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THEMIS is a recent multi-satellite mission launched in 2007 with five identical space-

craft orbiting in the equatorial plane of the Earth. Featuring a comprehensive package of

particle and field instruments on each THEMIS spacecraft and multi-resolution data prod-

ucts, the THEMIS mission offers great opportunities to study space plasma dynamics in both

large MHD scales and relatively small kinetic scales. This work focuses on kinetic aspects

of space plasma dynamics using THEMIS observations, especially electric field observations,

which are critical to study kinetic effects. Three specific topics, electron phase-space holes

(EHs), kinetic instabilities in the lunar wake, and turbulent electric and magnetic fields in

the Earth’s magnetotail, are investigated in detail.

EHs are good indicators of nonlinear activities in space plasmas and have attracted

many interests in both observational and theoretical work. In a traditional theoretical pic-

ture, EHs are understood as purely electrostatic structures. However, THEMIS recently

observed electromagnetic EHs, which cannot be fully described with traditional theory, in

the plasma sheet boundary layer. This work seeks to understand the magnetic signals of the

observed electromagnetic EHs. In addition to the interpretations of the observed magnetic

signals, a statistical study of the properties of the observed electromagnetic EHs reveals

that those electromagnetic EHs feature fast speeds, large sizes, and strong potentials, which

intrigues interests in their generation mechanism and influences on the space plasma envi-

ronment.

The lunar wake, resulting from the interaction between the solar wind and the Moon,

is an excellent example to study the expansion of plasmas into a more tenuous space. One

of the THEMIS spacecraft, THB (known as ARTEMIS P1 after winter 2009) provided new



iv

observations of the lunar wake from a lunar-wake flyby in early 2010. Kinetic instabilities

from that flyby are examined in this work. Wavelengths and phase velocities of the observed

kinetic instabilities are derived from electric field instrument voltage measurements using

interferometric techniques, providing unprecedented information of the properties of kinetic

instabilities in the lunar wake. In addition, the mode of the observed kinetic instabilities is

identified as the electron beam mode, confirming a global-scale dynamics, electron velocity

filtration by the negative lunar-wake potential, as proposed in previous works.

Turbulence, an efficient mechanism to dissipate kinetic energy into thermal energy,

plays an important role in the global energy budget in the plasma sheet. Previous studies of

turbulence in the plasma sheet generally focused on MHD scales and did not include electric

field measurements. This work combines both electric and magnetic field measurements

from THEMIS in the Earth’s magnetotail with a frequency range that extends from MHD

scales to kinetic scales. Statistical results of Poynting flux and spectral behavior of the

turbulent electric and magnetic fields are presented. The Poynting flux results suggest that

the turbulent electric and magnetic fields play an important role in the energy coupling

between the ionosphere and the magnetosphere, whereas the spectral results may include

information on universal relations between electric and magnetic fields for turbulence in

plasmas.
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Chapter 1

Introduction

THEMIS is a recent multi-satellite mission launched in 2007 with five identical space-

craft orbiting in the equatorial plane of the Earth. (Two spacecraft of the THEMIS mission

were redirected to the Moon in winter 2009 and formed a new lunar mission, ARTEMIS,

and therefore opened opportunities to study the lunar wake. See Appendix A for detail.)

Featuring a comprehensive package of particle and field instruments on each THEMIS space-

craft and multi-resolution data products, the THEMIS mission offers great opportunities to

study space plasma dynamics in both large MHD scales and relatively small kinetic scales.

This work focuses on kinetic aspects of space plasma dynamics using THEMIS observations,

especially electric field observations, which are critical to study kinetic effects. Three spe-

cific topics, electron phase-space holes (EHs), kinetic instabilities in the lunar wake, and

turbulent electric and magnetic fields in the Earth’s magnetotail, are investigated in detail.

These three topics show multiple applications of electric field measurements. The

study of EHs primarily uses high time-resolution electric field waveforms. For the kinetic

instabilities observed in the lunar wake, the interferometry techniques employed in the study

primarily use potential measurements from the electric field instrument. For the turbulence

study, the spectra of the electric field measurements are primarily used.
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1.1 Electron Phase-Space Holes

1.1.1 The physics of EH

In their original work, Bernstein, Greene, and Kruskal [1957] solved the exact one-

dimensional, stationary Vlasov-Poisson system and demonstrated that an arbitrary travel-

ling wave solution could be constructed by an appropriate distribution of particles trapped in

potential-energy troughs. In addition, they showed that the distribution function of trapped

particles is nonlinear even in the limit of small-amplitude potentials. Because of their funda-

mental work, a wave mode due to the nonlinear balance between the electrostatic potential

and trapped particles is often called a BGK mode. Unlike linear normal wave modes, a BGK

mode is not necessarily a series of continuous waveforms. A large range of solitary potential

structures can be a BGK mode. Moreover, this paper established a standard procedure to

solve the stationary Vlasov-Poisson system, which consists of two main steps: 1) Prescribe

a potential structure and the distribution of non-trapped particles; 2) solve the stationary

Vlasov-Poisson system for the distribution of trapped particles. This procedure is often

called the BGK method.

In real space, the characteristic motion of trapped particles is bouncing back and forth

in potential-energy troughs. In phase space, this motion translates to a vortical motion.

Figure 1.1 illustrates an example of this motion of a trapped particle. At position 1, the

particle has maximum velocity relative to the potential. At position 2, it loses all its kinetic

energy. When it reaches position 3 from 2, it attains the maximum velocity again but in an

opposite direction. The particle finishes a full cycle of the bounce motion after reaching 4

and coming back to 1. In phase space, this cycle translates to a vortical trajectory as shown

in Figure 1.1(b).

EHs are an excellent example of a BGK mode. An EH is supported by the balance

between a positive potential and electrons trapped by the potential. It is well established

by observations and simulations that EHs travel along the ambient magnetic B0. Figure
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1.2 shows schematic representations of an EH in phase space, potential, and parallel electric

field, respectively. The positive potential of an EH, as shown in Figure 1.2(b), traps a portion

of electrons. The phase space density at the center of an EH is depleted, which forms a hole

in phase space, and hence the name electron phase-space hole. The parallel electric field

(E‖) of an EH is typically a bipolar structure as shown in Figure 1.2(c). In observations, a

solitary, bipolar signal in E‖ is often a defining signature of an EH.

1.1.2 A brief history of EH study

Electron phase-space holes (EHs) were first discovered in early numerical simulations

of electron two-stream instabilities and interpreted as a BGK mode [Roberts and Berk ,

1967; Morse and Nielson, 1969]. Later, EHs were observed in Q-machine experiments [Saeki

et al., 1979; Lynov et al., 1979], which gave rise to numerous theoretical studies of EHs.

Schamel [1979] derived 1D stationary EH solutions that well described experimental results

with a different approach from the BGK method. Instead of prescribing an EH potential,

Schamel [1979] prescribed the distribution of the trapped particles and solved the stationary

Vlasov-Poisson system for the EH potential. Dupree [1982] demonstrated that 1) EHs are

a state of maximum entropy for constant mass, momentum, and energy, and 2) one large

EH has a larger entropy than two small EHs, and thus EHs tend to coalesce. Turikov [1984]

constructed an EH solution and studied the stability of EHs with simulations. He defined an

EH Mach number, M , which is the ratio of the EH velocity (vEH) to the electron temperature

of the background plasmas (vTe), namely, M = vEH/vTe. The simulations showed that the

EH stability decreases as M increases if M > 2. Schamel [1986] reviewed experiments and

theoretical studies of EHs, along with other electrostatic phase-space structures.

In space plasmas, EHs are often identified as solitary structures in electric field wave-

forms. Due to this solitary feature, EHs manifest themselves as bursty broadband enhance-

ment in electric field spectra. In early space observations, electric field instruments did not

have sufficiently high resolution to resolve the waveforms of EHs, and EHs were known as
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(a) Real space

1
2

34

v

z

1

2

3

4

(b) Phase space

potential

Figure 1.1: An example of 1D bounce motion of a trapped particle in (a) real space and (b)
phase space in the reference frame of the potential.
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What is an electron phase-space hole (EH)?

(a) Phase Space

(b) Φ

(c) E‖ (or Ez)

vz

z
B0

Features about EHs:

Ubiquitous in space plasmas.

Travel along B0.

Carry positive potentials.

Relatively stable.

Usually as solitary structures.

J. B. Tao, CU/LASP 3 / 36
Figure 1.2: Schematic representations of an EH in (a) phase space, (b) potential, and (c)

parallel electric field.
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Broadband Electrostatic Noise (BEN) based on their spectral signatures [Gurnett et al.,

1976; Gurnett and Frank , 1977, 1978]. The EH waveforms were first resolved by the Geo-

tail satellite in EH observations in the distant plasma sheet boundary layer (PSBL) with

XGSM ∼ −70RE [Matsumoto et al., 1994]. Since then, many more high-resolution EH obser-

vations have been made by various spacecraft in various regions, including Earth’s auroral

region [Ergun et al., 1998a,b; Mozer et al., 1997], high altitude polar magnetosphere [Franz

et al., 1998], inner-magnetosphere PSBL (∼6RE) [Cattell et al., 1998], the terrestrial bow

shock transition region [Bale et al., 1998], magnetopause and magnetosheath [Cattell et al.,

2002, 2003], and the solar wind [Mangeney et al., 1999; Huttunen et al., 2007]. Therefore,

EHs appear to be ubiquitous in space plasmas.

Franz et al. [2005] provided a detailed historical review of EH studies. More recently,

Cattell et al. [2005] reported Cluster observations of EHs during a reconnection event in the

magnetotail at ∼18 RE. Retinò et al. [2006] described solitary waves, which were possibly

EHs, in a study of the separatrix region of a magnetic reconnection event observed by Cluster

at the high-latitude duskside magnetopause. Deng et al. [2006] reported EHs associated

with reconnection near the diffusion region and along the plasma sheet boundary layer by

Geotail and Cluster. Pickett et al. [2009] reported Cluster observations of EHs associated

with the onset of a super-substorm in the magnetotail around 18–19 RE; in addition, they

performed beam experiments with the University of California-Los Angeles Plasma Device

(LAPD) and compared observations with experimental results. Khotyaintsev et al. [2010]

presented observations of slow EHs observed by Cluster in the vicinity of a reconnection site

in the Earth’s magnetotail. Hashimoto et al. [2010] reported EH observations from SELENE

(KAGUYA), a lunar mission, in the solar wind near the Moon and in the lunar wake. Fox

et al. [2008] showed observations of EHs during magnetic reconnection experiments on the

Versatile Toroidal Facility at MIT. Lefebvre et al. [2010] presented LAPD results of EHs

generated by an electron beam injected into a magnetized low-β plasma column.

Recent EH observations and experiments refreshed theoretical interests in EHs. Muschi-
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etti et al. [2000] demonstrated that the long-standing EH stability problem can be character-

ized by Ωe/ωb, where Ωe is the gyrofrequency of local electrons, and ωb the bounce frequency

of trapped electrons. Chen and Parks [2002] constructed a 3D EH solution in magnetized

plasmas. Omura et al. [1996] studied EH generation mechanisms via electron two-stream

instabilities with 1D PIC simulations. Singh et al. [2000] studied the 3D structure of EHs

and the evolution of EHs generated by electron beams. Drake et al. [2003] discovered EHs in

magnetic reconnection simulations. Umeda et al. [2006] performed 2D electromagnetic PIC

simulations to study the evolution of EHs for various electron temperatures and gyrofre-

quencies. Lu et al. [2008] conducted a parameter study of the perpendicular electric field of

EHs. Most recently, Singh et al. [2011] performed mesoscale 2D PIC simulation of double

layers and EHs and found that the fast-moving EHs are effective in transverse heating of

cold electrons.

1.1.3 Generation and evolution of EHs

EHs are thought to be generated by electron beam instabilities [e.g., Singh, 2000;

Umeda et al., 2004] or by Buneman instabilities [e.g., Goldman et al., 2008; Che et al.,

2010]. A common pattern of the generation and evolution of EHs is the following. First,

the free energy of the system is released via instabilities and electrostatic waves are excited

consequently. Next, the electrostatic waves will grow into a nonlinear stage and form a series

of EHs adjacent to each other. Then, EHs coalesce as they evolve and eventually become

solitary structures. Figure 1.3 illustrates such an evolution based on 1D Vlasov simulation

results, in which the system initially consists of two relatively drifting electron components

as shown in Figure 1.3(a). EHs keep coalescing and eventually only one EH is left in the

system in this case as shown in Figure 1.3(f).
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Figure 1.3: A 1D example of EH evolution in phase space. The color codes indicate the
electron distribution function (fe). z coordinates are normalized by the Debye
length of the system (λD), and v coordinates normalized by the common thermal
velocity of electron beams (vTe). The time steps are labelled at the upper left
corner of each panel.
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1.1.4 Importance of EH study

EHs are excellent indicators of nonlinear processes in space plasmas. For instance,

Ergun et al. [2001] reported EHs along with double layers in the downward current region

of the Earth’s auroral zone; Khotyaintsev et al. [2010] presented observations of slow EHs

observed by Cluster in the vicinity of a reconnection site in the Earth’s magnetotail; Ergun

et al. [2009] showed EHs produced by double layers in the Earth’s plasma sheet.

EHs can not only help us identify nonlinear processes in observations, but also be

useful in understanding the nature of the source that generates the EHs. For example, what

is the relation between the energy level of the source and the potential carried by EHs?

Furthermore, as EHs propagate and eventually dissipate in space plasmas, what influence

do they have on the plasma environment? To be able to answer these questions, further

investigations are required to gain a more comprehensive understanding of EHs.

1.1.5 Electromagnetic EHs: New observations from THEMIS

The observational characteristics of EHs are almost always electrostatic, i.e., no mag-

netic field signals are associated with the observations of EHs. Exceptions of EHs with

magnetic signals were reported with FAST and Polar observations [Ergun et al., 1998a;

Mozer et al., 1997] in the Earth’s auroral region. However, in those exceptions, the magnetic

signals were perpendicular to the ambient magnetic field and Ergun et al. [1998a] attributed

the perpendicular magnetic signals (δB⊥) to the Lorentz transformation of the perpendicu-

lar electric signals (δE⊥). In other words, there exists a reference frame where EH signals

remain electrostatic. Therefore, those exceptions are still within the traditional BGK picture

where EHs are electrostatic structures resulting from a balance between positive potentials

and trapped electrons.

However, THEMIS observed EHs with magnetic signals present in all three magnetic

field components in the plasma sheet boundary layer [Andersson et al., 2009]. These EH
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observations are termed electromagnetic EHs. Among the magnetic signals, the parallel

magnetic signals (δB‖) cannot be accounted for by the Lorentz transformation and are be-

yond the traditional BGK picture. Therefore, the δB‖ signals raise an important question:

What physics are we missing in understanding EHs? This work seeks to answer that ques-

tion. In addition, a detailed analysis of the properties of the electromagnetic EHs, including

velocities, potentials, and sizes, is provided in this work.

1.2 The Lunar Wake

The orbit of the moon is roughly a circle (mean radius ∼ 60RE) in the ecliptic plane

with inclination ∼5◦. Figure 1.4 illustrates the orbit of the Moon in the context of the solar

wind and the Earth’s magnetosphere. Based on the average magnetopause position from Shue

et al. [1997] and the average bow shock position from Peredo et al. [1995], the percentages of

the time that the Moon is in the solar wind, magnetosheath, and magnetosphere are ∼70%,

∼15%, ∼15%, respectively. Because the magnetosheath solar-wind flow is weakly shocked

at the orbit of the Moon, the Moon encounters a supersonic flow even in the magnetosheath.

Therefore, the Moon is immersed in the supersonic solar wind ∼85% of the time.

When the Moon is immersed in the solar wind, solar wind plasmas that impinge on

the Moon are absorbed by the lunar surface creating a depleted wake region downstream,

which is referred to as the lunar wake. The Moon does not have an intrinsic magnetic field,

and the conductivity of the Moon is so low that the motion of the solar wind magnetic field

does not induce a significant diamagnetic field. Therefore, there is no global magnetosphere

of the Moon. As a result, the solar wind magnetic field penetrates the Moon with little

disturbance [Ness et al., 1967; Ness , 1972].

The density gradient between the lunar wake and the solar wind drives solar wind

plasmas to refill the lunar wake along magnetic field lines, in which a rarefaction wave front

creates a boundary of the lunar wake [Johnson and Midgley , 1968]. Ions and electrons

undergo ambipolar diffusion during the refilling, in which electrons rush into the wake ahead
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of ions and cause the wake to become negatively charged. The potential gradient in the

wake in turn sets up an ambipolar electric field that accelerates ions into the wake. Figure

1.5 illustrates the refilling process in the lunar wake.

Early studies of the lunar wake are mostly based on observations from the U.S. Ex-

plorer 35 and the Apollo program in the 1960s and 1970s (see Ness [1972] and Schubert and

Lichtenstein [1974] for review). The Wind spacecraft swung by the lunar wake at roughly

7 RL (lunar radius) downstream of the Moon for a gravity assist and provided observations

of the wake with modern plasma instruments [Ogilvie et al., 1996; Owen et al., 1996; Farrell

et al., 1996; Kellogg et al., 1996; Bosqued et al., 1996], which drove a series of investiga-

tions of the dynamics associated with the lunar wake [Bale et al., 1997; Bale, 1997; Farrell

et al., 1998; Birch and Chapman, 2001, 2002; Nakagawa et al., 2003; Kallio, 2005]. Among

recent lunar missions, the ARTEMIS mission [Angelopoulos , 2010], which is derived from

the two outermost satellites (known as P1 and P2, or THB and THC) of the THEMIS mis-

sion [Angelopoulos , 2008], is able to cover an extensive range of the lunar wake (∼1.1–12

RL selenocentric after lunar orbit insertion). Other missions, including the Lunar Prospec-

tor, SMART-1, Kaguya, Change’e 1 and 2, Chandrayaan-1, and the Lunar Reconnaissance

Orbiter, are generally lower-altitude orbiters.

During the transition from orbiting the Earth to orbiting the Moon, the ARTEMIS

P1 spacecraft made its first lunar-wake flyby ∼3.5 RL downstream from the Moon on 13

February 2010, during which the Moon was in the solar wind at ∼(63, -9, 2.5)RE in GSE

coordinates. Detailed observations of magnetic fields and plasma properties during this flyby

were reported by Halekas et al. [2011], and a global simulation of this flyby was performed

by Wiehle et al. [2011].

This work also uses the observations from the lunar-wake flyby introduced above to

study the dynamics of the wake. The focus of this work is on the electrostatic waves observed

on the outbound side of the flyby. One motivation of this work is to derive the wavelengths

and phase velocities of those waves using interferometric techniques. Although plasma waves
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were previously reported with observations from the Wind spacecraft [Kellogg et al., 1996],

the derivation of wavelength and phase velocity is unprecedented and helps to provide a

more comprehensive understanding of plasma wave properties in the lunar wake. Another

motivation of this work is to identify the mode of the observed electrostatic waves. Kellogg

et al. [1996] reported waves with similar frequencies, but was unable to identify the mode

of those waves. Thus, identifying the mode of such waves can extend our understandings of

the nature of the waves.

In this work, two interferometry techniques, cross-spectrum analysis and cross-correlation

analysis [Labelle and Kintner , 1989], are used to derive wavelength and phase velocity. Sim-

ilar previous work includes Angelopoulos et al. [2001] and Ergun et al. [1991]. 1D Vlasov

simulations are carried out to identify the mode of the observed electrostatic waves.

1.3 Turbulence

The research of turbulence dates back to more than a century ago. Osborne Reynolds

carried out the first systematic work on turbulence in 1883 with pipe flow experiments

[Reynolds , 1883]. He showed that the flow becomes turbulent (or irregular) when the di-

mensionless ratio Re = UL/ν, later named the Reynolds number by the German theoretical

physicist Arnold Sommerfeld [Rott , 1990], exceeds a certain critical value. (Here U is the

velocity scale, L is the length scale, and ν is the kinematic viscosity.) In 1922, Lewis Richard-

son proposed a turbulent energy cascade from large eddies to small eddies and eventually to

viscosity scale in a rhyming verse: “big whirls have little whirls that feed on their velocity, and

little whirls have lesser whirls and so on to viscosity—in the molecular sense” [Richardson,

2007, p.66]. Such a spectral energy cascade is at the heart of our present understanding of

turbulent flows.

The coupling of different scales is via nonlinear terms in the governing equations of the

system, which can be understood from the convolution theorem. To simplify the problem,

we limit ourselves to a 1D system. Suppose f(x)g(x) is a nonlinear term in the system
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equations. Fourier transforming the system from x-space to k-space, we have

F{f(x)g(x)} = f(k) ∗ g(k) =

∫ ∞
−∞

f(k)g(k − k′)dk′, (1.1)

where F{ } represents the Fourier transform, f(k) = F{f(x)}, and g(k) = F{g(x)}. Equa-

tion (1.1) indicates that scale k is coupled with all the other scales.

The classical turbulent energy cascade is generally considered to consist of three scales

from large to small: injection scale, inertial scale, and dissipation scale. Figure 1.6 illustrates

the three scales via a textbook neutral-fluid turbulence spectrum. Among the three scales,

the inertial scale is generally assumed to be dissipation-free, and its spectral slope is inde-

pendent on the energy supply and is determined by the nonlinear interactions in the system.

Therefore, the spectral slope in the inertial scale reflects the dynamics of the system. (A

spectral slope in a log-log plot is characterized by the value of the power index α as in the

form of k−α). Kolmogorov [1941] showed that the spectral energy density Ek follows a power

law Ek ∼ k−5/3 for the inertial scale in neutral fluids under the assumptions of isotropy and

incompressibility, which has been verified by numerous neutral-fluid turbulence experiments

(see Frisch [1995] and references therein).

The dynamics of plasma differs from that of a neutral fluid. There are several nonlinear

terms in plasma equations that have different importance at different scales for plasmas. It

is possible that Ek can have a changing slope within the inertial range for plasmas, compared

to the universal Kolmogorov k−5/3 law for neutral fluids. Iroshnikov [1964] and Kraichnan

[1965] showed that Ek ∼ k−3/2 in the inertial scales of homogeneous MHD turbulence. With

2D electron MHD turbulence simulations, Biskamp et al. [1996] showed that, below the ion

inertial length c/ωpi, the energy spectral density Ek follows k−5/3 for kde > 1 and k−7/3 for

kde < 1, where de = c/ωpe is the electron inertial length. In the framework of Hall MHD,

Krishan and Mahajan [2004] suggested that the Ek curve steepen from k−5/3 to k−α1 with

α1 ' 3–4 in the inertial range. With 3D Hall MHD simulations, Galtier and Buchlin [2007]

found that the magnetic energy spectrum curve steepens from a Kolmogorov-type k−5/3
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spectrum to a k−7/3 spectrum if the magnetic energy overtakes the kinetic energy, or to a

k−11/3 spectrum in the opposite case.

The focus of this work is on the turbulent electric and magnetic fields in the Earth’s

magnetotail, primarily in the plasma sheet. A number of studies have been published on tur-

bulence in the Earth’s plasma sheet. Among others, Hoshino et al. [1994] studied turbulent

structures with magnetic field data observed by Geotail in the distant tail (XGSM ∼ −200

RE) and found that the power spectrum of magnetic field as a function of frequency turns

around 0.04 Hz from a more Kolmogorov-like slope at lower frequencies to a steeper slope at

higher frequencies. Borovsky et al. [1997] analyzed ten several-hour-long intervals of single-

point measurements of flow velocity and magnetic field from the ISEE-2 satellite at a distance

around 20 RE in the Earth’s plasma sheet and found that the plasma flows and magnetic

fields appear to be turbulent. In a follow-up paper, Borovsky and Funsten [2003] discussed

the dynamics, dissipation, and driving of turbulence in the plasma sheet. They concluded

that the plasma sheet turbulence is primarily eddy-dominated in the MHD scales. Weygand

et al. [2005] studied MHD turbulence in the plasma sheet with Cluster data and concluded

that the turbulence in the plasma sheet is likely to be intermittent.

Previous studies of turbulence in the plasma sheet were primarily based on magnetic

fields and flow velocities. As an important aspect of plasma dynamics, statistical features

of turbulent electric fields have yet to be addressed. Therefore, one motivation of my work

is to find statistical features of turbulence in plasmas combining both electric and magnetic

fields. In addition, it is interesting to see the statistical features of the Poynting flux in

the plasma sheet, which can shed light on the energy coupling between the ionosphere and

the magnetosphere. (Both electric and magnetic fields are required in order to calculate the

Poynting flux.) Another motivation of my work is to extend our perspectives of turbulence

from MHD scales into kinetic scales. The frequency range of previous studies is primarily

within the MHD regime. However, using THEMIS high-resolution data, one can study

turbulence in plasmas in both MHD and kinetic scales.
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1.4 Organization

In Chapter 2, the observations of electromagnetic EHs are analyzed and a model for

electromagnetic EHs is presented. In Chapter 3, kinetic instabilities observed during the

first lunar-wake flyby of ARTEMIS are analyzed with interferometry techniques and Vlasov

simulations. In Chapter 4, a statistical study of turbulent electric field and magnetic field

observations by THEMIS in the Earth’s magnetotail is presented. This work concludes with

a brief discussion of future work.



Chapter 2

Electromagnetic Electron Phase-Space Holes

On March 28, 2008, the THEMIS A (THA) spacecraft observed unusual EHs in the

plasma sheet boundary layer. The observed EHs had large electric field amplitude (∼100

mV/m) compared to previous observations (. 50 mV/m) [Franz et al., 2005; Cattell et al.,

2005; Pickett et al., 2004] and most other THEMIS observations. More important, the EHs

had signals in all three magnetic field components, which had not been reported previously.

Further, some physical quantities, such as velocities, sizes, and potentials, that are derived

from these observations also show uncommon features. The velocities are roughly as fast as

one-third of the speed of light. The sizes are tens of the local Debye length (λD), as opposed

to most EHs observations where EHs are reported with sizes of several λD. The potentials

are comparable to local electron temperatures (i.e., e∆Φ/Te ∼ 1), as opposed to the most

common case e∆Φ/Te � 1. These unusual features of the observed EHs provoke questions

such as how they were generated and what impact they had on the plasma environment.

2.1 Review of the Observations

Figure 2.1 shows a background overview of the electromagnetic EH event observed by

THA on 28 March 2008. The electromagnetic EHs were recorded in a ∼16 s “wave burst”

from 11:14:41 UT to 11:47:57 UT. The term “wave burst” refers to THEMIS field data with

high temporal resolution (sampled at ∼8 kHz or ∼16 kHz) and short durations (. 20 s).

The vertical dashed line across Figure 2.1 indicates the mid-time of the ∼16 s wave burst.
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The spacecraft was located at (xGSM ∼ −6.0 RE, yGSM ∼ 7.4 RE, zGSM ∼ −1.6 RE) during

the event, as labelled at the bottom of the figure.

Figures 2.1(a) and 2.1(b) show the differential energy flux of electrons and ions, respec-

tively, where the color scales and the y axes indicate the magnitude of the differential energy

flux and the energy level, respectively. Data from both the electrostatic analyzer (ESA) [Mc-

Fadden et al., 2008] and the solid-state telescope (SST) are used in these two figures. The

white gap at ∼25 keV in Figure 2.1(b) is due to the instrument energy range gap between

the ESA and the SST. In both figures, the enhanced energy flux in red color at high-energy

levels (above 1000 eV) on both sides of the event indicates that the spacecraft was in the

plasma sheet during that period. (Enhanced differential energy flux at high energy levels is

a common feature of the plasma sheet.) The high energy flux in the bottom of Figure 2.1(a)

(dark red area) is from photoelectrons emitted by the spacecraft. At the time of the ∼16

s wave burst, the energy flux of plasmas, as well as the plasma densities shown in Figure

2.1(d), was reduced compared to the plasma sheet, indicating that the spacecraft was in the

plasma sheet boundary layer at that time.

Figure 2.1(c) shows parallel and perpendicular temperatures of electrons from ESA

data. At the time of the ∼16 s wave burst, Te‖ ∼ 6 keV and Te⊥ ∼ 3 keV from Figure 2.1(c).

Figure 2.1(d) shows that the plasma number density is ∼0.02 cm−3 at that time. Figure

2.1(e) shows the DC magnetic field measurements from the onboard fluxgate magnetometer

(FGM) [Auster et al., 2008] in GSM coordinates. The total magnetic field (B0) is ∼50 nT

during the ∼16 s wave burst.

Figure 2.2 shows ∼0.2 s of the electromagnetic perturbations δE and δB (filtered from

∼5 Hz to ∼3.3 kHz; sampled at 8192 Hz) from the ∼16 s wave burst, demonstrating the

detailed structures of the electric and magnetic field signals of the electromagnetic EHs. The

data are presented in a field-aligned coordinate (FAC) system. (For electric and magnetic

field observations, the FAC system is defined as such that the z-axis is in the same direction

of the ambient magnetic field B0, the x-axis lies in the spin plane of the spacecraft, and
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the y-axis completes the FAC system as a right-handed coordinate system.) The δE signals

are from the THEMIS electric field instrument (EFI) [Bonnell et al., 2008], whereas the δB

signals are from the THEMIS searchcoil magnetometer (SCM) [Roux et al., 2008]. The x

and y components are perpendicular to B0.

The solitary spiky bipolar δE‖ signals are defining signatures of EHs in observations

and are used to identify EHs in the data [e.g. Matsumoto et al., 1994; Ergun et al., 1998a].

As shown in Figure 2.2(a), the polarities of δE‖ of these EHs are identical, with a positive

peak followed by a negative peak in time, indicating that the EHs were travelling in the

same direction and likely from the same source. As shown in Figure 2.1(e), the GSM Bx

was negative during the event, which indicates that the field lines were anti-earthward. The

first-positive-then-negative polarity of δE‖ signals indicates that the EHs were travelling in

the same direction of B0, namely, anti-earthward.

The positive, unipolar δB‖ signals shown in Figure 2.2(b) are a unique observational

feature of the electromagnetic EHs in the ∼16 s wave burst, and their interpretation will be

discussed in Section 2.2. The amplitudes of δB‖ signals are up to ∼0.2 nT.

In Figures 2.2(c–f), two dashed boxes grouped δEx and δBy, δEy and δBx together,

respectively, based on their relations in the Lorentz transformation as discussed later. The

δEx and δBy signals are approximately correlated, whereas the δEy and δBx signals are

approximately anti-correlated.

2.2 Interpretations and an EH Model with Electron δE×B0 Drift Current

Ergun et al. [1998b] reported EHs with perpendicular magnetic field perturbations

(δB⊥). They found that c2∆B⊥/∆E⊥ ∼= vdelay, where vdelay is the EH velocity derived from

the time delay between two physically separated EFI antennas, suggesting that the measured

EHs were electrostatic in their rest frame and that the perturbations in δB⊥ signals were

due to the Lorentz transformation of δE⊥ signals from the EH frame to the spacecraft frame.

Their results indicate that the Lorentz transformation may be a key to understanding the
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δB⊥ signals of the electromagnetic EHs as shown in Figure 2.2.

The exact Lorentz transformation from the EH frame to the spacecraft frame in FAC

is the following [Jackson, 1998, p.558, changed to SI]:

δE‖ = δE ′‖ δB‖ = δB‖
′

δEx = γ(δE ′x + vEHδB
′
y) δBx = γ(δB′x −

vEH
c2

δE ′y) (2.1)

δEy = γ(δE ′y − vEHδB′x) δBy = γ(δB′y +
vEH
c2

δE ′x)

where γ = (1 − v2EH/c
2)−1/2. Assuming that the EHs are electrostatic in their rest frame

(i.e., δB′ = 0), from the equation set (2.1) we obtain:

δBx ≈ −
vEH
c2

δEy, (2.2)

δBy ≈
vEH
c2

δEx. (2.3)

Equations (2.2) and (2.3) show that δBx and δEy are anti-correlated, and that δBy and

δEx are correlated, which are highly consistent with the observations shown in Figure 2.2.

Although vdelay was not available for the electromagnetic EHs in the ∼16 s wave burst,

this correlation consistency strongly suggests that the δB⊥ perturbations can be roughly

understood as Lorentz transformation results of δE⊥.

However, the Lorentz transformation cannot explain the observed positive, unipolar

δB‖ signals. In this work, they are interpreted as results from an electron δE×B0 drift

current. Figure 2.3 shows an EH model with such a current.

Figure 2.3(a) and 2.3(b) are two cross-sections of the EH model in the FAC x-y plane

and x-z plane, respectively. The red areas represent the EH. In Figure 2.3(a), the black

arrows represent the electrostatic fields (δE′) from the electrostatic BGK potential of the

EH, and the yellow dot-circles represent the ambient magnetic fields (B0) pointing out of the

paper. The δE′ fields point radially outwards because the BGK potential peaks positively at

the center of the EH. The blue arrows and symbols in Figure 2.3(a) and 2.3(b), respectively,

represent the azimuthal current Jφ generated by the δE×B0 drift of electrons. The black
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curved arrows crossing the EH in Figure 2.3(b) represent the magnetic field δB′ induced by

Jφ. The dashed line in Figure 2.3(b) represents an imaginary spacecraft track, and the small

object below it represents the spacecraft (SC). One can see that the parallel component of

δB′ in the model is predominantly of the same direction of B0, and hence the spacecraft

should mostly record positive unipolar δB‖ structures as shown in Figure 2.2.

Based on this model, a Gaussian potential such as the following

Φ = Φ0e
− r2

2l2⊥ e
− z2

2l2‖ , (2.4)

can be used to estimate δB′, where Φ0 is the central potential of the EH, r and z are

cylindrical coordinates corresponding to the FAC (r =
√
x2 + y2), and l⊥(l‖) is the half

perpendicular(parallel) size of the EH (full sizes L⊥ = 2l⊥, L‖ = 2l‖).

Given Equation (2.4), assuming a uniform background electron density (n0), one ob-

tains δE′ and Jφ as

δE′ = −∇Φ =
r

l2⊥
Φr̂ +

z

l2‖
Φẑ, (2.5)

Jφ ≈ −en0
δE′ ×B0

B2
0

=
en0r

B0l2⊥
Φφ̂, (2.6)

where r̂, ẑ, and φ̂ are the unit vectors of the cylindrical coordinate system. δB′ is obtained

with the Biot-Savart law [Jackson, 1998, p.178]

δB′(x) =
µ0

4π

∫
Jφ(x′)× x− x′

|x− x′|3
d3x′

=
en0µ0

B04π

∫
x′

l2⊥
Φφ̂× x− x′

|x− x′|3
d3x′

(2.7)

In general, numerical integration is required to obtain δB′ from Equation (2.7) for an arbi-

trary location inside the EH. However, the central δB′ can be obtained analytically as

δB′(r = 0, z = 0) =
eΦ0µ0n0

B0

g(l⊥/l‖)ẑ (2.8)

where

g(l⊥/l‖) = Re


1− l2⊥

l2‖
+

l2⊥
l2‖

arccos(
l‖
l⊥

)

√
l2⊥
l2‖
− 1(

1− l2⊥
l2‖

)2

 (2.9)
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Figure 2.3: An EH model with electron δE×B0 drift current.
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Note that the dimensionless factor g only depends on the ratio l⊥/l‖, which characterizes

the shape of the EH and hence is called a geometric factor. Figure 2.4 shows the behavior

of g as a function of l⊥/l‖.

2.3 Conditions for Establishing δE×B0 Drift Current in EHs

One key question about the EH model shown in Section 2.2 is whether the electron

δE×B0 drift current can be established. The δE×B0 drift motion stems from the gyro-

motion of particles. Therefore, the most relevant scales are the perpendicular EH size (l⊥)

with respect to the gyroradius of particles (ρ), and the EH transit time (δt) with respect to

the gyroperiod of particles (tc). A test-particle code was developed to address the conditions

of l⊥ and δt for the formation of δE×B0 drift current. As discussed in Chen and Parks

[2002], the δE×B0 drift of electrons does not substantially affect the BGK equilibrium of

an 3D EH in magnetized plasmas. Therefore, a test-particle simulation model is appropriate

for this investigation.

2.3.1 Simulation model

The test-particle code is a 2D, particle-in-cell (PIC) code, in which the widely-used

Boris method is implemented to update particle velocities and a first-order shape function is

used to obtain the current density on the grid (see Birdsall and Langdon [1985]). Particles are

initialized with a uniform density in the x-y plane perpendicular to B0, Maxwellian velocity

distributions in vx and vy, and a uniform v‖ (equivalent to vz). To cover a full distribution

of v‖, multiple runs with various values of v‖ are required.

Figure 2.5 illustrates the simulation model. The potential of the EH is assumed with

a Gaussian shape as in Equation (2.4). As a simulation goes, the simulation plane sweeps

through the EH. In a typical case, an azimuthal current first gradually forms as the simulation

plane moves towards the center of the EH, and then gradually vanishes as the simulation

plane moves out of the EH.
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With periodic boundary conditions, the simulation plane expands over a Nx × Ny =

100 × 100 grid with −L/2 ≤ x ≤ L/2 and −L/2 ≤ y ≤ L/2, where L ≥ 6l⊥ (typically

L = 10l⊥). The number of total particles is 20 million with ∼2000 per cell.

2.3.2 Simulation results

The major diagnostics of the investigation is the maximum current density in the

simulation plane (Jmax) normalized by the theoretical maximum current density (J0) that

is calculated according to Equation (2.6). Jmax is calculated as the average of the current

density over the ring between r = l⊥−0.1l⊥ and r = l⊥+0.1l⊥, a region where the maximum

δE×B0 drift current is expected.

As mentioned earlier, multiple runs are required to cover the full distribution of v‖.

The Jmax of a full distribution of v‖ is calculated as

Jmax =

∫ −∞
∞

J ′maxf‖(v‖; vEH)dv‖, (2.10)

where f‖(v‖; vEH) = 1√
2πv2t

exp
[
− (v‖+vEH)2

2v2t

]
, vt is the thermal velocity of the particles, and

J ′max is obtained from a single simulation run.

Figure 2.6(a) shows the effect of l⊥ on the formation of the δE×B0 drift current. The

results are from simulation runs with δt ≈ 1.6tc, where tc is the gyroperiod of the particles.

The δE×B0 drift current from the simulation asymptotically approaches the theoretical

value as l⊥ increases. When l⊥ & 10ρ, the δE×B0 drift current from the simulation is quite

close to the theoretical value (i.e., J ′max/J0 ≈ 1), suggesting that l⊥ & 10ρ is required to

fully establish the δE×B0 drift current.

Figure 2.6(b) shows the effect of the transit time (δt) with respect to the gyroperiod

of the particles (tc) on the formation of the δE×B0 drift current. δt is calculated by

L‖/vEH where L‖ is 20 gyroradii of the particles. One can see that the δE×B0 drift current

quickly drops as δt decreases when δt/tc is less than ∼0.5. When δt/tc & 1, the simulation

results approximately match the theoretical results. The overshoot between δt/tc = 0.5 and



30

Figure 2.5: An illustration of the test-particle simulation model of δE×B0 drift current,
where the 2D simulation plane passes through an EH with a Gaussian potential
shape. The circular arrows represents the azimuthal δE×B0 drift current.



31

δt/tc = 1 is a phase effect indicating that the ensemble of particle gyromotions enhances the

δE×B0 drift current in this time scale.

For the EHs in the ∼16 s wave burst, the electron gyroradius is a few kilometers

and the ion gyroradius is ∼100 km; as shown later, the l⊥ of the EHs is roughly 70 km.

In addition, the transit times through the EHs are approximately equal to the electron

gyroperiod. Therefore, according to Figure 2.6, a net current due to electron δE×B0 drift

could be established in those EHs.

2.4 Derivation of vEH, ∆Φ, and L‖

2.4.1 Derivation of vEH

The velocity of EHs with respect to the spacecraft (vEH) is the basis for deriving two

main characteristics of EHs, potential (∆Φ) and parallel size (L‖). One common method for

deriving vEH is to use time delays from two physically separated EFI antennas. Unfortu-

nately, due to instrument limitations, especially the limited physical length of EFI booms,

this time-delay method is only applicable for relatively slow-moving EHs. In the case of the

THEMIS EFI, this method can resolve EH velocities up to ∼1000 km/s.

For fast-moving EHs, the Lorentz transformation provides another method for deriving

vEH . Substituting the expressions of δEx and δEy into the expressions of δBy and δBx

respectively in the equation set (2.1), one obtains

δBx =
δB′x
γ
− vEH

δEy
c2

, (2.11)

δBy =
δB′y
γ

+ vEH
δEx
c2

. (2.12)

As shown later, the electromagnetic EHs in the ∼16 s wave burst were weakly relativistic

(γ ≈ 1). Therefore, we have

δBx ≈ δB′x − vEH
δEy
c2

, (2.13)

δBy ≈ δB′y + vEH
δEx
c2

. (2.14)
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According to the model shown in Section 2.2, δB′x and δB′y are induced by the electron

δE×B0 drift current. As shown in Figure 2.3, the perpendicular components of δB′, δB′x

and δB′y, are typically bipolar along spacecraft trajectories.

vEH is derived by a linear fitting method. In this method, the measured δBx and δBy

signals are fitted with the following fitting model

δBfit
y = v

δEx
c2

, (2.15)

δBfit
x = −vδEy

c2
. (2.16)

where v is an estimate of vEH , and the residue δBres
y (= δBy−δBfit

y ) and δBres
x (= δBx−δBfit

x )

are an estimate of δB′y and δB′x, respectively. The resulting v of the two fits are combined

by choosing the one with less uncertainty to be the final estimate of vEH .

Figure 2.7 shows an example of the linear fit. As an estimate of δB′y and δB′x, respec-

tively, δBres
y and δBres

x exhibit a bipolar feature, which is consistent with the model shown

in Section 2.2.

2.4.2 Derivation of ∆Φ and L‖

The estimation of the potential amplitude (∆Φ) and parallel size (L‖) of the observed

EHs is based on the Gaussian potential model as below:

Φmeasure = ∆Φ exp

[
−(z − z0)2

2(L‖/2)2

]
(2.17)

With space-dependence converted into time-dependence with z − z0 = vEH(t − t0), the

corresponding δE‖ from the potential model is

δE‖(t) = − ∆Φ

vEHδt/2

t− t0
δt/2

exp

[
−(t− t0)2

2(δt/2)2

]
(2.18)

where the minus sign in the front of the right-hand side is from the positive-then-negative

polarity of δE‖ in the full set, δt is an estimate of the peak-to-peak interval, and L‖ = vEHδt.

To derive ∆Φ and L‖, the observed δE‖ is fitted with the following model

δEfit
‖ (t) = −p0

t− p1
p2

exp

[
−(t− p1)2

2p22

]
+ p3 (2.19)
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Figure 2.6: The effects of EH perpendicular size and transit time on the formation of the
δE×B0 drift current from test-particle simulations.
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Comparing Equations (2.18) and (2.19), we have

∆Φ = 2p0p2vEH , (2.20)

L‖ = 2p2vEH . (2.21)

Figure 2.8 shows an example of fitting δE‖, where the derivative of a Gaussian well fits

the δE‖ measurements.

2.5 Statistical Results of vEH, ∆Φ, and L‖

This section presents statistical results of the velocities, potentials, and sizes of the

electromagnetic EHs in the ∼16 s wave burst using the methods introduced in Section 2.4.

The first step of this work is to select EHs in the ∼16 s wave burst. The following

criteria are applied in this step.

(1) The magnitude of each peak of the bipolar δE‖ must be greater than 10 mV/m

and 3σE, where σE is the local standard deviation of δE‖ that is calculated over a

201-data-point window (25 ms).

(2) The peak-to-peak interval of the bipolar δE‖ must be less than 2 ms and greater

than the local electron gyroperiod (≈ 0.71 ms).

(3) The polarity of the bipolar δE‖ must be positive-then-negative in time as shown in

Figure 2.2(a).

(4) ∆E⊥ must be greater than 50 mV/m, where ∆E⊥ is either ∆Ex(≡ max[δEx] −

min[δEx]) or ∆Ey(≡ max[δEy] − min[δEy]) , depending on which one produces a

better fit.

These selection criteria result in 54 EH samples from the ∼16 s wave burst. Each EH

sample consists of 31 data points (4 ms). For the above criteria, the first one makes use of

the solitary feature of EHs. The second one is to make sure that only one EH is selected

at a time as the peak-to-peak interval of EHs (δt) is generally less than 1 ms in this event,
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and that electrons can have sufficient time to establish δE×B0 drift current as shown in

Figure 2.6. The third one ensures that the selected EHs travel in the same direction and

hence are likely from the same source. The fourth one restricts the results with relatively

small uncertainties because increasing ∆E⊥ can improve the goodness of the linear fit model

as shown by Equations (2.13) and (2.14).

Figure 2.9 shows the distribution of the derived vEH . The mean vEH is 0.83×108 m/s,

which verifies that γ ≈ 1 is valid for the EHs in the ∼16 s wave burst.

Figure 2.10 shows the relations of σv, uncertainty of vEH , with ∆E⊥ and ∆B⊥, respec-

tively, where ∆B⊥ is either ∆Bx(≡ max[δBx]−min[δBx]) or ∆By(≡ max[δBy]−min[δBy]) ,

depending on which one is selected to derive vEH . One can see that the trend of σv decreas-

ing as ∆E⊥ increases is relatively tighter than the decreasing trend of σv as ∆B⊥ increases.

This trend difference is consistent with Equations (2.13) and (2.14) because increasing ∆E⊥

immediately improves the goodness of the linear fit model but increasing ∆B⊥ does not

necessarily have that effect due to the existence of δB′x and δB′y.

Figure 2.11 shows the potentials and sizes of the 54 EHs. Because the fourth selec-

tion criterion mentioned above confines the perpendicular offset of the spacecraft trajectory

through an EH roughly in a region of large δE⊥, one can see that ∆Φ is approximately

centered around 3 kV. ∆Φ reaches up to ∼9 kV for a few EHs, suggesting that the central

potentials of the EHs are mostly similar but can be very strong in a few EHs. The mean

of ∆Φ is ∼3.2 kV. The distribution of L‖ is more concentrated than that of ∆Φ. This con-

firms that the potential of the EHs can be roughly described with a cylindrically symmetric

Gaussian, since in that case L‖ is roughly independent on the perpendicular offset to the

center of an EH but ∆Φ is sensitive to that offset. The mean of L‖ is ∼68 km. Additionally,

the perpendicular sizes of the EHs are generally comparable to parallel sizes because the

magnitudes of ∆E⊥ are generally comparable to those of ∆E‖.



37

0.4 0.6 0.8 1.0 1.2 1.4
0

5

10

15

0.4 0.6 0.8 1.0 1.2 1.4
0

5

10

15

vEH [108 m/s]

N
u

m
b

er
of

E
H

s

Figure 2.9: Histogram of vEH .

50 100 150 200
0.00

0.02

0.04

0.06

0.08

0.10

50 100 150 200
0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.1 0.2
0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.1 0.2
0.00

0.02

0.04

0.06

0.08

0.10

∆E⊥ [mV/m]

σ
v

[1
08

m
/s

]

∆B⊥ [nT]

σ
v

[1
08

m
/s

](a) (b)

Figure 2.10: (a) σv (uncertainty of the derived vEH) versus ∆E⊥. (b) σv versus ∆B⊥.

0 2 4 6 8 10
0

2

4

6

0 2 4 6 8 10
0

2

4

6

0 50 100 150 200
0

5

10

15

20

0 50 100 150 200
0

5

10

15

20

∆Φ [kV]

N
u

m
b

er
of

E
H

s

L‖ [km]

N
u

m
b

er
of

E
H

s

(a) (b)

Figure 2.11: Histograms of (a) EH potential ∆Φ and (b) parallel size L‖.



38

2.6 Verification of the Interpretations

In the measurements of the electromagnetic EHs, the positive, unipolar δB‖ signals

are interpreted as a result of the electron δE×B0 drift current in the EHs, and the δB⊥

signals are interpreted as a superposition of δB⊥
′ from the electron δE×B0 drift current

and the Lorentz transformation of δE⊥, with the latter mostly predominant. The qualitative

aspects of the interpretations have been shown in Section 2.2 by the correlation consistency

of δE⊥ and δB⊥ signals between the Lorentz transformation and the measurements, and the

consistent polarity of δB⊥ between the model and the measurements.

The interpretations of the observed δB⊥ and δB‖ signals are different. The former

is primarily due to relativistic effects, whereas the latter is due to the δE×B0 drift of

electrons. The estimation of ∆Φ is based on the interpretation of δB⊥. With the central

δB‖ and ∆Φ present, Equation (2.8) connects the two interpretations and hence provides a

quantitative means to cross-check the interpretations. With these typical values: Φ0 ∼ 5

kV, n0 ∼ 0.02 cm−3, B0 ∼ 50 nT, and g ∼ 0.50, one obtains ∼0.2 nT for the central δB‖,

which corresponds to the upper limit of δB‖ for the measurements. As shown in Figure 2.2,

the measured δB‖ is up to ∼0.2 nT. Therefore, the interpretations of δB⊥ and δB‖ signals

are consistent with each other.

2.6.1 Detailed EH examples

Three EH examples are presented in this section, one slow, one fast, and one center-

crossing (i.e., the trajectory of the spacecraft was close to the center of the EH).

Figure 2.12 shows a relatively slow EH with a velocity of 2.90×107 m/s. The estimated

potential and L‖ are ∼1.4 kV and ∼43 km, respectively. With n0 = 0.02 cm−3, B0 = 50

nT, and g = 0.5, the model in Section 2.2 gives ∆B‖ . 0.055 nT according to Equation

(2.8). The amplitude of the measured δB‖ is difficult to estimate in this case because of its

irregular shape. However, if one takes the range of the δB‖, ∆B‖ (≡ max[δB‖]−min[δB‖]),
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which is 0.04 nT, as an estimate of the amplitude of δB‖, the observation and the model are

roughly in agreement. In the figure, one can see that the δEx and δEy signals do not peak at

the center of the EH as they would in an ideal cylindrically symmetric case. One possibility

is that the transformation of the signals into FAC is not perfect, due to the uncertainty

in determining B0, so that there are contributions left in δEx and δEy from the parallel

component. Another possibility is that the shape of this EH is irregular so that the sizes

of EH in x and y dimensions are different. EHs with irregular shapes are not uncommon

in simulations [Lu et al., 2008]. Note that these two possibilities are not exclusive. Both

possibilities could contribute to the results shown in Figure 2.12.

Figure 2.13 shows a relatively fast EH with a velocity of 1.07×108 m/s. The estimated

potential and L‖ are ∼4.2 kV and ∼87 km respectively. The observed amplitude of δB‖ is

∼0.09 nT as shown in Figure 2.13(d). With the same background parameters and assuming

the perpendicular offset of the spacecraft trajectory is roughly l⊥, the model in Section

2.2 gives an estimate of ∆B‖ ∼0.1 nT, consistent with the observation. One interesting

fact in the figure is that δBy is well fitted by δEx but δBx is not by δEy. This suggests

that δB′x is relatively more significant than δB′y, which further suggests that the size of

EH in y dimension is larger than in x dimension. (This can be understood from Figure

2.3(b). Imagine an extreme case in which the y-dimension size of the EH is infinite, in which

δB′y would be zero.) Additionally, the irregularity of the internal structure of the EH can

contribute to the results. However, it is difficult to infer such an irregularity based on a

single spacecraft crossing.

In addition to the 54 EH samples, a relatively clean center-crossing (small ∆E⊥ and

large ∆E‖) EH example is found, as shown in Figure 2.14. The estimated potential is ∼4.8

kV, which is higher than the average value shown in Section 2.5 as expected, and the size

∼59 km. The observed amplitude of δB‖ is roughly 0.15 nT, and the model in Section

2.2 gives an estimate of 0.19 nT without a perpendicular offset correction. Considering the

uncertainties in the perpendicular offset and the EH shape, the model and the observation
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are in a fairly good agreement.

2.7 Discussion and Summary

Compared to previous observations [Cattell et al., 1999; Franz et al., 2005] and most

THEMIS observations of EHs in the plasma sheet, the electromagnetic EHs discussed in

this chapter featured faster speeds, larger sizes, and stronger potentials. More important,

these electromagnetic EHs raise an interesting question: What mechanism is responsible

for the generation of the observed electromagnetic EHs? Many simulation works have been

published to address the generation mechanisms of EHs based on previous EH observations.

However, a thorough study of the generation of the observed electromagnetic EHs has yet to

be made. The statistical properties of the electromagnetic EHs in this chapter can provide

useful constraints on theoretical and numerical studies of the generation mechanism of the

electromagnetic EHs. Knowing the generation mechanism is important because one can infer

the properties of the source using information of the electromagnetic EHs. Additionally,

since the observed electromagnetic EHs were travelling anti-earthward along the magnetic

field lines, which link (earthward) to the ionosphere, the source region of the electromagnetic

EHs is not necessarily inside the plasma sheet.

To sum up, THEMIS observations of electromagnetic EHs were presented. Two co-

existing mechanisms were proposed to interpret the magnetic field signals associated with

the observed EHs. The δB⊥ signals were interpreted as primarily due to relativistic effects,

whereas δB‖ signals were due to δE×B0 drift of electrons in EHs. The formation of δE×B0

drift of electrons in the observed EHs was verified with test-particle simulations. The inter-

pretation of δB⊥ signals was used to derive vEH , which in turn was used to derive ∆Φ and

L‖. Statistical results of vEH , ∆Φ, and L‖ of the observed EHs were presented, followed by

observational verifications of the proposed interpretations and some EH examples.
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Figure 2.12: An example of a slow EH, where t0 is 2008-03-28/11:14:54.1617 in the x-axis
labels. The dashed line in (a) is a fit of δE‖ with the derivative of a Gaussian.
The format of (e) and (f) is the same as that in Figures 2.7(c) and 2.7(d)
respectively. The velocity is 2.90× 107 m/s from the fit of δBy, and 2.85× 107

m/s from the fit of δBx, with the first one chosen to be the final value because
its uncertainty is smaller.
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Figure 2.13: An example of a fast EH, where t0 is 2008-03-28/11:14:48.2664 in the x-axis
labels. The format is the same as Figure 2.12. The velocity is 1.07 × 108 m/s
from the fit of δBy, and 0.53 × 108 m/s from the fit of δBx, with the first one
chosen to be the final value because its uncertainty is smaller.
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Figure 2.14: An example of central EH crossing, where t0 is 2008-03-28/11:14:48.4716 in
the x-axis labels. The format is the same as Figure 2.12. The final estimated
velocity is 8.7× 107 m/s from δBx and δEy.



Chapter 3

ARTEMIS Observations of Kinetic Instabilities in the Lunar Wake

During its first lunar wake flyby on 13 February 2010, ARTEMIS P1 observed electro-

static waves on the outbound side of the flyby. The observed electrostatic waves resulted

from kinetic instabilities. The wavelengths and phase velocities of the observed electrostatic

waves are derived in this chapter. In addition, 1D Vlasov simulation results are presented to

identify the wave mode of the observed electrostatic waves. The properties of the observed

electrostatic waves are important to understand kinetic processes in the lunar wake.

3.1 Overview of the Flyby

Figure 3.1 shows the trajectory of ARTEMIS P1 during the flyby, where the Moon was

located at ∼(63, -9, 2.5)RE in GSE coordinates.

Figure 3.2 shows overview observations of the flyby. During the flyby, ARTEMIS P1

experienced a crossing of the lunar shadow, an interval indicated by the two vertical black

dashed lines in Figure 3.2. For a spinning spacecraft such as ARTEMIS P1, vector field data

are collected in a spinning coordinate system and must be de-spun into physical coordinates

such as GSE, GSM, SSE, etc., for normal scientific use. However, during the shadow of this

flyby, ARTEMIS P1 lost its spin reference, the Sun, and the spin data were no longer valid

for de-spinning vector field data. Therefore, a correction had to be made against this shadow

effect. A simple method was developed for this correction in this work, and is described in

detail in Appendix B. The ion velocity and magnetic field in Figure 3.2 have been corrected
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Figure 3.1: The trajectory of ARTEMIS P1 during its first lunar-wake flyby on 13 February
2010 in the (a) x-z plane and (b) y-z plane of the Selenocentric Solar Ecliptic
coordinate system (SSE). The coordinates are normalized by the lunar radius
(1RL ≈ 1737 km). The circles centered at the origins represent the Moon, where
the gray areas represent the nightside of the Moon. The red vectors indicate the
observed magnetic field at the times (UT) labelled on the right, whose lengths
are scaled with respect to the magnitude of the magnetic field (≈ 6 nT) at 08:20
UT. The magnetic field data is from the onboard fluxgate magnetometer (FGM)
[Auster et al., 2008].
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using that method.

Because the solar wind velocity is not exactly along the Sun-Moon line, the lunar wake

does not overlap the lunar shadow precisely, as can be seen from the ion density in Figure

3.2(a). The ion density, along with other particle data (ion velocity, electron temperature,

and electron different energy flux), is from the electrostatic analyzer (ESA) [McFadden et al.,

2008]. The roughly linear slope of the ion density curve in the log plot of Figure 3.2(a)

indicates that the ion density decreases exponentially towards the inside of the wake, which

is consistent with previous theoretical work [Samir et al., 1983].

Figure 3.2(c) shows electron temperature (Te). Te was approximately isotropic outside

the wake. Inside the wake, both the field-aligned temperature and the perpendicular tem-

perature increased, with the former increasing more. This increase is expected in light of the

following consideration: Solar wind electrons generally consist of three components: a cold

core, a hot halo, and a field-aligned strahl component [Feldman et al., 1975; Louarn et al.,

2009]. The wake potential screens out the cold core significantly, as can be seen from the

depletion of low-energy flux (the red color) inside the wake in Figure 3.2(e). Therefore, both

Te‖ and Te⊥ increase as shown in Figure 3.2(c). The reason why Te‖ increases more than Te⊥

may be due to anisotropy in the high-energy components of solar wind electrons.

The observed magnetic field was mostly stable on the inbound side and had some

significant rotations on the outbound side, as shown in Figure 3.2(d).

As indicated by the enhancement of differential energy flux in Figure 3.2(e), paral-

lel electron beams were observed on the outbound side. (The terms “parallel” and “anti-

parallel” directions are with respect to the ambient magnetic field (B0), with the former

in the same direction of B0 and the latter in the opposite direction.) The parallel electron

beams were modulated by the orientation of the magnetic field, which is expected since

electrons are primarily restricted to move along field lines due to the frozen-in condition.

Figure 3.2(f) shows the electric field power spectrum derived by the onboard digital

field board (DFB) [Cully et al., 2008]. There are clear enhancements of electric field power
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on the outbound side of the flyby (from ∼09:10 to ∼09:25) that are correlated with the

electron beams shown in Figure 3.2(e). The frequency range of the waves is mostly between

0.1fpe and 0.4fpe except in the middle of the flyby where the power occasionally reaches as

low as ∼0.01fpe. These waves were identified as electrostatic waves because no corresponding

magnetic field signals were observed from the onboard search coil magnetometer (SCM) [Roux

et al., 2008]. The properties of these electric field waves are the focus of this chapter. Three

high-resolution wave bursts that are indicated by the black vertical bars across Figures 3.2(e)

and 3.2(f) allow us to perform a detailed analysis of these waves. For the ease of reference,

these three wave bursts are labelled WB1, WB2, and WB3 in a temporal order.

3.2 Waveform and Spectrum

Figure 3.3 displays the waveforms (sample rate ∼16 kHz; filtered from ∼10 Hz to

∼6 kHz) and spectrograms of parallel electric fields (E‖) from WB1, WB2, and WB3. The

waveforms are from the onboard EFI [Bonnell et al., 2008]. The spectrograms were computed

from the corresponding waveforms. E‖ dominates in the electric field signals of the three wave

bursts, indicating that E ‖ B0 and that these electrostatic waves had phase velocity along

B0. In general, the E‖ amplitudes of these waves roughly vary from 5 mV/m to 15 mV/m

as shown in Figures 3.3(a), 3.3(c), and 3.3(e). The spectral characteristic of these waves,

shown in Figures 3.3(b), 3.3(d), and 3.3(f), is generally consistent with that shown in Figure

3.2(f) but with detailed structures, especially for WB2 and WB3 which consist of enhanced

waves from ∼09:18:39 to ∼09:18:42 and from ∼09:20:13 to ∼09:20:16.5, respectively.

3.3 Wavelength and Phase Velocity

The onboard EFI consists of three double-probe booms, with two long, orthogonal

booms in the spin plane of the spacecraft, and one relatively short boom along the spin axis

[Bonnell et al., 2008]. Because longer booms generally have more accurate measurements

[Pedersen et al., 1998], the analysis of this work focuses on measurements from the longest
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Figure 3.2: Time-series overview observations of the flyby, where the shadow interval of the
flyby is between the two vertical black dashed lines across the figure. (a) Ion
density. (b) Ion velocity in Selenocentric Solar Ecliptic (SSE) coordinates. (c)
Electron temperature, where the red line is field-aligned temperature (Te‖) and
the green and blue lines are perpendicular temperatures (Te⊥). (d) Magnetic
field in SSE coordinates. (e) Differential energy flux of parallel electrons. (f)
Electric field power spectrum from the onboard digital field board (DFB) [Cully
et al., 2008] with frequency normalized by the local electron plasma frequency
(fpe), where the three vertical red dashed lines indicate the times of three wave
bursts that are analyzed in detail.
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Figure 3.3: Parallel electric field waveforms and spectrograms of WB1 (a, b), WB2 (c, d),
and WB3 (e, f).
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EFI boom which connects the EFI probes numbered 1 and 2. The results from the second

longest boom (not shown) generally confirm those from the longest boom.

Figure 3.4 illustrates plasma waves passing one EFI boom in the spin plane. In general,

the phase of a wave mode with frequency ω and wave vector k is

θ = k · x− ωt, (3.1)

where θ is the phase, t time, x location in 3D space. As shown in Figure 3.4, in the EFI

frame, the phase shift between the two opposite probes at time t is

∆θ(t) = θ1(t)− θ2(t) = k · (x1 − x2)

= kspL cosφ = kspL cos(ωst+ φ0),

(3.2)

where ksp is the component of k in the spin plane, L the effective distance between the two

EFI probes, ωs the spin rate of the spacecraft, and φ0 the initial phase of the spin. On the

other hand, the time delay of waves moving from one EFI probe to the other is

∆t =
L cosφ

vsp
=

L

vsp
cos(ωst+ φ0) (3.3)

where ∆t is the time delay, and vsp is the spin-plane component of the phase velocity of the

waves. From Equations (3.2) and (3.3), one can see that both ∆θ and ∆t are a sinusoidal

function of time with amplitudes as a function of wavenumber and phase velocity, respec-

tively. Therefore, by fitting the derived ∆θ and ∆t from observations with a sinusoidal

model, one can derive ksp and vsp from the amplitudes of the resultant fits.

∆θ is obtained from cross-spectrum analysis and ∆t from cross-correlation analysis.

For a monochromatic wave, the two kinds of analysis are interchangeable if the wave fre-

quency is known. However, in real situations, there is a spread in both wavenumber and

wave frequency, and hence these two analyses have different uses, with the cross-spectrum

analysis ideal for deriving wavenumber and the cross-correlation analysis ideal for deriving

phase velocity. In cross-spectrum analysis, the derived phase shift is generally averaged over
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Figure 3.4: An illustration of waves passing an EFI boom. The blue balls, numbered with
1 and 2 respectively, represent the two probes on an EFI boom in the spin
plane, the light blue ellipse plane. The spin rate is ωs. The red, wave-like curve
represents a series of waves passing the probes with wave vector k whose spin-
plane component is ksp. The angle between ksp and the EFI boom is denoted
with φ.
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a number of frequency bins. Therefore, the resultant wavelength is an average over the cor-

responding frequencies. On the other hand, in cross-correlation analysis, it is assumed that

the signals have a uniform velocity over a frequency range of interest in the time scale of ∆t.

In addition to ∆θ, the cross-spectrum analysis gives the coherence between two series

of signals. By definition, the coherence varies between 0 and 1. When the coherence is close

to 1, it indicates that the two series of signals are coherent and hence favors the reliability

of the derived ∆θ and ∆t.

Figure 3.5 shows the coherence, phase shift, and time delay of WB1 derived from

EFI voltage measurements. The voltage data are band-pass filtered from 100 Hz to 700 Hz

prior to analysis. The calculation of the coherence and phase shift uses twenty of the most

powerful frequency bins. (Each frequency bin has a band width of 8 Hz.) The red lines in

Figures 3.5(b) and 3.5(c) are sinusoidal fits to ∆θ and ∆t, respectively, using data points

with coherence greater than 0.85. One can see that the data (the black line) generally follow

the fits well when the coherence is close to 1, especially for ∆t after 09:09:22, indicating that

ksp and vsp from the fits have a relatively high degree of reliability in that period. The fits

of ∆θ and ∆t give ksp = 0.001912 m−1 and vsp = 1131 km/s, respectively, with uncertainties

less than 30%. Assuming k ‖ B0, these results correspond to a wavelength of 1727 m and a

phase velocity of 2151 km/s, respectively.

Figures 3.6 and 3.7 show the results of WB2 and WB3, respectively, in the same format

of Figure 3.5. The voltage data are band-pass filtered from 1 kHz to 3 kHz for both bursts.

Compared to Figure 3.5, the fits of ∆θ and ∆t show much better agreement with data when

the coherence is close to 1 in both figures. With similar calculations, a wavelength of 272 m

and a phase velocity of 1568 km/s are obtained for WB2, and a wavelength of 231 m and a

phase velocity of 1397 km/s obtained for WB3.



53

   
0.0
0.2
0.4
0.6
0.8
1.0

   

-20
-10

0
10
20
30
40

15 20 25
-100
-50

0

50
100

Seconds
2010 Feb 13 0909:

C
oh
er
en
ce

∆
θ

[d
eg

]
∆
t

[µ
s]

(a)

(b)

(c)

Figure 3.5: Cross-spectrum analysis and cross-correlation analysis results of WB1 using the
EFI boom 1-2. (a) Coherence. (b) Phase shift (∆θ). The red line is a fit of ∆θ
according to Equation (3.2). (c) Time delay (∆t). The red line is a fit of ∆t
according to Equation (3.3).
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Figure 3.6: Cross-spectrum analysis and cross-correlation analysis results of WB2 using the
EFI boom 1-2. The format is the same as Figure 3.5.
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Figure 3.7: Cross-spectrum analysis and cross-correlation analysis results of WB3 using the
EFI boom 1-2. The format is the same as Figure 3.5.
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3.4 Wave Mode

As shown in Figure 3.2(f), the power enhancement in the electrostatic waves on the

outbound side of the flyby generally lies between 0.1fpe and 0.4fpe. In this frequency range,

the electron beam mode [Gary , 1985] and the electron acoustic mode [Gary and Tokar ,

1985] are two possible candidates for driving wave growth. However, the latter requires

a substantial hot electron component, the presence of which is not supported by observa-

tions. Thus, the observed electrostatic waves are likely to be the electron beam mode. To

confirm this hypothesis, 1D electrostatic Vlasov simulations are carried out with the initial

conditions close to observations so as to make relevant comparisons between simulations and

observations. As shown later, the observed waves have different wavelengths in units of the

local Debye length, namely, different values of kλD in WB1, WB2, and WB3. To cover the

observed range of kλD, two representative runs are presented with different values of kλD

for the fastest growing mode.

The Vlasov code used in this work is based on the time-splitting scheme of Cheng and

Knorr [1976] with open boundary conditions. More details regarding the code can be found

in Newman et al. [2008]. Ions are initialized as homogeneous, Maxwellian background with

proton mass. Electrons are initialized with two components, one background component and

one beam-like component. The initial electron velocity distribution function takes the form:

fe(v) =
n1Γ[κ]√

π(2κ− 3)v2t1Γ[κ− 1/2]

(
1 +

v2

(2κ− 3)v2t1

)−κ
+

nbΓ[κ]√
π(2κ− 3)v2tbΓ[κ− 1/2]

(
1 +

(v − ub)2
(2κ− 3)v2tb

)−κ
,

(3.4)

where the one-dimensional kappa distribution [Summers and Thorne, 1991] is used with

κ = 6, Γ is the gamma function, n1 and vt1 are the number density and thermal velocity of

the major background component, respectively, and nb, vtb, and ub are the number density,

thermal velocity, and drifting velocity of the minor beam-like component, respectively.

Table 3.1 lists parameters of initial electron distribution of the two runs. As shown
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Table 3.1: Parameters of initial electron distribution

Run 1 Run 2
n1 1.01 1.015
vt1 1 1
nb -0.01 -0.015
vtb 0.05 0.1
ub 0.4 0.4

in Figures 3.2(c) and 3.2(e), the energy level of the enhanced parallel electron differential

energy flux is approximately equal to the background electron temperature. However, be-

cause differential energy flux is proportional to E2f , where E and f represent energy and

distribution function, respectively, the energy level of the beam is not equal to but a fraction

of that of the enhanced differential energy flux. (At beam energy level (Eb),
∂f
∂E
|Eb

= 0;

thus, ∂(E2f)
∂E

∣∣∣
Eb

= E2
b
∂f
∂E

∣∣
Eb

+ 2Ebf(Eb) = 2Ebf(Eb) > 0, indicating Eb is lower than the

energy level of the peak differential energy flux where ∂(E2f)
∂E

= 0.) Thus, ub is chosen to be a

fraction of the thermal velocity of the background electrons for both runs, as shown in Table

3.1. For such a low drifting velocity, it is relatively easier to carve the distribution function

than to add a bump to create a positive slope. Therefore, negative nb is used. Due to the

negative nb and small vtb, the initial beam velocity that corresponds to a positive peak in

the distribution function is slightly larger than ub. Figure 3.8 shows the profiles of initial

electron distributions of Run 1 and Run 2.

The phase-space domain is distributed on a Nz × Nve(Nvi) = 4096 × 2048(256) grid

that spans the region 0 ≤ z ≤ Lz = 4096λD and −12vt1(−10vti) ≤ v ≤ 12vt1(10vti), where

λD =
ε0mev2t1
n0e2

, n0 = n1 + n2, and vt1(vti) is the thermal velocity of the background electrons

(ions). The size of the simulation domain and the homogeneous initial density is sufficient

to model the local wave dynamics considered here. A larger global simulation study that

includes spatial inhomogeneity will be the subject of future investigation.

Figure 3.9 shows linear-analysis results of the initial electron distribution of Run 1.

(Appendix C describes the details of the linear-analysis calculation.) In Figure 3.9(a), the
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Figure 3.8: Initial electron distribution of Run 1 and Run 2.
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Nyquist curve crosses the negative real axis (the blue line) once, indicating that there is one

unstable mode in the system [Penrose, 1960]. (The Nyquist curve starts and ends at the

origin, which must be excluded when counting crossings of the negative real axis.) Figure

3.9(b) shows the dispersion relation of the unstable mode. The linear feature of the ωr-k

relation (the black line) is consistent with the electron beam mode, as shown in previous

studies [Gary , 1985; Onsager and Holzworth, 1990]. The γ-k relation (the red line) shows

that the fastest growing mode has kλD ≈ 0.8, with the growing modes extending to kλD ≈ 2.

Figure 3.10 shows linear-analysis results of the initial electron distribution of Run 2.

The results are generally similar to those of Run 1 except that the fastest growing mode has

kλD ≈ 0.45 in Run 2. A linear analysis for a set of initial parameters has been performed

in this work, and it shows that the kλD of the fastest growing mode is most sensitive to vtb,

which is somewhat expected since vtb affects the positive slope in the initial distribution most.

The general trend is that the smaller the vtb, or the steeper the positive slope in the initial

distribution, the larger the kλD of the fastest growing mode. For the three wave bursts WB1,

WB2, and WB3, the local values of λD are roughly 108 m, 53 m, and 46 m, respectively,

and the corresponding values of kλD are roughly 0.4, 1.23, and 1.24, respectively, with the

wavelengths derived in Section 3.3. All the observed kλD are accessible for electron beam

mode based on the linear analysis results.

Figure 3.11 shows spectral results of Run 1. As shown in Figure 3.11(a), the frequency

of the waves is around 0.2fpe, consistent with the higher-frequency part of the spectrum in

Figure 3.2(f). The frequency-wavenumber spectrum in Figure 3.11(b) matches the linear-

analysis result of electron beam mode quite well, supporting that the observed frequency-time

spectrum in Figure 3.2(f) is likely on the electron beam mode branch. Figure 3.12 shows

spectral results of Run 2, which generally supports the same conclusion from Figure 3.11.
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Figure 3.11: Spectral results of Run 1. (a) Spectrogram of Ez at the center of the simulation
box (z/Lz = 0.5), where fpe = ωpe/2π. (b) Frequency-wavenumber spectrum
calculated from the period between the two vertical lines in panel (a), where
the oblique black line is from the linear analysis of the initial electron distribu-
tion. The frequency range in (a) is in a log scale for a close comparison with
observations, whereas the frequency range in (b) is in a linear scale to preserve
the linear feature of the frequency-wavenumber relation of the electron beam
mode.
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Figure 3.12: Spectral results of Run 2. The format is the same as Figure 3.11.
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3.5 Discussion and Summary

Knowing the mode of the electrostatic waves observed on the outbound side of the

flyby helps us to have a better understanding of the big picture of the lunar wake dynamics.

As proposed in previous works [Farrell et al., 1996; Nakagawa et al., 2003; Halekas et al.,

2011], there is an electron velocity filtration at work in the lunar wake: As solar wind

electrons refill the lunar wake along the solar wind field lines, the field-aligned velocity

distribution of the electrons is filtered by the wake potential such that low energy electrons

are reflected by the negative wake potential whereas high energy electrons penetrate the

negative wake potential and reach the other side of the wake. The field-aligned distribution

of solar wind electrons is asymmetric due to the presence of the solar wind strahl component,

a high-energy field-aligned electron population coming from the Sun [Fitzenreiter et al., 1998;

Louarn et al., 2009]. This feature leads to an asymmetric wake potential as suggested by

Halekas et al. [2011]. One consequence from the asymmetric field-aligned distribution of

solar wind electrons and wake potential is that the filtered overall electron distribution is

not necessarily stable, i.e., a positive slope can be formed in the electron distribution, when

the distribution of penetrating electrons attaches to that of reflecting electrons on the other

side of the wake. However, the positive slope of the unstable distribution is expected to occur

within the bulk of the distribution, for which the electron beam mode is expected to prevail

[Gary , 1985; Onsager et al., 1989]. As shown in this chapter, the observed electrostatic

waves were likely on the electron beam mode branch, hence providing confirmative evidence

for the existence of the electron velocity filtration in the lunar wake.

The amplitudes of electric field waveforms in WB1 are clearly more modulated than

those in WB2 and WB3 as shown in Figure 3.3, suggesting that other wave modes may be

involved in WB1. As shown in Figure 3.2(f), the wave frequency spectrum at the time of

WB1 has a low-frequency component that can reach as low as 0.01fpe, a value that is below

the frequency range of the electron beam mode. The location of WB1 coincided with the
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minimum density shown in Figure 3.2(a), indicating that the spacecraft was relatively deep

inside the wake at the time. Similar to Ogilvie et al. [1996], Halekas et al. [2011] reported

counter-streaming ions in the wake. Because 0.01fpe is on the order of ion plasma frequency,

ion dynamics may be involved in WB1. In addition, WB1 spans a broader frequency band

than WB2 and WB3. Previous studies show that both solitary structure (e.g., electron

phase-space holes, [Kojima et al., 1997]) and non-solitary structures (e.g., chorus emissions

[Santoĺık et al., 2003]) can produce a broadband spectrum. In this work, no well-defined

solitary structures are present in WB1 or in the simulations.

Since the waves in WB1 likely consist of wave modes other than just the electron

beam mode, it is difficult to make pertinent comparisons of the amplitudes of the waveforms

between simulations and observations for WB1. However, the wave energy of WB2 and

WB3 is mostly within the frequency range of the electron beam mode, and thus a waveform

amplitude comparison between simulations and observations would be appropriate for these

two bursts. Since Run 1 has kλD ∼ 1.0, a value closer to those in WB2 (kλD ≈ 1.23)

and WB3 (kλD ≈ 1.24) than Run 2’s result (kλD ∼ 0.4), it is appropriate to use Run 1 to

make such a comparison. In the simulation, the electric field is normalized by eλDn0/ε0, i.e.,

E = (eλDn0/ε0)Ẽ, where E is the electric field in physical units, and Ẽ is the normalized

electric field in the simulation. For WB2 and WB3, λD ∼ 50 m, n0 ∼ 0.5 cm−3; the amplitude

of the normalized Ez in Run 1 is roughly 0.005. Therefore, given parameters of WB2 and

WB3, the simulation gives an electric field amplitude of roughly 2 mV/m. Considering

the uncertainties in modeling the unstable distribution function, the simulation result for

the electric field amplitude is in a fairly good agreement with the observations as shown in

Figures 3.3(c) and 3.3(e).

Kinetic instabilities have been observed in previous simulations of the lunar wake.

Farrell et al. [1998] showed electrostatic instabilities in the wake with 1D PIC simulations,

although they did not further address the nature of the electrostatic instabilities. Birch and

Chapman [2001, 2002] observed nonlinear electrostatic waves, namely, electron phase-space
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holes [Roberts and Berk , 1967; Singh et al., 2011], in 1D and 2D PIC simulations of the wake.

In addition to simulation work, Bale [1997] studied the effects of the absorption of

solar wind plasmas by the lunar surface and proposed that the positive slope of the affected

electron distribution might be responsible for the Langmuir waves observed by Wind during

a period when the spacecraft was magnetically connected to the lunar wake [Bale et al.,

1997]. However, for this flyby, Halekas et al. [2011] suggested that the observed electrostatic

waves may be due to the filtration of the electron distribution by the wake potential.

In summary, the characteristics of the observed electrostatic waves are shown in this

chapter, in particular, the wavelength and phase velocity measurements from cross-spectrum

analysis and cross-correlation analysis of EFI data. The estimated wavelengths vary from a

few hundred meters to a couple of thousand meters, whereas the estimated phase velocities

are on the order of 1000 km/s. Finally, a 1D Vlasov code is used to identify the mode of

those electrostatic waves and the results suggest that those waves were likely on the electron

beam mode branch.



Chapter 4

Turbulent Electric and Magnetic Fields in the Earth’s Magnetotail

Launched in 2007, the THEMIS mission has accumulated a large data set of electric

and magnetic fields in the Earth’s magnetotail, which offers an excellent opportunity to study

the statistical properties of the turbulent electric and magnetic fields in the magnetotail.

4.1 Data Description

This study uses data from all the five THEMIS spacecraft in the period from 15 De-

cember 2007 to 30 April 2011 for the inner spacecraft (THA, THD, and THE) and from 15

December 2007 to 31 December 2009 for the outer spacecraft (THC and THB). (THC and

THB were re-directed to the Moon in the end of 2009 and formed the ARTEMIS mission.

See Appendix A.) The basic measurements of the study are high time-resolution electric and

magnetic field waveforms sampled at 128 Hz. The electric field waveforms are measured by

the THEMIS EFI [Bonnell et al., 2008], whereas the magnetic field waveforms are measured

by the THEMIS FGM [Auster et al., 2008] for DC signals and by the THEMIS SGM [Roux

et al., 2008] for AC signals.The waveforms are recorded in a so-called particle-burst mode

of the mission. A particle burst is a continuously sampled data segment with high temporal

resolution. The duration of a particle burst ranges mostly from ∼10 minutes to a few tens

of minutes.

The following criteria are used to select particle bursts for the study:

• The measurements should be made in the tail region. The tail region is defined
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as such that the magnetic local time (MLT) is between 20:00 and 04:00, and the

distance from the Earth is greater than 8 RE. An illustration of the tail region in

the GSM x-y plane is shown in Figure 4.1.

• The durations of the selected particle bursts should be longer than 128 s.

• The maximum magnitude of the electric fields in a single selected particle burst

should be larger than 50 mV/m.

1390 particle bursts in total are obtained for the study.

Each burst is divided into 128-second-long segments before further processing. Incom-

plete data segments (shorter than 128 seconds) from this division are not used. For each

128-second-long segment, the background electric and magnetic fields, E0 and B0, are deter-

mined from the medians of the EFI measurements and the FGM measurements, respectively.

Electric field perturbation, δE, is obtained by subtracting E0 from the measurements. For

the FGM measurements, magnetic field perturbation, δB, is obtained by subtracting B0

from the measurements. For the SCM measurements, δB is from the direct measurements

since SCM measurements are already AC signals. The 128-second-long segments are the

basis for calculating detrended Poynting flux and power spectral densities of the fields that

will be shown later.

4.2 Overview of the Data

Figure 4.2 shows an overview of the 1390 particle bursts obtained for the study. The

majority of the bursts are from the inner THEMIS spacecraft, as can be seen from Figures

4.2(a), 4.2(b), and Figure 4.2(c). One main reason for this feature is that the magnitude

of electric fields generally decreases as the distance from the Earth increases, which can be

seen from Figure 4.2(d); for this reason, the electric field magnitude constraint, i.e., the last

burst selection criterion as shown above, limits bursts from the outer spacecraft. Due to the
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orbit limits of the THEMIS spacecraft (see Appendix A), the upper limit of the distance to

the Earth for the data set is ∼30 RE.

Figure 4.3 shows an example time series of turbulent electric and magnetic fields in the

magnetotail with particle-burst data. The electron differential energy flux in the top panel

of the figure indicates that the data were recorded in the plasma sheet, which is typically

the case for particle bursts in the magnetotail. The rest of the panels of the figure indicate

that these electric and magnetic fields are highly intermittent, with strong field fluctuations

distributed sporadically over time. This is typically the case for the obtained particle bursts,

and is consistent with previous studies [Weygand et al., 2005].

4.3 Detrended Poynting Flux

Kelley et al. [1991] showed that only the detrended Poynting flux, which is given by

S =
δE× δB

µ0

, (4.1)

contains useful information regarding electromagnetic energy flow or dissipation in the

Earth’s magnetosphere. (For calculating S, δE is determined from EFI data, and δB is

from FGM data, as described in the end of Section 4.1.) In particular, the component of

the detrended Poynting flux along the background magnetic field (B0), S‖, is responsible

for transporting electromagnetic energy between the ionosphere and the plasma sheet. One

interesting question that the study can ask is whether there is a statistically significant trend

in S‖ from the turbulent electric and magnetic fields in the plasma sheet.

Figure 4.4 shows histograms of S‖ for various distance ranges. Panels (a)–(c) of the

figure show that the distribution of S‖ is statistically asymmetric in the near-Earth plasma

sheet (r . 15 RE) in the sense that large values of S‖ (greater than ∼0.5 mW/m2) are much

more likely in the earthward direction than the opposite direction, compared to the panel

(d). Large values of S‖ are generally bursty in time, due to the fact that large values of

S‖ require large-amplitude electric fields, which are generally bursty in time. In the plasma
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Figure 4.2: Overview of the particle bursts obtained for the study. (a) Burst locations in
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of the maximum electric field in a single burst (Emax) versus the burst distance,
where the red line is a least absolute deviation fit to the data.
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sheet, δB is typically on the order of 10 nT; to have S‖ on the order of 1 mW/m2, δE should

be on the order of 100 mV/m. Such strong electric fields generally last briefly in the plasma

sheet, as can be seen in Figure 4.3.

The significant earthward trend of near-Earth energetic Poynting flux (& 0.5 mW/m2)

in Figure 4.4 suggests that the corresponding electromagnetic energy flow is likely part of a

larger-scale, earthward energy flow. The region (r . 15 RE) where energetic electromagnetic

energy flux is primarily earthward coincides with the braking region of earthward high-speed

ion flows (also known as bursty bulk flows (BBFs)) [Shiokawa et al., 1997], suggesting that

BBFs are likely one primary source of the earthward energetic electromagnetic energy flux.

The earthward energetic Poynting flux can have significant impact on the auroral re-

gion. As the magnetic field lines converge in the earthward direction, the field-aligned

Poynting flux increases following a simple inverse square law, 1/d2, where d is the diame-

ter of a magnetic field flux tube. The diameter d decreases by a factor of ∼30 from the

magnetotail to the ionosphere, indicating that the field-aligned Poynting flux increases by a

factor of ∼1000. Angelopoulos et al. [2002] showed that ∼90% of the field-aligned Poynting

flux can be dissipated in the plasma sheet. Dai et al. [2011] showed that even ∼10% of 0.1

mW/m2 field-aligned Poynting flux in the plasma sheet is sufficient to account for the kinetic

energy flux observed in the auroral region based on this spatial convergence. Therefore, the

earthward energetic S‖ (& 0.5 mW/m2) as shown in Figure 4.4 is more than sufficient to

power the kinetic energy flux in the auroral region, and the significant earthward trend in

the near-Earth region suggests that the near-Earth plasma sheet is primarily responsible for

the Poynting flux that powers the kinetic energy flux in the auroral region.

4.4 Spectral Slope

Hoshino et al. [1994] showed that the slopes of magnetic field spectra turn steeper near

the ion gyrofrequency using Geotail data. Similar phenomena are also shown in this study.

Due to this spectral turnover, two spectral slopes are obtained with least absolute deviation
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Figure 4.4: Histograms of the detrended field-aligned Poynting flux (S‖) for regions of dif-
ferent distances to the Earth. The distance ranges are labelled in the titles of
the four panels. Positive S‖ is earthward, whereas negative S‖ is antiearthward.
The data-point counts in each histogram are normalized by the corresponding
number of total data points, which is 3.4× 107 in (a), 2.8× 107 in (b), 5.0× 107

in (c), and 1.2× 107 in (d).
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fits for a single 128-second-long segment of each field component, one using data in 0.01–0.3

Hz, and the other using data in 1–5 Hz. (The ion gyrofrequency is mostly between 0.2 Hz and

0.5 Hz in this study.) Before the fitting, the data are interpolated into frequency bins that

are evenly spaced in logarithm scale in order to avoid the bias caused by the original linearly

even-spaced frequency bins, which favors the weight of data points in higher frequency range

due to its higher data-point density. Figure 4.5 shows an example of the two-range spectral

slope fit.

In deriving the spectral slopes, the data are not corrected for the Doppler shift effect.

Suppose ω is the frequency in the spacecraft frame and ω′ is the frequency in the plasma

frame. Then the Doppler shift effect gives

ω = ω′ + k · vplasma, (4.2)

where vplasma is the velocity of the plasma medium relative to the spacecraft. Dividing

Equation (4.2) by ω′ gives

ω

ω′
= 1 +

k

k
· vplasma

vph
, (4.3)

where vph = ω′/k is the phase velocity of the waves in the plasma frame. In the plasma

sheet, vplasma is typically on the order of 100 km/s, and vph is generally larger than the

Alfvén speed, which is typically on the order of 1000 km/s; in other words, vplasma � vph.

Therefore, Doppler shifts are generally negligible in the plasma sheet.

Four subsets of 128-second-long segments are obtained based on the distance to the

Earth and the strength of the fluctuations, which is characterized by the maximum δE for

each segment (δEmax). The four subsets are numbered as follows:

• Subset 1: r < 15 RE, δEmax > 50 mV/m.

• Subset 2: r < 15 RE, δEmax < 10 mV/m.

• Subset 3: r > 15 RE, δEmax > 50 mV/m.
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• Subset 4: r > 15 RE, δEmax < 10 mV/m.

Tables 4.1 and 4.2 summarize the average spectral slopes with standard deviations of the

four subsets for the frequency ranges 0.01–0.3 Hz and 1–5 Hz, respectively, where the fields

are in the FAC system (see page 20 for the definition of the FAC system). The following

features are shown in the two tables:

• The spectral slopes of electric fields are generally smaller than those of magnetic

fields for both frequency ranges.

• The distance conditions r < 15 RE and r > 15 RE do not make significant differences

in the spectral slopes.

• Strong fluctuations and weak fluctuations have significantly different spectral slopes

for both magnetic fields and electric fields in the frequency range 0.01–0.3 Hz. For

strong fluctuations (subsets 1 and 3), the perpendicular magnetic field components

(δBx and δBy) have spectral slopes of ∼1.8, and the parallel magnetic field compo-

nent (δBz) has an spectral slope of ∼2; the perpendicular electric field components

(δEx and δEy) have spectral slopes of ∼1.2, and the parallel electric field component

(δEz) has an spectral slope of ∼1.1. For weak fluctuations (subsets 2 and 4), the per-

pendicular magnetic field components (δBx and δBy) have spectral slopes of ∼2.45,

and the parallel magnetic field component (δBz) has an spectral slope of ∼2.6; the

perpendicular electric field components (δEx and δEy) have spectral slopes of ∼1.5,

and the parallel electric field component (δEz) has an spectral slope of ∼1.6.

• In the frequency range 1–5 Hz, the spectral slopes of magnetic fields are generally

∼3, whereas those of electric fields are different between strong and weak fluctuations

with slopes < 1 for strong fluctuations and slopes ∼1.4–1.5 for weak fluctuations.

• The standard deviations of the spectral slopes are relatively large, especially for

electric fields, suggesting that the underlying dynamics of the turbulent electric and
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magnetic fields in the plasma sheets has a wide range of complexity, and that the

significance of the spectral slope differences described above, especially for differences

less than 0.2, is still open to further investigations.

Table 4.1: Average spectral slopes with standard deviations of the four subsets of the data

in the frequency range 0.01–0.3 Hz

Subset δBx δBy δBz δEx δEy δEz

1 1.81±0.56 1.81±0.57 2.02±0.65 1.21±0.53 1.18±0.50 1.10±0.51

2 2.48±0.60 2.43±0.59 2.58±0.62 1.42±0.62 1.50±0.59 1.62±0.56

3 1.83±0.59 1.84±0.56 2.14±0.57 1.31±0.53 1.27±0.50 1.06±0.43

4 2.43±0.56 2.44±0.55 2.61±0.59 1.48±0.61 1.52±0.54 1.57±0.54

Table 4.2: Average spectral slopes with standard deviations of the four subsets of the data

in the frequency range 1–5 Hz

Subset δBx δBy δBz δEx δEy δEz

1 3.05±0.46 2.98±0.49 2.83±0.48 0.79±0.56 0.84±0.56 0.84±0.74

2 2.92±0.55 2.98±0.51 3.05±0.55 1.54±0.67 1.40±0.62 1.42±0.75

3 3.10±0.50 2.98±0.57 2.84±0.54 0.51±0.60 0.61±0.53 0.32±0.74

4 3.23±0.42 3.04±0.56 3.18±0.45 1.49±0.72 1.30±0.63 1.34±0.84

4.5 A Two-Species Cold Plasma System

Among other spectral features, it is rather universal that δE has flatter spectral slopes

than δB, which raises the following questions: Is this feature an intrinsic property of a

plasma system? What about other spectral features? To attack these questions, one needs a
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fundamental model that captures intrinsic dynamics of plasma systems. The homogeneous

cold plasma model [Stix , 1992, p.3–9] is an ideal candidate for that purpose. Although it

ignores inhomogeneity and kinetic effects, the cold plasma model retains all the fundamental

modes to a plasma system and its validity is not limited in scales, as opposed to the MHD

model. That said, the cold plasma model provides a necessary frequency coverage that

enables comparisons between theoretical results and observations with frequencies below

and above the ion gyrofrequency. In addition, by ignoring kinetic effects, the cold plasma

model is much easier to tackle mathematically than a kinetic model, and hence is a good

place to start with. Note that, as a linear system, the cold plasma model is not able to

address the absolute values of the spectral slopes of δE and δB. However, it can address the

spectral slope differences between δE and δB by taking their ratios.

The plasma sheet is primarily composed of protons and electrons. Therefore, a two-

species cold plasma model, which is composed of one electron species with charge −e and

mass me and one ion species with charge e and mass mi, is considered in this chapter. This

section describes general results of such a system.

Generally, for a cold-plasma system, we have [Stix , 1992, p.8]
S − n2 cos2 θ −iD n2 cos θ sin θ

iD S − n2 0

n2 cos θ sin θ 0 P − n2 sin2 θ




δEx

δEy

δEz

 = 0, (4.4)

where n = kc/ω, S = (R + L)/2, and D = (R− L)/2. For the two-species system, we have

P = 1− 1

ω̃2
αη2 − 1

ω̃2
η2, (4.5)

R = 1− 1

ω̃(ω̃ − α)
αη2 − 1

ω̃(ω̃ + 1)
η2 (4.6)

L = 1− 1

ω̃(ω̃ + α)
αη2 − 1

ω̃(ω̃ − 1)
η2, (4.7)

where ω̃ = ω/Ωi, α = mi/me, η = c/vA, vA =
√

B2
0

µ0n0mi
is the Alfvén speed, n0 is the number

density of ions, k̃ = kdi, and di = c/ωpi is the ion inertial length.



79

For the cold-plasma system, the coordinate system is chosen such that the background

magnetic field is in the z-axis direction and the wave vector k is in the x-z plane; namely,

B0 = B0ẑ and k = kxx̂ + kzẑ = k sin θx̂ + k cos θẑ, where θ is the angle between B0 and

k. Note that the perpendicular directions in such a coordinate system do not necessarily

coincide with those in the FAC system (page 20); however, such differences do not matter

for comparing the ratios δEx/δBy and δB‖/δB⊥.

In this chapter, the mass ratio α and the Alfvén speed vA are chosen to be 1836 and

1000 km/s, respectively, for cold-plasma results. These choices represent typical values of α

and vA in the plasma sheet.

4.5.1 Dispersion relation

By setting the determinant of the 3-by-3 matrix on the left-hand side of Equation (4.4)

equal to zero, one can obtain the dispersion equation of the two-species system as

a0 + a1ω̃
2 + a2ω̃

4 + a3ω̃
6 + a4ω̃

8 + ω̃10 = 0, (4.8)

where

a0 = −α2(1 + α)η6Cos[θ]2k̃4, (4.9)

a1 =
1

2
η4k̃2(α(1 + α)(α + (1 + α)η2)(3 + Cos[2θ])

+ (2α2 + (1 + α)(1 + α + α2)η2 + (1 + α3)η2Cos[2θ])k̃2), (4.10)

a2 = −1

2
η2(2(1 + α)(α + (1 + α)η2)2

+ (4α2 + (1 + α)(3 + α(5 + 3α))η2 + 4(1 + α)2η4

+ (1 + α3)η2Cos[2θ])k̃2 + 2η2(1 + α2 + (1 + α)η2)k̃4), (4.11)

a3 = α2 + (1 + α)3η2 + 3(1 + α)2η4 + 2η2(1 + α2 + 2(1 + α)η2)k̃2 + η4k̃4, (4.12)

a4 = −1− α2 − 3(1 + α)η2 − 2η2k̃2 (4.13)

In general, there are five wave branches in total from Equation (4.8), of which the

whistler branch and the shear Alfvén wave branch are within the frequency range of interest.
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The other three branches are of frequencies much higher than the electron gyrofrequency,

which is much higher than the sample rate of the data used in this study. One special case

of the solutions of Equation (4.8) is that the shear Alfvén wave branch reduces to a trivial

solution (ω̃ = 0) when θ = π/2. This can be seen from the expression of a0, as in Equation

(4.9): When θ = π/2, a0 becomes zero, and thus ω̃ = 0 becomes a solution to Equation

(4.8).

Figure 4.6 shows the dispersion relations of the whistler branch and the shear Alfvén

wave branch for various θ. As θ goes from 0◦ (parallel propagation) to nearly 90◦ (perpen-

dicular propagation), the low-frequency part (ω/Ωi < 1) of the whistler branch, namely, the

MHD fast mode, is nearly constant, whereas the high-frequency part (ω/Ωi) of the whistler

branch shifts downward in frequency, with the stop band of the branch moving from the

electron gyrofrequency Ωe to the lower hybrid frequency (ωLH). On the other hand, as θ

increases, the shear Alfvén wave branch generally shifts downward but remains almost un-

changed when θ < 45◦; the stop band of the branch remains at the ion gyrofrequency Ωi

except when θ is very close to 90° as shown in Figure 4.6(h).

4.5.2 Component ratio

Given a solution of the dispersion relation (4.8), one cannot determine the absolute

value of the eigenvector δE from Equation (4.4) since the equation is homogeneous. However,

one can express the eigenvector in terms of one component. For example, one can express

δE in terms of δEx, i.e., δE = (δEx, c1δEx, c2δEx), where c1 and c2 are determined from

Equation (4.4). Then, one can obtain δB from Faraday’s law:

k× δE = ωδB. (4.14)

Since the ratios between any two components from δE and δB can be determined,

spectral behavior comparisons of δE and δB between observations and cold-plasma results

can be achieved by taking component ratios. The underlying assumption of such comparisons
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Figure 4.6: Dispersion relations of the whistler branch (red) and the shear Alfvén wave
branch (blue) for various θ in the two-species system. The electron gyrofre-
quency (Ωe), ion plasma frequency (ωpi), lower hybrid frequency ωLH , and ion
gyrofrequency (Ωi) are indicated by the horizontal dashed lines.
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is that the component ratios of normal plasma modes are sustained even when the waves

are in a nonlinear stage, despite the fact that the ratios are calculated from a linear theory.

Chapter 3 provides supporting cases to this assumption. As shown in Figures 3.11(b) and

3.12(b), the dispersion relations derived from the nonlinear stages of the simulations match

the linear-analysis results quite well.

Figure 4.7 shows the behavior of |δEx/δBy| as a function of frequency for various θ for

the two-species system. According to Faraday’s law, one has∣∣∣∣δExδBy

∣∣∣∣ =

∣∣∣∣ ω

k cos θ
+ tan θ

δEz
δBy

∣∣∣∣ . (4.15)

As shown later, δEz (or δE‖) is generally negligible except when the frequency is close to the

ion or the electron gyrofrequency. Therefore, the second term on the right-hand side of Equa-

tion (4.15) is generally negligible except when θ is close to π/2 (i.e., quasi-perpendicular)

or when the frequency is close to the ion or the electron gyrofrequency (i.e., cyclotron reso-

nance). Therefore, |δEx/δBy| is generally a good estimate of the phase velocity ω/k except for

quasi-perpendicular propagation or cyclotron resonance. The spectral behavior of |δEy/δBx|

is nearly identical to that of |δEx/δBy| in the frequency range shown in Figure 4.7.

Figure 4.8 shows the behavior of |δB‖/δB⊥| as a function of frequency for various θ

in the two-species system. For quasi-parallel propagation, i.e., θ ≈ 0, one has δB‖ ≈ 0 for

both the whistler branch and the shear Alfvén wave branch, as shown in Figure 4.8(a). As

θ increases, the importance of δB‖ relative to δB⊥ generally increases; the whistler branch

shows a transition of |δB‖/δB⊥| around the ion gyrofrequency.

Figure 4.9 shows the behavior of |δE‖/δE⊥| as a function of frequency for various θ

in the two-species system. In general, δE‖ is much less than δE⊥ except when frequency

is very close to the ion gyrofrequency for the shear Alfvén wave branch or to the electron

gyrofrequency for the whistler branch. The whistler branch behaves similarly to the shear

Alfvén wave branch when the frequency approaches to the electron gyrofrequency, namely,

|δE‖/δE⊥| increases rapidly with the increase of the frequency.
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Figure 4.7: Behavior of |δEx/δBy| as a function of frequency for various θ in the two-species
system, compared to the phase velocity (ω/k). The red solid (|δEx/δBy|) and
dashed (ω/k) lines correspond to the whistler branch, whereas the blue lines
correspond to the shear Alfvén wave branch. Both |δEx/δBy| and ω/k are nor-
malized with the Alfvén speed vA.
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Figure 4.8: Behavior of |δB‖/δB⊥| as a function of frequency for various θ in the two-species
system. The red line corresponds to the whistler branch, whereas the blue line
corresponds to the shear Alfvén wave branch.
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Figure 4.9: Behavior of |δE‖/δE⊥| as a function of frequency for various θ in the two-species
system. The red line corresponds to the whistler branch, whereas the blue line
corresponds to the shear Alfvén wave branch.
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4.6 Comparisons Between Observations and Cold-Plasma Results

4.6.1 δEx/δBy

Figure 4.10 shows the spectral behavior of observed δEx/δBy compared to cold-plasma

results. Chaston et al. [2008] presented a similar comparison between the observed δEx/δBy

and the local inertial Alfvén wave dispersion in a study of the turbulent Alfvénic au-

rora. The average of the observations is done in logarithm scale, namely, Avg[δEx/δBy] =

exp[ 1
N

∑N ln(δEx/δBy)], where Avg[ ] stands for the average operation. This average oper-

ation has the advantage of reducing the significance of extreme values. From the two-species

system with θ = 45◦, the two dashed lines in Figure 4.10 serve as intermediate represen-

tatives of cold plasma results. (The choice of θ = 45◦ is not an optimized one but rather

an intermediate one between parallel and perpendicular propagations.) In general, the ratio

δEx/δBy increases as frequency increases, especially for f/fci & 0.1. The spectral behavior

of the observed δEy/δBx is nearly identical to that of the observed δEx/δBy.

In the low-frequency regime (f/fci . 0.1), δEx/δBy is close to the Alfvén speed for

the strong-fluctuation subsets as shown by the black and red solid lines in Figure 4.10. As

shown in Figure 4.7, the shear Alfvén wave branch has δEx/δBy close to vA in this frequency

regime for all propagation angles except for quasi-perpendicular propagation; the whistler

branch manifests similar behavior for small θ. Therefore, based on cold plasma results, the

strong-fluctuation observations suggest that the electromagnetic energy in the plasma sheet

likely lies primarily on the shear Alfvén wave branch or the low-θ whistler branch. In the

same frequency regime, δEx/δBy is close to the half Alfvén speed for the weak-fluctuation

subsets as shown by the blue and cyan solid lines in Figure 4.10. Such a low value of δEx/δBy

is not expected based on the cold plasma results. Although kinetic effects are not accounted

for in the cold plasma results, they are not expected to play an important role in such a

low frequency regime. Measurement errors are relatively significant in this low-frequency

regime for weak fluctuations; thus, they may be responsible for such a low value of δEx/δBy.
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Nevertheless, the nature of this result is not certain and under further investigation.

In the higher-frequency regime (f/fci & 0.1), the weak-fluctuation averages (the blue

and cyan solid lines in Figure 4.10) roughly follow the whistler branch, suggesting that the

turbulent electromagnetic fields of weak fluctuations in the plasma sheet with distance 8–

30 RE to the Earth can be roughly treated as a superposition of linear normal-mode cold

plasma waves. However, for strong fluctuations, the observed δEx/δBy grows much faster

than that of the θ = 45◦ whistler branch. For cold plasma results to be able to account for

the observed values of δEx/δBy in this frequency regime, θ must approach 90◦ rapidly as

frequency increases, which is unlikely for the observations. Instead, it is likely that kinetic

effects become more and more important for strong fluctuations as frequency increases in

the regime f/fci & 0.1 and the kinetic effects primarily produce electrostatic waves so that

the average of the observed δEx/δBy increases much faster than the cold plasma result.

4.6.2 δB‖/δB⊥

While δE can be due to electrostatic waves or electromagnetic waves or both, δB is

only due to electromagnetic waves. The ratio δB‖/δB⊥ provides a means to examine the

electromagnetic waves in the observations. Figure 4.11 shows the spectral behavior of the

observed δB‖/δB⊥ averaged over the four subsets, respectively. The observed curves of

δB‖/δB⊥ of the four subsets generally lie between the corresponding theoretical curves from

the two-species cold plasma system with θ = 15◦ and θ = 75◦, respectively. Therefore, there

always exist positive coefficients c1 and c2 satisfying c1 + c2 = 1, such that a superposition

given by

δB‖
δB⊥

∣∣∣∣
observed

= c1
δB‖
δB⊥

∣∣∣∣
θ=15◦

+ c2
δB‖
δB⊥

∣∣∣∣
θ=75◦

(4.16)

can be achieved for a given frequency. The right column of Figure 4.11 shows the spectral

behavior of the superposition coefficients c1 (the black line) and c2 (the red line), which are

moving-averaged over 200 frequency bins.
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Figure 4.11: Left column: Spectral behavior of the observed δB‖/δB⊥ (black) with a fit from
the two-species cold plasma system (red). Right column: The superposition
coefficients that generate the fit on the left column according to Equation (4.16).
The four rows correspond to the four subsets. The frequency is normalized by
the ion gyrofrequency.
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The left column of Figure 4.11 shows that the spectral behavior of δB‖/δB⊥ is similar

between r < 15 RE and r > 15 RE for strong and weak fluctuations, respectively, but it is

significantly different between weak and strong fluctuations. The spectral behavior of the

coefficients c1 and c2 as shown on the right column of Figure 4.11, on the other hand, are

generally similar for the four subsets, except that c2 approaches a larger value for strong fluc-

tuations than for weak fluctuations as frequency increases. c1 and c2 measure the importance

of near-parallel waves and near-perpendicular waves, respectively. The general behavior of

c1 and c2 as shown in Figure 4.11 suggests that the propagation of the electromagnetic waves

are primarily near parallel for f/fci < 1 and becomes near perpendicular for f/fci & 10.

However, cold-plasma theory is not able to explain or verify this result; instead, kinetic the-

ory is needed. One possibility is that, given the conditions in the plasma sheet, near-parallel

waves are less damped for f/fci < 1, whereas near-perpendicular waves are less damped for

f/fci & 10.

4.7 Discussion

Two major pieces of physics are missing in the cold plasma model: nonlinearity and

kinetic effects. Thus, the findings from comparing cold-plasma results and turbulence obser-

vations are only suggestive but not conclusive. Nevertheless, one aspect of the importance of

this study is that the spectral results from the cold-plasma theory can serve as a baseline to

be compared with turbulence spectra from observations and simulations. Such comparisons

can help identify the importance of nonlinear and/or kinetic effects.

The deviation between the cold plasma result and the observations occurs roughly at

the ion gyrofrequency as shown in Figure 4.10. Based on the dispersions shown in Figure

4.6, f ∼ fci corresponds to k ∼ di for the whistler branch. In the plasma sheet, di and ρi

(ion gyroradius) are both on the order of 100 km. Since di is included in the cold plasma

model, it is likely that ρi, rather than di, is the critical scale, below and around which kinetic

effects become generally important.
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The distance conditions r < 15 RE and r > 15 RE do not have significant effects for the

spectral behaviors of δEx/δBy and δB‖/δB⊥ as shown in Figures 4.10 and 4.11, respectively.

In the plasma sheet, as the distance to the Earth goes from ∼10 RE to ∼30 RE, the plasma

beta (β) goes from a intermediate level (β ∼ 1) to a high-beta level (β ∼ 10). Due to

the connection between the distance and the plasma beta, the insignificance of distance to

the spectral behaviors of δEx/δBy and δB‖/δB⊥ suggests that the plasma beta does not

have a significant impact on the spectral behaviors of turbulent electric and magnetic fields

in the plasma sheet. The insignificance of plasma beta may also suggest that the observed

spectral results bear some universal spectral features of turbulent electric and magnetic fields

in plasmas. Borovsky and Funsten [2003] proposed that “turbulence in a box” would be a

better description of the plasma sheet turbulence compared to the effectively boundary-free

solar wind turbulence. Therefore, one further step to verify the potential universality of these

findings, such as the propagation angle changes from low frequencies to high frequencies as

shown in Figure 4.11, would be applying the same analysis to electric and magnetic field

measurements in the solar wind.

4.8 Summary

A statistical study of turbulent electric and magnetic fields in the Earth’s plasma sheet

is presented in this chapter. Compared to previous works, it includes statistical features

of turbulent electric fields, which are not previously addressed, and an extensive frequency

coverage from f < fci (MHD scales) to f > fci (kinetic scales). The cold plasma model is

used to help understand the observed spectral features of δE and δB, which is an original

approach for studying turbulence in plasmas.

To sum up, the statistical features of turbulent electric and magnetic fields in the

Earth’s plasma sheet include:

• The amplitudes of electric field perturbations generally decrease as the distance to
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the Earth increases;

• strong field-aligned Poynting flux is predominantly earthward in the near-Earth

plasma sheet;

• the slopes of electric field spectra are generally smaller (or flatter) than those of

magnetic field spectra;

• the magnetic field spectra turn steeper near the ion gyrofrequency as frequency

increases;

• kinetic effects become generally important for strong fluctuations when f & fci based

on the observations of δEx/δBy; and

• near-parallel propagation and near-perpendicular propagation dominate for f . fci

and f & 10fci, respectively.



Chapter 5

Future Work

5.1 Electron Phase-Space Holes

As demonstrated in Chapter 2, electromagnetic EHs likely have large spatial sizes (tens

of the local Debye length) and carry strong potentials (comparable to the local electron

temperature), as opposed to sizes of a few Debye length and potentials much less than the

local electron temperature from previous observations [Franz et al., 2005]. These features

indicate that electromagnetic EHs may play an important role in the plasma sheet. To

further our understanding of electromagnetic EHs, a statistical study of electromagnetic

EHs is needed. THEMIS has accumulated a large data set from four tail seasons, each

roughly four months long. Such a large data set offers an excellent opportunity for that

study. The following questions can be addressed by the proposed statistical study.

(1) What are the statistical features of the electromagnetic EH properties, including their

velocities, sizes, potentials, propagation directions (earthward or anti-earthward),

and observed locations in the plasma sheet? This work will be valuable for deter-

mining the generation mechanism of electromagnetic EHs and assessing their effects

in the plasma sheet.

(2) What large-scale phenomena are associated with the electromagnetic EHs in the

plasma sheet and how are they related? For instance, our preliminary results show

that the electromagnetic EHs are often associated with Bursty Bulk Flows (BBFs)
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and enhanced magnetic perturbations with time scales much longer than those of the

electromagnetic EHs. How often and in what circumstances are the electromagnetic

EHs associated with BBFs and enhanced magnetic perturbations?

(3) Observations have shown that electromagnetic EHs and DLs are sometimes adjacent

to each other. This provokes the question: How are electromagnetic EHs and DLs

related?

5.2 The Lunar Wake

In summer 2011, both spacecraft of the ARTEMIS mission were inserted into a lunar

orbit. With the comprehensive package of field and plasma instruments aboard, this mission

opens a great opportunity to study solar wind interactions with the lunar wake. The following

questions can be addressed by a systematic survey of lunar-wake observations.

(1) What kinetic processes are happening during the refilling of solar wind plasmas into

the lunar wake? How important are they?

(2) How does the lunar wake interact with solar wind activities? Take solar-wind re-

connection for example. It is well known that reconnection outflows propagate at

Alfvén speed. Due to the large density gradient, the Alfvén speed changes dramati-

cally in the lunar wake. What can we learn about solar-wind reconnection from that

interaction?

The solar wind interaction with the lunar wake is a natural example of plasma expan-

sion into a vacuum or a more tenuous plasma. Therefore, the proposed research not only

can further our understanding of this interaction, but also can shed light on other plasma-

obstacle interactions, such as those with space vehicle wakes, the Venusian wake, and the

wake of Titan.
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5.3 Turbulence

In Chapter 4, a framework is sketched to use linear theory to study turbulence in plas-

mas, namely, to compare spectral behaviors of field component ratios between linear theory

and observations. The cold plasma model is explored in Chapter 4 under this framework.

In the future, it will be interesting to see the results from a kinetic model (e.g., Stix [1992],

p.262).

In low frequency range, Chapter 4 shows a consistency between observations and linear

theory with field component ratios. However, the frequency range of this work does not cover

an extensive range in the MHD regime. Therefore, it will be worthwhile to extend the study

further into the MHD regime and see whether such a consistency exists in that regime.
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Appendix A

The THEMIS mission and the ARTEMIS mission

The THEMIS mission [Angelopoulos , 2008] initially consisted of five identical, spinning

spacecraft in terrestial orbits with various apogees. In late 2009, the two outmost spacecraft

were directed to lunar orbits and formed the ARTEMIS mission [Angelopoulos , 2010]. In

terms of instrumentation, the two missions are identical.

Each of the THEMIS/ARTEMIS spacecraft carries a comprehensive package of field

and plasma instruments, including an electric field instrument (EFI) [Bonnell et al., 2008],

fluxgate magnetometer (FGM) [Auster et al., 2008], search coil magnetometer (SCM) [Roux

et al., 2008], electrostatic analyzer (ESA) [McFadden et al., 2008], and solid state telescope

(SST). Figure A.1 shows a schematic diagram of the spacecraft with all the instruments

labelled.

A.1 The Orbits of THEMIS Spacecraft

The orbits of the five THEMIS spacecraft are highly elliptical and roughly in the ecliptic

plane around the Earth. Table A.1 lists main orbit parameters of the five spacecraft, where

the apogees and perigees are in units of Earth radii (RE). As shown in Table A.1, THEMIS

spacecraft can be referred to by a letter or by a number. For instance, THEMIS A can also

be referred as THEMIS probe 5 (P5). Due to the apogee difference, THEMIS A, D, and

E are known as inner probes, whereas THEMIS C and B are known as outer probes. The

five spacecraft line up at apogee approximately every four days. The apogees slowly rotate
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around the Earth so that the orbits can cover nightside, duskside, dayside, and dawnside of

the Earth’s magnetosphere. Figure A.2 illustrates the THEMIS constellation configuration

in the nightside. Figure A.3 shows example orbits of THEMIS spacecraft in different regions

of the magnetosphere.

Table A.1: Orbit parameters of THEMIS spacecraft

Spacecraft Apogee [RE] Perigee [RE]
THEMIS A (P5) 10 1.5
THEMIS E (P4) 12 1.5
THEMIS D (P3) 12 1.5
THEMIS C (P2) 20 1.2
THEMIS B (P1) 30 1.3

A.2 The Orbits of ARTEMIS Spacecraft

The THEMIS B and C spacecraft were directed to the Moon after the prime phase

of THEMIS was successfully completed in September 2009. The maneuver primarily took

place in the equatorial plane. There are four main phases of ARTEMIS orbits:

• Translunar injections (TLI): Roughly from October 2009 to October 2010. The first

lunar wake flyby of ARTEMIS P1 occurred during this phase.

• P1(P2) at LL2(LL1): Roughly from October 2010 to January 2011. After TLI, the

ARTEMIS spacecraft entered Lissajous orbits around the Lagrange points of the

Earth-Moon system, where the Earth side point is labelled Lunar Lagrange point 1

(LL1) and the opposite one labelled LL2. Example orbits of this phase are shown in

Figure A.4(a).

• P1 and P2 both at LL1: Roughly from January 2011 to April 2011. Example orbits

of this phase are shown in Figure A.4(b).
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• In lunar orbit: Roughly from April 2011 to September 2012. Both ARTEMIS space-

craft are placed in stable equatorial, high-eccentricity orbits, of ∼100 km × ∼11 RL

altitude. Example orbits of this phase are shown in Figure A.5.
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The Electric Field Instrument (EFI) for THEMIS 305

Fig. 1 Schematic diagram of THEMIS spacecraft, including body- and boom mounted sensors

• Measure the 3D wave electric field from 1–60 Hz at times of substorm onset at 8–10 RE

radius in the magnetotail. This allows one to estimate the electric fields associated with
current disruption and interchange-like instabilities at the inner edge of the plasma sheet.

• Measure the 3D wave electric field at frequencies up to the local electron cyclotron fre-
quency in the radiation belts. This allows one to measure the electric fields associated
with the energization, scattering, and loss of energetic electrons in the outer radiation
belts (e.g. whistler-mode hiss, chorus, or electron cyclotron fundamentals or harmonics).

In addition to these instrument-specific measurement requirements, the THEMIS-EFI was
required to comply with the general environmental (radiation, thermal, shock, vibration,
acoustic), resource (mass, power), and compatibility (EMI/EMC, DC Magnetics, Electro-
static Cleanliness) requirements imposed at the mission level on THEMIS. The EFI team
itself imposed the Electrostatic Cleanliness requirement upon the mission, and that specifi-
cation (design, implementation, and verification) is detailed in an appendix to this article.

Figure A.1: Schematic diagram of THEMIS spacecraft. The six circled numbers label the six
EFI sensors. The x-y plane represents the spin plane of the spacecraft. (After
Bonnell et al. [2008].)
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


THEMIS answered longstanding fundamental questions concerning the nature of the 
substorm instabilities that abruptly and explosively release solar wind energy stored within the 
Earth’s magnetotail. The primary objectives of the mission were to 1) establish when and where 
substorms begin, 2) determine how the individual components of the substorm interact, 3) 
determine how substorms power the aurora, and 4) identify how local current disruption 
mechanisms couple to the more global substorm phenomena. THEMIS accomplished these tasks by 
employing 5 identically-instrumented spacecraft in carefully chosen orbits whose apogees line up 
once every 4 days over a dedicated array of ground observatories located in Canada and the 
northern United States. Three inner spacecraft ~10 Earth radii (RE) from Earth monitor current 
disruption onset, while two outer spacecraft at 20 and 30 RE remotely monitor plasma acceleration 
due to lobe flux dissipation. Magnetic field lines map phenomena occurring at the inner spacecraft 
to the ground arrays, where they can be observed as nightside auroral displays and geomagnetic 
perturbations. 

The five THEMIS spacecraft were placed in highly elliptical orbits where the spacecraft 
would line up at apogee every four days. The apogee rotated slowly around the Earth-Sun line to 
cover the dayside, dawnside, nightside, and duskside of the magnetosphere. Initially, right after 
launch, the 5 THEMIS spacecraft were lined up in the same orbit with perigee & apogee altitudes of 
1.07 x 15.4 Earth radii (Re). Orbital maneuvers were performed to achieve the mission orbits. The 
THEMIS mission orbits relative to the geomagnetic tail are illustrated in Fig. 1. The mission orbit 
parameters, moving from the outermost to innermost spacecraft, are: 
 
 * Probe 1: 1.3 x 30 Re 
 * Probe 2: 1.2 x 20 Re 
 * Probes 3 and 4: 1.5 x 12 Re 
 * Probe 5: 1.5 x 10 Re 
 

 
 

Fig. 1. THEMIS Constellation Configuration 
 

The THEMIS team has achieved the primary science objectives of the THEMIS mission. 
The extended science mission will keep the three innermost THEMIS spacecraft in elliptical Earth 
orbits and maneuver the two outermost spacecraft to the lunar regime. The two outermost spacecraft 
are now designated as ARTEMIS probes P1 and P2. The THEMIS team had long known that 
substantial orbit maneuvers would be necessary for the P1 and P2 spacecraft to avoid entering a 

Figure A.2: An artistic illustration of the THEMIS constellation configuration in the night-
side.
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Figure A.3: Example orbits in GSE x-y plane of THEMIS spacecraft in the (a) night side, (b)
dusk side, (c) day side, and (d) dawn side. The dates of the orbits are labelled
in the title of each panel. The locations of the bow shock and the magnetopause
are based on Peredo et al. [1995] and Shue et al. [1997], respectively.



111

2010/11/01 - 2010/12/30

-60 -40 -20 0 20 40 60
XSEL [RL]

-60

-40

-20

0

20

40

60

Y
S

E
L 

[R
L]

2010/11/01 - 2010/12/30

-60 -40 -20 0 20 40 60
XSEL [RL]

-60

-40

-20

0

20

40

60

Y
S

E
L 

[R
L]

LL1LL2

(a)

P1 (thb)
P2 (thc)

2011/02/01 - 2011/04/01

-60 -40 -20 0 20 40 60
XSEL [RL]

-60

-40

-20

0

20

40

60

Y
S

E
L 

[R
L]

LL1LL2

(b)

P1 (thb)
P2 (thc)

Figure A.4: Example Lissajous orbits in SEL x-y plane of ARTEMIS spacecraft. The SEL
coordinate system is defined such that the origin is at the center of the Moon, x
axis pointing to the Earth, z axis pointing northward normal to the orbit plane
of the Moon, and y axis completing the right-handed system. The dates of the
orbits are labelled in the title of each panel. The approximate locations of LL1
and LL2 are indicated by orange filled circles.
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Figure A.5: Example lunar orbits in SEL x-y plane of ARTEMIS spacecraft. The format is
similar to that in Figure A.4.



Appendix B

On Correcting THEMIS/ARTEMIS Vector Field Data for Eclipse Crossings

B.1 Introduction

Accurate spin rate and spin phase are required to de-spin vector field data, such as

magnetic field and flow velocity, of a spinning spacecraft. A common technique for deter-

mining the spin rate and the spin phase is to use the Sun as a reference, which is the case

for THEMIS/ARTEMIS. However, when the spacecraft is in an eclipse, the spacecraft loses

that spin reference. Even worse, the spacecraft is cooling due to thermal radiation in the

eclipse and its moment of inertia decreases due to thermal contraction. The spin rate of

the spacecraft thus increases because of the conservation of the angular momentum of the

spacecraft. Because no spin reference is available, an empirical spin rate is assumed during

an eclipse crossing, which is not generally accurate. Therefore, the de-spun vector field data

from the empirical spin rate are not accurate and must be corrected. This appendix provides

a method for that correction.

The method consists of three main steps. First, determine the time of an eclipse

crossing of the spacecraft. Second, correct the spin rate and spin phase of the spacecraft.

Third, correct vector field data using the corrected spin phase.

B.2 Determining Eclipse Time

To determine the time of an eclipse accurately, one needs the position of the spacecraft,

the position of the celestial body that causes the eclipse, and the position of the Sun. For
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THEMIS/ARTEMIS, one can use the routine thm load slp from the themis data analysis

software (TDAS) to get the position information of the Moon and the Sun. Once all the

position information is ready, determining the eclipse time is a simple geometry problem and

the details are omitted in this appendix.

B.3 Correcting Spin Rate and Spin Phase

The time-dependent behavior of the spin rate and the spin period of a spacecraft in an

eclipse is illustrated in Figure B.1.

t0 t1 t t0 t1 t

�(t)

��

��

�(t)

��

��

(a) Spin Rate (b) Spin Period

Figure B.1: An illustration of the time-dependent behavior of the (a) spin rate (ω(t)) and (b)
spin period (τ(t)) of a spacecraft in an eclipse, where t0 and t1 are the starting
and ending times of the eclipse respectively.

Although the cumulative error of spin phase is generally significant in shadow crossing,

the net change of the spin rate is generally small (less than 1% based on available lunar

shadow crossing as of April 11, 2012). In this method, the time-dependent relation of the

spin rate in an eclipse is approximated with a Taylor expansion as

ω(t) = ω0 + b(t− t0) + a(t− t0)2, (B.1)
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where the Taylor expansion is truncated at the second order, ω(t) is the time-dependent spin

period in the eclipse, t0 is the starting time of the eclipse, ω0 is the spin rate at t0, and a

and b are two parameters to be determined. Using the spin rate at the end of the shadow,

one has

b =
ω1 − ω0 − aT 2

T
, (B.2)

where T = t1 − t0 is the length of the eclipse, t1 is the ending time of the eclipse, and ω1 is

the spin rate at t1.

Because the spin rate should be increasing in an eclipse, one constraint on ω(t) is that

dω

dt
> 0. (B.3)

Moreover, the rate of the spin-rate increase should be decreasing in an eclipse because the

spacecraft temperature drops faster in the early stage of the eclipse than in the late stage.

Therefore, another constraint on ω(t) is that

d2ω

dt2
< 0. (B.4)

These two constraints lead to

−ω1 − ω0

T 2
< a < 0. (B.5)

Therefore, to fully determine the time-dependent relation of ω(t), one needs to find an

optimal a in the range of [(ω0 − ω1)/T
2, 0].

The spin phase is an integration of the spin rate based on the following relation

φ(t) = φ(t′0) +

∫ t

t′0

ω(t′)dt′. (B.6)

One measure of the optimization of a is to measure the spin phase difference between the

modelled spin phase based on Equations (B.1) and (B.6) and the measured spin phase in

a certain interval after the eclipse, for instance, one hour after the eclipse. The goal is to

find a value of a that minimizes that phase difference. An example algorithm for finding an

optimal a is illustrated in Figure B.2.
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Make array a[n] 
between amin and amax

amin=-(w1-w0)/T^2, amax=0,
n=20

Model spin rate for a[n]

Find index i of the smallest phase_diff[n]

amin = a[i-1], amax=a[i+1]Compute phase_diff[n] from a[n]

abs(phase_diff[i+1] - phase_diff[i-1])<1e-4?

aFinal = a[i]

End

Yes

No

Figure B.2: An algorithm for finding an optimal value of a for spin rate correction.

B.3.1 2π ambiguity issue of spin phase

Suppose the true spin phase is φ1 at t1, a0 is the optimal a for the true time-dependent

relation of the spin rate in an eclipse, and a0 + ∆a is a value of a that results in a spin phase

φ1 + 2nπ at t1 where n is an integer. Then it is impossible to tell which one models the true

time-dependent relation of the spin rate between a0 and a0 + ∆a based on the difference

between the modelled and measured spin phases after the shadow because the spin phase

is measured between 0 and 360 in degrees. One has to use extra information to determine

that.

However, this issue only occurs when the eclipse is too long. Suppose the effective

average spin rate is ω′, which satisfies ω′T = φ1 − φ0, where φ0 is the spin phase at t0. As
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shown Figure B.1(a), ω′ > (ω0 +ω1)/2. Suppose N1 = Tω1

2π
, and N2 = T (ω0+ω1)

4π
, and N is the

number of spins of the spacecraft in the shadow, then

N2 < N < N1. (B.7)

For any model of ω(t), if N1 −N2 < 1, the 2π ambiguity issue is resolved. Substituting the

expressions of N1 and N2 into N1 −N2 < 1, and using the relation ω = 2π/τ , one obtains

T <
2τ0τ1
τ0 − τ1

, (B.8)

where τ0 and τ1 are the spin period at t0 and t1 respectively. For THEMIS/ARTEMIS,

τ0 − τ1 . 0.01 s, and τ0, τ1 ≈ 3.52 s. Therefore, 2τ0τ1
τ0−τ1 ≈ 41 min. In other words, if the

shadow duration is less than 41 minutes, no 2π ambiguity of spin phase exists for any model

of ω(t).

The model of ω(t) as shown in Equation (B.1) has a better performance in terms

of resolving the 2π ambiguity issue than the general results shown above. By solving the

equation ∫ t1

t0

ω(t; a0 + ∆a)dt−
∫ t1

t0

ω(t; a0)dt = 2nπ, (B.9)

one has

∆a =
6nπ

T 3
. (B.10)

Because the value of a is bounded as shown in Equation (B.5), no 2π ambiguity of spin phase

translates to ∆a(n = 1) > ω1−ω0

T 2 , or

T <
3τ0τ1
τ0 − τ1

, (B.11)

which indicates that no 2π ambiguity issue exists for a shadow crossing less than 62 minutes.

This condition is better than the general one shown in Equation (B.8) because it allows

longer shadow crossings to avoid the 2π amiguity of spin phase.
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B.4 Correcting Vector Fields

Vector fields must be in a de-spun coordinate system to be useful for scientific pur-

poses. Once the spin period and spin phases are corrected in the shadow, correcting de-spun

vector fields is simply a problem of vector rotation. For THEMIS/ARTEMIS, one spinning

coordinate system is the spinning sun-sensor L-vector (SSL) coordinate system, and one

de-spun coordinate system is the de-spun, sun-pointing, L-vector (DSL) coordinate system.

The L-vector stands for the angular momentum vector of the spin. The Z axis of DSL is

identical to that of SSL and is along L-vector. The rotation from SSL to DSL is

XDSL = XSSL cosφ− YSSL sinφ (B.12)

YDSL = XSSL sinφ+ YSSL cosφ (B.13)

where φ is the spin phase. And the inverse rotation is

XSSL = XDSL cosφ+ YDSL sinφ (B.14)

YSSL = −XDSL sinφ+ YDSL cosφ. (B.15)

If the SSL data are available, one can use the corrected spin phase and the SSL data to get

the corrected DSL data with Equations (B.12) and (B.13). Another approach is to correct

the DSL data directly. Suppose X ′DSL, Y ′DSL, and φ′ are non-corrected data, and XDSL,

YDSL, and φ are corrected data. Then, one has

XDSL cosφ+ YDSL sinφ = X ′DSL cosφ′ + Y ′DSL sinφ′ (B.16)

−XDSL sinφ+ YDSL cosφ = −X ′DSL sinφ′ + Y ′DSL cosφ′, (B.17)

or

XDSL = X ′DSL cos(φ′ − φ) + Y ′DSL sin(φ′ − φ) (B.18)

YDSL = −X ′DSL sin(φ′ − φ) + Y ′DSL cos(φ′ − φ), (B.19)
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Fig. B.3 shows an example of the application of this method. The corrected magnetic

field was derived by rotating the corresponding SSL data, whereas the correction of flow

velocity used the second approach (Equations (B.18) and (B.19)). Comparing data after the

shadow, one can see that the corrected spin phase, magnetic field, and flow velocity match

the originally measured data quite well.

B.5 Discussion

Ideally, spacecraft temperature should be used to model ω(t). However, this piece of

information is not generally available for THEMIS/ARTEMIS. In addition, one may argue

that an exponential model may be more appropriate, such as the one used in Taylor [1968].

However, a simple exponential model, as in Taylor [1968], does not give a two-side bounded

parameter range, which makes it difficult to search for an optimized parameter. Moreover, it

does not have the advantage of allowing longer shadow crossings than the general situation

to avoid the 2π ambiguity issue of spin phase. Compared to the exponential model in Taylor

[1968], the method proposed in this appendix has the advantage of easy implementation and

allowance of longer shadow crossings to avoid the 2π ambiguity of spin phase.
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Figure B.3: An example of the correction of spin period, spin phase, magnetic field, and flow
velocity from ARTEMIS data. In the top two panels, the red lines are corrected
data, whereas the black lines are original data. The two vertical dashed lines
indicate the starting and the ending times of a lunar shadow crossing.



Appendix C

Solving 1D Kinetic Dispersion Equation with Mathematicar

This appendix describes a way to solve the 1D kinetic dispersion equation of an elec-

trostatic, unmagnetized plasma system.

Credit: This method was originally developed by Dr. David L. Newman at CU/CIPS.

C.1 Theory

The dispersion equation of a 1D, electrostatic, unmagnetized plasma system with N

species is

ε = 1 +
N∑
s=1

χs = 0, (C.1)

where χs is the susceptibility of the system, and

χs =
ω2
ps

k2

∫
L

∂vfs0
ω/k − vdv, (C.2)

where ωps =
(
ns0q2s
ε0ms

)1/2
is the plasma frequency of species s, ns0 the unperturbed density of

species s, fs0 the unperturbed distribution function of species s, ∂v = ∂/∂v, and L designates

the standard Landau contour.

C.1.0.1 Landau Contour

In the integral ∫
L

∂vfs0
ω/k − vdv, (C.3)
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there are two sources of singularity of the integrand, one being ω/k, the other being ∂vfs0.

The Landau contour is a contour that goes from −∞ to∞ along the real axis in the complex

v-plane but always goes underneath and around the singularity ω/k if ω/k has a non-positive

imaginary part in the complex v-plane. Figure C.1 illustrates the Landau contour in three

different situations.

Re[v]

Im[v]

Re[v]

Im[v]

Re[v]

Im[v]

/k

/k

/k

(a) (b) (c)

Figure C.1: An illustration of the Landau contour in three different situations.

The evaluation of the Landau contour integral, i.e., Equation (C.3), often invokes the

residue theorem, i.e.,: ∮
C

f(z)dz = 2πi
∑
k

Res(f ; zk), (C.4)

where C is a closed contour in counterclockwise direction enclosing a simply connected

domain, and zk are singularities in the domain enclosed by C. One way to evaluate the

Landau contour integral is to calculate the sum of residues of singularities of the integrand

in the lower half of the complex v plane (LHP) that excludes the resonant pole ω/k, i.e.,∫
L

∂vfs0
ω/k − vdv = −2πi

LHP∑
k

Res(
∂vfs0

ω/k − v ; vk), (C.5)

where the minus sign is due to the clockwise contour enclosing the LHP.
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C.1.0.2 Kappa distribution vs. Maxwellian distribution

Good discussions on kappa distributions can be found in Summers and Thorne [1991];

Hau and Fu [2007]; Pierrard and Lazar [2010].

The one-dimensional kappa distribution function is written as

fκ(v) =
1√

π(2κ− 3)vt

Γ(κ)

Γ(κ− 1/2)

(
1 +

(v − u)2

(2κ− 3)v2t

)−κ
, (C.6)

where vt is the thermal velocity of the distribution, u the drifting velocity of the distribu-

tion, and Γ(x) the Gamma function. In order to have a finite second moment, κ > 3/2 is

required for fκ in Equation (C.6). Thermal velocity vt is defined as the second moment of a

distribution and temperature is defined as T = mv2t in this appendix.

The one-dimensional Maxwellian distribution function reads

fM(v) =
1

(2πv2t )
1/2

exp

[
−(v − u)2

2v2t

]
. (C.7)

One difference between kappa distributions and Maxwellian distributions is that kappa

distributions have heavy tails. Figure C.2 shows a 1D kappa distribution and a 1D Maxwellian

distribution with identical thermal velocity where fκ is clearly larger than fM when |v| &

2.5vt. However, the tail of a distribution is only important for high-order moments. For

a 1D plasma system, most often only low-order moments are important, such as density,

velocity, and temperature. Therefore, most often one can use a kappa distribution as a good

approximation to a Maxwellian distribution.

C.1.0.3 Calculation of the Landau contour integral for a specific distribution

It is relatively easy to calculate the Landau contour integral for a kappa distribution.

Suppose the undisturbed distribution of species s is

fs0(v) =
1√

π(2κs − 3)vts

Γ(κs)

Γ(κs − 1/2)

(
1 +

(v − us)2
(2κs − 3)v2ts

)−κs
. (C.8)

The singularity due to ∂vfs0 in the LHP is v = us − i
√

2κs − 3vts. Using Mathematica, it is

easy to evaluate the residue of ∂vfs0
ω/k−v at this singularity.
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Figure C.2: An illustration of heavy tails of a kappa distribution (κ = 10) compared to a
Maxwellian distribution.

On the other hand, the Maxwellian distribution is a limit of the kappa distribution as

κ→∞, namely,

lim
κ→∞

fκ(v) =
1

(2πv2t )
1/2

exp

[
−(v − u)2

2v2t

]
= fM . (C.9)

Therefore, the LHP singularity goes to infinity for fM , which makes it rather difficult to eval-

uate the residue at that singularity. Therefore, it is easier to use kappa distributions

for the calculation of the Landau contour integral.

C.1.0.4 The Nyquist criterion for instability

Denote

Rs = ω2
ps

∫
L

∂vfs0
ω/k − vdv, (C.10)

R =
N∑
s=1

Rs, (C.11)

ζ = ω/k. (C.12)

Then, R is a function of ζ alone, i.e., R = R(ζ). R(ζ) is a characteristic function of a plasma

system, and is connected to the susceptibility of the system (χ) by the relation

R = k2χ. (C.13)
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The Nyquist criterion states that as ζ goes in the counterclockwise direction along a

closed contour, which goes from −∞ to +∞ along a straight line infinitely close to but

above the real axis and completes the contour by circling around the upper half plane of the

ζ-plane as shown in Figure C.3(a), the number of unstable modes of the system is equal to

how many times that the corresponding −R(ζ) contour crosses the positive real axis in the

R-plane. Figure C.3(b) shows an example of such a contour in the R-plane, which indicates

that there is one unstable mode of the corresponding plasma system. Note that an infinite

ζ always maps to the origin in the R-plane.

(a) -plane Im[ ]

Re[ ]

Im[R]

Re[R]

(b) R-plane

O O

Figure C.3: An example mapping from ζ-plane to R-plane for the Nyquist criterion for in-
stability.

A rigorous derivation of the Nyquist criterion for instability can be found in Penrose

[1960]. With the Nyquist criterion, one can easily find the number of unstable modes in the

system by plotting a Nyquist diagram like the one in Figure C.3(b).

C.2 Method

The ultimate goal of solving a dispersion equation is to obtain ωr(k) and γ(k) where

ωr and γ are the real part and imaginary part of ω respectively. The Mathematica function

FindRoot is used for this goal. One prerequisite of FindRoot is to specify a good initial

guess, which is achieved graphically in this method.
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Utilizing R(ζ), the dispersion relation can be written as:

R(ζ) = −k2. (C.14)

Therefore, the solution to the dispersion relation corresponds to intersections of

Im[R(ζ)] = 0 (C.15)

and

Re[R(ζ)] = −k2 (C.16)

in the ζ-plane. To find such intersections in the ζ-plane, draw a contour of Im[R(ζ)] for value

0, and a contour of Re[R(ζ)] for a specific k. Then, use the intersections as initial guesses

to solve Equations (C.15) and (C.16) with FindRoot.

A general work flow can be the following:

(1) Make generic definitions of fs0 and Rs.

(2) Define R for a specific system.

(3) Plot a Nyquist diagram to identify the number of unstable modes in the system.

(4) Plot contours of Im[R] and Re[R] to find initial guesses for deriving ωr(k) and γ(k).

(5) Solve Equations (C.15) and (C.16) for ωr(k) and γ(k) with FindRoot respectively.

C.3 Implementation

C.3.1 Normalization

It is often desired to normalize the equation when solving a dispersion equation. Nor-

malization not only converts the equation into a simpler form to solve, but also makes it more

straightforward to interpret the solution. In this case, the following normalization scheme is
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chosen:

k = k̃
1

λD1

, (C.17)

ω = ω̃ωp1, (C.18)

v = ṽvt1, (C.19)

f = f̃
1

vt1
, (C.20)

where the first species (s = 1) is a reference species, and λD1 =
√

ε0m1v2t1
n1,0q21

the Debye length

of the first species. With this normalization scheme, Equation (C.1) becomes

1 +
1

k̃2

N∑
s=1

αs

∫
L

∂ṽf̃s0

ω̃/k̃ − ṽ
dṽ = 0, (C.21)

where αs = m1

ms

ns0

n1,0

q2s
q21

.

In this method, kappa distributions are used. The normalized kappa distribution func-

tion of species s is

f̃s0(v) =
1√

π(2κs − 3)ṽts

Γ(κs)

Γ(κs − 1/2)

(
1 +

(ṽ − ũs)2
(2κs − 3)ṽ2ts

)−κs
, (C.22)

where ṽts = vts/vt1 and ũs = us/vt1.

C.3.2 Implementation in Mathematica

Mathematica source codes are attached in the following.
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General Definitions

ü Define kappa distribution function

In[1]:= fkappa@v_, k_, vt_, u_D :=

I1 ë SqrtAp H2 k - 3L vt2EM *
Gamma@kD

Gamma@k - 1 ê 2D
ì 1 +

Hv - uL2

H2 k - 3L vt2

k

;

ü Define Landau contour integral

In[2]:= landauInt@zr_, zi_, k_, vt_, u_D := -2 p Â *

Residue@D@fkappa@v, k, vt, uD, vD ê Hzr + Â * zi - vL, 8v, u - Â * Sqrt@2 k - 3D * vt<D;

ü Define Rs

In[3]:= Rs@zr_, zi_, k_, vt_, u_, a_D := a * landauInt@zr, zi, k, vt, uD;

Langmuir Waves
This part demonstrates the dispersion relation of Langmuir waves. The plasma system consists of only one species, an electron
species. Ion dynamics is ignored.

ü Define R of the system

In[4]:= k = 4; u = 0; vt = 1; a = 1;
ftot@v_D := fkappa@v, k, vt, uD;
Rtot@zr_, zi_D := Rs@zr, zi, k, vt, u, aD;

In[11]:= Plot@ftot@vD, 8v, -5, 5<, Frame Ø True,
FrameLabel Ø 8v, f, "System distribution function"<D

Out[11]=
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ü Plot the Nyquist diagram

In[13]:= zmin = -10; zmax = 10; npts = 5000; dz = Hzmax - zminL ê Hnpts - 1.L;
Ntable = Table@80, 0<, 8npts<D;
For@i = 1, i § npts, i++,
ztmp = zmin + Hi - 1L * dz;
Ntable@@i, 1DD = -Re@Rtot@ztmp, 0DD;
Ntable@@i, 2DD = -Im@Rtot@ztmp, 0DD;

D

In[18]:= ListLinePlotANtable, PlotRange Ø All, Frame Ø True,
FrameLabel Ø 9"-Re@k2cD", "-Im@k2cD", "Nyquist diagram of the system"=E

Out[18]=
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ü Find initial guess

In[19]:= nx = 100; ny = 100; zrmin = -12; zrmax = 12; zimin = -10; zimax = 10;
imPlot = ContourPlot@Im@Rtot@zr, ziDD, 8zr, zrmin, zrmax<, 8zi, zimin, zimax<,

PlotPoints Ø 8nx, ny<, ContourLabels Ø None, Contours Ø 80<,
ContourShading Ø False, MaxRecursion Ø 2, ContourStyle Ø 8Black<D;

rePlot = ContourPlot@Re@Rtot@zr, ziDD, 8zr, zrmin, zrmax<, 8zi, zimin, zimax<,
PlotPoints Ø 8nx, ny<, ContourLabels Ø None, Contours Ø 8-0.01<,
ContourShading Ø False, MaxRecursion Ø 2, ContourStyle Ø 8Red<D;

In[26]:= H* Overview *L
Show@8imPlot, rePlot<, PlotRange Ø All,
GridLines Ø Automatic, FrameLabel -> 8"Re@zD", "Im@zD",

"Contours of Im@RD and Re@RD HBlack: Im@RD=0; Red: Re@RD=-0.01"<D

2   dispersion.nb
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In[27]:= H* Zoom in *L
Show@8imPlot, rePlot<, PlotRange Ø 8810, 10.2<, 8-0.05, 0<<,
GridLines Ø Automatic, FrameLabel -> 8"Re@zD", "Im@zD",

"Contours of Im@RD and Re@RD HBlack: Im@RD=0; Red: Re@RD=-0.01"<D

Out[27]=
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Initial guess for Langmuir waves: zr=10.16, zi=-0.0026.

4   dispersion.nb
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ü Obtain  wr (k) and g(k)

In[28]:= H*Parameters*L
kmin = 0.001; kmax = 1.0 + kmin; nk = 100; zrGuess = 10.16; ziGuess = -0.0026;
H*Main body of finding wHkL and gHkL*L
H**inherit parameters**L
k1 = kmin; k2 = kmax; npts = nk;
H** initialize tables for storing wHkL and gHkL **L
wkTable = Table@8k1 + Hk2 - k1L * Hi - 1.L ê Hnpts - 1.L, 0<, 8i, 1, npts<D;
gkTable = Table@8k1 + Hk2 - k1L * Hi - 1.L ê Hnpts - 1.L, 0<, 8i, 1, npts<D;
H** start main loop **L
Do@ H*start*L

kCurrent = wkTable@@i, 1DD; H* update k *L
H*Find w and g for a given k*L
newRoot = FindRoot@8Re@Rtot@zr, ziDD ã -kCurrent^2, Im@Rtot@zr, ziDD ã 0<,

8zr, zrGuess<, 8zi, ziGuess<D;
H*Store w and g *L
wkTable@@i, 2DD = kCurrent * zr ê. newRoot;
gkTable@@i, 2DD = kCurrent * zi ê. newRoot;
H*update guess by taking last root*L
zrGuess = zr ê. newRoot; ziGuess = zi ê. newRoot, 8i, 1, npts<H*loop index*LD;

H*end of main loop*L

In[36]:= ListLinePlot@8wkTable, gkTable<, PlotStyle Ø 8Blue, Red<, Frame Ø True,
FrameLabel Ø 8"klD1", "", "Blue: w-k relation; Red: g-k relation"<D

Out[36]=
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Two-Stream Instability

ü Define R of the system

In[37]:= k = 4; u1 = 0; vt1 = 1; u2 = 5; vt2 = 1; a1 = 1; a2 = 1;
ftot@v_D := fkappa@v, k, vt1, u1D + fkappa@v, k, vt2, u2D;
Rtot@zr_, zi_D := Rs@zr, zi, k, vt1, u1, a1D + Rs@zr, zi, k, vt2, u2, a2D;

dispersion.nb   5
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In[40]:= Plot@ftot@vD, 8v, -5, 10<, Frame Ø True,
FrameLabel Ø 8v, f, "System distribution function"<D

Out[40]=
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ü Plot the Nyquist diagram

In[41]:= zmin = -10; zmax = 10; npts = 5000; dz = Hzmax - zminL ê Hnpts - 1.L;
Ntable = Table@80, 0<, 8npts<D;
For@i = 1, i § npts, i++,
ztmp = zmin + Hi - 1L * dz;
Ntable@@i, 1DD = -Re@Rtot@ztmp, 0DD;
Ntable@@i, 2DD = -Im@Rtot@ztmp, 0DD;

D

In[44]:= ListLinePlotANtable, PlotRange Ø All, Frame Ø True,
FrameLabel Ø 9"-Re@k2cD", "-Im@k2cD", "Nyquist diagram of the system"=E

Out[44]=
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6   dispersion.nb
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ü Find initial guess

In[45]:= nx = 100; ny = 100; zrmin = -15; zrmax = 20; zimin = -5; zimax = 5;
imPlot = ContourPlot@Im@Rtot@zr, ziDD, 8zr, zrmin, zrmax<, 8zi, zimin, zimax<,

PlotPoints Ø 8nx, ny<, ContourLabels Ø None, Contours Ø 80<,
ContourShading Ø False, MaxRecursion Ø 2, ContourStyle Ø 8Black<D;

rePlot = ContourPlot@Re@Rtot@zr, ziDD, 8zr, zrmin, zrmax<, 8zi, zimin, zimax<,
PlotPoints Ø 8nx, ny<, ContourLabels Ø None, Contours Ø 8-0.01<,
ContourShading Ø False, MaxRecursion Ø 2, ContourStyle Ø 8Red<D;

In[48]:= H* Save result *L
twostreamImPlot = imPlot;
twostreamRePlot = rePlot;

In[50]:= H* Overview *L
Show@8twostreamImPlot, twostreamRePlot<, PlotRange Ø All,
GridLines Ø Automatic, FrameLabel -> 8"Re@zD", "Im@zD",

"Contours of Im@RD and Re@RD HBlack: Im@RD=0; Red: Re@RD=-0.01"<D

dispersion.nb   7
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In[51]:= H* Zoom in for the Langmuir wave branch *L
Show@8twostreamImPlot, twostreamRePlot<, PlotRange Ø 8817, 18<, 8-0.002, -0.0005<<,
GridLines Ø Automatic, FrameLabel -> 8"Re@zD", "Im@zD",

"Contours of Im@RD and Re@RD HBlack: Im@RD=0; Red: Re@RD=-0.01"<D

Out[51]=
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In[52]:= H* Zoom in for the beam mode branch *L
Show@8twostreamImPlot, twostreamRePlot<, PlotRange Ø 882, 3<, 81.8, 1.82<<,
GridLines Ø Automatic, FrameLabel -> 8"Re@zD", "Im@zD",

"Contours of Im@RD and Re@RD HBlack: Im@RD=0; Red: Re@RD=-0.01"<D

Out[52]=
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ü Obtain  wr (k) and g(k)

In[53]:= H* Langmuir wave *L
H*Parameters*L
kmin = 0.001; kmax = 0.7 + kmin; nk = 200; zrGuess = 17.38; ziGuess = -0.00065;
H*Main body of finding wHkL and gHkL*L
H**inherit parameters**L
k1 = kmin; k2 = kmax; npts = nk;
H** initialize tables for storing wHkL and gHkL **L
wkTable = Table@8k1 + Hk2 - k1L * Hi - 1.L ê Hnpts - 1.L, 0<, 8i, 1, npts<D;
gkTable = Table@8k1 + Hk2 - k1L * Hi - 1.L ê Hnpts - 1.L, 0<, 8i, 1, npts<D;
H** start main loop **L
Do@ H*start*L

kCurrent = wkTable@@i, 1DD; H* update k *L
H*Find w and g for a given k*L
newRoot = FindRoot@8Re@Rtot@zr, ziDD ã -kCurrent^2, Im@Rtot@zr, ziDD ã 0<,

8zr, zrGuess<, 8zi, ziGuess<D;
H*Store w and g *L
wkTable@@i, 2DD = kCurrent * zr ê. newRoot;
gkTable@@i, 2DD = kCurrent * zi ê. newRoot;
H*update guess by taking last root*L
zrGuess = zr ê. newRoot; ziGuess = zi ê. newRoot, 8i, 1, npts<H*loop index*LD;

H*end of main loop*L

In[58]:= H* Save results *L
twostreamLangwkTable = wkTable;
twostreamLanggkTable = gkTable;

In[60]:= H* Beam mode *L
H*Parameters*L
kmin = 0.001; kmax = 0.7 + kmin; nk = 200; zrGuess = 2.5; ziGuess = 1.8065;
H*Main body of finding wHkL and gHkL*L
H**inherit parameters**L
k1 = kmin; k2 = kmax; npts = nk;
H** initialize tables for storing wHkL and gHkL **L
wkTable = Table@8k1 + Hk2 - k1L * Hi - 1.L ê Hnpts - 1.L, 0<, 8i, 1, npts<D;
gkTable = Table@8k1 + Hk2 - k1L * Hi - 1.L ê Hnpts - 1.L, 0<, 8i, 1, npts<D;
H** start main loop **L
Do@ H*start*L

kCurrent = wkTable@@i, 1DD; H* update k *L
H*Find w and g for a given k*L
newRoot = FindRoot@8Re@Rtot@zr, ziDD ã -kCurrent^2, Im@Rtot@zr, ziDD ã 0<,

8zr, zrGuess<, 8zi, ziGuess<D;
H*Store w and g *L
wkTable@@i, 2DD = kCurrent * zr ê. newRoot;
gkTable@@i, 2DD = kCurrent * zi ê. newRoot;
H*update guess by taking last root*L
zrGuess = zr ê. newRoot; ziGuess = zi ê. newRoot, 8i, 1, npts<H*loop index*LD;

H*end of main loop*L

In[65]:= H* Save results *L
twostreamBeamwkTable = wkTable;
twostreamBeamgkTable = gkTable;

10   dispersion.nb



137

In[74]:= ListLinePlot@8twostreamLangwkTable, twostreamLanggkTable, twostreamBeamwkTable,
twostreamBeamgkTable<, PlotStyle Ø 8Black, Blue, Purple, Green<, Frame Ø True,

FrameLabel Ø 8"klD1", "", "Black: w-k, Langmuir wave; Blue: g-k, Langmuir wave;
Purple: w-k, beam mode; Green: g-k, beam mode"<D

Out[74]=
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Black: w-k, Langmuir wave; Blue: g-k, Langmuir wave;
Purple: w-k, beam mode; Green: g-k, beam mode

Comments: The w-k relation of the beam mode shows that the phase velocity of the beam mode is exactly one half of the relative
drifting velocity between the two electron beams in the system, which is expected.
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