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Abstract
Coordinated collective behaviors often emerge from simple rules governing the interactions

of individuals in groups. We model mechanisms of coordination among ants during cooper-

ative transport, a challenging task that requires a consensus on travel direction.Our goal is

to determinewhether groups following simple behavioral rules can reach a consensus

using minimal information.Using deterministic and stochastic models, we investigate

behavioral factors that affect coordination.We define and investigate three types of behav-

ioral rules governing individual behavior that differ in the information available: individuals

either 1) have no information, 2) can measure transport success, or 3) measure success

while also knowing whether they are aligned with the majority. We find that groups break

deadlocks only if individuals more readily give up when they are going against the majority,

corresponding to rule type 3 –such groups are “informed.” These behavioral rules succeed

through positive and negative feedbacks that are implemented in our model via a single

mechanism: individuals only need to measure the relative group sizes to make effective

decisions. We also find that groups reach consensus more quickly if they have either a

shared bias, high sensitivity to group behavior, or finely tuned persistence. Each of these is

a potential adaptation for efficient cooperative transport.This flexibility makes the behav-

ioral rules in the informed case relatively robust to deficiencies in the individuals’ capabili-

ties. While inspired by ants, our results are generalizable to other collective decisions with

deadlocks, and demonstrate that groups of behaviorally simple individuals with no memory

and extremely limited information can break symmetry and reach a consensus in a decision

between two equal options.

Introduction
Across organizational scales, the patterns and complexity of many biological systems emerge
from groups of individuals obeying relatively simple rules, often without a leader [1]. Rules typ-
ically apply to individuals interacting with their neighbors, and exploit positive and/or negative
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feedback mechanisms leading to coordinated group dynamics [1]. Rules do not have to be sim-
ple, but if robust, efficient coordination is possible with simple rules, there is no need for com-
plex individual behaviors to evolve. Interest in discovering rules for collective behavior has
produced a rich literature, and there has been particular interest in group decision making [2–
5]. This includes nest-site selection decisions in honeybees and Temnothorax ants [6–9], deci-
sions by groups of neurons in brains [10], decisions in non-neuronal organisms [11], and
more. Ant colonies are particularly well suited to studies of collective behavior because workers
can be easily observed and manipulated, and indeed, pheromone trail formation in ants is a
classic study system for self-organized decision making (e.g. [1,12]).

In collective decisions, groups that deadlock–having approximately equal numbers of indi-
viduals aligned with each choice–fail to form consensus. This can result in a split decision, or
no decision at all. For some types of decisions this can be catastrophic, and there are behavioral
mechanisms to prevent deadlocks in these cases. For example, split decisions during nest-site
selection in honey bees can result in colony death [7,13], and the “stop signal” has evolved to
prevent such splits [9,14,15]. This stop signal is a negative feedback mechanism and, along
with a positive feedback mechanism (advertising), ensures that colonies can break deadlocks to
choose a single nest site [14]. In fact, colonies can choose a single site even when the options
are of equal quality; this is an example of symmetry breaking. A substantial body of research
has focused on symmetry breaking in various taxa including honey bees, ants, cockroaches,
and more (e.g. [9,16–18], reviewed in [19]). Symmetry among choices makes deadlocksmore
likely, and the ability to overcome deadlocks is a crucial component of any collective decision
in which a group must choose a single option.

A collective decision that is particularly prone to deadlocks occurs during cooperative trans-
port in ants. Cooperative transport is the movement of large objects such as food items, intact,
by multiple individuals [20], and it requires making one or more decisions about travel direc-
tion. Workers of some ant species collaborate to carry objects many thousands of times their
mass [21–25]. This requires a high degree of coordination across many individuals, and ant
species vary substantially in their ability to coordinate. Some species move objects rapidly
toward their nests, while others are categorized as uncoordinated, having many deadlocks,
with workers pulling in opposing directions for minutes or hours [25,26]. Even in species with
efficient cooperative transport, short-lived deadlocks occur [24,25]. Deadlocksmay happen if
individuals have conflicting information about the direction of the nest, or if the group encoun-
ters an obstacle blocking the nest direction, requiring a new decision. Deadlocksmay be more
likely in cooperative transport than other decisions because cooperative transport groups are
often relatively small. Larger groups are less affected by the behavior of single individuals. Split
decisions are impossible in cooperative transport because group members are physically teth-
ered together by the object they are attempting to carry, so deadlocked groups are stuck. Thus,
deadlocks in cooperative transport are also conspicuous. The fact that deadlocks are common
and conspicuous makes cooperative transport an ideal task for studying the resolution of dead-
locks in collective decisions.

Prior research has revealed aspects of cooperative transport, including selection pressures,
ecology, recruitment, and more (reviewed in [20,24,25]). This previous research has also
included detailed descriptions and models of cooperative transport, and in some cases models
have been compared with empirical data [24,27–29]. But these studies have not focused on
comparing alternative behavioral rules for overcoming the coordination challenge; thus, our
understanding of behavioral rules for deadlock breaking, and for cooperative transport gener-
ally, is limited. Some investigators have suggested that ants in groups use the same rules as indi-
vidual transporters (reviewed in [24]). However, if rules for individual transport were
sufficient, one would expect most ant species to be efficient at cooperative transport. This is
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not the case [25,30], and it is reasonable to think that efficient cooperative transporters have
behavioral rules tuned to this task. What behavioral mechanisms separate the coordinated
from the uncoordinated transporters?

We use a proof-of-concept model [31] to investigate the behavioral rules, information, and
minimum complexity of individuals required in order to break deadlocks.Deadlock breaking
has previously been studied in decisions with positive and negative feedback mechanisms (e.g.
[14]). Here, we set out to determine if simple individuals employing just one feedback or even
no feedbacks can break deadlocks.We model three broad categories of behavioral rules in both
deterministic and stochastic contexts. These sets of rules differ in the kinds of information we
allow individuals to perceive and the ways this information is used by individuals. We model
one spatial dimension, so we examine a decision between two options for direction of travel:
left or right. Our goal is not to identify the exact rules employed by all ants, but rather to
explore the simplest behaviors and minimum information required to break deadlocks. Thus,
we leave the comparison of our predictions with empirical patterns of transport for future
research. Like other proof-of-concept models, the value in this work is that it tests the logic of
verbal hypotheses and creates predictions that can be empirically tested [31]. Our investiga-
tions generate hypotheses for cooperative transport adaptations and offer insights into consen-
sus decisions in other groups. The broad modeling approach we employ has been used
extensively to elucidate behavior that is difficult to measure in collective systems, including
social insects, robots, and beyond (e.g. [14,32,33,19,34,35]).

We use this approach to answer two primary questions. First, can realistic, simple behav-
ioral rules reliably overcome deadlocks? As part of this question, we look at what information
individuals must minimally receive. Second, what effects do persistence (maximum engage-
ment time with the object) and sensitivity to information have on coordination? In answering
these questions we generate hypotheses for cooperative transport adaptations and provide
insight into the factors that affect deadlocks during cooperative transport, and during other
collective decisions.

Models

Assumptions
We are interested in the minimum information and complexity requirements for deadlock
breaking. We therefore assume individuals have minimal capabilities. As describedbelow, we
allow them little information. Our simulated ants also have no memory, in that they do not use
information from past experiences to shape future behaviors. Real ants have more capabilities
and information than the simulated ants in our models, but to find minimum requirements,
we exclude several sources of information that have been demonstrated in one or more ant spe-
cies. We further simplify real cooperative transport efforts by assuming that all ants are
identical.

Ants sense a wide range of stimuli (e.g. [36–38]), though workers of a single species likely
can sense only a subset of the total possible information. There are several ways that workers in
a cooperative transport group might gain information about what others in the group are
doing. They could communicate with one another, but while workers recruit additional help to
the object to be carried, often with pheromone trails [20], there is no evidence of direct com-
munication among ants after the recruitment phase. A simpler possibility is that workers com-
municate indirectly through the object being carried, an example of stigmergy. This stigmergy
mechanism has been hypothesized for ant groups by Kube and Bonabeau (2000) and others
[20,24,39]. This indirect communication does not require an evolved signal, as workers simply
detect physical cues that necessarily arise when forces are applied to an object. In terms of the
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kinds of information available in our model, we only consider a narrow set of information that
could plausibly be transmitted through the object itself. Specifically, the maximum information
we allow individuals to receive about group members’ behavior is the relative sizes of the
groups aligned left and right. This information could be transmitted through the object via the
magnitude and direction of the object’s movements and/or deformations [20,39], or there are
other possible mechanisms for individuals to estimate relative group sizes, such as direct com-
munication. Our model thus serves as a logical test of the hypothesis that this minimal infor-
mation is sufficient to break deadlocks.Our assumptions are appropriate based on existing
literature regarding complexity requirements for group decisions and hypotheses specific to
cooperative transport [11,20].

DeterministicModel
We developed a deterministic, ordinary differential equations (ODE) model that simulates the
average behavior of individuals. The model is Markovian–individuals have no memory–but non-
linear. We model movement in one spatial dimension implicitly and we use continuous time and
continuous abundances of individuals (but see individual-basedmodel below). Individuals are
identical, and the total number is fixed at 20; for some analyses we explored the effect of changing
group size analytically and by evaluating groups with a total of 6 or 200 individuals. Having a
fixed number of individuals is appropriate because the number of workers that can participate in
cooperative transport will be limited by the number of grasping points on the object. Further-
more, the behavioral states we model allow varying numbers of individuals to be engaged with
the object at any one time. Specifically, our model assumes that each individual occupies one of
three mutually exclusive behavioral states: 1) trying to move the object to the left, 2) trying to
move the object to the right, or 3) disengaged from the object (Fig 1). We do not distinguish

Fig 1. Model diagram. Individuals belong to one of three behavioral states:moving left, moving right, or
disengaged. Individuals move between these states at rate constantsGL,GR, JL, and JR.

doi:10.1371/journal.pone.0162768.g001
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between pushing and pulling; individuals pushing from the left and pulling from the right are
both in the “move right” behavioral state. Individuals move from the disengaged state to an active
state by “joining,” and from one of the active states to the disengaged state by “giving up.” Indi-
viduals do not move directly between the two active states, however, individuals can immediately
re-join after giving up. The transition rates are important model parameters that govern the
number of individuals in each behavioral state over time. We examine these abundances to see
the extent to which the group converges on a single direction under the parameters of a specific
model run.

Joining. Disengaged individuals join the transport efforts to the left and right with rate
constants JL and JR, respectively. The realized joining rates depend on the number of disen-
gaged individuals: the instantaneous joining rate for the left state is JL multiplied by the number
of disengaged ants. We assume the joining rate constants do not change in time but may differ
from each other, i.e. individuals may join the “move left” behavioral state at a higher rate than
the “move right” state. If JL and JR are not equal, this ensures a directional bias, which is how
we represent individuals having information about the direction of the goal.

In real ants, directional cues about the location of the nest come from one or more sources,
such as pheromone trails, visual navigation, or path integration [5, 6]. Whatever the sensory
modality may be, we assume this information is not perfect. That is, even if there is a direc-
tional bias, some individuals still choose the other direction (i.e., JL, JR > 0). Joining rate con-
stants do not vary during the transport effort; for example, we assume groups are not capable
of altering their bias in favor of the “winning” direction (here we use the “winning” direction to
indicate simply the direction that has more individuals). This makes sense given our conserva-
tive assumptions about individuals’ memory and sensory capabilities: individuals that are dis-
engaged, and therefore not in contact with the object to sense information transmitted through
it, cannot perceive which direction is winning and have no memory about which direction was
winning when they were last engaged.

Giving-up. Individuals in the active behavioral states (left and right) give up at rate con-
stants GL and GR, respectively. We model three sets of behavioral rules for giving up rates.
These sets of rules also differ in the kinds of information individuals act upon (Table 1). We do
not suggest that all of the variation in cooperative transport behavior in ants is captured by
these three sets of rules; rather, we explore these rules to see if such simple rules are sufficient
to break deadlocks.

Behavioral rules differ among different model runs, but within one run of the model all indi-
viduals are identical and have the same rules and parameter values. In “uninformed” groups,
giving up rate constants, GL and GR, are equal and do not change over the course of the trans-
port effort. In “oblivious” and “informed” groups (defined in Table 1), realized giving up rates
change over the course of the transport effort based on the abundances of individuals in the
two active behavioral states (NR and NL). Giving up depends on the “success” of transport.

Table 1. Modeledsets of behavioral rules and information required for each.

Rule Description Information used

“Uninformed” If in one of the active states, give up (become disengaged) at a
constant rate

None

“Oblivious” If in one of the active states, give up more readily when transport is
unsuccessful, and less readily when it is “successful” (see text)

Must be capable of measuring the “success” (i.e. extent of
coordination) but not the direction of the majority relative to one’s
own behavioral state.

“Informed” If in one of the active states, and if transport is successful, give up
readily if going the opposite way as the majority and less readily if
going the same way as the majority.

Must be capable of measuring (i) extent of coordination and (ii)
preferred direction of the majority and must compare the latter to
one’s own behavioral state.

doi:10.1371/journal.pone.0162768.t001
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“Success” is operationally defined here as a high extent of coordination, measured as the abso-
lute value of NR—NL divided by the total number of individuals in the system. In other words,
the extent of coordination is the degree to which individuals are unevenly distributed across
the two active groups.

In oblivious groups individuals can measure success but they cannot detect if they are con-
tributing to or detracting from that success. Individuals give up less frequently when | NL−NR |
is high, i.e. when there are many more individuals in one active state than the other, regardless
of whether they are currently in the “right” or “left” state. Individuals are oblivious to their own
contribution. If the transport is successful because many more individuals are trying to move
the object to the left rather than the right, individuals moving right, who are going against the
majority, still rarely give up. In ants, this would happen if they were capable of determining
when the group sizes are uneven (or a proxy, such as the magnitude of the force on the object),
but not in which direction. For example, this might occur if individuals are less likely to give up
when they are moving, regardless of the direction.

In informed groups individuals are capable of detecting the same information as in the
“oblivious” case, but additionally they can determine if their contribution is with or against the
majority. Individuals give up less frequently when there is a higher extent of coordination only
if their behavioral state matches the majority. For example, when NL−NR is strongly positive,
individuals in the “move left” state give up infrequently while individuals in the “move right”
state give up quickly. As discussed above, NL−NR is a measure of success that could be esti-
mated by ants in multiple ways. For example, large values of NL−NR (or highly negative values)
will correspond to higher speeds over ground, which an ant might measure by estimating opti-
cal flow or her own leg movements.

Equations governing the giving-up rate constants, GL or GR, under each set of rules are listed
in Table 2 and examples of how these functions behave are illustrated in Fig 2. In addition to
the variables NR and NL, functions for determining GL and GR depend on one or more parame-
ters (Table 2). These parameters represent persistence and sensitivity, and are discussed below.
We chose ranges of parameter values in order to manage computing time while selecting
parameter ranges spanning multiple orders of magnitude. Some parameters were also con-
strained by necessity; for example, the shape parameter g1 must be non-zero.

Persistence and sensitivity. The giving up rates described above are tunable based on
individuals’ persistence and sensitivity to information. These parameters govern the shape and
maximum values of the giving-up functions (Fig 2). This maximum giving-up rate is the
inverse of the engagement time under conditions when individuals give up fastest: when NL =
NR in the oblivious case and when the difference between NL and NR is largest and opposed to
the individual’s state in the informed case. We refer to this engagement time as persistence
[20,40].

Persistence is individuals’ resistance to changing their behavior based on information [20],
which could come from other individuals in the group, or other sources. Persistence can be
measured in actual ants as the time it takes for an individual to give up or change the direction
they are trying to move the object being carried. Highly persistent ants keep trying to move the

Table 2. Functionsgoverning the giving-uprate constants under each set of rules. Ranges of parameter values explored are in parentheses.

GL GR MaxG (Persistence-1) Shape parameter

Uninformed (Fig 2A) a a a (0.2–20) NA

Oblivious (Fig 2B) g2

g1 þ jNL � NRj
g2

g1 þ jNL � NRj
g2
g1

(0.2–20) g1 (0.1–100)

Informed (Fig 2C) b1

1þ e� b2ðNR � NLÞ
b1

1þ e� b2ðNL � NRÞ
b1 (0.2–20) b2 (0.1–100)

doi:10.1371/journal.pone.0162768.t002
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object in the same direction for a long time, even without progress. On the other hand an ant
with low persistence will try new strategies frequently, by pulling in different directions or even
abandoning the effort temporarily or permanently. Intuitively, one expects a tradeoff for persis-
tence. Groups with high persistence may have long-lasting deadlocks, while groups may also
deadlock if no individual is persistent enough. We look at the effect of persistence in our model
by varying the maximum possible giving-up rate (Fig 2). We ran the model with each of many
maximum giving-up rate constants to examine the effect of persistence on extent of coordina-
tion; higher maximum giving-up rate constants mean lower persistence and vice versa
(Table 2).

For the oblivious and informed cases we can also tune the parameters to change the sensitiv-
ity of individuals to the success of transport, that is, the magnitude of |NL−NR|. We do this by
changing the shape of the giving-up functions through manipulations of the shape parameters
(g1 and b2; Table 2), making the transition from low to high giving-up rate constants sharper or
more gradual (Fig 2). With a gradual shape, when groups are relatively close to deadlocked
(near NL = NR), small changes in success lead to only small changes in the frequency of giving-
up; individuals with a gradual shape therefore have low sensitivity to transport success. On the
other hand, for sharp shapes, a small change in success when NL� NR leads to a dramatic
change in this frequency; this means individuals are highly sensitive. Differences in sensitivity
could be caused by a number of factors, including error in sensing the group sizes. This shape
parameter can be quantified for real organisms by fitting functions to data on individuals, for
whom cooperative transport efficiencies are experimentallymanipulated.

Differential equations. The model consists of the following set of differential equations
giving the rates of change in the numbers of individuals in each behavioral state (moving left,
moving right, or disengaged, respectively):

dNL

dt
¼ JLND tð Þ � NL tð ÞGL ð1Þ

dNR

dt
¼ JRND tð Þ � NR tð ÞGR ð2Þ

dND

dt
¼ NL tð ÞGL þ NR tð ÞGR � JR þ JLð ÞND tð Þ ð3Þ

where ND is the number of individuals in the disengaged state (Fig 1). The ODEs are non-linear
due to the dependence of GR and GL on NR and NL. There is a constant number of total

Fig 2. Giving-up rate constants for individuals in the “move right” behavioral state at various levels of success for each set of rules.The x-axis
indicates a measure of success: the size difference between the two groups. (A) Uninformed rules, a = 2. (B) Oblivious rules, g2/g1 = 2, g1 = 4 (solid line) or
0.5 (dashed line). (C) Informed rules, b1 = 2, b2 = 0.5 (solid line) or 3 (dashed line). In (B) and (C), dashed lines indicate sharper shape parameters.

doi:10.1371/journal.pone.0162768.g002
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individuals (i.e., ND + NR + NL = N = constant), so this is a closed system, making the third dif-
ferential equation implicit in the first two. Therefore in some cases we present results for the
number of ants in the left and right states only. The ODE will always satisfy the following equa-
tions at equilibrium,where N� is the equilibrium abundance.

N�L
N�D
¼

JL

GLðN�L ;N�RÞ
ð4Þ

N�R
N�D
¼

JR

GRðN�L ;N�RÞ
ð5Þ

N�L
N�R
¼

JL

JR

GRðN�L ;N
�
RÞ

GLðN�L ;N�RÞ
ð6Þ

In the uninformed and oblivious cases, GL = GR, so Eq 6 simplifies to the following.

N�L
N�R
¼

JL

JR
ð7Þ

Because GR and GL are nonlinear functions of NR and NL in the oblivious and informed cases,
it is difficult to solve this system of differential equations analytically. We numerically solved
the ODE for each of nearly fifteen thousand sets of parameters, running the model under dif-
ferent sets of behavioral rules, global directional biases, and persistence and sensitivity. The
range of parameter space explored for giving-up parameters is shown in Table 2. Additionally,
we explored directional biases ranging from no bias, to joining rates of 0.01 and 0.9, respec-
tively, for the two directions, a difference of two orders of magnitude; this range in bias pro-
vided a comprehensive illustration of the effect of joining bias. We then queried the results for
particularmetrics of interest, including the maximum extent of coordination on a direction
(unevenness in the distribution of individuals across the left and right groups). We obtained
numerical solutions using Mathematica (version 9.0.1.0) and we analyzed our results using
Mathematica and R (RStudio version 0.98.977). All code is included in S1 Code. In addition to
the numerical solutions, we analytically explored the stability of deadlocks in the informed case
using fixed-point analysis [41] (see S1 Text).

Stochastic Extension
Our ODE model makes certain assumptions required for any ODE, including instantaneous
updating of information and continuous, rather than discrete, individuals. To test whether our
conclusions are robust to these assumptions, and to look at the potentially important influence
of stochasticity, we extended the model to a stochastic framework. The stochastic extension is
an individual-basedmodel operating in discrete time. We converted the instantaneous joining
and giving-up rate constants (JL, JR, GL, and GR) to probabilities of joining or giving up in a
given time step with the equation

Pt ¼ 1 � eð� RdtÞ ð8Þ

where Pt is the probability of a behavioral shift in one time step, δt is the length of a time step
(here, time steps were always unit length), and R is the instantaneous rate constant, either JL,
JR, GL, or GR. We ran the stochastic simulation for 60 time steps; this duration was more than
sufficient to capture transient dynamics. All other model assumptions and parameters were the
same as in the deterministicmodel, including the three sets of rules.
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In each time step we allow individuals to change their behavioral state. An active individual
changes its status by giving-up with a probability equal to the giving-up probability for that
individual’s current state (left or right), and disengaged individuals can change their status by
joining. Because disengaged individuals can change their status in one of two ways (joining the
left group or the right group), we first calculated the joint probability of an individual joining at
all. For individuals that were to join, we then stochastically determined whether they joined left
or right using the relative probabilities of each. We ran the stochastic model under the same
parameter sets as the deterministicmodel, querying 1,000 simulations for each set of parame-
ters. As with the deterministicmodel, we examined the extent of coordination. We performed
and analyzed stochastic simulations in R (RStudio version 0.98.977). Code is included in S1
Code.

Results

DeterministicModel
Our primary measurement of success is the extent of coordination, which is the difference in
the number of individuals in the active behavioral states (left and right) divided by the total
number of individuals in the system. If the transport is uncoordinated, there are roughly equal
numbers of individuals pulling each direction, and/or most individuals are disengaged. Stream-
plot representations of the vector fields portray the dynamical behavior of the system in Fig 3.
Panels in the figure show different parameter sets, corresponding to each set of behavioral rules
with differing directional biases. The streamplots indicate the direction the system tends
towards starting from any possible combination of the numbers of individuals in each behav-
ioral state (NL and NR). The number of disengaged individuals, ND, is not shown explicitly
because the total number of individuals is fixed at 20 (i.e., ND = 20 –(NL + NR)).

In the absence of a directional bias (JL = JR), both the uninformed and oblivious rules have
stable equilibria (Fig 3C and 3F). These are deadlocks, with equal numbers of individuals pull-
ing left and right (as shown in Eq 7). Because they are stable, perturbations away from these
equilibria lead back to them (Fig 3C and 3F). In other words, with no directional bias the unin-
formed and oblivious rules have deadlocks that cannot be broken. In informed groups, how-
ever, the equilibrium is unstable even if JL = JR (Fig 3I). If a deadlock occurs in this case, small
perturbations grow exponentially, leading to convergence on one direction, which breaks sym-
metry. Although an unstable equilibrium occurs across most of the parameter space for
informed groups, with small values of the shape parameter b2, the equilibrium is stable and
deadlocks are maintained. Thus there is a critical value of b2 at which a phase transition occurs,
from stable to unstable equilibrium.Using fixed-point analysis [41] we analytically determined
that this critical value occurs when b2 has the following value:

b2 ¼
b1 þ 4J

2JN
ð9Þ

where J is the joining rate constant for each side (J = JL = JR) and N is the total number of indi-
viduals in the system. This indicates that total group size affects deadlock breaking. Smaller
groups require higher sensitivity (b2) to break deadlocks even in the informed case, and sensi-
tivity is less important for large groups. Details of the fixed-point analysis are included in S1
Text.

When a directional bias is present (JL 6¼ JR) more individuals attempt to move the object in
the direction favored by the bias, regardless of the set of rules (Fig 3, two left-most columns,
also see Eqs 6 and 7). This is true regardless of the initial conditions for uninformed and oblivi-
ous groups; for informed groups, a large enough difference in the initial group sizes can
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overcome a joining bias (see rightmost portion of Fig 3G and 3H). The presence of a directional
bias increases the extent of coordination, and, intuitively, strong biases lead to more coordina-
tion than weak ones (Fig 3 left column compared with middle column). However, for a given
directional bias, individuals in informed groups are still more coordinated than individuals in

Fig 3. Streamplots of systemdynamics.These show the direction the system tends towards for various abundances in each behavioral state. A-C:
Uninformed rules, a = 1; D-F: Oblivious rules, g1 = 4, g1/g2 = 1; G-I: Informed rules, b1 = 1, b2 = 0.5. A, D, and G: Strong directional bias, JL = 0.01, JR =
0.7; B, E, and H: Weak directional bias, JL = 0.3, JR = 0.7; C, F, and I: No directional bias, JL = JR = 0.3.

doi:10.1371/journal.pone.0162768.g003

Mechanisms of Coordination in Groups

PLOSONE | DOI:10.1371/journal.pone.0162768 September 28, 2016 10 / 20



uninformed or oblivious groups. Stable equilibria involving individuals working against one
another still occurwith a weak bias using these sets of rules (Fig 3B and 3E). With a sufficiently
strong directional bias, in both uninformed and oblivious groups, the system moves to a state
with almost no individuals going against the bias (Fig 3A and 3D), but there are still a substan-
tial number of disengaged individuals who do not contribute to the effort (shown implicitly in
Fig 3). This is because the disengaged group is constantly replenished by individuals giving up
from the two active states. There are almost no disengaged individuals in informed groups.
Thus, a directional bias allows for an unequal distribution of individuals between the two active
states regardless of the behavioral rules, but the informed case still outperforms the other
behavioral rules in that it maximizes engagement and the difference in group sizes.

Stochastic Model
The stochastic results are very similar to results from the deterministicmodel. Fig 4 shows the
number of individuals in each behavioral state for two examples of stochastic simulations,
under the same parameter sets shown in Fig 3. Fig 4 also includes the deterministic results.
Deterministic and stochastic results match closely for each set of parameters except the
informed case with no directional bias. This highlights the importance of stochasticity in this
case. Without stochastic perturbations away from equilibrium groups remain deadlocked. In
the stochastic model, perturbations are amplified, breaking symmetry and leading to consen-
sus. Histograms of the behavior of the stochastic model across 1,000 simulations, at specific
times, as well as deterministic results at those times, are shown in Fig 5 (also see S1 Movie).

In all other respects, deterministic and stochastic results were very similar despite differ-
ences in the formulations of these models. When a directional bias is present more individuals
try to move the object in that direction than in the other direction under our initial conditions
of all individuals beginning as disengaged. In the absence of a directional bias, roughly equal
numbers of individuals are in each active state in uninformed and oblivious groups, while indi-
viduals converge on either direction in informed groups. In each of 1,000 simulations, the
informed case allowed for convergence to a pure state (every individual or nearly every individ-
ual in the system transporting in the same direction) even with no directional bias (Fig 5 and
S1 Movie). On the other hand, oblivious groups perform no better than uninformed groups,
and neither of these sets of rules ever allowed for convergence on one direction.

When a directional bias is present, the informed case still leads to strikingly different perfor-
mance than either of the other sets of rules. Individuals converge rapidly in informed groups,
while in oblivious or uninformed groups, convergence, which we define as an increasing coor-
dination through time until all individuals are pulling the same direction, does not occur.
There are more individuals pulling in the direction of bias but coordination does not increase
over time (Figs 4 and 5 and S1 Movie).

Effect of Persistence and Sensitivity
Fig 6 shows the effect of persistence–or maximum engagement time–on the extent of coordina-
tion in the deterministicmodel for groups with total size fixed at 20 (see S1 Fig for results for
other group sizes). The extent of coordination reported is the maximum observedover the
time period evaluated. Parameter sets that converge more quickly on a direction will have a
higher extent of coordination in that time period, and shorter deadlocks. Results in Fig 6 are
therefore comparable across parameter sets, with higher agreement indicating more efficient
transport. Because small perturbations away from equilibrium do not occur in the determin-
istic model, Fig 6 shows no coordination without directional bias.
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The effect of persistence depends on the behavioral rules (Fig 6). In uninformed and oblivi-
ous groups, being highly persistent–having a low maximum giving-up rate constant–increases
coordination (Fig 6A and 6B). In informed groups there is an optimal persistence value that
maximizes coordination. The extent to which persistence affects coordination is stronger for
small directional biases; at high directional biases there is a wide range of persistence values
that result in high coordination. These results were not qualitatively different for different total
group sizes, except that sensitivity, or sharpness of the giving-up function, was more and less
important for smaller and larger groups, respectively (S1 Fig).

Fig 4. Abundance of ants in each behavioral state over time. Includes two example simulations with each set of parameters. Blue: numbermoving
right,Red: numbermoving left, Black: number disengaged.Dashed lines show deterministic model behavior. Columns are different directional biases
and rows are different sets of behavioral rules. The parameter values are the same as in the analogous panels in Fig 3. Uninformed rules: a = 1;
oblivious rules:g1 = 4, g1/g2 = 1; informed rules:b1 = 1, b2 = 0.5. Strong directional bias: JL = 0.01, JR = 0.7; weak directional bias: JL = 0.3, JR = 0.7; no
directional bias: JL = JR = 0.3.

doi:10.1371/journal.pone.0162768.g004
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Fig 5. Histograms showing the state of 1,000 simulationsat given time points.The x-axis shows the number of ants, and the y-axis shows the
number of simulations for which the given behavioral state had that many ants at that time. Blue bars are for ants moving right, red bars are for ants
moving left, and black bars are for disengaged ants. Bars appear purplewhen red and blue overlap. Dashed lines show the abundance of each behavioral
state in the deterministic model. The parameter values are the same as in the analogous panels in Figs 3 and 4. Uninformed rules: a = 1; oblivious rules:
g1 = 4, g1/g2 = 1; informed rules:b1 = 1, b2 = 0.5. Strong directional bias: JL = 0.01, JR = 0.7; no directional bias: JL = JR = 0.3.

doi:10.1371/journal.pone.0162768.g005

Fig 6. Effect of persistence (maximumengagement time, i.e. the inverse of themaximum giving-uprate constant)onmaximum coordination.
Maximumgiving-up rate constant is themaximumpossible as defined by the function (Table 2), actual values will depend on the number of individuals in
each group. Extent of coordination is defined as the difference in the number of individuals pulling right and left, divided by the total number in the system.
Maximumcoordination is themaximumobserved over a given time period; higher values on the y-axis indicate faster convergence. (A) uninformed rules, (B)
oblivious rules, (C) informed rules. Lines with smaller dashes indicate larger directional bias, and the solid line indicates no bias (there is no coordination
without a directional bias in the deterministic case). Red and blue lines indicate “sharp”and “gradual” shapes (sensitivities), respectively. Parameter values
for shapematch those in Fig 2.

doi:10.1371/journal.pone.0162768.g006
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For oblivious and informed groups, the sensitivity changes the effect of persistence (Figs 6C
and 7); the uninformed case has no sensitivity parameter. In the oblivious case, sharper func-
tions (lower values of g1) increase coordination for a given persistence value. In the informed
case there is a critical sensitivity below which deadlocks cannot be broken, as discussed above
and in S1 Text. This threshold depends on group size. Above this threshold, sharper functions
(higher values of b2) further increase coordination, which has the effect of widening the range
of persistence values that lead to coordination. For a moderate group size of 20 individuals,
with a gradual shape and a small directional bias, there is a narrow range of persistence values
that allow for high coordination. At small group sizes only groups with higher sensitivity or rel-
atively strong directional bias coordinate successfully regardless of persistence, while large
groups successfully coordinate across a wide range of persistence values regardless of sensitivity
and bias (S1 Fig). Fig 7 shows in detail the extent of coordination for moderately sized groups
with a wide range of directional biases and persistence values for two shape values, both rela-
tively gradual (see S2 Fig for small and large groups).

Discussion
Can relatively simple individuals with minimal information break deadlocks?Our results show
that, indeed, individuals with simple behavioral rules and no memory can break deadlocks.
However, only individuals in our informed case convincingly succeeded. These individuals fol-
lowed simple rules: 1) give up more readily if one is moving against the majority and 2) do this
to a greater extent for extreme majorities than slight majorities. Using these simple rules, with
minimal information available, groups rapidly converge on a single travel direction, even when

Fig 7. Effect of persistence (inverse of maximum giving-uprate constant) onmaximumcoordination in informed groups at low (gradual)
shape values.Maximumgiving-up rate constant is the maximumpossible as defined by the function, actual values will depend on the number of
individuals in each group. Extent of coordination is defined as the difference in the number of individuals pulling right and left, divided by the total
number in the system.Maximumcoordination is themaximumobserved over a given time period, rather than an absolutemaximum; higher values on
the y-axis indicate faster convergence. Left column: shape parameter, b2 = 0.5, which corresponds to the solid line in Fig 2C. Right column:b2 = 1,
which is less gradual.

doi:10.1371/journal.pone.0162768.g007
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this required symmetry-breaking.Our deterministic and stochastic models agree, despite being
formulated differently and having contrasting assumptions about individuals and time. This
suggests that our conclusions are robust to specifics of model formulation.

In terms of information, it is sufficient for coordination for individuals to only be capable of
measuring the direction that the majority of the group is trying to move the object and the rela-
tive sizes of the groups moving each direction (or a proxy). This information is crucial; with
insufficient sensitivity to these group sizes (low b2) groups do not form a consensus. While sen-
sitivity must be sufficient, it does not need to be high. As further discussed below, groups with
only modest sensitivity were still coordinated across a wide range of other parameters. Thus,
various proxies for relative group sizes may be accurate enough to break deadlocks. For exam-
ple, individual ants could gain this information through stigmergy on the object being carried.
If this is the case, a single sensorymode may provide all necessary information in informed
groups. In nature, ants may have other information available, or may use different behavioral
rules, but we show that by using these simple rules, groups are successful.

If individuals have global directional cues that correspond to a shared directional bias, this
helps promote coordination regardless of the other information available. Additionally, if there
is only one correct direction, for instance if there is a single nest entrance, a shared bias towards
the nest would help ensure the group converges on the appropriate direction. But directional
bias is neither necessary, nor sufficient, for convergence on a decision.

This makes sense considering the high variation in cooperative transport ability among ant
species. We expect workers of all species to be good at knowing the direction of the nest. So we
expect directional biases to be common among species, at least for situations with only one cor-
rect direction. Considering that efficient cooperative transport is comparatively rare among
ants [25,30], the presence or absence of directional bias is not a good explanation for the
observedvariation in efficiency. On the other hand, the behavioral rule of giving up more read-
ily when an individual is moving against the majority is a potential adaptation that dramatically
improves efficiency. Future research should test whether efficient transporters have this
adaptation.

We also investigated the effects that persistence and sensitivity (the sharpness of the giving-
up function) have on coordination. These effects are complex and depend on the total group
size and the behavioral rules. In the uninformed and oblivious cases, groups are most coordi-
nated if individuals are highly persistent. While somewhat surprising, this makes sense in light
of a tradeoff in persistence. Groups of highly persistent individuals may pull in opposing direc-
tions for a long time, but if movement does occur, either because of a directional bias or due to
random fluctuations, the progress continues; they are unlikely to change their direction.

This suggests that high persistence allows species without other adaptations for cooperative
transport, for instance those with behavioral rules similar to our uninformed or oblivious rules,
to at least sometimes succeed at bringing a large object home to the nest. In such species, indi-
viduals are equally likely to give up whether they are helping or hurting the effort; even when
successful movement occurs, individuals pulling with the motion may give up. High persis-
tence makes it less likely that anyone will give up, allowing existing movement to continue. If,
as in our model, individuals are identical, the individuals going the wrong way will also be
unlikely to give up, so to minimize the length of deadlocks there should only be a small number
of these individuals. A sufficient directional bias would accomplish this, and directional biases
should be common in many circumstances (such as if the object is relatively far from the nest).
So if high persistence is paired with a directional bias, it may allow ant species with rudimen-
tary behavioral rules to conduct cooperative transport. Analogously, agents involved in any
decision between two options, when they are unable to determine which option is winning,
should be persistent to maximize the chance that a single option will be chosen.
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In contrast to these results, in the informed case there is an optimum persistence value;
groups with individuals more or less persistent than this value will be less coordinated. But the
importance of persistence depends on directional bias, on the sharpness of the giving-up func-
tion, and on the total group size. In most of the parameter space of our model, the range of per-
sistence values that lead to high coordination is wide. Only when the directional bias is low and
the sensitivity is above the critical threshold but still gradual does one find a narrow peak in
coordination around the optimum persistence. This was especially true for smaller group sizes.
Large groups had a wide range of persistence values that would lead to coordination regardless
of sensitivity, indicating that it may be easier to coordinate in a large group rather than a small
group. This makes sense given that small groups will be more affected by the behavior of single
individuals. In order for informed individuals in groups of small to moderate size to be highly
coordinated, they must have one, but do not need more than one, of the following: high direc-
tional bias, high sensitivity to the sizes of the two groups, or finely-tuned persistence. Each of
these is a potential adaptation for efficient cooperative transport in informed groups. This flexi-
bility makes the behavioral rules in the informed case relatively robust to deficiencies in the
individuals’ capabilities as long as they have at least minimal accuracy in sensing group sizes.

Because we did not constrain our model by tuning it to a particular species, our results are
applicable to other collective decisions. A system in which groups must decide among multiple
options is vulnerable to deadlocks, especially when the options are relatively equal (analogous
to having no directional bias); small group size may also make deadlocksmore likely. One of
the best studied examples of collective decisions is nest-site selection in social insects (reviwed
in [6]). As discussed above, some recent work on the “stop-signal” in honeybees focuses on
how this signal prevents deadlocks in nest-site selection [9,14,15].

The outcome of our deterministicmodel with respect to the effect of behavioral rules looks
similar to the results of Seeley et al. [9] and Pais et al. [14], who each investigated decision-mak-
ing dynamics in honeybee nest site selectionwith similar models. For example, compare Fig 3
here to Fig 3C in [9] and the inset in Fig 2 in [14]. Both models investigate the accumulation of
“votes” for one of two, mutually exclusive choices in a decision, and in each case the number of
individuals aligned with the two options determines which option is chosen. A key difference
between the models, however, involves the timing of the decision. In honeybee nest-site selec-
tion, a decision is reached when a quorum of scouts is present at one of the potential nests [7].
In cooperative transport, an initial decision is reached when the difference between the number
of individuals in each group reaches a certain threshold–enough to begin movement–rather
than when the absolute number of individuals in a particular group is high. Perhaps a more
important difference between these models relates to communication. Unlike our model the
Seeley et al. [9] and Pais et al. [14] models include direct communication among individuals.
Honeybee scouts actively advertise for a particular nest site (a positive feedback mechanism)
and stop other scouts from advertising for a different site using the stop signal (a negative feed-
back mechanism) [35]. Our model produces similar dynamics using a simpler mechanism. In
informed groups, positive and negative feedbacks are combined into a single mechanism that
requires no signals. An individual is less likely to give up if her faction is large compared to the
other faction (positive feedback), and more likely to give up if the opposite is true (negative
feedback, analogous to cross-inhibition). Informed individuals only need to measure the rela-
tive group sizes to make effective decisions.

The Seeley et al. [9] and Pais et al. [14] models elegantly and realistically reproduce the
dynamics of nest-site selection in honeybees.Our model is simpler, yet produces similar
dynamics in terms of the accumulation of votes for a single option, indicating that direct com-
munication among individuals is not necessary for a decision in the case of cooperative trans-
port. The fact that some of our results are similar lends credence to the idea that results from
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one collective decision-making system can be generalizable to others. Among collective sys-
tems, social insects are uncommonly apt for experiment, since individuals are easily observed
and manipulated. Because lessons are transferable across at least some systems, we can use
social insects as model systems for other systems that are harder to study, such as neuronal
networks.

Our model demonstrates that simple behavioral rules can lead to a consensus about travel
direction during cooperative transport, even without a directional bias. Our simulated ants had
no memory, limited sensory ability, and followed only simple rules, yet made decisions rapidly
in informed groups. We identify a potential adaptation–giving up more readily when going
against the majority–that allows for deadlock-breaking, and may explain why we see such large
variation in cooperative transport ability among ant species.While it is currently not possible
to directly measure this adaptation in ants, the consequences we have modeled here can, and
should, be measured to see if real ants use this behavioral rule. Our model reproduces dynamics
similar to those of other decision-making processes [9,14], and our conclusions are generaliz-
able to other collective decisions. Though cooperative transport is a challenging task that
requires coordination, behavioral complexity is not a prerequisite for success.

Supporting Information
S1 Code.Coding supplement (zip file).All code is included here. S1 Code also includes exam-
ple parameter sets necessary to reproduce Figs 3 through 7.
(ZIP)

S1 Fig. Persistence effects at different group sizes. Effect of persistence (inverse of maximum
giving-up rate constant) on maximum coordination for small, moderate, and large groups.
Maximum giving-up rate constant is the maximum possible as defined by the function, actual
values will depend on the number of individuals in each group. Extent of coordination is
defined as the difference in the number of individuals pulling right and left, divided by the total
number in the system. Maximum coordination is the maximum observedover a given time
period, rather than an absolute maximum; higher values on the y-axis indicate faster conver-
gence. Top row: uninformed rules, middle row: oblivious rules, bottom row: informed rules.
Left column: total group size = 6, middle column: total group size = 20, right column: total
group size = 200. Lines with smaller dashes indicate lower directional bias.
(TIF)

S2 Fig. Persistence and sensitivity effects in informed case at different group sizes. Effect of
persistence (inverse of maximum giving-up rate constant) on maximum coordination in small,
moderate, and large informed groups at low (gradual) shape values. Maximum giving-up rate
constant is the maximum possible as defined by the function, actual values will depend on the
number of individuals in each group. Extent of coordination is defined as the difference in the
number of individuals pulling right and left, divided by the total number in the system. Maxi-
mum coordination is the maximum observedover a given time period, rather than an absolute
maximum; higher values on the y-axis indicate faster convergence. Top row: shape parameter,
b2 = 0.5, which corresponds to the solid line in fic. 2C. Bottom row: b2 = 1, which is less grad-
ual. Left column: total group size = 6, middle column: total group size = 20, right column: total
group size = 200.
(TIF)

S1 Movie. Simulation results.Movie of histograms showing the state of 1,000 simulations of
the stochastic model for each of nine parameter sets. Each frame is a time point. Each panel is a
set of parameter values, corresponding to the analogous panels in Figs 3 and 4. Blue bars show
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the number of simulations for which the number of ants moving right had that abundance.
Red bars are for ants moving left, and black bars are for disengaged ants. Bars appear purple
when red and blue overlap.
(MP4)

S1 Text. Analysis of deadlock stability in informed case.
(DOCX)
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