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Abstract

We present principles for end-user modifiability and demonstrate them in ObSim, a river
basin simulation system. End-user modifiability is supported by multiple computational
mechanisms trading off expressivity for reduced complexity and domain-specificity to
different degrees. The computational mechanisms used in ObSim include a construction
kit and an object-oriented spreadsheet. We demonstrate the increased conceptual
simplicity with a modification scenario.

1. Introduction

Water resource management is a set of well-coordinated but technical interventions in the
hydrological cycle undertaken to augment and better regulate the existing water supplies
for meeting human needs more effectively (Saha, 1981). End-user modifiability is be-
coming increasingly necessary in water resource management because a great deal of
new hydrological research is becoming available, water law is constantly being updated,
new environmental realities are beginning to be understood, and the political climate
changes. Current systems resist change because they lack a modular structure, and
changing them requires extensive programming expertise.

It is highly desirable that users without extensive programming skills be capable of car-
rying out such changes. There are several obstacles counteracting this goal, however.
The learning curve associated with learning how to modify a system is steep, and users
quickly reach a plateau on which they no longer extend their abilities. The production
paradox (Carroll & Rosson, 1987) prevents users from overcoming the steep learning
curve. There are two approaches to solving this problem. One of them is to provide

knowledge-based support systems to help users to learn and understand the complex in-



ternal structure of the system that is to be modified (e.g., Fischer & Girgensohn, 1990;
Schoen, Smith & Buchanan, 1988). The second approach is to implement the system
using an easily understood yet powerful computational paradigm and to maximally ex-
ploit the knowledge the users already have. Examples of such paradigms are graphical
rewriting (Lewis, Rieman, & Bell, 1990), spreadsheets (Wilde & Lewis, 1990), and
macro facilities. Both approaches are valid and typically should be combined to achieve
the best possible effect. The present work focuses on the second approach. We explore a
computational architecture that increases end-user modifiability in the domain of water

resource management.

We first formulate principles for end-user modifiability that we have applied in the water
management domain. We describe the limitations of current water management systems.
Next we describe a new system, ObSim, illustrating the principles we formulated. We
demonstrate the advantages of ObSim using a modification scenario and finally discuss
some limitations of our approach.

2. Principles for End-User Modifiability

Formulation of principles as guidelines for interactive system design has been challenged
by some researchers including Grudin (1989). While principles often fail to decide dif-
ficult tradeoff problems, they do provide useful guidance in many situations. In addition
to general principles of interactive system design (e.g., provide immediate feedback),
specific principles for end-user modifiability can be formulated. For instance, MacLean
et al. (1990) advocate that a tailoring culture be created in a workplace. A tailoring cul-
ture is an attitude towards systems that includes design as an integral component. We
propose the following principles for enhancing end-user modifiability.

Users control the domain-oriented aspects of the design. At least those changes ad-
dressing application domain issues are best done by the users rather than by computer
specialists. The users are most familiar with their tasks, and they know more about the
problem domain in which these tasks are accomplished. Computer specialists are not
always available when needed and first have to be trained in the application domain to be
able to understand and carry out the required changes. On the other hand, enabling
domain specialists to make changes to computer science oriented aspects of the system is
much harder because they lack the necessary knowledge.

Human problem domain communication. The design of systems for water resource

management differs from the design of walk-up-and-use systems or systems such as word



processors and spreadsheet programs in that the users of the former systems are
specialists in the water management domain. They are well trained and fluent in a jargon
with its own technical terms and graphical conventions. We can exploit this fact by
building into the system the important abstract operations and objects of the domain.
Rather than communicating with computers, users should perceive their work as com-
munication with their domain of expertise, in their natural idiom (Stelzner & Williams,
1988), and the computer should become effectively invisible. We call this the principle
of human problem domain communication (Fischer & Lemke, 1988a). In an environ-
ment supporting human problem domain communication, designers build artifacts from
application-oriented building blocks according to the principles of that domain—not the
principles of computer software. Human problem-domain communication greatly
simplifies the problem of forming a mental model of the system and, thus, is a big step
towards end-user modifiability.

Multiple language levels. Designing for end-user modifiability requires choosing one or
more computational paradigms in which to express the behavior and properties of the
system. It is these computational paradigms that the users must manipulate to ac-
complish their modification goals. Two tradeoffs can be observed among the range of
computational paradigms. The first tradeoff is that between domain-specificity and ex-
pressiveness: More domain-specific languages are typically less expressive. The second
tradeoff is that between complexity and expressiveness: More expressive languages are
typically more complex and harder to learn. The term language is used here in a general
sense, including property sheets and other customization mechanisms. Languages at the
general end of the spectrum gain their power from generic control and data structures that
are basically all-encompassing but are removed from the concepts of the problem domain
(opposite of human problem domain communication). Most systems provide one or two
languages for modification: a high-level language with limited power and a general pur-
pose programming language—the system implementation language—for all other
changes. Additional languages at various positions on the complexity/expressiveness
dimension are needed to smooth out the learning curve. We propose a design with mul-
tiple languages that form a stack of levels in which each higher level language can be
compiled into, or is interpreted by, the next lower, more expressive language. Most of
these languages should and can be domain-oriented, thus allowing human problem
domain communication in end-user modification. Specialists in the domain of water
management already use multiple levels of languages ranging from schematic diagrams
to sophisticated mathematical models. Given a certain need for modification, the user

must be able to select the language level appropriate for this modification.



Accessibility of the next lower level. Introducing more languages might at first seem
counterproductive. With the multitude of languages comes an increased learning require-
ment. To mitigate this problem, users should be able to ‘‘see through’’ to the next lower
level. This facilitates the transition to the next language level in several ways. Users can
inspect the internals of existing constructs. Because they know the external behavior of
the construct, they can learn the structures of the next lower level language of which the
internals are constructed. Secondly, modifying and experimenting with those structures
does not require a complete understanding and provides an easy entry point to the next
language level. MacLean et al. (1990) report that a person who was not a Lisp program-
mer successfully modified a small piece of internal Lisp code to customize a ‘‘button.’’

3. Existing Systems

Water resource management is a complex domain requiring the cooperation of humans
and computer systems.! There is a multitude of computer models in use today, but we
focus on one of the most successful systems, MITSIM (MIT Simulation System;
Strzepek, Garcia & Over, 1989). It was used on numerous river basins and is notable
because it was one of the first to make the schematic breakdown of a basin explicit in the
code thus increasing maintainability. Up to that time, the network model was not un-
known but was not a key consideration in the decomposition of the model into
(FORTRAN) code. MITSIM also attempted to be a general model in that data files for a
particular basin can be input to the model so that it could be used in a variety of different
basins. However, the description language was not expressive enough, and it was neces-
sary to update MITSIM almost every time it was used in a new basin because of a need
for different algorithms for certain aspects of the basin. Typically, the original code
developer was the only one who could make the changes.

4. ObSim

In this section, we describe ObSim, an object-oriented modeling and simulation environ-
ment for water management based on the principles laid out in the previous section. Ob-
Sim supports end-user modifiability at multiple levels (Figure 1). We begin with a dis-
cussion of the lowest level: procedural programming language.

IFor a task analysis see Gance (1990).



selection | complete river basin models

parametric model release values, flows
construction kit reservoirs, river reaches
object-oriented objects, cells, formulas

spreadsheet machine

procedural programming language control structures, data structures

Figure 1: Language Levels for End User Modifiability in ObSim

4.1. Procedural Programming Language

The lowest interesting level of end-user modifiability in ObSim is the procedural pro-
gramming language. In contrast to existing water management systems, ObSim imple-
ments the majority of its functionality—especially the domain-oriented constructs—not
at this level but at the higher levels described below.

4.2. The Object-Oriented Spreadsheet Machine

The next level above the procedural programming language level is an object-oriented
spreadsheet machine operating as a quantitative simulation system. The spreadsheet
machine supports cells with values and formulae as well as automatic updating.
However, unlike a regular spreadsheet in which cells are arranged in a two or three-
dimensional array, in Obsim, a single column of cells is associated with basin objects
(see below), and the cells are identified by name instead of by x and y coordinates. (For a
discussion of related computational paradigms see Wilde & Lewis, 1990.)

Unlike the ASP object-oriented spreadsheet (Piersol, 1986) where objects are values of
the cells, in Obsim, objects are made up of cells. Objects form a prototype inheritance
hierarchy. Cells that are not locally defined in an object are inherited from the prototypes
of that object. However, only the formula and not the value of a cell is actually inherited.
The value of the cell is the result of computing the formula locally within the object. For
instance (Figure 2), the usable capacity of a reservoir is defined as the total capacity
minus the dead capacity minus the flood buffer. This is represented in the reservoir ob-
ject, which is a prototype for other objects (called extensions) such as lake-mead. Each
extension object inherits the formula for usable capacity from reservoir but has its own
value, which is the result of evaluating the formula in the context of the extension, i.e.,
with the local values of total-capacity, dead-capacity, and flood-buffer.



Reservoir

Cell Name Value | Formula

usable-capacity - total-capacity - flood-buffer - dead-capacity
A
i

prototype

Lake Mead

Cell Name Value | Formula [

total-capacity | 5000 | 5000 /

flood-buffer 1000 | 1000 /

dead-capacity 500 | 500 /

usable-capacity 3500 o/

Figure 2: Inheritance in the Object-Oriented Spreadsheet Machine

This mechanism provides a simple, yet powerful, conceptual model. Water management
workers are familiar with mathematical formulae. They can modify the behavior of a
basin object by changing the formulae associated with the various cells or by adding and
deleting cells. The automatic update facility provides immediate feedback on the screen
whenever a value or formula is modified. The prototype inheritance model achieves
great computational power with conceptual simplicity and has several advantages over
the more popular class-instance model (see also Lieberman, 1986). First, there is no fun-
damental difference between classes and instances; any object can serve as a prototype,
and users do not have to learn the differences between classes and instances. Second,
instance variables do not have to be declared; they are created by being assigned to.
Third, a new type of object can be created and debugged as an individual object without
the additional (conceptual) overhead of maintaining both a class and an instance for test-
ing the class. After debugging the new object, it can be used with no change as a
prototype for an arbitrary number of extension objects. Fourth, behavior that deviates
from the norm for a certain class of objects can be directly implemented in the object,
without having to resort to such “‘tricks”” as creating a private class for the special object.
These advantages must be weighed against the disadvantages of prototype inheritance.
For example, the performance of class-instance systems seems to be better, and the class-
instance distinction may be viewed as better representing the fundamentally different na-
ture of abstract and concrete objects.
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Figure 3: ObSim Screen Image

4.3. Basin Objects

The basin object level allows the user to graphically create, delete, and connect basin
objects of different types (Figure 3). This level is a construction kit in the terminology of
Fischer and Lemke (1988b). Prototypes for various basin objects, such as reservoirs,
diversions, and river reaches, are displayed in a palette, and using those prototypes, users
create and modify models of specific river basins in the river basin schematic window.
End-user modifiability extends to the palette without requiring additional mechanisms.
Prototype inheritance allows users to extend the palette by copying and modifying any
basin object from the palette or from the river basin schematic thus overcoming a limita-
tion of the construction kit concept: the inability to add new objects to the palette.

This level closely models the concepts of the domain of water management, and thus
realizes our concept of human problem domain communication. The objects can be
manipulated without knowing how they function internally at the spreadsheet machine
level. Nevertheless, the spreadsheet machine level is always accessible to the user in the



bottom right window of Figure 3. The user can see how graphical operations are trans-
lated into corresponding operations at the spreadsheet machine level. Creating an object
from the palette is translated into creating an extension of a prototype. Connecting one
object to another is translated into assigning the name of the second object to the output
cell of the first object and assigning the name of the first object to the input cell of the

second object.

4.4. Parametric Model

At this level, users manipulate the release of water from reservoirs, the amount of water
diverted for irrigation, and they feed in predicted weather data from the National Weather
Service to produce 24-Month Studies, guideline documents handed down to the operators
that do short term (i.e., daily) management. At this level, no new objects are created nor
are connections between them changed. This level provides a parametric model of the
basin. The user actions are limited to adjusting numerical parameters (e.g, water release
values) and reading out computed quantities (e.g, water salinity and reservoir water
levels). Obsim supports this level of modeling through controllers and displays on the
screen that are attached to spreadsheet cells.

4.5. Selection
The simplest level of end-user modifiability is the selection of complete predesigned
models of different grain-size and of different geographical areas. No specific support
for retrieving an appropriate model (a catalog) is currently available (e.g., Nakakoji &
Fischer, 1990).

5. Scenario

To illustrate typical end-user modification episodes, we describe the addition of a
salinity? budget model to a river reach. Salinity problems are an example of a recent
concern that was unknown or thought unimportant when the original simulation models
were built. A simple salinity budget model (Narasimhan et al., 1980) is described by this
formula:

tout = tin + tnat + tag + tps

The salt loading at the end of the reach ¢ e 1S the sum of the loading at the beginning 98

2Salinity refers to the amount of dissolved salts in the water.



Basin Object

Cell Name Value | Formula
in-salinity - input.out-salinity
out-salinity - in-salinity
T prototype
River Reach
Cell Name Value Formula
out-salinity - in-salinity + natural-salt-loading +

agricultural-salt-loading +
point-source-salt-loading

point-source-salt-loading 0 0

f prototype

Reach 940
Cell Name Value | Formula

in-salinity 2000 | (inherited from Basin Object)
natural-salt-loading 120 120
agricultural-salt-loading 55 | 55

out-salinity 2175 (inherited from River Reach)

Figure 4: Modifying a Model to Account for Salinity

loading from natural (diffuse) sources oar

sources 1, Since this modification involves adding some formulas, the spreadsheet

agricultural (diffuse) sources [ and point

machine level in our stack of languages seems to be appropriate. We define an in-salinity
and out-salinity for each basin object (Figure 4). Using the strategy of specifying each
formula at the most general level at which it applies, we conclude that the above formula
should be specified at the river-reach level. Inheritance allows us to specify a default
salinity for all basin objects in the basin-object prototype and a default loading from
point sources at the river-reach level. This scenario illustrates our principle of human-
problem domain communication and conceptual simplicity: There is a straightforward
mapping from the salinity model found in the literature to its representation in ObSim.

Users can accomplish this mapping with only a few simple strategies.



6. Limitations

The scope of end-user modifiability in ObSim is limited. Currently the graphical shape
of the basin objects can not be influenced above the procedural programming language
level. As mentioned, a catalog component must be added. Also, only simple visualiza-
tion tools for simulation results are available.

7. Summary

We have presented principles for end-user modifiability. These principles have been il-
lustrated in ObSim, a system for water resource management, which represents a sig-
nificant advance over existing systems. ObSim makes multiple tradeoffs between con-
ceptual complexity and expressivity by offering multiple computational paradigms in-
cluding a construction kit and an object-oriented spreadsheet. Operations at each higher-
level language are translated into corresponding operations at the next lower-level lan-
guage. This paper lays out and argues for a (partial) theory of end-user modifiability
grounded in a system implementation. We have not yet evaluated the theory empirically.
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