂t
dµ

= −2

〈
∆ρ

∂ρ

∂t

〉
.
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Substituting (2.2) gives

1

2

d

dt
‖ρ‖2H1

= −
〈

∆ρ
∂ρ

∂t

〉
= − 1

|D|

∫
D

∆ρ(κ∆ρ− u · ∇ρ)dµ

= −κ‖∆ρ‖2 +
1

|D|

∫
D

∆ρ(u · ∇ρ)dµ

Prd Rl
= −κ‖∆ρ‖2 +

1

|D|

∫
D

[∇ · ((u · ∇ρ)∇ρ)−∇ρ · ∇(u · ∇ρ)] dµ

Dv Thm
Bnd Cnd

= −κ‖∆ρ‖2 − 1

|D|

∫
D
∇ρ · ∇(u · ∇ρ)dµ

= −〈∇ρ · ∇(u · ∇ρ)〉 − κ‖∆ρ‖2.

Therefore, as gradients on fine scales get large, as would be the case with effective mixing, the

H1 norm will diverge. Applying the Cauchy-Schwartz inequality gives the following relationship

between the H1 and H−1 norms:

‖ρ‖2 =
〈
∇ρ · ∇−1ρ

〉
≤ ‖ρ‖H1‖ρ‖H−1 .

If we consider the pure advective case with κ = 0, the quantity ‖ρ‖2 will remain constant. We

know that good mixing requires the H1 norm to diverge. If the norm H−1 were to converge to

zero, the H1 would diverge to satisfy the inequality above. Therefore the convergence of the H−1

norm to zero implies good mixing [48].

For the purposes of this thesis, we use the H−1 norm, abbreviated as ‖·‖−1, though any

negative Sobolev seminorm can be used as a measure of mixing. The following theorem, presented

and proved in [32], states that convergence of any negative Sobolev norm to zero implies weak

convergence to the mean.

Theorem 1 A time-dependent function ρ(z, t), where ρ(·, t) ∈ L2(D) has mean zero and is

bounded in L2 uniformly in time, is weakly convergent to zero if and only if

lim
t→∞
‖ρ(·, t)‖Hq = 0, for any q < 0.

There are numerical implications for different choices of negative q values. Define ρ′ to be the

density profile ρ with length scales half the size. Thiffeault notes in [48] that

‖ρ′‖Hq = 2q‖ρ‖Hq .
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Halving the length scales will cause the norm to decay at a rate of 2q. For q closer to zero, this

will require the use of finer scales to get an accurate measure of mixing. For large negative q, the

norm decays dramatically with decreasing length scales. Figure 2.1 shows the time evolution of Hq

norms for different values of q for a particular stirring protocol. As q becomes a larger negative

number, the high order mode terms of (2.1) decay more rapidly, and stirring applied to density

with fine scale structure will have no significant impact. While the norms for q = −1
2 ,−1 continue

to decay for steps t = 8, . . . , 12, the norms for q = −5
2 ,−3 stay almost the same. Using a norm

with q as too large a negative number is not advisable, since this simulates high diffusion, which is

not within the scope of the problems we are interested in.
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Figure 2.1: Decay of Hq norms for q = − 1
2
,−1,− 3

2
,−2,− 5

2
,−3 for a particular stirring protocol applied for

t = 1, . . . , 12.

Mathew, Mezić and Petzold define their mix norm to be the H−
1
2 norm, by defining the

following functions on an n-dimensional torus Tn:

d(ρ, z, %) =

∫
B%(z) ρdµ

|B%|
, π(ρ, %) =

(∫
Tn
d2(ρ, z, %)dµ

) 1
2

, Π(ρ) =

(∫ 1

0
π2(ρ, %)dµ

) 1
2

,

where B%(z) is the closed ball of radius % centered around the point z ∈ Tn [36]. The function

d(ρ, z, %) is the mean value of ρ in the ball B%(z), π(ρ, %) is the L2 norm of d(ρ, z, %) for a fixed ball

size %, and Π(ρ), the mix norm, is the L2 norm of π(ρ, %). Mathew et al. explain, “The basic idea

behind the mix norm is to parametrize all sub-intervals of [Tn] and to take the root mean square
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of the average values of [ρ] over these sub-intervals” [36]. In other words, the norm computes local

averages throughout the domain for different length scales, then measures the total impact of all

these averages. They refer to the application of Φ on the function ρ−〈ρ〉 as the mix variance. The

mix norm and the mix variance are equivalent for the case 〈ρ〉 = 0. Since ρ − 〈ρ〉 has zero mean,

the quantity Π(ρ − 〈ρ〉) will give a measure of the total difference between local means and the

global mean 〈ρ〉. By rewriting the above equations with inner products, and providing a spectral

form of a mix-norm operator, Mathew et al. show that Π(ρ) is equivalent to the H−
1
2 norm [36].

2.2 Advection by Two-Dimensional Maps

Consider the pure advection equation defined by

∂

∂t
ρ+ u · ∇ρ = 0, (2.4)

over a two-dimensional domain D, where ρ(x, y, t) = ρt(x, y) is the concentration of a passive scalar,

and u(x, y, t) = (ux(x, y), uy(x, y)) is an incompressible velocity field. We now ignore diffusion when

evolving ρ in time, recall §2.1. Given the initial condition ρ(x, y, 0) = ρ0(x, y), the velocity field u

produces the flow ϕ such that (xt, yt) = ϕt(x0, y0). The general solution of (2.4) is

ρt(x, y) = ρ0(ϕ−t(x, y)).

We define a map f : D → D to carry out the discrete action of the flow for a unit time interval:

(xt, yt) = f(xt−1, yt−1) = ϕ1(xt−1, yt−1).

We allow the velocity field u to change at each time step, so we consider the sequence of

velocity fields (u1, u2, . . . , uT ) and the corresponding sequence of maps (f1, f2, . . . , fT ). To find

ρt(x, y) we apply the Perron-Frobenius operator P which takes compositions of the sequence of
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inverse maps in reverse order:

ρt(x, y) = Pt[ρt−1(x, y)]

= ρt−1(f−1
t (x, y))

= ρ0(f−1
1 ◦ · · · ◦ f−1

t (x, y)).

2.3 Compositions of Shears

As a simple model, we study a family of two-dimensional maps given by the composition

of a pair of shears on a periodic domain. Taking the domain to be the torus with unit period,

D = T2 = [0, 1)2, and z = (x, y) ∈ T2, the vertical and horizontal shears have the forms

sy(x, y) = (x , y +X(x)),

sx(x, y) = (x+ Y (y) , y),

(2.5)

where X,Y : S→ S are circle maps. Composing the shears (2.5) gives the one-element map

f(x, y) = sx ◦ sy(x, y) = (x+ Y (y +X(x)) , y +X(x)). (2.6)

When the shears are smooth, (2.6) is an area-preserving diffeomorphism with the inverse

f−1(x, y) = (x− Y (y) , y −X(x− Y (y))).

The map (2.6) is the solution of the advection problem

(ẋ, ẏ) = v(x, y, t) =

 (0, g(x)), 0 ≤ t ≤ τy

(h(y), 0), τy < t ≤ τy + τx

, (2.7)

where X(x) = τyg(x) and Y (y) = τxh(y). Thus, the amplitudes of the functions X and Y represent

both the elapsed times, τy and τx, and the strengths of the components of the velocity field v.

The family (2.6) includes many well-studied cases, including Arnold’s cat map [3] withX(x) =

x and Y (y) = y, Chirikov’s standard map [9, 37], depicted in Fig. 2.2, for which

X(x) = −a sin(2πx),

Y (y) = y,

(2.8)
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and the Sine-flow or Harper map [33, 4, 39, 6], depicted in Fig. 2.3, for which

X(x) = −a sin(2πx),

Y (y) = b sin(2πy).

(2.9)

Figure 2.2: Depiction of the shearing maps (2.5) for the Chirikov standard map (2.8) with a = 0.75.

Figure 2.3: Depiction of the shearing maps (2.5) for the Harper map (2.9) with a = b = 0.75.

The design of a mixer consists of the choice of a mixing protocol, that is, to a sequence of T

maps fT ◦ fT−1 ◦ · · · ◦ f2 ◦ f1. Formally, T may be infinite, but we will typically take T = O(10).

The goal is to optimize the mixing for some maximal total “energy” of the flow. As a measure of

this energy we take a squared norm of the shear:

Es = sup
D
‖s(x, y)− (x, y)‖2. (2.10)
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For example, for the Harper maps, Esx = b2, Esy = a2. Since sx corresponds to the velocity (2.7),

the energy is proportional to the kinetic energy of the fluid. The parameters (at, bt) of the Harper

maps are constrained by
T∑
t=1

(a2
t + b2t ) = EH , (2.11)

where EH is some given maximum energy. The energy for a sequence of Chirikov maps includes

that required to create the horizontal shear sx, thus for (2.8)

T∑
t=1

a2
t + T = EC . (2.12)

2.3.1 Computing the Perron-Frobenius Operator and the Mix Norm

To compute the image ρt(x, y) and the seminorm (2.1) numerically, one must represent the

density in some finite basis set. One possible technique is the “mapping” [43] or “Ulam” method

[49, 18, 20, 15]: choose a grid of N ×N points (xi, yj) = ( i
N ,

j
N ) on the torus, with ρij = ρ(xi, yj)

and approximate the operator P (1.1) by an N2 ×N2 stochastic matrix P ,

ρti,j = Pij,i′j′ρ
t−1
i′j′ .

Here Pij,i′j′ is the fraction of the i′j′ cell that is mapped onto the ij cell by f . This can be

estimated—for a fixed map f—by a one step iteration of a large number of trial points in each cell.

Such a discretization introduces an effective diffusion that will decrease the variance (1.3) [30], and

explicit diffusion can also be included in the process [24]. However, this method is not practical for

our purposes, since the stochastic matrix would need to be recomputed for each new map in the

sequence f1, . . . , fT .

A second discrete method is to use a Fourier basis. This seems natural since the Sobolev

norm that we seek to minimize is most easily evaluated in Fourier space. On the two-dimensional

periodic domain T2 = [0, 1)2, the H−1 norm which we use as the mix norm becomes

‖ρ‖−1 =

∑
m∈Z2

|m|6=0

|ρ̂m|2

|m|2


1
2

, (2.13)
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where ρ̂m are the Fourier coefficients of ρ defined by

ρ̂m =

∫
T2

ρ(z)e−i2πmzd2z, (2.14)

so that

ρ(z) =
∑
m∈Z2

ρ̂me
i2πmz, (2.15)

and m = (m1,m2) is a two-dimensional vector containing horizontal wave numbers m1 and vertical

wave number m2. We exclude the (0, 0) term, since this represents the mean of ρ and does not

impact the mixing measure. Each shear (2.5) has a relatively simple representation in Fourier

space. Using (2.14), we obtain

(P̂sy [ρ])m =

∫
T2

ρ(x, y −X(x))e−2πim·zd2z =
∑
n∈Z

ρ̂n,m2Fn−m1,m2 [X],

(P̂sx [ρ])m =

∫
T2

ρ(x− Y (y), y)e−2πim·zd2z =
∑
n∈Z

ρ̂m1,nFn−m2,m1 [Y ],

(2.16)

where for each (j, k) ∈ Z2, we define a functional Fj,k : C0(S)→ C that gives a Fourier coefficient

of the exponential of a function:

Fj,k[g] ≡
∫ 1

0
e2πi(jx−kg(x))dx.

For a linear shear id(x) = x this gives

Fj,k[id] = δj,k, (2.17)

the Kronecker-delta, while for a sinusoidal shear such as X(x) in (2.8) and (2.9) we have

Fj,k[−a sin(2πx)] = Jj(−2πka) = J−j(2πka), (2.18)

using the standard identity eiz sin θ =
∑

j∈Z Jj(z)e
ijθ for the Bessel function. In general, Fj,0[g] =

δj,0, which implies, in particular, that the (0, 0)-Fourier mode is preserved—as expected for any

volume-preserving map.

Composing the two results (2.16) gives the general formula for updating Fourier coefficients

for the map (2.6):

ρ̂tm = P̂sx ◦ P̂sy [ρt−1] =
∑
n∈Z2

ρ̂t−1
n Fn1−m1,n2 [X]Fn2−m2,m1 [Y ], (2.19)
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since f−1 = s−1
y ◦ s−1

x . For example, for the Chirikov map, (2.19) becomes, using (2.18),

ρ̂tm =
∑
n∈Z2

ρ̂t−1
n Jm1−n1(2πn2a)δn2−m2,m1 =

∑
k∈Z

ρ̂t−1
k,m1+m2

Jm1−k (2π(m1 +m2)a) . (2.20)

For the Harper map, (2.19) becomes

ρ̂Tm =
∑
n∈Z2

ρ̂t−1
n Jm1−n1(2πn2a)Jn2−m2(2πm1b). (2.21)

To implement this method numerically, one must truncate the Fourier basis, keeping say, the

N2 = (2M+1)2 modes with mi ∈ [−M,M ]. Since the sums in (2.19) naturally generate modes that

are not in the basis set, these must be discarded. Conversely, modes that are not in the truncated

basis also may contribute to those in the truncation, and these give errors in the numerical scheme.

A final technique for implementing (1.1) is to simply evaluate an analytically defined function

ρ0 at a point f−1(x, y). Given a grid of points (xi, yj) we can define

ρti,j = ρt(xi, yj) = ρ0(f−1
1 ◦ f−1

2 ◦ · · · ◦ f−1
t (xi, yj)) (2.22)

whenever the initial state ρ0 is known everywhere. Numerically, this is efficient if one is interested

only in the final mixed state, ρT , but less so if one would also like intermediate states t < T , since

ρtij cannot be used to compute the next image. Nevertheless, to the extent that one can accurately

compute the composition of the maps—subject to the growth of errors due to sensitive dependence

on initial conditions—the resulting values of ρt are accurate when ρ0 is Lipchitz, though of course

we only know the values on the selected grid. This is the method used subsequently in this thesis.

We choose a regular grid of N2 points, so that the mix norm (2.13) can be easily evaluated

using a fast Fourier transform. Using a discrete lattice with N2 points, we have zk = k
N for

k ∈ [0, N)2, and ρk = ρ(zk), with

ρ̂m =
∑

k∈[0,N)2

ρke
−2πim·k

N , ρk =
1

N2

∑
m∈[0,N)2

ρ̂me
2πim·k

N . (2.23)

2.4 Blinking Vortices

Another map considered is based on Aref’s blinking vortex model [2]. For convenience we

describe the map in the complex plane, since it is equivalent to the two-dimensional real plane. We
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place a rotating point vortex at position v ∈ C, defined in polar coordinates as

v = νeiθ, ν = |v|, θ = arg(v).

Assuming a counterclockwise rotation, the motion of z can be described by the single vortex

equation,

˙̄z =
i

v − z
, (2.24)

where the time-derivative of z is denoted ż. The solution of this simple ODE is that the particle z

traces the path of the circle

|v − z| = p,

where p is the distance between v and the initial point z(0). This can be verified by noting that

when (2.24) is satisfied,

d

dt
|v − z|2 = 0.

Therefore, z can be written in the form z = v + peiφ for some angle φ. Differentiating and

substituting into (2.24) gives

−ipe−iφφ̇ =
i

v − (v + peiφ)
, pe−iφφ̇ =

e−iφ

p
, φ̇ =

1

p2
.

Integrating and applying the initial position angle φ(0) gives

φ(t) = φ(0) +
t

p2
.

The angular speed φ̇ of particles varies inversely with the square distance from the vortex, and

there is a singularity at the vortex itself. If z = x + iy and v = u + iv, we can use the equations

above to derive the following equations for the time evolution of the real and imaginary parts of z:

x(t) = u+ (x− u) cos(
t

p2
)− (y − v) sin(

t

p2
)

y(t) = v + (x− u) sin(
t

p2
) + (y − v) cos(

t

p2
).

The single vortex model (2.24) pertains to the whole complex plane. We wish to consider

a vortex model confined to the unit disc centered at the origin. We place an imaging vortex at
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the position 1
v̄ , where v̄ is the complex conjugate of v. The image vortex 1

v̄ rotates in the opposite

direction of v. Activating v and its image simultaneously creates an invariant boundary at the unit

circle. The new stirring mechanism is described by the equation

˙̄z = is

(
1

z − v
− 1

z − 1
v̄

)
= is

v − 1
v̄

(z − v)(z − 1
v̄ )
. (2.25)

The value s indicates the direction of rotation of v such that

s =

 1 counterclockwise

−1 clockwise

.

Figure 2.4 illustrates the action of a counterclockwise spinning vortex at 0.4 + i0.5 and its image

vortex activated for four time units, along with the trajectories of a few different initial particle

positions. The speed of trajectories slows as the distance between the particle positions and vortex

increases.

Figure 2.4: Diagram of (2.25) with v = 0.4 + i0.5, s = 1, and t = 4. The black curve indicates the invariant

boundary at the unit circle |z| = 1. The blue points mark the vortex and its image. The red curves show the rotation

direction of the vortices. The green curves show resulting trajectories for different initial particle positions. The green

points mark the initial positions of the particles and the green arrowheads show the final positions at time t = 4.
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The particle z traces the path of a circle of the form∣∣∣∣∣ z − vz − 1
v̄

∣∣∣∣∣ = λ, (2.26)

where λ is found by applying the initial position z(0). Similar to the single vortex case, this is

verified by noting that

d

dt

[∣∣∣∣∣ z − vz − 1
v̄

∣∣∣∣∣
]

= 0

is satisfied by (2.25). Recalling that |v| = ν and arg(v) = θ, the circle C described by (2.26) has

radius

p =
λ
(

1
ν − ν

)
1− λ2

,

and center zc

zc =
v − λ2

v̄

1− λ2
,

such that

z = zc + peiφ. (2.27)

To see this, we use the identities v − zc = pλeiθ and 1
v̄ − zc = p

λe
iθ to show that∣∣∣∣∣ z − vz − 1

v̄

∣∣∣∣∣
2

=

∣∣∣∣∣ zc + peiφ − v
zc + peiφ − 1

v̄

∣∣∣∣∣
2

= λ2

∣∣∣∣eiφ − λeiθλeiφ − eiθ

∣∣∣∣2 = λ2

∣∣∣∣1− 2 cos(φ− θ) + λ2

λ2 − 2 cos(φ− θ) + 1

∣∣∣∣ = λ2.

Substituting (2.27) into (2.25) gives

φ̇pe−iφ = −s
v − 1

v̄

(z − v)(z − 1
v̄ )

φ̇e−iφ
(eiφ − λeiθ)(eiθ − 1

λe
iθ)

p(ν − 1
ν )eiθ

= − s

p2

−φ̇
ei(φ−θ) − ( 1

λ + λ) + ei(θ−φ)

1−λ2
λ

= − s

p2

φ̇

(
1− 2λ

1 + λ2
cos(φ− θ)

)
= − s

p2

1− λ2

1 + λ2
.

Integrating, and applying the initial position angle φ(0) gives the following implicit formula for

updating φ:

φ(t)− 2λ

1 + λ2
sin(φ(t)− θ) = φ(0)− 2λ

1 + λ2
sin(φ(0)− θ)− t s

p2

1− λ2

1 + λ2
. (2.28)
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Taking the derivative of the term on the left with respect to φ(t) gives

1− 2λ

1 + λ2
cos(φ(t)− θ),

which is nonnegative, so the left hand side of (2.28) is monotonic and has a unique solution φ(t) for

any φ(0) ∈ R that can be found through an iterative solver, such as Newton’s method. Therefore,

there exists a one-to-one map of the form

φ(t) = Fv,t,s(φ(0)).

Considering that we will be updating an array of vortices in succession, we rewrite this as a

map from φt−1 to φt, where we activate vortex vt at time step t for time τt and rotation direction

st. The map then becomes:

φt = Fvt,τt,st(φt−1).

To recover the point zt, we define the map Gv : [0, 2π)→ Cv, such that

z = Gv(φ) = zc + peiφ, φ = G−1
v (z) = arg(z − zc),

and Cv is the corresponding circle in the complex plane. The inverse function G−1
v can be computed

by means of the atan2 function. We can combine the maps F , G, and G−1 to get the map

Hv,τ,s : Cv → Cv, which carries out the action of (2.25):

zt = Hvt,τt,st(zt−1) = (Gvt ◦ Fvt,τt,st ◦G−1
vt )(zt−1). (2.29)

The inverse of H is

zt−1 = H−1
vt,τt,st(zt) = ([G−1

vt ]−1 ◦ F−1
vt,τt,st ◦G

−1
vt )(zt) = (Gvt ◦ F−1

vt,τt,st ◦G
−1
vt )(zt),

where F−1 is defined by reversing the sign of the last term of the update formula (2.28) such that

φ(t)− 2λ

1 + λ2
sin(φ(t)− θ) = φ(0)− 2λ

1 + λ2
sin(φ(0)− θ) + t

s

p2

1− λ2

1 + λ2
,

or in other words, the inverse map is the forward map with the sign of s switched:

H−1
vt,τt,st = Hvt,τt,−st .
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2.4.1 Computing the Perron-Frobenius Operator and the Mix Norm

In the case of the blinking vortex problem, the domain is the unit disk centered at the origin,

so our passive scalar ρ is defined in terms of polar coordinates (r, θ). To evaluate the mix norm

(2.1) of ρ(r, θ) on the disk, we should consider solutions to the Helmoltz equation:

∆ρ+ k2ρ = 0,

because it is equivalent to diagonalizing the Laplacian operator into its complete set of eigenfunc-

tions, which will make (2.1) a straightforward calculation. Expanding the Helmoltz equation in

polar coordinates gives

∆ρ+ k2ρ = ρrr +
1

r
ρr +

1

r2
ρθθ + k2ρ = 0. (2.30)

We impose the periodicity constraint: ρ(r, θ) = ρ(r, θ + 2π) to ensure continuity, and we assume

the Dirichlet boundary condition

ρ(1, θ) = 0.

Our only constraint is that the boundary r = 1 is invariant, so we choose the Dirichlet condition

out of convenience. The results below are easily generalized to a Neumann boundary condition,

ρr(1, θ) = 0.

Equation (2.30) can be solved by separation of variables by assuming ρ(r, θ) = R(r)Θ(θ) and

substituting to get

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ + k2RΘ = 0

1

R
(r2R′′ + rR′ + r2k2R) = −Θ′′

Θ
= n2,

where n is a constant. The angular part becomes

Θ′′ = −n2Θ.

Applying the periodicity constraint, the solution is

Θn(θ) = Ane
inθ, (2.31)
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where n ∈ Z and An ∈ C. The radial part becomes Bessel’s equation

r2R′′ + rR′ + (r2k2 − n2)R = 0,

which has the (bounded) solution

Rn(r) = BnJn(kr), (2.32)

where Bn ∈ R and Jn is the nth-order Bessel function of the first kind. Applying the Dirichlet

boundary condition gives

0 = Rn(1) = BnJn(k).

This is satisfied for k = um,n, where um,n is the mth (positive) root of Jn. Combining these results

with (2.31) and (2.32), we get the general solution

ρ(r, θ) =
∑

m∈N,n∈Z
ρ̂m,nJn(um,nr)e

inθ. (2.33)

To compute the coefficients ρ̂m,n, we use the orthogonality relation [1]:∫ 1

0
Jn(um,nr)Jn(uk,nr)rdrdθ = δm,k

1

2
[Jn+1(um,n)]2. (2.34)

Applying (2.34) to (2.33) gives∫ π

−π

∫ 1

0
ρ(r, θ)Jn(um,nr)e

−inθrdrdθ =
∑

k∈N,l∈Z
ρ̂k,l

∫ π

−π
eiθ(l−n)dθ

∫ a

0
Jl(uk,lr)Jn(um,nr)rdr

=
∑
k∈N

ρ̂k,n2π

∫ r

0
Jn(uk,nr)Jn(um,nr)rdr = ρ̂m,nπ[Jn+1(um,n)]2.

By rearranging the above result, we obtain the following formula for finding the coefficients of

(2.33):

ρ̂m,n =
1

π[Jn+1(um,n)]2

∫ π

−π

∫ 1

0
ρ(r, θ)Jn(um,nr)e

−inθrdrdθ. (2.35)

For the unit disk domain, the squared Hq-seminorm (2.1) can be expanded as

‖ρ‖2Hq =

∫ π

−π

∫ 1

0
|(−1)

q
2Lq∆

q
2 ρ|2rdrdθ = (−1)qL2q

∫ π

−π

∫ 1

0
|∆

q
2 ρ|2rdrdθ.
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Recall that ρm,n(r, θ) satisfies ∆ρm,n = −(um,n)2ρm,n. Defining L = 1 and substituting (2.33),

(2.35), and the orthogonality (2.34) gives

‖ρ‖2Hq = (−1)q12q

∫ π

−π

∫ 1

0

∣∣∣∣∣∣
∑

m∈N,n∈Z
(−1)

q
2 (um,n)q ρm,n(r, θ)

∣∣∣∣∣∣
2

rdrdθ

=

∫ π

−π

∫ 1

0

 ∑
m∈N,n∈Z

uqm,nρ̂m,nJn(um,nr)e
inθ

 ∑
k∈N,l∈Z

uqk,lρ̂
∗
k,lJl(uk,lr)e

−ilθ

 rdrdθ

=
∑

m∈N,n∈Z
k∈N,l∈Z

uqm,nu
q
k,lρ̂m,nρ̂

∗
k,l

∫ π

−π
eiθ(n−l)dθ

∫ 1

0
Jn(um,nr)Jl(uk,lr)rdr

= 2π
∑

m∈N,n∈Z
k∈N

uqm,nu
q
k,nρ̂m,nρ̂

∗
k,n

∫ 1

0
Jn(um,nr)Jn(uk,nr)rdr

= π
∑

m∈N,n∈Z
u2q
m,n[Jn+1(um,n)]2|ρ̂m,n|2.

Therefore, the H−1 norm defined on the radius-one disk is

‖ρ‖−1 =

π ∑
m∈N,n∈Z

1

u2
m,n

[Jn+1(um,n)]2|ρ̂m,n|2
 1

2

. (2.36)

The norm (2.36) must be applied to a function with zero mean. In the case of a function

with nonzero mean, we define the mix norm as ‖ρ− 〈ρ〉‖−1. To compute (2.36) numerically, we

define the grid sizes Nr to be the number of radial points, and Nθ to be the number of angular

points, so that the total number of grid points will be Nr ×Nθ. We choose the radial points such

that they are equally spaced. The use of polar coordinates means that the grid will be distorted,

in that points will be closer together near the origin and farther apart near the edge of the disc.

Figure 2.5 shows the polar grids for different values of Nr and Nθ.

To evaluate (2.35) numerically, first we arrange the integral so that we evaluate the angular

part first and the radial part second:

ρ̂m,n =
1

π[Jn+1(um,n)]2

∫ 1

0

(∫ π

−π
ρ(r, θ)e−inθdθ

)
Jn(um,nr)rdr.

The inner integral is simply a one-dimensional Fourier coefficent that can be evaluated by a fast
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Figure 2.5: Grids of polar coordinates for Nr = Nθ = 32, 64, 128, 256.

Fourier transform as in (2.23) to get

ρ̂m,n =
1

π[Jn+1(um,n)]2

∫ 1

0

2π
∑

k∈[0,Nθ)

ρ(r,
k

Nθ
)e
−i2πmk

Nθ

 Jn(um,nr)rdr

=
2

[Jn+1(um,n)]2

∑
k∈[0,Nθ)

e
−i2π k

Nθ

∫ 1

0
ρ(r,

mk

Nθ
)Jn(um,nr)rdr.

The distortion of the grid created by using polar coordinates makes it necessary to use a higher

order integration method to evaluate the radial integral. For the radial component, we apply a

trapezoid method for improved accuracy in the approximated integral. This gives the following

formula for numerically evaluating (2.35):

ρ̂m,n =
2

[Jn+1(um,n)]2

X

k∈[0,Nθ)

e
−i2πmk

Nθ
1

2

X

l∈[0,Nr)

�
ρ(

l

Nr
,
k

Nθ
)Jn(um,n

l

Nr
)
l

Nr
+ ρ(

l + 1

Nr
,
k

Nθ
)Jn(um,n

l + 1

Nr
)
l + 1

Nr

�

(2.37)

=
1

[Jn+1(um,n)]2

X

k∈[0,Nθ)
l∈[0,Nr)

e
−i2πmk

Nθ

�
ρ(

l

Nr
,
k

Nθ
)Jn(um,n

l

Nr
)
l

Nr
+ ρ(

l + 1

Nr
,
k

Nθ
)Jn(um,n

l + 1

Nr
)
l + 1

Nr

�
. (2.38)

Figure 2.6 displays the results of applying the Bessel Fourier transform to the Gaussian

ρ0(z) = exp
�
−ε‖z − zo‖2

�
, zo = (0.5, 0.5), ε = 5, (2.39)

with grid size Nr = Nθ = 128. Figure 2.6(a) shows the Gaussian profile ρ0. Figure 2.6(b) shows ρ̃0, which is

found by applying (2.33) to the coefficents found by evaluating (2.38). Figure 2.6(c) shows the radial error ρe =

ρ0(r, 0)− ρ̃0(r, 0). Note that

ρ0(r, θ)− ρ̃0(r, θ) = ρ0(r, 0)− ρ̃0(r, 0) for all θ ∈ [0, 2π),






















































































































