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Abstract. Recent shifts in global forest area highlight the importance of understanding the causes and
consequences of forest change. To examine the influence of several potential drivers of forest cover change,
we used supervised classifications of historical (1938–1940) and contemporary (2015) aerial imagery cover-
ing a 2932-km2 study area in the northern Front Range (NFR) of Colorado and we linked observed changes
in forest cover with abiotic factors, land use, and fire history. Forest cover in the NFR demonstrated broad-
scale changes 1938–2015 and overall cover increased 7.8%, but there was notable spatial variability and
many sites also experienced Forest Loss. Recent (1978–2015) wildfire was the largest single driver of Forest
Loss, with fires burning 14.3% of the total study area. Recently burned areas showed net losses of 36.9%
forest cover. Reasons for Forest Gain were more complex, with elevation, past mining density, fire history,
and topographic heat load index being the strongest predictors of increases in forest cover. Historical min-
ing activity is one of the dominant anthropogenic impacts in ecosystems in the NFR and it had a complex,
non-linear relationship with 20th-century changes in forest cover. Subalpine stands originating after stand-
replacing fires circa mid-1800s to early 1900s showed some of the greatest gains in forest cover, indicative
of slow and continuous post-fire recovery through the 20th century. We also investigated factors such as
land ownership, road density, forest management activities, and development intensity, which played
detectable, but more minor roles in observed change. Twentieth-century changes in forest cover through-
out the NFR are a result of ecological disturbances and anthropogenic influences operating at varying time-
scales and overlaid upon variability in the abiotic environment.
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INTRODUCTION

Studies using forest inventories and remotely
sensed data have identified declines in global for-
est area c. 1990s–2010s (Hansen 2013, Keenan
et al. 2015), though longer-term trends may dif-
fer in direction and magnitude (Song et al. 2018).
Forests provide countless ecosystem services to
humans, are sanctums of biodiversity, and play a
key role in nutrient cycling (Stocker 2013, FAO
2015), and thus, an understanding of the causes

of forest change is an important research priority.
Forest change is rarely a result of a single factor
acting alone. The causes of land cover change
vary across complex landscapes and multiple
potential drivers should be considered (Black
et al. 2003). The attribution of forest cover
change to specific natural and anthropogenic fac-
tors, at sufficient timescales to observe both
abrupt losses and gradual recovery, is likely to
improve conservation planning and the under-
standing of global change.
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Wildfire is one of the most important terrestrial
disturbances (Bowman et al. 2009) and is a key
determinant of the global distribution of forest
vegetation (Bond et al. 2005). The effects of wild-
fire activity on forest cover change are complex
because fire is expected to influence forest cover
through both initial losses and subsequent recov-
ery. From 1984 to 2015, warming and drying
trends contributed to increases in the area burned
in large wildfires across much of the western Uni-
ted States (Abatzoglou and Williams 2016). These
increases in wildfire activity have occurred in tan-
dem with poor post-fire recovery in many west-
ern conifer forests (Stevens-Rumann et al. 2018).
Seed tree—and therefore seed availability—is one
of the primary drivers of post-fire recovery, partic-
ularly in forests composed of seed obligate species
without fire-adapted canopy seed banks (Bonnet
et al. 2005, Haire and McGarigal 2010, Harvey
et al. 2016). Due to dispersal limitations, sites in
the interior of large, high-severity patches may
take decades or centuries to regain forest cover
(Chambers et al. 2016, Baker 2018). Furthermore,
a warm and dry climate can inhibit post-fire
recovery of forests (Stevens-Rumann et al. 2018).
Recent wildfire activity, combined with poor post-
fire recovery, may be leading to forest cover decli-
nes through the western United States at the onset
of the 21st century.

The longer-term history of fire activity also
plays an important role in forest cover change.
Slow recovery and conversion to non-forest
cover types have been noted at varying spatial
scales following 18th- and 19th-century fires in
some coniferous forests in the Rocky Mountains
(Stahelin 1943, Kaufmann et al. 2000, Huckaby
et al. 2001). Thus, increases in the extent or den-
sity of some subalpine forests over the last cen-
tury (Cocke et al. 2005, Zier and Baker 2006)
may be partially explained by slow, yet continu-
ous forest recovery following widespread high-
severity fires in the 18th and 19th centuries.
Forest cover increases have also been docu-
mented in some lower elevation montane forests
where formerly frequent surface fires have
declined during the 20th century (Schoennagel
et al. 2004, Hessburg et al. 2005). Therefore,
changes in fire occurrence during the 18th–20th
centuries could account for a trend of increasing
forest cover through different mechanisms (slow
post-fire recovery from past severe fires vs.

decreased thinning effects of surface fires) that
are likely to vary in importance across the eleva-
tion gradient from lower elevation montane for-
ests to higher elevation subalpine sites.
In addition to contemporary and historical fire

activity, other factors have also played influential
roles in forest cover change across the western
United States over the past century. For example,
moisture availability and changes in land use
have been noted as important correlates with
changes in dry forests of the northwest and
southwest United States since the late 1800s
(Merschel et al. 2014, Johnston 2017, Rodman
et al. 2017). Extractive logging of large-diameter
trees has altered stand structure in many conifer-
ous forests in the western United States; in some
cases, late 20th-century forest cover may still be
responding to timber extraction in the 19th and
early 20th centuries (Naficy et al. 2010, Merschel
et al. 2014, Collins et al. 2017). Historical mining
activity also led to increases in soil disturbance,
logging, and fire activity in many parts of the
western United States in the late 1800s and early
1900s (Gruell 1983, 2001, Veblen and Lorenz
1991, Hessburg and Agee 2003, Dethier et al.
2018). More recently, exurban housing develop-
ment has occurred throughout portions of the
United States (Theobald and Romme 2007, Platt
et al. 2011, Radeloff et al. 2018), leading to forest
fragmentation (Radeloff et al. 2005).
To effectively disentangle the potential drivers

of forest cover change, detailed data covering a
range of ecosystem types, ownership designa-
tions, and human land uses are needed. Though
the satellite record can be used to map vegetation
change since approximately 1972 (i.e., the launch
of Landsat 1), these data lack both temporal depth
and high spatial resolution, which is particularly
important when studying long-lived tree species
and areas of sparse forest cover. Aerial surveys of
agricultural and forested lands began throughout
the United States in the 1930s (Matthews 2005)
and these photographs provide extensive records
of land cover at a high (<2 m) spatial resolution
(Morgan et al. 2010). These data have been used
in quantitative assessments of historical forest
change in the western United States (Hessburg
et al. 1999, Coop and Givnish 2007, Lydersen and
Collins 2018) and of the anthropogenic and bio-
physical factors influencing these changes (Asner
et al. 2003, Black et al. 2003).
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We used historical and contemporary aerial
photography to quantify changes in forest cover
across a study area in the northern Front Range
(NFR) of Colorado c. 1938–2015. The NFR
(Fig. 1) is a region that has been shaped by
human activities and by wildfire over the last
several centuries (Veblen and Donnegan 2005,
Addington 2018) and provides both a data- and
disturbance-rich case study of the potential
causes of forest change throughout a complex
landscape. Fire history (Sibold et al. 2006, Sher-
riff et al. 2014), historical stand densities (Batta-
glia et al. 2018), climate and tree growth (Villalba
et al. 1994, Veblen et al. 2000, Lukas et al. 2014),
and patterns of exurban development (Platt et al.
2011) are well documented in this region, permit-
ting a thorough analysis of the potential drivers
of vegetation change throughout the 20th cen-
tury. To date, there have been no landscape-scale
studies which have attempted to characterize the
relative influences of land use, the abiotic envi-
ronment, and wildfire to observed shifts in forest
cover in the NFR. Indeed, there are few studies
in similar conifer forest ecosystem in the western
United States that have quantified changes in for-
est cover and implemented robust research
designs to assess the contributions of multiple
driving factors to 20th-century forest change
across broad biophysical gradients. Specifically,
we asked the following questions: (1) How has
the extent of forest cover changed across the
NFR c. 1938–2015? (2) How do elevation, topo-
graphic heat load index, land ownership, and
historical land use relate to spatial patterns of
increase and decrease in forest cover? and (3)
How do changes in forest cover through the 20th
century relate to known fire history across a
range of fire regime types?

STUDYAREA

Climate and vegetation
Our study area covers 2932 km2 on the eastern

slope of the northern Front Range (NFR) of Color-
ado, United States (Fig. 1). Elevations range c.
1600–4200 m and climate varies substantially along

Fig. 1. Overview of study area, locations of urban
areas, and recent wildfires (1978–2015) in the northern
Front Range of Colorado. Background color shows the
spatial distribution of the different life zones (lower
montane, 1700–2400 m; upper montane, 2400–2800 m;
and subalpine, 2800–3500 m).
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Fig. 2. Variability in wildfire activity, tree growth, and climate 1800–2015 in the study area in the northern Front
Range of Colorado. Prior to 1984, proportion burned (a) is given as the proportion of montane fire history sites
recording spreading fire in a given year (min two trees and 10% of trees within a site). For 1984–2015, proportion
burned is based on the percent surface area of the montane zone (1700–2800 m) within Monitoring Trends in Burn
Severity fire perimeters in each year. Sample depth (dashed line) gives the total number of fire-scarred recorder
trees (across all sites) in a given year. Variability in tree growth is derived from residual tree ring chronologies of
ponderosa pine (PIPO; (b) and Engelmann spruce (PIEN; (c). Summer vapor pressure deficit (VPD; (d) is an
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this gradient, with lower sites being much warmer
and drier than sites found at high elevations.
Across elevations, minimum temperatures in Jan-
uary range�17 to�5°C and July maximums range
14–32°C (PRISM 2018). Average precipitation is
400–1300 mm/yr, with spring months (March–
May) being the wettest (35% of annual totals;
PRISM Climate Group, Oregon State University.
2018). The proportion of precipitation occurring as
snowfall increases with elevation and snow depth
typically peaks in April (Kittel et al. 2015). Recently,
increases in temperature have been noted through-
out much of Colorado (1.1°C from 1977 to 2006),
including the NFR (Lukas et al. 2014).

Native vegetation in the study area begins with
short grass prairie at the lowest sites (<1700 m),
transitioning into lower montane forests (1700–
2400 m) principally dominated by ponderosa
pine (Pinus ponderosa) with scattered Douglas-fir
(Pseudotsuga menziesii) and Rocky Mountain juni-
per (Juniperus scopulorum; Peet 1981, Addington
2018). Upper montane forests range 2400–2800 m
and are dominated by ponderosa pine, Douglas-
fir, and lodgepole pine (Pinus contorta). At the
highest forested sites (subalpine; 2800–3500 m),
lodgepole pine, limber pine (Pinus flexilis), sub-
alpine fir (Abies lasiocarpa), and Engelmann spruce
(Picea engelmannii) are the dominant tree species,
giving way to alpine vegetation at c. 3500 m. Col-
orado blue spruce (Picea pungens) and several
broad-leafed, deciduous tree species (e.g., nar-
rowleaf cottonwood [Populus angustifolia] and wil-
lows [Salix spp.]) are common in riparian areas.
Quaking aspen (Populus tremuloides) is also pre-
sent in scattered locations either as a post-fire
seral component or as the persistent dominant
species in some areas (Peet 1981).

Disturbance history
In low-elevation montane forests and inter-

spersed grassland sites (below 2260 m) in the

NFR, fires were relatively frequent and of low to
moderate severity prior to the 20th century (Sher-
riff et al. 2014, Brown et al. 2015). In contrast,
middle- and upper-elevation montane forests
(2260–2800 m) were historically characterized by
a mixed-severity fire regime, in which higher-
severity patches of mortality (>70% of canopy
trees; 50 ha or larger) were more common
(Schoennagel et al. 2011, Sherriff et al. 2014).
Subalpine forests (2800–3500 m) typically
burned infrequently (>200-yr intervals) and in
large (>1000 ha) high-severity patches during
exceptionally dry years (Buechling and Baker
2004, Sibold and Veblen 2006). Surface fires
affected only 1–3% of the forested area in the
subalpine zone (Sibold et al. 2006), although fire-
scar records do indicate more frequent small fires
at the ecotone of forest with rocky alpine sites
(Sherriff et al. 2001).
The mid-late 1800s were a time of heightened

fire activity across all zones in the NFR, concur-
rent with widespread droughts throughout the
Rockies and expanding Euro-American settle-
ment (Veblen et al. 2000, Sherriff et al. 2001, Kitz-
berger et al. 2007, Sherriff and Veblen 2008,
Schoennagel et al. 2011; Fig. 2). Following this
period, fire activity in the NFR was fairly limited
c. 1920–2000 likely due to a combination of direct
fire suppression, fuel reduction due to livestock
grazing, lack of combustible fuels in higher ele-
vation, recently burned sites, and potentially less
suitable climatic conditions for fire ignition and
spread (Veblen et al. 2000, Sibold et al. 2006,
Sherriff and Veblen 2008). Recent increases in fire
activity have occurred since 1984 following a rel-
atively fire quiescent period for most of the 20th
century (Fig. 2).
Insects and pathogens are also important com-

ponents of stand dynamics in the NFR. In this
region, western spruce budworm (Choristoneura
occidentallis), Douglas-fir bark beetle (Dendroctonus

indicator of summer (Jun–Aug) drought stress, while winter precipitation (PPT; (e) is the sum of Nov–Dec (prior
year) and January–May (focal year) precipitation across the study area. Snow water equivalent (SWE; (f) is derived
from a long-term record (1938–2015) of snow depth and water content collected 1 May each year within the study
area. All tree ring and climate values (b–f) were re-scaled using z-score transformations. Gray lines and bars give
annual values, while black lines show 10-year moving averages. Regional pluvials (blue overlay) and droughts
(red overlay) were defined as extended periods (five or more years) in which moving 10-year moving averages of
growth were above or below (respectively) the long-term mean for both ponderosa pine and Engelmann spruce.

(Fig. 2. Continued)
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pseudotsugae), and mountain pine beetle (MPB;
Dendroctonus ponderosae) are the most important
potentially lethal insect pests of the lower and
upper montane zones, whereas mountain pine
beetle, spruce beetle (Dendroctonus rufipennis),
and western balsam fir bark beetle (Dryocoetes
confusus) are the primary lethal insects of the sub-
alpine zone. Outbreaks of many of these insect
species have occurred during the 1938–2015 time
period of this study (Hadley and Veblen 1993,
Chapman et al. 2012). Although such outbreaks
have killed large numbers of trees in some areas
(e.g., MPB in the 1970s and the early 2000s), post-
outbreak release of advance regeneration and
new tree establishment typically lead to rapid
forest recovery (i.e., at a decadal scale; Veblen
et al. 1991, Hadley and Veblen 1993, Collins et al.
2011).

Land-use history
Human land use in the NFR has shifted over

the last two centuries in ways that are likely to
have influenced forest cover during the 1938–
2015 study period. The mid-late 1800s and early
1900s were associated with the removal of Native
American communities (and their associated
land-use practices; Simmons 2000) and with
increases in logging, mining, and ranching
impacts from Euro-Americans (Veblen and Lor-
enz 1986, Veblen and Donnegan 2005, Dethier
et al. 2018). The decline in Native American pop-
ulations likely led to declines in intentional burn-
ing in certain areas, though historical ignitions
due to lightning and humans are difficult to sep-
arate (Veblen et al. 2000). Past logging and min-
ing have had complex impacts on forests in the
NFR. Timber extraction and surface mining ini-
tially reduce forest cover. However, the longer-
term effects of logging and mining depend on
rates of succession and whether the site is con-
verted to another land use such as ranching or
residential development.

Although fuel reduction due to livestock graz-
ing contributed to decreased fire spread at some
sites as early as the 1860s (Veblen et al. 2000,
Brown et al. 2015), widespread fire exclusion in
the NFR dates from approximately 1920 when
automobile roads allowed effective access to the
rugged topography of the region (Veblen and
Lorenz 1986, Veblen and Donnegan 2005). The
more direct effects of early settlers on fire activity

ranged from intentionally set fires during the
early settlement and mining era (e.g., 1840s–
1890s) to more effective fire suppression and
exclusion at permanently settled sites in lower
elevations (Veblen and Lorenz 1986, Veblen and
Donnegan 2005). Exurban development has been
widespread in the NFR since c. 1940, with home
construction shifting over time from predomi-
nantly grass-covered valley bottoms to forested
slopes more prone to higher-severity fires (Platt
et al. 2011). The effects of this development
include forest removal for home sites and changes
in fire frequency—more aggressive fire suppres-
sion but also an increased risk of human-set
fires.

METHODS

Interannual and interdecadal trends in climate,
wildfire, and tree growth
To provide important context for observed

trends in forest cover throughout the study area,
we compiled data describing interannual and
interdecadal variability in climate, tree growth,
and wildfire activity 1800–2015 (Appendix S1).
We characterized climate using gridded spatial
data describing summer drought stress (i.e.,
vapor pressure deficit) and annual winter precip-
itation 1896–2015 (PRISM Climate Group,
Oregon State University. 2018), as well as field-
derived measurements of snow depth and den-
sity 1938–2015 (snow water equivalent from
the University Camp snow course (40.03°N,
�105.57°W; 3140 m; NRCS 2016)). These compo-
nents of climate are important to many forest
processes in the southwest United States and
southern Rocky Mountains (Williams 2012,
Andrus et al. 2018). We also used tree ring
chronologies from ponderosa pine and Engel-
mann spruce (Villalba et al. 1994, Veblen et al.
2000)—two dominant conifers in the montane
zone and subalpine zone, respectively—to
extend the temporal coverage of the climate
record to 1800. Lastly, we developed an index of
fire activity in the montane zone using field-
derived fire history data (1800–1983; Sherriff
et al. 2014) and recent wildfire perimeters (1984–
2015; Eidenshink et al. 2007). To visualize inter-
decadal trends in climate, tree growth, and
wildfire activity, we also calculated 10-year
moving averages of all annual values.
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Image acquisition and digitization
The historical air photographs used in this study

were captured in flights of the NFR commissioned
by the U.S. Forest Service and Soil Conservation
Service in 1938 and 1940 as part of broad-scale tim-
ber and resource inventories. These images have
an approximate cartographic scale of 1:20,000 and
over 1700 individual scenes were scanned and dig-
itized at 600 ppi by technicians from the University
of Colorado library system. The average spatial
resolution of these data is 1.1 m. Of the digitized
images available through the University of Color-
ado, we selected a subset of 308 based on the avail-
ability of pre-existing fire history and stand age
data (Sibold et al. 2006, Sherriff et al. 2014). This
subset was primarily captured in 1938 and the
1940 images represent only 8.6% of the final study
area (Table 1); therefore, we refer to these data as
“1938 imagery” for simplicity. For comparison
with historical imagery, we also acquired county-
level mosaics of NAIP (National Agriculture Ima-
gery Program) imagery from the area that were
collected in fall 2015 (Table 1). These data have a
1 m spatial resolution and three spectral bands—
one each in the red, green, and blue wavelengths
(United States Forest Service, National Agriculture
Imagery Program 2015). To use similar methods
with 1938 and 2015 imagery, we created a single
panchromatic band (the mean of red, green, and
blue values) from NAIP data prior to image pro-
cessing and classification.

Image processing
To aid in the identification of forested areas in

the 1938 and 2015 images, we used a series of

image processing steps to add supplemental
information describing the texture and context
surrounding each c. 1 m pixel. During these
steps, we identified locally dark pixels (indicative
of individual trees surrounded by bright grass-
land) and quantified local standard deviation in
brightness using moving windows at multiple
scales (sensu Coburn and Roberts 2004; Fig. 3;
Appendix S2). We combined these two layers
with the original grayscale imagery to create
three-band composite imagery (Fig. 3d). The
combination of brightness, local minima, and
standard deviation emphasizes differences in
spectral reflectance that facilitate the separation
of different forest structures (e.g., individual
trees and dense stands) from non-forested areas.
We projected each of the 1938 images to NAD

83, UTM 13N (the same projection as the NAIP
images) and georeferenced them using metadata
that described the approximate center location of
each frame, scanning resolution, and cartographic
scale. Next, we mosaicked the 1938 imagery by
merging overlapping areas along each N-S flight
line and then by merging adjacent flight lines into
a single photomosaic. Lastly, we co-registered this
mosaic to 2015 NAIP imagery using 4955 tie
points that were homogeneously distributed
throughout the image. We assessed the accuracy
of this co-registration using an independent set of
tie points (n = 100). These points were located at
the nearest identifiable feature to 100 randomly
located points throughout the mosaic. Mean hori-
zontal error of these points was 23.6 m (standard
deviation = 17.2). Though larger than values of c.
7–16 m reported by two similar studies (e.g., Platt
and Schoennagel 2009, Lydersen and Collins
2018), this alignment is reasonable considering
the larger size of our study area. Still, change
detection and further analyses were performed at
an aggregated spatial resolution to account for
this offset (see Data aggregation).

Image segmentation and classification
Following image processing and mosaicking,

we performed image segmentations and devel-
oped supervised classifications of the three-band
composite imagery for each date (1938 and 2015).
These classifications were based on a hybrid
approach of pixel- and object-based image analy-
sis, where we used image segmentation to
enhance pixel-level classification accuracy (i.e.,

Table 1. Collection dates and areas of coverage for his-
torical and contemporary imagery throughout the
northern Front Range of Colorado.

Flight
date Area (ha) Life zones covered

Initial
Imagery

5/8/38 39,602.8 Lower Montane
10/25/38 62,828.8 Lower/Upper Montane
10/26/38 140,236.0 Upper Montane/Subalpine
10/29/38 25,200.5 Subalpine
10/7/40 1283.9 Lower Montane
10/9/40 24,022.4 Lower/Upper Montane

NAIP 8/25/15 26,216.1 Subalpine
9/8/15 180,274.7 All
9/19/15 74,958.1 All
9/20/15 11,725.9 Subalpine
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Fig. 3. Image classification workflow for an area near Boulder, CO (39.99°N, 105.29°W). Original imagery
(a) was processed using an expanding window method to identify pixels darker than their surroundings (b) and
to quantify local standard deviation (c). Next, these three images were merged to create a three-band composite,
which we segmented to identify areas of relatively homogenous brightness, contrast, and variance (d). We then
classified the segmented imagery using support vector machines to separate forest and non-forest cover types
(e; forest shown in green). Following classification, we detected and removed shadows and bodies of water from
the forest class by thresholding dark pixels with low local variance.
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enhanced pixel classification, sensu Radoux and
Bogaert 2017). First, we segmented three-band
composites from each date (Fig. 3d) using the
segment mean shift algorithm in ArcGIS v. 10.4
(ESRI 2016). We prioritized spectral similarity
over spatial scale during segmentation parameter
selection, which resulted in segments ranging in
size from individual trees to entire forest stands.
Next, we included a hillshade model (derived
from a 10 m digital elevation model and resam-
pled to ~1 m; 1938 imagery) and a red–green
index (RGI; 2015 imagery) as additional bands to
help account for topographic differences in illu-
mination. RGI is a proxy for vegetation health in
imagery covering the visible portion of the elec-
tromagnetic spectrum (Gartner et al. 2015); as a
ratio of two bands, RGI is relatively insensitive to
differences in illumination. We used a hillshade
model as ancillary data in the 1938 classification
because this serves as an additional way to
account for topographic differences in illumina-
tion in panchromatic imagery. Finally, we
assigned ~1 m pixels in each set of imagery to
forest or non-forest classes using support vector
machines (SVMs; Fig. 3e). SVMs are a statistical
learning algorithm that can identify non-linear
decision boundaries between classes in multi-
dimensional space (Hastie et al. 2009) and are
commonly used in image classification.

Following classification, we post-processed
classified maps using thresholds of brightness
and local standard deviation to identify and
remove large shadows that could be misclassi-
fied as forest (Appendix S2). We also masked
lakes and reservoirs (United States Geological
Survey, Geospatial Multi-Agency Coordination
(GeoMAC) 2018, United States Geological Sur-
vey, National Hydrography Dataset (NHDPlus)
2018), urban areas (from spatial data available
through local government offices), and elevations
above 3500 m (which have very little or no forest
cover) from the final classifications. Of the total
study area, 93.9% (2713.2 km2) was left
unmasked and included in further analyses.

Data aggregation
To account for co-registration error and to per-

mit additional analyses of the potential drivers of
forest change, we aggregated the resolution of
the 1 m classified maps to 250 m in each date.
We selected a 250 m cell size (6.25 ha) because

this extent is several times larger than our esti-
mated co-registration error and corresponds to
the coarsest-resolution dataset used in later anal-
yses (i.e., Sohl et al. 2016). This 250 m resolution
is also relevant for land managers, approximating
the size of individual treatment units that are
used in planning forest management activities in
the NFR (Addington 2018). Henceforth, we refer
to these 250-m cells as “grid cells.” We performed
this data aggregation by summing the areas of
forest and non-forest (from the classified 1 m
maps) in each grid cell; we then calculated forest
cover in each grid cell as the sum of classified for-
est area divided by the sum of classified forest
and non-forest area. This resulted in two maps of
forest cover (1938 and 2015) with continuous val-
ues (0–100% in each grid cell) which were later
used in change detection (see Accuracy assessment
and uncertainty modeling). To limit the influence of
grid cells that had little overlap with the study
area, we excluded cells with more than 50% of
the area masked or beyond the extent of imagery
(i.e., no data). Though this criterion removed
15.4% of initial grid cells from later analysis, these
cells contained <1% of the total classified area.
Lastly, to provide a more detailed characteriza-
tion of variability in forest cover throughout the
study area, we calculated the percentage of grid
cells in different forest cover classes (20% bins) in
both 1938 and 2015.

Accuracy assessment and uncertainty modeling
We performed global and local accuracy assess-

ments to quantify the classification accuracy of the
SVMs, as well as the spatial variability in accuracy
throughout the study area. For the global accuracy
assessment (sensu Congalton 1991, Olofsson et al.
2014), we used manual photointerpretation at
2000 randomly located points throughout each
image (1938 and 2015) and compared photointer-
pretation (“reference”) to predictions from the
SVM classification. We then calculated user’s, pro-
ducer’s, and overall accuracies following the pro-
tocol of Olofsson et al. (2014). Overall accuracy
was 90.2% for the 1938 imagery and 89.4% for the
2015 imagery (Appendix S3: Table S1). It should
be noted, however, that the reliability of photoint-
erpretation in the 2015 classification is generally
higher (because of greater data quality) and esti-
mates of classification accuracy in 1938 are less cer-
tain than those in 2015.
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To develop local accuracy assessments, we
used the 2000 manual photointerpretation
points, segmented and unsegmented pixel values
at each point, and SVM-predicted classes to
develop binomial generalized linear models
(GLMs) of correct/incorrect classification (sensu
Leyk and Zimmermann 2004, 2007, Appendix
S3). Adjusted deviance squared values (follow-
ing Guisan and Zimmermann 2000) for the final
GLMs were 0.32 for 1938 imagery and 0.28 for
the 2015 imagery. We then used these GLMs to
predict the probability of correct classification in
each 1 m pixel in the 1938 and 2015 imagery. Fol-
lowing GLM predictions, we calculated overall
classification accuracy, forest accuracy, and non-
forest accuracy as the predicted values from 1 m
pixels within each 250-m grid cell. Overall accu-
racy was calculated as the mean GLM-predicted
probability of a correct classification across all
classified pixels in a grid cell, while forest and
non-forest accuracies were the mean values for
all pixels assigned (in final SVM classifications)
to each class in each grid cell (Appendix S3:
Fig. S1a–d).

Accurate results of change detection analyses
are contingent upon proper thematic representa-
tions of cover types (i.e., classification accuracy)
and upon spatial alignment between datasets
(i.e., co-registration error; Leyk et al. 2018). To
identify grid cells that had directional changes in
forest cover (1938–2015) that exceeded the poten-
tial influence of inaccurate classification and
co-registration error, we merged our local accu-
racy assessments with Monte Carlo simulations
of error in image alignment (Appendix S3).
Monte Carlo simulations consisted of 200 random
shifts of the 1938 imagery to quantify the sensitiv-
ity of forest cover estimates to co-registration
error. We then combined accuracy assessments
and Monte Carlo simulations using the following
formulas to calculate potential ranges of forest
cover for each grid cell for each date:

LowerForest1938 ¼ ð%AccForest � ForestArea6thÞ=
ClassifiedArea6th

UpperForest1938 ¼
�
ForestArea195th

þ �
NonForestArea195th

� 1�%AccNonForestð ÞÞÞ=
ClassifiedArea195th

LowerForest2015 ¼ ð%AccForest � ForestAreaÞ=
ClassifiedArea

UpperForestt2015 ¼
�
ForestArea

þ �
NonForestArea

� 1�%AccNonForestð ÞÞÞ=
ClassifiedArea

where LowerForest and UpperForest are the
lower and upper estimates for forest cover at a
given date (1938 or 2015), %Acc is the estimated
classification accuracy for a given cover type,
ForestArea and NonForestArea are the total area
classified (by SVMs) as forest and non-forest,
respectively, and ClassifiedArea is the total area
classified as either cover type. Subscripts 6 and 195

correspond to the 6th- and 195th-ranked esti-
mates of forest cover (95% bounds) across the
Monte Carlo simulations of co-registration error
for the 1938 imagery. All values in the above for-
mulas were specific to each grid cell, thus identi-
fying potential ranges of forest cover in each
250-m area at each date (1938 or 2015).
We determined that a grid cell had experi-

enced a significant change in forest cover 1938–
2015 if the potential ranges of forest cover in
1938 and 2015 did not overlap. In other words, if
a maximum estimate of 1938 forest cover was
lower than the minimum estimate of 2015 forest
cover, a grid cell was classified as Forest Gain.
Similarly, if the maximum estimate of 2015 forest
cover was lower than minimum estimate of 1938
canopy cover, a grid cell was classified as Forest
Loss. If the error bounds for the two dates over-
lapped, a cell was then classified as Little Change
(generally <15% net change in forest cover). Fol-
lowing this, we manually reclassified 1331 Forest
Loss grid cells (3.0% of the total area) to Little
Change because designation as Forest Loss in
these cells was primarily due to lighting condi-
tions in the 1938 imagery (i.e., overestimates of
1938 forest cover due to topographic shading).

Potential drivers of change in forest cover
To assess the relative influences of several

known drivers of change in forest cover, we per-
formed a Random Forest analysis to predict for-
est change class (i.e., Little Change, Forest Gain,
and Forest Loss) in each grid cell as a function of
13 landscape variables relating to land use, land
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management, ownership designation, the abiotic
environment, spatially modeled historical fire
regime class, and recent wildfire activity (Table 2;
Appendix S4). We did not include gridded

climate data in this analysis, instead using eleva-
tion and heat load index (derived from slope,
aspect, and latitude; McCune and Keon 2002) as
proxies for average moisture availability. Because

Table 2. Variables included in Random Forest analysis used to identify potential drivers of forest cover change
(1938–2015) in the study area in the northern Front Range of Colorado.

Category and
variable Definition Reason for inclusion Source(s)

Human impacts
Density of Mine
Sites

Kernel estimate of mine site
density surrounding each
grid cell

Historical mining activity influenced forests
through increased logging activity and
anthropogenic ignitions

USGS (2005)

Land Cover
Class 1938

Land cover class in each
grid cell from 1938 backcast
model of land cover

Initial land cover in the study period could
have important influences on forest cover
change due to initial cover type and prior
land-use legacies

Sohl et al. (2016)

Proportion
developed land

Proportion of each grid cell
that was classified as
developed in 2011 National
Land Cover Dataset
(classes 21–24)

Development, particularly in the wildland–
urban interface, increased rapidly through
the study area in the 20th century

Homer et al. (2015)

Proportion treated Proportion of each grid cell
that was treated using
mechanical thinning and/or
prescribed fire prior to
September 2015

Silvicultural treatments are commonly used
throughout forests in the western United
States to reduce hazardous fuels around
homes and to reduce forest densities

Caggiano (2017)

Road density Linear meters of road within
each grid cell

Road density provides a proxy for
development intensity and access to
forested lands

USCB (2017)

Ownership designation
Proportion City/
County Open
space land

Proportion of each grid cell
that is city- or county-
managed open space

City and county open space lands receive
high levels of recreational use. Slightly
different management strategies are likely
on these lands than other designations

COMaP (2010)

Proportion NPS
land

Proportion of each grid cell
that is managed by the U.S.
National Park Service

U.S. National Park Service lands are more
highly regulated, less likely to have
experienced extractive logging in the early
1900s and have lower rates of silvicultural
treatment than many other designations

Colorado Ownership
Management and
Protection (COMaP),
V8 (2010)

Proportion private
land

Proportion of each grid cell
that is privately owned

Private lands likely have different
management strategies and land use than
do public lands in the study area, typically
being smaller, more developed, and more
highly fragmented

Colorado Ownership
Management and
Protection (COMaP),
V8 (2010)

Proportion USFS
land

Proportion of each grid cell
that is managed by the
U.S. Forest Service

U.S. Forest Service lands in the area are
likely to experience heavy recreational use
and more substantial rates of silvicultural
treatment than many other land
designations

Colorado Ownership
Management and
Protection (COMaP),
V8 (2010)

Physical environment
Elevation (m) Mean elevation of each grid

cell, as derived from 10 m
digital elevation model
(DEM) of study area

Elevation is the strongest proxy for average
climate in the study area. Elevation is
highly correlated with both temperature
and precipitation

USGS (1999)

Heat Load Mean heat load (combination
of aspect, slope, and latitude)
of grid cell as derived from
10 m DEM. Higher values
indicate generally higher
levels of direct sun from the
southwest

Heat load provides an estimate of incoming
radiant intensity in an area and is an
important control on local climate

McCune and Keon
(2002)
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the study area spans a single mountain range,
elevation and aspect are strongly tied to climate
and describe much of the variability in site mois-
ture and vegetation (Peet 1981).

We performed the analysis of these 13 land-
scape variables and their relationship with forest
change class in each grid cell using the ranger
(Wright and Ziegler 2017), mlr (Bischl et al.
2016), and caret (Kuhn 2008) packages in R (R
Core Team 2018). We also tested for multi-
collinearity of predictors using the rfUtilities
package (Evans et al. 2011). During model fit-
ting, we tuned hyperparameters (i.e., “mtry,” the
number of variables available for splitting and
“ntree,” the total number of trees) for the final
Random Forest analysis using fivefold cross-vali-
dation across a range of parameter values;
selected values were “mtry” of 6 and “ntree” of
300. For ease of interpretation, permutation-
based variable importance (mean decrease in
accuracy) was relativized so as to sum to 1 (rela-
tive importance). We also characterized final
model fit using percent classification accuracy
from 100-fold cross-validation. While we present
final results of these analyses at a 250 m resolu-
tion, we also quantified forest cover change, per-
formed uncertainty thresholding, and completed
an additional Random Forest analysis at a 1 km
resolution using the same set of 13 predictors to
assess the extent to which our results may be sen-
sitive to spatial scale.

Comparison with fire history
In addition to the Random Forest model span-

ning the study area, we compared net forest

change across specific montane and subalpine
stands with previously collected field data
describing fire history. Previous studies in the
montane and subalpine zones of the NFR have
compiled a combined total of 1938 samples of
fire-scarred trees and 13,832 tree ages from incre-
ment cores in an effort to reconstruct past fire
activity and stand-origin dates (Veblen et al.
2000, Sherriff and Veblen 2006, 2007, 2008, Sibold
et al. 2006, Schoennagel et al. 2011, Gartner et al.
2012). Using these records, one of the most exten-
sive datasets yet assembled to characterize fire
history in a single region, we performed two sep-
arate analyses to quantify forest cover change
within (1) montane stands historically character-
ized by distinctly different fire regimes (low vs.
mixed severity) and (2) subalpine stands with
differing time since last stand-replacing fire.
For each of these analyses, we performed a sensi-
tivity assessment as described in Accuracy assess-
ment and uncertainty modeling to quantify
potential ranges of forest cover.
Sites in the NFR with a history of frequent,

low-severity fire likely experienced a greater
deviation from their natural ranges of variability
during the fire suppression era (c. 1920–present)
than did sites with mixed- or high-severity fire
regimes (Sherriff et al. 2014). For this reason,
sites with a history of low- and moderate-sever-
ity fire are typically the highest priority for forest
management activities such as mechanical thin-
ning and low-intensity prescribed fire (Adding-
ton 2018). To assess differences in the magnitude
of 20th-century forest cover change by historical
fire regime class in fire-excluded sites throughout

(Table 2. Continued.)

Category and
variable Definition Reason for inclusion Source(s)

Wildfire
Proportion burned
(1978–2015)

Proportion of each grid cell
that burned between 1978
and 2015 (time period in
which reliable fire perimeter
data are available)

Recent studies have noted increases in area
burned and limited post-fire recovery in
many sites through western United States

Eidenshink et al.
(2007) and USGS
(2018)

Proportion
low-severity

Proportion of each grid cell
that was spatially modeled
to have burned frequently
and at low severity (few
trees killed in each fire) as
the dominant fire regime
prior to 1920

Areas with historically frequent, low-severity
fire regimes are those believed to be most
affected by 20th-century fire exclusion and
are those in which restoration and fuel
reduction objectives are believed to be
most convergent

Sherriff et al. (2014)
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the montane zone, we compared net change in
forest cover using a stand-specific procedure for
forests dominated by a frequent, low-severity fire
regime (n = 6; 435.2 ha classified) with cover
change in those dominated by a less frequent
mixed-severity fire regime (n = 67; 3618.8 ha
classified). Stands were classified as low or
mixed severity using a combination of tree estab-
lishment data and fire-scarred samples in a pre-
vious study of the montane zone in the Colorado
Front Range (Sherriff et al. 2014). The difference
in sample sizes between fire regime classes
reflects the relative proportions of the modern
landscape characterized by the respective fire
regimes as well as the accessibility to study areas
not impacted by logging and exurban develop-
ment (a factor that guided initial plot selection).
These locations were a subset of the original fire
history sites described in Sherriff et al. (2014); we
selected forest stands that were the most inten-
sively surveyed (i.e., including site-specific fire
histories and/or stand age data), overlapped the
area of the imagery, and did not overlap recent
fire perimeters (1978–2015). For this analysis,
sites within recent fire perimeters were removed
because the focus of the montane fire history
analysis was to quantify 20th-century montane
forest change resulting from fire exclusion and/or
longer-term post-fire recovery.

In forests characterized by infrequent, high-
severity fires (e.g., subalpine forests in the NFR),
stand attributes such as tree density and crown
cover vary with time since fire (Veblen 1986,
Aplet et al. 1988, Donnegan and Rebertus 1999).
Therefore, forest cover change c. 1938–2015 could
be expected to differ according to stand age. To
test this idea, we compared 20th-century forest
cover change to stand age (time since last fire) in
a 5076.2-ha area in Rocky Mountain National
Park—the area of overlap between our imagery
and the area studied by Sibold et al. (2006).
Sibold et al. (2006) reconstructed fire history of
individual forest stands greater than c. 8 ha
using stand-origin methods supplemented with
evidence from fire-scarred trees. The study area
of this fire history reconstruction spans c. 2500–
3500 m in elevation, though >75% is in the sub-
alpine zone (>2800 m) and the vast majority is
influenced by higher-severity fire (Sibold et al.
2007). For this analysis, we binned stands by age
class and time since last known fire as follows:

(1) prior to 1650 (stands without any recorded
fire since 1650; 11.3% of the total), (2) 1650–1850
(stands originating after burning in 1650–1850
and prior to Euro-American settlement of the
region; 30.4%), (3) 1850–1900 (stands originating
in 1850–1900 during a period of enhanced fire
activity and drought; 48.5%), (4) 1900–1938
(stands originating following fires early in the
20th century but before initial imagery; 7.0%),
and (5) 1938–2015 (stands that originated follow-
ing fires during the study period, 2.9%).

RESULTS

Changes in forest cover and contributing factors
Between 1938 and 2015, forest cover increased

from 56.5% to 64.3% throughout the NFR, a net
gain of 7.8% (Fig. 4; Appendix S5: Table S1).
However, there was notable spatial variability in
forest cover change. Across the study area, 13.0%
of 250-m grid cells were classified as Forest Loss,
39.4% were classified as Forest Gain, and 47.6%
experienced Little Change (Fig. 4, Appendix S5:
Table S1). Increases in cover were greatest in the
subalpine zone (16%) and were more limited in
the upper montane (7.4%) and lower montane
zones (4.5%). The percentage of total area in dif-
ferent cover classes also varied among zones in
1938 and 2015 (Fig. 5). While lower montane
stands had a relatively uniform distribution
across cover classes, the upper montane and sub-
alpine zones had a greater percentage of stands
with high canopy cover (i.e., >60% cover; Fig. 5).
Of the total classified area (forest/non-forest) in

the NFR, 14.3% overlapped with recent (1978–
2015) fire perimeters. More than 70% of this fire
activity occurred in the lower montane zone,
which helps to explain lower increases in forest
cover throughout this zone when compared to
the upper montane and subalpine. Within recent
fire perimeters, forest cover decreased from
56.6% to 19.7%, a net loss of 36.9%. So, while for-
est cover generally increased in the northern
Front Range (NFR) of Colorado 1938–2015, a
proportion of these longer-term increases in
cover has been offset by recent fire activity in the
lower montane zone. The years of peak fire activ-
ity between 1800 and 2015 occurred in 1859 and
1860, where 22.5% and 18.4% of fire history sites
in the montane zone recorded fire, respectively
(Fig. 2a). Given that these two years were not
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abnormally dry (Fig. 2b, c) and that the sites
recording fire were primarily within the upper
montane area utilized for mining (Veblen et al.
2000), the sharp rise in fire activity probably

reflects increased anthropogenic ignitions—1859
marks the year of widespread increases in inten-
sive mining activity throughout the study area.
In the 1938–2015 period, 2012 was the largest

Fig. 4. Summary of image classification and change detection results across the study area in the northern
Front Range of Colorado. We classified forest cover (forest/non-forest) for each 1 m pixel in 1938 (a, b) and 2015
(c, d) and then compared percent forest cover at an aggregated scale between 1938 and 2015. Grid cells (250 m)
that showed gains (blue) or losses (orange) of forest cover were classified based on directional changes in forest
cover that exceeded the influence of inaccurate classification and sensitivity to co-registration error (e).

Fig. 5. Variability in forest cover across the study area in the northern Front Range of Colorado by life zone
(lower montane, upper montane, and subalpine). Values represent the percentage of 250-m grid cells in the study
area with differing levels of forest cover (20% bin width) at each date (1938 and 2015).
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year for fire activity, with fire perimeters inter-
secting 9.5% of the montane zone (Fig. 2a). This
year had above-average summer drought stress,
below-average winter precipitation, and below-
average spring snowpack (1 May SWE; Fig. 2).
These periods of historical and contemporary
fire activity had important influences on 20th-
century changes in forest cover.

The Random Forest analysis indicated that the
proportion of area recently burned (1978–2015)
was the largest single contributor to forest cover
change (Fig. 6a). When at least 70% of a grid cell
intersected a recent fire perimeter, the cell was
more likely to belong to the Forest Loss class than
to other categories (Fig. 6b). In total, 78.1% of For-
est Loss grid cells overlapped 1978–2015 fire
perimeters. Elevation and proportion low-severity
fire—related variables given the historical preva-
lence of frequent, low-severity fire at lower eleva-
tions—were the second and fourth most important
predictors of forest cover change, respectively.
Grid cells between c. 1700–2250 m and those his-
torically dominated by low-severity fire (according
to the spatial model in Sherriff et al. 2014) showed
increased probabilities of membership in the For-
est Gain class (Fig. 6c, e). Grid cells at the highest
and lowest elevations (i.e., upper treeline and per-
sistent grasslands), as well as mid-upper montane
sites, had lower probabilities of Forest Gain, but
with some variability (Figs. 4, 6c). Grid cells with
moderate to high heat load indices (HLI; i.e., SW
slopes with average to above-average levels of
direct insolation) showed greater probabilities of
Forest Gain than did cooler, NE-facing grid cells
(Appendix S5: Fig. S1). This relationship was con-
sistent across elevations, with the exception of the
grassland ecotone (<1700 m) where cool and wet
sites (i.e., HLI < 0.7) were most likely to be classi-
fied as Forest Gain. At the grassland ecotone, 70%
of grid cells with HLI < 0.7 were classified as For-
est Gain, as compared to 25.8% of grid cells on
warm/dry sites (HLI > 0.7). Mine site density was
the third ranked predictor overall and the most
important predictor related to land use, though
effects varied nonlinearly from low to high mine
densities (Fig. 6a, d). Grid cells with no recorded
mine locations in the vicinity (kernel density of
mines = 0/grid cell) were most likely to belong to
the Little Change class. In contrast, areas with low
to moderate mining density (0–0.125) had higher
probabilities of Forest Gain. Sites with the highest

mine densities (>0.125) showed increased proba-
bilities of membership to the Little Change class
(Fig. 6a, d).
Among the predictors with lower importance,

general trends still existed (Fig. 6a; Appendix S5:
Fig. S1). For example, silvicultural treatments,
primarily fuel mitigation conducted between
2006 and 2015, led to decreased probabilities of
Forest Gain (Appendix S5: Fig. S1). Silvicultural
treatments (c. 2006–2015) occurred on ~6% of the
classified area throughout the NFR and were
more common in the montane zone. Surprisingly,
the differences in forest cover change among cur-
rent land ownership classes and 1938 land cover
types were relatively minor (Fig. 6a, Appendix
S5: Fig. S1). Similarly, proportion of developed
land and road density were not strong predictors
of forest change in our model (Fig. 6a), likely
because some of these areas were developed
prior to 1938 or because some of this development
took place in previously non-forested areas and
thus did not lead to deforestation.
Cross-validation of the Random Forest model

(at 250 m resolution) indicated that overall classifi-
cation accuracy was 66.3% and that accuracy was
highest for the Forest Loss class (Appendix S5:
Table S2). We also noted that our analyses of forest
change were relatively insensitive to aggregation
to a 1 km resolution. At this scale, 13.6% of 1-km
cells were classified as Forest Loss, 44.9% were
classified as Forest Gain, and 41.5% were classified
as Little Change. The Random Forest analysis at a
1 km resolution yielded relatively similar rankings
of variable importance, similar patterns in partial
dependence (Appendix S5: Fig. S2), and similar
classification accuracy (65.2%) to analyses at the
250 m resolution. As might be expected, fine-scale
drivers such as heat load index became less impor-
tant at the coarser spatial resolution of 1 km
(Appendix S5: Fig. S2a) than they were at a 250 m
resolution (Fig. 6a). Patterns in the partial depen-
dence of forest cover change on mine density
(Appendix S5: Fig. S2c) and on spatially modeled
fire regime class (e.g., proportion of low-severity
fire; Appendix S5: Fig. S2e) also became more
apparent at the 1 km resolution.

Comparison of changes in forest cover with fire
history
In the comparison of forest cover change and

stand-specific fire history (i.e., as opposed to the
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spatially modeled area) in the montane zone, we
documented that fire-excluded stands with a his-
tory of frequent, low-severity surface fire (prior
to 1920) showed greater increases in forest cover
1938–2015 (15.7% net change) than did stands
with a history of mixed-severity fire (11.7% net
change), corroborating results of the Random
Forest analysis with respect to trends by eleva-
tion and spatially modeled fire regime (Fig. 7,
Appendix S5: Table S1). Sites within the low-
severity class were primarily at lower elevations
or in close proximity to grasslands.

In higher elevation forests (primarily sub-
alpine) in a subset of Rocky Mountain National
Park with previously reconstructed fire history,
forest cover change showed variation with time
since fire (Fig. 8; Appendix S5: Table S1).

Younger stands—those that burned 1850–1938—
showed greater increases in forest cover than did
older stands (i.e., sites with the last fire prior to
1850). These results are likely due to continued
but slow post-fire recovery in areas that burned
in the century prior to the initial imagery c. 1938
(Fig. 8b, c). In the 1938 imagery, locations with
clearly identifiable fires dating from the 1800s
and early 1900s were evident elsewhere in the
upper montane and subalpine zones of the NFR;
many of these burned sites returned to forest
cover in 2015. Taken together, these results sug-
gest that continued post-fire recovery from high-
severity events in the late 1800s and early 1900s,
and a near absence of subalpine fires in the 20th
century are some of the major causes for the
widespread increases in forest cover at higher

Fig. 6. Random Forest analysis (250 m resolution) of several potential drivers of forest cover change in the
northern Front Range of Colorado, 1938–2015. Variable importance plot (a) gives the relative importance of each
variable to the ensemble model and partial dependence plots (b–e) show the marginal effects of each of the top
four predictors across their respective ranges. Partial dependence plots for the remaining predictors are given in
Appendix S5: Fig. S1.
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elevations 1938–2015. The decline in forest cover
for subalpine areas that burned 1938–2015
(Fig. 8a; �31.9% net change) was driven by a
143-ha subset of the 1978 Ouzel Fire that

overlapped with our imagery and the study area
of Sibold et al. (2006).

DISCUSSION

We quantified 20th-century forest cover
change in the northern Front Range of Colorado,
a complex landscape spanning broad gradients
in the abiotic environment, disturbance regimes,
and human influence. We then linked changes in
forest cover to data describing elevation, heat
load index, historical and contemporary fire his-
tory, and land use. The NFR experienced exten-
sive changes in forest cover 1938–2015, but
reasons for these changes are spatially varying
and a complex combination of drivers was
related to the observed changes in forest cover.
However, we note three general findings:

Changes in forest cover were influenced by abiotic
factors and human influences
Consistent with previous studies in the NFR

and in California, United States (Platt and
Schoennagel 2009, Lydersen and Collins 2018),
we noted that forest cover changes varied with
elevation and that mesic, N-facing grid cells
(with lower heat load indices) showed lower
increases in cover through the 20th century than
did grid cells with other aspects. In many cases,
these more mesic slopes were covered by dense
forest stands in the initial imagery, which limited
potential increases. However, this relationship
shifted at the lowest elevations. Similar to the
findings of Mast et al. (1997), we found that
N-facing slopes at the grassland ecotone were
more likely to experience Forest Gain than were
S-facing slopes in these elevations. It is logical
that forest cover on S-facing sites at lower tree-
line is moisture-limited, and thus, forest cover
remained low at these sites throughout the 20th
century. Similarly, in Arizona and New Mexico,
United States, increases in tree density during
the fire exclusion era were more limited in xeric,
moisture-stressed sites (Rodman et al. 2017),
indicative of broad-scale climatic controls on tree
growth and establishment. Moisture stress may
be less limiting to establishment at higher eleva-
tions in the montane zone (Chambers et al. 2016,
Rother and Veblen 2016); instead, time since dis-
turbance may be a more important driver of for-
est cover change at these higher sites.

Fig. 7. Net change in forest cover 1938–2015 by his-
torical fire regime class in 73 fire-excluded montane
stands in the northern Front Range of Colorado with
stand-specific fire history reconstructions. Stands in
the low-severity class were historically characterized
by frequent surface fires, while stands in the mixed-
severity class experienced occasional stand-replacing
patches of wildfire and tend to exist at middle eleva-
tions in the study area. Values given are area-weighted
change in forest cover across all stands and error bars
represent the sensitivity of forest cover change to inac-
curate classification and co-registration error. Example
image pair (b, c) illustrates forest expansion into grass-
lands, as well as recent suburban development at a site
typified by frequent, low-severity surface fires prior to
1920 (39.96°N, 105.27°W).
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Mining activity was the dominant historical
anthropogenic impact on forest cover changes in
the NFR. Mining activity beginning in the mid-
1800s led to surface disturbance rates at least 50
times that of the natural rate of soil disturbance
prior to the 19th century (Dethier et al. 2018).
Mining brought with it the removal of large-dia-
meter trees for railroad ties and timber, as well
as increases in anthropogenic ignitions, all hav-
ing important influences on forests (Veblen and
Lorenz 1986, 1991, Veblen and Donnegan 2005).
For example, 1859 and 1860 were the years of
most widespread fire activity throughout the
NFR c. 1800–2015 and 1859 marks the onset of
intensive mining in the region (Veblen et al.
2000, Dethier et al. 2018). Throughout the NFR,
areas with low to moderate mining density
showed greater probabilities of Forest Gain
through the 20th century, likely due to recovery
from 1800s logging and burning. However, areas
with the highest mining densities were more
likely to demonstrate Little Change 1938–2015.
We hypothesize that this effect could be attribu-
ted to two factors. First, areas of highest mining
density were more often privately owned and
had higher densities of roads in both 1938 and

2015 than many other areas in the NFR. There-
fore, persistent fragmentation due to residential
development and road construction is one likely
mechanism for lower probabilities of Forest Gain
on these intensively mined sites. Second, severe
ground disturbance and seed source limitations
(due to substantial removal of large-diameter
timber) may have led to prolonged forest recov-
ery in sites with high mining density, even those
without persistent development or road net-
works. This relationship between mining density
and forest cover change is complex and merits
further investigation.
Like many areas throughout the western Uni-

ted States, forest thinning and fire hazard mitiga-
tion have been prominent goals in forests in the
NFR since the early 2000s (Caggiano 2017,
Addington 2018). Though silvicultural treatments
were only documented in 6% of the NFR, these
treatments influenced forest change in certain
areas. For example, treatments were most com-
mon in the montane zone and, where present, led
to decreased probabilities of Forest Gain 1938–
2015. We did not perform analyses that separated
silvicultural treatments by intensity or time since
treatment, both of which are factors that would

Fig. 8. Net change in forest cover (1938–2015) as it relates to time since last stand-replacing wildfire in higher
elevation forest stands within a ~5000 ha area of Rocky Mountain National Park, CO (a). Error bars represent the
sensitivity of each value to inaccurate classification and co-registration error. Areas in the 1938–2015 class are
within a single wildfire that took place in 1978 (the Ouzel Fire). Example image pair (b, c) shows a subarea with
a recorded fire that occurred in the late 1800s and subsequent recovery through the 20th century (40.31°N,
105.59°W). Fires in the subalpine zone typically burn infrequently (>200 yr) and at high severity.
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be likely to influence our results and would be
useful in future studies. Similarly, we did not
include data on sanitation or salvage harvests
related to mountain pine beetle outbreaks in the
1970s or extractive logging prior to this time
(Veblen and Donnegan 2005) and the influence of
these events on forest change c. 1938–2015 is diffi-
cult to assess. However, establishment of younger
cohorts has been noted following historical log-
ging and it is likely that these mid-20th-century
management activities would lead to an altered
forest age structure (Veblen and Donnegan 2005)
rather than a conversion of forest to non-forest c.
1938–2015.

Land ownership influences forest cover change
in a multitude of ways, such as differences in pat-
terns of development, the intensity of fire sup-
pression activities, and differences in the degree
of silvicultural treatment by land ownership cat-
egory. Developed private lands make up the vast
majority of the wildland–urban interface (Theo-
bald and Romme 2007), an area where fire sup-
pression activities are particularly intense (Gorte
2013). Forest management activities also differ
across management units. For example, Easter-
day et al. (2018) noted substantial differences in
20th-century forest change by land ownership
designation in California, likely as a result of dif-
fering long-term management strategies. In the
NFR, rates of silvicultural treatment varied by
ownership and were highest on city/county-
owned lands (12.2% of total city/county area),
intermediate on U.S. Forest Service lands (6%)
and private lands (3.8%), and lowest on National
Park Service lands (0.6%). Widespread and con-
sistent implementation of silvicultural treatments
has been difficult in the NFR due to the frag-
mented nature of land ownership and potential
treatment inconsistencies across ownership des-
ignations (Calkin et al. 2014). While silvicultural
treatment, land ownership, and development
intensity were not the most important variables
in our analyses, we do not exclude potential
influences from these factors given their known
influence on ecological systems.

20th-century changes in forest cover varied by life
zone and historical fire regime

While forest cover increased 7.8% through the
entire study area from 1938 to 2015, these
increases were most pronounced in the subalpine

zone and unburned portions of the lower mon-
tane zone. These findings align with what is
known about patterns of historical fire activity
and tree establishment across life zones in the
NFR over the last two centuries. We noted that
lower montane stands that were historically
dominated by a frequent, low-severity fire
regime (<2260 m; Sherriff et al. 2014) showed
greater increases in forest cover c. 1938–2015
(15.7% net gain in forest cover) than did mid-
upper montane sites with a history of mixed-
severity fire (11.7%). Stand age data indicate that
abundant tree establishment occurred during the
early 1900s throughout the lower montane zone
(Sherriff and Veblen 2006, Battaglia et al. 2018).
Because it may take several years for tree crowns
to expand to a size that could be classified in the
1938 imagery (i.e., >2 m crown diameter), some
of this early 1900s establishment likely appeared
to be forest cover increase during the 1938–2015
period of our study. In contrast, upper montane
sites in the study area experienced abundant tree
establishment in the mid-late 1800s following
widespread mixed-severity fires and logging
(Mast et al. 1998, Ehle and Baker 2003, Schoen-
nagel et al. 2011, Battaglia et al. 2018). Thus,
some of these mid-upper montane sites may
have already appeared as closed forest and rela-
tively dense stands in 1938, limiting potential
increases 1938–2015. Still, continued establish-
ment has occurred in some areas of the upper
montane zone into the 2000s (Sherriff and Veblen
2006, Schoennagel et al. 2011), particularly areas
experiencing past logging (Battaglia et al. 2018)
or with low initial forest cover (Platt and Schoen-
nagel 2009).
A previous study using historical and contem-

porary air photographs (1938–1999) in the mon-
tane zone of the NFR also identified greater
increases in forest cover at low elevations in the
montane zone than in the mid-upper montane
(Platt and Schoennagel 2009). Yet there were
important differences between our study and
that of Platt and Schoennagel (2009). While this
prior study identified no increases in forest cover
in stands above 2432 m, we documented sub-
stantial increases in forest cover for some areas in
the upper montane and subalpine zones. In addi-
tion, the 4% overall increase in forest cover iden-
tified by Platt and Schoennagel (2009) is
generally lower than that presented in this study
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(7.8% increase). These differences could be attrib-
uted to several factors. Classification scheme,
spatial extents of image coverage, and dates of
contemporary imagery differed between these
studies, which could have affected final out-
comes. Specific percentage estimates of forest
cover change using historical air photographs are
imperfect due to the various limitations of these
data (Platt and Schoennagel 2009, Lydersen and
Collins 2018). These limitations make direct com-
parisons between studies difficult and further
highlight the importance of methods that
account for potential error and uncertainty in
change detection.

The pronounced increases in forest cover
through the subalpine zone tell a complex story
that may be linked to a combination of logging
activities, widespread fires in the 1800s, and slow
forest recovery from these events. In a portion of
Rocky Mountain National Park (the study area of
Sibold et al. 2006), we noted that forest cover
increases were generally higher for stands that
burned 1850–1938 than within stands originating
prior to 1850. This rough classification of stands
by age masks some of the ecological variability
inherent to subalpine forests in the NFR, where
rates and trajectories of forest succession vary
strongly by site and with species composition
(Veblen 1986, Rebertus et al. 1991, Donnegan
and Rebertus 1999, Coop et al. 2010). Still, it is
notable that subalpine stands originating follow-
ing abundant fire activity in the mid-late 1800s
(Buechling and Baker 2004, Sibold and Veblen
2006, Sibold et al. 2006) showed much greater
increases in forest cover than did older stands.
Unlike sites in the lower montane zone, the direct
impacts of organized fire suppression in sub-
alpine forests are likely quite minimal given that
these forests typically burn in extreme events
during which suppression activities are difficult
and that the period of active fire suppression is
much shorter than a typical subalpine fire inter-
val (Schoennagel et al. 2004, Naficy et al. 2016).
While a small portion of the subalpine forests in
the NFR had a history of frequent surface fire
(e.g., 1–3%; Sibold et al. 2006) and tree invasion
into subalpine meadows could have resulted
from fire exclusion at these sites, the thinning
effects of surface fires in subalpine forests were
relatively minor across the NFR landscape
(Sibold et al. 2007). Thus, we conclude that forest

cover in the subalpine zone in the NFR increased
from 1938 to 2015 primarily as a result of contin-
ued recovery from fire, logging, and mining dis-
turbances c. 1850–1938 rather than as a result of
20th-century fire suppression.

Contemporary fire activity drove observed
declines in forest cover
Recent (1978–2015) fire activity was the largest

single driver of forest change in our Random For-
ests analysis. Indeed, while forest cover
increased throughout the study area 1938–2015,
areas within fire perimeters showed substantial
declines. Recent wildfires have driven rapid and
broad-scale changes in landscapes of the NFR,
but these changes should be considered within
the context of multiple management goals. On
one hand, these past fires, considered in combi-
nation with poor post-fire recovery in severely
burned areas (Chambers et al. 2016, Rother and
Veblen 2016), portend a decline in forest cover
into the future. Changes in fire activity and forest
cover may also alter important ecosystem ser-
vices (Rocca et al. 2014). However, severe wild-
fires can benefit many wildlife species (Hutto
et al. 2016) and may moderate subsequent fire
activity (Parks et al. 2014, Coop et al. 2016, Hol-
singer et al. 2016), thus acting as effective fuel
treatments in a region with a high density of
homes in fire-prone areas (Platt et al. 2011).
These are important considerations as climate
warming is expected to lead to continued
increases in wildfire activity throughout the
Rocky Mountains (Spracklen et al. 2009, Wester-
ling et al. 2011, Liu et al. 2013).

Study Limitations
Forest cover, the focus of this study, is not nec-

essarily indicative of forest structure and compo-
sition. For example, a 250-m grid cell with 30%
forest cover could encompass a wide range of
stand densities, species compositions, and fine-
scale spatial patterns, all of which are ecologi-
cally meaningful and influence myriad ecosys-
tem processes. Though temporal variability in
climate probably played an important role in the
observed changes in forest cover in the NFR
through the 20th century, we did not directly
quantify the influences of interannual and inter-
decadal climate variability on changes in forest
cover. These analyses were not feasible given that
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we used only two sets of imagery spanning a
broad time period. Instead, a review and synthe-
sis of potential influences of climate on tree
establishment, disturbance activity, and tree
growth are provided in Fig. 2 and Appendix S1.
We addressed spatial variability in climate by
including elevation and heat load index in our
analyses. These variables are strong proxies for
climate in the NFR.

The seasonal timing of image acquisition has
the potential to influence our results, as many
quaking aspen and other broad-leafed deciduous
trees at higher elevations in the study area likely
had no leaves during the collection of 1938 ima-
gery (collected primarily in late October after leaf
abscission). Aspen is a fairly minor component of
forests of the NFR (Peet 1981) and currently occu-
pies only ~7% of our study area in fragmented
locations throughout the montane and subalpine
zones (Veblen and Donnegan 2005, Rollins 2009).
Still, some of the observed increases in forest
cover in the upper montane and subalpine zones
could reflect conversions of post-disturbance
aspen cohorts in 1938 to conifer-dominated sys-
tems in 2015, rather than a conversion of non-for-
est to forest cover.

Shadows cast by individual trees and topogra-
phy likely led to variability in our estimates of
forest cover across the NFR. Recognized by pre-
vious studies (Platt and Schoennagel 2009,
Lydersen and Collins 2018), shadows can influ-
ence the results of classification in grayscale ima-
gery. For example, large shadows often appear to
be dense homogenous stands of forest, while
shadows from individual trees appear as exten-
sions of the tree crowns. We addressed these
problems by removing large shadows and water
bodies from the forest classification through
post-classification correction, by using site-speci-
fic uncertainty thresholds to identify areas in
which forest change exceeded classification error
and uncertainty, and by manually correcting this
classification when necessary. In most cases, aer-
ial photographs in 1938 and 2015 appeared to
have been collected under similar lighting condi-
tions (mid-late morning near the spring or fall
equinox), which permits a reasonable compar-
ison through time.

The classification of standing dead trees can
also be problematic in grayscale imagery without
spectral information in the red and near-infrared

wavelengths. Our initial accuracy assessment
indicated that misclassification of standing dead
trees was an important source of classification
error in 2015 imagery. For this reason, we cor-
rected 2015 forest classifications within known
burn perimeters using systematic photointerpreta-
tion (Appendix S2). Though scattered tree mortal-
ity due to insects has occurred throughout much
of the NFR c. 1996–2015 (United States Forest Ser-
vice, R2 Aerial Detection Survey 2015), wide-
spread insect outbreaks (i.e., near-total mortality
of large stands) are primarily confined to the
northwest corner of the study area. We estimate
these outbreaks influenced <5% of the total study
area based on manual photointerpretation and
comparison with aerial detection survey data
(United States Forest Service, R2 Aerial Detection
Survey 2015). Insect outbreaks during the late
20th and 21st centuries have been generally much
less widespread and of lower severity in our
study area than in other regions in Colorado. Fur-
thermore, forest recovery following insect mortal-
ity in the overstory can be relatively rapid due to
post-outbreak release of advance regeneration as
well as new tree establishment (Veblen et al. 1991,
Hadley and Veblen 1993, Collins et al. 2011); thus,
conversion to non-forest is not the typical result of
recent insect outbreaks in the NFR. Still, we
acknowledge that the misclassification of stand-
ing dead trees in areas recently affected by insect
mortality is a potential cause of error.
One additional source of error that could not be

fully accounted for was the variation in image
quality throughout the study area, particularly for
the 1938–1940 imagery. Some scenes were well
preserved, yet others had evidence of fading and
creases that may have led to local error in forest
cover estimates. We addressed these problems by
removing the outer edges of each scene prior to
mosaicking (showing the greatest likelihood of
fading and distortion) and by manually removing
a small number of areas due to poor image quality.
Image quality is an important consideration when
working with historical aerial imagery in a GIS;
automatic detection and removal of poor-quality
areas may lead to improved results in the future.

CONCLUSION

Our study highlights that forest cover change
is rarely the result of a single causative
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mechanism. Observed forest cover gains in the
northern Front Range 1938–2015 were related to
a complex combination of effects of elevation,
heat load index, historical fire activity, and 19th-
century mining activity. The effects of fire history
varied along the elevation gradient, with sub-
alpine forests showing the greatest increases in
cover in part due to recovery from fire activity in
1850–1938. In the montane zone, fire-excluded
stands with a history of frequent, low-severity
surface fire showed a greater increase in cover
than did stands with a history of mixed-severity
fire (15.7% vs 11.7%). No single driver of Forest
Gain applied across the entirety of the study area.
In contrast, Forest Loss was primarily driven by
recent fire activity in the montane zone. Late 20th
and early 21st-century silvicultural treatments
(e.g., forest thinning and prescribed fire), exurban
development, and road construction have also
played important roles in Forest Loss or in limit-
ing Forest Gain in some areas. Changes in forest
cover in the NFR c. 1938–2015 are a reflection of
short-term (e.g., development, recent wildfire)
and long-term (e.g., pulses of historical fire activ-
ity, fire quiescence, climatic influences on tree
establishment, and 1800s mining and logging)
landscape legacies which are then overlaid upon
variability in the abiotic environment.
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