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Abstract

Numerous reports have suggested that infectious agents could play a role in neurodegenerative diseases, but specific etiological agents
have not been convincingly demonstrated. To search for candidate agents in an unbiased fashion, we have developed a bioinformatic
pipeline that identifies microbial sequences in mammalian RNA-seq data, including sequences with no significant nucleotide similarity hits
in GenBank. Effectiveness of the pipeline was tested using publicly available RNA-seq data and in a reconstruction experiment using syn-
thetic data. We then applied this pipeline to a novel RNA-seq dataset generated from a cohort of 120 samples from amyotrophic lateral
sclerosis patients and controls, and identified sequences corresponding to known bacteria and viruses, as well as novel virus-like sequen-
ces. The presence of these novel virus-like sequences, which were identified in subsets of both patients and controls, were confirmed by
quantitative RT-PCR. We believe this pipeline will be a useful tool for the identification of potential etiological agents in the many RNA-seq

datasets currently being generated.
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Introduction

As detailed below, there are numerous reports suggesting that
microbes could play a role in neurodegenerative diseases.
Microbial sequences are routinely identified in human RNA-se-
quencing (RNA-seq) data (Mangul et al. 2018), which is typically
acquired to assay gene expression. The origins of these microbial
sequences are generally unknown, although in theory disease-
relevant microbes could be identified if their sequences are sig-
nificantly enriched in patients compared with controls. We there-
fore sought to develop a bioinformatic pipeline that could
identify microbial sequences over-represented in RNA-seq data
from patients compared with controls. Importantly, our pipeline
can recover both known and novel microbial sequences.

Background of organisms in neurodegeneration

Infection has been proposed to play a role in multiple neurode-
generative diseases (Patrick et al. 2019), including amyotrophic
lateral sclerosis (ALS) (Castanedo-Vazquez et al. 2019). ALS is the
most common motor neuron disease in adults, with the majority

of individuals dying within 3-5years of symptom onset. The dis-
ease is defined by the degeneration and death of motor neurons
in the brain and spinal cord, resulting in progressive weakness
and eventually death, typically from respiratory muscle weak-
ness (Mehta et al. 2018). Around 10% of ALS patients have a fam-
ily history that suggests an autosomal dominant inheritance
which is classified as familial ALS (fALS), with the remaining 90%
of patients classified as having sporadic ALS (sALS; Masrori and
Van Damme 2020). After decades of study, the etiology of sALS
remains a mystery, although suspected risk factors for ALS in-
clude exposure to heavy metals, pesticides, chemical solvents,
cigarette smoke, and unidentified factors related to US military
service (Ingre et al. 2015; Talbott et al. 2016; Zhan and Fang 2019;
Opie-Martin et al. 2020). Along with these environmental risk fac-
tors, there has been a long history, with variable success, in the
search for pathogens that might contribute to ALS (Pertschuk
et al. 1977; Kohne et al. 1981; Alonso et al. 2017; Xue et al. 2018;
Andrade et al. 2019) and other neurodegenerative diseases such
as Alzheimer’s disease (AD; Deutsch et al. 1982; Taylor et al. 1984;
Sochocka et al. 2017), Parkinson’s disease (PD; Irkeg 1982;
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Abushouk et al. 2017; Parashar and Udayabanu 2017), and multi-
ple sclerosis (MS; Libbey et al. 2014).

Studies on ALS primarily come from European populations
and within these populations four genes [TAR DNA-binding pro-
tein 43 (TDP-43), fused in sarcoma/translocated liposarcoma
(FUS), superoxide dismutase 1 (SOD1), chromosome 9 open reading
frame 72 (COORF72)] account for 70% of fALS (Kiernan et al. 2011).
Of these four genes, C90RF72 accounts for up to 30-50% of cases
in fALS and 7% of sALS (in all populations; Masrori and Van
Damme 2020). In C90RF72-associated ALS (c9ALS), a hexanucleo-
tide repeat expansion (HRE) occurs that can form RNA with
highly stable parallel G-quadruplex structures (G4 RNA). How
neurodegeneration occurs from HRE in c9ALS is not well under-
stood, but putative mechanisms include reduction of C9ORF72
expression, production of poly-dipeptides as a result of repeat-as-
sociated non-AUG translation of repeat sequences, and the for-
mation of RNA foci that may sequester RNA binding proteins
(Reddy et al. 2013; Tang et al. 2020). Identifying disease modifiers
is of significant translational interest, as it is currently unknown
how patients with cSALS (sporadic or familial) progress from
asymptomatic to symptomatic states. Evidence is mounting that
persistent immune activation can play a causative roll in disease
progression, and some recent treatments focus on reducing the
elevated neuroinflammation that occurs in patients with the HRE
(Trageser et al. 2019). Indeed, one study showed that a lower
abundance of immune-stimulating bacteria contributes to re-
duced inflammation and protection from premature mortality in
a C9orf72 loss-of-function mouse model (Burberry et al. 2020).

Diverse pathogens have been reported in the blood, cerebro-
spinal fluid (CSF), and central nervous system (CNS) from ALS
patients. For example, bacteria that have been detected include
Cutibacterium acnes, Corynebacterium sp, Fusobacterium nucleatum,
Lawsonella clevelandesis, and Streptococcus thermophilus in CSF
(Alonso et al. 2019), and mycoplasma in blood (Gil et al. 2014).
Fungi, including Candida famata, Candida albicans, Candida parapsi-
losis, Candida glabrata, and Penicillium notatum, have been detected
in CSF, whereas Malassezia globosa, Cryptococcus neoformans
(Alonso et al. 2017), and C. albicans have been found in various
regions of the CNS (Alonso et al. 2015, 2017; Pisa et al. 2016). The
search for viruses that contribute to ALS pathology is much more
extensive and includes studies on herpes virus (Pertschuk et al.
1977; Cermelli et al. 2003), enterovirus (Pertschuk et al. 1977,
Berger et al. 2000; Giraud et al. 2001; Vandenberghe et al. 2010; Xue
et al. 2018), human immunodeficiency virus (HIV; Verma and
Berger 2006; Moodley et al. 2019), and human endogenous retrovi-
rus (Douville et al. 2011; Li et al. 2015; Arru et al. 2018).
Importantly, multiple studies using immunohistochemistry have
shown an increased load of various pathogens in ALS samples
compared with controls in multiple tissues suggesting these
pathogens are present and cannot be simply attributed to con-
tamination (Pertschuk et al. 1977; Alonso et al. 2015, 2017, 2019;
Pisa et al. 2016). Ultimately, the presence of ALS dysbiosis is unre-
solved and remains an active area of investigation with evidence
for (Fang et al. 2016; Zhang et al. 2017; Blacher et al. 2019; Sun et al.
2019; Obrenovich et al. 2020) and against it (Brenner et al. 2018).

The biological role that these alternative microbiotas play in
ALS is also unclear. ALS patients may have a compromised blood
brain barrier or blood spinal cord barrier function (Henkel et al.
2009; Garbuzova-Davis and Sanberg 2014). It has been reported
that ALS patients also have elevated Gram negative endotoxin/li-
popolysaccharide (LPS) in the blood (Zhang et al. 2009). Patients
with ALS also display activation of the innate immune system
along with changes in blood (Mantovani et al. 2009; Murdock et al.

2017), spinal cord and motor neurons (Sta et al. 2011), but if and
how bacteria might influence activation is an active area of re-
search. A “dual hit” hypothesis by Correia et al. (2015) suggests in-
flammation via LPS may contribute to mislocalization and
aggregation of ALS-implicated protein TDP-43.

Numerous studies have looked for biomarkers of ALS (Verber
et al. 2019) using metabolomics (Blasco et al. 2010, 2017), neuroin-
flammation (Mitchell et al. 2009; Guo et al. 2017), DNA methyla-
tion (Young et al. 2017; Coppede et al. 2018), gene expression
(Swindell et al. 2019), microRNA expression (Waller et al. 2017,
2018) and our previous study which analyzed protein levels of
poly(GP) in c9ALS (Gendron et al. 2017). The search for pathogens
using sequencing data from blood samples in ALS patients has
been conducted before (Gagliardi et al. 2018; van Rheenen et al.
2018; Rahman et al. 2019; Zucca et al. 2019), but previous efforts
have not looked for novel pathogens. Next-generation sequenc-
ing (NGS) technologies have shown broad detection of pathogens
in a target-independent unbiased fashion (Moore et al. 2011;
Bouquet et al. 2017; Parker and Chen 2017; Westermann et al.
2017), however, designing a microbial detection experiment is
nontrivial considering the variety of methods (Poussin et al. 2018)
and algorithms (Roumpeka et al. 2017) that can be applied. Our
primary goal when designing a new pipeline was to be conserva-
tive and unbiased with regards to discovery and quantification of
novel pathogens. Furthermore, our intention was not to “reinvent
the wheel” for microbiota classification, and instead opt to pro-
vide an end-to-end pipeline that leverages data across samples to
obtain biologically significant fold changes of microbiota between
diseased and healthy subjects.

Although other pipelines have used reads that do not map to
the host genome (unmapped reads) for microbial identification
and quantification, these pipelines cannot be used for discovery
as they rely on existing databases of microbial genomes (Cavadas
et al. 2017; Mangul et al. 2018; Simon et al. 2018; Gihawi et al. 2019).
One popular pipeline for viral classification that uses nonhost
reads includes ViromeScan (Rampelli et al. 2016), which utilizes a
database of reference viral sequences to assign reads to taxo-
nomic categories, but is “blind” to viral sequences not closely re-
lated to those in the database. Thus, we opted for de-novo
assembly of unmapped reads into contigs, similar to the strategy
employed by Kraken (Wood and Salzberg 2014) and MetaShot
(Fosso et al. 2017). Additionally, we use a hierarchical method to
assemble unmapped reads into contigs (single samples, group,
and all) to increase the chance of assembling a correct contig
from partial sequences that are present in multiple samples, and
to remove outlier contigs present in single samples that are un-
likely to contribute to the statistical analysis.

Where MetaShot stops at providing reads assigned to taxo-
nomical categories, we map reads back to contigs and provide
proper library normalization for statistical quantification. A simi-
lar pipeline known as IMSA (Cox et al. 2017) also maps reads back
to contigs, but disregards contigs that might be identified by
translated amino acid sequence similarity using BLASTX (a set
we call the “dark biome”) as well as subsequent contigs with no
BLASTN or BLASTX hit (a set we call the “double dark biome”).

We validated our pipeline by using datasets (synthetic and
real) with known bacterial or viral infections. We also examined
the differences in microbial identification between polyA and to-
tal RNA recovery in multiple tissues, and investigated the effects
of globin depletion of blood samples. We then used our pipeline
on a novel ALS blood dataset (termed “Our Study”) as well as on
five other published ALS datasets from blood or spinal cord sam-
ples, analyzed each dataset individually, and analyzed across
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datasets for changes in microbiota. Although we did not identify
any microbes enriched in the blood of ALS patients, we did iden-
tify and validate a novel virus-like sequence, demonstrating the
potential of the bioinformatic pipeline we have established.

Materials and methods
Blood collection and RNA extraction

A total of 120 RNA whole blood samples constitute Our Study,
which included 30 healthy controls (from general population that
do not have blood relatives suffering from ALS, CTL), 30 presymp-
tomatic C9ORF72 mutant carriers (C9A), 30 symptomatic
COORF72 ALS cases (C9S), and 30 symptomatic COORF72-negative
ALS cases (SYM). PAXgene blood RNA tubes were collected at
Mayo Clinic Jacksonville and at University of Miami. All 120 RNA
samples selected for RNA-seq were received and processed at
Mayo Clinic Jacksonville using PAXgene blood RNA kit following
manufacturer’s recommendations (Qiagen). Blood RNA was of
high quality, assessed in an Agilent Bioanalyzer (Agilent), with
RNA integrity values ranging from 7.4 to 9.8, with a median value
of 8.7. RNA samples were then sent to The Jackson Laboratory for
globin depletion, library preparation and sequencing of total
blood RNA.

Globin depletion

Due to the abundance of large hemoglobin RNA transcripts pre-
sent in the blood, a globin depletion step, using the Ambion
GLOBINclear kit (AM1980), was performed before sequencing of
the blood RNA samples in order maximize coverage on nonglobin
genes. In brief, one microgram of total RNA was used as starting
material, and specific biotinylated oligos were used to capture
globin mRNA transcripts. The capture oligos were hybridized
with total RNA samples at 50°C for 30 min. Streptavidin magnetic
beads were then used to bind to the biotinylated capture oligos
hybridized to globin mRNA by incubating at 50°C for 30min. The
magnetic streptavidin beads-biotin complex were then captured
to the side of the tubes by a magnet, and the resulting superna-
tant is free of globin mRNA. The globin depleted (GD) RNA was
further purified by RNA binding beads and finally eluted in elu-
tion buffer. The resulting RNA free of >95% globin mRNA tran-
scripts was then processed for NGS. Of note, to assess the
efficiency of the globin RNA depletion, 10% of the samples proc-
essed were selected randomly and amplified using a Target-Amp
Nano labeling kit (Epicentre). Samples were normalized to 100 ng
input and reverse transcribed. First strand cDNA was generated
by incubating at 50°C for 30min with first strand premix and
Superscript III. This was followed by second strand cDNA synthe-
sis through DNA polymerase by incubating at 65°C for 10min
and at 80°C for 3min. In vitro transcription was then performed
at 42°C for 4h followed by purification using RNeasy mini kit
(Qiagen).

Due to the large number of samples, the globin depletion step
was performed in two batches. We provided guidelines on how
samples would be divided among the batches and also for how
samples would be grouped in the sequencing runs in order to
minimize technical variability. The Jackson Laboratory personnel
were blinded to the identity of the samples.

RNA-seq of total blood RNA (globin and ribosomal RNA de-
pleted) was performed in an Illumina HiSeq4000 with >70 million
read pairs per sample (100 bp read lengths). Raw reads were then
sent back to us for bioinformatics analyses.

Quantitative RT-PCR for blood RNA samples

A total of 500ng of total blood RNA was used for reverse
transcription polymerase chain reaction (RT-PCR), using the
high-capacity complementary DNA Transcription Kit with ran-
dom primers (Applied Biosystems). Quantitative real-time PCR
(QRT-PCR) was performed using SYBR GreenER gPCR SuperMix
(Invitrogen). Samples were run in triplicate, and gRT-PCRs were
run on a QuantStudio 7 Flex Real-Time system (Applied
Biosystems).

List of primers and their sequences in this study:

Primers targeting the novel RNA-dependent RNA polymerase
(RDRP) contig from our study

RDRP forward 5'-GCTGTCAAATCGGTTTCCAAC-3/;
RDRP reverse 5'-CTGCCTTCGTCATCTTGGAG-3'.

Primers targeting highly expressed control regions

GAPDH forward 5'-GTTCGACAGTCAGCCGCATC-3;
GAPDH reverse 5-GGAATTTGCCATGGGTGGA-3'.

Transcriptomics

See pipeline description in results for an overview of the pipeline;
see bioinformatics Supplementary File S1 for a more detailed de-
scription of the analysis pipeline, versions, and statistical quanti-
fication. For downloading the pipeline and detailed instruction
for running the pipeline please read the README at https://
github.com/Senorelegans/MysteryMiner. We have also deposited
a frozen and cite-able version of the software with doi:10.5281/
zenodo.4598807 and available at https://zenodo.org/record/
4598807#.YEphhSNKjKp. All data in this study were processed
identically using the pipeline.

Statistical analysis

To assess statistical differences between conditions, a two tailed
Student’s t-test was calculated using normalized coverage (NC)
for contigs or binned normalized coverage (BNC) for species/ge-
nus, etc. The number of contigs or genus/species is used to obtain
an False discovery rate (FDR) corrected (using the Benjamini/
Hochberg method) adjusted P-value (q-value) via statsmodels in
Python. Cutoff for statistical significance is less than an g-value
of 0.05 unless otherwise stated.

Results
Pipeline description

Our novel pipeline, Mystery Miner, is written as a Nextflow pipe-
line. Below is a short overview of the Mystery Miner pipeline
(Figure 1). A more in-depth explanation, list of software and ver-
sions used, and typical parameters of each step are described in
the bioinformatics supplement, and all of the code used in this
article can be found at https:/github.com/Senorelegans/
MysteryMiner.

Raw reads were first checked for quality using FastQC then
trimmed to remove both adaptor contamination and low quality
basecalls using Trimmomatic. Trimmed reads were then mapped
to the host genome using STAR for a fast first-pass followed by a
second pass with bowtie2 for sensitivity. Unmapped reads were
retained for contig assembly. Filtering out host reads made
downstream assembly faster and required less memory. We as-
sembled contigs from unmapped reads with the SPAdes assem-
bler (with “-rna” setting). This assembler was chosen for its
recent use in studies of microbial diversity (Almeida et al. 2019)
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Figure 1 Diagram of Mystery Miner pipeline. Reads were first checked with FastQC and trimmed using Trimmomatic (1, gray). Reads were then aligned
to the host genome using various aligners (2, blue). Nonhost (unmapped) reads were assembled into contigs with RNA SPAdes and regular biome contigs
were identified with BLASTN (3, yellow). Unidentified contigs were filtered for repetitive sequences with Dust, filter by single, group or all with LAST, and
dark biome contigs were identified with BLASTX. Double dark biome unidentified BLASTX contigs were sent directly to quantification (4, purple). Dark
biome and regular biome contigs were assigned complete taxonomy using the JGI server and filtered one last time to remove mammalian/host genome
contigs (5, Green). Nonhost reads were then mapped to all contigs and NC was calculated for subsequent statistical analysis.

and proven robustness to biological and technical variation
(Papudeshi et al. 2017). The species each contig belongs to was
identified with BLASTN using default settings, and the top hit for
each contig was retained (a set we call “regular biome”). Contigs
with no BLASTN hits were then filtered to remove highly repeti-
tive regions (DUST). Next, contigs were retained if they had a
>60% pairwise alignment (LAST) between contigs assembled
from a single sample, group/condition, or all samples (for exam-
ple; contigs from groups that match singles are retained, we then
use this new set to match with contigs from the all assembly).

We then identified contigs that lacked detectable nucleotide
similarity to any GenBank entry but showed similarity at the
amino acid level using BLASTX (“dark biome”). Furthermore, con-
tigs with no BLASTN or BLASTX hits were labeled as “double dark
biome” (also filtered by DUST and LAST). Every contig in the
“regular biome” and “dark biome” were then queried against the
Joint Genome Institute Server for additional taxonomic informa-
tion. As Mystery Miner is an agnostic tool, it cannot distinguish
between true tissue or cell-associated microbes and experimen-
tally introduced contamination.

For quantification, we mapped the nonhost reads using
Bowtie2 to the contigs obtained from SPAdes. Next, we mapped
reads to contigs using samtools mpileup (default mapq score) to
calculate the amount of reads over each base pair in a contig. We
then calculated coverage on the contigs by summing all of the
counts for each base pair in a contig and dividing by the length of
the contig. We then calculated NC by library size using the num-
ber of mapped reads to the host genome. This gave us NC for
a contig or BNC for multiple contigs within a species/genus, etc.
To assess statistical differences between conditions, a Student’s
t-test was calculated through NC or BNC, using the number
of contigs or genus/species to obtain an FDR corrected adjusted
P-value (g-value) using statsmodels in Python.

Validating Mystery Miner on datasets with
known bacterial or viral infection

To confirm that Mystery Miner is able to recover and quantify
known bacterial infections from sequencing data, we utilized an

in vitro model of Chlamydia trachomatis infection from (Humphrys
et al. 2013). In this study, epithelial cell monolayers were infected
with C. trachomatis; and polyA RNA (six samples) and total RNA
(six samples) were sequenced 1 and 24h postinfection (hpi).
Using the Mystery Miner pipeline, out of 5.32 x 10° reads from all
of the samples, 6.04 x 10° reads remained unmapped (~11.34%)
after trimming and mapping to the host genome (Supplementary
File S2). From these nonhost reads, 3257 contigs were assembled
and 1199 of these contigs were identified as regular biome
(Supplementary File S3). An additional 27 contigs had no BLASTN
hit. Of these, we identified two dark biome (BLASTX identified)
and no double dark biome (no BLASTX or BLASTN hit) contigs
(Supplementary Files S4 and S5).

Using Mystery Miner we successfully identified, and found
significantly elevated levels, of C. trachomatis (BNC by species) in
24 hpi samples compared with 1 hpi samples in both polyA
(q=0.004) and total RNA (q=0.0005). In addition to C. trachomatis,
we identified six additional bacterial species and one viral species
(Alphapapillomavirus 7) in the samples (Figure 24), including sig-
nificantly elevated levels of Mycoplasma hyorhinis contigs in total
RNA samples. No significant differences were observed in the
dark or double dark contigs (Supplementary File S6).

To confirm that the pipeline can detect known viral infections,
we ran Mystery Miner on a total RNA dataset from an in vitro
model of severe acute respiratory syndrome coronavirus (SARS-
CoV)-1 or -2 infection (Emanuel et al. 2020). In this study, human
epithelial Calu3 cells were infected with SARS-CoV-1 or SARS-
CoV-2 (4,12, or 24h), mock (4 or 24 h), or untreated (4 h).

Out of the 2.81 x 10® reads obtained from all of the samples,
8.23 x 10’ reads remained unmapped (~29%) after trimming and
mapping to the host genome (Supplementary File S2). From these
nonhost reads, 42,816 contigs were assembled, of which 1346
regular biome, 27 dark biome, and 7 double dark biome contigs
passed the filtering steps (Supplementary Files S2-S5).

Mystery Miner successfully identified both SARS-CoV-2 and
SARS-CoV-1 isolates and found significantly elevated levels of
each virus compared with controls (Figure 2B). Hereafter, we refer
to SARS-CoV-1 or SARS-CoV-2-infected cells as COV1 or COV2 to
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(black), mock virus (orange), or untreated sample (purple). Time refers 4, 12, or 24 hpi of Calu3 cells with indicated virus (blue). Top 10 hits per

experiment shown for brevity.

avoid confusion with recovered names of contigs. Consistent
with the viruses being similar, we identified both SARS-CoV-2
and SARS-CoV-1 in both the COV1-24hr and COV2-24hr samples
when compared with mock-24hr. However, when we compared
COV2-24hr to COV1-24hr, we were able to distinguish SARS-CoV-
1 isolates from SARS-CoV-2 in the appropriate samples (ie.,
SARS-CoV-2 was significantly elevated in COV2). Similar results
were seen in the 12h samples but the 4h samples did not have
sufficient viral reads to detect either SARS-CoV virus
(Supplementary File S7). To simulate a novel virus, we ran
Mystery Miner on versions of the BLASTN and BLASTX databases
obtained before SARS-CoV-2 was discovered and were able to
properly identify SARS-CoV-2 as a bat-related CoV (Boni et al.
2020; Supplementary Figure S1 and File S7).

Collectively, these data show that Mystery Miner is able to
identify potential bacterial and viral infections, properly identify
infected samples using quantification, and detect significant dif-
ferences between infected samples and controls for bacteria, vi-
ruses, and isolates of a virus.

Validating Mystery Miner on a synthetic
minibiome

We next looked at the detection and quantification limits of
Mystery Miner using generated read data to create a synthetic
minibiome. We used Polyester (Frazee et al. 2015) to generate
paired end read data (100 bp read size) at various coverage levels
and various fold change differences between two groups (groups
A and B) with 10 samples each (20 samples total, read
S1 for methods). Our synthetic minibiome consists of 10
human sequences and 10 sequences from nonhuman organisms
(4 pathogenic and 6 commensal). The first four organisms in the
synthetic minibiome are SARS-CoV-1, SARS-CoV-2, C. trachomatis,
and Chlamydia pneumoniae. The next six (Mageeibacillus indolicus,
Prevotella melaninogenica, Filifactor alocis, Mobiluncus curtisii, Rothia
dentocariosa, and Aeromicrobium marinum) are commensals that
are part of the representative bacteria list from the Human
microbiome project (Ribeiro et al. 2012).

For the human sequences, we first generated a pool of human
reads using the first 10kb of 10 scaffolds from chromosome 22
(default value for human read generation in Polyester) at 1000x
coverage with no fold change differences between groups. For
nonhuman organisms, we took the first 10kb of the nucleotide
sequence for the organism and generated reads at coverage levels
of 1000x, 100x, 10x, 1x, 0.1x, and 0.01x. Last, we combined the
1000x coverage human reads separately with each level of cover-
age for nonhuman organisms and ran Mystery Miner (six pipeline
runs in total).

We found sequences below 1x coverage did not assemble,
suggesting that this is our limit of detection (all further data
omits 0.1x and 0.01x coverage). For the SARS strains, we success-
fully identified both strains at 1000x coverage but found that
with lower coverage levels, SARS-CoV-1 was identified as a SARS-
related CoV. This ambiguity is likely due to the 73% nucleotide se-
quence identity (aligned with CLUSTAL OMEGA; Ninfali 2003) be-
tween the first 10kb of SARS-CoV-1 and SARS-CoV-2. For the
selected Chlamydia species (59% sequence identity of the first
10kb) and the rest of the commensal bacteria, we were able to
successfully assemble and correctly identify each species at every
level of coverage.

Along with identification, we looked at Mystery Miners ability
to quantify fold change differences between groups (A and B) us-
ing the synthetic minibiome. For the four pathogenic organisms,
we selected one sequence from each kingdom to have a twofold
difference (SARS-CoV-2, C. trachomatis). For the six commensals,
we chose the first three species to have fold change differences of
1.8, 1.5, and 1.3 (M. indolicus, P. melaninogenica, and F. alocis). For
SARS, we found that at 1x coverage, the twofold difference of
SARS-CoV-2 was correctly called significant (q=5.14 ¢~'°), but
the ambiguously identified SARS-related CoV contig was not
called significant (q=0.489). At 1000x coverage, we found that
the correctly identified SARS-CoV-1 contig was falsely called sig-
nificant (q = 0.0028), this is likely due to ambiguous read mapping
from the closely related SARS-CoV-2 sequence, as mentioned
above. We found similar results for each coverage level (from 1x
to 1000x) for the rest of the organisms and will subsequently use
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values from 1x coverage as that is the lowest level of detection.
For Chlamydia, we found Mystery Miner successfully called C.
trachomatis significant (q=3.57 e~*°) and C. pneumoniae not signifi-
cant (q=0.709). For the commensals with FC differences, we
successfully called each one significant [M. indolicus (q=6.92 ™),
P. melaninogenica (q=4.91 ™), F. alocis (q=0.017); Figure 3 and
Supplementary File S7]. Using synthetic data, we conclude that
Mystery Miner is able to identify organisms down to the species
level and correctly call significant fold changes at low levels of
coverage but has difficulty from ambiguity when reads come
from highly similar sequences (>72%).

Effects of library pulldown or globin depletion in
RNA-seq datasets

In order to compare effects of library enrichment or depletion, we
compared recovered pathogens in a dataset that has polyA en-
richment or rRNA depleted total RNA from blood or colonic tissue
(Zhao et al. 2018). When we compared polyA RNA versus total
RNA and looked at BNC by superkingdom of bacteria we found
significantly more reads map to bacteria for total RNA than
polyA RNA (q=0.0349), in blood but not in colon (q=0.11709;
Supplementary Figure S2 and File S8). We found similar amounts
of significant BNC by species for polyA RNA versus total RNA in
blood (29) and in colon (26). We then looked at significant BNC by
genus and found double the amount in blood (14) compared with
colon (7), with only one significant genus (Actinomyces) found in
both comparisons. We did not find any significant differences in
coverage when we looked at the species, genus or superkingdom
level for viruses (Supplementary File S8). We conclude that li-
brary enrichment with total RNA compared with polyA RNA
increases bacterial recovery and diversity in blood.

We next looked at a RNA-seq dataset from whole blood with
GD versus nonglobin depleted (NGD) total RNA (Shin et al. 2014).
With BNC by superkingdom, we found significantly increased
levels in GD versus not-depleted samples for both bacteria
(q=0.004; Supplementary Figure S3) and viruses (q=0.030;
Supplementary Figure S4). We also found significant differences
in BNC by species (Supplementary Figure S5) or genus

Synthetic minibiome
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1 FC SARS-related coronavirus 25
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2 FC Chlamydia trachomatis 15
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1.8 FC Mageeibacillus indolicus UPIIS-5
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1.3 FC Filifactor alocis ATCC 35896

1 FC Mobiluncus curtisii ATCC 43063

1 FC Rothia dentocariosa ATCC 17931

1 FC Aeromicrobium sp. 592

Figure 3 Heatmap of coverage of synthetic minibiome (1x coverage).
Heatmap of coverage for synthetic minibiome at 1x coverage. Fold
change (FC) in the row name refers to group A (red) over group B (black).

The first four rows are pathogenic organisms, the next six rows are
commensals identified from the human microbiome project.

(Supplementary Figure S6) primarily from Escherichia coli with ele-
vated levels in globin-depleted blood RNA. We did not find any
significant differences when we looked for viruses at the species
or genus level (Supplementary File S9).

Analysis of our study

We used Mystery Miner on our novel RNA-seq dataset of GD and
rRNA depleted total blood RNA from 120 individuals. These sam-
ples were from four subject groups including healthy control par-
ticipants (CTL), ALS symptomatic C9ORF72 negative patients
(SYM), C9ORF72 positive ALS symptomatic patients (C9S), and
C9ORF72 positive asymptomatic individuals (C9A).

The entire dataset contains a combined 8.64 x 10° reads.
Approximately 2.7% (2.34 x 108 of the reads did not map to the
human genome. From these nonhost reads 2,976,988 contigs
were assembled and 17,047 BLASTN contigs (regular biome) were
identified. A total of 25,815 contigs had no BLASTN hit and after
filtering we identified 2,980 dark biome (BLASTX identified) and
859 double dark biome (no BLASTX or BLASTN hit) contigs
(Supplementary Files S2-5).

In general, we found a modest positive correlation between li-
brary size and number of bacterial contigs assembled, species
detected (Figure 4), and genera detected for each sample as well
as a homogenous mixture of samples with respect to disease
status. No specific taxonomy or contig sequence correlated with
participant class within the dataset. By pooling bacterial read
counts across all of the samples, we found alpha proteo-bacteria,
Actinobacteria, Firmicutes, and Bacteroidetes as the most highly rep-
resented taxonomies, consistent with other blood biome studies
(Castillo et al. 2019; Supplementary Figure S7). Most of the bacte-
rial genera (~65%) assigned to the dark biome contigs were also
found in the regular biome; however, this was not the case in the
viral sets, as only 5% (4/78) of dark viral contigs were observed in
the regular biome (Supplementary File S10). This observation
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Figure 4 Log number of bacterial species versus Log reads for Assembly
in Our Study. Scatterplot where each dot is a sample from a dataset with
log number of bacterial contigs assembled on the Y-axis and Log reads
used in SPAdes on the X-axis. Samples show a modest correlation
(Pearson’s r=0.37) between library size and bacterial species recovered.
Data fit with a regression (black line) and 95% CI (gray area).
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suggested that our pipeline might be identifying novel viral
sequences.

Within the dark biome contigs, we noted numerous contigs
with a region of protein sequence similarity to RDRP from multi-
ple RNA viruses, including the velvet tobacco mottle virus (first
row in heatmap of Figure 5, complete metadata shown in
Supplementary Figure S8). Our attention was drawn to the largest
(~5kb) dark biome contig hereafter labeled as “RDRP contig.” This
large contig showed no nucleotide sequence similarity to any se-
quence in GENBANK, and no protein sequence similarity except
for a long open reading frame with significant similarity to viral
RDRPs (BLASTX P = 1¢7%°). A phylogeny based solely on viral

Dark biome binned by species in Our Study
T

I C ondition

RDRP protein sequences places the RDRP contig closest to single-
stranded (+) viruses of the Barnavirus, Sobemovirus, and Polerovirus
genera (Supplementary Figure S9 and File S1 for methods).
However, given the absence of detectable similarity in this contig
to other (non-RDRP) viral proteins of these genera, the relation-
ship of the contig sequence to other virus groups is unclear,
which supports the view that this contig represents a novel viral
sequence.

To confirm the presence of the RDRP contig in the original
samples, we designed primers to the RDRP contig and performed
RT-PCR on seven samples, four of which had high coverage (pre-
dicted present) and three with zero coverage (predicted absent).
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