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Mai, Cheng-Kang (Ph.D., Chemistry) 

Formal Total Synthesis of Diazonamide A 

Thesis directed by Professor Tarek Sammakia 

 

        This dissertation describes efforts toward the total synthesis of diazonamide A, a 

complex marine natural product. First, efficient methods to prepare 3,3-diaryloxindoles 

from 3-aryloxindoles were developed via either Pd-catalyzed α-arylations or nucleophilic 

aromatic substitutions using the oxindole enolate as the nucleophile. Second, this method 

has been successfully applied to a formal synthesis of diazonamide A via the highly 

diastereoselective construction of the C10 quaternary center. Third, a cyclization 

precursor for a cascade α-arylation/direct arylation approach to the total synthesis was 

synthesized and tested, and this substrate was found to be failed to cyclize. Finally, two 

approaches to the synthesis of the aromatic core of diazonamide A, via our Pd-catalyzed 

α-arylation method and Au-catalyzed oxazole formation developed by Liming Zhang and 

coworkers, were attempted. Unfortunately, neither of these two methods was able to 

provide the desired product. 
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1 Diazonamide A: Isolation, Biological Activity, and Synthesis 

 

1.1 Isolation and Structural Determination of Diazonamides 

        The diazonamides (Figure 1.1) are a family of cytotoxic macrocylic peptide 

derivative isolated from colonial ascidians of the genus Diazona. Diazonamide A (1) and 

B were first isolated by Fenical and Clardy in 1991 from the secondary metabolites of the 

ascidian Diazona Angulata (originally misidentified as Diazona Chinensis) collected in 

Siquijor Island, Phillipines.1 Three other members, Diazonamides C-E, were later isolated 

by a group at PharmaMar in 2008 from extracts of a tunicate of the genus Diazona 

collected in Indonesia.2 

 

Figure 1.1 Structures of the Diazonamides 

        The diazonamides represent a new class of halogenated, unsaturated cyclic peptides, 

and they share a common highly rigid heterocyclic scaffold with essentially no 

conformational freedom, and two peripheral chlorine atoms, but they differ in the C2 and 

C32 side chains and in the halogenation on the G and E carbocyclic rings.  
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        In the original isolation paper, Fenical and Clardy proposed the structure 2 (Figure 

1.2), for diazonamide A, with a valine residue at C2 and a hemiacetal moiety, based on 

the analogy of diazonamide B.1 The hemiacetal moiety of diazonamide B can explain the 

vicinal coupling between the C11 and the D2O exchangeable proton, and the dehydrated 

cyclic acetal moiety, which was obtained from the single crystal X-ray structure of the p-

bromobenzamide derivative of diazonamide B. Similar spectral data prompted them to 

propose the same heterocyclic core of diazonamide B for diazonamide A with 

unidentified stereochemistry on the terminal valine. 

  
Figure 1.2 Fenical and Clardy’s Proposed Structure 

        The novelty of the proposed structure by Clardy and Fenical, along with impressive 

antitumor activity rendered this molecule a popular target for synthesis by the groups of 

Feldman,3 Harran,4-8 Konopelski,9,10 Liebscher,11,12 Magnus,13-18 Moody,19 -23 Nicolaou,24 

-27 Pattenden,28 Vedejs,29-31 Wipf,32-33 and Wood34. In 2001, the Harran group reported a 

total synthesis of the proposed structure 2, and found that it had different spectral 

properties, was unstable, and lacked the potent biological activity of the natural product.6 

These results prompted the Harran group to re-evaluate the original data obtained by 

Fenical and Clardy.  
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        It had been known that acid digests of diazonamide A do not provide valine.35 

Reevaluation of the NMR data reported by Fenical and Clardy suggested that C37 

substituent in natural diazonamide A should be an alcohol instead of an amine. This NH2 

to OH change requires a compensatory permutation at other position to match the mass, 

and Harran proposed that the original X-ray data for the p-bromobenzamide derivative of 

diazonamide B (from which the structure of diazonamide A had been inferred) had been 

misinterpreted. The closed hemiaminal moiety of diazonamide A and B explain the 

observed mass spectral data without invoking a dehydrative cyclization, and also 

accounted for the vicinal coupling of C11 and an exchangeable proton.8  Furthermore, the 

total syntheses of this revised structure by Nicolaou36-39 and Harran40 have confirmed that 

1 is the correct structure of diazonamide A. 

 

1.2 Biological Activity of Diazonamide A and its Derivatives 

        Although all the diazonamides are cytotoxic, diazonamide A is by far most potent, 

with in vitro IC50 values less than 15 ng/mL against human HCT-116 colon carcinoma 

and B-16 murine melanoma cell lines.1 A re-isolation of diazonamide A from natural 

sources was funded by the Development Therapeutics Program of the Natural Products 

Branch of the National Cancer Institute, and the compound was subjected to NCI60 

human tumor cell line anticancer drug screen.41 Analysis by the COMPARE algorithm of 

differential cytotoxicity patterns indicated that the activity of diazonamide A correlated 

most closely with the known tubulin binding agents, such as the vinca alkaloids and 

paclitaxel, and suggested a tubulin-active mechanism of action. 42  Cells treated with 

diazonamide A arrest at the G2/M boundary, and fail to form organized bipolar mitotic 
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spindles, similar to cells treated with paclitaxel and vinblastine.8,43 However, neither 

diazonamide A nor its close analog 3 significantly inhibits vinblastine, colchicine and 

dolastatin 10 binding to tubulin, or nucleotide exchange on β-tubulin. And neither of 

them can stabilize the colchicine binding activity of tubulin.44 All these results suggest 

that diazonamide A either binds to tubulin at a unique and unidentified binding site, or 

does not bind to tubulin at all. 

 
Figure 1.3 Structures of Diazonamide A and its Analog 3 

        In 2007, in collaboration with the Wang and McKnight groups, Harran reported 

studies of the mechanism of action of diazonamide A and its analogs,45 and the efficacy 

of these compounds as anticancer agents in mouse models.43 They identified a known 

mitochondrial matrix enzyme, ornithine δ-amino transferase (OAT), as a diazonamide 

binding protein, and suggested that diazonamide A disrupts the interaction of OAT with 

mitotic-spindle-promoting proteins. However, diazonamide A does not inhibit the amino 

transferase activity of OAT, and the known inhibitors of OAT are not cytotoxic. In 

addition, a role for OAT in cancer cell mitosis is redundant in healthy cells. This finding 

renders OAT a new target for anticancer drug research. 

        In the mouse model study, they found that a close analog (AB5, 4) of diazonamide 

A lacking two peripheral chlorine atoms, retained the cytotoxicity of diazonamide A, did 
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not display overt toxicity nor did it cause weight loss, a change in overall physical 

appearance, or showed any evidence of causing neutropenia in mice. Although paclitaxel 

and vinblastine show indistinguishable efficacy, mice treated with these two drugs 

display significant weight loss and neutropenia. These results render diazonamide A and 

its analogs as more attracting synthetic targets. 

 
Figure 1.4 Structure of Diazonamide Derivative AB5 (4) 

 

1.3 Synthesis of Diazonamide A 

        Diazonamide A is a challenging synthetic target, due to its highly rigid heterocyclic 

core with a deeply buried central C10 quaternary stereocenter.46 Synthetic efforts toward 

the synthesis of the original Fenical and Clardy’s structure (2) provide some useful 

insights for the synthesis of Harran’s revised correct structure. For example, Wipf,32 

Magus,14 and Harran6 have shown that selective introduction of the two peripheral 

chlorine atoms at late stage is possible. And Harran also demonstrated that atropselective 

cyclization of the right hand macrocycle could be furnished by a Witkop-type 

photocyclization.40 Taking advantage of these known transformations, the synthetic 

challenge of diazonamide A, in great part, lies in the stereoselective construction of the 

highly hindered quaternary C10. 
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        A lot of groups have contributed their synthetic efforts towards diazonamide A, 

since Harran published its correct structure. Numerous papers of methods developments 

and progress towards the total synthesis of diazonamide A have been reported 

(Ciufolini,47 Konopelski,48 Magnus,49 Moody,50-54 Pattenden,55 Vedejs,56 and Wood57). 

Because Moody has written a comprehensive review46 about syntheses of diazonamide A 

recently, only the four successful total syntheses and one formal synthesis are discussed 

as follows. 

 

1.3.1 Nicolaou’s First Total Syntheses of Diazonamide A 

        In 2002, the Nicolaou group published the first total synthesis of diazonamide A.36,37 

They utilized a Friedel-Crafts type alkylation (electrophilic aromatic substitution, SEAr) 

of a tyrosine phenol 5 and a tertiary alcohol 6 to construct the quaternary C10. Although 

both the coupling partners, 5 and 6, bear stereocenters, the reaction proceeds with no 

diastereselectivity to provide compound 7 as a mixture of 1:1 ratio of diastereomers 

(Scheme 1.1), because both the stereocenters are too far away from the reaction center to 

induce the diastereoselectivity. And the diastereomeric mixture can be separated by flash 

chromatography after protection of the free amine as the tert-butyl carbamates. 

 
Scheme 1.1 Construction of Quaternary C10 in Nicolaou’s First Synthesis 
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        During the study of the first total synthesis, Nicolaou developed an efficient 

Robinson-Gabriel oxazole formation using POCl3 in pyridine to convert keto amide 8 to 

oxazole 9. This method works in hindered substrates better than other oxazole syntheses. 

The right hand macrocycle was constructed via a direct arylation similar to that used in 

Harran’s total synthesis of the original incorrect structure of diazonamide A.8 Both 

photochemical and radical cyclization conditions were examined, and Witkop-type 

photocyclization was found to provide a better yield. After elaboration to intermediate 11, 

the hemiaminal moiety was formed via a reductive cyclization induced by 100 

equivalents of DIBAL-H to provide 12. They reported that portionwise addition of 

DIBAL-H was critical for the success. Synthesis of diazonamide A was then 

accomplished by removing the Cbz protecting group and installing the isovaleric acid 

side chain. This synthesis confirmed Harran’s revised structure to be the correct structure 

of diazonamide A with all the stereochemistry set up, including the isovaleric acid side 

chain (Scheme 1.2). 
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Scheme 1.2 Completion of Nicolaou’s First Total Synthesis 

 

1.3.2 Nicolaou’s Second Total Synthesis of Diazonamide A 

        Nicolaou’s second total synthesis38,39 applied a Lewis acid catalyzed Mukaiyama 

aldol reaction of oxindole 13, which was converted to a TMS enol ether, and 

formaldehyde to provide alcohol 14 as a mixture of 1:1 ratio of diastereomers (Scheme 

1.3). This reaction is non-stereoselective because the stereocenter on oxindole 13 is too 

far to induce the diastereoselectivity.  
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Scheme 1.3 Construction of Quaternary C10 in Nicolaou’s Second Synthesis 

         The C16-C18 bond of biaryl 17 was formed by Suzuki coupling of bromide 15 and 

boronic ester 16 (Scheme 1.4), which provided much higher yield than Witkop-type 

photocyclization. Both TBS protecting groups were removed by TBAF, and oxidized by 

Parikh-Doering oxidation using SO3-pyridine activated DMSO.58 The aromatic aldehyde 

was then converted to oxime 18 with MeONH2. A one-pot reaction sequence consisting 

of macrocyclization, N-O bond cleavage, and peptide coupling induced by SmI2 with 

DMA as an activating ligand and Fmoc-Val-OH, provided hydroxyl amide 19. After 

oxazole formation and amide formation to cyclize the left hand macrocycle, compound 

20 was subjected to hydrogenation with Pearlman’s catalyst (Pd(OH)2). Interestingly, 

hydrogenation not only removed both the benzyl and Cbz protecting groups, but also 

oxidized the amine to an oxindole to provide compound 21 after reprotection of the 

phenol with a Cbz protecting group. This set the stage for the reductive cyclization to 

furnish the hemiaminal moiety and completion of the total synthesis via a similar route as 

in their first total synthesis.  
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Scheme 1.4 Completion of the Heterocyclic Core in Nicolaou’s Second Synthesis 

 

1.3.3 Harran’s Total Synthesis of Diazonamide A 

        Harran’s total synthesis of diazonamide A applied a cascade oxidative [3+2] 

cyclization reaction initiated by a hypervalent iodine reagent,59 PhI(OAc)2, to construct 

the quaternary C10 along with the complete hemiaminal moiety (Scheme 1.5).40 The 

phenol of compound 22 reacts with PhI(OAc)2 to form an active hypervalent iodine 

intermediate which is attacked by the nucleophilic indole to form a C-C bond and 

dearomatize the phenol. After tautomerization, the regenerated phenol attacks the 
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indoline to furnish the hemiaminal. The desired C10 macrocycle 23 with the correct 

stereochemistry on C10 can be obtained in 25% yield, along with 8% yield of the 

undesired C10 epimer  (24, structure confirmed by single crystal X-ray crystallography), 

and 15% yield of compound 25 generated via the attack of the active hypervalent iodine 

intermediate by the amide. Although the yield for the desired product (23) was low, this 

reaction indicated that the two stereocenters on the backbone could induce some 

diastereoselectivity for the macrocyclization. 

 
Scheme 1.5 Harran’s Synthesis of Quaternary C10 

        For the cyclization of the right hand macrocycle, the Harran group used a modified 

Witkop-type photocyclization, different from the strategy used in their synthesis of 
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Fenical and Clardy’s structure (Scheme 1.6).7 After elaboration to amide 26 from ester 

23 with the correct stereochemistry at C10, DDQ oxidation of the benzylic position of 

indole 26 provided a keto amide, which was cyclized under Wipf’s conditions32, 60 (PPh3, 

C2Cl6, Et3N) to furnish oxazole 27. Photocyclization of the phenol acetate under basic 

condition provided the direct arylation product 28 in very good yield (72%). An acetoxy 

group was introduced at C19 of the indole in order to render the indole more electron rich 

and facilitate electron transfer to the bromoaniline via the phenolate, which is produced 

by saponification of the acetate under the reaction conditions. The hydroxyl group at C19 

was removed via conversion to its triflate followed by hydrogenation. Diazonamide A 

was obtained after several steps of protecting and functional groups manipulations.  

 
Scheme 1.6 Completion of the Heterocyclic Core in Harran’s Total Synthesis 
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1.3.4 Magnus’s Formal Synthesis of Diazonamide A 

        In 2007, the Magnus group reported a formal synthesis of diazonamide A, 

intersecting intermediate 33 in Nicolaou’s first total synthesis (Scheme 1.7).61  TBS-

protected phenol 29 was subjected to TBAF to provide ether 30 as a 1:1 mixturer of 

diastereomers. Upon heating, ether 30 underwent a C-O bond cleavage to form an acyclic 

zwitterion, which closed via a C-C bond formation to provide macrocycles 31 and 32 

bearing the quaternary C10. This rearrangement was moderately diastereoselective, and 

provided a mixture of diastereomers (7:3 ratio) in 70% overall yield, favoring the desired 

C10 epimer (31) over the undesired epimer (32, structure confirmed by single crystal X-

ray crystallography). Compound 31 was protected as the MOM ether and reduced with 

LiBH4 to generate a primary alcohol, which was then protected as the benzyl ether to 

provide the same intermediate 33 in Nicolaou’s first total synthesis of diazonamide A. 

Magus’s formal synthesis also demonstrated that the two stereocenters on the left hand 

backbone can be used to induce a moderate diastereoselective macrocyclization. This was 

the state of the art when we were conducting our research, and subsequent to the 

publication of our results, the MacMillan group described a stereoselctive total synthesis 

of diazonamide A as described below.  
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Scheme 1.7 Magnus’s Formal Synthesis 

 

1.3.5 MacMillan’s Total Synthesis of Diazonamide A 

        In 2011, MacMillan reported a total synthesis of diazonamide A using a highly 

enantioselective iminium catalyzed cascade addition / cyclization reaction to install the 

quaternary C10 as well as the complete hemiaminal core (Scheme 1.8).62 This synthetic 

strategy had been successfully used in his total synthesis of (-)-flustramine B in 2004.63 

When compound 34 and propynal were treated with MacMillan’s second generation 
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imidazolidinone catalyst,64,65 conjugate addition of the indole to the generated iminium 

occurred to provide an intermediate indoline that was trapped by the adjacent phenol to 

provide compound 35 in good yield with excellent enantioselectivity (>20:1 dr). This 

reaction is an example of application of organocatalysis to a challenging and complex 

synthetic substrate. 

 
Scheme 1.8 MacMillan’ Synthesis of Quaternary C10 

        In MacMillan’s total synthesis (Scheme 1.9), they were the first to report that DAST 

(diethylaminosulfur trifluoride) can be used to convert a keto-amide to an oxazole. In 

their synthesis, Dess-Martin oxidation of compound 36 produced a keto amide that was 

subjected to DAST to provide oxazole 37. The right hand macrocycle was produced via a 

Pd-catalyzed tandem borylation-annulation reaction on compound 38 to form the biaryl 

bond of 39. This possesses the complete heterocyclic core of diazonamide A, and the 
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natural product was obtained after removing the protecting groups and installing the two 

peripheral chlorine atoms. 

 
Scheme 1.9 Completion of the Heterocyclic Core in MacMillan’s Total Synthesis 

 

1.4 Abbreviations 

AIBN Azobisisobutyronitrile  
Bz Benzyl 
Cbz Carboxybenzyl 
SEAr Electrophilic Aromatic Substitution
DAST Diethylaminosulfur Trifluoride 
DMA Dimethylacetamide 
DMSO Dimethyl Sulfoxide 
MOM Methoxymethyl 
OAT Ornithine δ-Amino Transferase 
TBAF Tetra-n-butylammonium fluoride 
TBS tert-Butyldimethylsilyl 
TCA Trichloroacetic acid 
TIPS Triisopropylsilyl 
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2 α-Arylation of 3-Aryloxindoles 

 

2.1 Introduction 

        Developing new efficient methods to construct quaternary carbon centers remains a 

challenging goal for synthetic organic chemists.1 3,3-Disubstituted oxindoles represent an 

important structural motif found in many natural products (Figure 2.1),2-6 and some 

biological small molecules.7,8 Recently, several synthetic methods, some of which are 

catalytic and asymmetric, have been reported for the synthesis of 3,3-disubstituted 

oxindoles. However, reports on synthesis of 3,3-diaryloxindoles are rare. This chapter 

describes the development of our methods for the α-arylation of 3-aryloxindoles and 

studies related to the synthesis of diazonamide A. 

 
Figure 2.1 Examples of Natural Products with 3,3-Disubstituted Oxindoles 

 

2.2 Retrosynthetic Analysis of Diazonamide A 
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        The total synthesis of diazonamide A is of interest, due to its limited natural supply, 

unique biological activity, and highly rigid complex molecular structure. One of the 

challenges in the synthesis of this compound is the efficient construction of the congested 

quaternary C10, and in response, we devised a retrosynthetic plan that installed this 

carbon center in a stereoselective fashion. 

        In our retrosynthetic analysis (Scheme 2.1), we anticipated that the hemiaminal 

moiety can be prepared via a reductive cyclization,9,10 and the peripheral chlorine atoms 

can be introduced at late stage using NCS. As such, our target could be simplified to 

compound 40. We were interested in studying the formation of C10-C30 bond via α-

arylation of 3-aryloxindole, and we considered two options, studying the 

macrocyclization to form a compound either corresponding to the left hand half (41) of 

diazonamide A or the right hand half (42). Because the right hand scaffold 42 does not 

have any stereocenters along the backbone, we thought that it would be unlikely that the 

cyclization to form this ring would be stereoselective. We instead chose to study 

cyclization to form the left hand macrocycle (41), and we envisioned taking advantage of 

the two stereocenters along the backbone, both of which are derived from natural amino 

acids (L-tyrosine and L-valine), to influence the stereochemical outcome of the 

cyclization and provide a diastereoselective reaction. Therefore, we required a reliable 

synthetic method of the α-arylation of 3-aryloxindoles. Our initial thought was to employ 

a transition metal catalyzed α-arylation reaction, and we chose to prepare a model system 

to study this reaction. We decided that our intial target should lack a halogen substituent 

at C16, as this halogen may interfere with the transition metal catalyzed reaction, 

rendering the reaction not regioselective. With a successful model cyclization, we would 
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study the cyclization of the substrate with a halogen atom at C16, which is required as a 

handle to install the right hand half of diazonamide A. 

 
Scheme 2.1 Our Retrosynthetic Analysis of Synthesis of Diazonamide A 

 

2.3 Synthesis of 3,3-Diaryloxindole via Electrophilic Aromatic Substitution (SEAr) 

        3,3-Diaryloxindoles have been prepared and studied as mineralocortocoid receptor 

antagonists7 and potential anticancer agents.8 However, the synthesis of these compounds 

and studies on structure-activity relationship (SAR) were limited by the available 

synthetic methods. 

        The most common method to prepare 3,3-diaryloxindoles is electrophilic aromatic 

substitutions (SEAr) of electron rich aromatics with isatin and its derivatives (Scheme 

2.2).  In 1885, Baeyer and Lazarus reported that symmetrical 3,3-diaryloxindoles could 
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be prepared via double electrophilic aromatic substitution of isatin by using electron-rich 

arenes under strong acidic conditions (concentrated sulfuric acid).11 In 1998, Klumpp, 

Olah and coworkers modified the conditions by using a superacid, triflic acid (TfOH), to 

synthesize symmetrical 3,3-diaryloxindoles.12 They also reported that unsymmetrical 3,3-

diaryloxindoles could be prepared by using a mixture of different electron-rich arenes and 

isatin derivatives, although this method is not synthetically useful as it produces mixtures 

of products. 

N
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Ar-H

strong acid

Ar'-H
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Ar
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Scheme 2.2 Synthesis of 3,3-Diaryloxindoles via SEAr 

        When tertiary alcohols, such as compound 43, are used, unsymmetrical 3,3-

diaryloxindoles can be prepared. Upon treating tertiary alcohols with strong acids, the 

resulting tertiary carboncation can be trapped with electron rich arenes to form the 3,3-

diaryloxindoles. This method was successfully applied by Nicolaou in his model study 

(Scheme 2.3), and in the first total synthesis of diazonamide A (see Scheme 1.1).10 

Reaction of tertiary alcohol 43 and phenol 44 mediated by super acid, TfOH, furnished 

3,3-diaryloxindole 45 as a 1:1 mixture of diastereomers in good yield.  

 
Scheme 2.3 Nicolaou’s Model Study of Diazonamide A 
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        These SEAr reactions suffer from some severe drawbacks, which narrow their scope. 

First, strongly acidic conditions are required, and many functional groups cannot survive 

in such harsh conditions. Second, electron-rich arenes have to be used, which limits the 

functionality that can be on the arenes. Third, the regiochemical outcome of such Friedel-

Crafts type reactions is dictated by the intrinsic substitution preference of the substrates, 

again, limiting the scope of products that can be produced. These limitations as well as 

our interest in the preparation of 3,3-diarlyoxindole substrates as model studies for the 

synthesis of diazonamide A prompted us to pursue a more versatile method under milder 

conditions. 

 

2.4 Transition Metal Catalyzed α-Arylation of Oxindoles 

        The transition-metal-catalyzed α-arylation of carbonyl compounds has been widely 

studied due to the importance of α-aryl carbonyl moieties in some biologically active 

molecules and the mild conditions used in these reactions.13-15  

        In 2008, the Willis group published the first Pd-catalyzed α-arylations of oxindoles 

to prepare 3-aryloxindoles (Scheme 2.4).16 The oxindoles were protected as either benzyl 

or MOM (methoxymethyl) ethers. Either aryl bromide or chlorides could be used, and the 

best conditions described utilized 2 mol% Pd(dba)2, 3 mol% XPhos (46, 2-

dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl)17 as ligand, and KHMDS as  base. 

The bulky electron-rich phosphine ligand, XPhos, was found to be the most effective 

ligand among all the phosphine ligands screened. These reactions represent a general 

method to prepare mono-substituted 3-aryloxindoles in mild conditions and high yields. 
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Scheme 2.4 Willis’ Pd-Catalyzed α-Arylations of Oxindoles 

        Several months later, the Buchwald group reported similar α-arylations of oxindoles 

under even milder conditions by using K2CO3 as base, and unproteced oxindoles as 

substrates (Scheme 2.5).18 Interestingly, they also showed that by using 3-benzyl or 3-

methyl oxindoles with RuPhos (47, 2-dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl) 

as ligand and t-BuONa as base, they were able to construct quaternary carbons of 3,3-

disubstituted oxindoles. Although there were no reports on transition metal catalyzed 

reactions to prepare 3,3-diaryloxindoles, the intriguing results of Willis and Buchwald 

inspired us to consider Pd-catalyzed α-arylations of 3-aryloxindoles for the preparation of 

3,3-diaryloxindoles with appropriate combinations of catalysts and ligands. 
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Scheme 2.5 Buckwald’s Pd-Catalyzed α-Arylations of Oxindoles and 3-Alkyloxindoles 

        Dr. Matthew F. Sammons, a former graduate student in our group, found that N-

benzyl-3-phenyloxindole (48) could be successfully arylated with bromooxazole 49 using 

Pd(OAc)2 (5 mol%), t-Bu3PHBF4 (10 mol%) and Cs2CO3 (3.0 equiv) in toluene at reflux 

to provide 3,3-diaryloxindole 50 in good yield (Scheme 2.6). Later, he found that no Pd-

catalysis was required, and the reaction can proceed via an SNAr mechanism. 

Interestingly, switching the order of bond formation, such that the synthesis of compound 

50 is attempted via the Pd-catalyzed arylation of 51, was not successful under the same 

conditions studied. This suggests that, the enolate of 51, which is conjugated to both the 

oxindole and the electron-deficient oxazole, is too stable to react with the Pd-activated 

bromobenzene.  
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Scheme 2.6 Dr. Sammons’ α-Arylations of 3-Aryloxindoles 

 

2.5 Optimizations of Pd-Catalyzed α-Arylations of 3-Aryloxindoles 

        I began my research by optimizing the conditions for the Pd-catalyzed α-arylations 

of 3-aryloxindoles, and I studied the α-arylation of N-benzyl-3-phenyoxindole (48) with 

bromobenzene and ortho-bromotoluene as simple models of varying steric demand 

(Table 2.1). We found using bromobenzene that the best conditions were Pd(OAc)2 (5 

mol%), t-Bu3PHBF4 (10 mol%),19 and Cs2CO3 (3.0 equiv) in toluene at reflux (entry 1). 

These were related to the conditions of Hartwig, who prepared quaternary centers via the 

α-arylation of dialkyl esters.20 Under these conditions, ortho-bromotoluene also reacts to 

provide the product in 80% yield (entry 7). Pd(dba)2 can also be used as a palladium 
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source and provides comparable yield (entry 2); however, in later studies, we found that 

the dibenzylideneacetone (dba) by-product at times co-elutes with our desired products in 

flash chromatography, thereby complicating purification. Other ligands were less 

satisfactory; for example, XPhos (46), which was used in successful α-arylations of 

oxindoles by both Willis and Buchwald, provides only recovered starting material (entry 

3), while RuPhos (47) provides good yields, but is significantly slower than t-Bu3P (entry 

4). Other carbonate bases, such as K2CO3, provide high yields, but the reactions are 

slower (entry 5). A solvent survey was also conducted, and toluene was found to be 

superior to polar, ethereal, or protic solvents, such as DMF (no arylation, entry 6), 1,4-

dioxane (slow, entry 8), or tert-butanol (no arylation, entry 9). The use of chlorobenzene 

instead of bromobenzene did not provide any arylated product using our optimized 

conditions.  

Table 2.1 Optimization of Pd-Catalyzed α-Arylations 

 
 

a Isolated yields after flash chromatography. 

entry conditions R yield (%)a 
1 Pd(OAc)2, t-Bu3PHBF4, Cs2CO3, toluene, 30 min H 95 
2 Pd(dba)2, t-Bu3PHBF4, Cs2CO3, toluene, 30 min H 93 
3 Pd(dba)2, XPhos, Cs2CO3, toluene, 3 h H 0 
4 Pd(dba)2, RuPhos, Cs2CO3, toluene, 3 h H 93 
5 Pd(OAc)2, t-Bu3PHBF4, K2CO3, toluene, 5 h H 92 
6 Pd(OAc)2, t-Bu3PHBF4, Cs2CO3, DMF, 120 °C, 3 h H 0 
7 Pd(OAc)2, t-Bu3PHBF4, Cs2CO3, toluene, 3.5 h Me 80 
8 Pd(OAc)2, t-Bu3PHBF4, Cs2CO3, dioxane, 18 h Me 10 
9 Pd(OAc)2, t-Bu3PHBF4, Cs2CO3, t-BuOH, 12 h Me 0 
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        The oxindole nitrogen had to be protected in these reactions. Otherwise, strong base, 

such as, LiHMDS, had to be used to provide the product in reasonable yield. Under our 

optimized reaction conditions, the reaction of 3-phenyloxindole with bromobenzene did 

not proceed, but using LiHMDS instead of Cs2CO3 provided the desired product in 61% 

yield along with 31% recovered 3-phenyloxindole (Scheme 2.7). 

 

Scheme 2.7 Pd-Catalyzed α-Arylation of Unprotected 3-Phenyloxindole 

        With optimized conditions in hand, I continued exploring the substrate scope using 

N-benzyl-3-phenyoxindole (48, Table 2.2). I found that the reaction conditions are 

compatible with a variety of substitution patterns and functional groups on the aryl 

bromide, including electron donating (methoxy, hydroxy, and amino groups) and electron 

withdrawing substituents (chloro, formyl, keto, and trifluromethyl groups). All are good 

partners in these reactions, and provide the products in excellent yields (entries 1-9). In 

addition, due to the enhanced acidity of the 3-aryloxindole (the pKa of unsubstituted 

oxindole in DMSO is 18.5, and that of the 3-aryloxindole is likely lower than 15.),21 no 

ketone arylation was observed (entry 6). Further, the use of a mild, reversible carbonate 

base renders the reaction compatible with protic substituents, such as phenol (entry 7) and 

aniline (entry 8) groups. The reaction is also remarkably tolerant of steric hinderance in 

the aryl bromide component. In addition to ortho-bromotoluene (Table 1, entry 7) and 

ortho-bromoanisole (entry 3), the highly hindered di-ortho-substituted aryl bromide 

shown in entry 10 also reacted cleanly to provide the product in 64% yield, although 
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longer reaction time was required. This is in contrast to other Pd-catalyzed enolate 

arylations, wherein low yields were reported with ortho-substituted aryl halides.22-24 

Table 2.2 Arylations of N-Benzyl-3-Phenyloxindole 

 

entry Ar-Br yield (%)a entry Ar-Br yield (%)a 

1 
 

91 6 88 

2 
Br OMe  

94 7 81c 

3 

 

75b 8 
 

85 

4 
 

78 9 85 

5 
 

79 10 64d 

a Isolated yield after flash chromatography. b After 2 h. c Pd(dba)2 was used instead of Pd(OAc)2, which 
provided lower yield (53%). d After 20 h. 

 
        I continued studying the effects of sterics in the enolate component using the 3-

ortho-substitued-phenyloxindole substrates 52 and 53 (Table 2.3). Both substrates were 

competent with para- and meta-substituted aryl bromides, providing the products in good 

yields (entries 1-3, 5-6), although long reaction times were required. No arylation 

products were observed in the case of ortho-bromoanisole, possibly due to the extreme 

steric hindrance at the transition state (entry 4). 
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Table 2.3 Arylation of 3-ortho-Substitued-Pheyloxindoles 

 

entry oxindole Ar-Br time (d) yield (%)a 

1 52 1 92 

2 52 2 90 

3 52 2 81 

4 52 1 0 

5 53 2 82b,c 

6 53 2 86b,d 

a Isolated yield after flash chromatography. b Pd(dba)2 (10 mol%), t-Bu3PHBF4 (20 mol%), Cs2CO3 (3.0 
equiv), toluene, sealed tube, 120 °C, 2 d. c 52% yield after 3 days when the title condition was used. d 50% 
yield after 3 days when the title condition was used. 
  

        For highly electron-deficient aryl halides, arylations can proceed without Pd 

catalysts via an SNAr mechanism (Table 2.4). Common SNAr substrates, such as 2,4-

dinitrochlorobenzene (entry 1) and p-nitrochlorobenzene (entry 2) react with 3-

phenyloxindole (54) to cleanly provide the α-arylation products in excellent yields. The 

protection on the oxindole nitrogen is not required for this reaction, and no N-arylation 

was observed. More relevant to the synthesis of natural products, such as diazonamide A, 

electron deficient 5-halooxazoles (58-62) all provided the desired products in good yields 

under these conditions (entries 3-7). Other 3-aryl substituted oxindoles, 55 and 56, also 

provided good yields in these SNAr reactions with bromooxazole 60 (entries 8 and 9). 
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Our conditions are also compatible with 3-alkylloxindole 57 (entries 10-12), although 

higher temperature, stronger base, and longer reaction time are required than in the cases 

of 3-aryloxindoles. 

Table 2.4 Arylations via Nucleophilic Aromatic Substitution (SNAr) 

 

entry oxindole Ar-X temp (°C) time (h) yield (%)a 

1 R = Ph (54) RT 1 96 

2 54 120 3 93 

3 54 
 (58) 

65 7 75 

4 54 
(59) 

65 5 58 

5 54 

(60) 

65 5 76b 

6 54 

(61) 

65 5 68b 

7 54 

(62) 

65 5 70b 

8 R = 4-MePh (55) 60 65 5 78b 
9 R = 4-MeOPh (56) 60 65 5 61b 

10c R = Me (57) RT 1 89 

11c 57 120 3 92 

12d 57 60 75 0.5 74b 
        a Isolated yield after flash chromatography. b 1:1 mixture of diastereomers. c 2.0 equiv Cs2CO3 was 
used. d 2.0 equiv NaH was used instead of Cs2CO3. 
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2.6 Attempted Asymmetric α-Arylations of 3-Aryloxindoles 

        In 2009, the Buchwald group reported asymmetric Pd-catalyzed α-arylations and 

vinylations of 3-alkyloxindole (Scheme 2.8). They used an air-stable precatalyst, 

dimethyl palladium TMEDA complex,25 which was known to be easily activated and 

facilitated low temperature oxidative additions of aryl chlorides, an axially chiral P-

stereogenic ligand 63, sodium tert-butoxide as a base, and a nonpolar solvent, 

cyclohexane. Based on the optimization studies of our Pd-catalyzed α-arylations (Table 

2.1), nonpolar solvents were better than polar solvents for the formations of 3,3-

disubstituted oxindoles. All these reactions were reported in good yields with excellent ee 

values. The two chiral elements, the axially chiral biaryl backbone and the stereogenic 

phosphine atom, accounted for the high ee values.  

N
O

R

R

R

aryl/vinyl bromides
TMEDA-PdMe2
ligand, t-BuONa

cyclohexane
rt - 50 oC, 24 h

N
O

R

R R

up to >99% ee ligand 63

P
t-Bu
Ph

NMe2

R = -Me or -Bn

R

 

Scheme 2.8 Buchwald’s Asymmetric α-Arylations and Vinylations of 3-Alkyloxindoles 

        Our successful Pd-catalyzed α-arylations of 3-aryloxindoles intrigued us to pursue 

an asymmetric version of such reactions. Our group had developed a series of 

ferrocenyloxazolines ligands, and had applied them to other catalytic asymmetric 

reactions, such as, Ru-catalyzed transfer hydrogenations,26 and Cu-catalyzed conjugative 

additions of Grignard reagents to enones.27 Herein, we were interested in applying these 

ligands to our Pd-catalyzed α-arylations of 3-aryloxindoles. 
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        Synthesis of these chiral P-N-ligands relied on methods previously developed in our 

group (Scheme 2.9). AlCl3-mediated Friedel-Crafts reaction of ferrocene with 2-

chlorobenzoyl chloride provided ketone 64, which was then hydrolyzed to afford 

carboxylic acid 65 under strong basic conditions (t-BuOK).28 A chiral valine side chain 

was introduced onto carboxylic acid 65, which was first activated as an acid chloride via 

a Vilsmeier-Haack reaction, to provide amide 66.  Amide 66 was subjected to cyclization 

to form oxazoline 67 via a tandem tosylation (p-TsCl with catalytic amount of DMAP), 

and substitution of the in situ generated tosylate. Our group had found that we could 

install phosphines on the chiral ferrocene backbone with highly diastereoselective 

oxazoline directed lithiation and trapping with a variety of disubstituted 

chlorophosphoines to provide various chiral phosphine ligands.29-31 I prepared ligands 

68–71 wherein the phosphine bears two Ph, Cy, or i-Pr groups using this method. 

Unfortunately, trapping the lithiated ferrocenyloxazoline with the highly hindered t-

Bu2PCl did not provide the desired phosphine product; however, I was able to synthesize 

the t-Bu, Ph substituted phosphine 71. 
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1) n-BuLi, TMEDA, hexanes,
-78 oC - 0 oC

2) ClPR2

Fe O

N

R2P

+
AlCl3, CH2Cl2

0 oC to RT
Fe O Cl H2O, t-BuOK, heat

DME
Fe

COOH
Fe

Cl

Cl

O

H2N
OH

Fe
(COCl)2, cat. DMF, CH2Cl2

O

HN OH

82%

p-TsCl, cat. DMAP

Et3N, CH2Cl2, 93% Fe O

N

~80% over two steps

68: R = Ph, Ph
69: R = Cy, Cy
70: R = i-Pr, i-Pr
71: R = Ph, t-Bu

64 65

66 67

 
Scheme 2.9 Synthesis of Ferrocenyloxazolines Ligands 

        With all these chiral phosphine ligands in hand, I set out to study the asymmetric α-

arylations of 3-phenyloxindole 48. Unfortunately, I was not able to obtain any arylation 

products (Scheme 2.5), probably due to the hinderance of 3-phenyl substitution on the 

oxindole. I, therefore, went on studying the less hinder substrate, 3-methyloxindole (72), 

in order to conduct the same transformations as Buchwald reported. However, even this 

substrate was too bulky and no product was observed. During the course of these studies, 

I found that Pd(dba)2 without any other ligand can provide the arylated product in 19% 

yield (entry 8). However, only trace or no arylated product was observed in the cases 

with our ligands (68 – 71). These observations indicated that our ligands (68 – 71) did 

bind to the Pd-catalysts. However, these complexes were not able to promote the desired 

α-arylations of 3-substituted oxindoles. 
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Table 2.5 Attempted Asymmetric α-Arylations of 3-Substituted Oxindoles 

 

entry conditionsa resultsb 
1 48, PhBr, Pd(OAc)2, 68, Cs2CO3, toluene, reflux NR 
2 48, PhBr, Pd(OAc)2, 68, Cs2CO3, toluene, refluxc NR 
3 48, PhBr, Pd(dba)2, 69, Cs2CO3, toluene, reflux NR 
4 48, PhBr, Pd(dba)2, 69, LiHMDS, toluene, reflux NR 
5 48, PhI, Pd(dba)2, 69, Cs2CO3, toluene, reflux NR 
6 48, PhI, Pd(OAc)2, 69, Cs2CO3, toluene, reflux NR 
7 48, PhI, Pd(dba)2, 71, Cs2CO3, toluene, reflux NR 
8 48, 3-MeOPhI,  Pd(dba)2, no ligand, LiHMDS, toluene, reflux 19% 
9 48, 3-MeOPhI,  Pd(dba)2, 70, LiHMDS, toluene, reflux trace 
10 48, 3-MeOPhI,  Pd(dba)2, 70, i-Pr2NEt, toluene, refluxd trace 
11 72, PhBr, Pd(OAc)2, 68, Cs2CO3, toluene, reflux NR 
12 72, PhI, Pd(OAc)2, 68, Cs2CO3, toluene, reflux NR 
13 72, PhI, CuI, 68, Cs2CO3, toluene, reflux mixture 
14 72, PhI, Pd(dba)2, 71, Cs2CO3, toluene, reflux NR 
15 72, PhI, Pd(dba)2, 71, LiHMDS, toluene, reflux NR 

         a Reactions were run using Pd-catalyst (10 mol%), ligand (20 mol%), base (3.0 equiv of Cs2CO3 of 
2.2 equiv of LiHMDS), concentration (0.1 mol/L), reflux. b Results were determined by TLC and the crude 
NMR. c only 10 mol% ligand 68 was used. d 3.0 equiv of i-Pr2NEt.  

 

2.7 Conclusion        

        In summary, we have developed a versatile method for the preparation 3,3-

diaryloxindoles via Pd-catalyzed α-arylations of 3-aryloxindoles or via a nucleophilic 

aromatic substitution (SNAr) with electron deficient aryl halides. The reaction proceeds 

using mild base, is tolerant of a variety of functional groups, and is capable of preparing 

hindered all-carbon quaternary centers. The broad substrate scope and ability to form 

highly hindered carbon-carbon bonds should render this method applicable to the 

synthesis of complex natural products, such as, diazonamide A, and other biologically 

active compounds. In addition, asymmetric Pd-catalyzed α-arylations of 3-substituted 
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oxindoles with various chiral ferrocenyloxazoline monophosphine ligands were 

attempted; however, they did not provide any of the desired asymmetric α-arylation 

products. 

 

2.8 Abbreviations 

dba Dibenzylideneacetone 
KHMDS Potassium bis(trimethylsilyl)amide 
LiHMDS Lithium bis(trimethylsilyl)amide 
MOM Methoxymethyl 
RuPhos 2-Dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl 
TMEDA Tetramethylethylenediamine 
XPhos 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl
 

 

2.9 Experimental Details 

        All glassware was oven-dried or flame-dried. DMF was freshly distilled over CaH2 

under reduced pressure prior to use; THF and Et2O were distilled from sodium 

benzophenone ketyl under N2; CH2Cl2, hexanes, and toluene were distilled over CaH2 

under N2; TMEDA was distilled from Na under reduced pressure. Unless specifically 

mentioned, all chemicals are commercially available and were used as received. For 

reactions of 3-monosubstituted oxindoles under basic conditions, solvents were degassed 

by sparging with N2 or Ar, in order to prevent the oxidation of oxindole enolates.32 Thin 

layer chromatography (TLC) was performed using EM Science Silica Gel 60 F254 glass 

plates. Flash chromatography was performed using 60 Å silica gel (37-75 μm). 1H NMR 

spectra were recorded at either 400 MHz or 500 MHz, and 13C NMR spectra were 
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recorded at either 75 MHz or 100 MHz in CDCl3, [D6]acetone, or [D6]DMSO as 

indicated. Chemical shifts are reported in ppm referenced to residual solvent peaks as 

follows: CDCl3, 7.24 ppm for 1H NMR, 77.16 ppm for 13C NMR; [D6]acetone, 2.05 ppm 

for 1H NMR, 29.84 ppm for 13C NMR; and [D6]DMSO, 2.50 ppm for 1H NMR, 39.52 

ppm for 13C NMR. Infrared (FT-IR) spectra were obtained as thin films on NaCl plates. 

Exact mass was determined using electrospray ionization (M+H, M+Na, or M+K as 

indicated). 

 

N-Benzyl-3-Phenyloxindole: 

 

        N-Benzyloxindole2 (1.22 g, 5.46 mmol, 1.0 equiv), Pd(dba)2 (157 mg, 0.273 mmol, 

0.05 equiv), and t-Bu3PHBF4 (159 mg, 0.546 mmol, 0.10 equiv) were charged in a 100 

mL round bottom flask, which was purged with Ar. Iodobenzene (0.82 mL, 6.01 mmol, 

1.1 equiv) was dissolved in dry toluene (50 mL) in a 100 ml pear–shape flask. The 

solution was degassed by sparging with Ar for 15 min, and cannulated into the flask 

containing N-benzyloxindole and other reagents. LiHMDS (11.5 mL of a 1.0 M solution 

in toluene, 11.5 mmol, 2.1 equiv) was then added via syringe, and the dark brown 

solution was stirred at room temperature for 5 h. The reaction was quenched by the 

addition of 1M HCl (aq, 50 mL), and extracted with EtOAc (50 mL×3). The combined 

organic layers were washed with brine (50 mL), dried over MgSO4, filtered, and 
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concentrated under reduced pressure. The crude product was purified by recrystallization 

from Et2O/hexanes to provide N-benzyl-3-phenyloxindole (48, 1.26 g, 77%). Spectral 

data for compound 48 are consistent with that reported in the literature.33 

 

Pd-Catalyzed Arylation of N-Benzyl-3-Phenyloxindole (Table 2.1 & Table 2.2): 

 

General procedure: 

    N-Benzyl-3-phenyloxindole (48, 0.25 mmol, 1.0 equiv), Pd(OAc)2 (5 mol%), t-

Bu3PHBF4 (10 mol%), and Cs2CO3 (3.0 equiv) were charged in a 25 mL round bottom 

flask, which was then fitted with a condenser, and purged with N2. The aryl bromide (1.1 

equiv) was dissolved in dry toluene (5 mL), and the solution was degassed by sparging 

with N2 for 15 min before cannulated into the flask containing compound 48 and the 

other reagents. The suspension was heated to reflux, until compound 48 was consumed as 

indicated by TLC. The reaction was then cooled to ambient temperature, quenched by the 

addition of 1 M HCl (10 mL), and extracted with EtOAc (25 mL×3). The combined 

organic layers were washed with brine (10 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure. Purification by flash chromatography using a 

mixture of hexanes and EtOAc provided the desired 3,3-diaryloxindoles. 
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N-Benzyl-3,3-Diphenyl-2-Oxindole (Table 2.1, entry 1): 

        A white crystalline solid. 1H NMR (500 MHz, CDCl3) δ 7.23 – 7.30 (m, 16H), 7.16 

(dd, J = 7.5, 2.0 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 8 Hz, 1H), 4.98 (s, 2H). 

13C NMR (100 MHz, CDCl3) δ 177.8, 142.3, 142.2, 136.0, 133.1, 129.0, 128.7, 128.6, 

128.4, 127.5, 127.40, 127.38, 126.3, 123.1, 109.8, 62.7, 44.2. 1H NMR (500 MHz, 

[D6]acetone) δ 7.40 – 7.20 (m, 17H), 7.07 (td, J = 7.6, 1.0 Hz, 1H), 7.01 (d, J = 7.9 Hz, 

1H), 5.06 (s, 2H). 13C NMR (75 MHz, [D6]acetone) δ177.8, 143.2, 143.2, 137.4, 133.6, 

129.5, 129.31, 129.27, 129.19, 129.15, 128.3, 128.1, 126.9, 123.5, 110.5, 63.1, 44.2. m.p.: 

160 – 161 °C. IR (cm-1) 1713, 1608, 1487, 1347, 1181. HRMS calcd for C27H21NONa+: 

398.1515; found: 398.1502. 

 

 

N-Benzyl-3-(2-Methylphenyl)-3-Phenyl-2-Oxindole (Table 2.1, entry 7): 

        A white foam. 1H NMR (500 MHz, CDCl3) δ 7.69 (br s, 1H), 6.99 – 7.46 (m, 15H), 

6.90 (d, J = 7.5 Hz, 1H), 6.80 (d, J = 7.5 Hz, 1H), 4.93 (AB, J = 15.6 Hz, νab = 160.2 Hz, 

2H), 1.88 (s, 3H). 13C NMR (100 MHz, CDCl3, 55 °C) δ 178.2, 142.8, 141.1, 140.3, 

138.0, 136.1, 132.8, 132.4, 130.3, 128.8, 128.6, 128.4, 127.7, 127.7, 127.6, 127.6, 126.4, 
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125.8, 122.8, 109.5, 63.2, 44.3, 21.2. IR (cm-1) 1712, 1608, 1485, 1465, 1343. HRMS 

calcd for C28H23NONa+: 412.1671; found: 412.1672. 

 

 

N-Benzyl-3-(4-Methoxyphenyl)-3-Phenyl-2-Oxindole (Table 2.2, entry 1):  

        A white crystalline solid. 1H NMR (500 MHz, CDCl3) δ 7.20 – 7.31 (m, 11H), 7.18 

(d, J = 9 Hz, 2H), 7.15 (dd, J = 8, 1 Hz, 1H), 7.02 (td, 7.5, 1 Hz, 1H), 6.81 (d, J = 9 Hz, 

2H), 6.76 (d, J = 7.5 Hz, 1H), 4.97 (s, 2H), 3.76 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

178.1, 159.0, 142.5, 142.5, 136.0, 134.0, 133.4, 129.8, 129.0, 128.7, 128.5, 128.3, 127.8, 

127.4, 127.4, 126.2, 123.0, 114.0, 109.8, 62.0, 55.4, 44.2. 1H NMR (500 MHz, 

[D6]acetone) δ 7.41 – 7.17 (m, 14H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 7.00 (d, J = 7.9 Hz, 

1H), 6.93 – 6.84 (m, 2H), 5.04 (s, 2H), 3.75 (s, 3H). 13C NMR (75 MHz, [D6]acetone) δ 

178.0, 159.8, 143.5, 143.13, 137.4, 134.8, 134.0, 130.4, 129.5, 129.2, 129.0, 128.3, 128.1, 

128.0, 126.8, 123.4, 114.5, 110.4, 62.4, 55.5, 44.1. m.p.: 75 – 77 °C. IR (cm-1) 1712, 

1607, 1509, 1250, 1179. HRMS calcd for C28H23NO2Na+: 428.1621; found: 428.1622. 

 

 

N-Benzyl-3-(3-Methoxyphenyl)-3-Phenyl-2-Oxindole (Table 2.2, entry 2): 
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        A white foam. 1H NMR (500 MHz, [D6]acetone) δ 7.43 – 7.19 (m, 13H), 7.07 (td, J 

= 7.6, 1.0 Hz, 1H), 7.02 (d, J = 7.9, 1H), 6.91 – 6.81 (m, 3H), 5.06 (AB, J = 15.8 Hz, νab 

= 9.4 Hz 2H), 3.69 (s, 3H). 13C NMR (75 MHz, [D6]acetone) δ 177.6, 160.6, 144.6, 

143.2, 142.9, 137.5, 133.6, 130.2, 129.5, 129.3, 129.2, 128.4, 128.1, 127.0, 123.5, 121.5, 

115.7, 113.0, 110.5, 63.0, 55.4, 44.2. IR (cm-1) 3056, 3031, 2925, 2835, 1708, 1605, 

1487. HRMS calcd for C28H23NO2H+: 406.1802; found: 406.1814. 

 

 

N-Benzyl-3-(2-Methoxyphenyl)-3-Phenyl-2-Oxindole (Table 2.2, entry 3).  

        A white crystalline solid. 1H NMR (500 MHz, CDCl3) δ 7.45 (br s, 2H), 7.28 – 7.34 

(m, 5H), 7.15 – 7.28 (m, 5H), 7.03 (dd, J = 7.5, 2.0 Hz, 1H), 6.97 (dt, J = 7.5, 1 Hz, 1H), 

6.91 (dd, J = 7.5, 1.5 Hz, 1H), 6.85 (dt, J = 7.5, 1.0 Hz, 1H), 6.77 – 6.80 (m, 2H), 4.92 

(AB, J = 15.5 Hz, νab = 20.0 Hz, 2H), 3.26 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 179.0, 

157.6, 143.4, 139.3, 136.6, 132.5, 131.8, 130.8, 129.4, 128.9, 128.8, 128.4, 128.0, 127.8, 

127.6, 125.8, 122.2, 120.8, 112.5, 109.0, 59.9, 55.9, 44.3. m.p.: 155 – 156 °C. IR (cm-1) 

1716, 1609, 1488, 1343, 1251. HRMS calcd for C28H23NO2Na+: 428.1621; found: 

428.1620. 

 

 



46 
 

N-Benzyl-3-(3-Chlorophenyl)-3-Phenyl-2-Oxindole (Table 2.2, entry 4): 

        A white foam. 1H NMR (500 MHz, [D6]acetone) δ 7.46 – 7.18 (m, 16H), 7.11 (td, J 

= 7.6, 1.0 Hz, 1H), 7.06 (d, J = 7.9 Hz, 1H), 5.07 (AB, J = 15.8 Hz, νab = 12.1 Hz, 2H). 

13C NMR (75 MHz, [D6]acetone) δ 177.3, 145.4, 143.2, 142.6, 137.4, 134.6, 132.9, 

130.9, 129.6, 129.5, 129.4, 129.3, 129.2, 128.43, 128.37, 128.30, 128.1, 127.9, 127.0, 

123.8, 110.8, 62.8, 44.3. IR (cm-1) 3056, 3027, 2921, 1704, 1610, 1491, 1474. HRMS 

calcd for C27H20ClNOH+: 410.1306; found: 410.1320. 

 

 

N-Benzyl-3-(4-Formylphenyl)-3-Phenyl-2-Oxindole (Table 2.2, entry 5): 

        A white foam. 1H NMR (500 MHz, CDCl3) δ 9.98 (s, 1H), 7.80 (d, J = 8.5 Hz, 2H), 

7.43 (d, J = 8.5 Hz, 2H), 7.15 – 7.35 (m, 11H), 7.06 (td, J = 7.5 Hz, 1.0 Hz, 1H), 6.82 (d, 

J = 7.5 Hz, 1H) 4.98 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 192.0, 177.0, 148.9, 142.3, 

141.3, 135.7, 135.5, 132.1, 130.0, 129.4, 129.04, 128.90, 128.86, 128.5, 127.9, 127.9, 

127.4, 126.2, 123.3, 110.1, 62.9, 44.3. IR (cm-1) 1707, 1605, 1356. HRMS calcd for 

C28H21NO2Na+: 426.1464; found: 426.1468. 
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N-Benzyl-3-(4-Acetylphenyl)-3-Phenyl-2-Oxindole (Table 2.2, entry 6): 

        A white foam. 1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 

8.5 Hz, 2H), 7.21 – 7.33 (m, 11H), 7.20 (dt, J = 7.8, 1.0 Hz, 1H), 7.05 (dt, J = 7.5, 1.0 Hz, 

1H), 6.81 (d, J = 8 Hz, 1H), 4.98 (AB, J = 15.8 Hz, νab = 8.0 Hz, 2H), 2.55 (s, 3H). 13C 

NMR (100 MHz, CDCl3) δ 197.9, 177.2, 147.4, 142.3, 141.5, 136.2, 135.8, 132.3, 129.03, 

128.90, 128.86, 128.76, 128.71, 128.5, 127.9, 127.8, 127.4, 126.2, 123.3, 110.0, 62.8, 

44.3, 26.8. IR (cm-1) 1713, 1683, 1606, 1487, 1357, 1267. HRMS cacld for 

C29H23NO2Na+: 440.1621; found: 440.1623. 

 

 

N-Benzyl-3-(4-Hydroxyphenyl)-3-Pheny-2-Oxindole (Table 2.2, entry 7,): 

        A white crystalline solid. 1H NMR (500 MHz, [D6]acetone) δ 8.42 (s, 1H), 7.42 – 

7.18 (m, 12H), 7.16 – 7.10 (m, 2H), 7.07 (td, J = 7.6, 1.0 Hz, 1H), 6.99 (d, J = 7.9 Hz, 

1H), 6.83 – 6.77 (m, 2H), 5.05 (s, 2H). 13C NMR (75 MHz, [D6]acetone) δ 178.2, 157.5, 

143.7, 143.2, 137.5, 134.2, 133.7, 130.5, 129.5, 129.2, 129.1, 129.0, 128.3, 128.1, 127.9, 

126.9, 123.4, 115.0, 110.4, 62.4, 44.1. m.p.: 170 – 171 °C. IR (cm-1) 3362 (br s), 3060, 
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3023, 2925, 1679, 1609, 1511, 1458. HRMS cacld for C27H21NO2H+: 392.1645; found: 

392.1628. 

 

 

3-(4-Aminophenyl)-N-Benzyl-3-Phenyl-2-Oxindole (Table 2.2, entry 8): 

        A colorless oil. 1H NMR (500 MHz, [D6]acetone) δ 7.38 – 7.15 (m, 12H), 7.05 (td, 

J = 7.6, 1.0 Hz, 1H), 6.97 (m, 3H), 6.64 – 6.55 (m, 2H), 5.03 (s, 2H), 4.68 (br s, 2H). 13C 

NMR (75 MHz, [D6]acetone) δ 178.4, 148.6, 144.0, 143.2, 137.6, 134.5, 130.5, 130.0, 

129.5, 129.2, 129.0, 128.8, 128.3, 128.1, 127.8, 126.8, 123.3, 114.9, 110.3, 62.4, 44.1. IR 

(cm-1) 3461, 3367, 3047, 3028, 1708, 1601, 1515, 1479. HRMS cacld for C27H22N2OH+: 

391.1805; found: 391.1810. 

 

 

N-Benzyl-3-Phenyl-3-(4-(Trifluoromethyl)phenyl)-2-Oxindole (Table 2.2, entry 9): 

        A white foam. 1H NMR (500 MHz, [D6]acetone) δ 7.72 (d, J = 8.3 Hz, 2H), 7.52 (d, 

J = 8.2 Hz, 2H), 7.40 (dd, J = 7.5, 0.7 Hz, 1H), 7.39 – 7.23 (m, 11H), 7.11 (td, J = 7.6, 

0.9 Hz, 1H), 7.06 (d, J = 7.9 Hz, 1H), 5.08 (AB, J = 15.9 Hz, νab = 7.7 Hz, 2H). 13C 

NMR (75 MHz, [D6]acetone) δ 177.2, 147.6, 147.6, 143.3, 142.6, 137.3, 132.8, 130.1, 
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129.60, 129.58, 129.55, 129.47, 129.2, 128.43, 128.42, 128.12, 127.0, 126.16 (q, J = 

3.8Hz), 123.8, 110.8, 63.0, 44.4. 19F NMR (100 MHz, [D6]acetone) δ -62.9. IR (cm-1) 

3081, 3052, 3023, 2925, 1712, 1601, 1483, 1327. HRMS calcd for C28H20F3NOH+: 

444.1570; found: 444.1563. 

 

 

N-Benzyl-3-(2,6-Dimethylphenyl)-3-Phenyl-2-Oxindole (Table 2.2, entry 10): 

        A white foam. 1H NMR (400 MHz, [D6]DMSO, 76 °C) δ 7.34 (dt, J = 7.6, 1.6 Hz, 

1H) 6.98 – 7.30 (m, 16H), 4.90 (AB, J = 19.6 Hz, νab = 163.7 Hz, 2H), 1.77 (s, 6H). 13C 

NMR (100 MHz, [D6]DMSO, 76 °C) δ 177.0, 142.8, 142.1, 138.4, 137.4, 135.7, 130.6, 

129.9 (br), 128.2, 127.9, 127.9, 126.9, 126.8, 126.8, 126.3, 124.8, 122.5, 109.2, 62.2, 42.8, 

22.2 (br). IR (cm-1) 1715, 1609, 1486, 1466. HRMS calcd for C29H25NONa+: 426.1828; 

found: 426.1820. 

 

Preparations of N-Benzyl-3-ortho-Substituent Phenyloxindoles: 
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N-Benzyl-3-(2-Methoxyphenyl)-2-Oxindole (52): 

        Prepared by the same procedure as compound 53. Purification by flash 

chromatography (5:1 hexanes:EtOAc) provided the title product (52, 2.73g, 92%) as a 

pink solid. 

        1H NMR (500 MHz, CDCl3) δ ppm 7.35 – 7.43 (m, 2H), 7.29 – 7.35 (m, 2H), 7.24 – 

7.29 (m, 2H), 7.08 – 7.19 (m, 2H), 7.02 (d, J = 7.5 Hz, 1H), 6.84 – 6.95 (m, 3H), 6.75 (d, 

J = 8 Hz, 1H), 4.86 and 5.09 (AB, J = 15.5 Hz, 2H), 4.90 (br s, 1H), 3.61, (s, 3H). 13C 

NMR (100 MHz, CDCl3) δ ppm 176.9, 157.6, 143.5, 136.5, 130.7, 129.9, 129.2, 128.9, 

127.8, 127.8, 127.7, 126.0, 124.2, 122.5, 121.1, 111.6, 108.9, 55.8, 48.6, 44.1. m.p.: 113 

– 114 °C. IR (cm-1) 1714, 1611, 1491, 1464, 1351. HRMS calcd for C22H19NO2Na+: 

352.1308; found: 352.1306. 

 

 

N-Benzyl-3-(2-Methylphenyl)-2-Oxindole (53): 

        A suspension of N-benzyloxindole (205 mg, 0.92 mmol, 1.0 equiv), Pd(OAc)2 (10.3 

mg, 0.046 mmol, 0.05 equiv), t-Bu3PHBF4 (26.6 mg, 0.092mmol, 0.10 equiv), and 

Cs2CO3 (890 mg, 2.7 mmol, 3.0 equiv) in freshly distilled toluene (9 mL) was heated to 

reflux for 1 h. After cooling to room temperature, the reaction was quenched by the 
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addition of 1 M HCl (15 mL), and the biphasic mixture was extracted with EtOAc (20 

mL×3). The combined organic layers were washed with brine (10 mL), dried over 

MgSO4, filtered, and concentrated under reduced pressure. Purification by flash 

chromatography (10:1 hexanes:EtOAc) provided the title product 53 as a colorless sticky 

oil (248 mg, 86%), which was crystallized by slow evaporation from Et2O/hexanes to 

provide a white solid. Spectral data of 53 are consistent with that reported in the 

literature.16 

 

Arylation of N-Benzyl-3-ortho-Substituent Phenyloxindoles 52 & 53 (Table 2.3): 

 

General procedure: 

        Compound 52 or 53 (0.25 mmol, 1.0 equiv), Pd(OAc)2 (5 mol%), t-Bu3PHBF4 (10 

mol%), and Cs2CO3 (3.0 equiv) were charged in a resealable tube, which was purged 

with Ar. The aryl bromide (1.2 equiv) was dissolved in dry toluene (5 mL), and the 

solution was degassed by sparging with Ar for 15 min before cannulating into the 

resealable tube. The resealable tube was sealed, and placed in a 120 °C sand bath for the 

length of time indicated in Table 2.3. After cooling to ambient temperature, the schlenk 

tube was open to air, and the reaction was stirred overnight in order to consume the 

unreacted compound 52 or 53 to the tertiary alcohol.32 The reaction was then quenched 

by the addition of 1 M HCl (10 mL), and extracted with EtOAc (25 mL×3). The 
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combined organic layers were washed with brine (10 mL), dried over MgSO4, filtered, 

and concentrated under reduced pressure. Purification by flash chromatography using a 

mixture of hexanes and EtOAc provided the desired 3,3-diaryloxindoles as white solids. 

 

 

N-Benzyl-3-(2-Methoxyphenyl)-3-(4-Methoxyphenyl)-2-Oxindole (Table 2.3, entry 2): 

        A white crystalline solid. 1H NMR (500 MHz, [D6]acetone) δ 7.39 (m, 4H), 7.33 – 

7.18 (m, 5H), 7.04 – 6.85 (m, 8H), 4.96 (AB, J = 15.7 Hz, νab = 70.0 Hz, 2H), 3.80 (s, 

3H), 3.32 (s, 3H). 13C NMR (75 MHz, [D6]acetone) δ 179.1, 160.1, 158.4, 144.4, 138.0, 

133.4, 133.2, 131.7, 131.2, 131.1, 129.5, 129.4, 128.63, 128.58, 128.2, 126.1, 122.5, 

121.2, 114.3, 113.1, 109.6, 59.6, 56.0, 55.5, 44.3. m.p.: 170 – 171 °C. IR (cm-1) 2950, 

2921, 1703, 1605, 1503, 1491, 1450. HRMS calcd for C29H25NO3H+: 436.1907; found: 

436.1909. 

 

 

N-Benzyl-3-(2-Methoxyphenyl)-3-(3-Methoxyphenyl)-2-Oxindole (Table 2.3, entry 3): 

        A white crystalline solid. 1H NMR (500 MHz, [D6]acetone) δ 7.43 – 7.36 (m, 2H), 

7.33 – 7.18 (m, 6H), 7.10 (br s, 1H), 7.05 (dd, J = 7.4, 1.0 Hz, 2H), 7.00 (td, J = 7.5, 1.0 
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Hz, 1H), 6.97 (d, J = 7.8, 1H), 6.95 – 6.83 (m, 4H), 4.97 (AB, J = 15.6 Hz, νab = 59.4 Hz, 

2H), 3.72 (s, 3H), 3.32 (s, 3H). 13C NMR (75 MHz, [D6]acetone) δ 178.7, 160.4, 158.4, 

144.4, 141.6, 138.0, 133.1, 132.7, 131.2, 129.8, 129.6, 129.4, 128.8, 128.6, 128.2, 126.2, 

122.5, 122.2, 121.2, 116.5, 113.3, 113.2, 109.7, 60.3, 56.0, 55.4, 44.4. m.p.: 68 – 70 °C. 

IR (cm-1) 2925, 2835, 1712, 1610, 1593, 1486. HRMS calcd for C29H25NO3Na+: 

458.1727; found: 458.1729. 

 

 

N-Benzyl-3-(4-Methoxyphenyl)-3-(2-Methylphenyl)-2-Oxindole (Table 2.3, entry 5): 

        A white crystalline solid. 1H NMR (500 MHz, [D6]acetone) δ 7.65 (br s, 1H), 7.36 

– 6.72 (m, 16H), 5.00 (AB, J = 15.6 Hz, νab = 149.4 Hz, 2H), 3.80 (s, 3H), 1.85 (s, 3H). 

13C NMR (75 MHz, [D6]acetone) δ 178.6, 160.1, 143.6, 141.6, 138.3, 137.4, 133.3, 

133.1, 132.8, 130.9, 130.4 (br), 129.4, 129.1, 128.32, 128.30, 128.26, 126.7, 126.4, 123.3, 

114.4 (br), 110.2, 62.6, 55.5, 44.2, 21.1. m.p.: 145 – 146 °C. IR (cm-1) 3060, 3032, 2962, 

2925, 2831, 1712, 1610, 1503, 1479, 1467. HRMS calcd for C29H25NO2Na+: 442.1778; 

found: 442.1772. 
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N-Benzyl-3-(3-Methoxyphenyl)-3-(2-Methylphenyl)-2-Oxindole (Table 2.3, entry 6): 

        A white crystalline solid. 1H NMR (500 MHz, [D6]acetone) δ 7.53 – 7.01 (m, 14H), 

6.91 (m, 2H), 6.73 (br s, 1H), 5.02 (AB, J = 15.6 Hz, νab = 130.3 Hz, 2H), 3.71 (s, 3H), 

1.90 (s, 3H). 13C NMR (75 MHz, [D6]acetone) δ 178.19, 160.69, 143.49, 143.20, 141.05, 

138.56, 137.35, 133.14, 132.95, 130.81, 130.21, 129.43, 129.23, 128.37, 128.35, 126.88, 

126.43, 123.39, 115.64, 110.32, 63.41, 55.45, 44.28, 21.31. m.p.: 67 – 68 °C. IR (cm-1) 

3052, 3027, 2954, 2921, 1712, 1601, 1487, 1462. HRMS calcd for C29H25NO2Na+: 

442.1778; found: 442.1775. 

 

Preparations of 3-Aryloxindoles: 

 

 

3-Hydroxy-3-Phenylindolin-2-One: 

        To a 250 ml three-neck flask were added magnesium turning (3.70 g, 150 mmol, 2.2 

equiv), anhydrous THF (100 mL), and bromobenzene (22.48 g, 143 mmol, 2.1 equiv). 

The mixture was heated until almost all the magnesium turning was consumed. Then the 

brown solution was cannulated slowly to a THF (300 mL) solution of isatin (10.03 g, 68 

mmol, 1.0 equiv), which was cooled in an ice bath. The solution was warmed to room 

temperature and stirred for an additional 3 h. The mixture was diluted with Et2O (200 
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mL), cooled in an ice bath, and quenched with 1 M HCl (200 mL). The aqueous layer 

was extracted with Et2O (200 ml×3), and the combined organic layer was washed with 

water (200 mL), brine (200 mL), dried over MgSO4, and concentrated under reduced 

pressure. Recrystallization from hot EtOAc and hexane provide a crystalline yellow solid 

(12.33 g, 80 %). NMR data were consistent with literature values.34 

 

 

3-Hydroxy-3-p-Methoxylphenylindolin-2-One:  

        This compound was prepared from 4-bromoanisole by following the procedure for 

the preparation of 3-hydroxy-3-phenylindolin-2-one and was purified by crystallization 

from hot EtOAc and hexanes to provide a white cotton-like solid (3.19 g, 88 %). NMR 

data were consistent with literature values.35 

 

 

3-Hydroxy-3-p-Tolylindolin-2-One:  

        This compound was prepared from 4-bromotoluene by following the procedure for 

the preparation of 3-hydroxy-3-phenylindolin-2-one and was purified by crystallization 

from hot EtOAc and hexanes to provide a crystalline yellowish solid (2.92 g, 85 %). 

NMR data were consistent with literature values.35 
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3-Phenylindolin-2-One (54):  

        3-Hydroxy-3-phenylindolin-2-one (4.03 g, 17.9 mmol) was dissolved in a 250 mL 

round bottom flask with methanol (100 ml). After addition of 10 % Pd/C (1.9 g, 1.79 

mmol), the mixture was reacted under H2 atmosphere overnight (15 h), using balloon 

untill all the starting alcohol was consumed. The mixture was diluted with Et2O (100 mL), 

filtrated over celite, and concentrated under reduced pressure to provide a yellowish solid. 

The crude product was recrystallized from hot EtOAc to provide compound 54 as a 

crystalline white solid (3.50 g, 93 %).  

        1H NMR (500 MHz, CDCl3) δ 8.04 (s, 1H), 7.35 – 7.25 (m, 3H), 7.23 – 7.18 (m, 

2H), 7.12 (d, J = 7.4 Hz, 1H), 7.02 (td, J = 7.5, 1.0 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 

4.62 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 179.29, 141.96, 136.69, 129.87, 129.20, 

128.73, 128.62, 127.90, 125.43, 122.92, 110.35, 53.00. 

 

 

3-p-Tolylindolin-2-One (55):  
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        Compound 55 was prepared from 4-bromotoluene via the similar procedure for the 

preparation of 54 and was purified by recrystallization from hot EtOAc and hexanes to 

provide a yellowish crystalline solid (1.82 g, 95 %). 

        1H NMR (500 MHz, CDCl3) δ 8.26 (s, 1H), 7.26 – 7.19 (m, 1H), 7.17 – 7.06 (m, 

5H), 7.01 (td, J = 7.6, 0.8 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.58 (s, 1H), 2.31 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 179.67, 142.05, 137.61, 133.67, 130.08, 129.89, 128.57, 

128.50, 125.33, 122.84, 110.37, 52.71, 21.36. 

 

 

3-(4-Methoxyphenyl)indolin-2-One (56): 

        Compound 56 was prepared from 4-bromotoluene by following the procedure for 

the preparation of 54 and was purified by recrystallization from hot EtOAc and hexanes 

to provide a white crystalline solid (1.02 g, 86 %). NMR data were consistent with 

literature values.18 

 

Preparation of 3-Methyloxindole: 
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3-Hydroxy-3-Methylindolin-2-One:  

        Isatin (5.04 g, 34.3 mmol) was dissolved in anhydrous THF (75 mL), and cooled in 

a dry ice / acetone bath, and MeMgBr in Et2O (3.0 M, 28 ml, 84.0 mmol) was added 

dropwise via syringe. After stirring for 2 h in -78 °C, the reaction was quenched with 

saturated NH4Cl (50 mL), and the layers were separated. The aqueous layer was extracted 

with EtOAc (100 ml×3), and the combined organic layers were washed with water (50 

mL), brine (50 mL), dried over MgSO4, filtered, and concentrated under reduced pressure 

to provide the crude product as a yellow solid. Recrystallization from hot EtOAc and 

hexanes provided a crystalline yellow solid (5.08 g, 91 %). NMR data were consistent 

with literature values.34 

 

 

3-Chloro-3-Methylindolin-2-One:  

        3-Hydroxy-3-methylindolin-2-one (4.00 g, 24.5 mmol) was dissolved in dry CH2Cl2 

(60 mL), cooled in the ice bath. SOCl2 (4.5 ml, 61.8 mmol) was added dropwise via 

syringe. The resultant mixture was warmed to room temperature and stirred for additional 

3 h, and the reaction was quenched with saturated NaHCO3 (50 mL), diluted with EtOAc 

(50 mL), and the layers were separated. The aqueous layer was extracted with EtOAc (50 

ml×3), and the combined organic layers were washed with water (50 mL), brine (50 mL), 
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dried over MgSO4, filtrated, and concentrated under reduced pressure. The crude product 

was used directly in next step without purification. 

        1H NMR (500 MHz, CDCl3) δ 9.52 (s, 1H), 7.39 (dd, J = 7.5, 0.6 Hz, 1H), 7.27 (td, 

J = 7.7, 1.2 Hz, 1H), 7.08 (td, J = 7.6, 1.0 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 1.91 (s, 3H). 

 

 

3-Methylindolin-2-one (57): 

        3-Chloro-3-methylindolin-2-one (4.36 g, 24.0 mmol) was dissolved in dry THF (120 

mL), and activated zinc dust (4.98 g, 76 mmol) and glacial acetic acid (9.0 ml, 157 mmol) 

were added. After stirring at room temperature for 3 h, the mixture was filtrated over 

celite, and washed with EtOAc. The filtrate was evaporated on rotary evaporator (using 

toluene to azeotrope off acetic acid) to provide a brown oil. The crude product was 

purified by flash chromatography (2:1 hexanes:EtOA) to provcide compound 57 as a 

white solid (3.37 g, 95 %). NMR data of 57 were consistent with literature values.36 

 

Preparations of 5-Halooxazoles: 
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5-Bromo-2-iso-Propyloxazole-4-Carbonitrile (58):  

        Prepared according to a modification of the procedure of Harran.37 Compound 73 

(1.79 g, 11.9 mmol, 1.0 equiv), which was prepared by Freeman’s method,38 was added 

in small portions to a stirred suspension of CuBr2 (5.30 g, 23.7 mmol, 2.0 equiv) and t-

BuONO (90%, 2.72 mL, 23.7 mmol, 2.0 equiv) in anhydrous CH3CN (100 mL). After 

stirring at room temperature for 1 h, the mixture was diluted with Et2O (100 mL) and 

H2O (100 mL), and washed with 1 M HCl (aq, 100 mL). The layers were separated, and 

the aqueous layer was extracted with Et2O (100 mL×3). The combined organic layers 

were washed with brine (50 mL), dried over MgSO4, filtered, concentrated under reduced 

pressure to provide a yellow oil. Purification by flash chromatography (10:1 

hexanes:EtOAc) provided  compound 58 as a colorless oil (1.82 g, 71 %), which 

solidified upon cooling. 

        1H NMR (400 MHz, CDCl3) δ 3.08 (hept, J = 7.0 Hz, 1H), 1.34 (d, J = 7.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 171.8, 130.6, 115.6, 111.3, 29.0, 20.0. m.p.: 70 – 71 °C. 
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IR (cm-1): 2966, 2933, 2880, 2255, 1576, 1552, 1142, 1045. HRMS m/z calcd for 

(C7H7ClN2O)2Na+: 450.9376; found: 450.9376. 

 

 

5-Chloro-2-iso-Propyloxazole-4-Carbonitrile (59):  

        Prepared according to a modification of the procedure of Harran.37 Compound 73 

(920 mg, 6.08 mmol, 1.0 equiv), which was prepared by Freeman’s method,38 was added 

in small portions to a stirred suspension of CuCl2 (1.68 g, 12.5 mmol, 2.05 equiv) and t-

BuONO (90%, 1.6 mL, 13.45 mmol, 2.2 equiv) in anhydrous CH3CN (50 mL). After 

stirring at room temperature for 1 h, the mixture was diluted with Et2O (100 mL) and 

H2O (50 mL), and washed with 1 M HCl (aq, 50 mL). The layers were separated, and the 

aqueous layer was extracted with Et2O (50 mL×3). The combined organic layers were 

washed with brine (50 mL), dried over MgSO4, filtered, concentrated under reduced 

pressure to provide a yellow oil. Purification by flash chromatography (10:1 

hexanes:EtOAc) provided compound 59  (651 mg, 63 %) as a colorless oil. (Note: 

Compound 59 is volatile, and can be pumped off under high vacuum.) 

        1H NMR (400 MHz, CDCl3) δ 3.06 (hept, J = 7.0 Hz, 1H), 1.33 (d, J = 7.0 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 169.5, 144.2, 110.9, 110.8, 29.0, 20.0. IR (cm-1): 2978, 

2929, 2880, 2242, 1564, 1184, 1127. HRMS m/z calcd for (C7H7ClN2O)2Na+: 363.0386; 

found: 363.0383. 
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(S)-tert-Butyl-1-(5-Chloro-4-Cyanooxazol-2-yl)-2-Methylpropylcarbamate (61):  

        Prepared according to a modification of the procedure of Harran.37 Compound 74 

(1.02 g, 3.64 mmol, 1.0 equiv)37,38 was added in small portions to a stirred suspension of 

CuCl2 (1.24 g, 9.22 mmol, 2.5 equiv) and t-BuONO (90%, 1.1 mL, 9.16 mmol, 2.5 equiv) 

in anhydrous CH3CN (50 mL). After stirring at room temperature for 1 h, the mixture 

was diluted with Et2O (100 mL) and H2O (50 mL), and washed with 1 M HCl (aq, 50 

mL). The layers were separated, and the aqueous layer was extracted with Et2O (50 

mL×3). The combined organic layers were washed with brine (50 mL), dried over 

MgSO4, filtered, concentrated under reduced pressure to provide a yellow oil. 

Purification by flash chromatography (10:1 hexanes:EtOAc) provided compound 61 as a 

colorless oil (502 mg, 46 %), which solidified upon cooling. 

        1H NMR (500 MHz, CDCl3) δ 5.00 (d, J = 8.9 Hz, 1H), 4.80 – 4.63 (m, 1H), 2.15 

(dd, J = 13.3, 6.6 Hz, 1H), 1.43 (s, 9H), 0.94 (t, J = 7.3, 6H). 13C NMR (101 MHz, 

CDCl3) δ 164.7, 155.4, 144.7, 111.2, 110.5, 80.7, 54.7, 32.3, 28.4, 19.0, 18.0. m.p.: 69 – 

70 °C. IR (cm-1): 3332, 2245, 1714, 1513, 1367, 1167. HRMS m/z calcd for 

C13H18ClN3O3Na+: 322.0928; found: 322.0922. 

 

(S)-tert-Butyl-1-(5-Bromo-4-Formyloxazol-2-yl)-2-Methylpropylcarbamate (62): 
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        DIBAL-H (10.5 mL of a 1.0 M solution in hexanes, 10.5 mmol, 2.4 equiv) was 

added dropwise via syringe to a -78 °C solution of nitrile 60 (1.5 g, 4.36 mmol, 1.0 equiv) 

in dry Et2O (40 mL). After the addition was complete, the reaction was stirred at -78 °C 

for an additional 15 min. Dry acetone (200 μL) was added to quench the excess DIBAL-

H, and the reaction was stirred at -78 °C for an additional 15 min. The cold bath was then 

removed, saturated citric acid (aq, 30 mL) was added, and the biphasic mixture stirred at 

room temperature for 1 h. The aqueous layer was extracted with Et2O (20 mL×3), and the 

combined organic layers were dried over MgSO4, filtered, and concentrated under 

reduced pressure to provide a yellow oil. Purification by flash chromatography (5:1 

hexanes:EtOAc) provided aldehyde 62 as a colorless oil (1.17 g, 78 %). 

        1H NMR (500 MHz, CDCl3, ~15% rotamer peaks were observed) δ 9.73 (d, J = 

14.3 Hz, 1H), 5.30 (d, J = 9.3 Hz, 1H), 4.65 (dd, J = 9.1, 6.1 Hz, 1H), 2.07 (dq, J = 13.3, 

6.7 Hz, 1H), 1.28 (s, 9H), 0.84 (t, J = 19.5 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 182.2, 

166.4, 155.3, 136.3, 130.0, 80.1, 54.4, 32.3, 28.2, 18.8, 17.8. IR (cm-1) 3334, 1703, 1515, 

1167. HRMS m/z calcd for C13H19BrN2O4K+: 385.0159; found: 385.0157. 

 

Arylations of 3-Phenyloxindole (54, Table 2.4): 
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General procedure: 

        3-Phenyloxindole (54, 0.1 mmol, 1.0 equiv), aryl halide (1.0 equiv), and Cs2CO3 

(1.0 equiv) were charged in a 10 mL round bottom flask, which was purged with N2. 

Fresh distilled DMF (2 mL, degassed by sparing with N2 for 15 min) was cannulated into 

the above flask, and the septum was then sealed with electrical tape. The reaction was 

stirred at room temperature, or in a preheated oil bath (65 °C or 120 °C) for the length of 

time indicated in Table 2.4. After cooling to ambient temperature, the reaction was 

quenched with saturated NH4Cl (20 mL), extracted with 1:1 hexanes:EtOAc (20 mL×3), 

and the combined organic layers were washed by water (10 ml×3), brine (10 ml), dried 

over MgSO4, filtered, and concentrated under reduced pressure. Purification by flash 

chromatography using a mixture of hexanes:EtOAc provided the desired 3,3-

diaryloxindoles. 

 

 

3-(2,4-Dinitrophenyl)-3-Phenylindolin-2-One (Table 2.4, entry 1): 

        A yellowish crystalline solid. 1H NMR (500 MHz, [D6]acetone) δ 9.77 (s, 1H), 8.69 

(d, J = 2.5 Hz, 1H), 8.49 (dd, J = 8.8, 2.5 Hz, 1H), 7.59 – 7.54 (d, J = 8.8 Hz, 1H), 7.40 – 

7.30 (m, 5H), 7.26 (br, 2H), 7.13 – 7.08 (m, 2H). 13C NMR (101 MHz, [D6]acetone) δ 

177.1, 177.0, 150.2, 147.8, 143.2, 143.0, 141.1, 136.4, 131.0, 130.1, 129.5, 129.4, 129.2, 

127.3, 126.0, 122.9, 121.2, 111.3, 111.2, 61.9. m.p.: 237 – 238 °C. IR (cm-1): 3276 (br), 
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3101, 1728, 1708, 1532, 1352. HRMS m/z calcd for C20H13N3O5Na+: 398.0747; found: 

398.0739. 

 

 

3-(4-Nitrophenyl)-3-Phenylindolin-2-One (Table 2.4, entry 2): 

        A yellowish crystalline solid. 1H NMR (500 MHz, CDCl3) δ 9.58 (s, 1H), 8.41 – 

8.28 (m, 2H), 7.73 – 7.65 (m, 2H), 7.51 – 7.42 (m, 1H), 7.30 (ddt, J = 14.7, 7.4, 1.1 Hz, 

2H), 7.20 (d, J = 7.8 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 181.4, 148.0, 147.3, 140.5, 

134.3, 129.0, 128.1, 124.5, 124.0, 123.5, 111.0, 77.6, 77.2, 76.9, 53.1, 23.8. m.p.: 215 – 

216 °C. IR (cm-1): 3248 (br), 1716, 1593, 1348. HRMS m/z calcd for C20H14N2O3Na+: 

353.0897; found: 353.0894. 

 

 

2-iso-Propyl-5-(2-Oxo-3-Phenylindolin-3-yl)Oxazole-4-Carbonitrile (Table 2.4, 

entries 3 & 4): 

        A white crystalline solid. 1H NMR (500 MHz, CDCl3) δ 9.71 (s, 1H), 7.40 – 7.28 

(m, 7H), 7.12 (dd, J = 11.1, 4.1 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 3.03 (hept, J = 7.0 Hz, 

1H), 1.28 (dd, J = 7.0, 1.3 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 175.2, 170.0, 157.5, 
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141.0, 135.8, 130.3, 129.2, 129.1, 128.6, 127.8, 126.4, 123.6, 112.5, 111.8, 111.6, 57.5, 

28.6, 20.2, 20.0. m.p.: 179 – 180 °C. IR (cm-1): 3280 (br), 2983, 2246, 1719, 1621, 1593, 

1470. HRMS m/z calcd for C21H17N3O2Na+: 366.1213; found: 366.1202. 

 

 

tert-Butyl-(1S)-1-(4-Cyano-5-(2-Oxo-3-Phenylindolin-3-yl)Oxazol-2-yl)-2-

Methylpropylcarbamate (Table 2.4, entries 5 & 6): 

        A white foam. 1H NMR (500 MHz, CDCl3; ~14% rotamer peaks were observed; 

obtained as an approximately 1:1 mixture of diastereomers) δ 9.05 (s, 1H), 7.42 – 7.25 (m, 

7H), 7.11 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 5.16 (t, J = 7.1Hz, 1H), 4.71 (dd, J 

= 14.0, 8.0 Hz, 1H), 2.15 – 1.98 (m, 1H), 1.46 – 1.18 (m, 9H), 0.91 – 0.71 (m, 6H). 13C 

NMR (101 MHz, CDCl3; obtained as an approximately 1:1 mixture of diastereomers. 

The number of signals observed is not exactly twice that of a single diastereomer due to 

overlapping signals.) δ 174.7, 165.0, 158.2, 155.5, 140.9, 135.5, 130.4, 129.3, 129.3, 

128.3, 127.9, 126.4, 123.7, 112.7, 111.6, 111.5, 80.5, 57.4, 54.4, 32.8, 28.5, 18.8, 18.7, 

17.9. IR (cm-1): 3288 (br), 2970, 2246, 1719, 1475, 1168. HRMS m/z calcd for 

C27H28N4O4Na+: 495.2003; found: 495.1988. 
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tert-Butyl-(1S)-1-(4-Formyl-5-(2-Oxo-3-Phenylindolin-3-yl)Oxazol-2-yl)-2-

Methylpropylcarbamate (Table 2.4, entry 7): 

        A white foam. 1H NMR (500 MHz, CDCl3; ~13% rotamer peaks were observed; 

obtained as an approximately 1:1 mixture of diastereomers) δ 9.59 (d, J = 32.9 Hz, 1H), 

9.40 (d, J = 13.9 Hz, 1H), 7.37 – 7.21 (m, 7H), 7.06 (dd, J = 13.8, 7.3 Hz, 2H), 5.65 (br, 

1H), 4.77 – 4.65 (m, 1H), 2.13 – 1.95 (m, 1H), 1.30 (dd, J = 50.1, 12.7 Hz, 9H), 0.89 – 

0.71 (m, 6H). 13C NMR (100 MHz, CDCl3; obtained as an approximately 1:1 mixture of 

diastereomers. The number of signals observed is not exactly twice that of a single 

diastereomer due to overlapping signals.) δ 184.2, 184.2, 175.7, 175.6, 164.2, 158.0, 

157.8, 155.6, 141.0, 137.2, 137.1, 136.4, 136.4, 130.0, 130.0, 129.2, 129.2, 129.0, 128.9, 

128.7, 127.8, 127.7, 126.2, 126.1, 123.5, 111.6, 111.6, 80.1, 58.1, 54.2, 54.2, 33.1, 29.8, 

28.4, 18.7, 18.6, 18.1, 17.9. IR (cm-1): 3297 (br), 2978, 1715, 1503, 1176. HRMS m/z 

calcd for C27H29N3O5Na+: 498.1999; found: 498.1993. 

 

 

tert-Butyl-(1S)-1-(4-Cyano-5-(2-Oxo-3-p-Tolylindolin-3-yl)oxazol-2-yl)-2-

Methylpropylcarbamate (Table 2.4, entry 8): 
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        1H NMR (500 MHz, CDCl3) δ 9.48 (d, J = 10.9, 1H), 7.30 (dd, J = 18.0, 7.8 Hz, 

2H), 7.15 (q, J = 8.7 Hz, 4H), 7.09 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 5.23 (t, J 

= 8.8 Hz, 1H), 4.78 – 4.61 (m, 1H), 2.31 (s, 3H), 2.15 – 1.95 (m, 1H), 1.49-1.16 (m, 9 H), 

0.92 – 0.71 (m, 6H). 13C NMR (101 MHz, CDCl3, obtained as an approximately 1:1 

mixture of diastereomers. The number of signals observed is not exactly twice that of a 

single diastereomer due to overlapping signals.) δ 175.15, 164.94, 158.39, 155.49, 140.99, 

139.12, 132.51, 130.28, 129.96, 129.93, 128.52, 127.68, 126.24, 123.53, 112.58, 111.59, 

111.54, 80.43, 77.58, 77.26, 76.94, 57.15, 54.37, 32.75, 29.89, 28.44, 21.30, 18.69, 17.87. 

IR (cm-1): 3289, 2974, 2235, 1736, 1515, 1164. 

 

 

tert-Butyl-(1S)-1-(4-Cyano-5-(3-(4-Methoxyphenyl)-2-Oxoindolin-3-yl)oxazol-2-yl)-

2-Methylpropylcarbamate (Table 2.4, entry 9): 

        1H NMR (500 MHz, CDCl3) δ 9.34 (s, 1H), 7.36 – 7.26 (m, 2H), 7.26 – 7.19 (d, J = 

5.0 Hz, 2H), 7.10 (t, J = 7.5, 1H), 7.02 (d, J = 7.8, 1H), 6.90 – 6.82 (m, 2H), 5.21 (t, J = 

10.1, 1H), 4.79 – 4.62 (m, 1H), 3.75 (s, 3H), 2.17 – 1.98 (m, 1H), 1.45 – 1.18 (m, 9H), 

0.91 – 0.72 (m, 6H). 13C NMR (101 MHz, CDCl3, obtained as an approximately 1:1 

mixture of diastereomers. The number of signals observed is not exactly twice that of a 

single diastereomer due to overlapping signals) δ 175.22, 164.89, 160.24, 158.71, 155.48, 

140.92, 130.27, 129.13, 128.55, 127.15, 126.24, 123.52, 114.60, 114.57, 112.55, 111.56, 
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111.50, 80.43, 56.65, 55.50, 54.35, 32.77, 28.43, 18.70, 18.66, 17.87. IR (cm-1): 3277 

(br), 2966, 2239, 1720, 1507, 1249, 1172. 

 

 

3-(2,4-Dinitrophenyl)-3-Methylindolin-2-One (Table 2.4, entry 10): 

        1H NMR (500 MHz, [D6]acetone) δ 9.72 (s, 1H), 8.63 (dd, J = 8.8, 2.5 Hz, 1H), 

8.57 (d, J = 2.5 Hz, 1H), 8.42 (d, J = 8.8 Hz, 1H), 7.25 (td, J = 7.7, 1.3 Hz, 1H), 7.04 – 

6.96 (m, 2H), 6.93 (td, J = 7.5, 1.0 Hz, 1H), 1.87 (s, 3H). 13C NMR (101 MHz, 

[D6]acetone) δ 179.13, 150.42, 148.07, 142.76, 140.76, 134.01, 133.63, 129.51, 127.38, 

123.27, 122.86, 120.93, 110.80, 52.38, 27.43. IR (cm-1): 3244 (br), 1715, 1535, 1352. 

 

 

3-Methyl-3-(4-Nitrophenyl)indolin-2-One (Table 2.4, entry 11): 

        1H NMR (500 MHz, CDCl3) δ 9.37 (s, 1H), 8.19 – 8.08 (m, 2H), 7.54 – 7.44 (m, 

2H), 7.26 (td, J = 7.5, 1.7 Hz, 1H), 7.09 (dtd, J = 14.7, 7.4, 1.1 Hz, 2H), 6.99 (d, J = 7.8 

Hz, 1H), 1.84 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 181.35, 148.00, 147.30, 140.54, 

134.30, 128.99, 128.06, 124.52, 123.95, 123.47, 110.97, 53.12, 23.79. IR (cm-1): 3248 

(br), 1728, 1622, 1524, 1348. 
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tert-Butyl-(1S)-1-(4-Cyano-5-(3-Methyl-2-Oxoindolin-3-yl)oxazol-2-yl)-2-

Methylpropylcarbamate (Table 2.4, entry 12): 

        1H NMR (500 MHz, CDCl3) δ 9.19 (d, J = 10.0 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 

7.18 (d, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.99 (dd, J = 7.7, 3.8 Hz, 1H), 5.23 (d, J 

= 9.3 Hz, 1H), 4.73 (dd, J = 9.0, 5.6 Hz, 1H), 2.17 – 2.01 (m, 1H), 1.90 (s, 3H), 1.44 – 

1.28 (m, 9H), 0.86 (dd, J = 11.8, 6.2 Hz, 6H). 13C NMR (101 MHz, CDCl3, obtained as 

an approximately 1:1 mixture of diastereomers. The number of signals observed is not 

exactly twice that of a single diastereomer due to overlapping signals.) δ 176.51, 164.89, 

164.77, 158.23, 155.55, 140.39, 140.32, 130.34, 130.13, 124.31, 123.71, 111.96, 111.88, 

111.38, 111.16, 80.56, 54.40, 48.86, 32.77, 29.92, 28.49, 21.47, 18.74, 18.02, 17.94. IR 

(cm-1): 3276 (br), 2974, 2239, 1707, 1532, 1470, 1172. 

 

Synthesis of Ferrocenyloxazoline Phosphine Ligands:26 

 

General Procedure: 

        n-BuLi (740 µL, 1.179 mmol, 1.2 equiv) was added dropwise to a solution of 

compound 67 (292 mg, 0.083 mmol, 1.0 equiv) and TMEDA (176 µL, 1.179 mmol, 1.2 
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equiv) in dry hexanes (10 mL) in a dry ice / acetone bath. The reaction was allowed to 

stir at -78 °C for 1 h, and the cooling bath was switched to an ice bath. After stirring in 

the ice bath for 5 min, ClPPh2 (242 µL, 1.179 mmol, 1.2 equiv) was added, and the 

reaction was slowly warmed up to room temperature stirring overnight (~ 15 h). The 

reaction was quenched with sat. NaHCO3 (10 mL) and water (10 mL), and further diluted 

with hexanes (10 mL). The organic layer was separated, and the aqueous layer was 

extracted with hexanes (10 mL×2). The combined organic layers were washed with brine 

(10 mL), dried over MgSO4, filtered, and concentrated to provide an orange solid. 

Purification by flash chromatography with 5:1 hexanes:EtOAc provided compound 68 

(248 mg, 52%) as an orange solid. Spectral data of compound 68 were consistent with 

literature values.26 

 

Compound 69: 

        1H NMR (500 MHz, CDCl3) δ 4.91 (s, 1H), 4.41 (dd, J = 9.7, 7.3 Hz, 2H), 4.18 (s, 

1H), 4.11 (d, J = 8.9 Hz, 5H), 4.02 – 3.85 (m, 2H), 2.49 (d, J = 12.7 Hz, 1H), 1.96 – 1.63 

(m, 7H), 1.63 – 1.13 (m, 11H), 1.12 – 0.77 (m, 9H), 0.67 (dd, J = 25.3, 12.6 Hz, 1H). 13C 

NMR (75 MHz, CDCl3) δ 166.66, 166.63, 78.73, 78.36, 72.03, 71.96, 71.84, 71.28, 71.26, 

71.03, 70.86, 70.53, 69.62, 36.56, 36.34, 32.81, 32.66, 32.17, 31.84, 31.62, 30.20, 30.04, 

29.45, 29.28, 29.03, 28.96, 27.85, 27.70, 27.61, 27.32, 27.20, 27.17, 27.08, 26.54, 26.31, 

19.27, 17.82.  31P NMR (121 MHz, CDCl3) δ -10.71. 

 

Compoudn 70: 
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        1H NMR (500 MHz, CDCl3) δ 4.94 (s, 1H), 4.50 – 4.40 (m, 2H), 4.25 (dd, J = 2.4, 

1.5 Hz, 1H), 4.17 (s, 5H), 3.99 (t, J = 8.77 Hz, 1H), 3.91 (td, J = 9.2, 6.3 Hz, 1H), 2.04 

(dq, J = 13.9, 7.0 Hz, 1H), 1.89 – 1.61 (m, 3H), 1.48 (dd, J = 14.7, 7.0 Hz, 3H), 1.13 (dd, 

J = 13.3, 6.9 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.89 – 0.81 (m, 6H), 0.77 (dd, J = 10.0, 

7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 166.50, 166.47, 78.98, 78.61, 74.29, 74.10, 

72.23, 72.04, 71.98, 71.53, 71.51, 70.95, 70.57, 69.93, 32.54, 26.63, 26.41, 22.45, 22.30, 

22.20, 21.95, 20.23, 20.00, 19.51, 19.35, 18.79, 18.70, 18.13. 31P NMR (122 MHz, 

CDCl3) δ -2.45.  

 

Compound 71: 

        1H NMR (500 MHz, CDCl3) δ 8.03 – 7.89 (m, 2H), 7.46 – 7.36 (m, 3H), 4.94 (dt, J 

= 2.8, 1.5 Hz, 1H), 4.48 (dd, J = 9.6, 8.4 Hz, 1H), 4.39 (td, J = 2.6, 0.7 Hz, 1H), 4.28 (dd, 

J = 2.5, 1.5 Hz, 1H), 4.04 (t, J = 8.7 Hz, 1H), 3.97 – 3.89 (m, 6H), 1.82 (dq, J = 13.4, 6.7 

Hz, 1H), 1.04 – 0.93 (m, 12H), 0.88 (d, J = 6.8 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 

166.43, 166.40, 136.68, 136.42, 136.09, 129.44, 129.43, 127.89, 127.78, 76.85, 76.18, 

75.82, 74.35, 74.27, 72.73, 72.68, 72.00, 71.47, 71.47, 70.51, 70.06, 32.44, 32.28, 32.09, 

28.87, 28.67, 19.35, 18.12. 31P NMR (122 MHz, CDCl3) δ 2.65. 
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3 Formal Synthesis of Diazonamide A 

 

3.1 Background and Previous Work by Dr. Matthew Sammons 

        The synthetic challenge of diazonamide A, for the most part, lies in the 

stereoselective construction of the highly congested C10 quaternary carbon. Although 

three total syntheses and one formal synthesis of diazonamide A were reported prior to 

our work, the reactions of constructing the C10 quaternary center preceded with either 

low or moderate diastereoselectivity. Our success in the development of methods for the 

α-arylation of 3-aryloxindoles encouraged us to apply these reactions to the total 

synthesis of diazonamide A. 

        Dr. Matthew Sammons studied, among other things, the macrocyclization of 

compound 82 via an intramolecular nucleophilic aromatic substitution reaction. Synthesis 

of compound 82 (Scheme 3.1) started with the esterification and protection of L-tyrosine 

to provide compound 75. 1  Treatment of 75 with i-PrMgCl provided the magnesium 

phenolate that added to the carbonyl group of N-MOM-7-bromoisatin (76) to provide 

tertiary alcohol 77.2,3 The phenol hydroxyl group of compound 77 was then protected as 

the MOM ether to provide 78, and the tertiary alcohol of 78 was reduced via the two-step 

sequence of chlorination (SOCl2) and reduction (Zn/HOAc) to provide compound 80. 

Saponification of the methyl ester of 80 with degassed LiOH aqueous solution, followed 

by amide bond formation using amine TFA salt 81, under the typical peptide coupling 

conditions (EDC/HOBt) furnished cyclization precursor 82. 
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Scheme 3.1 Preparation of Cyclization Precursor 82 

        However, treatment of compound 82 with a variety of bases in different solvents 

only provided the undesired O-arylation product 84 (Scheme 3.2), with none of the 

desired C-arylation product (83) being observed. The lack of C-arylation was in contrast 

to previous observations on the intramolecular SNAr arylations of N-MOM-3-

phenyloxindole (48, Scheme 2.6). We hypothesized that the enolate derived from 

compound 82 would not be able to adopt a planar conformation. Rather it would adopt a 

conformation such that the ortho-substituent on the phenol ring would like to avoid the 

alkoxide of the enolate and twist the phenol ring to become perpendicular to the enolate, 

thus rendering the carbon of the enolate at the junction of the two aromatic rings too 

hindered to approach the oxazole. As such, the less hindered oxygen of the enolate would 

attack the bromooxazole to form the macrocycle via an SNAr mechanism. Changing the 

MOM protecting group on the phenol to a smaller protecting group, such as a methyl 
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group, was also studied, but did not provide the desired C-arylation product either.4 At 

this point, we felt that varying the reaction conditions or making minor changes in the 

substrate would not be productive, and we sought to test our hypothesis that the 

conformation of the enolate was non-planar and was to blame for the lack of reactivity. 

 
Scheme 3.2 Cyclization of 82 with ortho-substituent by Dr. Matthew Sammons 

 

3.2 Cyclization of a Precursor Without ortho-Substituent 

        A straightforward test of the above hypothesis is to prepare a cyclization substrate 

analogous to 82 but lacking the ortho-MOM substituent. This compound should be 

capable of adopting a planar conformation and cyclizing on carbon. I, therefore, prepared 

cyclization precursors 92 and 93 without ortho-substitution on the tyrosine phenyl ring as 

described in Scheme 3.3. The methyl ester of L-tyrosine was prepared (SOCl2 in MeOH), 

and the amino group was protected as the tert-butyl carbamate to provide 85.5  The 

magnesium phenolate, generated by deprotonation of the phenol of protected tyrosine 85 

with MeMgBr, was added to the carbonyl group of N-MOM-isatin (86) to provide tertiary 
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alcohol 87 after acidic work-up. Comin’s reagent6 was used to convert the phenol of 87 to 

triflate 88, which was reduced by hydrogenation (H2, Pd/C) along with the doubly-

benzylic tertiary alcohol to provide the doubly reduced product (89) and some partially 

reduced product (90). Saponification of compound 89 provided a carboxylic acid, which 

was coupled with amine TFA salt, 81 and 91, under typical amide bond formation 

conditions (EDC/HOBt) to provide cyclization precursors 92 and 93, respectively. To our 

delight, upon treating with KHMDS (compound 94 was produced in 53% yield) or 

Cs2CO3 in DMF, both 92 and 93 were cyclized to provide the desired C-arylation 

products 94 and 95, respectively, as single diastereomers. The stereochemistry of these 

products was assigned as showed in Scheme 3.3 in analogy to that of compound 111 

(vide infra). No other stereoisomers were observed by NMR in the crude reaction mixture.  
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Scheme 3.3 Preparation and Cyclization of 92 and 93 without ortho-Substituent 

        With the success of the cyclizations of 92 and 93, I anticipated that I could prepare a 

diazonamide A analogue 96 without the formation of the hemiaminal moiety, and test 

whether this analogue display biological activity comparable to that of diazonamide A 

(Scheme 3.4). Further conversion of compound 96 to diazonamide A might be 

accomplished by subjection of this compound to amide-directed C-H bond oxidation 

methods in order to introduce an acetate group,7 which can be hydrolyzed to the phenol. 

Reduction of the oxindole and cyclization to the hemiaminal moiety would provide the 

desired natural product. However, this approach was deemed risky, due to the late stage 

functionalization of C-H bond in a very complex substrate and was not pursued. Instead, 
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ideas that would allow cyclization of a substrate bearing an ortho-substituted phenol and 

reaction on the carbon of the oxindole enolate were pursued. 

 

Scheme 3.4 Proposed Synthetic Strategies for Synthesis of Diazonamide A and its Analogue 

 

3.3 Cyclization of a Precursor with Unprotected Phenol 

        In order to synthesize diazonamide A, I wished to study the use of a cyclization 

precursor bearing a hydroxyl group on the tyrosine phenyl ring. I felt that the enolate had 

to adopt a planar conformation in order for the cyclization to occur on carbon, and 

wanted to devise a system that would allow an attractive interaction between the enolate 

and the phenol oxygen. Lithium is a well-known oxophillic metal, and this oxophilicity 

has been used in the past to form intermediates with constrained conformations in 

systems such as populations using Evans’ oxazolidinone auxiliary8 and in the Frater-
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Seebach alkylations.9,10 I anticipated that the pronation of cyclization precursor 98 with a 

lithium base would provide a di-anion wherein the lithium alkoxides can interact with 

each other in an attractive fashion as showed in Scheme 3.5. This bridged lithium-

chelated structure would adopt a planar confirmation and might favor the C-arylation of 

the oxindole enolate over the undesired O-arylation to provide macrocycle 99. 

 
Scheme 3.5 Proposed Lithium-Chelated Intermediate 

        To investigate this idea, cyclization precursor 98 was prepared from tertiary alcohol 

87 as shown in Scheme 3.6. Tertiary alcohol 87 was reduced via hydrogenation using H2 

and Pearlman’s catalyst (Pd(OH)2), to provide compound 100. Saponification of 100 with 

degassed LiOH solution followed by acidification provided the corresponding carboxylic 

acid which was coupled with amine TFA salt 81 under typical amide bond formation 

conditions (EDC/HOBt) to provide cyclization precursor 98 with the pendant unprotected 

phenol hydroxyl group. While treating compound 98 with LiHMDS or Cs2CO3, did not 

provide any of the desired C-arylation product, and only lead to complex mixtures, 

treatment with a weaker base, Na2CO3, provided the desired C-arylation product 99 as a 
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single diastereomers in 46% yield after flash chromatography. No other stereoisomers 

were observed in the NMR of the crude reaction mixture, and the stereochemistry of 99 

was assigned by analogy to that of compound 111 (vide infra). Although Na2CO3 is not 

appreciably soluble in DMF, the very small amount of solvated Na2CO3 could partially 

deprotonate the C3-H of the oxindole. The resulting intermediate was anticipated to 

undergo hydrogen bonding to form a seven member ring bridged structure, which 

provides a planar structure and minimizes hindrance around the oxindole carbon, thus, 

facilitating the formation of C-arylation product 99. 

 
Scheme 3.6 Cyclization of Compound 101 with Free Phenol 

               



85 
 

3.4 Attempted Cyclizations of Substrates with C16-Bromine 

        Encouraged by the exciting results of the cyclization of compound 98 with the free 

phenol, I was very interested in applying this strategy to the total synthesis of 

diazonamide A. In order to render this cyclization viable for a synthesis of the natural 

product, it is necessary to install a handle at C16 for introducing the right hand ring (the 

bisoxazole-indole moiety) of the molecule. Typically, a bromine atom can be used for 

transition-metal-catalyzed cross-coupling reactions, and I targeted compounds 106 and 

107 for synthesis (Scheme 3.7).  I first synthesized cyclization precursor 106 bearing a 

Cbz protecting group on the tyrosine nitrogen. Because Magnus reported in his formal 

synthesis that protecting groups on the tyrosine nitrogen atom were crucial for his 

macrocyclizations,11 I also prepared cyclization precursor 107 bearing a Boc protecting 

group. The synthesis of compound 103 proceeded via similar procedures as compound 77, 

which was previously prepared by Dr. Sammons in his synthesis of compound 82 

(Scheme 3.1). Thus, tertiary alcohols 77 and 103 were reduced by a two-step sequence 

consisting of chlorination with SOCl2 and reduction of the resultant tertiary chloride with 

Zn/HOAc to provide 104 and 105, respectively. Compounds 106 and 107 were then 

obtained after saponification of 104 and 105 with degassed LiOH solution and amide 

bond formation with amine TFA salt 81 under typical amide bond formation conditions 

(EDC/HOBt), respectively.  
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Scheme 3.7 Syntheses and Attempted Cyclizations of Cyclization Precursors 106 and 107 

        Unfortunately, treatments of compound 106 or 107 with several different bases only 

lead to decomposition (Cs2CO3) or recovered staring materials (Na2CO3 or K2CO3). We 

hypothesized that the bulky bromine atom could influence the conformation of the 

adjacent MOM protecting group, which hindered the C3 position of the oxindole enolate, 

thus preventing the formation of the desired C-arylation product. Although it was still 

unclear that how the conformation of the MOM group changed upon introduction of the 

bromine atom, this hypothesis did give me some insights on how to solve this problem. If 

this hypothesis was true, cyclization precursor 110 without an MOM protecting group on 

the phenol should not encounter such a problem, and this substrate should then be able to 

cyclize via C-arylation. Therefore, compound 110 was synthesized and tested for 

macrocyclization. 
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3.5 Formal Synthesis of Diazonamide A 

        The synthesis of 110 proceeded by the addition of N-Cbz-L-tyrosine methyl ester (75) 

to 7-bromoisatin (76) to provide tertiary alcohol 108, which was converted to compound 

109 by Nicolaous’ two-step procedure of chlorination (SOCl2) and reduction of the 

resultant tertiary chloride (NaCNBH3, Scheme 3.8).13 ,14 Saponification of the methyl 

ester of 109 with degassed LiOH solution, followed by amide bond formation of the 

resulting carboxylic acid with amine TFA salt 81 provided cyclization precursor 110 in 

72% yield over two steps. To our delight, subjecting 110 to Na2CO3 in DMF at 65 °C for 

20 h provided the desired C-arylation product 111 in 56% yield as a single diastereomer. 

1H NMR of the crude reaction mixture reveals no other stereoisomers in this reaction, and 

the remainder of the material was determined by mass spectrometry to be a mixture of 

starting material and an unidentified non-isomeric side product bearing two bromine 

atoms. Under similar conditions, other carbonate bases either afford comparable yields 

(K2CO3, 40-50%), no reaction (Li2CO3), or a complex mixture of products (Cs2CO3). 

Other polar solvents, CH3CN provided comparable yields to DMF, while DMA and 

DMSO provided slightly diminished yields (~40%). 
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Scheme 3.8 Cyclization of Unprotected Phenol/Oxindole 110 

        The structure and stereochemistry of macrocycle 111 was determined by single 

crystal X-ray crystallography. This compound was a solid, and after screening numerous 

solvents for crystallization, I obtained crystals suitable for single crystal X-ray 

crystallography by slow evaporation of an acetone solution of this compound. The X-ray 

structure of 111 (Figure 3.1) provided direct evidence that the stereochemistry of C10 

was consistent with that of the natural product. Two acetone molecules and hydrogen 

atoms are excluded for clarity from the ORTEP drawing (Figure 3.1) of macrocycle 111 

shown below. 
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synthesis of diazonamide A. This was the most stereoselective synthesis of the C10 

quaternary carbon center at that time of publication. 

 
Scheme 3.9 Formal Synthesis of Diazonamide A 

 

3.6 Attempted Cyclization of Oxazolyl Ester 114 

        Although I could, in principle, synthesize diazonamide A from intermediate 112 via 

Nicolaou’s procedures, I was more interested in developing a new synthetic route. 

Because nitriles are generally hard to functionalize, I wished to synthesize the 

corresponding ester as I felt that introduction of the right hand ring could be more readily 

accomplished from the ester. I, therefore, synthesized compound 111 with an ester group 

appended to the oxazole and anticipated introducing the indole moiety of diazonamide A 

via amide bond formation after saponification of the ester. Synthesis of ester 114 was 

similar to that of nitrile 110 by saponification (degassed LiOH solution) and amide bond 

formation (EDC/HOBt) with amine TFA salt 91, as showed in Scheme 3.10. 
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Scheme 3.10 Synthesis of Ester 114 

        Attempted cyclizations of compound 114 were studied using a variety of conditions 

(Table 3.1). Typical SNAr cyclization conditions (Na2CO3 in DMF, entry 1) did not 

provide any cyclization product, and only starting material and some oxidation product 

were recovered. Higher temperature (entry 2), stronger base (Cs2CO3, entry 3 and 

Ag3PO4, entry 5), and an additive (AgOTf, entry 4) all provided complex mixtures. Our 

typical Pd-catalyzed conditions (entry 6) only provided recovered starting material and 

some of the oxidation product. All these results indicated that methyl ester was not 

sufficiently electron-withdrawing to induce the desired SNAr reaction. As such, we 

abandoned this approach in reference to an approach, which utilizes the nitrile in a 

cyclization reaction as described above. 

Table 3.1 Attempted Cyclizations of Ester 114 

 

entry conditions result 
1 Na2CO3, DMF, 65 °C, 8 h no cyclizationa 
2 Na2CO3, DMF, 90 °C, 5 h complex mixtures 
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3 Cs2CO3, DMF, 65 °C, 15 h complex mixtures 
4 Na2CO3, AgOTf, DMF, 65 °C, 15 h complex mixtures 
5 Ag3PO4, DMF, 65 °C, 15 h complex mixtures 
6 Pd(OAc)2, t-Bu3PHBF4, Na2CO3, toluene, 120 °C, 15 h no cyclizationa 

        a recovered starting material and tertiary alcohol generated after oxidation of 3-substituted oxindole.  

 

3.7 Conclusion 

        A formal synthesis of diazonamide A has been achieved in a highly 

diastereoselective fashion employing an intermolecular SNAr cyclization of 3-

aryloxindole 110.  Because this cyclization occurs under very mild conditions using 

Na2CO3 as the base, and no protecting groups on the phenol or the oxindole N-H are 

required, this strategy can be potentially integrated into a total synthesis of diazonamide 

A that requires either minimal or no protecting groups and proceeds under mild 

conditions. 

 

3.8 Abbreviations 

Cbz Carboxybenzyl 
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
EWG Electron-Withdrawing Group 
HOBt Hydroxybenzotriazole 
KHMDS Potassium bis(trimethylsilyl)amide 
LDA Lithium diisopropylamide 
LiHMDS Lithium bis(trimethylsilyl)amide 
MOM Methoxymethyl 
TFA Trifluoroacetic acid 
 

3.9 Experimental Details 

General Information 
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All glassware was oven-dried or flame-dried. DMF was freshly distilled over CaH2 

under reduced pressure prior to use; CH2Cl2, MeOH, and toluene were distilled from 

CaH2 under nitrogen; THF and Et2O were distilled from sodium benzophenone ketyl 

under nitrogen. Unless specifically mentioned, all chemicals are commercially available 

and were used as received. For reactions of 3-monosubstituted oxindoles under basic 

conditions, solvents were degassed by either sparging with N2 or three freeze-pump-thaw 

cycles, in order to prevent the oxidation of oxindole enolates.3 Thin layer chromatography 

(TLC) was performed using EM Science Silica Gel 60 F254 glass plates. Flash 

chromatography was performed using 60 Å silica gel (37-75 μm). 1H NMR spectra were 

recorded at either 400 MHz or 500 MHz, and 13C NMR spectra were recorded at 75 MHz 

or 100 MHz in CDCl3, CD3CN, [D6]acetone, [D6]DMSO, or CD3OD as indicated. 

Chemical shifts are reported in ppm referenced to residual solvent peaks as follows: 

CDCl3 (7.24 ppm for 1H NMR; 77.16 ppm for 13C NMR.); CD3CN (1.94 ppm for 1H 

NMR; 1.32 ppm for 13C NMR.); [D6]acetone (2.05 ppm for 1H NMR; 29.84 ppm for 13C 

NMR.); [D6]DMSO (2.50 ppm for 1H NMR; 39.52 ppm for 13C NMR.); and CD3OD 

(49.00 ppm for 13C NMR). Several compounds were obtained as an inseparable mixture 

of diastereomers. NMR data for these are provided with fractional integrals for non-

overlapping peaks for each single diastereomer. Optical rotations were determined using 

a Jasco P-1030 digital polarimeter and concentrations are reported as g/100 mL. Infrared 

(IR) spectra were obtained as thin films on NaCl plates. Exact mass was determined 

using electrospray ionization (M+H or M+Na as indicated). 

 

7-Bromoisatin: 
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Nicolaou reported the synthesis of 7-bromoisatin via condensation of 2-

bromoaniline with chloral hydrate.12,14 However, chloral hydrate was no longer 

commercially available. Magnus used 2,2,2-trichloro-1-ethoxyethanol as a replacement 

for chloral hydrate. Herein, I found another cheaper replacement, tribromoacetaldehyde. 

A mixture of 2-bromoaniline (6.0 g, 34.2 mmol, 1.0 equiv) and 36% HCl (5 mL) in 

H2O (20 mL) was added to a solution of tribromoacetaldehyde (14.84 g, 51.3 mmol, 1.5 

equiv), sodium sulfate (33.0 g, 232.0 mmol, 6.8 equiv) and hydroxylamine hydrochloride 

(7.84 g, 113 mmol, 3.3 equiv) in H2O (180 mL) with vigorous stirring. The reaction was 

slowly heated to 70 °C and kept at that temperature for 2 h, during which time a yellow 

precipitate formed (Caution: DO NOT overheat higher than 70 °C or stir longer than 2 h. 

Otherwise, the precipitate may decompose and redissolve into the solution.). After 

cooling to ambient temperature, the precipitate was collected by filtration, washed with 

H2O (50 mL), isolated and allowed to stand in the fume hood overnight to dry. The crude 

solid was added portion-wise to concentrated sulfuric acid (40 mL) at 55 °C. The 

resulting brown solution was warmed to 70 °C, stirred for an additional 30 min, and then 

cooled to ambient temperature. The mixture was poured carefully onto crushed ice (150 

g), and allowed to stir for 1 h. The resulting orange precipitate was collected by filtration, 

washed with H2O (50 mL), and then dried under high vacuum overnight to provide 7-

bromoisatin (6.45 g, 83%) as an orange solid, which was used without further purification. 

Spectral data for 7-bromoisatin were consistent with that reported in the literature.12,14 
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N-MOM-7-Bromoisatin (76): 

 

LiHMDS (7.0 mL of a 1.0 M in toluene, 7.0 mmol, 1.05 equiv) was added via 

syringe to a 0 °C solution of 7-bromoisatin (1.50 g, 6.64 mmol, 1.0 equiv) in dry THF (60 

mL). Neat MOMCl (560 μL, 7.73 mmol, 1.1 equiv) was then added via syringe. The 

mixture was warmed to room temperature, stirred for 20 h, and concentrated under 

reduced pressure. The residue was dissolved in EtOAc (200 mL), washed with H2O (50 

mL), brine (25 mL), dried over MgSO4, filtered, and concentrated under reduced pressure. 

Purification by flash chromatography (5:1 hexanes:EtOAc) provided the N-MOM-7-

bromoisatin (76) as an orange solid (1.37 g, 78%). Spectral data for 76 were consistent 

with that reported in the literature.12,14 

 

Tertiary alcohol 77: 

 

To a cold (-78 °C) solution of N-Cbz-L-tyrosine methyl ester1 (75, 7.0 g, 21.25 

mmol, 1.05 equiv) in THF (150 mL) was added i-PrMgCl (11.2 mL of a 1.9 M solution 
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in THF, 21.28 mmol, 1.05 equiv). The solution was stirred at -78 °C for 20 min, and then 

warmed to room temperature. The solvent was removed under reduced pressure to 

provide a colorless foam. N-MOM-7-bromoisatin (76, 5.5 g, 20.3 mmol, 1.0 equiv) was 

added as a solid to the foam. Dry CH2Cl2 (300 mL) was then added, and the 

heterogeneous mixture was heated to reflux for 18 h. The reaction was cooled to room 

temperature, quenched with 1 M HCl (aq, 50 mL), and the layers were separated. The 

aqueous layer was extracted with EtOAc (100 mL×3), and the combined organic layers 

were washed with brine (50 mL), dried over MgSO4, filtered, and concentrated under 

reduced pressure. The crude product was purified by flash chromatography (2:1 then 1:1 

hexanes:EtOAc) to provide tertiary alcohol 77 (8.63 g, 71%) as a white foam as an 

approximately 1.2:1 ratio of diastereomers. 

1H NMR (500 MHz, CDCl3; obtained as an approximately 1.2:1 mixture of 

diastereomers) δ 8.34 (br s, 1H), 7.44 (app t, J = 8.5 Hz, 1H), 7.14 – 7.40 (m, 6H), 6.80 – 

6.98 (m, 2H), 6.74 (app t, J = 8.5 Hz, 1H), 6.56 (s, 1H), 5.32 – 5.44 (m, 2H), 5.26 (d, J = 

8 Hz, 0.45H), 5.20 (d, J = 8 Hz, 0.55H) 4.95 – 5.07 (m, 2H), 4.86 (br s, 0.55H), 4.78 (br s, 

0.45H), 4.40 – 4.50 (m, 1H), 3.58 (s, 1.3H), 3.57 (s, 1.7H), 3.27 (s, 3H), 2.80 – 2.95 (m, 

2H). 13C NMR (100 MHz, CDCl3; obtained as an approximately 1.2:1 mixture of 

diastereomers. The number of signals observed is not exactly twice that of a single 

diastereomer due to overlapping signals.) δ 179.6, 179.5, 172.1, 172.0, 155.9, 154.8, 

139.6, 136.3, 136.1, 133.0, 132.9, 131.7, 131.6, 128.74, 128.73, 128.44, 128.42, 128.3, 

128.2, 128.0, 127.9, 127.64, 127.58, 125.6, 125.0, 124.6, 124.5, 118.8, 103.9, 78.3, 71.7, 

67.3, 56.5, 54.8, 52.6, 52.5, 37.6. m.p.: 78 – 90 °C. IR (cm-1) 3341, 1723, 1509, 1460, 

1242, 1217. HRMS calcd for C28H27BrN2O8Na+: 621.0843; found: 621.0838. 
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TFA Salt 81: 

 

N-Boc-Bromooxazole 60 (2.28 g, 6.62 mmol, 1.0 equiv) was dissolved in anhydrous 

CH2Cl2 (13 mL), and freshly distilled TFA (2.6 mL, 33.7 mmol, 5.0 equiv) was added via 

syringe. The solution was stirred at room temperature until all the starting material was 

consumed (~ 5 h). The solvent was removed under reduced pressure. After successive 

solvent exchanges with toluene, the resulting solid was triturated with hexanes, collected 

by vacuum filtration, and washed with cold Et2O to provide a white solid. The solid was 

dried under high vacuum overnight to provide amine TFA salt 81 (2.10 g, 93%). 

1H NMR (500 MHz, [D6]DMSO) δ 8.69 (s, 3H), 4.57 (d, J = 6.6 Hz, 1H), 2.34 – 

2.14 (m, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H). 13C NMR (75 MHz, 

[D6]DMSO) δ 162.4, 134.7, 114.7, 111.3, 53.0, 30.5, 18.2, 17.5. m.p.: 148 – 150 °C. 

 

Tertiary alcohol 87: 

NHBoc

COOMe
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To a 0 °C solution of N-Boc-L-tyrosine methyl ester5 (85, 2.62 g, 8.85 mmol, 1.15 

equiv) in THF (30 mL) was added MeMgBr (3.6 mL of a 3.0 M solution in Et2O, 10.8 

mmol, 1.4 equiv) dropwise. After addition was completed, the ice bath was removed. The 

mixture was warmed to ambient temperature, stirred for an additional 30 min, and 

concentrated to yield a white solid. Residual solvent was removed under high vacuum. N-

MOM-isatin (86, 1.47 g, 7.70 mmol, 1.0 equiv) was added to the white solid followed by 

anhydrous CH2Cl2 (60 mL). The flask was fitted with a condenser and a drying tube, and 

the heterogeneous dark brown mixture was heated to reflux for 14 h. The reaction was 

quenched by addition of 1 M HCl (20 mL), and the layers were separated. The aqueous 

layer was extracted with EtOAc (80 mL×3), and the combined organic layers were 

washed with brine (50 mL), dried over MgSO4, filtered, and concentrated under reduced 

pressure to provide a yellow foam. Purification by flash chromatography (2:1 then 1:2 

hexanes:EtOAc) provided tertiary alcohol 87 (2.54 g, 68%) as a yellowish foam as an 

approximately 1:1 mixture of diastereomers. 

1H NMR (500 MHz, CD3CN; obtained as an approximately 1:1 mixture of 

diastereomers) δ 7.53 (s, 1H), 7.34 (td, J = 7.7, 1.4 Hz, 1H), 7.30 (s, 1H), 7.15 – 7.03 (m, 

3H), 7.00 (t, J = 7.8 Hz, 1H), 6.69 (dd, J = 8.1, 3.3 Hz, 1H), 5.47 (d, J = 8.3 Hz, 1H), 

5.19 – 4.94 (m, 2H), 4.61 (s, 1H), 4.32 (dt, J = 15.9, 6.8 Hz, 1H), 3.65 (s, 1.5H, 1/2 Me), 

3.64 (s, 1.5H, 1/2 Me), 3.37 – 3.30 (m, 3H), 3.02 (td, J = 13.7, 5.5 Hz, 1H), 2.86 (m, 1H), 

1.37 (d, J = 6.2 Hz, 9H). 13C NMR (75 MHz, CD3CN; obtained as an approximately 1:1 

mixture of diastereomers. The number of signals observed is not exactly twice that of a 

single diastereomer due to overlapping signals.) δ 178.3, 173.4, 156.8, 153.9, 143.9, 

131.8, 131.7, 131.1, 130.7, 129.0, 128.93, 128.88, 126.9, 125.3, 125.2, 124.1, 116.68, 
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116.66, 110.5, 80.0, 77.7, 72.4, 56.7, 56.11, 56.07, 52.7, 37.6, 37.5, 28.5. m.p.: 90 – 

98 °C. IR (cm-1): 3342 (br), 3052, 2978, 1724, 1613, 1511, 1462, 1356, 1156. HRMS 

m/z calcd for C25H30N2O8Na+: 509.1894; found: 509.1910. 

 

Triflate 88: 

 

Tertiary alcohol 87 (814.5 mg, 1.67 mmol, 1.0 equiv) and Comins’ reagent6 (750 mg, 

2.09 mmol, 1.25 equiv) were dissolved in anhydrous CH2Cl2 (35 mL) in a 100 mL round 

bottom flask. Et3N (720 μL, 5.12 mmol, 3.0 equiv) was then added via syringe. The 

resulting yellow solution was stirred at room temperature for 1 h, and then concentrated 

under reduced pressure to give a yellow oil. Purification by flash chromatography (2:1 

hexanes:EtOAc) provided triflate 88 as a colorless oil (826 mg, 80%). 

1H NMR (500 MHz, CD3CN; obtained as an approximately 1:1 mixture of 

diastereomers) δ 7.97 (br s, 0.5 H), 7.96 (d, J = 2.2 Hz, 0.5 H), 7.43 – 7.28 (m, 2H), 7.21 

(t, J = 7.4 Hz, 1H), 7.13 (d, J = 3.0 Hz, 0.5 H), 7.12 (d, J = 3.0 Hz, 0.5 H), 7.10 – 7.01 (m, 

2H), 5.69 (d, J = 8.4 Hz, 0.5 H), 5.64 (d, J = 8.5 Hz, 0.5 H), 5.24 (s, 0.5 H), 5.22 (s, 0.5 

H), 5.02 (s, J = 2.2 Hz, 0.5 H), 5.00 (d, J = 2.2 Hz, 0.5 H), 4.82 (s, 1H), 4.60 – 4.41 (m, 1 

H), 3.72 (s, 1.5 H, 1/2 Me), 3.71 (s, 1.5 H, 1/2 Me), 3.37 (s, 3H), 3.35 – 3.18 (m, 1 H), 

3.12 – 2.94 (m, 1H), 1.41 – 1.29 (two s, 9H). 13C NMR (75 MHz, CD3CN; obtained as an 
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approximately 1:1 mixture of diastereomers. The number of signals observed is not 

exactly twice that of a single diastereomer due to overlapping signals.) δ 176.8, 173.1, 

173.0, 146.6, 143.8, 138.9, 138.8, 133.0, 132.1, 132.0, 131.5, 131.4, 131.0, 130.7, 130.6, 

125.5, 125.4, 124.4, 121.2, 120.9, 120.8, 117.0, 111.4, 111.3, 80.2, 76.1, 72.6, 56.8, 55.8, 

55.6, 52.9, 37.8, 37.6, 28.5. IR (cm-1): 3362 (br), 3060, 2974, 2945, 2823, 1724, 1614, 

1479, 1426, 1348, 1213, 1164. HRMS m/z calcd for C26H29F3N2O10SNa+: 641.1387; 

found: 641.1360. 

 

3-Aryloxindole 89 and Tertiary Alcohol 90: 

 

5% Pd/C (66 mg, 0.031 mmol, 0.1 equiv) was added to a solution of triflate 88 

(190.2 mg, 0.307 mmol, 1.0 equiv) and Et3N (150 μL, 1.067 mmol, 3.5 equiv) in EtOAc 

(6 mL). The suspension was degassed by sequentially evacuating the flask and then 

admitting H2 three times. A hydrogen-filled balloon was attached to the flask, and the 

reaction was stirred vigorously for 48 h. The heterogeneous mixture was filtered through 

a short pad of celite and rinsed with EtOAc (50 mL). Evaporation of the solvent provided 

a colorless oil. Purification by flash chromatography (2:1 hexanes:EtOAc) provided 89 

(96 mg, 69%) as a white foam and the partially reduced product 90 as a colorless oil (30 

mg, 21%). 
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Compound 89: 1H NMR (400 MHz, CDCl3; obtained as an approximately 1:1 

mixture of diastereomers) δ 7.36 – 7.21 (m, 2H), 7.15 (d, J = 7.6 Hz, 1H), 7.08 (m, 4H), 

6.90 (d, J = 5.9 Hz, 1H), 5.20 – 5.07 (m, 2H), 4.94 (d, J = 8.1 Hz, 1H), 4.64 (s, 1H), 4.59 

– 4.43 (m, 1H), 3.59 (s, 1.5 H, 1/2 Me), 3.62 (s, 1.5 H, 1/2 Me), 3.38 – 3.23 (s, 3H), 3.14 

– 2.88 (m, 2H), 1.40 (s, 9H). 13C NMR (101 MHz, CDCl3; obtained as an approximately 

1:1 mixture of diastereomers. The number of signals observed is not exactly twice that of 

a single diastereomer due to overlapping signals.) δ 176.5, 172.3, 172.2, 155.2, 142.8, 

142.7, 136.9, 136.8, 129.34, 129.29, 129.24, 128.9, 128.8, 128.7, 128.3, 128.2, 127.4, 

127.3, 125.4, 125.3, 123.5, 109.79, 109.77, 80.0, 71.6, 56.5, 54.4, 54.3, 52.24, 52.18, 38.3, 

38.2, 28.4. m.p.: 85 – 90 °C. IR (cm-1): 3428 (br), 3354 (br), 3048, 2970, 2823, 2251, 

1712, 1605. HRMS m/z calcd for C25H30N2O6H+: 455.2177; found: 455.2178. 

Compound 90: 1H NMR (500 MHz, CD3CN; obtained as an approximately 1:1 

mixture of diastereomers) δ 7.42 – 7.36 (m, 1H), 7.32 – 7.20 (m, 5H), 7.19 – 7.08 (m, 

3H), 5.67 – 5.57 (m, 1H), 5.09 (AB, 2H), 4.87 (s, 1H), 4.44 – 4.14 (m, 1H), 3.56 (s, 3H), 

3.29 (s, 3H), 3.06 (m, 1H), 3.00 – 2.83 (m, 1H), 1.39 (s, 9H). 13C NMR (75 MHz, 

CD3CN; obtained as an approximately 1:1 mixture of diastereomers. The number of 

signals observed is not exactly twice that of a single diastereomer due to overlapping 

signals.) δ 178.41, 178.39, 173.3, 173.2, 156.3, 143.0, 141.9, 138.24, 138.19, 132.93, 

132.91, 130.8, 129.94, 129.89, 129.5, 129.4, 127.2, 125.7, 124.9, 124.6, 118.3, 110.9, 

80.1, 78.7, 72.3, 56.7, 55.9, 55.7, 52.72, 52.70, 38.2, 28.5. IR (cm-1): 3367 (br), 3064, 

2974, 1744, 1617, 1487, 1348, 1172. HRMS m/z calcd for C25H30N2O7H+: 471.2126; 

found: 471.2135. 
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Amide 92: 

 

3-Aryloxindole 89 (95 mg, 0.209 mmol, 1.0 equiv) was dissolved in anhydrous THF 

(4 mL), and the solution degassed by three freeze-pump-thaw cycles. Degassed LiOH 

solution (2.1 mL of a 1.0 M aqueous solution, 2.1 mmol. 10.0 equiv, sparged with N2 for 

1 h prior to use) was then cannulated into the THF solution. The resulting mixture was 

stirred at ambient temperature for 1 h, and then quenched by addition of 1 M HCl (10 

mL). The mixture was extracted with CH2Cl2 (30 mL), the layers separated, and the 

aqueous layer extracted with CH2Cl2 (20 mL×2). The combined organic layers were dried 

over MgSO4, filtered, and concentrated under reduced pressure to provide the crude acid 

as a white solid. The crude acid was dissolved in anhydrous CH2Cl2 (8 mL), and oxazole 

salt 81 (71 mg, 0.209 mmol, 1.0 equiv), Et3N (35 μL, 0.249 mmol, 1.2 equiv), HOBt·H2O 

(28.2 mg, 0.209 mmol, 1.0 equiv) and EDC (40.2 mg, 0.209 mmol, 1.0 equiv) were 

added sequentially. The resulting yellow solution was stirred at room temperature for 1 h, 

diluted with CH2Cl2 (100 mL), washed with 1 M HCl (aq, 20 mL), H2O (20 mL), then 

brine (20 mL), dried over MgSO4, filtered, and concentrated under reduced pressure. The 

crude product was purified by flash chromatography (2:1 hexanes:EtOAc) to provide 

amide 92 as a white foam (95 mg, 66%) as an approximately 1:1 mixture of 

diastereomers. 
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1H NMR (500 MHz, CD3CN; obtained as an approximately 1:1 mixture of 

diastereomers) δ 7.36 – 7.29 (m, 1H), 7.26 – 7.04 (m, 7H), 7.00 (t, J = 8.7 Hz, 1H), 5.71 

– 5.58 (m, 1H), 5.12 (AB, 2H), 4.91 (m, 1H), 4.72 (d, J = 6.4 Hz, 1H), 4.29 (m, 1H), 3.31 

(two s, 3H), 3.09 – 2.97 (m, 1H), 2.88 – 2.75 (m, 1H), 2.24 – 2.13 (m, 1H), 1.34 (two s, 

9H), 0.96 – 0.91 (m, 3H), 0.91 – 0.85 (m, 3H). 13C NMR (75 MHz, CD3CN; obtained as 

an approximately 1:1 mixture of diastereomers. The number of signals observed is not 

exactly twice that of a single diastereomer due to overlapping signals.) δ 177.3, 172.6, 

167.05, 167.02, 156.4, 143.8, 139.1, 139.0, 138.4, 138.3, 132.94, 132.91, 130.6, 130.5, 

129.80, 129.77, 129.71, 129.4, 129.32, 129.31, 127.63, 127.57, 125.9, 125.8, 124.00, 

123.98, 116.2, 112.2, 110.5, 80.1, 72.2, 56.6, 53.7, 52.92, 52.88, 38.1, 32.3, 28.5, 19.2, 

18.3. m.p.: >95 °C (dec). IR (cm-1): 3321, 3252, 3052, 2966, 2933, 2880, 2819, 2239, 

1732, 1670, 1642, 1516. HRMS m/z calcd for C32H36BrN5O6K+: 704.1481; found: 

704.1470. 

 

Amine TFA salt 91: 

 

        Pinnick-Lindgren oxidation:20 To a solution of aldehyde 62 (1.38 g, 3.97 mmol, 1.0 

equiv) and 2-methyl-2-butene (10 mL) in t-BuOH was added a solution of NaH2PO4 

monohydrate (3.9 g, 28.3 mmol, 7.1 equiv) and NaClO2 (3.2 g, 28.3 mmol, 7.1 equiv) in 
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H2O (20 mL). After stirring at room temperature for 2 h, H2O (50 mL) and CH2Cl2 (50 

mL) were added. The aqueous layer was extracted with CH2Cl2 (50 mL×3), and the 

combined organic layers were dried over MgSO4, filtered, and concentrated to provide a 

colorless foam. Purification by flash chromatography (5:1 hexanes:EtOAc with 5% 

HOAc), followed by successive solvent exchanges with cyclohexane to remove residual 

HOAc, provided carboxylic acid 115 (1.172 g, 81%) as a colorless foam. 1H NMR (500 

MHz, CDCl3) δ 11.27 (br s, 1H), 6.43 (s, ~15% rotamer peaks), 6.05 (d, J = 9.1 Hz, 1H), 

4.79 (dd, J = 9.6, 6.3 Hz, 1H), 4.62 (s, ~15% rotamer peaks), 2.36 – 2.00 (m, 1H), 1.37 (s, 

9H), 0.93 (dd, J = 9.5, 7.0 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 166.65, 163.19, 

155.86, 130.25, 129.54, 80.31, 54.70, 32.72, 28.38, 19.00, 18.16.         

        Carboxylic acid 115 (60 mg, 0.168 mmol, 1.0 equiv) was dissolved in anhydrous 

MeOH (3.5 mL), and TMSCHN2 in toluene (2.0 mol/L, 450 µL, 5.2 equiv) was added via 

syringe. After stirring at room temperature for 2 h, the reaction was concentrated to 

provide a yellow oil. Purification by flash chromatography (5:1 hexanes:EtOAc) 

provided ester 116 (47 mg, 75%) as a colorless oil. 1H NMR (500 MHz, CDCl3) δ 5.17 

(d, J = 9.3 Hz, 1H), 4.85 (s, 12% rotamer peaks), 4.73 (dd, J = 9.1, 6.2 Hz, 1H), 4.53 (s, 

12% rotamer peaks), 3.89 (two s, major and rotamer, 3H), 2.26 – 1.95 (m, 1H), 1.39 (s, 

9H), 0.89 (d, J = 6.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 165.49, 160.90, 155.35, 

130.46, 128.45, 80.31, 54.45, 52.54, 32.78, 28.36, 18.90, 17.95. 

        Ester 116 (390 mg, 1.034 mmol, 1.0 equiv) was dissolved in anhydrous CH2Cl2 (10 

mL), and freshly distilled TFA (2.0 mL, 25.8 mmol, 25 equiv) was added via syringe. 

The solution was stirred at room temperature until all the starting material was consumed 

(~ 3 h). The solvent was removed under reduced pressure. After successive solvent 
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exchanges with toluene, the resulting solid was triturated with hexanes, dried under 

vacuum to provide amine TFA salt 91 (387 mg, quantative) as a sticky oil, which 

solidified to provide a white solid upon seating in the freezer. 

 

Amide 93: 

 

        Compound 93 was prepared in 72% yield via a similar procedure as the preparation 

of amide 92. 1H NMR (500 MHz, CDCl3; obtained as an approximately 1:1 mixture of 

diastereomers) δ 7.31 (dd, J = 12.1, 7.7 Hz, 1H), 7.22 – 6.97 (m, 6H), 6.93 (d, J = 7.5 Hz, 

1H), 6.69 (br d, J = 7.9 Hz, one diastereomer, 0.5H), 6.59 (br d, J = 7.9 Hz, one 

diastereomer, 0.5H), 5.14 (s, 2H), 4.99 (m, 2H), 4.63 (d, J = 3.4 Hz, 1H), 4.34 (m, 1H), 

3.89 (s, one diastereomer, 1/2Me), 3.86 (s, one diastereomer, 1/2Me), 3.32 (two s, 3H), 

3.02 (m, 2H), 2.16 (m, 1H), 1.39 (s, 9H), 0.95 – 0.74 (m, 6H). 13C NMR (101 MHz, 

CDCl3; obtained as an approximately 1:1 mixture of diastereomers. The number of 

signals observed is not exactly twice that of a single diastereomer due to overlapping 

signals.) δ 176.49, 171.16, 171.07, 164.53, 164.36, 160.87, 160.85, 142.71, 137.37, 

136.96, 136.79, 130.54, 130.47, 129.65, 129.61, 129.36, 129.28, 128.85, 128.75, 128.59, 

128.55, 128.46, 128.11, 127.88, 127.00, 126.61, 126.59, 126.55, 125.34, 125.26, 123.49, 
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109.87, 109.82, 71.76, 71.67, 56.53, 56.51, 55.82, 55.77, 55.70, 53.00, 52.93, 52.55, 

52.50, 52.18, 32.54, 32.33, 32.02, 28.47, 28.38, 18.98, 18.94, 18.25, 18.17, 14.27.  

 

Macrocycle 94: 

 

Amide 92 (52.0 mg, 0.078 mmol, 1.0 equiv) and Cs2CO3 (28.0 mg, 0.086 mmol, 1.1 

equiv) were combined in a 25 mL round bottom flask, which was capped and purged with 

N2. Anhydrous DMF (8 mL, degassed by three freeze-pump-thaw cycles) was then 

cannulated into the flask. The needle was removed from the septum, which was then 

sealed with electrical tape. The suspension was placed in a 65 °C oil bath and stirred for 8 

h. The reaction was then cooled to ambient temperature, diluted with EtOAc (20 mL), 

and quenched by addition of 1 M HCl (20 mL). The aqueous layer was extracted with 1:1 

hexanes:EtOAc (20 mL×3), and the combined organic layers were washed with H2O (20 

mL×4), brine (20 mL), dried over Na2SO4, filtered, and concentrated under reduced 

pressure. Purification by flash chromatography (6:1 CHCl3:EtOAc) provided the desired 

cyclized product 94 as a white solid (32 mg, 70%). No isomeric material was identified in 

the crude 1H NMR spectrum. 

Rf = 0.12 in 6:1 CHCl3:EtOAc. [α]D
26 = –495.6 (c 0.503, MeOH). 1H NMR (500 

MHz, CDCl3) δ 7.48 – 7.34 (m, 2H), 7.26 (t, J = 6.0 Hz, 1H), 7.19 (m, 3H), 6.99 (d, J = 



107 
 

7.5 Hz, 1H), 6.72 (s, 1H), 6.10 (d, J = 5.8 Hz, 1H), 5.27 (AB, J = 10.8 Hz, νab = 17.8 Hz, 

2H), 5.13 (d, J = 8.9 Hz, 1H), 4.59 (t, J = 7.1 Hz, 1H), 4.00 (t, J = 9.0 Hz, 1H), 3.42 (s, 

3H), 3.28 (t, J = 12.0 Hz, 1H), 2.77 (d, J = 10.5 Hz, 1H), 2.05 (m, 1H), 1.44 (s, 9H), 1.03 

(d, J = 6.6 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.8, 

172.4, 164.9, 158.2, 155.1, 141.4, 139.7, 136.8, 131.4, 130.8, 129.4, 129.0, 126.9, 125.7, 

124.9, 124.5, 113.3, 110.9, 110.6, 80.6, 72.3, 58.0, 57.1, 56.8, 56.2, 38.1, 30.0, 28.4, 19.4, 

19.2. m.p.: 170 – 172 °C. IR (cm-1): 3318, 2966, 2925, 2242, 1728, 1711, 1674, 1507, 

1495. HRMS m/z calcd for C32H35N5O6Na+: 608.2489; found: 608.2480. 

 

Macrocycle 95: 

 

        Compound 95 was prepared in 58% yield via a similar procedure as the preparation 

of amide 94. Rf = 0.25 in 1:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.27 (m, 

2H), 7.21 (m, 2H), 7.12 (m, 2H), 7.04 (m, 2H), 5.95 (d, J = 6.0 Hz, 1H), 5.29 (AB, 2H), 

5.23 (d, J = 8.7 Hz, 1H), 5.16 – 5.05 (br s, rotamer), 4.74 (t, J = 6.6 Hz, 1H), 4.10 (t, J = 

9.4 Hz, 1H), 3.44 (s, 3H), 3.42 (s, 3H), 3.24 (t, J = 12.1 Hz, 1H), 2.84 (d, J = 11.0 Hz, 

1H), 2.25 – 2.05 (m, 1H), 1.44 (s, 9H), 0.96 (dd, J = 11.8, 6.7 Hz, 6H). 
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3-Aryloxindole 100: 

 

Tertiary alcohol 87 (205 mg, 0.421 mmol, 1.0 equiv) was dissolved in MeOH (8 mL) 

in a 500 mL Parr flask, and Pearlman’s catalyst (20 wt. %, 29.6 mg, 0.042 mmol, 0.1 

equiv) was added. The reaction mixture was then subjected to H2 (45 psi) with shaking 

for 64 h. The reaction was then filtered through a short pad of celite, washed with EtOAc, 

and concentrated under reduced pressure to provide a yellow oil. Purification by flash 

chromatography (2:1 hexanes:EtOAc) provided compound 100 (112 mg, 57%) as a 

colorless oil and recovered starting material 87 (64 mg, 31%) as a yellowish foam. 

1H NMR (500 MHz, CD3CN; obtained as an approximately 1:1 mixture of 

diastereomers) δ 7.39 (br s, 1H), 7.32 – 7.25 (m, 1H), 7.10 – 6.94 (m, 5H), 6.91 (two br s, 

1H), 6.78 (s, 0.5 H), 6.76 (s, 0.5H), 5.52 (dd, J = 16.3, 8.8 Hz, 1H), 5.13 (AB, 2H), 4.83 

(s, 1H), 4.28 (m, 1H), 3.59 (s, 1.5 H, 1/2 Me), 3.58 (s, 1.5 H, 1/2 Me), 3.31 (s, 3H), 3.04 – 

2.89 (m, 1H), 2.82 (m, 1H), 1.36 (s, 4.5H, 1/2 t-Bu), 1.35 (s, 4.5 H, 1/2 t-Bu). 13C NMR 

(75 MHz, CD3CN; obtained as an approximately 1:1 mixture of diastereomers. The 

number of signals observed is not exactly twice that of a single diastereomer due to 

overlapping signals.) δ 178.18, 178.16, 173.8, 173.4, 156.3, 154.7, 143.9, 132.3, 130.6, 

129.8, 129.5, 128.9, 125.2, 125.1, 124.94, 124.93, 123.7, 116.7, 110.2, 80.0, 72.2, 56.6, 

56.0, 52.65, 52.62, 49.4, 37.4, 28.5. IR (cm-1): 3334 (br), 2987, 2933, 1720, 1609, 1511, 

1356, 1168. HRMS m/z calcd for C25H30N2O7Na+: 493.1945; found: 493.1955. 
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Amide 101: 

 

3-Aryloxindole 100 (76.5 mg, 0.163 mmol, 1.0 equiv) was dissolved in anhydrous 

THF (4 mL), and the solution was degassed by three freeze-pump-thaw cycles. Degassed 

LiOH solution (4.0 mL of a 0.4 M aqueous solution, 1.6 mmol, 10.0 equiv, sparged with 

N2 for 1 h prior to use) was then cannulated. The resulting mixture was stirred at ambient 

temperature for 1 h, and quenched by addition of 1 M HCl (5 mL). CH2Cl2 (30 mL) was 

added, and the layers were separated. The aqueous layer was extracted with CH2Cl2 (10 

mL×2), and the combined organic layers were dried over MgSO4, filtered, and 

concentrated under reduced pressure to provide the crude acid as a white solid. The crude 

acid was dissolved in anhydrous CH2Cl2 (8 mL), and oxazole salt 81 (111 mg, 0.325 

mmol, 2.0 equiv), Et3N (46 μL, 0.325 mmol, 2.0 equiv), HOBt·H2O (49.8 mg, 0.325 

mmol, 2.0 equiv) and EDC (62.3 mg, 0.325 mmol, 2.0 equiv) were added sequentially. 

The resulting yellow solution was stirred at room temperature for 1 h, diluted with 

CH2Cl2 (100 mL), washed with 1 M HCl (aq, 20 mL), H2O (25 mL), brine (25 mL), dried 

over MgSO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by flash chromatography (2:1 hexanes:EtOAc) to provide amide 101 as a white 

solid (75 mg, 68%) as an approximately 1:1 mixture of diastereomers. 
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1H NMR (500 MHz, CD3CN; obtained as an approximately 1:1 mixture of 

diastereomers) δ 7.38 – 7.24 (m, 2H), 7.19 – 7.09 (br m, 1H), 7.09 – 6.99 (m, 3H), 6.99 (s, 

1H), 6.97 (s, 1H), 6.72 (t, J = 7.5 Hz, 1H), 5.58 (d, J = 8.0 Hz, 0.5 H), 5.53 (d, J = 7.8 Hz, 

0.5H), 5.18 – 5.07 (AB, 2H), 4.93 – 4.86 (m, 1H), 4.79 (s, 0.5 H), 4.77 (s, 0.5 H), 4.28 – 

4.14 (m, 1H), 3.30 (s, 3H), 3.04 – 2.87 (m, 1H), 2.74 (m, 1H), 2.28 – 2.13 (m, 1H), 1.36 

(s, 4.5H, 1/2 tBu), 1.35 (s, 4.5 H, 1/2 tBu), 0.93 (m, 3H), 0.91 – 0.84 (m, 3H). 13C NMR 

(75 MHz, CD3CN; obtained as an approximately 1:1 mixture of diastereomers. The 

number of signals observed is not exactly twice that of a single diastereomer due to 

overlapping signals.) δ 178.11, 178.08, 172.8, 167.1, 156.4, 154.6, 143.9, 132.9, 132.7, 

132.5, 130.7, 130.6, 129.8, 129.7, 128.9, 125.2, 125.1, 124.8, 123.7, 116.5, 116.2, 112.2, 

110.2, 80.1, 72.2, 56.8, 56.7, 56.6, 53.8, 49.7, 49.5, 37.4, 32.3, 28.5, 19.2, 18.3. 

m.p.: >120 °C (dec). IR (cm-1): 3326, 32556, 2970, 2929, 2239, 1683, 1650, 1519, 1368, 

1356. HRMS m/z calcd for C32H36BrN5O7Na+: 704.1690; found: 704.1693. 

 

Macrocycle 99: 

 

Amide 98 (38.2 mg, 0.056 mmol, 1.0 equiv) and Na2CO3 (29.7 mg, 0.280 mmol, 5.0 

equiv, dried in the oven overnight before use) were combined in a 25 mL round bottom 
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flask, which was capped and purged with N2. Anhydrous DMF (10 mL, degassed by 

three freeze-pump-thaw cycles) was then cannulated into the flask. The needle was 

removed from the septum, which was then sealed with electrical tape. The suspension 

was placed in a 65 °C oil bath and stirred for 2 h. The reaction was cooled to ambient 

temperature, and H2O (10 mL) and Et2O (100 mL) were added. The mixture was 

acidified by addition of 1 M HCl (20 mL). The layers were separated, and the aqueous 

layer was extracted with Et2O (30 mL×3). The combined organic layers were washed 

with H2O (20 mL×4), brine (20 mL), dried over Na2SO4, filtered, and concentrated under 

reduced pressure to provide a yellow solid. Purification by flash chromatography (1:1 

hexanes:EtOAc) provided macrocycle 99 (15.6 mg, 46 %) as a white solid. No isomeric 

material was identified in the crude 1H NMR spectrum. 

Rf = 0.2 in 1:1 hexanes:EtOAc. [α]D
26 = –338.8 (c 0.333, MeOH). 1H NMR (500 

MHz, [D6]acetone) δ 8.78 (s, 1H), 8.20 (d, J = 6.3 Hz, 1H), 7.42 (td, J = 7.8, 1.2 Hz, 1H), 

7.34 (t, J = 9.8 Hz, 1H), 7.21 (d, J = 7.9 Hz, 1H), 7.11 (td, J = 7.6, 0.8 Hz, 1H), 7.06 (dd, 

J = 8.1, 2.1 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 6.33 (s, 1H), 6.26 (d, J = 8.5 Hz, 1H), 5.19 

(AB, J = 11.0 Hz, νab = 11.9 Hz, 2H), 4.58 – 4.50 (m, 1H), 4.18 – 4.08 (m, 1H), 3.38 – 

3.32 (m, 3H), 3.18 (t, J = 12.6 Hz, 1H), 2.60 (d, J = 12.8 Hz, 1H), 2.19 – 2.08 (m, 1H), 

1.43 (s, J = 7.2 Hz, 9H), 1.14 (d, J = 6.5 Hz, 3H), 0.97 (d, J = 6.7 Hz, 3H). 13C NMR (75 

MHz, [D6]acetone) δ 173.9, 173.3, 167.0, 158.6, 155.6, 153.5, 153.4, 144.0, 133.1, 131.0, 

130.8, 129.0, 127.1, 126.9, 126.2, 124.0, 116.6, 116.4, 113.4, 111.6, 110.7, 79.3, 72.8, 

57.4, 57.2, 56.5, 38.2, 28.6, 19.9, 19.4. m.p.: >185 °C (dec). IR (cm-1): 3309 (br), 2966, 

2929, 2243, 1707, 1679, 1613, 1511, 1495. HRMS m/z calcd for C32H35N5O7HNa+: 

624.2428; found: 624.2443. 
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3-Aryloxindole 104: 

 

        SOCl2 (227 µL, 3.11 mmol, 2.5 equiv) was added dropwise via syringe to a solution 

of tertiary alcohol 77 (745 mg, 1.24 mmol, 1.0 equiv) and pyridine (503 µL, 6.22 mmol, 

5.0 equiv) in dry Et2O (25 mmol) at 0 °C under nitrogen. The yellow solution became 

dark brown upon the addition of SOCl2, and turned into a white suspension immediately. 

After stirring at 0 °C for 10 min, the reaction was quenched with H2O (5 mL), and diluted 

with Et2O (50 mL) and sat. NaHCO3 (50 mL). The aqueous layer was extracted with 

Et2O (30 mL×3), and the combined organic layers were washed with brine (20 mL), dried 

over Na2SO4, filtered, and concentrated to provide a tertiary chloride as a light pink 

sticky oil, which was used immediately into the next step without purification. 

        The crude tertiary chloride was dissolved in dry THF (25 mL), and zinc dust (813 

mg, 12.4 mmol, 10 equiv) and HOAc (1.4 mL, 24.9 mmol, 20 equiv) were added. The 

suspension was stirred at room temperature for 1 h, and filtered through a short pad of 

celite, washed with Et2O (50 mL). The reaction mixture was washed with water (20 mL), 

sat. NaHCO3 (20 mL×2), brine (10 mL), dried over MgSO4, filtered, and concentrated to 

provide a yellow solid. Purification by flash chromatography (3:2 hexanes:EtOAc) 
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provided compound 104 (334 mg, 46%) as a colorless oil. Rf = 0.25 in 3:2 

hexanes:EtOAc. 

 

Amide 106: 

 

        3-Aryloxindole 104 (330 mg, 0.566 mmol, 1.0 equiv) was dissolved in anhydrous 

THF (11 mL), and the solution degassed by three freeze-pump-thaw cycles. Degassed 

LiOH solution (238 mg in 11 ml H2O, 5.66 mmol, 10.0 equiv, sparged with N2 for 15 min 

prior to use) was then cannulated. The resulting mixture was stirred at ambient 

temperature for 1 h, and quenched by addition of 1 M HCl (10 mL). Et2O (30 mL) was 

added, and the layers were separated. The aqueous layer was extracted with Et2O (20 

mL×2), and the combined organic layers were dried over MgSO4, filtered, and 

concentrated under reduced pressure to provide the crude acid as a greenish foam. The 

crude acid was dissolved in anhydrous CH2Cl2 (11 mL), and oxazole salt 81 (232 mg, 

0.679 mmol, 1.2 equiv), Et3N (60 μL, 0.427 mmol, 1.2 equiv), HOBt·H2O (130 mg, 

0.848 mmol, 1.5 equiv), and EDC (163 mg, 0.848 mmol, 1.5 equiv) were added 

sequentially. The resulting yellow solution was stirred at room temperature for 2 h, 

diluted with Et2O (150 mL), washed with H2O (30 mL), brine (10 mL), dried over 

MgSO4, filtered, and concentrated under reduced pressure to provide a yellow foam. The 
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crude product was purified by flash chromatography (3:2 hexanes:EtOAc) to provide 

amide 106 as a yellowish foam (296 mg, 66%) as an approximately 1:1 mixture of 

diastereomers. 

        Rf = 0.20 in 3:2 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3; obtained as an 

approximately 1:1 mixture of diastereomers) δ 8.11 (br s, one diastereomer, 0.5H), 7.93 

(br s, one diastereomer, 0.5H), 7.43 (d, J = 8.1 Hz, one diastereomer, 0.5 H), 7.40 (J = 8.1 

Hz, one diastereomer, 0.5 H), 7.28 (m, 4H), 7.20 – 7.05 (m, 1H), 7.02 (t, J = 8.3 Hz, 1H), 

6.92 – 6.81 (two t, 1H), 6.74 (s, 1 H), 6.69 (d, J = 7.3 Hz, 0.5H), 6.53 (s and d, J = 8.8 Hz, 

1.5H), 5.55 – 5.38 (m, 2.5H), 5.35 (d, J = 8.0 Hz, one diastereomer, 0.5H), 5.09 – 4.98 

(m, 2.5H), 4.96 – 4.89 (m, 1H), 4.83 (s, one diastereomer, 0.5H), 4.39 (m, 1H), 3.36 (s, 

one diastereomer, 1/2Me), 3.30 (s, one diastereomer, 1/2Me), 2.86 (two dd, J = 18.8, 12.9 

Hz, 1H), 2.78 – 2.68 (m, 0.5H), 2.65 -2.55 (m, 0.5H), 2.11 (m, 1H), 0.90 – 0.82 (m, 6H). 

13C NMR (101 MHz, CDCl3; obtained as an approximately 1:1 mixture of diastereomers. 

The number of signals observed is not exactly twice that of a single diastereomer due to 

overlapping signals.) δ 179.28, 179.26, 171.83, 165.97, 156.55, 154.38, 140.16, 135.89, 

135.78, 134.40, 134.32, 134.21, 131.32, 131.30, 130.79, 130.69, 129.96, 129.63, 129.59, 

129.27, 128.84, 128.81, 128.78, 128.71, 128.70, 128.53, 128.49, 128.46, 128.32, 128.12, 

124.94, 124.49, 124.44, 122.92, 122.73, 117.58, 117.47, 115.92, 110.95, 103.57, 103.48, 

71.52, 67.50, 67.44, 56.50, 56.44, 56.32, 56.29, 53.23, 37.34, 37.28, 36.74, 31.98, 31.94, 

28.81, 18.79, 18.21, 18.09. 

 

Tertiary Alcohol 103: 
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To a 0 °C solution of N-Boc-L-tyrosine methyl ester5 (85, 3.61 g, 12.2 mmol, 1.1 

equiv) in THF (110 mL) was added MeMgBr (4.07 mL of a 3.0 M solution in Et2O, 12.2 

mmol, 1.1 equiv) dropwise. After addition was completed, the ice bath was removed. The 

mixture was warmed to ambient temperature, stirred for an additional 30 min, and 

concentrated to yield a white solid. Residual solvent was removed under high vacuum. N-

MOM-isatin (76, 3.0 g, 11.1 mmol, 1.0 equiv) was added to the white solid followed by 

anhydrous CH2Cl2 (110 mL). The flask was fitted with a condenser and a drying tube, 

and the heterogeneous dark brown mixture was heated to reflux for 48 h. The reaction 

was quenched by addition of 1 M HCl (50 mL), and the layers were separated. The 

aqueous layer was extracted with EtOAc (80 mL×3), and the combined organic layers 

were washed with brine (50 mL), dried over MgSO4, filtered, and concentrated under 

reduced pressure to provide a greenish foam. Purification by flash chromatography (2:1 

then 1:2 hexanes:EtOAc) provided tertiary alcohol 103 (5.36 g, 85%) as a yellowish foam 

as an approximately 1:1 mixture of diastereomers. 

        Rf = 0.15 in 2:1 hexanes:EtOAc. 1H NMR (400 MHz, CDCl3; obtained as an 

approximately 1:1 mixture of diastereomers) δ 8.39 (br s, 1H), 7.45 (d, J = 8.1 Hz, 1H), 

7.30 – 7.20 (m, 1H), 6.94 (dd, J = 9.8, 5.6 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.73 (d, J = 

8.2 Hz, 1H), 6.61 (s, 1H), 5.37 (s, 2H), 4.97 (t, J = 8.5 Hz, 1H), 4.93 – 4.83 (br s, 20% 

rotamer peaks), 4.37 (s, 1H), 4.24 – 4.04 (br s, 20% rotamer peaks), 3.61 (br, s, 1H), 3.56 
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(two s, 3H), 3.27 (s, 3H), 2.85 (m, 2H), 1.31 (s, 9H). 13C NMR (101 MHz, CDCl3; 

obtained as an approximately 1:1 mixture of diastereomers. The number of signals 

observed is not exactly twice that of a single diastereomer due to overlapping signals.) δ 

179.31, 172.36, 172.31, 155.37, 155.27, 154.49, 139.57, 135.86, 135.78, 133.19, 133.15, 

131.32, 131.21, 127.90, 127.72, 127.51, 125.36, 124.82, 124.76, 124.44, 124.35, 118.15, 

118.06, 103.64, 80.31, 77.96, 77.91, 71.56, 56.39, 56.36, 54.42, 54.32, 52.39, 52.31, 

52.29, 37.33, 37.25, 28.34, 28.19. 

 

3-Aryloxindole 105: 

N
O

MOM

OH
HO

CO2Me

Br

NHBoc

1) SOCl2, pyridine
2) Zn/HOAc

60%
N

O

MOM

H
HO

CO2Me

Br

NHBoc

103 105  

        Compound 105 was prepared via a similar procedure as the preparation of 

compound 104 as a colorless oil (310 mg) in 60% yield. 

        Rf = 0.35 in 3:2 hexanes:EtOAc. 1H NMR (400 MHz, CDCl3; obtained as an 

approximately 1:1 mixture of diastereomers) δ 8.09 (br s, one diastereomer, 0.5H), 8.04 

(br s, one diastereomer, 0.5H), 7.43 (d, J = 8.1 Hz, 1H), 7.08 (d, J = 6.1 Hz, 1H), 6.93 (t, 

J = 7.8 Hz, 1H), 6.88 – 6.77 (m, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.60 (s, one diastereomer, 

0.5H), 6.55 (s, one diastereomer, 0.5H), 5.55 – 5.38 (m, two AB, 2H), 5.02 (s, one 

diastereomer 0.5H), 4.99 – 4.88 (m, 1.5H), 4.88 – 4.72 (br s, 15% rotamer peaks), 4.41 

(m, 1H), 4.28 – 4.14 (br s, 15% rotamer peaks), 3.58 (s, 1/2Me), 3.55 (s, 1/2Me), 3.35 

(two s, 3H), 2.88 (m, 2H), 1.36 (s, 1/2t-Bu), 1.34 (s, 1/2t-Bu). 13C NMR (101 MHz, 
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CDCl3; obtained as an approximately 1:1 mixture of diastereomers. The number of 

signals observed is not exactly twice that of a single diastereomer due to overlapping 

signals.) δ 179.30, 179.23, 172.44, 172.38, 155.28, 155.20, 154.33, 154.30, 140.13, 

140.10, 134.19, 130.86, 130.77, 130.31, 130.26, 129.46, 129.34, 128.00, 127.89, 124.71, 

124.48, 124.37, 123.08, 123.04, 117.54, 103.47, 80.15, 80.11, 71.48, 71.46, 56.45, 54.49, 

54.34, 52.29, 52.19, 47.76, 47.42, 37.39, 37.19, 28.51, 28.34. 

 

Tertiary Amide 107: 

 

        Compound 107 was prepared via the same procedure as compound 106 as a 

colorless foam (188 mg) in 60% yield. 

        Rf = 0.30 in 3:2 hexanes:EtOAc. 1H NMR (400 MHz, CDCl3; obtained as an 

approximately 1:1 mixture of diastereomers) δ 8.19 (br s, one diastereomer, 1.5H), 7.95 

(br s, one diastereomer, 0.5H), 7.45 (d, J = 8.1 Hz, one diastereomer, 0.5H), 7.40 (d, J = 

8.1 Hz, one diastereomer, 0.5H), 7.25 (br s, 1H), 7.05 (m, 1H), 6.93 (t, J = 7.8 Hz, one 

diastereomer, 0.5H), 6.89 (t, J = 7.9 Hz, one diastereomer, 0.5H), 6.65 – 6.93 (m, 1.5H), 

6.60 – 6.30 (s, 1.5H), 5.64 – 5.36 (m, two AB, 2H), 5.14 (d, J = 7.6 Hz, one diastereomer, 

0.5H), 5.10 (br s, one diastereomer, 0.5H), 5.02 (d, J = 7.6 Hz, one diastereomer, 0.5H), 

4.95 (m, 1H), 4.82 (br s, one diastereomer, 0.5H), 4.31 (br s, 1H), 3.38 (s, 1/2Me), 3.36 (s, 
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1/2Me), 2.88 (m, 1H), 2.71 (m, 0.5H), 2.54 (m, 0.5H), 2.15 (m, 1H), 1.37 (s, 1/2t-Bu), 

1.36 (s, 1/2t-Bu), 0.98 – 0.74 (m, 6H). 13C NMR (101 MHz, CDCl3; obtained as an 

approximately 1:1 mixture of diastereomers. The number of signals observed is not 

exactly twice that of a single diastereomer due to overlapping signals.) δ 179.37, 172.35, 

172.27, 166.02, 166.00, 156.20, 156.11, 154.37, 154.01, 140.13, 139.96, 134.26, 134.12, 

131.21, 130.99, 129.88, 129.49, 129.24, 128.21, 128.10, 124.93, 124.66, 124.39, 123.97, 

122.73, 117.28, 117.13, 115.89, 115.86, 110.93, 103.54, 103.41, 80.81, 71.49, 56.45, 

56.43, 56.06, 55.90, 53.14, 46.94, 37.01, 32.01, 31.98, 28.79, 28.77, 28.34, 18.98, 18.81, 

18.29, 18.17. 

 

Tertiary alcohol 108: 

 

To a cold (0 °C) solution of N-Cbz-L-tyrosine methyl ester1 (75, 12.82 g, 38.9 mmol, 

1.1 equiv) in dry THF (350 mL) was added MeMgBr (14.2 mL of a 3.0 M solution in 

Et2O, 42.5 mmol, 1.2 equiv) dropwise via syringe. The ice bath was removed, and the 

solution was warmed to ambient temperature. Stirring was continued for 30 min, and the 

reaction was concentrated under reduced pressure to provide the phenoxide as a white 

solid, which was dried under high vacuum to remove the residual THF. 7-Bromoisatin 

(8.0 g, 35.4 mmol, 1.0 equiv) was added to the white solid, and anhydrous CH2Cl2 (500 

mL) was added. The flask was fitted with a condenser and a drying tube. The 
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heterogeneous dark brown mixture was heated to reflux for 48 h. The reaction was 

quenched by addition of 1 M HCl (aq, 100 mL) and stirred until it became a clear yellow 

solution. The layers were separated, and the aqueous layer was extracted with EtOAc (80 

mL×3). The combined organic layers were washed with brine (50 mL), dried over 

MgSO4, filtered, and concentrated to provide a yellow foam. Purification by flash 

chromatography (2:1 then 1:1 hexaens:EtOAc) provided compound 108 (14.55 g, 74%) 

as a yellowish foam. Spectral data of 108 were consistent with that reported in the 

literature.14 

 

Amide 110: 

 

3-Aryloxindole 109 (270 mg, 0.501 mmol, 1.0 equiv) was dissolved in THF (5 mL), 

and the resulting solution was degassed by three freeze-pump-thaw cycles. Degassed 

LiOH solution (5.0 mL of a 1 M aqueous solution, 5.0 mmol, 10.0 equiv, sparged with N2 

for 1 h prior to use) was then cannulated into the THF solution. The resulting mixture 

was stirred at room temperature for 3 h, and quenched by addition of 1 M HCl (aq, 20 

mL). The aqueous layer was extracted with CH2Cl2 (20 mL×3), and the combined 

organic layers were dried over MgSO4, filtered, and concentrated under reduced pressure 

to provide the crude acid as a white solid. The crude acid was dissolved in CH2Cl2 (10 

mL), and oxazole salt 81 (256 mg, 0.751 mmol, 1.5 equiv), Et3N (140 μL, 1.001 mmol, 
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2.0 equiv), HOBt·H2O (153 mg, 1.001 mmol, 2.0 equiv), and EDC (192 mg, 1.001 mmol, 

2.0 equiv) were added sequentially. After 1 hour of stirring at room temperature, the 

reaction mixture was diluted with EtOAc (25 mL) and 1 M HCl (25 mL). The aqueous 

layer was extracted with EtOAc (25 mL×3), and the combined organic layers were 

washed with 1 M HCl (20 mL), H2O (20 mL), and brine (20 mL), dried over MgSO4, 

filtered, and concentrated under reduced pressure. Purification by flash chromatography 

(1:1 hexanes:EtOAc) provided amide 110 (271 mg, 72%) as a white solid as an 

approximately 1:1 mixture of diastereomers.  

1H NMR (500 MHz, CD3CN; obtained as an approximately 1:1 mixture of 

diastereomers) δ 8.81 (s, 0.5H), 8.78 (s, 0.5 H), 7.40 (s, 0.5H), 7.37 (s, 0.5H), 7.36 – 7.17 

(m, 8H), 7.01 – 6.86 (m, 3H), 6.86 – 6.76 (m, 1H), 6.72 (d, J = 8.0 Hz, 0.5 H), 6.69 (d, J 

= 8.2 Hz, 0.5 H), 6.04 (d, J = 8.2 Hz, 0.5 H), 5.98 (d, J = 8.3 Hz, 0.5 H), 5.07 – 4.95 (m, 

2H), 4.95 – 4.85 (m, 1H), 4.79 (s, 0.5 H), 4.75 (s, 0.5 H), 4.41 – 4.25 (m, 1H), 3.16 – 2.84 

(m, 1H), 2.72 (m, 1H), 2.23 – 2.10 (m, 1H), 0.93 (m, 3H), 0.87 (m, 3H). 13C NMR (75 

MHz, CD3CN; obtained as an approximately 1:1 mixture of diastereomers. The number 

of signals observed is not exactly twice that of a single diastereomer due to overlapping 

signals.) δ 178.34, 178.31, 172.6, 166.99, 166.97, 157.0, 154.65, 154.60, 142.6, 138.0, 

133.0, 132.6, 132.4, 131.5, 130.81, 130.76, 129.65, 129.57, 129.4, 128.9, 128.62, 128.56, 

124.39, 124.33, 116.6, 116.5, 116.2, 112.2, 102.7, 67.2, 57.1, 53.9, 50.9, 50.6, 37.6, 32.2, 

19.2, 18.4, 18.3. m.p.: >110 °C (dec). IR (cm-1): 3297 (br), 3068 (br), 2970, 2978, 2868, 

2239, 1707, 1618, 1516. HRMS m/z calcd for C33H29Br2N5O6H+: 750.0557; found: 

750.0584. 
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Macrocycle 111: 

 

Amide 110 (868.5 mg, 1.156 mmol, 1.0 equiv) and Na2CO3 (306 mg, 2.89 mmol, 

2.5 equiv, dried in the oven overnight prior to use) were combined in a 100 mL round 

bottom flask, which was capped and purged with N2. Anhydrous DMF (50 mL, degassed 

by three freeze-pump-thaw cycles) was then cannulated into the flask. The needle was 

removed from the septum, which was then sealed with electrical tape. The suspension 

was placed in a 65 °C oil bath and stirred for 20 h. The reaction mixture was diluted with 

EtOAc (50 mL), and quenched by addition of 1 M HCl (50 mL). The layers were 

separated, and the aqueous layer was extracted with 1:1 hexanes:EtOAc (50 mL×3). The 

combined organic layers were washed with H2O (30 mL×4), brine (20 mL), dried over 

MgSO4, filtered, and concentrated under reduced pressure. Purification by flash 

chromatography (1:1 CHCl3:EtOAc) provided macrocycle 111 as a white solid (432 mg, 

56%). No isomeric material was identified in the crude 1H NMR spectrum. A single 

crystal of 111 was obtained by slow evaporation from its solution of acetone, and the 

structure was determined by X-ray crystallography. 

Rf = 0.22 in 1:1 CHCl3:EtOAc. [α]D
26

 = –357.5 (c 0.640, MeOH). 1H NMR (500 

MHz, CDCl3) δ 7.56 (br s, 1H), 7.52 (d, J = 8.2 Hz, 1H), 7.41 (br s, 1 H), 7.49 – 7.30 (m, 

6H), 7.16 (d, J = 7.6 Hz, 1H), 7.09 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.02 (t, J = 8.2 Hz, 1H), 
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6.82 (d, J = 8.1 Hz, 1H), 6.17 (s, 1H), 5.47 (d, J = 9.0 Hz, 1H), 5.23 – 5.08 (AB, J = 12.1 

Hz, νab = 11.2 Hz, 2H), 4.67 (dd, J = 6.9, 10.3 Hz, 1H), 3.86 (ddd, J = 11.6, 8.6, 2.0 Hz, 

1H), 3.28 (t, J = 12.2 Hz, 1H), 2.67 (dd, J = 13.5, 3.0 Hz, 1H), 2.07 – 1.94 (m, 1H), 1.07 

(d, J = 6.6 Hz, 3H), 0.81 (d, J = 6.7 Hz, 3H). 1H NMR (500 MHz, CD3CN) δ 8.96 (br s, 

1H), 7.52 (dd, J = 8.2, 0.8 Hz, 1H), 7.46 (br d, J = 6.5 Hz, 1H), 7.42 – 7.30 (m, 7H), 7.23 

(dd, J = 7.5, 0.8 Hz, 1H), 7.07 (br d, J = 7.9 Hz, 1H), 6.95 (t, J = 8.6 Hz, 1H), 6.73 (d, J = 

8.2 Hz, 1H), 6.18 (br s, 1H), 5.07 (AB, J = 12.6 Hz, νab = 13.1 Hz, 2H), 4.49 (dd, J = 6.9, 

10.3 Hz, 1H), 4.13 (ddd, J = 11.6, 8.6, 2.0 Hz, 1H), 3.11 (t, J = 12.4 Hz, 1H), 2.62 (d, J = 

12.9 Hz, 1H), 2.08 – 1.97 (m, 1H), 1.02 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3H). 13C 

NMR (75 MHz, CD3CN) δ 173.9, 173.3, 166.9, 158.0, 156.4, 153.2, 142.7, 138.1, 134.0, 

133.2, 131.4, 129.5, 129.1, 128.9, 128.7, 128.3, 126.6, 126.5, 124.8, 116.6, 113.6, 112.0, 

103.1, 67.2, 57.6, 57.2, 38.1, 30.6, 19.7, 19.2. m.p.: > 235 °C (dec). IR (cm-1): 3289 (br), 

2966, 2929, 2243, 1724, 1691, 1516. HRMS m/z calcd for C33H28BrN5O6H+: 670.1296; 

found: 670.1314. 

 

Carboxamide 113: 

 

Nitrile 111 (132 mg, 0.197 mmol, 1.0 equiv) was dissolved in 95% EtOH (10 mL) in 

a 50 mL pressure vessel with a stir bar, and Parkins' catalyst (1.7 mg, 3.94 μmol, 0.02 
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equiv) was added. The vessel was sealed, and heated in a 120 °C oil bath for 20 h. After 

cooling to RT, the reaction was diluted with EtOAc (100 mL), transferred to a round 

bottom flask, and concentrated under reduced pressure to provide a yellowish solid. 

Purification by flash chromatography (15:1 CHCl3:MeOH) provided the desired 

carboxamide (113, 126 mg, 92%) as a white solid. 

Rf = 0.45 in EtOAc. [α]D
28

 = –356.7 (c 0.502, MeOH). 1H NMR (500 MHz, CD3CN) 

δ 8.66 (s, 1H), 7.54 – 7.22 (m, 7H), 7.18 (br s, 1H), 7.02 (d, J = 7.2 Hz, 1H 1H), 6.91 (d, 

J = 7.4 Hz, 1H), 6.77 (t, J = 7.9 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 6.69 (br s, 1H), 6.38 (s, 

1H), 6.06 (d, J = 6.2 Hz, 1H), 5.72 (s, 1H), 5.09 (AB, J = 12.7 Hz, νab = 16.1 Hz, 2H), 

4.46 (t, J = 7.8 Hz, 1H), 4.14 (t, J = 8.6 Hz, 1H), 3.07 (t, J =12.6 Hz, 1H), 2.68 (d, J 

=12.6 Hz, 1H), 1.97 (m, 1H), 1.01 (d, J = 6.1 Hz, 3H), 0.92 (d, J = 6.2 Hz, 3H). 13C 

NMR (75 MHz, CD3OD) δ 177.5, 175.4, 165.0, 164.9, 157.7, 154.2, 151.6, 143.6, 138.2, 

135.0, 133.2, 132.8, 131.9, 130.8, 129.5, 129.0, 128.8, 128.3, 124.6, 124.3, 116.8, 103.4, 

67.6, 58.4, 58.11, 58.09, 57.9, 38.6, 30.9, 20.3, 19.7. m.p.: > 220 °C (dec). IR (cm-1): 

3395 (br), 2958, 2929, 1720, 1691, 1654, 1601. HRMS m/z calcd for C33H30BrN5O7H+: 

688.1407; found: 688.1413. 

 

Alcohol 112: 

 



124 
 

Amide 113 (16.5 mg, 0.024 mmol, 1.0 equiv) was dissolved in dry THF (2.2 mL) 

and SmI2 (0.1 M in THF, 1.1 mL, 0.108 mmol, 4.5 equiv, purchased from Aldrich 

chemical company) was added via syringe, followed quickly (< 5 seconds) by addition of 

degassed H2O (43 μL, 2.396 mmol, 100 equiv, sparging with Ar for 30 min prior to use). 

The dark blue color disappeared immediately and the solution became clear. Saturated 

NaHCO3 (2 mL) was then added, and the mixture was stirred for an additional 10 min. 

The reaction mixture was extracted with EtOAc (20 mL×4), and the combined organic 

extracts were washed with brine (10 mL), dried over MgSO4, filtered, and concentrated 

under reduced pressure to provide a white solid. Purification by flash chromatography 

(15:1 CHCl3:MeOH) provided the desired primary alcohol (112, 8.4 mg, 52%) as a white 

solid. Further purification was accomplished by HPLC (silica gel column, 32:64:4 

hexanes/EtOAc/MeOH). 1H and 13C NMR spectra were consistent with that reported by 

Nicolaou.19 The structure of this material was further confirmed by gradient HMBC and 

HSQC experiments. 

 1H NMR (500 MHz, CD3CN) δ 8.69 (s, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.42 – 7.30 

(m, 5H), 7.27 (br d, J = 7.0 Hz, 1H), 7.25 (br s, 1H), 7.07 (d, J = 7.4 Hz, 1H), 7.02 (d, J = 

7.6 Hz, 1H), 6.90 (t, J = 7.6 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.23 (s, 1H), 6.03 (br d, J 

= 6.2 Hz, 1H), 5.07 (AB, J = 12.6 Hz, νab = 16.0 Hz, 2H), 4.45 (t, J = 7.9 Hz, 1H), 4.11 (t, 

J = 8.6 Hz, 1H), 3.63 (ABX, J = 10.5, 5.8 Hz, 2H), 3.06 (t, J = 12.2 Hz, 1H), 2.75 (t, J = 

5.7 Hz, 1H), 2.62 (d, J = 13.0 Hz, 1H), 2.00 (m, 1H), 1.01 (d, J = 6.5 Hz, 3H), 0.91 (d, J 

= 6.5 Hz, 3H). 13C NMR (150 MHz, CD3CN) δ 173.4, 164.7, 156.2, 153.1, 144.8, 142.5, 

139.2, 138.2, 133.7, 133.0, 130.7, 130.1, 129.4, 129.1, 128.7, 128.6, 127.8, 125.5, 124.3, 
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116.4, 103.0, 67.0, 57.6, 57.1, 55.9, 38.5, 30.7, 19.7, 19.3. HRMS m/z calcd for 

C33H31BrN4O7Na+: 697.1268; found: 697.1276. 

 

Ester 114: 

 

Compound 114 was prepared via a similar procedure as the preparation of 

compound 110. Purification by flash chromatography (2:3 hexanes:EtOAc) provided the 

title product (882 mg, 53%) as a white solid as an approximately 1:1 mixture of 

diastereomers. 

Rf = 0.45 in 2:3 hexanes:EtOAc, 1H NMR (500 MHz, CDCl3; obtained as an 

approximately 1:1 mixture of diastereomers) δ 8.30 (s, 0.5H), 8.15 (s, 0.5H), 7.80 (s, 

0.5H), 7.68 (s, 0.5H), 7.41 (d, J = 8.3 Hz, 0.5H), 7.37 (d, J = 8.4 Hz, 0.5H), 7.35 – 7.25 

(m, 5H), 7.10 (d, J = 7.3 Hz, 1H), 6.98 (t, J = 10.4 Hz, 0.5H), 6.94 – 6.80 (m, 2H), 6.75 (s, 

0.5H), 6.67 (s, 0.5H), 6.52 (d, J = 7.7 Hz, 0.5H), 5.13 (s, 0.5H), 5.10 (s, 0.5H), 5.03 (two 

AB, 2H), 4.93 (s, 1.5H), 4.38 – 4.22 (m, 1H), 3.89 (s, 3H), 2.22 – 2.12 (m, 0.5H), 2.12 – 

2.04 (m, 0.5H), 0.96 – 0.70 (two dd, 6H). 
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4 Cascade α-Arylation / Direct Arylation Approach 

 

4.1 Introduction 

        After successfully completing a formal synthesis of diazonamide A, I anticipated 

that I could obtain the natural product via Nicolaou’s eleven-step sequence (Scheme 1.2) 

from compound 112. 1 , 2  Although Nicolaou’s first synthesis confirmed that Harran’s 

revised structure was the correct structure of diazonamide A, there was a lot of room to 

be improved in the eleven-step sequence, including the yields of some of the key 

reactions and the ease of processing. For example, Witkop-type photocyclization of 

compound 9 only provided 30% yield; reductive cyclization of 11 utilized 100 equivalent 

of DIBAL, which is obviously impractical on large scale. With the successful application 

of α-arylation of 3-aryloxindole in the formal synthesis of diazonamide A, I planned to 

apply this methodology to the total synthesis. 

 

4.2 Retrosynthetic Analysis 

The success of the macrocyclization of compound 110 via an SNAr mechanism 

under very mild basic conditions (Na2CO3 in DMF) depends on the reactivity of the 

oxindole enolate and the highly electron-deficient bromooxazole ring. In compound 110, 

this is due to a strong electron-withdrawing cyano group. Extension of the α-arylation of 

3-aryloxindole to substrate 115, which bears the complete heterocyclic rings, and a 2-

hydroxyisovaleric acid side chain may be possible (Scheme 4.1). In addition, the mild 
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basic conditions should not interfere with the 2-hydroxyisovaleric acid side chain, 

thereby avoiding protection of the primary amine on C2. However, the oxazole attached 

to the bromooxazole ring is significantly less electron-withdrawing than a cyano group, 

and may not be able to induce an SNAr reaction. As such, I was also interested in looking 

for other conditions to facilitate the macrocyclization of compound 115 to construct the 

quaternary C10.  

 

Scheme 4.1 Proposed Cascade α-Arylation/Direct Arylation Reactions 

Recently, transition-metal-catalyzed α-arylation of carbonyl compounds3,4 ,5  and 

direct arylation via C-H activation6,7,8 have been hot topics among organic synthetic 

chemistry. I envisioned that the whole heterocyclic scaffold of diazonamide A could be 

constructed via a single cascade reaction consisting of a transition-metal-catalyzed α-

arylation to form the C10 quaternary carbon and a direct arylation to form C16-C18 bond. 

There are two bromine atoms in compound 115. Because the oxazole is known to be 
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more electron-deficient than the phenyl ring, the C-Br bond on the oxazole ring is 

expected to more readily undergo transition metal oxidative addition, which may 

facilitate the formation of the quaternary C10 to furnish the left hand macrocycle of 

diazonamide A. Further, in the product of the α-arylation, the oxindole and the indole are 

in close proximity, and this is expected to promote a transition-metal-catalyzed direct 

arylation to complete the whole framework. In prior work, Sainsbury has shown that the 

4-position of indoles can react with aryl triflate intramolecularly to form biaryls via direct 

arylation. 9  Sainsbury also reported that oxidative coupling with unmodified phenyl 

groups could occur on the 4-position of indoles.10,11 With the successful completion of 

this cascade reaction, completion of the total synthesis could occur via operations known 

from the previous total syntheses to provide the natural product in a more efficient way. 

Model studies using cyclization precursor 117 (lacking the 2-hydroxyisovaleric 

acid side chain) were conducted (Scheme 4.2). Compound 117 was prepared in a highly 

convergent manner by an amide bond formation between compounds 109 and compound 

118 as described below. Compound 115 with the 2-hydroxyisovaleric acid side chain is 

expected to retain the same reactivity for macrocyclization as 117, and can be used in the 

total synthesis of diazonamide A. Because the synthesis of ester 109 is known from our 

formal synthesis (see Chapter 3), preparation of Boc-protected amine 118 was first 

pursued. 
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Scheme 4.2 Retrosynthesis of Cyclization Precursor 117 

        

4.3 Synthesis of Cyclization Precursor and Attempted SNAr reactions 

        Synthesis of the Boc-protected amine, 118, began with the functionalization of 

commercially available tryptamine (Scheme 4.3). Boc-protection of the free amine of 

tryptamine, followed by oxidation of the benzyl position with DDQ, afforded ketone 119 

in 82% yield over two steps.2 The other fragment, carboxylic acid 115, was synthesized 

from nitrile 60 as described in Chapter 3. In the hands of Dr, Matthew Sammons, 

attempted hydrolysis of the nitrile of 60 failed under acidic or basic conditions likely due 

to competing SNAr processes. This compound was instead subjected to reduction using 

DIBAL-H and Pinnick-Lindgren oxidation to provide carboxylic acid 115.12 Treatment of 

Boc-protected amine 119 with neat TFA released the free amine to generate the amine 

TFA salt, which was coupled with carboxylic acid 115 under common amide bond 

formation conditions (EDC/HOBt) to provide keto amide 120. Interestingly, Wipf 

oxazole formation (PPh3, Et3N, and C2Cl6 of I2)13,14 did not provide oxazole 120, possibly 

due to the steric hindrance of the bulky bromine atom on the oxazole. However, 
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Nicolaou’s conditions2 using POCl3 in pyridine afforded oxazole 120 in a moderate yield 

of 41%. 

 
Scheme 4.3 Synthesis of Bis-Oxazole Indole 118 

Treating bis-oxazole indole 118 with neat TFA provided an amine TFA salt, which 

was coupled with the carboxylic acid generated from saponification of ester 109 using 

standard peptide coupling conditions (EDC/HOBt), to provide cyclization precursor 117 

as a 1:1 mixture of diastereomers (Scheme 4.4). 
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Scheme 4.4 Synthesis of Cyclization Precursor 117 

With cyclization precursor 117 in hand, screening of cyclization conditions was 

conducted. First, I subjected 117 to our SNAr cyclization conditions (Table 4.1, entry 1), 

and I observed no cyclization product and recovered starting material. Surprisingly, even 

changing the base to a stronger one, such as LiHMDS (entry 2), still did not provide any 

cyclization product, and starting material was recovered. Attempted Pd-catalyzed α-

arylations using the conditions we developed for intermolecular α-arylations of 3-

diaryloxindoles, using either Cs2CO3 or LiHMDS as the base (entries 3 and 4), did not 

provide any cyclization product. It is likely that the unprotected oxindole nitrogen is 

detrimental for such α-arylations, as in our previous work, we found that protection of 

the oxindole nitrogen facilitates the reaction using Cs2CO3. I studied another approach 

wherein Lewis acid additives were anticipated to bind to the two nitrogen atoms in bis-

oxaozole moiety to activate the bromooxazole for nucleophilic attack. Unfortunately, all 

conditions (entries 5-11) with different Lewis acid additives provided either recovered 

starting material, or complex mixtures. Some Lewis acid, for example, AuCl3, 

decomposed the starting material prior to the addition of base or heating.  
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Table 4.1 Attempted Cyclization of Precursor 117 

 

Entry Conditions Results 
1 Na2CO3 (5 equiv), DMF, 65 °C, 24 h recovered 117 
2 LiHMDS (5 equiv), DMF, 0 °C to 65 °C, 15 h recovered 117 
3 Pd(dba)2, t-Bu3PHBF4, Cs2CO3 (3.5 equiv), toluene, reflux, 3 h recovered 117 
4 Pd(dba)2, t-Bu3PHBF4, LiHMDS (3.5 equiv), toluene, reflux, 3 h recovered 117 
5 Zn(OTf)2 (5 equiv), Na2CO3 (10 equiv), DMF, 65 °C, 20 h recovered 117 
6 Bi(OTf)3 (5 equiv), Na2CO3 (10 equiv), DMF, 65 °C, 20 h  recovered 117 
7 Sc(OTf)2 (5 equiv), Na2CO3 (10 equiv), DMF, 65 °C, 20 h recovered 117 
8 CuOTf (1.1 equiv), Na2CO3 (10 equiv), DMF, 65 °C, 20 h complex mixtures 
9 Cu(OTf)2 (1.1 equiv), Na2CO3 (10 equiv), DMF, 65 °C, 20 h complex mixtures 
10 Cu(OTf)2 (5 equiv), DCE, RT, 20 h recovered most 117 
11 AuCl3 (1.1 equiv), DCE, RT, 20 h complex mixtures 
 

For the SNAr reaction of compound 117, we hypothesized that steric repulsion 

between the indole and the bromooxindole hinders the reaction in the transition state and 

prevents the formations of C10-C30 bond. In addition, we have shown that the 

unprotected oxindole is detrimental to Pd-catalyzed α-arylation. Protection of the 

oxindole nitrogen with a group smaller than a MOM group is preferred as we have found 

that MOM-protection can be problematic in arylation reactions of oxindoles (See Scheme 

3.7).  As such, a methyl group might be an ideal protecting group and may be able to 

facilitate the formation of the C10 quaternary carbon. Further, the methyl group can be 

possibly removed via a radical oxidative mechanism.15 

 

4.4 Synthesis of Chlorinated Cyclization Precursors 
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For typical SNAr reactions, electron-deficient chloro-arenes are more reactive than 

their bromo counterparts. In order to render the SNAr reaction successful for the 

construction of the C10 quaternary center of diazonamide A, synthesis of the 

chlorooxazole analogue of compound 117 is desired. Decreasing the electron density of 

the bromooxazole is also helpful for SNAr reactions. Because diazonamide A has two 

peripheral chlorine atoms, introducing these two chlorine atoms on the cyclization 

precursor also shortens the synthetic route. Therefore, chlorinated bis-oxazole indole 127 

and 128 were synthesized as described below. 

Condensation of Boc-Val-OH and racemic serine using standard peptide coupling 

methods (EtOCOCl, Et3N) provided amide 121 (Scheme 4.5).16 Application of the Wipf 

Deoxo-Fluor mediated dehydrative cyclization to compound 121 provided oxazoline 122, 

which was oxidized under Williams’ condition (BrCCl3 and DBU) to form oxazole 123.17 

Amide 124 was prepared via condensation of the carboxylic acid generated from 

saponification of ester 123 and the amine TFA salt produced by treating 119 with neat 

TFA. Wipf oxazole formation (PPh3, C2Cl6, and Et3N)13,14 was used to convert keto 

amide 124 to bis-oxazole 125.18 Because chlorination of compound 125 with NCS was 

low-yielding, I decided to protect the indole of 125 as the tert-butyl carbamate (126),19 

which was then treated with s-BuLi (2.2 equiv) and TMEDA to provide chlorooxazole 

127 after trapping with NCS.20 In this reaction, the nitrogen atom of oxazole B directed 

the lithium to selectively deprotonate the hydrogen on oxazole A. Compound 127 was 

further chlorinated on oxazole ring B and the indole to provide tri-chlorinated 128 in 

modest yield (40%) with NCS at higher temperature. 
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Scheme 4.5 Synthesis of Chlorinated Bis-Oxazole Indole 127 and 128 

Treating chlorinated bis-oxazole indole 127 and 3-aryloxindole 109 under the same 

amide bond formation conditions as in the preparation of cyclization precursor 117 

provided 129 in modest yield (54%, Scheme 4.6). However, under the same conditions, 

the reaction of 109 and bis-oxazole indole 128 did not provide any coupled product, 

possibly because tri-chlorinated 128 was not stable under strong acidic conditions (TFA).  
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Scheme 4.6 Couplings of Bis-Oxazole Indole 127 and 128 

        With cyclization precursor 129 in hand, SNAr reactions were studied (Scheme 4.7). 

Unfortunately, treating compound 129 with week base (Na2CO3 in DMF) only provided 

recovered starting material; stronger base (Cs2CO3 in DMF) lead to complex mixtures. 

 
Scheme 4.7 Attempted SNAr reactions of 129 

 

4.5 Intermolecular Pd-Catalyzed α-Arylation of Bis-Oxazole Indoles 
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        Takahashi and coworkers reported that tri-oxazole 130 could undergo several cross-

coupling reactions, such as Suzuki-Miyaura couplings, Migita-Stille Couplings, and 

Buchwald-Hartwig’s aminations and alkoxylations, to functionalize the bromooxazole 

using Pd(OAc)2 with XPhos or SPhos as ligands.21 These reactions indicate that Pd-

catalyzed cross-coupling reactions with compound 130 are viable. As such, even though 

Pd-catalyzed α-arylations reactions using compound 130 were not studied, we felt that 

they are viable, too. 

 
Scheme 4.8 Cross-Coupling Reactions of Tri-Oxazole 130 

        In order to confirm the viability of our Pd-catalyzed α-arylation reactions to 

construct the C10 quaternary center in a system related to the synthesis of diazonamide A, 

I also studied the intermolecular a-arylations of N-benzyl-3-phenyloxindole (48) and aryl 

bromide 125 and 131 (Table 4.2). Compound 131 was used, because compound 125 with 

a Boc protecting group on the indole was sensitive to basic conditions (i.e., carbonate 

base in protic solvent), while the benzyl protecting group on 131 survives. Unfortunately, 

all the conditions I had tried only provided recovered starting materials, debromination of 

aryl bromide 131, or complex mixtures. 
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Table 4.2 Attempted Intermolecular Pd-Catalyzed a-Arylations 

N
Bn

O +

N

O
Br

BocHN
O

N
N R

48
125: R = H
131: R = Bn

conditions

 

entry conditions results 
1 125, Pd(dba)2, t-Bu3PHBF4, Cs2CO3, toluene, reflux, 3 h recovered 48 and 131 
2 125, Pd(dba)2, RuPhos, Cs2CO3, toluene, reflux, 3 h oxidation of 48 
3 125, Pd(dba)2, t-Bu3PHBF4, Cs2CO3, Ag2CO3, toluene, reflux, 3 h complex mixtures 
4 131, Pd(OAc)2, t-Bu3PHBF4, Cs2CO3, toluene, reflux, 3 h debromination of 131 
5 131, Pd(OAc)2, t-Bu3PHBF4, LiHMDS, toluene, reflux, 3 h debromination of 131 
6 131, Pd(dba)2, no ligand, LiHMDS, toluene, reflux, 20 h debromination of 131 
7 131, Pd(PPh3)4, Cs2CO3, 1 h complex mixtures 
8 131, Pd(OAc)2, SPhos, Cs2CO3, toluene, 1 h complex mixtures 
9 131, FeCl3, Cs2CO3, DMF, 90 °C, 15 h recovered 48 and 131 

10 131, Pd(OAc)2, RuPhos, Cs2CO3, toluene, 3 h complex mixtures 
 

 

4.6 Conclusion 

        An attempted cascade α-arylation/direct arylation approach to the total synthesis of 

diazonamide A was described. Cyclization precursor 117 was successfully prepared, and 

subjected to a variety of conditions. Although no desired cyclization was observed, this 

approach provides a novel disconnection for the synthesis of diazonamide A. Some 

modifications are needed to furnish the desired α-arylation product and the following 

direct arylation. 

 

4.7 Abbreviations 

Cbz Carboxybenzyl 
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DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone 
DIBAL Diisobutylaluminium hydride 
DMAP 4-Dimethylaminopyridine 
Deoxo-Fluor® Bis(2-methoxyethyl)aminosulfur trifluoride 
EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 
HOBt Hydroxybenzotriazole 
LiHMDS Lithium bis(trimethylsilyl)amide 
NCS N-Chlorosuccinimide 
RuPhos 2-Dicyclohexylphosphino-2',6'-di-i-propoxy-1,1'-biphenyl
SPhos 2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl 
TFA Trifluoroacetic acid 
TMEDA Tetramethylethylenediamine 
XPhos 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl 
 

4.8 Experimental Details 

General Information 

        All glassware was oven-dried or flame-dried. DMF were freshly distilled over CaH2 

under reduced pressure prior to use; THF and Et2O were distilled from sodium 

benzophenone ketyl under N2; DME was distilled over Na under N2. CH2Cl2, hexanes 

and toluene were distilled over CaH2 under N2; TMEDA was distilled from Na under 

reduced pressure. Unless specifically mentioned, all chemicals are commercially 

available and were used as received. Thin layer chromatography (TLC) was performed 

using EM Science Silica Gel 60 F254 glass plates. Flash chromatography was performed 

using 60 Å silica gel (37-75 μm). 1H NMR spectra were recorded at either 400 MHz or 

500 MHz, and 13C NMR spectra were recorded at either 75 MHz or 100 MHz in CDCl3, 

CD3CN, [D6]acetone, or [D6]DMSO as indicated. Chemical shifts are reported in ppm 

referenced to residual solvent peaks as follows: CDCl3, 7.24 ppm for 1H NMR, 77.16 

ppm for 13C NMR; CD3CN (1.94 ppm for 1H NMR; 1.32 ppm for 13C NMR.); 

[D6]acetone, 2.05 ppm for 1H NMR, 29.84 ppm for 13C NMR; and [D6]DMSO, 2.50 
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ppm for 1H NMR, 39.52 ppm for 13C NMR. Infrared (FT-IR) spectra were obtained as 

thin films on NaCl plates. Exact mass was determined using electrospray ionization 

(M+H, M+Na, or M+K as indicated). 

 

Keto Amide 120: 

 

        Boc-protected amine 109 (76 mg, 0.275 mmol, 2.0 equiv) was treated with neat TFA 

(5 mL). After stirring at room temperature for 10 min, the reaction was concentrated, and 

solvent exchanged with toluene three times to provide the amine TFA salt as a white 

solid. This amide TFA salt should be prepared right before the coupling. The crude TFA 

salt and carboxylic acid 115 (50 mg, 0.138 mmol, 1.0 equiv) were dissolved in DMF (3 

mL), and Et3N (58 µL, 0.413 mmol, 3.0 equiv), HOBt (32 mg, 0.206 mmol, 1.5 equiv), 

and EDC (40 mg, 0.206 mmol, 1.5 equiv) were added sequentially. The resultant yellow 

solution was stirred at room temperature for 15 h, and diluted with ether (50 mL) and 1 M 

HCl (10 mL). The organic layer was washed with H2O (15 mL×3), sat. NaHCO3 (15 mL), 

brine (15 mL), dried over MgSO4, filtered, and concentrated to provide a yellow oil. 

Purification by flash chromatography (2:1 CHCl3:EtOAc) provided keto amide 120 (70 

mg, 97%) as a yellowish solid. 
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        Rf = 0.15 in 1:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 9.83 (s, 1H), 8.30 

(dd, J = 6.4, 2.5 Hz, 1H), 7.94 (d, J = 3.2 Hz, overlapping with a singlet, 2H), 7.45 – 7.36 

(m, 1H), 7.31 – 7.24 (m, 2H), 5.18 (d, J = 9.3 Hz, 1H), 4.88 (s, 15 % rotamer peaks), 4.75 

(dd, J = 9.1, 6.1 Hz, 1H), 4.71 (d, J = 4.7 Hz, 2H), 4.57 (s, 15% rotamer peaks), 2.27 – 

2.11 (m, J = 13.3, 6.6 Hz, 1H), 1.47 (s, 9H), 0.94 (dd, J = 6.7, 3.2 Hz, 6H). 13C NMR 

(101 MHz, CDCl3) δ 188.49, 164.55, 159.97, 155.60, 136.54, 131.86, 131.58, 125.44, 

124.96, 124.10, 123.13, 122.08, 115.21, 112.00, 80.68, 54.60, 46.01, 32.64, 28.48, 18.96, 

18.08. IR (cm-1) 3285, 2966, 2929, 1699, 1642, 1585. 

 

Bis-Oxazole Indole 118: 

 

        POCl3 (3.0 mL, 32.3 mmol, 20 equiv) was added dropwise via syringe to a solution 

of keto amide 120 (838 mg, 1.62 mmol, 1.0 equvi) in dry pyridine (3 mL) at 0 °C. The 

clear solution became a white suspension upon the addition of POCl3. The reaction was 

allowed to warm up to room temperature and stirred overnight (20 h). The reaction was 

diluted with EtOAc (50 mL), and poured slowly into sat. NaHCO3 (50 mL) in an ice bath. 

The aqueous layer was extracted with EtOAc (50 mL×3), and the combined organic 

layers were washed with H2O (30 mL), brine (30 mL), dried over MgSO4, filtered, and 
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concentrated to provide a dark brown solid. Purification by flash chromatography (4:1 

CHCl3:EtOAc) provide bis-oxazole indole 118 (329 mg, 41%) as a yellow solid. 

        Rf = 0.45 in 4:1 CHCl3:EtOAc. 1H NMR (500 MHz, CDCl3) δ 9.41 (s, 1H), 7.89 (d, 

J = 7.4 Hz, 1H), 7.58 (d, J = 1.9 Hz, 1H), 7.41 (d, J = 7.5 Hz, 1H), 7.38 (s, 1H), 7.28 – 

7.14 (m, 2H), 5.32 (d, J = 9.2 Hz, 1H), 5.04 (s, 12 % rotamer peaks), 4.81 (dd, J = 9.0, 

6.1 Hz, 1H), 4.62 (s, 12% rotamer peaks), 2.28 – 2.09 (m, 1H), 1.43 (s, 9H), 0.94 (d, J = 

6.8 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 165.72, 155.62, 151.69, 148.76, 136.44, 

128.93, 124.07, 123.02, 121.06, 120.99, 120.77, 119.98, 111.90, 104.91, 80.41, 54.61, 

32.79, 28.39, 18.89, 18.01. IR (cm-1) 3403, 3318, 2970, 3060, 2929, 2872, 1704, 1630, 

1605. 

 

Cyclization Precursor 117: 

 

        Saponification of compound 109 was conducted as in the preparation of compound 

110 (see Chapter 3) to provide a carboxylic acid as a white solid. Bis-oxazole indole 118 

(49 mg, 0.098 mmol, 1.0 equiv) was dissolved in dry CH2Cl2 (5 mL), and TFA (380 µL, 

4.89 mmol, 50 equiv) was added. The yellow solution was stirred at room temperature for 

2 h, and concentrated, solvent exchanged with toluene three times to provide an amine 
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TFA salt as a yellowish solid. The crude TFA salt, the carboxylic acid (51 mg, 0.098 

mmol, 1.0 equiv) generated from 109, and HOBt (30 mg, 0.195 mmol, 2.0 equiv) were 

combined in a 25 mL round bottom flask, and dry CH2Cl2 (5 mL), Et3N (27 µL, 0.195 

mmol, 2.0 equiv), and EDC (21 mg, 0.108 mmol, 1.1 equiv) were added. The resultant 

yellow solution was stirred at room temperature for 3 h, diluted with EtOAc (50 mL), 

washed with 1 M HCl (10 mL), H2O (10 mL), sat. NaHCO3 (10 mL), brine (10 mL), and 

dried over MgSO4, filtered, and concentrated to provide a yellowish solid. Purification by 

flash chromatography (1:1 CHCl3:EtOAc) provided cyclizatioin precursor 117 (48 mg, 

54%) as a yellowish solid. 

        Rf = 0.15 in 1:1 CHCl3:EtOAc. 1H NMR (500 MHz, CD3CN; obtained as an 

approximately 1:1 mixture of diastereomers) δ 9.85 (s, 0.5H), 9.83 (s, 0.5H), 8.75 (s, 1H), 

7.91 (d, J = 3.9 Hz, 0.5H), 7.89 (d, J = 3.9 Hz, 0.5H), 7.59 (s, 1H), 7.58 (d, J = 2.7 Hz, 

0.5H), 7.56 (d, J = 2.6 Hz, 0.5H), 7.50 (d, J = 7.4 Hz, 1H), 7.40 (s, 1H), 7.36 – 7.20 (m, 

8H), 7.17 (t, J = 7.1 Hz, 1H), 6.97 (d, J = 2.3 Hz, 0.5H), 6.96 (overlapping s and d, 1.5H), 

6.84 (d, J = 7.3 Hz, 0.5H), 6.80 (d, J = 7.1 Hz, 0.5H), 6.73 (m, 1H), 6.68 (m, 1H), 5.98 (d, 

J = 8.1 Hz, 0.5H), 5.94 (d, J = 8.3 Hz, 0.5H), 5.09 – 4.88 (m, 3H), 4.73 (s, 0.5H), 4.69 (s, 

0.5H), 4.50 – 4.29 (m, 1H), 3.15 – 2.95 (m, 1H), 2.89 – 2.66 (m, 1H), 2.30-2.17 (m, 1 H), 

1.04 – 0.81 (m, 6H). 

 

Keto Amide 124: 
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        Ester 123 (298 mg, 1.0 mmol, 1.0 equiv) was dissolved in dry THF (5 mL), and a 

solution of LiOH monohydrate (420 mg, 10.0 mmol, 10.0 equiv) in H2O (5 mL) was 

added. The white suspension was stirred at room temperature for 3 h, and diluted with 

EtOAc (50 mL). The aqueous layer was extracted with EtOAc (10 mL×3), and the 

combined organic layers were washed with brine (10 mL), dried over MgSO4, filtered, 

and concentrated to provide yellowish solid, which was used as the crude without further 

purification. 1H NMR (500 MHz, CDCl3) δ 12.10 (br s, 1H), 8.26 (s, 1H), 6.55 (br s, 15% 

rotamer peaks), 6.45 (d, J = 8.4 Hz, 1H), 4.80 (dd, J = 9.7, 6.7 Hz, 1H), 4.69 (br s, 15% 

rotamer peaks), 2.17 (m, 1H), 1.35 (s, 9H), 0.90 (dd, J = 34.1, 6.8 Hz, 6H). 

        Boc-protected amine 109 (411 mg, 1.50 mmol, 1.5 equiv) was treated with neat TFA 

(6 mL). After stirring at room temperature for 10 min, the reaction was concentrated, and 

solvent exchanged with toluene three times to provide the amine TFA salt as a white 

solid. This amide TFA salt should be prepared right before the coupling. 

        The crude carboxylic acid and the crude TFA salt were combined in a 50 mL round 

bottom flask, and dry DCM (20 mL) was added. Et3N (420 µL, 3.0 mmol, 3.0 equiv), 

HOBt (229 mg, 1.50 mmol, 1.5 equiv), and EDC (287 mg, 1.50 mmol, 1.5 equiv) were 

added sequentially. The reaction was stirred at room temperature for 24 h, and diluted 

with EtOAc (50 mL) and 1 M HCl (30 mL). The aqueous layer was extracted with 

EtOAc (30 mL×3), and the combined organic layers were washed with H2O (30 mL×2), 

sat. NaHCO3 (20 mL), brine (20 mL), dried over MgSO4, filtered, and concentrated to 

provide a yellow oil. Purification by flash chromatography (1:1 hexanes:EtOAc, then 1:2 

hexanes:EtOAc) provided keto amide 124 (434 mg, 99%) as a colorless sticky oil. 
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        Rf = 0.15 in 1:2 hexanes:EtOAc. 1H NMR (500 MHz, CD3CN) δ 10.06 (s, 1H), 8.28 

– 8.23 (m, 1H), 8.22 (s, 1H), 8.17 (d, J = 3.2 Hz, 1H), 7.77 (s, 1H), 7.59 – 7.45 (m, 1H), 

7.33 – 7.16 (m, 2H), 5.92 (d, J = 8.5 Hz, 1H), 4.72 (d, J = 5.2 Hz, 2H), 4.64 (t, J = 8.0 Hz, 

1H), 2.29 – 2.11 (m, 2H), 1.39 (s, 9H), 0.97 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H). 

13C NMR (75 MHz, CD3CN) δ 190.24, 165.35, 161.28, 156.59, 141.98, 137.48, 136.89, 

133.86, 126.42, 124.38, 123.33, 122.41, 115.31, 113.09, 80.08, 55.63, 46.47, 32.81, 28.53, 

19.27, 18.65. IR (cm-1) 3289, 2966, 2929, 2872, 1699, 1638, 1605. 

 

Bis-Oxazole Indole 125: 

 

        Et3N (270 µL, 1.93 mmol, 5.0 equiv), followed by a solution of keto amide 124 (170 

mg, 0.386 mmol, 1.0 equiv) in dry CH2Cl2 (6 mL), were added dropwise over 10 min to a 

stirred solution of PPh3 (253 mg, 0.965 mmol, 2.5 equiv) and C2Cl6 (228 mg, 0.965 mmol, 

2.5 equiv) in dry CH2Cl2 (2 mL) at 0 °C. The reaction was allowed to warm up to room 

temperature and stirred overnight (24 h). The yellow solution became dark brown. The 

reaction was diluted with CH2Cl2 (30 mL) and H2O (20 mL), and the aqueous layer was 

extracted with CH2Cl2 (10 mL×3). The combined organic layers were dried over Na2SO4, 

filtered, and concentrated to provide a bloody brown oil. Purification by flash 

chromatography (2:1 hexanes:EtOAc) provided bis-oxazole indole 125 (106 mg, 65%) as 

a yellowish solid. 
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        Rf = 0.35 in 1:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 9.07 (br s, 1H), 

8.00 (s, 1H), 7.73 (d, J = 7.3 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.32 (d, J = 7.2 Hz, 1H), 

7.18 – 7.07 (m, 2H), 5.30 (d, J = 9.2 Hz, 1H), 4.91 (s, 12% rotamer peaks), 4.73 (dd, J = 

9.1, 6.0 Hz, 1H), 4.57 (s, 12% rotamer peaks), 2.24 – 2.01 (m, J = 13.1, 6.5 Hz, 1H), 1.32 

(s, 9H), 0.83 (t, J = 6.5 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 165.26, 155.69, 152.81, 

148.30, 137.56, 136.45, 130.78, 124.14, 123.04, 122.87, 121.05, 120.99, 119.87, 111.91, 

105.04, 80.21, 54.54, 33.06, 28.42, 18.82, 18.15. IR (cm-1) 3375, 3199, 2953, 2925, 1699. 

 

Boc-Protected Bis-Oxazole Indole 126: 

 

        Bis-oxazole indole 125 (82 mg, 0.194 mmol, 1.0 equiv) and catalytic amount of 

DMAP (4.7 mg, 0.039 mmol, 2 mol%) were dissolved in dry CH2Cl2 (2 mL), and Boc2O 

(47 mg, 0.214 mmol, 1.1 equiv) was added. After stirring at room temperature for 1 h, the 

reaction was concentrated to provide a yellow oil. Purification by flash chromatography 

(5:1 hexanes:EtOAc) provided Boc-protected bis-oxazole indole 126 (101 mg, quantative) 

as a colorless sticky oil. 

        Rf = 0.15 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.21 (s, 2H), 7.98 (s, 

1H), 7.81 (d, J = 7.6 Hz, 1H), 7.47 (s, 1H), 7.40 (td, J = 7.7, 1.1 Hz, 1H), 7.35 (td, J = 7.7, 

1.1 Hz, 1H), 5.37 (d, J = 9.2 Hz, 1H), 4.85 (dd, J = 9.2, 5.9 Hz, 1H), 4.74 – 4.63 (br s, 10% 

rotamer peaks), 2.24 (m, 1H), 1.69 (s, 9H), 1.44 (s, 9H), 1.03 – 0.91 (m, 6H). 13C NMR 
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(75 MHz, CDCl3) δ 165.46, 155.50, 153.85, 149.37, 146.35, 138.09, 135.65, 130.59, 

126.63, 125.32, 123.58, 123.56, 123.19, 120.08, 115.67, 109.08, 84.63, 80.02, 54.41, 

33.13, 28.39, 28.26, 18.81, 18.08. IR (cm-1) 3354 (br), 2958, 2921, 2872, 1740, 1703. 

 

Chlorooxazole 127: 

 

        Boc-protected bis-oxazole indole 126 (90 mg, 0.172 mmol, 1.0 equiv) was charged 

in a 25 mL round bottom flask, and dry Et2O (9 mL) and fresh distilled TMEDA (103 µL, 

0.689 mmol, 4.0 equiv) were added via syringe. The colorless solution was cooled in a 

dry ice / acetone bath, and s-BuLi (424 µL of 1.3 M solution in hexanes, 0.551 mmol, 3.2 

equiv) was added dropwise, and the resultant dark brown solution was stirred at -78 °C 

for 1 h. NCS (23 mg, 0.689 mmol, 4.0 equiv) in dry THF (2 mL) was cannulated into the 

reaction, and the resultant yellow solution was stirred at -78 °C for an additional 1 h, 

before quenched with sat. NH4Cl (5 mL). The reaction was diluted with Et2O (30 mL), 

and the organic layer was washed with brine (10 mL), dried over MgSO4, filtered, and 

concentrated to provide a yellow oil. Purification by flash chromatography (5:1 

hexanes:EtOAc) provided chlorooxazole 127 (29 mg, 30%) as a yellowish oil. 

        Rf = 0.24 in 5:1 hexanes:EtAOc. 1H NMR (500 MHz, CDCl3) δ 8.20 (d, J = 7.6 Hz, 

1H), 7.99 (s, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.50 (s, 1H), 7.39 (td, J = 7.2, 1.2 Hz, 1H), 

7.34 (td, J = 7.5, 1.0, 1H), 5.29 (d, J = 9.4, 1H), 4.94 – 4.85 (br s, 4% rotamer peaks), 
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4.81 (dd, J = 9.3, 5.9 Hz, 1H), 4.67 – 4.52 (br s, 4% rotamer peaks), 2.23 (m, 1H), 1.69 (s, 

9H), 1.44 (s, 9H), 0.97 (dd, J = 6.6, 3.8 Hz, 6H). IR (cm-1) 3427, 3346, 3138, 2970, 2933, 

1724, 1634, 1450. 

 

Tri-Chlorinated Bis-Oxazole Indole 128: 

 

        Chlorooxazole 127 (20 mg, 0.036 mmol, 1.0 equiv) and NCS (19 mg, 0.14 mmol, 

4.0 equiv) were charged in a 10 mL sealable test tube, which was evacuated and refilled 

with Ar three times, and dry THF (2 mL) was added. The test tube was sealed with the 

screw cap, and place into a 70 °C oil bath overnight (48 h). The reaction was diluted with 

Et2O (30 mL), washed with H2O (5 mL×3), brine (5 mL), dried over Na2SO4, filtered, 

and concentrated to provide a yellow oil. Purification by flash chromatography (10:1 

hexanes:EtOAc) provided tri-chlorinated bis-oxazole indole 128 (9 mg, 40%) as a 

colorless oil. 

        Rf = 0.25 in 10:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.12 (d, J = 8.4 Hz, 

1H), 7.55 (d, J = 7.7 Hz, 1H), 7.36(td, J = 7.2, 1.24, 1H), 7.29 (td, J = 7.6, 0.8, 1H), 5.27 

(t, J = 7.3, 1H), 4.79 (dd, J = 9.2, 5.8, 1H), 2.21 (m, 1H), 1.70 (s, 9H), 1.43 (s, 9H), 0.96 

(two d, J = 5.9 Hz, 7H).  

 

Bis-Oxazole Indole 126: 
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        Bis-oxazole indole 126 (35 mg, 0.07 mmol, 1.0 equiv) and NaH (7.0 mg, 60% 

suspension in mineral oil, 0.175 mmol, 2.5 equiv) were charged in a 10 mL round bottom 

flask, and dry THF (2 mL) was added. The mixture was stirred at room temperature for 

10 min, before the addition of BnBr (9 µL, 0.077 mmol, 1.1 equiv) via syringe. The 

reaction was quenched with sat. NH4Cl (5 mL), diluted with Et2O (20 mL), and the 

aqueous layer was extracted with Et2O (10 mL×2). The combined organic layers were 

washed with brine, dried over Na2SO4, filtered, and concentrated to provide a yellow oil. 

Purification by flash chromatography (2:1 hexanes:EtOAc) provided bis-oxazole indole 

126 (34 mg, 82%) as a colorless oil. 

        Rf = 0.22 in 3:1 hexanes:EtOAc; 1H NMR (500 MHz, CDCl3) δ 7.97 – 7.88 (m, 1H), 

7.57 (s, 1H), 7.39 (s, 1H), 7.35 – 7.24 (m, 6H), 7.17 – 7.10 (m, 2H), 5.37 (s, 2H), 5.30 (d, 

J = 9.4 Hz, 1H), 4.82 (dd, J = 9.4, 5.9 Hz, 1H), 2.28 – 2.15 (m, 1H), 1.43 (s, 9H), 0.95 

(dd, J = 6.7, 4.1 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 165.84, 155.47, 151.79, 148.40, 

136.90, 136.69, 129.05, 128.08, 126.95, 126.50, 124.93, 123.08, 121.41, 121.12, 120.74, 

120.41, 110.48, 104.54, 80.23, 54.51, 50.54, 33.01, 28.44, 18.93, 18.01. IR (cm-1) 3424, 

3318, 2978, 2925, 2876, 1704. 
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5 Synthesis of the Aromatic Core of Diazonamide A 

 

5.1 Introduction 

        The right hand macrocycle of diazonamide A consists of a highly rigid heterocyclic 

ring system, and is also difficult to construct. Numerous research groups have contributed 

synthetic efforts to the formations of the bis-oxazole-indole moiety, but, besides the four 

reported total syntheses, only a few successful syntheses of the complete right hand 

macrocycle were reported. 

 

5.2 Vedjes’s Synthesis of Right Hand Macrocycle 

        Vedjes reported the synthesis of the heteroaromatic core of the incorrect, initially 

proposed Fenical and Clardy structure of diazonamide A using a Dieckmann-type 

cyclization in 2001.1 Later, he found that this method is also viable for the synthesis of 

the correct structure (Scheme 5.1).2 This synthesis proceeded by nucleophilic addition of 

chloromagnesium phenolate 132 to bromoisatin 133 followed by protection of the phenol 

as the PMB ether to afford tertiary alcohol 134. The tertiary alcohol of 134 was 

chlorinated (SOCl2) and reduced (Zn dust) to provide compound 135. This compound 

was deprotonated with NaH, and the enolate was trapped with Mander’s regent 

(NCCOOMe) to provide ester 136. The siloxymethyl protecting group of 136 was then 

removed with TAS-F, and the oxindole nitrogen was reprotected using N-allyl 

chloroformate to provide 138. Reduction of the carbonyl group of oxindole 138 with 
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NaBH4 provided alcohol 139, which was treated with Ms2O to activate the hemiaminal 

with concomitant loss of the PMB group and cyclization to form the cyclized hemiaminal. 

Saponification of the methyl ester (NaOH) provided carboxylic acid 140, which was 

temporarily protected as a sodium carboxylate, and treated with n-BuLi to facilitate 

lithium-halogen exchange. The resulting aryl lithium species was trapped with ClSnMe3 

and methylated with TMSCHN2 to provide stannane 141. 

 

Scheme 5.1 Vedjes’s Synthesis of Hemiaminal 141 

        Stille coupling of stannane 141 using stoichiometric amounts of Pd complex 143, 

which was generated from oxidative addition of Pd(Ph3P)4 to triflate 142, provided biaryl 

144 with the loss of the allyl carbamate protecting group (Scheme 5.2). The remaining 

conditions in the synthesis are incompatible with the hemiaminal moiety, and as such, the 
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free amine was protected with a MOM group. Dieckmann-type condensation using LDA 

provided macrocycle 146 in 30% yield. Enolate amination using diarylphosphinyl-

hydroxylamine 147 and KHMDS as the base, followed by protection with Ac2O, afforded 

acetamide 148. This compound was then cyclized using Nicolaou’s oxazole synthesis 

(POCl3, pyridine)3 to provide bis-oxazole indole 149 bearing the complete heterocyclic 

core and the hemiaminal moiety as a 1:1 mixture of diastereomers. 

 
Scheme 5.2 Vedjes’s Synthesis of Heterocyclic Core of Diazonamide A 

 

5.3 Moody’s Synthesis of Right Hand Macrocycle 

        In 2005, Moody reported his efforts towards the synthesis of the right hand 

macrocycle of diazonamide A (Scheme 5.3).4 His synthesis began with a Suzuki coupling 
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of pinacolato boronic ester 150 and aryl bromide 151 to provide biaryl 152. Both the 

terminal protecting groups, Cbz and Bn, were removed via hydrogenolysis using 

Pearlman’s catalyst (Pd(OH)2), and the resulting amino acid was cyclized (DPPA, 

Hunig’s base) to afford macrolactam 153. 5 Yonemitsu benzylic oxidation of 153 with 

DDQ to a benzylic alcohol, followed by further oxidation with IBX furnished keto amide 

154, which was cyclized to form oxazole 155 via Wipf’s oxazole synthesis (PPh3, C2Cl6, 

and Et3N).6,
7 Moody’s synthesis of bis-oxazole indole macrocycle 155 did not incorporate 

the formation of the challenging C10 quaternary center of diazonamide A. 

 
Scheme 5.3 Moody’s Synthesis of Bis-Oxazole Indole Macrocycle 155 
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5.4 Ciufolini’s Synthesis of Right Hand Macrocycle 

        In 2011, Ciufolini reported another approach to the bis-oxazole indole macrocycle of 

the diazonamides.8 The synthesis relied on an oxazole formation (Scheme 5.4) developed 

in his group. 9  Condensation of valine-derived chloroglycinate 156 with the 

dimethylaluminum acetylide prepared from benzyl propargyl ether, provided enantiopure 

oxazole 157 (Scheme 5.4). This compound was debenzylated (BCl3), oxidized (Jones 

reagent), and chlorinated (SOCl2) to afford acid chloride 158 ready for coupling with 

other fragments. 

 
Scheme 5.4 Ciufolini Oxazole Synthesis 

        Suzuki coupling of commercially available boronic ester 159 and 4-bromo 

tryptamine derivative 160 provided biaryl amine 161 as a 1:1 mixture of atropisomers 

(Scheme 5.5).  This was coupled with acid chloride 158 to furnish amide 162. A two-step 

Yonemitsu benzylic oxidation similar to that of Moody (DDQ, and then IBX) converted 

indole 162 to ketone 163. After deprotection of the Cbz protecting group of 163 with 

BBr3, intramolecular amide bond formation under peptide coupling conditions (HATU in 

2,6-lutidine) afforded macrolactam 164. Finally, a p-TsOH mediated Robinson-Gabriel 

oxazole formation provided macrocycle 165 as a 1:1 mixture of atropisomers bearing the 
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complete bis-oxazole indole moiety. As above, this synthesis did not include the 

formation of the highly hindered quaternary C10 of diazonamide A. 

 
Scheme 5.5 Ciufolini’s Synthesis of Bis-Oxazole Indole Macrocycle 165 

 

5.5 Our Approach to Right Hand Macrocycle 

        After completing the formal synthesis of diazonamide A via a diastereoselective α-

arylation to build the left hand macrocycle, I planned to develop a versatile method to 

construct the right-hand aromatic core including the C10 quaternary center and the 

complete right hand heterocyclic ring system on a model. We can then apply this method 

to the total synthesis of diazonamide A using the intermediate I previously prepared in 

our formal synthesis. 
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        We targeted the synthesis of compound 166 as a model (Scheme 5.6). I envisioned 

that this macrocycle could be constructed either via an intramolecular Pd-catalyzed α-

arylation of compound 167, or via an intramolecular Au-catalyzed [2+2+1] oxazole 

formation on compound 168 using the chemistry first described by Professor Liming 

Zhang and coworkers.10 

 
Scheme 5.6 Proposed Syntheses of the Right Hand Macrocycle 166 

 

5.5.1 Pd-Catalyzed α-Arylation Approach 

        We have successfully developed intermolecular Pd-catalyzed α-arylations of 3-

aryloxindoles and various aryl bromides, and applying intramolecular version of this 

method to the synthesis of our model system seems promising. In our retrosynthetic 

analysis, cyclization precursor 167 can be synthesized from four fragments of almost 

equivalent complexity as showed in Scheme 5.7. 
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Scheme 5.7 Retrosynthetic Analysis of Pd-Catalyzed Cyclization Precursor 167 

        Carboxylic acid 169 was prepared from an oxazolyl nitrile via reduction (DIBAL-H), 

followed by Pinnick-Lindgren oxidation, similar to the preparation of carboxylic acid 115 

(Scheme 4.3). Introduction of a bromine atom to an oxazole has been accomplished by a 

Sandmeyer-type reaction on an amino oxazole; however, this reaction was proved to be 

low-yielding in our hands. I, therefore, synthesized carboxylic acid 169 from a known 

compound 173 as described in Scheme 5.8.11 Saponification of 173 using LiOH provided 

carboxylic acid 174, which directed s-BuLi to selectively deprotonate the ortho position 

of the carboxylic acid. Trapping the resulting lithiated oxazole with C2Br2Cl4 provided 

bromooxazole 169 in good yield, after acidic work-up. Attempts to introducing a chlorine 

atom by trapping the lithiated oxazole with NCS or trichloroisocyanuric acid (TCA) 

provided complex mixtures. Pd-catalyzed carboxylic acid directed halogenation methods 

developed by Jin-Quan Yu and coworkers (cat. Pd(OAc)2, IOAc, n-Bu4NBr, DCE, 100 

°C, 24 h) failed to provide bromooxazole 169.12 This carboxylic acid directed ortho 

metalation (DoM) method13 to introduce a bromine atom was more efficacious than the 

low-yielding Sandermeyer-type reactions previously used. Further this provided the 

desired oxazolyl carboxylic acids ready for peptide coupling without the need to 

hydrolyze a nitrile, sometimes problematic, as in our previous synthesis. 
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Scheme 5.8 Synthesis of Carboxylic Acid 169 

        Compound 173 was prepared as showed in Scheme 5.9. Condensation of iso-

butylryl chloride and (±)-serine methyl ester HCl salt (175) provided amide 176, which 

was cyclized to form the oxazoline using DAST or Deoxo-Fluor®.14 While these reagents 

are commercially available, they are very expensive. Ishihara has developed a much more 

economical method using a catalytic amount of ammonium molybdate with azeotropic 

removal of water in refluxing toluene.15 Compound 176 was cyclized to form oxazoline 

178 along with some dimerized side product 179 using Ishihara’s conditions. Although 

this reaction only provided the desired product in moderate yield (44%), it was more 

economical compared to the use of the expensive reagents, DAST and Deoxo-Fluor®. 

Later, oxazole 173 was obtained after oxidation of oxazoline 178 using Williams’ 

conditions.16 

 

Scheme 5.9 Synthesis of Ester 173 
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        Weinreb amide 170 was synthesized from commercially available Boc-protected 

glycine with methyl methoxy amine HCl salt in near quantitative yield (i-BuOCOCl and 

N-methyl morpholine (NMM)).17 

 
Scheme 5.10 Synthesis of Weinreb Amide 170 

        The addition of PhMgBr to 7-bromoisatin provided alcohol 180 after acidic work up 

(Scheme 5.11). 3-Phenyloxindole 171 was then obtained in good yield by chlorination 

(neat SOCl2) of alcohol 180, and reduction (Zn/HOAc) of the resultant tertiary chloride. 

 
Scheme 5.11 Synthesis of 3-Aryloxindole 171 

        Synthesis of dibromoindole 172 relied on the directed ortho metalation (DoM) and 

retro Mannich reaction sequence of gramine and its derivatives developed by Iwao and 

Snieckus (Scheme 5.12).18 The indole nitrogen of gramine was first protected with a 

bulky TIPS group in order to block the 2-position of gramine and allow directed 

metalation at the 4-position. Compound 181 was then treated with t-BuLi to metalate the 

4-position, and trapped using1,2-dibromoethane to afford bromo gramine derivative 182. 

Upon exposure to NBS, compound 182 underwent a rapid retro Mannich reaction to 

provide dibromoindole 172. The mechanism of this transformation is shown in Scheme 

5.12. 
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Scheme 5.12 Synthesis of Dibromoindole 172       

        With these four fragments in hand, synthesis of cyclization precursor 167 was 

conducted in a convergent fashion (Scheme 5.13). Selective metalation at the 3-position 

of dibromoindole 172,19,20 followed by trapping with the magnesium salt of Weinreb 

amide 170,21 provided ketone 183. It is likely that treatment of dibromoindole 172 with 1 

equivalent of n-BuLi results in an initial unselective lithium halogen exchange to yield a 

mixture of 3- and 4-lithated indoles. This mixture can then be converted to the more 

thermodynamically stable 3-lithiated indole via a rapid halogen dance reaction.22 The 

TIPS group was found to be labile to the subsequent transformations, and as such was 

removed and the nitrogen was reprotected as the MOM aminal. The Miyaura borylation 

reaction was then used to convert bromide 185 to pinacolato boronic ester 186, which 

was coupled with bromooxindole 171 via Suzuki coupling to afford biaryl 187. After 

removing the Boc protecting group of 187 with neat TFA, the resultant amine TFA salt 

was coupled with carboxylic acid 169 under typical amide formation conditions 

(EDC/HOBt) to provide keto amide 171. This compound was cyclized via the Wipf 

oxazole synthesis6,7 to provide cyclization precursor 167 in moderate yield (40%). 
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Scheme 5.13 Convergent Synthesis of Cyclization Precursor 167 

        With cyclization precursor 167 in hand, I set out to study Pd-catalyzed α-arylations 

under a variety of conditions. Our typical intermolecular Pd-catalyzed α-arylation 

conditions provided complex mixtures (Table 5.1, entry 1). SNAr conditions without Pd-

catalyst only provided recovered starting material (entry 2). Pd-catalysis with a stronger 

base, LiHMDS (entry 3), in order to increase the concentration of the enolate, also 

provided complex mixtures; while a weaker base, Na2CO3 (entry 4), only provided 

recovered starting material. Furthermore, changing the palladium pre-catalyst and the 

ligands did not prove to be promising, which either just provided recovered starting 
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material (entries 5 & 6) or some debromination by-product of starting material (entry 7). 

Similar Pd-catalyzed conditions were also applied to keto amide 171; however, no 

desired α-arylation was observed. 

Table 5.1 Attempted Cyclizations of Compound 167 

 

Entry Conditions Resultsa 
1 Pd(OAc)2, t-Bu3PHBF4, Cs2CO3, toluene, 90 °C, 3 h complex mixtures 
2 LiHMDS (5 equiv), DMF, 0 °C to 65 °C, 15 h recovered 167 
3 Pd(OAc)2, t-Bu3PHBF4, LiHMDS, toluene, 90 °C, 20 h complex mixtures 
4 Pd(OAc)2, t-Bu3PHBF4, Na2CO3, toluene, 90 °C, 20 h recovered 167 
5 Pd(OAc)2, RuPhos, Na2CO3, toluene, 90 °C, 20 h recovered 167 
6 Pd(dba)2, t-Bu3PHBF4, Na2CO3, toluene, 90 °C, 20 h recovered 167 
7 PdMe2(TMEDA), t-Bu3PHBF4, Na2CO3, toluene, 90 °C, 20 h recovered 167b 

        a Determined by the crude NMR. b Some debromination of 167 was observed. 

        The failure of the Pd-catalyzed α-arylations of cyclization precursor 167 indicated 

that the unprotected oxindole nitrogen might be detrimental to the cyclizations. Protecting 

the oxindole nitrogen with an appropriate group might be a way to solve this problem. 

Protection of the oxindole nitrogen at late stage (protecting compound 167 lead to 

complex mixtures) was unsuccessful due to the acidic C3-H on the oxindole. Therefore, I 

had to use the protected oxindole from the beginning of the synthesis. N-MOM-7-

Bromoisatin (76) was arylated with PhMgBr and the resulting tertiary alcohol was 

converted to 189 by chlorination (SOCl2, Et3N) and reduction (Zn/HOAc, Scheme 5.14). 

Unfortunately, Suzuki coupling of 189 with 186 only provided the desired biaryl product 

(190) in very low yield under a variety of Pd-catalyzed conditions, possibly due to steric 
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hinderance of the formation of the biaryl C-C bond. Therefore, I sought a protecting 

group smaller than a MOM group and settled on the use of a methyl group. 

 
Scheme 5.14 Synthesis of MOM-Protected Biaryl 190 

        A methyl group is not typically considered as a protecting group; however, 

Nakatsuka has developed a useful method to remove the methyl group from an indole 

nitrogen via radical oxidation followed by hydrolysis. 23  I, therefore, synthesized N-

methyl keto amide 195 (Scheme 5.15) starting from N-methyl isatin (191), which was 

subjected to PhMgBr to provide tertiary alcohol 192 after acidic work up. The alcohol 

was converted to 3-aryloxindole 193 via a two-step sequence, chlorination (SOCl2) and 

reduction (Zn/HOAc). Suzuki coupling of bromide 193 and boronic ester 186 provided 

biaryl 194 in 58% yield using 10 mol% Pd(PPh3)4 and K2CO3 in 4:1 DME/H2O. Different 

catalytic systems, e.g., Pd(dppf)Cl2, K2CO3 in DME at reflux, only provided biaryl 194 in 

35% yield. Interestingly, the same reaction conditions (Pd(OAc)2, XPhos, KF, 10:1 

dioxane/H2O) used to couple compounds 171 and 186 only provided complex mixtures 

with trace amount of biaryl 194 (<5%). Coupling of the amine generated after 
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deprotection of compound 194 and carboxylic acid 169 using HOBt and EDC provided 

keto amide 195. Surprisingly, keto amide 195 could not be cyclized to form the oxazole 

under a variety of conditions. It is likely that the methyl group on the oxindole nitrogen 

of compound 195 induced a conformation change, which raised the reaction barrier of the 

oxazole formation.  

 
Scheme 5.15 Synthesis of N-Methyl Oxindole 195 

        In summary, cyclization precursor 167 for Pd-catalyzed α-arylations was 

synthesized, and attempted cyclization under various conditions to form the right hand 

macrocycle of diazonamide A were studied. Unfortunately, no desired arylation was 

observed. Protecting the oxindole nitrogen of 167 with a MOM or methyl group was 
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unsuccessful for the preparation of the cyclization precursors. Attempted cyclization of 

the mono-oxzole substrates 171 and 195 were also unsuccessful. 

 

5.5.2 Au-Catalyzed Oxazole Formation Approach 

        Recently, Liming Zhang and coworkers at UCSB reported a novel Au-catalyzed 

[2+2+1] oxazole synthesis employing a terminal alkyne, a nitrile, and an external oxidant. 

They only reported the intermolecular version of this reaction with either a large excess 

of a nitrile or the nitrile as the solvent.10 They proposed the mechanism shown in Scheme 

5.16 wherein the alkyne-gold catalyst complex is oxidized by an external oxidant to 

generate an α-keto gold carbenoid. This is a Fisher-type gold carbenoid that can be 

attacked by a weakly nucleophilic species such as a nitrile to produce a nitrilium. The 

ketone can then attack the nitrilium to form an oxazole and regenerated the gold catalyst. 

This carbenoid can also, in principle, be generated directly from a α-diazo ketone and a 

gold catalyst; however, generating the carbenoid from an alkyne renders this more 

convenient and somewhat safer than handling the potentially explosive α-diazo ketones. 

 
Scheme 5.16 Zhang Au-Catalyzed [2+2+1] Oxazole Synthesis 

        Because the SNAr substrate (111) in our formal synthesis of diazonamide A bears a 

nitrile, I anticipated that this nitrile could be used to form an oxazole via an 
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intramolecular reaction with a pendant alkyne and an external oxidant under Au-catalysis. 

I, therefore, planned to study the oxazole synthesis of compound 168 as a model, and can 

further develop this strategy as a general method for macrocyclization of natural products 

bearing oxazole rings.24 

        Synthesis of cyclization precursor 201 relied on the preparation of both alkynyl 

boronic ester 198 and bromooxindole 199 (Scheme 5.17). Removal of the TIPS 

protecting group of compound 182 with TBAF, followed by a rapid retro-Mannich 

reaction using NIS introduced an iodine atom at the C3 position of indole 182. Immediate 

protection of the nitrogen of this indole with (Boc)2O provided iodo indole 196.18 This 

compound was subjected to Sonigashira reaction with trimethylsilylacetylene to 

introduce a TMS-protected alkyne onto the C3 position of the indole (197). Miyaura 

borylation was used to convert bromide 197 to pinacolato boronic ester 198. 

Bromooxindole 199 was simultaneously prepared via an SNAr reaction between oxindole 

171 and bromooxazole 58. This reaction provided the desired C-arylation product 199 in 

72% yield, along with the undesired O-arylation product 200 in 14% yield. With 

fragments 198 and 199 in hand, cyclization precursor 201 was prepared via Suzuki 

coupling wherein KF was found to be the most suitable base to promote the reaction in 

very good yield (89%). Other bases, such as Na2CO3 or K2CO3, provided complex 

mixtures, probably due to the instability of TMS and Boc protecting groups of compound 

198. These protecting groups have been reported to be labile to K2CO3 in MeOH.25 
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Scheme 5.17 Synthesis of Cyclization Precursor 201 

        With cyclization precursor 201 in hand, Au-catalyzed [2+2+1] oxazole formation 

(Scheme 5.18) was attempted using a modification of Zhang’s general conditions 

(Au(PPh3)2NTf2 toluene complex, 8-methylquinoline oxide) 26  but using 1,2-

dichloroethane at reflux as solvent (Zhang typically runs his reactions either neat or using 

excess nitriles as solvents). Interestingly, this reaction provided a product in 2.5% yield 

with the same mass as the desired compound 203 as identified by mass spectrometry. We 

hypothesized that the TMS group is cleaved before cyclization under the reaction 

conditions as reported by the Zhang group. Removing the TMS group with TBAF 
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provided terminal alkyne 202, which cyclized using the same conditions as 201 to 

provide the same product in better yield (5%).  

 
Scheme 5.18 Au-Catalyzed Oxazole Formation of 201 and 202 

        We suspected that the Boc protecting group is too labile under the reaction 

conditions, leading to decomposition and diminished yields. I, therefore, synthesized the 

N-methyl indole 211 as described in Scheme 5.19. Removing the Boc protecting group of 

compound 201 or 202 proved difficult as attempted removal provided complex mixtures 

under acidic or basic conditions. As such, the Boc group was removed on a precursor, 

compound 197, by heating it neat at 155 °C under reduced pressure. Reprotecting the 

indole with a methyl group using NaH / MeI afforded compound 206, which was 

converted to boronic ester 208 via Miyaura borylation. Because boronic ester 208 was not 

amenable to purification by flash chromatography, I used the crude 208 directly in the 

next step without further purification. Suzuki coupling of boronic ester 208 and 

bromooxindole 199 provided biaryl 210 in 86% yield over two steps. Removing the TMS 
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group of 210 with TBAF provided cyclization precursor 212. Compound 213 with a 

MOM-protected indole was also prepared from unprotected indole 215 via similar 

procedures as shown in Scheme 5.19. 

 
Scheme 5.19 Synthesis of N-Protected Indoles 212 and 213 

        In addition to methyl and MOM protected indole cyclization precursors 212 and 213, 

both of which bear electron-rich indoles, I also prepared indole 218, bearing a strong 

electron-withdrawing group (PhSO2-), as showed in Scheme 5.20. A method developed 

by Snieckus was used to convert gramine derivative 208 to protected iodo indole 214 via 

a three-step sequence consisting of removal of the TIPS protecting group with TBAF, 

introducing an iodo atom on C3-position of indole via a rapid retro-mannich reaction 

with NIS, and immediate protection the indole with PhSO2Cl under biphasic conditions. 

Sonigashira coupling of iodide 214 and TMS-acetylene provided alkyne 215, which 
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could be converted to the cyclization precursor via a procedure similar to that shown in 

Scheme 5.19. 

 
Scheme 5.20 Preparation of Indole 215 

        With all cyclization precursors in hand, I first conducted a solvent survey (Table 5.2) 

using N-methyl protected indole 212 in a variety of common solvents for Au-catalyzed 

oxazole synthesis. Reactions were typically run at 0.01 M concentration in various 

solvents with compound 212 (1.0 equiv, ~10 mg), Au(PPh3)2NTf2 toluene complex (10 

mol%), and 8-methylquinoline oxide (1.2 equiv).  I found that common solvents used in 

other Au-catalyzed reactions, for example, DCE, PhCF3, and toluene only provided 

complex mixtures. Only ethereal solvents (DME, dioxane, and THF) provided some 

product in detectable amounts observed in the crude NMR. Among these three solvents, 

the most polar solvent, THF, provided the best yield, and I, therefore, decided to 

investigate other aprotic polar solvents. Acetone provided a comparable yield as THF, 

while acetonitrile provided a slightly diminished yield. DMF provided a lower yield, 

probably due to deactivation of the gold catalyst by coordination. The highly polar, but 

non-chelating solvent, CH3NO2, also provided a comparable yield as THF.  Interestingly, 

neat reaction also provided some product, albeit in low yield (~19%). With THF 

identified as the best solvent, I continued studying the effect of concentration, and found 

that both high (0.02 M) and low (slow addition via syringe pump) concentrations were 
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harmful to the reaction. 0.01 M was found to be an optimal concentration. Different 

oxides were also screened. Pyridine oxide provided complex mixtures, while 4-

nitropyridine oxide provided the product in good yield. This indicated that a strong 

electron-withdrawing group (-NO2) on the pyridine ring could significantly minimize the 

binding of pyridine-byproduct to the Au-catalyst, which is likely harmful to catalyst 

turnover. Therefore, I synthesized oxide D by subjecting oxide A to KNO3 in 

concentrated H2SO4. Reaction with oxide D provided the same product with a slightly 

higher yield, and the product was easier to be purified by flash chromatography. 

Cyclization precursor 213 with a MOM protecting group also provided a product in a 

very good yield under these optimal conditions. 

Table 5.2 Optimization for Au-Catalyzed Oxazole Formation 

 

entry PG solventa oxide timeb yield (%)c 
1 Me DCE A 1 h complex mixtures 
2 Me PhCF3 A 15 min complex mixtures 
3 Me toluene A 15min complex mixture 
4 Me DME A 1 h 28 
5 Me dioxane A 1 h 18 
6 Me THF (0.005 M) A 1 h 39 
7 Me THF (0.01 M) A 1 h 40 (32)e 
8 Me THF (0.02 M) A 1 h  25 
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9 Me THF (0.1 M) A 1 h 8 
10 Me THF (slow addition) d A 1 h 16
11 Me neat A 1 h 18 
12 Me acetone A 1 h 38 
13 Me DMF A 1 h 20 
14 Me CH3CN A 1 h 31 
15 Me CH3NO2 A 1 h 37 
16 Me THF (0.01 M) B 24 h complex mixturesf 
17 Me THF (0.01 M) C 1 h 34 
18 Me THF (0.01 M) D 1 h 36 e 
19 MOM THF (0.01 M) D 1 h 51 e 

        a reactions conditions (1.0 equiv cyclization precursor, 1.2 equiv of 8-methylquinoline oxide, and 10 
mol% Au-catalyst, 0.01 M in various solvents). b reaction time was determined based on the cyclization 
precursors were all consumed by TLC. c yields were estimated on the integral ratio of 8-methylquinoline 
oxide and 8-methylquinoline verse the desired products or using vanillin as internal standards. d the final 
concentration was 0.01 M. e isolated yield. f a lot of starting material left by TLC. 

        With optimal conditions in hand, I can isolate sufficient amount of the product for 

full characterization. The 1H NMR displays dynamic behavior and a very broad peak that 

integrates to two protons around 3.8 ppm is always observed. Upon heating to 60 °C in 

THF-d8, this broad peak sharpens and appears as an AB pattern (Figure 5.1). In addition, 

the new formed oxazole should appear as a singlet, but this was not observed in various 

deuterated solvents. This was initially attributed to dynamic processes broadening this 

peak, but this signal was not observed even at elevated temperature. Furthermore, the 

products from the reactions of compound 212 and 213 both showed a signal at 190 ppm 

in 13C NMR, which suggested the presence of a conjugated ketone. In addition, an extra 

alkyl carbon peak in 13C NMR as compared to the desired oxazole product, is observed. 

All these indicated that the products of these reactions are not the desired, but instead are 

ketones 216 and 217. They appear to be generated by the nucleophilic addition of the 

phenyl ring of the oxindole to the α-ketone gold carbenoid. The structures of 216 and 217 

were further supported by observations of nitrile stretches in the IR. Moody has also 

observed such a C-H insertion product in a related approach.27 Very recently, the Zhang 

group applied similar reactions to prepare chroman-3-ones. 28 
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Figure 5.1 Structures of 216 and 217 and Partial 1H NMR of 217 

 

5.6 Conclusion 

Synthesis of the right hand macrocycle of diazonamide A was attempted, both via 

Pd-catalyzed α-arylation and Au-catalyzed oxazole formation. Unfortunately, neither of 

these two methods provided the desired heterocyclic macrocycle. Further modifications 

of cyclization precursors and conditions for both cyclization methods are required. In 

order to render the Au-catalyzed oxazole formation reaction viable for the synthesis of 

diazonamide A, deactivation of the oxindole phenyl ring is required. In one approach, a 
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bromine atom could be introduced at the 5-position of the oxindole to prevent the 

nucleophilic attack by the 6-position of the oxindole in compound 212 and 213.  

 

5.7 Abbriviations 

Cbz Carboxybenzyl 
DCE Dichloroethane 
DME 1,2-Dimethoxyethane 
DMF N,N-Dimethylformamide 
DDQ 2,3-Dichloro-5,6-dicyanobenzoquinone 
DIBAL Diisobutylaluminium hydride 
DMAP 4-Dimethylaminopyridine 
Deoxo-Fluor® Bis(2-methoxyethyl)aminosulfur trifluoride 
DPPA Diphenylphosphoryl Azide 
EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 
HOBt Hydroxybenzotriazole 
LiHMDS Lithium bis(trimethylsilyl)amide 
NCS N-Chlorosuccinimide 
NIS N-Iodosuccinimide 
Pht Phthalimido 
RuPhos 2-Dicyclohexylphosphino-2',6'-di-i-propoxy-1,1'-biphenyl
SPhos 2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl 
TAS-F Tris(dimethylamino)sulfonium difluorotrimethylsilicate 
TFA Trifluoroacetic acid 
TMEDA Tetramethylethylenediamine 
 

 

5.8 Experimental Details 

General Information 

        All glassware was oven-dried or flame-dried. DMF were freshly distilled over CaH2 

under reduced pressure prior to use; THF and Et2O were distilled from sodium 

benzophenone ketyl under N2; DME was distilled over Na under N2. CH2Cl2, hexanes 
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and toluene were distilled over CaH2 under N2; TMEDA was distilled from Na under 

reduced pressure. Unless specifically mentioned, all chemicals are commercially 

available and were used as received. Thin layer chromatography (TLC) was performed 

using EM Science Silica Gel 60 F254 glass plates. Flash chromatography was performed 

using 60 Å silica gel (37-75 μm). 1H NMR spectra were recorded at either 400 MHz or 

500 MHz, and 13C NMR spectra were recorded at either 75 MHz or 100 MHz in CDCl3, 

[D6]acetone, or [D6]DMSO as indicated. Chemical shifts are reported in ppm referenced 

to residual solvent peaks as follows: CDCl3, 7.24 ppm for 1H NMR, 77.16 ppm for 13C 

NMR; [D6]acetone, 2.05 ppm for 1H NMR, 29.84 ppm for 13C NMR; and [D6]DMSO, 

2.50 ppm for 1H NMR, 39.52 ppm for 13C NMR; [D8]THF, 3.58 ppm for 1H NMR. 

Infrared (FT-IR) spectra were obtained as thin films on NaCl plates. Exact mass was 

determined using electrospray ionization (M+H, M+Na, or M+K as indicated). 

 

Tertiary Alcohol 180: 

 

        Magnesium turning (968 mg, 39.8 mmol, 3.0 equiv) was charged in a 100 mL three 

neck round bottom flask, and dry THF (50 mL) and bromobenzene (3.07 mL, 29.2 mmol, 

2.2 equiv) were added. After the reaction was initiated, and the reaction was allowed to 

stir until no bubbling was observed on the magnesium surface, and cooled to room 

temperature. 7-Bromoisatin (3.0 g, 13.27 mmol, 1.0 equiv) was charged in another 250 
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mL round bottom flask, and dry THF (80 mL) was added. The solution was cooled in an 

ice bath, and the prepared Grignard reagent was cannulated into the flask containing 7-

bromoisatin. The resulting dark brown solution was stirred in the ice bath for 3 h. The 

reaction was quenched with sat. NH4Cl (30 mL), 1 M HCl (20 mL), and diluted with 

EtOAc (150 mL). The aqueous layer was extracted with EtOAc (50 mL×3) three times, 

and the combined organic layers were dried over MgSO4, filtered, and concentrated to 

provide a brown oil. Flash chromatography with 5:1 CH2Cl2:EtOAc provided alcohol 180 

(3.75 g, 93%) as a yellow solid. 

        Rf = 0.52 in 5:1 CH2Cl2:EtOAc. 1H NMR (500 MHz, [D6]acetone) δ 9.64 (s, 1H), 

8.00 (s, 1H), 7.52 – 7.39 (m, 3H), 7.39 – 7.24 (m, 3H), 7.19 (d, J = 7.4 Hz, 1H), 6.99 (dd, 

J = 8.1, 7.4 Hz, 1H), 5.80 (s, 1H). 13C NMR (75 MHz, [D6]acetone) δ 178.49, 142.14, 

141.62, 135.96, 133.01, 129.02, 128.65, 126.32, 124.83, 103.27, 79.52, 79.12. IR (cm-1) 

3403, 1642. 

 

3-Aryloxidole 171: 

 

        Tertiary alcohol 180 (3.30 g, 10.85 mmol, 1.0 equiv) was charged into a 200 mL 

round bottom flask, and neat SOCl2 (15.84 mL, 217.0 mmol, 20.0 equiv) was added. The 

resulting brown solution was stirred for 15 h and concentrated under reduced pressure. 

The crude tertiary chloride was dissolved in dry THF (55 mL), and zinc dust (3,55 g, 54.3 
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mmol, 5.0 equiv) and acetic acid (6.21 mL, 109.0 mmol, 10.0 equiv) were added. The 

suspension was allowed to stir at RT for 3 h. The reaction was diluted with ether (250 

mL), washed with brine (30 mL), sat. NaHCO3 (30 mL×2), brine (30 mL), dried over 

MgSO4, filtered, and concentrated to provide a yellowish solid (purity > 95%), which 

was  used directly in the next step without any purification. 

 

Tertiary chloride:  

        An analytical sample was prepared by flash chromatography with 5:1 

hexanes:EtOAc as a white solild. Rf = 0.48 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, 

CDCl3) δ 8.40 (s, 1H), 7.58 – 7.49 (m, 2H), 7.45 (dd, J = 8.2, 0.9 Hz, 1H), 7.39 – 7.33 (m, 

3H), 7.31 (d, J = 7.5 Hz, 1H), 7.02 (t, J = 7.55 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

173.98, 139.53, 135.89, 133.15, 132.02, 129.32, 128.78, 127.50, 125.15, 124.92, 103.77, 

67.32. 

 

3-Phenyloxindole 171:  

        Rf  = 0.25 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.38 (s, 1H), 7.44 – 

7.26 (m, 4H), 7.21 (dd, J = 5.3, 3.1 Hz, 2H), 7.05 (d, J = 7.4 Hz, 1H), 6.91 (t, J = 7.4 Hz, 

1H), 4.73 (s, 1H). 13C NMR (75 MHz, CDCl3) δ 176.84, 141.17, 135.89, 131.24, 130.80, 

129.12, 128.52, 127.97, 124.25, 124.04, 102.96, 53.76. IR (cm-1) 3424 (br), 1642. 

 

Amide 176: 
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        To a suspension of (±)-serine methyl ester hydrochloride (2.02 g, 13.0 mmol, 1.0 

equiv) and dry Et3N (5.5 mL, 39.0 mmol, 3.0 equiv) in CH2Cl2 (50 mL) in an ice bath 

was added isobutyryl chloride (1.45 mL, 13.7 mmol, 1.05 equiv) dropwise. The reaction 

was allowed to warm up to RT and stirred overnight (20 h). The solvent was removed 

under reduced pressure and the reaction was diluted with EtOAc (100 mL). The 

suspension was filtered to remove the white salt, and the filtrate was concentrated to 

provide a colorless oil. Purification by flash chromatography (10% MeOH in 5:1 

hexanes:EtOAc) provided amide 176 (2.39 g, 97%) as a colorless oil. 

        Rf = 0.18 in 10% MeOH in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 6.62 

(d, J = 7.4 Hz, 1H), 4.60 (dt, J = 7.5, 3.6 Hz, 1H), 3.93 (dd, J = 11.2, 3.9 Hz, 1H), 3.83 

(dd, J = 11.2, 3.3 Hz, 1H), 3.73 (s, 3H), 3.49 (s, 1H), 2.43 (hept, J = 6.9 Hz, 1H), 1.13 (dd, 

J = 6.9, 3.7 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 177.88, 171.26, 63.32, 54.60, 52.77, 

35.49, 19.51, 19.48. IR (cm-1) 3342 (br), 2966, 2933, 2872, 1744, 1654. 

 

Oxazoline 178 and Ester 179: 
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        Amide 176 (1.60 g, 8.46 mmol, 1.0 equiv) was dissolved in dry toluene (45 mL) in a 

100 mL round bottom flask, and (NH4)6Mo7O24 tetrahydrate (1.045 g, 0.846 mmol, 10 

mol%) was added, and the reaction was heated to reflux with a Dean-Stark apparatus for 

6 h. The reaction was diluted with EtOAc (200 mL), washed with sat. NaHCO3 (30 mL), 

brine (20 mL), dried over MgSO4, filtered, and concentrated to provide a yellow oil. 

Purification by flash chromatography (10% MeOH in 5:1 hexanes:EtOAc) provided 

oxazoline 178 (640 mg, 44%) as a colorless oil, along with ester 179 (430 mg, 30%) as a 

white solid. Spectral data for 178 are consistent with that reported in the literature.29 

 

Ester 179: 

        Rf = 0.25 in 10% MeOH in 5:1 hexanes:EtAOc; 1H NMR (500 MHz, CDCl3) δ 6.33 

(d, J = 7.7 Hz, 1H), 4.81 (dt, J = 7.9, 4.0 Hz, 1H), 4.60 (ddd, J = 10.5, 7.5, 0.9 Hz, 1H), 

4.44 (s, 1H), 4.44 (d, J = 0.7 Hz, 1H), 4.39 – 4.24 (m, 2H), 3.69 (s, 3H), 2.60 – 2.48 (m, 

1H), 2.41 – 2.28 (m, 1H), 1.13 (dt, J = 6.7, 2.2 Hz, 6H), 1.09 (d, J = 6.9 Hz, 6H). IR (cm-

1) 3328 (br), 2966, 2933, 2872, 1660, 1516. 

 

Carboxylic Acid 174: 

N

O

COOH
N

O

COOMe
LiOH, THF/H2O

99%

173 174  

        Ester 173 (860 mg, 5.08 mmol, 1.0 equiv) was dissolved in 50 mL THF in a 250 mL 

round bottom flask, which was cooled in an ice bath. LiOH (2.135 g, 50.8 mmol, 10.0 

equiv) was dissolved in 50 mL water, and the solution was added to the THF solution of 
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ester 173. The resulting colorless solution was stirred in the ice bath for 1 h, and the 

reaction was diluted with ether (150 mL), acidified with 1 M HCl (55 mL). The aqueous 

layer was extracted with ether (50 mL×3), and the combined organic layers were washed 

with brine, dried over MgSO4, filtered, and concentrated to provide carboxylic acid 174 

(785 mg, 99%) as a colorless crystalline solid, which was used directly in the next step 

without further purification. Spectral data for 174 are consistent with that reported in the 

literature.30 

 

Bromooxazole 169: 

 

        s-BuLi (1.25 mL of a 1.3 mol/L solution in cyclohexane, 1.63 mmol, 2.2 equiv) was 

added to a -78 °C solution of carboxylic acid 174 (115 mg, 0.74 mmol, 1.0 equiv) and 

TMEDA (276 µL, 1.85 mmol, 2.5 equiv) in dry THF (7 mL), and the resulting orange 

solution was stirred at - 78 °C for 1 h. A solution of Cl2BrCCBrCl2 (724 mg, 2.22 mmol, 

3.0 equiv) in dry THF (3.5 mL), and the reaction was allowed to warm up to RT. The 

reaction was quenched with H2O, and diluted with Et2O. The organic layer was extracted 

with 0.1 M NaOH (15 mL×3), and the combined aqueous layers were acidified with 1 M 

HCl (10 mL), and extracted with Et2O (20 mL×3). The combined organic layers were 

washed with brine (10 mL), dried over MgSO4, filtered, and concentrated to provide 
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bromooxazole 169 (159 mg, 92%) a colorless sticky oil. The crude acid was used directly 

into the next step without any further purification. 

        1H NMR (500 MHz, CDCl3) δ 11.56 (s, 1H), 3.24 – 3.01 (m, 1H), 1.31 (d, J = 7.0, 

6H). 13C NMR (101 MHz, CDCl3) δ 170.66, 164.83, 129.74, 129.10, 28.76, 20.07. IR 

(cm-1) 3085, 2974, 2929, 2976, 1699, 1585. 

 

Ketone 183: 

 

        To a cold (-78 °C) solution of dibromoindole 172 (1.94 g, 4.50 mmol, 1.0 equiv) in 

dry THF (20 mL) was added n-BuLi (3.26 mL of a 1.38 mol/L solution in hexanes, 4.50 

mmol, 1.0 equiv) dropwise, and the solution was stirred at -78 °C for 1 h. In another flask, 

MeMgBr (3.37 mL of a 2.8 mol/L solution in Et2O, 9.45 mmol, 2.1 equiv) was added 

slowly to a solution of Weinreb amdie 170 (1.963 g, 9.0 mmol, 2.0 equiv) in dry THF (25 

mL) in an ice bath, and the solution was stirred in the ice bath for 1 h before cannulating 

into the lithiated indole solution. The resultant yellow solution was allowed to warm up 

to RT, and stirred overnight (24 h). The reaction was quenched with 1 M HCl (5 mL), 

and the mixture was stirred at RT for 10 min, before diluting with Et2O (100 mL). The 

organic layer was washed with sat. NaHCO3 (20 mL), brine (10 mL), dried over MgSO4, 

filtered, and concentrated to provide a yellow oil. Purification by flash chromatography 

(5:1 hexanes:EtOAc) provided ketone 183 (1.12 g, 49%) as a colorless oil. 
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        Rf = 0.42 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.83 (s, 1H), 7.45 

(d, J = 1.2 Hz, 1H), 7.43 (s, 1H), 7.05 (t, J = 8.0 Hz, 1H), 5.68 (s, 1H), 4.48 (t, J = 21.7 

Hz, 2H), 1.76 – 1.56 (m, 3H), 1.43 (s, 9H), 1.10 (d, J = 7.6 Hz, 17H). 13C NMR (100 

MHz, CDCl3) δ 189.69, 156.09, 143.25, 138.48, 127.99, 127.81, 124.33, 118.61, 114.70, 

113.51, 79.83, 49.63, 28.59, 18.13, 12.88. IR (cm-1) 3423, 1711, 1679, 1169, 990. 

HRMS m/z calcd for C24H37BrN2O3SiNa+: 531.1649; found: 531.1632. 

 

Indole 184: 

 

        A solution of TBAF (2.4 mL of a 1.0 mol/L solution, 2.41 mmol, 1.1 equiv) in THF 

was added via syringe to a solution of ketone 183 (1.12 g, 2.20 mmol, 1.0 equiv) in THF 

(20 mL), and the resultant yellow solution was stirred at RT for 10 min. The reaction was 

diluted with sat. NH4Cl (20 mL) and Et2O (100 mL). The aqueous layer was extracted 

with Et2O (20 mL×3), and the combined organic layers were washed with brine (20 mL), 

dried over MgSO4, filtered, and concentrated to provide a yellow oil. Trituration with 

hexanes provided indole 184 (776 mg, quantitative) as a white solid, which was suitable 

for further use. An analytical sample was prepared by recrystallization from 

CH2Cl2/hexanes. 

        1H NMR (400 MHz, CDCl3) δ ppm 9.71 (br s, 1H), 7.79 (d, J = 3.16 Hz, 1H), 7.45 
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(dd, J = 7.67, 0.8 Hz 1H), 7.36 (dd, J = 8.15, 0.8 Hz 1H), 7.12-7.06 (m, 1H), 5.67 (br s, 

1H), 4.45 (d, J = 4.81 Hz, 2H), 1.48 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 189.11, 

156.54, 138.44, 131.91, 128.15, 125.00, 124.81, 116.31, 114.71, 111.36, 80.31, 49.16, 

28.62. IR (cm-1) 3271, 1667, 1515, 1163. HRMS m/z calcd for C15H17BrN2O3Na+: 

375.0314; found: 375.0294. 

 

N-MOM indole 185: 

 

        A dry THF (17 mL) solution of indole 184 (818 mg, 2.316 mmol, 1.0 equiv) was 

cannulated into a flask charged with NaH (60% suspension in mineral oil, prewashed 

with dry hexanes three times) in dry THF (5 mL). The resultant suspension was stirred at 

RT for 1 h, MOMCl (185 µL, 2.432 mmol, 1.05 equiv) was added via syringe. After 

stirring at RT for 18 h, the reaction was quenched with water (25 mL), diluted with ether 

(50 mL). The aqueous layer was extracted with ether (20 mL×2), and the combined 

organic layers were washed with brine (10 mL), dried over MgSO4, filtered, and 

concentrated to provide a yellow oil. Purification by flash chromatography (10:1 

CH2Cl2:EtOAc) provided N-MOM indole 185 (780 mg, 85%) as a colorless oil. 

        Rf = 0.35 in 10:1 CH2Cl2:EtOAc. 1H NMR (400 MHz, CDCl3) δ 7.85 (s, 1H), 7.41 

(dd, J = 7.7, 0.8, 1H), 7.38 (dd, J = 8.3, 0.8, 1H), 7.07 (J = 7.95 Hz, 1H), 5.66 (s, 1H), 

5.37 (s, 2H), 4.42 (d, J = 4.9, 2H), 3.17 (s, 3H), 1,41 (s, 9 H). 13C NMR (75 MHz, CDCl3) 
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δ 189.34, 155.79, 137.93, 135.19, 127.74, 125.32, 124.38, 115.19, 114.11, 109.78, 79.19, 

78.00, 55.93, 48.95, 28.12. IR (cm-1) 3357, 1707, 1679, 1524, 1167. HRMS m/z calcd 

for C17H21BrN2O4Na+: 419.0577; found: 419.0568. 

 

Boronic Ester 186: 

 

        Bromide 185 (350 mg, 0.881 mmoml, 1.0 equiv), PdCl2(dppf) CH2Cl2 complex (72 

mg, 0.088 mmol, 10 mol%), bispinacolatodiboron (447 mg, 1.762 mmol, 2.0 equiv), and 

KOAc (259 mg, 2.64 mmol, 3.0 equiv) were combined in a 25 mL long neck flask with a 

cold finger. Fresh distilled DME (8 mL) was degassed by sparging with N2 for 15 min, 

and cannulated into the flask. The resulting orange solution was stirred in a 90 °C oil bath 

for 20 h. The reaction was filtered through celite, washed with EtOAc, concentrated to 

provide a brown oil. Flash chromatography with 20:1 hexanes:EtOAc provided boronic 

ester 186 (300.5 mg, 77%) as a white solid. 

        Rf = 0.25 in 10:1 CH2Cl2:EtOAc. 1H NMR (500 MHz, CDCl3) δ ppm 7.82 (s, 1H), 

7.49 (dd, J = 8.25, 1.0 Hz, 1H), 7.42 (dd, J = 7.08, 1.0 Hz 1H), 7.30 (dd, J = 7.16, 8.16 

Hz, 1H), 5.48 (s, 1H), 5.45 (s, 2H), 4.48 (d, J = 4.50 Hz, 2H), 3.20 (s, 3H), 1.47 (s, 12H), 

1.46 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 189.23, 156.03, 136.09, 133.78, 128.24, 

127.88, 123.83, 115.54, 111.50, 84.09, 79.80, 78.39, 56.29, 47.06, 28.58, 25.72. IR (cm-1) 



188 
 

3359, 1712, 1659, 1534, 1096. HRMS m/z calcd for C23H33BN2O6H+: 445.2508; found: 

445.2491. 

 

Biaryl 187: 

 

        Boronic ester 186 (85 mg, 0.191 mmol, 1.1 equiv), bromide 171 (50 mg, 0.174 

mmol, 1.0 eqiuv), Pd(OAc)2 (1.9 mg, 8.7 µmol, 5 mol%), XPhos (8.3 mg, 17 µmol, 10 

mol%), and KF (30.2 mg, 0.521mmol, 3.0 equiv) were combined in a 25 mL long neck 

flask with a cold finger. 10:1 dioxane:H2O (4 mL) were degassed by sparging with N2 for 

15 min, and cannulated into the flask with all the reagents. The resultant yellow solution 

was placed in a 90 °C oil bath for 12 h, and diluted with EtOAc (25 mL) and sat. NH4Cl 

(25 mL). The aqueous layer was extracted with EtOAc (20 mL×3), and the combined 

organic layers were washed with brine (10 mL), dried over MgSO4, filtered, and 

concentrated to provide a white solid. Purification by flash chromatography (1:2 

hexanes:EtOAc) provided biaryl 187 (64 mg, 70%, about 8:3 ratio of atropisomers) as a 

white solid. 

        Rf = 0.25 in 1:2 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3, 8:3 ratio of 

atropisomers) δ 8.05 (s, 1H), 7.62 (d, J = 8.2 Hz, minor,1H), 7.58 (d, J = 8.2 Hz, major, 

1H), 7.52 - 7,27 (m, 9H), 7.24 - 7.20 (m, 3H), 7.09 (s, minor, 1H), 5.61 – 5.40 (minor's 
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CH2 overlap with one of major's CH2), 5.36 (t, J = 4.0 Hz, 1H), 5.17 (d, J = 10.9 Hz, 1H), 

4.75 (s, minor, 1H), 4.68 – 4.53 (major's CH2 overlap with oxindole C3-H, 2H), 4.47 (dd, 

J = 18.1, 4.5 Hz, minor 1H), 4.32 (dd, J = 18.1, 4.5 Hz, minor 1H), 4.14 (dd, J = 18.3, 3.8 

Hz, major, 1H), 3.35 (s, minor, 3H), 3.29 (s, major, 3H), 1.42 (s, minor, 9H), 1.37 (s, 

major , 9H). 13C NMR (75 MHz, CDCl3, 8:3 ratio of atropisomers. The number of 

signals observed is not exactly twice that of a single diastereomer due to overlapping 

signals.) δ 188.52, 187.79, 178.35, 177.69, 155.47, 140.80, 139.80, 137.84, 137.71, 

136.83, 136.70, 136.10, 131.53, 131.50, 129.20, 129.12, 129.01, 128.64, 128.57, 128.48, 

128.40, 127.68, 125.93, 125.82, 125.63, 125.22, 124.62, 124.37, 124.01, 123.95, 123.87, 

123.26, 122.75, 122.50, 116.08, 116.00, 110.98, 110.87, 79.71, 79.50, 78.56, 78.29, 56.59, 

56.31, 53.15, 52.87, 48.06, 29.82, 29.78, 28.50, 28.47. IR (cm-1) 3321, 3252, 1708, 1658. 

 

Keto Amide 171: 

 

        Boc-protected amine 187 (217 mg, 0.413 mmol, 1.0 equiv) was dissolved in dry 

CH2Cl2 (3.2 mL), and TFA (1.6 mL, 20.65 mmol, 50 equiv) was added. The reaction was 

stirred at RT for 30 min, and concentrated to provide the crude amine TFA salt as a 

yellowish solid. To the flask containing the crude amine TFA salt were added carboxylic 

acid 169 (116 mg, 0.496 mmol, 1.2 equiv), dry CH2Cl2 (3.8 mL), and Et3N (174 µL, 
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1.239 mmol, 3.0 equiv). The HOBt monohydrate (126 mg, 0.826 mmol, 2.0 equiv) and 

EDC (158 mg, 0.826 mmol, 2.0 equiv) were added subsequently. The resultant yellow 

solution was stirred at RT for 15 h, and diluted with EtOAc (50 mL), washed with 1 M 

HCl (10 mL), water (10 mL), brine (10 mL), dried over MgSO4, filtered, and 

concentrated to provide a yellow solid. Flash chromatography with 1:1 CHCl3:EtOAc 

provided keto amide 171 (141 mg, 10:3 ratio of inseparable atropisomers, 53% combined 

yield) as a white solid. 

        Rf = 0.12 in 1:1 CH2Cl2:EtOAc. 1H NMR (500 MHz, CDCl3; 10:3 ratio of 

atropisomers) δ 8.26 (two s, 2H), 8.17 (s, 0.3H), 7.62 – 7.49 (m, 2H), 7.49 – 7.25 (m, 

10H), 7.24 – 7.19 (m, 3H), 7.17 (d, J = 4.8 Hz, 0.3H), 7.11 (d, J = 7.4 Hz, 1H), 5.45 (d, J 

= 10.9 Hz, 0.3H), 5.31 (d, J = 11.0 Hz, 0.3H), 5.13 (d, J = 11.0 Hz, 1H), 5.06 (dd, J = 

18.8, 5.0 Hz, 1H), 4.75 (dd and s, J = 16.5, 6.9 Hz, 0.6H), 4.59 (d, J = 10.9 Hz, 1H), 4.54 

(s, 1H), 4.42 (dd, J = 17.9, 4.8 Hz, 0.3H), 4.22 (dd, J = 18.8, 4.1 Hz, 1H), 3.29 (s, minor 

CH3), 3.14 (s, major CH3), 3.10 (sept, 1H), 3.03 (sept, 0.3 H), 1.37 (dd, J = 7.0, 3.3 Hz, 

6H), 1.32 (dd, J = 7.0, 1.9 Hz, 2H). 

 

Bis-Oxazole Indole 167: 
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        To a solution of PPh3 (37mg, 0.14 mmol, 5.0 equiv) in dry CH2Cl2 (4 mL) was 

added C2Cl6 (33 mg, 0.14 mmol, 5.0 equiv), and the solution was stirred at RT for 10 min, 

at which time dry Et3N (39 µL, 0.28 mmol, 10.0 equiv) was added dropwise. After 

stirring at RT for 10 min, the solution was cannulated to a solution of keto amide 171 (18 

mg, 0.028 mmol, 1.0 equiv) in dry CH2Cl2 (1 mL) in an ice bath. The reaction was stirred 

in the ice bath for 1.5 h, and diluted with EtOAc (50 mL), washed with sat. NaHCO3 (10 

mL), brine (5 mL), dried over MgSO4, filtered, and concentrated to provide a yellow 

solid. Purification by flash chromatography (2:1 hexanes:EtOAc) provided oxazole 167 

(7 mg, 40%) as a yellow oil. 

        Rf = 0.55 in 2:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 9.11 (br s, 1H), 

8.15 (s, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.75 (s, 1H), 7.73 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 

8.1 Hz, 1H), 7.36 – 7.23 (m, 6H), 7.17 (dd, J = 8.2, 7.2 Hz, 1H), 7.05 (dt, J = 7.2, 1.1 Hz, 

1H), 5.54 – 5.46 (AB, 2H), 4.80 (s, 1H), 3.30 (s, 3H), 3.17 – 3.03 (m, 1H), 1.35 (d, J = 

7.0, 6H). 

 

N-MOM-Oxindole 188 and 189: 

 

        Compound 188 was prepared in 60% yield from N-MOM-isatin 76 via a similar 

procedure as the preparation of tertiary alcohol 180, and recrystallized from hot MeOH 



192 
 

and H2O after flash chromatography (5:1 hexanes:EtOAc) to provide a yellowish solid. 

Rf = 0.55 in 2:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.49 (dd, J = 8.2, 1.1 Hz, 

1H), 7.38 – 7.27 (m, 5H), 7.21 (dd, J = 7.4, 1.1 Hz, 1H), 6.96 (dd, J = 8.0, 7.6 Hz, 1H), 

5.56 – 5.43 (AB, 2H), 3.38 (s, 3H), 3.12 (br s, 1H). 

 

Tertiary chloride: 

        To a solution of tertiary alcohol 188 (398 mg, 1.14 mmol, 1.0 equiv) and Et3N (805 

µL, 5.72 mmol, 5.0 equiv) in dry CH2Cl2 (22 mL) in an ice bath was added SOCl2 (210 

µL, 2.86 mmol, 2.5 equiv), and the resultant dark brown solution was stirred in the ice 

bath for 30 min. The reaction was washed with sat. NaHCO3 (10 mL), dried over MgSO4, 

filtered, and concentrated to provide a yellow oil. Purification by flash chromatography 

(10:1 hexanes:EtOAc) provide the tertiary chloride (285 mg, 68%) as a yellow oil. Rf = 

0.35 in 10:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.54 (d, J = 8.2 Hz, 1H), 

7.51 – 7.46 (m, 2H), 7.40 – 7.29 (m, 4H), 7.03 (t, J = 7.8 Hz, 1H), 5.50 (AB, 2H), 3.35 (s, 

3H). 

        Compound 189 was prepared in 96% yield from the above tertiary chloride via a 

similar procedure as the preparation of compound 171, and used without purification. Rf 

= 0.45 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.44 (dt, J = 8.2, 0.9 Hz, 

1H), 7.35 – 7.21 (m, 3H), 7.14 (dt, J = 3.8, 2.2 Hz, 2H), 7.05 (dt, J = 7.3, 1.1 Hz, 1H), 

6.90 (dd, J = 8.1, 7.4 Hz, 1H), 5.48 (AB, 2H), 4.65 (s, 1H), 3.35 (s, 3H). 

 

Tertiary Alcohol 192: 
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        Compound 192 was prepared in 72% yield (4.59 g, a yellow solid) from N-methyl 

isatin 191 via a similar procedure as the preparation of compound 180. 

        Rf = 0.26 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.42 (dd, J = 8.2, 

1.2 Hz, 1H), 7.35 – 7.25 (m, 5H), 7.16 (dd, J = 7.3, 1.2 Hz, 1H), 6.89 (dd, J = 8.2, 7.4 Hz, 

1H), 4.00 (br s, 1H), 3.58 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 178.21, 140.91, 139.84, 

135.52, 134.82, 128.82, 128.63, 125.31, 124.91, 124.29, 102.98, 30.34. IR (cm-1) 3387 

(br), 1712, 1605, 1577, 1454. 

 

3-Aryloxindole 193: 

 

        Tertiary alcohol 192 (1.12 g, 3.51 mmol, 1.0 equiv) was dissolved in neat SOCl2 

(5.12 mL, 70.2 mmol, 20 equiv), and the yellow solution was stirred overnight (15 h). 

The solvent was removed under reduced pressure, and the residue was dissolved in 

toluene (10 mL×3) and concentrated three times to provide the tertiary chloride a yellow 

oil, which was used without further purification. 1H NMR (500 MHz, CDCl3) δ 7.51 – 
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7.43 (m, 3H), 7.37 – 7.32 (m, 3H), 7.31 (dd, J = 7.4, 1.1 Hz, 1H), 6.99 (dd, J = 8.1, 7.6 

Hz, 1H), 3.61 (s, 3H). 

        The crude chloride was dissolved in dry THF (30 mL), and zinc dust (1.15 g, 17.5 

mmol, 5.0 equiv) and HOAc (2.0 mL, 35.1 mmol, 10.0 equiv) were added. The 

suspension was stirred at RT for 5 h, diluted with Et2O (200 mL) and brine (25 mL). The 

organic layer was washed with sat. NaHCO3 (20 mL×2), brine (20 mL), dried over 

MgSO4, filtered, and concentrated to provide a colorless oil. Purification by flash 

chromatography (10:1 hexanes:EtOAc) provided 3-aryloxindole 193 (1.0 g, 94%) as a 

colorless crystalline solid. 

        Rf = 0.28 in 10:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.41 (dt, J = 8.2, 

1.1 Hz, 1H), 7.35 – 7.25 (m, 3H), 7.18 – 7.10 (m, 2H), 7.04 (dt, J = 7.3, 1.2 Hz, 1H), 6.87 

(dd, J = 8.1, 7.4 Hz, 1H), 4.57 (s, 1H), 3.62 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 

175.72, 141.27, 135.97, 133.56, 131.58, 128.57, 128.08, 127.36, 123.85, 123.49, 101.97, 

51.40, 29.72. IR (cm-1) 3085, 3056, 3023, 2942, 2909, 1716. 

 

Alkyne 197: 

 

        Iodide 196 (345 mg, 0.817 mmol, 1.0 equiv), Pd(PPh3)2Cl2 (28.7 mg, 0.041 mmol, 5 

mol%), CuI (15.6 mg, 0.082 mmol, 10 mol%), TMSA (170 µL, 1.226 mmol, 1.5 equiv) 
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were charged in a 25 mL round bottom flask with a condenser. Dry triethylamine (5.7 mL, 

40.9 mmol, 50.0 equiv) was degassed by sparging with N2 for 15 min, and cannulated 

into the flask. The reaction was stirred in a 60 °C oil bath under N2 atmosphere for 3 h, 

and concentrated to provide a brown oil. Flash chromatography with 20:1 hexanes:EtOAc 

provided alkyne 197 (282 mg, 88%) as a yellow oil. 

        Rf = 0.32 in 40:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.14 (br d, J = 8.3 

Hz, 1H), 7.82 (s, 1H), 7.39 (dd, J = 7.8, 0.8 Hz, 1H), 7.13 (t, J = 8.1 Hz, 1H), 1.63 (s, 9H), 

0.25 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 148.54, 135.81, 131.92, 128.18, 128.00, 

126.04, 115.49, 114.66, 103.73, 99.61, 97.66, 85.03, 28.23, -0.21. IR (cm-1) 2958, 2157, 

1748. 

 

Boronic Ester 198: 

 

        Bromide 197 (282 mg, 0.719 mmol, 1.0 equiv), PdCl2(dppf) CH2Cl2 complex (58.7 

mg, 0.072 mmol, 10 mol%), bispinacolatodiboron (365 mg, 1.437 mmol, 2.0 equiv), and 

KOAc (212 mg, 2.156 mmol, 3.0 equiv) were combined in a 25 mL long neck flask with 

a cold finger. Fresh distilled DME (7 mL) was degassed by sparging with N2 for 15 min, 

and cannulated into the flask. The resulting orange solution was stirred in a 90 °C oil bath 

for 5 h. The reaction was filtered through celite, washed with EtOAc, concentrated to 
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provide a brown oil. Flash chromatography with 20:1 hexanes:EtOAc provided boronic 

ester 198 (191.5 mg, 61%) as a yellow oil. 

        Rf = 0.36 in 20:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.25 (br d, J = 8.3 

Hz, 1H), 7.87 (s, 1H), 7.59 (dd, J = 7.2, 1.1 Hz, 1H), 7.29 (dd, J = 8.3, 7.2 Hz, 1H), 1.64 

(s, 9H), 1.41 (s, 12H), 0.25 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 148.86, 134.61, 

133.68, 131.74, 130.36, 124.27, 117.34, 104.51, 99.43, 96.85, 84.47, 84.27, 28.32, 28.24, 

25.08, 0.45. IR (cm-1) 2974, 2153, 1744. 

 

C-Arylation Oxindole 199 and O-Arylation Oxindole 200: 

 

        Oxindole 171 (75 mg, 0.26 mmol, 1.1 equiv), bromooxazole 58 (50 mg, 0.23 mmol, 

1.0 equiv), and Cs2CO3 (167 mg, 0.51 mmol, 2.2 equiv) were charged in a Schlenk tube. 

Fresh distilled dry DMF was degassed by sparging with N2 for 15 min, and cannulated 

into the Schlenk tube, which was then sealed and placed in a 65 °C oil bath. After stirring 

at 65 °C for 15 h, the reaction was diluted with Et2O (50 mL) and EtOAc (10 mL), 

washed with water (10 mL×4), brine, dried over MgSO4, filtered, and concentrated to 

provide a yellow sticky oil. Flash chromatograph with 5:1 hexanes:EtOAc provided C-

arylation oxindole 199 (72 mg, 73%) and O-arylation product 200 (13.5 mg, 14%) as 

white solids.  
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C-arylation oxindole 199:   

        Rf = 0.25 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.36 (s, 1H), 7.48 

(dd, J = 8.2, 0.9 Hz, 1H), 7.42 – 7.30 (m, 5H), 7.27 (d, J = 7.5 Hz, 1H), 7.04 (t, J = 7.76 

Hz, 1H), 3.01 (hept, J = 7.0 Hz, 1H), 1.28 (dd, J = 7.0, 4.9 Hz, 6H). 13C NMR (75 MHz, 

CDCl3) δ 161.35, 160.06, 139.94, 130.87, 129.73, 129.01, 128.77, 127.49, 126.86, 125.82, 

122.67, 119.30, 110.73, 104.80, 104.03, 92.16, 29.85, 28.57, 19.74. m.p. = 208 – 209 °C. 

IR (cm-1) 3199, 3092, 2974, 2242, 1728, 1617. 

 

O-arylation oxindole 200: 

        Rf = 0.45 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.51 (s, 1H), 7.66 

(d, J = 8.0 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.46 – 7.36 (m, 3H), 7.35 – 7.26 (m, 1H), 7.08 (t, 

J = 7.9 Hz, 1H), 2.79 (hept, J = 7.0 Hz, 1H), 1.14 (d, J = 7.0 Hz, 6H). 13C NMR (75 MHz, 

CDCl3) δ 161.35, 160.06, 139.94, 130.87, 129.73, 129.01, 128.77, 127.49, 126.86, 125.82, 

122.67, 119.30, 110.73, 104.80, 104.03, 92.16, 28.57, 19.74. IR (cm-1) 3395, 3272, 2978, 

2239, 1646, 1621, 1580. 

 

Cyclization Precursor 201: 
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        Oxindole 199 (115 mg, 0.272 mmol, 1.0 equiv), boronic ester 198 (144 mg, 0.3237 

mmol, 1.2 equiv), Pd(OAc)2 (6.1 mg, 0.027 mmol, 10 mol%), XPhos (26.0 mg, 0.054 

mmol, 20 mol%), and KF (47.5 mg, 0.817 mmol, 3.0 equiv) were charged in a long neck 

round bottom flask with a cold finger. A mixture of 10:1 dioxane:H2O  (6 mL) was 

degassed by sparging with N2 for 15 min, and cannulated into the flask with all the 

materials. The resultant brown solution was stirred in a 90 °C oil bath for 3 h, and 

concentrated to provide a brown oil. Flash chromatograph with 5:1 hexanes:EtOAc 

provided biaryl 201 (149 mg, 84%, about 4:3 ratio of atropisomers) as a yellow oil.  

        Rf = 0.25 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 8.3 Hz, 

1H), 7.88 (s, 1H), 7.65 (br s, major, 1H), 7.62 (br s, minor, 1H), 7.50 – 7.43 (m, 1H), 7.43 

(s, 7H), 7.24 – 7.07 (m, 2H), 3.12 – 2.86 (two hept, 1H), 1.67 (two s, 9H), 1.36 – 1.21 

(two dd, 6H), -0.03 (s, major, 9H), -0.17 (s, minor, 9H). 13C NMR (75 MHz, CDCl3; The 

number of signals observed is not exactly twice that of a single atropisomer due to 

overlapping signals.) δ 173.29, 169.87, 169.38, 158.15, 157.76, 148.72, 139.02, 138.98, 

135.92, 135.89, 135.76, 135.61, 133.28, 133.18, 132.81, 132.52, 131.16, 129.71, 129.68, 

129.17, 129.10, 128.97, 128.89, 128.81, 128.11, 127.98, 127.93, 127.83, 127.25, 127.14, 

126.88, 125.49, 125.45, 125.35, 124.94, 124.77, 124.70, 123.80, 123.67, 123.10, 122.49, 

122.36, 122.19, 115.68, 115.51, 112.47, 112.30, 111.63, 111.50, 105.92, 102.69, 102.60, 

98.88, 98.81, 97.40, 97.21, 84.99, 57.76, 57.48, 57.33, 28.53, 28.46, 28.31, 28.25, 20.32, 

20.19, 19.99, 19.90, 0.04, -0.15. IR (cm-1): 3300, 2977, 2926, 2239, 2110, 1736, 1723. 

HRMS m/z calcd for C39H38N4O4SiNa+: 677.2560; found: 677.2557. 

 

Alkyne 202: 



199 
 

 

        TMS-protected alkyne 201 (32 mg, 0.049 mmol, 1.0 equiv) was dissolved in THF (1 

ml), and a solution of TBAF trihydrate (31 mg, 0.098 mg, 2.0 equiv) in THF (3.2 mL) 

was added. The yellow solution was stirred at RT for 1 h, and the reaction was diluted 

with ether (30 mL), washed with brine, dried over MgSO4, filtered, and concentrated to 

provide a yellow oil. Purification by flash chromatography (5:1 hexanes:EtOAc) 

provided alkyne 202 (24 mg, 84%, about 3:2 ratio of atropisomers) as a colorless oil. 

        Rf = 0.15 in 5:1 hexanes:EtAOc. 1H NMR (500 MHz, CDCl3) δ 8.29 (d, J = 8.4 Hz, 

1H), 7.89 (s, minor, 1H), 7.84 (s, major, 1H), 7.53 – 7.34 (m, 8H), 7.30 – 7.14 (m, 3H), 

3.03 (two hept, 1H), 2.51 (s, minor, 1H), 2.26 (s, major, 1H), 1.69 (two s, 9H), 1.31 (two 

dd, 6H). 13C NMR (75 MHz, CDCl3, The number of signals observed is not exactly twice 

that of a single diastereomer due to overlapping signals.) δ 173.34, 173.29, 169.88, 

169.77, 157.84, 157.66, 148.73, 148.70, 139.87, 139.81, 135.85, 135.35, 135.27, 135.08, 

132.48, 132.28, 131.91, 131.66, 129.66, 129.62, 129.21, 129.16, 129.14, 129.10, 128.94, 

128.29, 127.92, 127.85, 127.48, 127.20, 126.96, 125.95, 125.83, 125.80, 125.65, 125.42, 

125.02, 122.86, 122.81, 122.58, 115.90, 115.86, 112.83, 112.72, 111.78, 111.45, 75.67, 

75.46, 57.52, 57.42, 28.56, 28.51, 28.25, 20.20, 20.18, 20.06, 19.97. IR (cm-1): 2971, 

2240, 2151, 1742, 1727. HRMS m/z calcd for C36H30N4O4Na+: 605.2165; found: 

605.2166. 
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Indole 205: 

 

        Boc-protected indole 197 (1.08 g, 2.75 mmol) was charged in a 100 mL round 

bottom flask, which was attached to vacuum, and the flask was placed into a 155 °C oil 

bath for 1 h. After gas evolving was ceased, the residual brown oil was purified by flash 

chromatography (5:1 hexanes:EtOAc) to provide indole 205 (780 mg, 97%) as a colorless 

oil. 

        Rf = 0.25 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.28 (br s, 1H), 

7.44 (d, J = 2.7 Hz, 1H), 7.29 (dd, J = 7.6, 0.6 Hz, 1H), 7.26 (dd, J = 8.2, 0.6 Hz, 1H), 

7.01 (t, J = 7.9 Hz, 1H), 0.25 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 136.03, 130.71, 

126.42, 125.47, 124.07, 115.55, 110.96, 99.78, 99.32, 97.32, -0.04. IR (cm-1) 3407, 2958, 

2892, 2149, 1613, 1560, 1417. 

 

N-Methyl Indole 206: 
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        Indole 205 (56.5 mg, 0.193 mmol) and NaH (60% in mineral oil, 9.3 mg, 0.232 

mmol, 1.2 equiv) were combined in a 10 mL round bottom flask, which was cooled in an 

ice bath, and dry THF (3.6 mL) was added via syringe. The yellow solution was stirred in 

the ice bath for 30 min, and MeI (24 µL, 0.387 mmol, 2.0 equiv) was added via syringe. 

After stirring in the ice bath for 1 h, the reaction was diluted with Et2O (20 mL), washed 

with brine (5 mL), dried over MgSO4, filtered, and concentrated to provide a yellow oil. 

Purification by flash chromatography (10:1 hexanes:EtOAc) provided N-methyl indole 

206 (54.5 mg, 92%) as a white solid. 

        Rf = 0.25 in 10:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.28 (dd and s, J = 

7.6, 0.6 Hz, 2H), 7.18 (dd, J = 8.2, 0.5 Hz, 1H), 7.02 (t, J = 7.9 Hz, 1H), 3.70 (s, 3H), 

0.25 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 137.00, 135.05, 127.00, 125.00, 123.47, 

115.64, 109.08, 99.35, 97.96, 96.94, 33.42, 0.01. 

 

N-MOM indole 207: 

N
H

Br

TMS

NaH, MOMCl

93%
N

Br

TMS

MOM

205 207  

        Compound 207 was prepared in 93% yield (285 mg) via a similar procedure as the 

preparation of N-methyl indole 206. Rf = 0.25 in 10:1 hexanes:EtOAc. 1H NMR (500 

MHz, CDCl3) δ 7.37 (s, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.03 (t, J 

= 7.9 Hz, 1H), 5.30 (s, 2H), 3.14 (s, 3H), 0.28 (s, J = 9.9 Hz, 9H). 13C NMR (75 MHz, 
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CDCl3) δ 136.39, 134.15, 127.34, 125.79, 124.10, 115.53, 109.86, 99.29, 98.81, 97.60, 

77.86, 56.07, -0.09. 

 

Biaryl 210: 

 

        Bromide 206 (55 mg, 0.18 mmol, 1.0 equiv), PdCl2(dppf) CH2Cl2 complex (14.6 mg, 

0.018 mmol, 10 mol%), bispinacolatodiboron (50 mg, 0.20 mmol, 1.1 equiv), and KOAc 

(53 mg, 0.539 mmol, 3.0 equiv) were combined in a 25 mL long neck flask with a cold 

finger. Fresh distilled DME (3.5 mL) was degassed by sparging with N2 for 15 min, and 

cannulated into the flask. The resulting orange solution was stirred in a 90 °C oil bath for 

20 h. The reaction was cooled down to room temperature, diluted with Et2O (20 mL) and 

H2O (20 mL). The aqueous layer was extracted with Et2O (20 mL×3), and the combined 

organic layers were washed with brine (10 mL), dried over MgSO4, filtered, and 

concentrated to provide compound 208 as a dark brown oil, which was used directly in 

the next step withour purification. An analytical sample of 208 was prepared by flash 

chromatography (1:2 hexanes:CH2Cl2) as an orange oil. Caution: Compound 208 

partially decomposed on the silica column.  

        Boronic ester 208: Rf = 0.45 in 1:2 hexanes:CH2Cl2. 1H NMR (500 MHz, CDCl3) δ 

7.54 (d, J = 7.0 Hz, 1H), 7.39 (s, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.21 (dd, J = 8.0, 7.3 Hz, 
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1H), 3.70 (s, 3H), 1.41 (s, 12H), 0.25 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 137.16, 

135.85, 130.27, 128.09, 121.67, 111.92, 101.38, 98.19, 94.33, 84.02, 33.11, 29.82, 25.08, 

0.68. IR (cm-1) 2970, 2137. 

        The crude boronic ester 208 (63.5 mg, theoretically yield, 0.18 mmol, 1.2 equiv), 

bromooxindole 199 (63 mg, 0.15 mmol, 1.0 equiv), Pd(OAc)2 (3.4 mg, 0.015 mmol, 10 

mol%), XPhos (14.5 mg, 0.030 mmol, 20 mol%), and KF (26.0 mg, 0.45 mmol, 3.0 equiv) 

were charged in a long neck round bottom flask with a cold finger. A mixture of 10:1 

dioxane:H2O (3 mL) was degassed by sparging with N2 for 15 min, and cannulated into 

the flask with all the materials. The resultant brown solution was stirred in a 90 °C oil 

bath for 3 h, and concentrated to provide a brown oil. Purification by Flash 

chromatography (10% CH2Cl2 in 5:1 hexanes:EtOAc) provided biaryl 210 (73 mg, 86% 

over two steps, about 4:3 ratio of atropisomers) as a white solid. 

        Biaryl 210: Rf = 0.25 in 10% CH2Cl2 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, 

CDCl3) δ 7.54 (d, J = 14.6 Hz, 2H), 7.49 – 7.26 (m, 9H), 7.19 (t, J = 7.7 Hz, 1H), 7.12 (d, 

J = 6.7 Hz, major, 1H), 7.05 (s, J = 6.8 Hz, minor, 1H), 3.81 (s, 3H), 3.05 (m, 1H), 1.32 – 

1.19 (m, 6H), -0.02 (s, major, SiMe3), -0.17 (s, minor, SiMe3). 13C NMR (101 MHz, 

CDCl3; The number of signals observed is not exactly twice that of a single diastereomer 

due to overlapping signals.) δ 173.31, 173.24, 169.80, 157.94, 138.81, 137.21, 136.08, 

136.01, 135.82, 135.73, 135.62, 133.23, 129.92, 129.60, 129.29, 129.22, 129.08, 128.89, 

128.41, 128.24, 128.19, 128.13, 127.98, 125.53, 125.14, 123.08, 123.03, 122.96, 122.83, 

122.38, 122.23, 121.85, 112.38, 111.67, 111.60, 110.13, 99.16, 96.81, 96.71, 96.53, 33.45, 

28.51, 20.21, 19.98, 0.23, 0.05. 

 



204 
 

Biaryl 211: 

 

        Compound 211 was prepared as a white solid in 54% yield (about 4:3 ratio of 

atropisomers) via a similar procedure as the preparation of alkyne 210. 

        Rf = 0.25 in 2:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 7.59 – 7.44 (m, 4H), 

7.43 – 7.26 (m, 8H), 7.19 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 7.2 Hz, major, 1H), 7.08 (d, J = 

7.2 Hz, minor, 1H), 5.45 (s, 2H), 3.26 (s, minor, Me), 3.25 (s, major, Me), 3.05 (hept, J = 

6.9 Hz, major, 1 H), 2.99 (hept, J = 6.9 Hz, minor, 1 H), 1.31 (d, J = 6.9 Hz, major, 6 H), 

1.28 (d, J = 6.8 Hz, minor, 6H), -0.00 (s, major, SiMe3), -0.16 (s, minor, SiMe3). 13C 

NMR (101 MHz, CDCl3; The number of signals observed is not exactly twice that of a 

single diastereomer due to overlapping signals.) δ 173.22, 169.83, 157.86, 138.83, 136.73, 

135.78, 135.63, 135.22, 134.91, 133.27, 129.81, 129.27, 129.24, 129.11, 128.91, 128.02, 

127.95, 127.84, 127.79, 127.75, 126.36, 126.06, 125.28, 125.24, 123.62, 123.55, 123.46, 

122.88, 122.78, 122.73, 122.67, 122.39, 122.29, 122.22, 112.44, 112.33, 111.67, 111.59, 

110.95, 98.62, 98.47, 98.34, 98.22, 97.14, 77.95, 56.33, 28.54, 28.48, 20.35, 20.23, 20.00, 

19.90, 0.18, -0.01. IR (cm-1) 3220, 2240 (nitrile), 2149 (alkyne), 1711. 

 

Alkyne 212: 
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N

CN
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TMS

210

TBAF, THF

90% N

CN

N
O

NH
O

Me

212  

        Alkyne 212 was prepared in 90% yield (about 3:2 ratio of atropisomers) via a 

similar procedure as the preparation of alkyne 202. Rf = 0.25 in 2:1 hexanes:EtOAc. 1H 

NMR (500 MHz, CDCl3) δ 7.55 – 7.47 (m, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.41 – 7.27 (m, 

9H), 7.21 (m, 1H), 7.13 (d, J = 6.2 Hz, major, 1H), 7.07 (d, J = 7.0 Hz, minor, 1H), 3.82 

(s, minor, Me), 3.80 (s, major, Me), 3.11 – 2.95 (m, 1H), 2.51 (s, minor, 1H), 2.22 (s, 

major, 1H), 1.36 – 1.17 (m, 6H). 13C NMR (101 MHz, CDCl3; The number of signals 

observed is not exactly twice that of a single diastereomer due to overlapping signals.) δ 

173.41, 173.22, 169.74, 158.09, 157.70, 139.88, 139.77, 136.62, 136.58, 136.01, 135.50, 

135.32, 135.02, 131.67, 131.33, 129.59, 129.10, 129.07, 129.00, 128.95, 128.83, 128.40, 

127.81, 127.36, 127.13, 125.85, 125.47, 125.42, 123.66, 123.56, 123.20, 123.07, 122.81, 

122.76, 122.58, 122.34, 112.54, 111.81, 111.48, 110.22, 95.46, 95.30, 78.80, 78.67, 57.34, 

33.46, 28.51, 28.45, 20.18, 20.03, 19.93. IR (cm-1) 3301, 2970, 2933, 2238, 2096, 1728, 

1618, 1597. 

 

Alkyne 213: 
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        Alkyne 213 was prepared in 70% yield (about 2:1 ratio of atropisomers) via a 

similar procedure as the preparation of alkyne 202. Rf = 0.15 in 2:1 hexanes:EtOAc. 1H 

NMR (500 MHz, CDCl3) δ 7.54 (d, J = 8.3 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.45 – 7.30 (m, 

8H), 7.22 (t, J = 7.8 Hz, 1H), 7.17 (d, J = 7.2 Hz, major, 1H), 7.11 (d, J = 7.2 Hz, minor, 

1H), 5.43 (d, J = 7.3 Hz, 2H), 3.26 (s, CH3, major), 3.24 (s, CH3, minor), 3.11 – 2.93 (m, 

1H), 2.51 (s, alkyne C-H, minor, 1H), 2.23 (s, alkyne C-H, major, 1H), 1.35 – 1.25 (m, 

6H). 13C NMR (101 MHz, CDCl3; The number of signals observed is not exactly twice 

that of a single diastereomer due to overlapping signals.) δ 173.50, 173.36, 169.88, 

169.83, 158.09, 157.73, 139.95, 139.84, 136.25, 136.19, 136.09, 135.12, 134.78, 134.59, 

131.92, 131.55, 129.86, 129.84, 129.22, 129.19, 129.12, 128.95, 128.46, 127.90, 127.50, 

127.26, 126.50, 126.10, 125.68, 125.64, 123.96, 123.82, 123.65, 123.51, 123.40, 123.23, 

122.92, 122.84, 122.67, 112.91, 112.67, 111.90, 111.57, 111.12, 97.13, 96.95, 79.43, 

79.26, 78.02, 76.79, 76.62, 57.45, 56.49, 28.62, 28.56, 20.28, 20.14, 20.03. IR (cm-1) 

3301, 2974, 2925, 2242 (nitrile), 2108 (alkyne), 1728. 

Iodo Indole 214: 

N

N

TIPS

Br 1) TBAF
2) NIS
3) PhSO2Cl, NaOH

n-Bu4NBr, H2O/touene

52% N

I

SO2Ph

Br

182 214  
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        To a solution of gramine derivative 182 (942 mg, 2.30 mmol, 1.0 equiv) in THF (10 

mL) was added a solution of TBAF trihydrate (763 mg, 2.42 mmol, 1.05 equiv) in THF 

(12 mL), and the mixture was stirred for 15 min. After concentrating under reduced 

pressure, H2O (20 mL) and CH2Cl2 (20 mL) were added, and the phases were separated. 

The organic layer was cooled in an ice bath, and NIS (569 mg, 2.53 mmol, 1.1 equiv) was 

added in one portion. The resulting orange solution was stirred in the ice bath for 5 min, 

and poured into H2O (20 mL) in a separatory funnel. The phases were separated, and the 

organic layer was washed with H2O (10 mL) and brine (10 mL), concentrated to provide 

a brown oil. The brown residue was dissolved in toluene (20 mL), a mixture of H2O (20 

mL), n-Bu4NBr (74 mg, 0.23 mmol, 0.1 equiv), PhSO2Cl (356 µL, 2.76 mmol, 1.2 equiv), 

and NaOH (1.33 g, 23.0 mmol, 10.0 equiv) was added. The biphasic mixture was 

vigorously stirred at room temperature for 2 h, and the phases were separated, and the 

organic phase was washed with H2O (10 mL×3), brine (10 mL), dried over Na2SO4, 

filtered, and concentrated to provide a yellow oil. Purification by flash chromatography 

(5:1 hexanes:EtOAc) provided iodo indole 214 (555 mg, 52%) as a yellowish solid. 

        Rf = 0.45 in 5:1 hexanes:EtOAc. 1H NMR (500 MHz, CDCl3) δ 8.00 (d, J = 8.3 Hz, 

1H), 7.86 (d, J = 7.7 Hz, 2H), 7.81 (s, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.8 Hz, 

2H), 7.39 (d, J = 7.7 Hz, 1H), 7.13 (t, J = 8.1 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

137.40, 134.80, 134.52, 132.79, 129.61, 129.01, 126.98, 126.87, 126.15, 115.77, 112.95, 

62.99. No significant absorptions in IR.  

 

Alkyne 215: 
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        Compound 215 was prepared as a yellowish oil in a quantitative yield (378 mg) 

from iodo indole 214 (400 mg) via a similar procedure as the preparation of alkyne 197. 

Rf = 0.45 in 5:1 hexanes:EtOAc. 1H NMR (400 MHz, CDCl3) δ 7.92 (dd, J = 8.4, 0.7 Hz, 

1H), 7.88 – 7.81 (m, 3H), 7.55 – 7.47 (m, 1H), 7.44 – 7.33 (m, 3H), 7.12 (t, J = 8.1 Hz, 

1H), 0.25 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 137.40, 134.93, 134.48, 131.66, 129.55, 

128.55, 128.37, 126.94, 126.33, 115.78, 112.80, 105.57, 100.84, 96.48, -0.35. IR (cm-1) 

3134, 3060, 2950, 2892, 2157, 1597, 1556. 

 

Ketone 216: 

 

        Alkyne 212 (125 mg, 0.252 mmol, 1.0 equiv), Au(PPh3)NTf2 toluene complex (20 

mg, 0.013 mmol, 5 mol%), and 8-methyl-4-nitro quinolone oxide (57 mg, 0.28 mmol, 1.1 

equiv) were charged in a 100 mL round bottom flask, and dry THF (25 mL) was added. 

The reaction was placed in a 60 °C oil bath, and stirred for 1 h. The reaction was 
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concentrated, and purified by flash chromatography (5% CHCl3 in 2:1 hexanes:acetone) 

provided ketone 216 (47 mg, 36%) as a yellowish solid. 

        Rf = 0.25 in 5% CHCl3 in 2:1 hexanes:acetone. 1H NMR (500 MHz, CDCl3, peaks 

are broad due to slow rotation along the biaryl C-C bond.) δ 8.21 (s, 1H, exchagable by 

D2O shake), 7.80 (s, 1H), 7.56 (s, 1H), 7.46 (br s, 3H), 7.38 (br s, 4H), 7.29 (d, J = 7.5, 

1H), 7.21 (d, J = 7.6, 1 H), 3.92 (s + br s, 3H + 2H), 2.99 (s, 1H), 1.26 (s, 6H). 1H NMR 

(500 MHz, [D8]THF) δ 9.74 (s, 1H), 7.87 (s, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.56 (d, J = 

8.1 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.50 – 7.26 (m, 6H), 7.16 (d, J = 7.7 Hz, 1H), 3.93 

(s, 3H), 3.81 (very br s, 2H), 3.00 (m, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C NMR (75 MHz, 

CDCl3) δ 189.77, 170.02, 139.13, 138.23, 135.16, 133.55, 129.36, 129.32, 128.56, 128.46, 

128.08, 126.60, 126.46, 126.21, 123.83, 121.61, 121.08, 118.15, 112.90, 111.64, 110.65, 

57.38, 53.38, 34.11, 28.61, 20.29, 20.07. IR (cm-1) 2962, 2921, 2848, 2243 (nitrile), 1728 

(amide), 1663 (α,β-unsaturated ketone), 1467. 

 

Ketone 217: 

 

        Ketone 217 was prepared in a 52% yield (36 mg) from alkyne 213 via a similar 

procedure as the preparation of ketone 216. Rf = 0.15 in 1:1 hexanes:EtOAc. 1H NMR 

(500 MHz, CDCl3) δ 8.16 (s, 1H), 7.89 (s, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 4.0 
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Hz, 1H), 7.51 – 7.45 (m, 2H), 7.38 (br s, 4H), 7.30 (d, J = 7.7 Hz, 1H), 7.21 (d, J = 7.7 

Hz, 1H), 5.54 (s, 2H), 4.30 – 3.57 (very broad, CH2), 3.31 (s, 3H), 2.99 (m, 1H), 1.27 (br 

d, J = 4.2 Hz, 6H). 1H NMR (500 MHz, [D8]THF) δ 9.74 (s, 1H), 8.02 (s, 1H), 7.69 (two 

d, 2H), 7.48 (t, J = 7.8 Hz, 1H), 7.34 (d, J = 7.6 Hz, 5H), 7.17 (d, J = 7.7 Hz, 1H), 5.62 (s, 

2H), 4.02 – 3.74 (very broad, CH2), 3.25 (s, 3H), 3.11 – 2.84 (m, 1H), 1.24 (d, J = 6.9 Hz, 

6H). 13C NMR (101 MHz, CDCl3) δ 190.18, 170.04, 139.16, 137.54, 134.82, 132.40, 

129.33, 128.68, 128.55, 128.16, 128.05, 126.89, 126.59, 126.22, 124.43, 121.62, 121.46, 

119.04, 111.64, 111.52, 78.88, 56.78, 53.33, 29.95, 28.62, 20.30, 20.08. IR (cm-1) 3252, 

2970, 2925, 2235, 1736, 1667, 1605. 
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