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Krogstad, Molly Rebecca (Ph.D., Physics) 

Ge-Sb-Se chalcogenide glass for near- and mid-infrared nonlinear photonics 

Thesis directed by Professor Juliet T. Gopinath 

 

The chalcogenide glass, Ge28Sb12Se60, is a promising material platform for compact, low-

threshold nonlinear optical devices operating in the near- to mid-infrared.  It is particularly 

attractive given its wide range of transparency, large Kerr coefficient, and relatively weak multi-

photon absorption.  The nonlinear optical properties of Ge28Sb12Se60 were investigated in bulk and 

waveguide forms, over a range of wavelengths from 1.0 to 3.5 μm.  From z-scan measurements at 

1.03 µm, using circularly polarized, 200 fs pulses at 374 kHz, bulk Ge28Sb12Se60 glass was found 

to have a nonlinear refractive index ~130 times that of fused silica and a two-photon absorption 

coefficient of 3.5 cm/GW.  Ge-Sb-Se waveguides and microresonators were designed and 

characterized, laying groundwork for the development of efficient, compact nonlinear devices such 

as frequency combs and optical switches.  In particular, single-mode Ge-Sb-Se strip waveguides, 

fabricated by photo- or e-beam lithography, followed by thermal evaporation and lift-off, were 

demonstrated with average propagation losses of 11.8 dB/cm at 1.03 µm and 4.0-6.1 dB/cm at 1.55 

µm.  Nonlinear optical waveguides were characterized with measurements of spectral broadening 

and intensity-dependent transmission, revealing a large measured nonlinear figure of merit of 

5.2±1.6 at 1.55 µm.  Hybrid chalcogenide-silica wedge microresonators were characterized from 

1500-1630 nm, with loaded quality factors up to 1.5x105 and thermal resonant shifts ~60.5 pm/˚C.  

Finally, planar chalcogenide-based ring resonators were designed for operation at 1.55 and 3.5 µm, 

simulating dispersion and optimizing waveguide dimensions for maximum four-wave mixing 

conversion efficiency.  Ring resonators with 6- and 20-µm radii were demonstrated with intrinsic 

quality factors of 1-2x104 and 8.3x104, respectively.   
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1. INTRODUCTION 

1.1 Motivation for nonlinear integrated photonics 

Photonics, a field which focuses on the generation, manipulation, and detection of light, 

has become ubiquitous in everyday life.  For example, photonics plays a crucial role in global data 

communications and telecommunications.  Roughly 99 percent of all intercontinental data traffic, 

including internet usage, phone calls, and texts, goes through undersea fiber-optic cables [1].  

Photonics is also used in a number of consumer electronics, including smart phone cameras and 

displays, DVD players, and barcode scanners.  In addition, medical applications have benefited 

from photonics.  For example, lasers are routinely used for LASIK eye surgery, and both 

microscopy and endoscopy exploit optical components for imaging.  Finally, photonics finds use 

in travel.  Optical gyroscopes aid in-flight navigation, and a light-based version of radar known as 

LiDAR (Light Detection And Ranging) is being explored to guide self-driving cars.   

Integrated photonics may open new frontiers in computing, communications, and sensing.  

The term “integrated photonics” refers to fabricating several photonic components, such as optical 

sources, beam splitters, couplers, and detectors, on a single planar substrate.  This integration can 

enable the control of light on a much smaller scale, with sub-micron waveguides and <cm2 

footprints, at sub-mW operating powers.  An illustration comparing free space photonics and 

integrated photonics is shown in Figure 1.1 [2,3].  In addition to reduced size, fully integrated 

systems could also offer improved stability and reliability by eliminating the need for alignment.   
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The idea of integrated photonics was first proposed by S. E. Miller in 1969 [4], with the 

goal of miniaturizing optical systems.  Miller envisioned the development of integrated optical 

circuits, in which both active and passive components were all incorporated on a single substrate 

[4].  Analogous to electronic circuits, photonic integrated circuits could use photons, instead of 

electrons, to perform an array of functions, including splitting, combining, switching, amplifying, 

and modulating signals.   

 

Figure 1.1. Free-space photonics and integrated photonics.  Left: A picture of free-space 

photonic components on ~5-foot by 10-foot optical table.  Upper right: A ~6-inch diameter wafer 

containing many photonic integrated circuits.  Lower right:  A schematic of a ~1 cm2 photonic 

integrated circuit, consisting of several different components.  Integrated photonics images 

reproduced from [2,3].   

 

Many of the functions desired for signal processing are nonlinear.  The nonlinear refractive 

index, or optical Kerr nonlinearity, provides a mechanism to perform these functions, such as 
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switching and amplifying, in integrated photonics.  The refractive index of a material, ,n  describes 

how light propagates through a material, and the index determines how much light is bent, or 

refracted, when it enters a material.  The nonlinear refractive index, 2n , describes how the 

refractive index of a material changes with intensity I , such that 

                                            0 2( ) ,n I n n I          (1.1) 

where 0n  is the linear refractive index.  The Kerr nonlinearity produces several nonlinear effects, 

including self-phase modulation and four-wave mixing.  Self-phase modulation refers to changes 

in the phase and resulting frequency of a pulse, which can lead to spectral broadening.  Four-wave 

mixing is a type of nonlinear frequency conversion caused by the Kerr nonlinearity.  Both of these 

effects will be described in more detail in Section 1.2.   

 The Kerr nonlinearity opens doors to many sought-after applications in integrated 

photonics, including high-speed communications, frequency conversion, sensing, and quantum 

photonics.  The Kerr effect’s ultrafast response time, on the order of femtoseconds [5], provides 

broad bandwidths, with the potential to push current GHz electronic computing towards petaherz 

(1015) rates using all-optical signal processing and switching [6,7].  Additionally, Kerr-based 

nonlinear effects can be used for generating a wide range of optical sources.  For example, spectral 

broadening, produced by changes in phase from the nonlinear refractive index, can help enable the 

generation of short pulsed sources [8].  Four-wave mixing can be used to produce optical frequency 

combs [9,10], which can span mid-infrared spectral regimes useful for sensing and spectroscopy.  

Nonlinear frequency conversion may also be exploited to develop quantum sources for quantum 

information [6,11-12,233], which may offer solutions out of reach for classical computing [233].    
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While these applications hold great interest, the Kerr effect is often small, with 2n  ~10-20 

to 10-19 m2/W for common optical materials [5], leading to high thresholds for nonlinear effects 

and requiring specialized sources.  Additionally, lack of suitable materials, particularly in the mid-

infrared, can limit the wavelength range of operation.  To overcome these challenges, this research 

explores the use of a highly nonlinear, broadly transparent chalcogenide material, combined with 

strong light-matter interaction provided by sub-micron waveguide and microresonator structures.  

The ultimate goal of this research is to develop compact, low threshold, nonlinear integrated 

optical devices in the near-to mid-infrared spectral regime.   

1.2 Introduction to nonlinear photonics 

A material’s response to an applied electric field can be described by its polarization, or 

net dipole moment per unit volume,  

                                                  
(1) (2) 2 (3) 3

0[ ...],      P E E E           (1.2) 

where E  is the field, 0  is the permittivity of free space, and 
( )n  is the thn  order susceptibility 

[5].  Here, the polarization has been written as a power series expansion in terms of the field.  In 

general, the susceptibility 
( )n  is a 

th( 1)n   rank tensor, and the field and polarization are vectors, 

but they are written as scalars here for simplicity.  Centrosymmetric materials are those which 

display inversion symmetry, meaning that the materials remain the same when the position of each 

atom in the material, r , is moved to its inverse, r .  Common examples of centrosymmetric 

materials include liquids, gases, and amorphous solids.  For centrosymmetric materials, including 

amorphous chalcogenide glasses, even-ordered susceptibility including 
(2) is zero, and the third-

order susceptibility, 
(3) , is the lowest-order nonlinear response.   
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 As noted in Equation 1.1, it is also useful to define a nonlinear refractive index, 2n , which 

describes the change in refractive index n  with intensity .I   The nonlinear refractive index is 

directly related to the real part of 
(3)  as 

                                                     

3

2 2

0 0

3
,

4
n

n c




           (1.3) 

where 0  is the permittivity of free space and c  is the speed of light [5].  While various physical 

mechanisms can produce a change in the refractive index, the 
(3) -based nonlinear refractive index 

is caused by electronic polarization, or distortion of the electronic cloud, and is of particular 

interest due to its ultrafast response time.   

 The 
(3) -based nonlinear refractive index drives several different physical processes, 

including self-phase modulation and four-wave mixing [5].  For example, the nonlinear refractive 

index is responsible for self-phase modulation, a nonlinear effect in which the phase of an optical 

pulse changes as it propagates through the nonlinear medium.  For a pulse with intensity ( ),I t  the 

nonlinear refractive index will cause an intensity-dependent change in index.  The corresponding 

phase change ( )t  experienced by a pulse can be written as 

     
2 0( )

( ) ,
n I t L

t
c


           (1.4) 

where t  is the time, L  is the length of the medium, c  is the speed of light, and 0  is the frequency.  

This assumes an instantaneous response and negligible dispersion relative to the material length 

and pulse duration [5].  Due to this time-varying phase, the spectrum will also be modified.  In 

particular, the instantaneous frequency of the pulse, ( )t , is given by 

     0( ) ( ),t t             (1.5) 
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where 

     
( )

( ) .
d t

t
dt


            (1.6) 

Differentiating Equation 1.4 with respect to time, the nonlinear phase will change the instantaneous 

frequency of the pulse, such that 

     
2 0 ( )

( ) .
n L dI t

t
c dt


           (1.7) 

Self-phase modulation can cause spectral broadening [13], which is useful for applications such as 

supercontinuum generation [14,15] and pulse compression [16].  Additionally, the interplay of 

self-phase modulation and dispersion, the wavelength dependence of refractive index, affects pulse 

formation in nonlinear media such as fibers and waveguides [17].   

 
Figure 1.2. Four-wave mixing schematic.  Left:  In four-wave mixing, two frequencies f1 and f2 

combine in a 
(3)  nonlinear crystal to produce two additional optical frequencies, f3 and f4, 

obeying energy and momentum conservation.  Right:  Corresponding energy level diagram for 

four-wave mixing.   

 

 The nonlinear refractive index also drives four-wave mixing, a nonlinear effect which 

provides an attractive approach to frequency conversion.  In the four-wave mixing process, two 

optical frequencies combine in a nonlinear crystal and produce two additional optical frequencies, 

obeying energy and momentum conservation (See Figure 1.2).  In contrast to narrowband atomic 

and molecular energy level transitions used for lasing, four-wave mixing has broadband gain, 

limited only by material transparency and dispersion [9].  This feature enables the generation of 
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light at previously hard-to-reach frequencies.  For example, four-wave mixing has been used for 

mid-infrared optical parametric amplification [18], optical parametric oscillation [19], and 

frequency comb generation [10,20].   

Through frequency conversion and spectral broadening effects, the nonlinear refractive 

index enables the creation of a broader range of optical sources, with uses in diverse fields ranging 

from communications and sensing, to defense and medicine.  Nonlinear optics pairs particularly 

well with photonic integration, since micron-scale waveguide dimensions tightly confine light to 

a small area, increasing the intensity and enhancing efficiency of nonlinear optical processes.  

Furthermore, the Kerr nonlinearity’s fast response on the order of fs pushes new frontiers in high 

speed optical processing, and nonlinear frequency conversion enables development of broadband 

optical sources in the mid-infrared, ideal for sensing.  While telecom applications have been well-

developed, applications in the mid-infrared are still in their infancy.  In Section 1.3, potential mid-

infrared applications and sources are explored.   

1.3 Mid-infrared applications and sources 

Analogous to harmonic oscillators, many molecules exhibit vibrational resonances, 

corresponding to the bending or stretching of molecular bonds.  Since the resonant frequencies 

will depend on the masses of the constituent atoms and bond strengths, these frequencies can be 

used to help identify the given molecule.  The mid-infrared spectral region, covering wavelengths 

from ~2-20 µm, is often dubbed the chemical fingerprint region [21], given the abundance of 

characteristic absorption signatures of many molecules (See Figure 1.3 [20]).  Furthermore, 

absorption strengths in the mid-infrared are typically 10 to 1000 times greater than those in the 

visible or near-infrared [21].  Mid-infrared spectroscopy is useful for a wide range of 

environmental, defense, scientific, and health applications [23].  For example, absorption 
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measurements can be used to detect trace gases in the atmosphere [24], analyze samples for 

explosive residues [25], or non-invasively monitor levels of glucose in patients [26].   

 

Figure 1.3. Mid-infrared chemical fingerprint region.  Absorption vs. wavelength (top axis) 

and wavenumber (bottom axis) is plotted for a variety of gaseous molecules from 2-20 µm over a 

path length of 1 cm [20].  Note that various molecules have unique absorption spectra, or ‘chemical 

fingerprints’.  Figure reprinted by permission from Macmillan Publishers Ltd: Nature Photonics 

[20], copyright 2012.   

 

Although the mid-infrared region provides many strong, characteristic absorption lines 

useful for distinguishing many chemicals [20,27], this spectral region presents challenges for 

photonics-based technology.  Sources in this spectral regime are limited and often lack the 

broadband coverage desired for spectroscopy [28].  Current mid-infrared sources include direct 

sources based on energy level transitions, such as semiconductor diode lasers [29], quantum 

cascade lasers [30], and fiber lasers [31], as well as sources based on nonlinear wavelength 

conversion [32,33].   

Direct bandgap semiconductor diode lasers generate light based on radiative recombination 

of electrons and holes.  Direct bandgap III-V semiconductor diode lasers can operate at room 
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temperature from wavelengths of 2.3-2.7 µm [29], but performance at longer wavelengths is 

severely restricted by Auger recombination, a nonradiative process in which the energy and 

momentum of an electron-hole pair is transferred to another electron or hole.  Auger recombination 

limits the carrier lifetime, reducing the efficiency [34].   

An alternative to diode lasers is a quantum cascade laser (QCL), a semiconductor laser 

based on intersubband transitions [30].  QCLs have advanced significantly over the past 20 years, 

offering high cw output power up to several watts and commercial availability [30,35].  However, 

QCLs can suffer from undesirable noise on their free-running linewidth [22], with frequency noise 

power spectral density at 1 Hz ~12 orders of magnitude higher than an optical frequency comb 

[227], making stabilization a challenge.   

Finally, fiber lasers provide another means to generate mid-infrared light, by utilizing 

transitions of rare-earth dopants [31].  However, mid-infrared fiber lasers are still in the early 

stages of development.  Although a variety of host fiber glasses and rare earth cation dopants have 

been studied, output power decreases drastically with increased wavelength, and fiber laser 

emission beyond 3 or 4 µm is a significant challenge [31, 36].  This is in part due to an increased 

quantum defect at longer wavelengths [31].  Additional problems include the lack of efficient 

longer-wavelength pump sources and limited rare earth transitions in the mid-infrared, along with 

difficulties developing suitably doped mid-infrared fiber with good performance [31].   

The challenges with mid-infrared optical sources are in part due to undesirable properties 

of many materials in the mid-infrared.  For instance, the long-wavelength transparency of many 

materials is limited by multi-phonon absorption [234], in which a single photon is absorbed, and 

multiple phonons, or quantized vibrations, are created.  Additionally, multi-phonon non-radiative 

decay can also significantly reduce the lifetime of lasing transitions, decreasing the upper-state 
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population and thereby limiting the achievable laser gain [37].  Finally, materials which are 

transparent in the mid-infrared, such as fluorides, can often suffer from poor mechanical strength 

and low thermal conductivities [38].   

Frequency conversion through nonlinear optical processes, such as difference frequency 

generation, parametric amplification, or four-wave mixing, offers an alternative approach to 

generating mid-infrared light.  For example, mid-infrared sources have been developed based on 

difference frequency generation (DFG), by mixing two frequencies in a crystal with 
(2)  

nonlinearity to generate light at the frequency difference of the inputs.  DFG-based sources offer 

a simple single-pass geometry requiring no cavity alignment [20].  Phase matching schemes such 

as periodic poling have been used to help reduce phase mismatch and allow DFG effects to add 

coherently over longer lengths [32].  However, even with these techniques, imperfect phase-

matching and material transparency often limit achievable bandwidths [32].  For example, C. Erny 

et al. demonstrated DFG with mid-infrared output from 3 um up to 5 um, limited by absorption in 

the MgO:LiNbO3 crystal [32].  Alternatively, an optical parametric oscillator (OPO) is another 

source based on nonlinear frequency conversion.  An OPO consists of a nonlinear optical crystal 

in an optical cavity.  By utilizing parametric amplification and feedback from a cavity, an OPO 

converts light at a pump frequency into light at signal and idler frequencies obeying energy and 

momentum conservation.  While table-top OPOs provide wide wavelength tunability over several 

µm [33] and reasonable photon conversion slope efficiency ~54% [228], they can have a large 

footprint of several to 10 ft2 and complex cavity geometry.   

 Nonlinear integrated photonics can provide a solution for an efficient, compact mid-

infrared light source.  In particular, microresonator-based frequency combs, generated through 

four-wave mixing, hold promise as potential chip-scale mid-infrared sources, offering the 
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advantage of a robust, portable platform.  Optical microresonators are dielectric resonators, 

ranging in radius from a few microns to mm, which guide and confine light through total internal 

reflection.   

 

Figure 1.4 Illustration of various microresonator geometries.  Six microresonator geometries 

are illustrated, including the (a) donut-shaped microtoroid (reproduced from [40]), (b) mushroom-

shaped wedge resonator, (c) spherical microsphere, (d,e) cylindrical microdisks (non-integrated 

and integrated), and (f) ring-shaped ring resonator with integrated waveguides.  Adapted by 

permission from Macmillan Publishers Ltd: Nature Photonics [40], copyright 2014. 

 

 A number of different microresonator geometries exist, including microtoroids [40,41], 

wedge resonators [42], microspheres [43], microdisks (integrated and non-integrated) [44,45], and 

ring resonators [46], as illustrated schematically in Figure 1.4.  Microresonators can confine light 

to small mode volumes while allowing light to build up as it circulates many round trips before 
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decaying, significantly reducing thresholds for nonlinear effects.  A microresonator’s capacity to 

circulate and store light can be quantified by a quality factor, Q , which represents the number of 

oscillations of the electric field before the energy is reduced to 1/ e  of its initial value.  Extremely 

high Q s have been achieved in mm-scale devices, including Q s ~1010 to 1011 in crystalline fluoride 

microresonators [47,48], Q s of 8.75x108 in silica wedge resonators [42], and Q s ~ 8.1x107 silicon 

nitride ring resonators [49].  In micron-scale devices with radii on the order of 10s µm, state-of-

the-art integrated waveguide-coupled resonators have Q s ~106 [49-51].   

 Optical microresonators are essential building blocks for a wide variety of applications 

[52], including label-free biosensors [53], integrated photonic devices [54] and nonlinear optics 

[55,56].  One application of significant interest is a microresonator-based optical frequency comb, 

which is a source consisting of evenly spaced lines in frequency, as illustrated in Figure 1.5 [9].  If 

the frequency modes have a fixed phase relationship, then in the time domain, the evenly spaced 

spectral lines correspond to a pulse train with a periodic envelope function (See Fig. 1.5b) [9,20].  

While the envelope of the pulse train travels at the group velocity, the carrier wave of the pulse 

travels at the phase velocity.  Dispersion in the resonator causes the phase velocity to differ from 

the group velocity, so that the electric field of the pulse slips by some constant phase amount from 

pulse to pulse [20].  This phase slip leads to an overall frequency offset of the comb, 0f , called the 

carrier-envelope offset frequency [20].  Optical modes are found at frequencies 0 ,n rf f n f   

where n  is an integer and rf  is the repetition rate [9,20].   

 One way to produce a frequency comb is to couple continuous wave (cw) light into a 

microresonator and utilize the nonlinear optical process of four-wave mixing [9].  For a 

microresonator made from a 
(3) -based nonlinear  material,  degenerate four-wave mixing will 
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convert two pump photons into a pair of frequency up- and down-shifted photons (at signal and 

idler frequencies), which conserve both energy and momentum [9].  If the resonator is designed 

such that the signal and idler frequencies align with the resonator cavity modes, the nonlinear 

process will be enhanced [9].  When the generated signal and idler frequencies seed additional 

(non-degenerate) four-wave mixing, based on interactions of four different frequency photons, a 

frequency comb can be generated, consisting of many equidistant frequency sidebands, as 

illustrated in Figure 1.5 [9].   

 

Figure 1.5. Optical frequency comb.  (a) An optical frequency comb, consisting of evenly spaced 

lines in frequency, is generated through the processes of (1) degenerate four-wave mixing (FWM) 

and (2) cascaded four-wave mixing.  Optical modes are found at frequencies 0 ,n rf f n f   where 

n is an integer, rf  is the repetition rate, and 0f  is the carrier-envelope offset frequency. (b) Time 
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domain representation of optical frequency comb.  Adapted from [9].  Reprinted with permission 

from AAAS.   

 Microresonator-based optical frequency combs have been demonstrated in a number of 

different material systems, including silica [55,57], silicon nitride [39,58], crystalline CaF2 [59], 

crystalline MgF2 [60], and silicon [10] (See Figure 1.6).  A new chalcogenide glass-based 

microresonator platform offers several unique advantages.  Selenide-based chalcogenides provide 

extremely large nonlinearities, with 2n  ~ 9x10-18 to 1x10-17 m2/W [61], which are orders of 

magnitude larger than nonlinearity in other commonly used materials, as shown in Table 1.1.  

While the semiconductors AlGaAs and GaAs also feature high nonlinearity at 1550 nm, they 

contain toxic arsenic and suffer from two-photon absorption ~0.4 cm/GW and 10 cm/GW, 

respectively, at 1550 nm [240,241].   

 

 

Figure 1.6 Material platforms used in frequency comb generation.  Microresonator-based 

frequency combs have been demonstrated in a variety of materials.  These include silica microrings 

and microresonators [55,57], silicon nitride ring resonators and finger-shaped resonators [58,39], 

crystalline fluoride whispering gallery mode resonators [59,60], and silicon ring resonators [10].  

Figure adapted from [9] and reprinted with permission from AAAS.  Silicon ring figure adapted 

from [10] and reprinted by permission from Macmillan Publishers Ltd: Nature Communications, 

copyright 2015. 

 

 Additionally, chalcogenides offer broad transparency, from near-infrared wavelengths out 

to the long-wave infrared around 14 µm.  Finally, unlike crystalline semiconductors or crystalline 



15 
 

fluorides, chalcogenides are amorphous, allowing them to be easily deposited onto a variety of 

substrates for integrated, on-chip devices.  By harnessing the chalcogenide material’s large 

nonlinearity, broader transparency, and flexible options for integration, optical frequency comb 

operation may be extended to longer wavelengths in the mid-infrared using lower pump powers, 

to produce compact, efficient devices.   

Table 1.1 Comparison of n2 at 1.55 µm in nonlinear optics material platforms 

Material n2 (x10-20 m2/W) Reference 

Fused silica 2.6 [62] 

Si3N4 24 [63] 

SiNx 140 [63] 

CaF2 1.9 [64] 

MgF2 0.9 [64] 

Si 400 [63] 

Ge28Sb12Se60 936 [65] 

AlGaAs 1800 [240] 

GaAs 2000 [241] 

 

1.4 Why chalcogenide glasses? 

Chalcogenide glasses are composed of a chalcogen element such as S, Se, or Te covalently 

bonded to at least one other element.  They have relatively high glass densities compared to oxides 

and consist of atoms with strong polarizability, giving rise to high linear and nonlinear refractive 

indices [61,72].  Since chalcogenides consist of heavy atoms, their resonant vibrational frequencies 

are lower than oxides’, providing excellent long wavelength transparency out to ~ 12, 14 and 20 

µm for sulfides, selenides, and tellurides, respectively [61].  For comparison, the transparency 

range of a few chalcogenide glasses, fluorides, crystalline semiconductors, and other common 

optical materials is shown in Figure 1.7.  Finally, due to relatively large bandgaps compared to 

common semiconductors such as Si or Ge, chalcogenides can exhibit large figures of merit (ratio 
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of nonlinearity to two-photon absorption) [73].  Since two-photon absorption often limits nonlinear 

device performance, the relatively low two-photon absorption can make these glasses good 

candidates for efficient optical switching.   

 

Figure 1.7. Transparency ranges for various materials.  Note the materials are transparent over 

the colored range, and absorbing over the gray range.  Transmission from the near- to long-wave 

infrared is compared for a variety of materials, including crystalline semiconductors, fluorides, 

and chalcogenide glasses [66-71].  The chalcogenide glass Ge28Sb12Se60 exhibits excellent 

transparency from ~1-15 µm, is arsenic-free, and its amorphous nature offers flexible substrate 

choice.   

 

Chalcogenide glasses behave as amorphous semiconductors, with bandgap energies 

ranging from 1 to 3 eV [74].  Since chalcogenide glasses have localized states extending into the 

bandgap, they can still absorb some radiation at energies less than the bandgap energy.  The 

existence of these energy states causes the chalcogenide glass absorption spectra to exhibit a long, 

decaying exponential Urbach absorption tail, rather than a sharp absorption edge [75].  On an 
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atomic scale, chalcogenide glasses such as Ge-Sb-Se consist of covalently bonded atoms and are 

ordered in a ‘continuous random network’ structure [61,76].  This means that the glass structure, 

similar to amorphous SiO2, lacks periodicity throughout the material [77], as illustrated in Figure 

1.8 [78]. 

 

Figure 1.8 Continuous random network structure.  Two-dimensional illustration of continuous 

random network structure for amorphous SiO2 [78].  Blue circles represent oxygen atoms, and red 

circles represent Si atoms.  Note that while each Si atom is covalently bonded to three neighboring 

O atoms, the glass structure lacks periodicity or long-range order.  Reproduced from [78]. 

 

The network structure can be further characterized by the mean coordination number (MCN), or 

the average valence number of the constituent atoms [61].  For example, for Ge28Sb12Se60, 

consisting of Ge, Sb, and Se with valence of 4, 3, and 2 respectively, the MCN would be 

4(0.28)+3(0.12)+2(0.60)=2.68.  Thorpe et al. [79] and Tanaka [80] have predicted phase 

transitions, where the material transitions from a flexible to a more rigid phase, at MCN of 2.4 and 

2.67, respectively.  W. –H. Wei et al. have shown that, in addition to MCN, chemical composition 
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also plays a role in determining both the physical and structural properties of chalcogenide glasses 

[81].  If an atom has more or fewer bonds than expected for its valence, the network will contain 

“coordination defects,” which lead to tail states in the bandgap that can further influence both 

optical and electronic properties [61].  An illustration of an example coordination defect is shown 

in Figure 1.9 [82].   

 

      

Figure 1.9 Example of coordination defect in chalcogenide Ge2S6H4.  a) Non-defective 

Ge2S6H4 configuration. b) Defective Ge2S6H4 configuration.  While each Ge atom is usually 

bonded to 4 neighboring S atoms, in the defective configuration, one of the Ge atoms only has 3 

neighboring S atoms.  Reproduced from [82], with permission from Elsevier.   

 

Chalcogenides also exhibit photosensitivity, meaning that when exposed to light near their 

band edge, their chemical bonds can change [83].  The photosensitivity of chalcogenides has raised 

some concern about potential device stability, particularly when operating near the band edge.  

However, photosensitivity has been successfully exploited for certain applications, such as laser-

writing of waveguides [84,85] or post-fabrication device trimming [86], and photosensitivity 

remains an active area of research [83].  In particular, the magnitude and stability of photosensitive 

changes have been shown to vary greatly with illumination conditions [83].  While a number of 
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different mechanisms have been proposed [87], more work is needed to clearly identify the exact 

origins of photosensitivity and accurately model the dependence on key parameters such as 

exposure time, intensity, wavelength, and absorption.   

Although chalcogenides are susceptible to photosensitivity and additional absorption from 

defect-induced energy states, their amorphous structure offers a significant advantage of flexible 

photonic integration.  In contrast with crystalline fluorides or crystalline semiconductors, glassy 

materials can be easily deposited onto a wide array of substrates to make thin film devices [88].  

For example, chalcogenide waveguides have been demonstrated with substrates such as sapphire 

[89], MgF2 [90], and oxide-coated Si [88].   

Bulk chalcogenide glasses and devices have been researched extensively.  The optical 

nonlinearity of a range of bulk chalcogenide glasses, including Ge-As-Se, Ge-Se, As2Se3, As2S3, 

and Ge-Sb-Se has been studied [65,91-95].  While most of this work has focused on telecom 

wavelengths near 1550 nm, recent studies have examined properties at mid-infrared wavelengths 

at 2.5-4.0 µm [95-97].  Many simple chalcogenide-based devices have also been demonstrated, 

such as fibers [98], tapers [99], and waveguides [61,100-102].  Additionally, more complex 

devices have been developed, including microfluidic sensors [103], flexible photonic circuits 

[104], microresonators [105-106], components for high speed processing [107], and photonic 

crystal resonators [237-239].  To date, chalcogenide microresonator research has focused primarily 

on linear characterization, and more work remains to harness the excellent nonlinear properties of 

chalcogenide glasses in microresonator geometries. 

This thesis focuses specifically on the chalcogenide glass Ge28Sb12Se60 due to its As-free 

composition, large bandgap [108], broad transparency to ~15 µm [109], and high glass transition 

temperature of 300˚C [108].  The properties of bulk Ge28Sb12Se60 are investigated in the near-
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infrared.  Optical waveguides and microresonators based on this material are designed, fabricated, 

and characterized, laying groundwork for the development of chip-scale nonlinear optical devices 

for the near- and mid-infrared.   

1.5 Thesis outline 

 This thesis is organized into six chapters.  Chapter 1 describes the motivation for the work, 

introducing integrated optics, discussing potential applications of nonlinear photonics, and 

explaining why chalcogenide materials were chosen.  Chapter 2 covers nonlinear optical 

characterization of bulk Ge28Sb12Se60 using the z-scan method.  Chapters 3-5 focus on thin-film 

chalcogenide-based devices.  More specifically, Chapter 3 describes optical waveguide design and 

characterization.  Basic principles of optical waveguide design and characterization techniques are 

introduced, and the design and characterization of waveguides at near- and mid-infrared 

wavelengths are discussed.  Chapters 4 introduces ring resonators, describing how devices can be 

designed for optimal four-wave mixing efficiency, providing designs completed at both 1.55 and 

3.5 µm, and summarizing optical characterization of such resonators.  Chapter 5 describes the 

development and optical characterization of a first generation of hybrid chalcogenide-silica wedge 

resonators.  Chapter 6 summarizes the main results from this thesis and suggests future extensions.   
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2. OPTICAL CHARACTERIZATION OF BULK GE28SB12SE60 

2.1 Overview 

 The linear and nonlinear optical properties of Ge28Sb12Se60 bulk glass are characterized at 

a wavelength of 1.03 µm.  In addition to large nonlinear refractive index, the bulk material has 

significant two-photon absorption, making it a potential candidate for optical limiting in this 

spectral region.  The new understanding of the basic optical properties of Ge28Sb12Se60 at 1.03 µm 

will be useful for photonic device design over broader bandwidths.  In Section 2.2, the z-scan 

method is introduced.  In Section 2.3, z-scan experiments measuring the nonlinear refractive index 

and nonlinear absorption are described, and z-scan results are further discussed in Section 2.4.  In 

Section 2.5, measurements of the linear absorption on bulk Ge28Sb12Se60 are summarized.   

 During this work, we benefited from technical discussions with the Gopinath lab group, 

Professor Wounjhang Park, and Lisa Rengnath.  Bulk linear absorption at 1.55 µm was measured 

by Caroline Hughes (University of Colorado Boulder).  Funding for this work was provided by the 

University of Colorado Boulder Innovative Seed Grant Program, NSF grant EECS-1232077, the 

Colorado Measurement Science and Engineering Fellowship, and the National Defense Science 

and Engineering Graduate (NDSEG) Fellowship.  This chapter is adapted from [56].   

2.2 Introduction to z-scan 

 Although the nonlinear refractive index is useful for a wide range of applications, the 

nonlinear refractive index is very small, typically on the order of 10-20 m2/W for silica [5] and   
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~10-18-10-17 m2/W for chalcogenide glasses [61].  At incident intensities of 1 GW/cm2, these values 

correspond to small changes in refractive index on the order of 10-7 to 10-4.  Detecting such small 

changes requires sensitive techniques.  Two methods most widely used to measure the nonlinear 

refractive index in bulk materials are z-scan and degenerate four-wave mixing [110].   

 In the degenerate four-wave mixing technique, an intense, short-pulse pump is focused 

onto a sample, and the output beam is reflected back through the sample to produce a 

counterpropagating pump [111]; a third, weak probe beam is incident at some angle on the 

material, and a fourth beam, propagating counter to the probe, is generated through four-wave 

mixing [111, 112].  By varying the time delay between the pump and probe, the temporal behavior 

can be studied.  The main disadvantage of this technique is the complex experimental setup [110], 

requiring careful spatial and temporal alignment of the pump and probe.   

 

 

Figure 2.1 General schematic of z-scan setup.  A Gaussian beam is focused onto a sample using 

a lens.  The sample is translated through the focus of the beam, and the resulting transmission 

through an aperture is recorded as a function of position, producing a “closed aperture” z-scan 

trace sensitive to both nonlinear refraction and nonlinear absorption.  Additional transmission 

measurements without the aperture produce an “open aperture” z-scan trace, and these can be used 

to separately determine nonlinear absorption.   

 

 The z-scan technique is a simple, single-beam technique.  To characterize the nonlinear 

refractive index 2n  and two-photon absorption coefficient   using the z-scan technique [113], a 

sample is translated through the focus of a Gaussian beam, and the transmission through a circular 
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aperture, placed in the far field, is recorded.  A schematic of a z-scan experimental setup is shown 

in Figure 2.1.  The nonlinear sample acts like a lens, with largest phase shift near the center of the 

beam, and weak phase shift near the edges of the Gaussian beam.  This lensing effect, which is 

strongest near the focus where the intensity is the highest, changes the fraction of light that passes 

through the aperture, producing a characteristic z-scan transmission trace.  If the aperture is 

removed and all the light is collected, the scan is no longer sensitive to nonlinear refraction, but it 

is still sensitive to nonlinear absorption.  Thus, measurement of the transmission as a function of 

position without the aperture allows for determination of  .  Although z-scan does not provide 

time resolution, it offers a simple setup and straightforward analysis.   

Sheik-Bahae et al. developed a theoretical analysis for the z-scan method [113].  The 

presence of a nonlinear sample will modify both the phase   and intensity I  of an incident 

Gaussian beam, such that  

                                               ( )
'

d
n I k

dz


          (2.1) 

and 

                                               ( ) ,
'

dI
I I

dz
            (2.2) 

where ( )I  is the intensity-dependent absorption, k  is the wavenumber, 'z  is the propagation 

distance through the sample, and ( )n I  is the intensity-dependent change in refractive index.  

Here, the sample length L  is assumed to be small enough that changes in beam diameter due to 

diffraction or nonlinear refraction are negligible, with 0L z  typically sufficient, where z0 is the 

confocal parameter [113].    For a sample with third-order nonlinearity, 

                                                          2( )n I n I                      (2.3) 



24 
 

and 

                ( ) ,I I               (2.4) 

where 2n  is the nonlinear refractive index,   is the linear absorption, and   is the two-photon 

absorption coefficient.  After accounting for the phase and intensity changes due to the sample, 

the resulting electric field is calculated in the far field.  The field is then spatially integrated over 

the aperture (or over the full cross section) to determine the theoretical z-scan transmission for a 

closed (or open) aperture z-scan trace.  When pulses are used, rather than cw light, the time-

dependent field can be time-integrated to obtain the average transmittance.  For a Gaussian pulse 

shape, transmission without the aperture is given by  
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z  is the distance of the sample from focus, and m  is an integer [113].  Here, 0I  is the peak on-

axis intensity, w  is the beam waist, and   is the wavelength.  The effective sample length is given 

by   
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where L  is the physical sample length and    is the linear absorption coefficient.   
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 Typically 0 1q  and only the first two terms of Eq. (2.5) contribute significantly to an 

open aperture z-scan trace.  For larger values of 0q , additional terms in the sum can be added as 

needed to ensure the desired level of accuracy.  The theoretical transmission for a closed aperture 

z-scan trace can be calculated through a similar process, by accounting for phase and intensity 

changes from the sample, propagating to the far field, and integrating the field over the aperture.  

In general, the expression can be extensive and can make fitting challenging.  However, for small 

phase shift 0 1  and small absorption changes 0 2,effI L  Dinu et al. [114] and Rhee et al. 

[115] have shown that the expression for the field can be approximated.  Additionally, the aperture 

radius is assumed to be small so that the condition of on-axis transmittance is satisfied [115].  In 

this case, using a Fourier transform to propagate to the far field, integrating the field over the 

aperture, and using a series expansion, Dinu et al. [114] shows that the transmission through a 

small, partially closed aperture is given by 
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Here, for a Gaussian pulse shape, the time-averaged peak on-axis phase shift is given by  
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where S  is the aperture transmission [114].  For larger absorption or refractive changes, data can 

be fit to more terms from a full expression given by Gu et al. [116].   

Table 2.1. Typical magnitude and response time of nonlinear refractive index [5]. 

Mechanism n2 (cm2/W) Response time (s) 

Electronic polarization 10-16 10-15 

Molecular orientation (liquids) 10-14 10-12 

Thermal effects 10-6 10-3 
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 A number of physical processes, including electronic polarization, thermal effects, and 

free-carrier effects, can cause a nonlinear change in the refractive index, but their corresponding 

response times and magnitudes vary greatly, as shown in Table 2.1 [5].  For example, intensity-

dependent changes in refractive index from heating can be large, but these changes are relatively 

slow, ~ ms, given their thermal nature.  Electronic-polarization-based changes (due to the Kerr 

nonlinearity) tend to be significantly smaller in magnitude.  However, the electronic polarization 

has ultrafast fs response times, attractive for high-speed applications such as all-optical processing.  

Although the z-scan technique can only measure the magnitude and sign of the nonlinearity, 

measurements using different temporal separation between short pulses can help distinguish the 

origin of the nonlinearity [117].   

 While chalcogenides are known for having large optical nonlinearities, most work 

characterizing the nonlinear optical properties of Ge-Sb-Se glasses has centered on telecom 

wavelengths.  A better understanding of this material over a wider wavelength range in both bulk 

and waveguide forms is crucial for leveraging its nonlinear properties in broadband device designs, 

since material properties such as absorption, refractive index, and nonlinear refractive index are 

all wavelength dependent.  The refractive index and linear dispersion have been well characterized 

for chalcogenide materials [108], but their nonlinear properties were not well studied at 1 µm.   

 Although a few models for the dispersion of the nonlinear refractive index have been 

developed, they have not been rigorously tested for chalcogenide materials over broad bandwidths.  

Sheik-Bahae developed a model for the dispersion of the nonlinear refractive index and two-

photon absorption coefficient, using a Kramers-Kronig analysis relating the real and imaginary 

parts of the third-order susceptibility [118].  While this uses a two-parabolic band model and fits 

many semiconductors well, chalcogenide glasses are amorphous and do not exhibit a sharp 
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absorption edge.  As such, chalcogenide glasses exhibit finite two-photon absorption even below 

the half-gap [65], not well-predicted by the Sheik-Bahae model.  Lenz et al. developed a model 

for the magnitude and dispersion of the Kerr effect in glasses, based on a previous model in ionic 

crystals [65].  However, this model was not experimentally tested for chalcogenides over broad 

bandwidths.  Dinu et al. offers an alternate model for the dispersion of nonlinearity from bound 

electrons for the case of indirect semi-conductors [119].  Recent experiments covering broader 

bandwidths are just starting to test the models by Sheik-Bahae, Dinu, and Lenz for chalcogenides 

[93].  One final rule commonly used to predict the nonlinearity of a material is Miller’s rule, an 

empirical equation which relates the linear refractive index 0n  to 2n  through  
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where Miller  is the material-dependent Miller’s coefficient.  Experiments have shown Miller  of 

2.7x10-10 for chalcogenide glasses [93].  Miller’s rule does not explicitly include wavelength 

dependence of the nonlinear index.  However, from Equation 2.11, a wavelength-dependent linear 

index would lead to a predicted wavelength-dependent nonlinear index.  Through experiments, 

Miller’s rule has been shown to provide a good rough estimate of the nonlinear refractive index of 

a range of materials, including chalcogenides, tellurites, lead silicates, and silica [93,127,128].  

However, this rule requires additional experimental testing to test how well it predicts the 

wavelength dependence of 2n  over broad bandwidths.   

 

2.3 Z-scan measurements of third-order nonlinearity in Ge28Sb12Se60 

 The nonlinear refractive index 2n and two-photon absorption coefficient   of polished 

Ge28Sb12Se60 bulk samples were measured with the z-scan technique, using the setup illustrated in 
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Figure 2.2.  The light source used in the experiments was a mode-locked Yb-doped fiber laser 

operating at a 37.4 MHz repetition rate, with ~200 fs Gaussian pulses at a central wavelength of 

1.03 µm, modeled after a design by Ilday et al. [120].  A schematic of the Yb-doped fiber laser is 

shown in Figure 2.3.   

 
Figure 2.2. Experimental setup for z-scan.  200 fs pulses from a Yb-doped fiber laser are 

spatially filtered and focused onto a sample.  A half waveplate and polarizing beam splitter are 

used to control the incident power, and a quarter waveplate converts the polarization to circular 

and serves to prevent back reflections from entering the setup.  The sample transmission is 

recorded as a function of position, both with and without an aperture, to determine the nonlinear 

properties.  The repetition rate is varied by introducing an acousto-optic modulator to pulse pick 

from 37.4 MHz down to 0.374 MHz.   
 

 

 The 1.03 μm laser utilized a unidirectional ring cavity and was pumped by a 980 nm pump 

diode delivering power through a wavelength division multiplexer (WDM) into a single mode fiber 

and Yb-doped fiber (Coractive Yb164).  Nonlinear polarization rotation was used to mode-lock 

the laser.  By adjusting the separation of the gratings (Thorlabs GR25-610, 600 lines/mm, 1 µm 
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blaze), the total group velocity dispersion could be controlled.  The laser produced positively 

chirped pulses, which were dechirped outside of the laser cavity with a second grating pair, 

external to the cavity.  These resulting dechirped pulses were ~200 fs in duration, with 37.4 MHz 

repetition rate and average power of 14 mW (measured after the grating compressor).   

 

Figure 2.3. Schematic of Yb-doped fiber laser.  Experimental setup for mode-locked Yb fiber 

laser, based on design by Ilday et al. [120].  Ring cavity consists of 20 cm Yb-doped fiber 

(Coractive Yb164), 357 cm (82 + 100+175 cm) HI1060 fiber, and ~110 cm free space (108 cm 

free space, 2 cm through PBS glass).  Through adjustments of the waveplates (λ/2 and λ/4), the 

laser mode-locks using nonlinear polarization rotation. 
 

 An acousto-optic modulator (AOM, Gooch & Housego model MM210-.2C2B14-5) was 

used as a pulse-picker to reduce the repetition rate of the Yb-doped fiber laser to 374 kHz to enable 

z-scan measurements at different repetition rates.  A circuit was designed to provide a fast, low 

duty cycle trigger signal necessary to drive the AOM safely (See Appendix A).  As shown in Figure 

2.2, after passing through the AOM, the first order beam is spatially filtered and passed through a 
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series of polarization optics.  A half waveplate and polarizing beam cube provide a simple way to 

attenuate the beam and adjust the incident power on the sample.  These polarization optics, along 

with the quarter waveplate, also serve as isolation, converting the linear polarization to circular 

polarization and preventing the reflected beam of the sample surface from re-entering the setup.  

A nonlinear sample is translated through the focus of the beam, and the transmission vs. position 

data is recorded, with and without the aperture in place.  Data was taken at two repetition rates 

(37.4 MHz and 374 kHz) with circularly polarized light, on 2 mm-thick polished bulk Ge28Sb12Se60 

samples.   

 A series of open and closed aperture z-scan traces were taken over a range of peak 

intensities from 20 to 95 MW/cm2.  To account for sample inhomogeneities, z-scan traces were 

divided by background traces taken at very low intensity levels, where the nonlinearity would 

produce negligible effects.  No changes or degradation to the sample surface were observed in 

between or after measurements at the different repetition rates.  During the experiments, a few 

technical challenges had to be mitigated.  A metal pinhole in a spatial filter before the z-scan setup 

provided a strong back reflection into the setup.  By switching from linear to circular polarization, 

and providing isolation with a polarizing beam cube and quarter waveplate, as shown in Figure 

2.2, this reflection was removed.  For amorphous materials, both 2n  and β depend on polarization 

[5], such that  

      
2 2

2

3

circ linn n           (2.12) 

and 

      
2

,
3

circ lin          (2.13) 
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where 2

circn  and 
circ  are values for circular polarization, and 2

linn  and 
lin  are values for linear 

polarization [5].  Samples with surfaces relatively parallel surfaces (wedge angle <0.2mrad) were 

used, such that the amount of beam “walk-off” over the translation of the stage used in the 

experiments was negligible.  As2Se3 was used as a reference sample.   

 Open aperture traces were fit to Equation 2.5, leaving   and w  as free parameters, and 

including nine terms in the sum (m from 0 to 8) to ensure 0.05% accuracy in the fit.  Closed aperture 

traces were fit to the full expression by Gu et. al, which provides more terms for a more accurate 

determination of 2n  and   than Equation 2.9, given the large observed nonlinear refractive and 

absorptive changes [116].  Full details of the fitting process and fitting functions used are included 

in Appendix B.   

 

Figure 2.4. Experimental z-scan traces for Ge28Sb12Se60.  Example closed aperture (a) and (b) 

and open aperture (c) and (d) z-scan traces taken on Ge28Sb12Se60.  Note that the traces on the left, 

(a) and (c), were taken at 0.374 MHz with I0=88.5 MW/cm2.  The traces on the right, (b) and (d) 

were taken at 37.4 MHz with I0=35 MW/cm2.  Data is shown by the black points, and the fits are 

represented with red lines. Reproduced from [56].   
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 Example z-scan traces at the two different repetition rates are shown in Fig. 2.4.  At the 

lower repetition rate, a noticeably smaller change in transmission was observed for both the open 

and closed aperture z-scans, and large two-photon absorption obscured the typical valley-peak 

shape of the closed aperture z-scan.  The signal-to-noise ratio (SNR) was limited by laser power 

fluctuations, which were on the order of 0.2%.  The SNR and corresponding detection sensitivity 

could be improved in the future by adding balanced detection to normalize out power fluctuations, 

or by averaging.   

 

Figure 2.5. Two-photon absorption and nonlinear refractive index for Ge-Sb-Se.  Plots of (a) 

two-photon absorption coefficient,   and (b) nonlinear refractive index, 2n  of Ge28Sb12Se60 as a 

function of peak on-axis intensity, measured by the z-scan technique for two repetition rates, 0.374  

MHz and 37.4 MHz.  Errors in   and 2n  are approximately 11% and 20%, respectively.  At 0.374 

MHz,  =3.5 cm/GW and 2n =3.4x10-18 m2/W.  Enhanced values of   and 2n  observed at the 

higher repetition rate are believed to be a cumulative effect caused by the photosensitivity of the 

material.  Reproduced from [56]. 
 

 

 The fit values for the data at the two repetition rates, taken over a range of intensities, are 

summarized in Fig. 2.5.  Errors in   and 2n  are approximately 11% and 20%, respectively.  The 

main sources of error in the measurements were laser power fluctuations and uncertainty in the 

pulse width.  At the high repetition rate, 2n  is enhanced, ranging from 15-21x10-17 m2/W, and 
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increases slightly with increasing intensity, while the value of  , roughly 30 cm/GW, also appears 

significantly enhanced.  At the lower repetition rate, both   and 2n  show no dependence on 

intensity, as expected.   

2.4 Discussion of z-scan results 

 To explore possible causes of the repetition rate dependence of   and 2n , we first 

considered thermal effects, where the refractive index changes due to the thermo-optic coefficient 

and sample heating from absorption.  If a laser beam is incident on a sample, the sample will absorb 

the energy and increase in temperature at an initial linear rate.  As described by Hass et al. [121], 

the temperature change, T  of the sample due to linear absorption    is given by   

  

      
0 ,s

p

L P t
T

MC


             (2.14) 

where sL  is the sample length, 0P  is the incident power, M  is the sample’s mass, pC  is the specific 

heat, and t  is the bulk heating transit time.  For a disk-shaped sample, t  is given by 
2 / (6 ),t r   

where r  is the radius and   is the thermal diffusivity [121].   

 Using Eq. 2.14, along with the material values for our Ge28Sb12Se60 sample (  of  0.27 

cm-1, sL  of 2 mm, r  of 1.27 cm, M of 4.72g,   of 0.1626 mm2/s, t  of 165.4 s, pC   of 0.33 J/g-

K) [122], we calculate T  of 0.011-0.057 K for the 0P  of 2-10 mW at the high repetition rate of 

37.4 MHz.  Additionally, we calculate T  of 4.6-6.9 x 10-4 K for the 0P  of 80-120 µW used at 

the lower repetition rate of 0.374 MHz.  Using the thermo-optic coefficient /dn dT  of 78.8x10-6/K 

for Ge28Sb12Se60 at 1 µm [123], we estimate corresponding change in refractive index from these 

absorption-induced temperature changes to be 0.9-4.5 x 10-6 at the high repetition rate, and 4.6-6.9 
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x 10-8 at the low repetition rate.  In comparison, the measured index changes from the z-scan for 

the high and low repetition rates were 0.3-1.67 x 10-4 and 2.6-3.2 x 10-6 respectively, nearly two 

orders of magnitude larger than what we would expect from thermal effects.   

 From these calculations, we conclude that effects due to the thermo-optic coefficient are 

insignificant, contributing only a few percent of the total measured change in refractive index at 

both repetition rates.  While others have observed cumulative nonlinearities from free-carrier 

refractive and dispersive contributions in chalcogenide glasses, these are expected to be negligible 

at both repetition rates due to the short pulse durations used [124].   

 One possible origin of additional nonlinearities includes effects from photosensitivity.  A 

variety of Ge-Sb-Se glasses and other chalcogenides have been shown to exhibit photodarkening, 

in which the bandgap red-shifts and absorption and refractive index increase upon illumination 

close to the bandgap [94,125,126].  Using the commonly used Miller’s rule (See Equation 2.11), 

an increase in 0n  from photodarkening would be expected to increase 2n   [93,129].  Additionally, 

Sheik Bahae’s model for the dispersion of 2n  and   predicts that a decrease in bandgap energy, 

such as that produced by photodarkening, will increase both 2n  and   [118].  Indeed, an increase 

in 2n  after photodarkening with a fs laser has been observed in other chalcogenides, such as Ge-

Sb-S and As2S3 [130,131].  Since the magnitude of the property changes from photodarkening can 

depend on illumination characteristics, these changes could also produce an effective cumulative 

nonlinearity [124].  In the case of Ge-Sb-Se glass, one would expect that a red-shift in the band 

edge would lead to higher two-photon absorption and higher linear and nonlinear refractive 

indices, consistent with the direction of the shift observed at the higher repetition rate.  Given this, 

along with the magnitudes measured, the enhanced effective 2n and   at the higher repetition rate 

were likely caused by a cumulative effect stemming from photosensitivity.    
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 A time-resolved method such as pump-probe spectroscopy is not expected to be able to 

determine the origin of the nonlinearity, because photodarkening can produce both cumulative 

nonlinearities, as well as ultrafast nonlinearities due to changes in the bandgap energy, as discussed 

earlier.  Photosensitivity-induced changes can be clearly identified by changes in bond structure 

[132-134].  Thus, a technique capable of sensing structural changes, such as a Raman spectroscopy 

or X-ray absorption spectroscopy, may more directly probe the presence of photosensitivity in the 

future [132-134].  For example, a study of the Raman spectra of samples before and after z-scan 

measurements could be used to check for permanent changes to the bond structure which would 

change the resulting energy levels and measured spectra for the material.  Similarly, to check for 

reversible photosensitive effects, one could consider developing a technique to perform in-situ 

spectroscopy with either z-scan or pump-probe measurements simultaneously.    

2.5 Linear absorption measurements of Ge28Sb12Se60 

 Accurate fitting of z-scan nonlinearity measurements requires knowledge of the material 

linear absorption, which will influence the sample’s effective length.  Weak linear absorption can 

be a challenge to measure.  Given the thin, disk-like geometry of our samples (desired for z-scan), 

and expected weak absorption in the range 0.05 cm-1 <    < 1 cm-1, in order to measure the linear 

absorption of chalcogenide samples, we utilized the Brewster angle technique [135].  In this 

method, the linear absorption of bulk samples can be determined from measurements of the 

incident, reflected, and transmitted power at Brewster’s angle.  A schematic of an experimental 

setup is shown in Figure 2.6.  A half waveplate and polarizing beam splitter are used to change the 

polarization of the incident beam.  The sample is rotated to find the minimum in reflected power, 

and the transmitted, reflected, and incident powers are recorded at this angle.  For small absorption 

and reflectance, the absorption is given by 
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where   is the sample thickness, and T  and R  are the power transmission and reflectance, 

respectively, all measured at Brewster’s angle B  [135].  The Brewster angle method utilizes a 

simple experimental setup, with accuracy depending mainly on uncertainty in power 

measurements as well as the parallelism and imperfection of the sample surfaces [135]. 

 
Figure 2.6. Experimental setup for Brewster angle absorption measurement.  Linearly-

polarized light from a Yb-doped fiber laser is passed through a half waveplate and polarizing beam 

splitter and optimized for p-polarized light, and directed onto a polished sample.  The sample is 

rotated until the reflected power is minimized to find Brewster’s angle B .  The angle is recorded, 

and the reflected, transmitted, and incident power are measured using a thermal power meter.   
 

 A schematic of the experimental setup is shown in Figure 2.6.  A polished sample is rotated 

until a minimum in the reflected power is found.  The incident, transmitted, and reflected power 

are measured at this sample angle with a thermal power meter, and the angle is recorded.  Using a 
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cw Yb-doped fiber laser source at a wavelength of 1.03 µm, the linear absorption of bulk 

Ge28Sb12Se60 was determined to be α of 0.27±0.03 cm-1, or 1.17 dB/cm.  At 1.53 µm, 

corresponding measurements on Ge28Sb12Se60 using a cw Er-doped fiber laser revealed 

α=0.07±0.02 cm-1, or 0.3 dB/cm.  Similar measurements on reference samples As2Se3 and 

Ge33As12Se55 agreed with values in literature [136,137].   

2.6 Conclusion 

 From the z-scan data at the 0.374 MHz repetition rate, we measure 2n  to be 3.4±0.4x10-18 

m2/W and   to be 3.5±0.2 cm/GW in Ge28Sb12Se60 for circularly polarized light.  The results at 

0.374 MHz are independent of intensity, and of the same order of magnitude as those seen for 

other chalcogenides, even at repetition rates of 1 kHz to 10 Hz [93,94,138].  For example, Petit et 

al. measured 2n  of 11.5±3x10-18 m2/W and   of 4.9±0.6 cm/GW for Ge28Sb7Se65 using the z-scan 

technique with a 15 ps, 10 Hz Nd:YAG at 1.064 µm [138].  Since photorefractive effects often 

lead to very strong nonlinear responses and can be intensity-dependent, this comparison and lack 

of intensity-dependence strongly suggests the 0.375 MHz results include only the two-photon 

absorption and Kerr effect.   

 One metric commonly used to evaluate a nonlinear material’s performance is its nonlinear 

figure of merit, 2 / ( ).FOM n    For optical switching applications, a 2FOM    is desired, and 

a large FOM indicates that a material has relatively large nonlinear index compared to its 

nonlinear loss [139].  For Ge28Sb12Se60, we calculate a FOM  of 0.094 at 1.03 µm.  The low 

measured FOM indicates that the glass is not well-suited for switching applications at 1 µm.  

However, the high   could hold promise for optical limiting applications in this spectral region.  

Additionally, this material’s high   at 1 µm could be explored as a flexible, compact alternative 

for two-photon absorption-based autocorrelation detectors for characterizing short pulse durations 
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at wavelengths ~2 μm.  Finally, we note that multiple studies have shown that the FOM  of Ge-

Sb-Se glasses improves drastically at wavelengths farther from the band edge, ranging from ~3 at 

1550 nm [65], to >10 at 2500 nm [95].   
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3. OPTICAL WAVEGUIDE DESIGN AND CHARACTERIZATION  

3.1 Overview 

 Optical chalcogenide waveguides have been studied for operation at wavelengths of 1.0, 

1.55, and 3.5 µm.   In Section 3.2, basic principles of optical waveguide design and characterization 

techniques are introduced.  In Section 3.3, the design, fabrication, and characterization of 

chalcogenide strip waveguides at 1.0 µm are described.  At this wavelength, waveguides are shown 

to have average propagation loss of 11.9±1 dB/cm and substantial two-photon absorption of 

11.5±0.7 cm/GW, comparable to that observed in the bulk glass.  In Section 3.4, the design, 

fabrication, and testing of chalcogenide waveguides at 1.55 µm is summarized.  Here, waveguides 

are designed for reduced dispersion and larger nonlinear parameter, in order to improve nonlinear 

interactions and provide more spectral broadening.  The waveguides are shown to have 

propagation loss ranging from 4.0-6.1 dB/cm and significantly reduced two-photon absorption at 

1.55 µm.  Additionally, the waveguides exhibit average nonlinear parameter of 6/W-m, ~5000 x 

that of standard single mode fiber.  In Section 3.5, the design of chalcogenide-on MgF2 waveguides 

at 3.5 µm is described.   

 This work was performed in collaboration with Professor Wounjhang Park and Dr. Sungmo 

Ahn at the University of Colorado Boulder.  Dr. Sungmo Ahn fabricated the waveguides, and 

Suehyun Cho (University of Colorado Boulder) took scanning electron micrograph (SEM) images.  

Preliminary waveguide fabrication was performed by Lisa Rengnath and Martin Kronberg at the 
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University of Colorado Boulder.  E-beam lithography was done at the Washington Nanofabrication 

Facility, a member of the NSF National Nanotechnology Infrastructure Network.   

 We benefited from technical discussions with Dr. Pete Rakich (Yale) and Dr. Tymon 

Barwicz (IBM) in building a setup for waveguide coupling.  Dr. Milos Popovic (Boston 

University) provided advice on waveguide design, coupling, and fabrication options.  Richard 

Bojko (University of Washington) provided useful discussions regarding e-beam lithography.  A 

waveguide mode solver from Dr. Milos Popovic was used to simulate guided waveguide modes 

[141].  A split-step software routine from Dr. Thomas Murphy (University of Maryland) was used 

to simulate the propagation of optical pulses in nonlinear waveguides [142].  A Picaso phase-

retrieval program from Dr. Jeff Nicholson (OFS Laboratories) was used to retrieve electric field 

phase information from measured spectral and interferometric autocorrelation data [143].   

 This work was supported in part by NSF Grant EECS-1232077, in part by AFOSR under 

Grant FA9550-15-1-0506, in part by the DARPA SCOUT Program through ARO under Contract 

W911NF-15-1-0621, and in part by the Department of Defense through the National Defense 

Science and Engineering Graduate (NDSEG) Fellowship Program.  This chapter is adapted from 

[56,140].   

3.2 Waveguides for nonlinear optics 

 Optical waveguides can enable nonlinear effects at low thresholds due to their ability to 

confine light to a sub-micron areas, increasing the intensity that can be maintained over chip-scale 

lengths.  For comparison, consider a free space Gaussian beam, which may be focused to the Abbe 

diffraction limit, with minimum spot radius of 
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min ,

2
r

NA


               (3.1) 

where NA  is the numerical aperture and   is the wavelength.  At 1550 nm, assuming ~ 1NA , this 

would roughly correspond to a minimum spot radius of ~775 nm.  However, due to free space 

diffraction, the beam spot size will diverge, causing a position-dependent intensity.  The 

corresponding accumulated nonlinear phase shift NL  in a material is given by 

      2

0

2 ( )
L

NL

n I z dz



   ,         (3.2) 

where 2n  is the nonlinear refractive index,   is the wavelength, ( )I z  is the intensity, z  is the 

propagation direction, and L  is the propagation length.  To compare, an optical waveguide can 

maintain small, constant mode area over longer distances by using materials with high index 

contrast to tightly confine light.  For example, a 5-mm-long waveguide with mode radius of 300 

nm at 1550 nm would accumulate ~170 times larger nonlinear phase shift than its 5 mm-long free-

space, diffraction-limited (~775 nm waist) Gaussian-beam counterpart.   

 Additionally, the small, ≤ 1 cm2 footprint of on-chip optical waveguides makes them 

particularly attractive for compact, lightweight devices.  When designing waveguides for nonlinear 

optical applications, several properties must be considered, including the number of guided modes, 

effective mode area and nonlinearity, and net dispersion.  In particular, lower loss, smaller mode 

area, and larger nonlinearity are all desired for lower threshold powers.  Dispersion also becomes 

crucial for phase-sensitive effects such as four-wave mixing.  Finally, to achieve compact devices 

with small mode volumes, radiation loss, which limits how tightly a waveguide can be bent, 

becomes important.  In the following sections, key concepts will be introduced, including 

waveguide loss, dispersion, and nonlinear parameter.  Experimental techniques for measuring the 
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linear loss, nonlinear loss, and nonlinear refractive index of optical waveguides will be 

summarized.   

3.2.1 Waveguide loss 

 Multiple factors can contribute to loss in an optical waveguide, including scattering loss, 

due to the rough surfaces and sidewalls of a fabricated waveguide, material absorption, and 

radiative loss due to tight curves or bends.  Loss due to bulk material absorption, ,wg mat , can be 

calculated with an overlap integral of the electric field of the waveguide mode with the spatially 

varying material absorption ( , ),x y  such that  

          

2

, 2

( , ) | ( , ) |
,

| ( , ) |
wg mat

x y E x y dxdy

E x y dxdy


 




                      (3.3) 

where ( , )E x y  is the electric field of mode at the location ( , )x y  in the waveguide cross section.  

(Note for TE modes, this will be the x-component of the field, and for TM modes, the y-

component.)  Typically, materials are chosen to minimize loss from material absorption.    

 

Figure 3.1. Side-view schematic of planar waveguide.  Slab waveguide consists of a thin film 

with index coren  and thickness 2d , surrounded by lower refractive index cln .  The direction of light 

propagation is indicated with the thick blue arrow.  The waveguide surface can be characterized 

with an autocorrelation function ( ),R u  which has a surface roughness   and correlation length 

.cL    
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Calculations of scattering loss are more involved.  To understand the main factors 

influencing scattering loss, one can examine analytic theory for scattering loss from surface 

roughness in a planar, or slab, waveguide, which was developed by Payne and Lacey [144].  A 

schematic of a slab waveguide, consisting of a high index core film of thickness 2d , surrounded 

by lower index cladding material, is illustrated in Figure 3.1.    

 

The surface roughness of such a waveguide can be characterized by an autocorrelation 

function ( ),R u  with a characteristic RMS surface roughness,   , and correlation length, .cL   One 

can compute the radiation in the far field to obtain the scattering loss, using the method of 

equivalent currents (also called the volume current method) [144,145].  In this method, 

nonuniformities in the waveguide are treated as induced current sources in a uniform waveguide 

[145].  The vector potential produced by these induced current sources is then calculated and used 

to compute the far-field radiation.  Assuming the scattering from the top and bottom surfaces are 

independent, the scattering loss sc  for a slab waveguide is given by  

                                      
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
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where ( )d  is the modal field at the surface of the waveguide, coren  is the core index, cln  is the 

cladding index, 2d  is the slab thickness, 0k  is the free-space wavenumber,   is the propagation 

constant, and   is the scattering angle [144].  Here, ( )R u  is the Fourier transform of the 

autocorrelation function ( ),R u  given by [144] 

     ( ) ( )exp[ ] .R u R u i u du          (3.5) 

Here, u  is the spatial variable and   is the spatial frequency.  From Equation 3.4, one sees that 

the scattering loss depends on the modal field at the waveguide surface, the index contrast, the 
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wavenumber, and the spectral density function for the surface roughness.  To simplify, note that 

many waveguides are well described by an exponential autocorrelation function given by 

     
2( ) exp[ | | / ],cR u u L          (3.6) 

where   is the RMS surface roughness and cL is the correlation length [144].  The expression for 

scattering loss then reduces to  
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g V f L
n d k


         (3.7) 

where ( )g V  is a factor determined by waveguide geometry and ( , )c cf L   is a factor depending on 

correlation length cL  and the strength of guiding  , determined by the waveguide geometry and 

refractive indices of the core and cladding [144].  For a slab waveguide with an exponential 

autocorrelation function, the scattering loss has a relatively simple analytic expression, which 

depends primarily on the surface roughness, waveguide thickness, along with factors depending 

on waveguide geometry, correlation length and guiding strength.   

 While this theory has been developed for a slab waveguide, no simple analytic expression 

exists for strip waveguides.  (The modes of strip waveguides must be solved for numerically.)  

However, others have extended this analysis for loss estimates in 3D strip waveguides, where 

scattering from sidewall roughness dominates [146].  In general, by choosing waveguide designs 

and fabrication processes which decrease the roughness and reduce the field at the rough surfaces, 

one can reduce the scattering loss.   

 Scattering losses can arise from both volume scattering, due to imperfections in the 

material, as well as interface scattering, due to the rough surfaces and sidewalls.  For waveguides, 

scattering loss is commonly dominated by interface scattering given current fabrication techniques.  

The wavelength dependence of scattering loss will depend on the geometry and length scale of the 
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distribution and correlation of scatterers, or how the correlation length compares to the wavelength 

of light.  Tien has shown that for planar waveguides with cL  , interface scattering scales as 

2

sc   [147].  On the other hand, for interface scattering in structures with cL  , Payne and 

Lacey have predicted 
4

sc   using a two-dimensional model [144].  Using a three-dimensional 

vectorial current method, Ciminelli et al., have predicted that 
4

sc   for 3D structures with 

cL   [148].  For comparison, in bulk, Rayleigh scattering produces loss which scales as 4   

[149].  For the three-dimensional strip waveguide geometries explored in this thesis, cL  and 

interface scattering dominates.  As such, the 
4

sc   wavelength dependence predicted by 

Ciminelli et al. is expected to hold [148].  This wavelength scaling is promising, predicting a 

dramatic reduction in scattering loss as the wavelength is increased from near-infrared to mid-

infrared wavelengths.   

 

Figure 3.2. Comparison of fundamental waveguide mode profile for various bend radius.  

The fundamental mode profile, 
2 ,xE  is plotted for a 700 nm (W) by 330 nm (H) waveguide for 

radii of 2, 6, and 1000 µm (left, middle, and right plots, respectively).  Note that as the bend radius 

is reduced from 1000 to 2 µm, the mode shifts outward and the field at the outer sidewall increases, 

reducing the waveguide confinement to the core from 0.76 to 0.72.   

 

 In addition to scattering loss and material loss, radiation loss from bending can also 

contribute to the total propagation loss.  Bending a waveguide distorts the optical field, as 
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illustrated in Figure 3.2, which shows the mode profile of a waveguide as it is bent with a radii of 

2, 6, and 1000 microns.  Note that as the bend radius is reduced, the mode shifts outward and the 

field at the outer sidewall increases, reducing the waveguide confinement to the core from 0.76 to 

0.72.  To preserve the phase front of the mode, light at the outer radius must travel at higher 

tangential phase velocity than light at the inner radius.  Beyond a certain radius, the phase velocity 

will be larger than the velocity of unguided light, resulting in radiation loss [150,151].   

 To calculate the expected radiation loss from bend loss, a mode solver is used to calculate 

the complex angular propagation constant,  , of the desired guided mode for a curved waveguide 

geometry with given circular bend radius R .  Note that the propagation constant is composed of a 

real and imaginary component 

                            .real imj             (3.8) 

The propagation constant is related to the electric field by exp[ ]E j  , such that  

     exp[ ]exp[ ].real imE j             (3.9) 

Since the intensity is proportional to the square of the electric field, the intensity is given by  

                         exp[ 2 ]imI    .      (3.10) 

Comparing the intensity after propagating around a 90 degree circular bend, ( / 2)I   , to the 

intensity at the start of the waveguide, ( 0)I   , one finds the transmission 
90oT  is given by 

                                      
90

( / 2)
exp[ ].

( 0)
o im

I
T

I

 





  


       (3.11) 

Correspondingly, the radiation loss (with units of 1/length) is given by  
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From simulations, im  tends to vary with ,R  such that 1exp( )rad c R   , with the proportionality 

constant 1c  depending on the waveguide geometry and materials [151].   

3.2.2 Chromatic dispersion 

 Chromatic dispersion describes the wavelength-dependence of the waveguide propagation 

constant, causing light at different frequencies to travel at different phase velocities.  For phase-

sensitive effects, such as four-wave mixing, chromatic dispersion becomes important to consider, 

because it will affect the achievable efficiencies.  Additionally, dispersion is important in pulsed 

applications, as it can dramatically affect pulse durations.  One can Taylor expand the propagation 

constant   as a function of angular frequency  , such that 
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     (3.13) 

Here, the zero-order term describes a common phase shift.  The first-order dispersion is described 

by the group velocity gv , which describes an overall time delay, not affecting the pulse shape, and 

related to the first-order term by  

      
1

.
gv









     (3.14) 

The second-order dispersion is described by the group velocity dispersion, or GVD, which is 

defined as 

      

2

2 2
.










     (3.15) 
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and has units of s2/m.  A medium is said to have normal dispersion when 2 0  , causing the group 

velocity to decrease with increasing frequency.  Alternatively, when 2 0  , a medium is said to 

have anomalous dispersion.  The fiber optic community also often specifies a dispersion parameter, 

,D  defined as 

     

2

2 2

2
.

c
D

 

 


 


     (3.16) 

Note that the dispersion parameter has units of s/m2.  While this is directly related to the group 

velocity dispersion, it is important to note that it has opposite sign.  (For example, a material with 

normal dispersion has 2 0  and 0D  .)  Higher-order dispersion terms n  can be defined, such 

that .
n

n n










  

 In a waveguide, there are two main contributions to the total chromatic dispersion of a 

given guided mode:  material dispersion and waveguide geometry dispersion.  The refractive index 

depends on wavelength, which results in material dispersion.  The Lorenz harmonic oscillator 

model of the atom explains the phenomenon.  Here, one can treat the constituent atoms of a 

material as harmonic oscillators.  In the presence of an applied optical field, the positively charged 

nuclei will be displaced from their negatively charged electron clouds, producing a dipole moment.  

The motion of the electron in the presence of the applied oscillatory electric field can be described, 

using a damping term to account for absorption.  The corresponding induced atomic polarization 

can be calculated.  In general, one may find several oscillation frequencies for a given material 

across the spectrum.   Figure 3.3 shows the frequency dependence of the refractive index and 

absorption near a few resonances for an arbitrary medium with loss [152].  Infrared resonances are 
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often due to vibrational resonances, while visible and ultraviolet resonances are due to electronic 

transitions within the molecule.  Near resonance, the refractive index exhibits strong dispersion.   

 

 

Figure 3.3. Frequency dependence of refractive index (top) and absorption (bottom) for a 

medium with loss and 3 resonances.  Note that near resonance, the refractive index exhibits 

strong dispersion.  Infrared resonances are often due to vibrational resonances, while visible and 

ultraviolet resonances are due to electronic transitions within the molecule.  Figure reprinted with 

permission from [152], Oxford University Press. 

 

 The wavelength-dependent refractive index and group velocity dispersion of bulk 

Ge28Sb12Se60 are plotted in Figures 3.4 and 3.5 [153].  The linear refractive index ranges from 2.60 

to 2.66 over the 1.55-12 µm range.  The bulk Ge28Sb12Se60 material dispersion is normal from 1.0-

6.3 µm, and anomalous from 6.3-12 µm (See Figure 3.5).   
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Figure 3.4. Wavelength dependence of refractive index of bulk Ge28Sb12Se60.  Over 1 to 12 

microns, the refractive index of Ge28Sb12Se60 decreases with increasing wavelength.  Note data 

used is from [153].   

 

 

Figure 3.5. Wavelength dependence of material group velocity dispersion ( 2 ) for bulk 

Ge28Sb12Se60.  Material dispersion is normal from 1.0-6.3 µm, and anomalous from 6.3-12 µm.  

Note data used is based on refractive index measurements from [153].   
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 In addition to material dispersion, the geometry of a waveguide can also significantly 

influence a waveguide mode’s total chromatic dispersion.  Even if material dispersion is set to 

zero, the propagation constant of a waveguide will vary with wavelength, leading to waveguide 

geometry dispersion. 

 To calculate the total chromatic dispersion, one can include material dispersion in the mode 

solver, updating refractive indices whenever the wavelength is changed, and then calculate the 

propagation constant as a function of frequency.  Using the finite difference method, by running 

the calculation at the wavelength of interest and nearby wavelengths, one can calculate the total 

second-order dispersion, as well as higher-order dispersion.  For example code showing the 

dispersion calculation, see Appendix C.2 and C.5.   

3.2.3 Waveguide nonlinearity 

 To describe the nonlinearity of a waveguide, it is common to define a nonlinear parameter  

                                          
22

,
eff

n

A





                  (3.17) 

where 2n  is the nonlinear refractive index of the waveguide,   is the wavelength, and effA  is the 

effective mode area [62].  The nonlinear parameter is a useful quantity for comparing nonlinear 

waveguides, as it takes into account not only the nonlinearity, but also the effective mode area, 

which increases local intensity for a given input power.   

 Although scalar theory is often used to approximate the effective mode area [62], for 

waveguides with subwavelength dimensions, the z-component of guided modes is no longer 

negligible (more than a few percent of the total field), and a vectorial model should be used to 

properly calculate the effective area  
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where E and H  are the electric and H fields of the guided mode, and ẑ  is a unit vector lying along 

the length of the waveguide [62,154].  Following the same model, the effective nonlinearity of the 

waveguide, 
2,wgn is given by  

                                                    

2 4 2 2

0 20
2, 2

0

( , ) ( , )[2 | | | | ]
,

ˆ3 | ( ) |
wg

n x y n x y dA
n

dA








 





E E

E H* z
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where 0n  is the linear refractive index, 2n  is the nonlinear refractive index, and 0  and 0  are the 

permittivity and permeability of free space, respectively [154].  The vectorial model for effective 

area and nonlinearity has been experimentally verified in subwavelength waveguides [229].  

Additionally, the model has been shown to approach the scalar model for larger waveguides with 

≥ wavelength-sized dimensions [154,229]. 

3.2.4 Waveguide design geometries 

 Cross sections of a few commonly used waveguide geometries offering are illustrated in 

Figure 3.6.  These include slab, strip, rib, and strip-loaded waveguides.  Strip waveguides offer the 

strongest confinement, enabling tight bends with little radiation loss.  Additionally, strip 

waveguides provide good control of dispersion through cross sectional dimensions and can be 

made to have sub-square-micron mode areas.  The main challenge of strip waveguides is stronger 

field overlap with the rough sidewalls, leading to losses typically on the order of a few dB/cm or 

higher [88], even utilizing state-of-the-art fabrication technologies.  Rib and strip-loaded 

waveguides provide weaker guiding, leading to substantially higher radiation loss than strip 

waveguides, for a given radius.  Additionally, controlling dispersion through waveguide geometry 
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can be more of a challenge.  Rib and strip-loaded waveguides can also be more difficult to fabricate 

with liftoff, and, depending on the dimensions chosen, may require etching.  However, these two 

structures offer the advantage of significantly lower propagation loss, ~0.05-0.8 dB/cm typically 

in chalcogenide waveguides [88,106,163], due to less interaction of the optical mode with the 

rough sidewalls.  Finally, slab waveguides also feature low loss, but they can suffer from larger 

mode areas compared to strip waveguides, and they are not suitable for making ring resonators, 

given their geometry.  Considering the trade-offs of the various waveguide geometries, along with 

available fabrication methods, strip waveguides were chosen for this work.   

 

Figure 3.6. Typical waveguide geometries.  Cross sections of slab, strip, rib, and strip-loaded 

waveguides are shown schematically.  The general location of the guided mode is shown with a 

dotted black line.  Note that for all geometries, the core refractive index, coren , is larger than the 

refractive indices of the substrate ( subn ), cladding ( cln ), or upper strip ( stripn ), such that

,core strip cl subn n n n   .    

 

3.2.5 Linear loss characterization techniques 

A variety of experimental methods exist to measure the linear loss in a waveguide, 

including cutback [155], Fabry-Perot [156], and scattered light methods [157].  In the cutback 

method, transmission is measured for a series of waveguides of different lengths.  A single long 

waveguide can be progressively cleaved shorter, measuring the transmission with each new length.  

Alternatively, multiple waveguides of different lengths can be fabricated on the same chip to 

reduce unwanted variation from multiple cleaving attempts.  Although this method is 
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straightforward, it requires repeatable coupling efficiency to accurately extract the propagation 

loss.  An alternate loss characterization method is the Fabry-Perot technique, which involves 

measuring the Fabry-Perot transmission fringes that occur from highly parallel, cleaved facets of 

a waveguide.  This technique is best suited for short, single-mode waveguides based on crystalline 

semiconductors, which provide smooth, easily cleaved clean facets [156].  From our experience, 

achieving perfectly parallel facets was a challenge with non-crystalline chalcogenide-based 

waveguides, making this method difficult for our system.   

 

Figure 3.7. Illustration of scattered light waveguide loss method.  Light is coupled into a 

waveguide, and scattered light is imaged from above the waveguide using a camera, as shown on 

the left.  Since the intensity of the scattered light is proportional to the light remaining in the 

waveguide, one can plot Isc vs. distance x and fit to a decaying exponential to determine 

propagation loss αtot.   

 

Instead, we focus on the scattered light method [157], which is illustrated in Figure 3.7.  In 

this method, light is coupled into a waveguide, and the scattered light from the waveguide is 

imaged using a camera.  Since the intensity of the scattered light is proportional to the light 

remaining in the waveguide, one can measure this scattered light intensity as a function of position 

at a fixed input power, and fit to a decaying exponential to determine the total loss.  The advantages 
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of this method are its simplicity, single-shot nature, and independence from coupling loss.  Since 

waveguide lengths ≥ 1/  are desired for an accurate measurement, the main disadvantage is that 

it requires relatively long waveguides to sensitively measure low loss.  As such, the method is best 

suited for loss measurements on samples with losses ≥ a few dB/cm.   

3.2.6 Nonlinear loss characterization techniques 

To determine the nonlinear loss in a waveguide, one can measure the transmission as a 

function of incident intensity.  Assuming both linear absorption   and two-photon absorption wg   

are present in a waveguide, the change in intensity I  with distance z  is given by  

    2.wg

dI
I I

dz
            (3.20) 

Rearranging to separate variables, this can be written as 
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.
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I I 
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           (3.21) 

Integrate both sides.  Letting fI  be the output intensity, I  be the input intensity, and ,f i wgz z L    

the length of the waveguide, one finds 
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Multiplying both sides by   and then combining ln terms, this can be written as 
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This can be further written as 
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The transmission is defined as / .fT I I   Using this to eliminate fI , one finds 
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Multiplying through, one finds 

    ( ) ( )exp[ ].wg wg wgT I IT L               (3.26) 

Combining terms depending on T , one finds 

    exp[ ] exp[ ].wg wg wg wgT I I L L                  (3.27) 

Rearranging, this can be re-written as  

    
(1 )1

.

wg

wg

L

wg

L

I e

T e





 







 
           (3.28) 

This can be simplified as 
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After further simplifying, the loss in a waveguide due to both linear absorption and two-photon 

absorption is described by the following equation: 
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where 1/T is the reciprocal transmission, I is the incident peak intensity, α is the linear absorption 

of the waveguide, βwg is the two-photon absorption coefficient of the waveguide, and Lwg is the 

length of the waveguide [158].  To avoid future mistakes, note that a later paper commonly cited 

[159] has an error in the equation relating the reciprocal transmission to two-photon absorption.  

Both Equation 3.30 and reference [158] provide the correct equation.    

 At high intensities, saturation of the two-photon absorption has been observed in 

chalcogenides and other semiconductors [160,161].  Two-photon absorption excites many 

electrons from lower-energy states to a finite number of higher-energy states, changing the electron 

population distribution.  Once the lower level states are depleted and the upper level states are 

filled, the nonlinear absorption is reduced, resulting in saturation [161].  Two-photon absorption 

saturation has been modeled with a saturation intensity Isat and an effective two-photon absorption 

coefficient [162],  
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         (3.31)  

It can be useful to define a waveguide confinement, 
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where ( , )E x y is the x-component of the electric field of the TE mode at the location ( , )x y in the 

waveguide cross section.  Analogous to the concept of confinement and the calculation of material 

absorption in a waveguide in Equation 3.3 and 3.32, one can calculate the overlap of the guided 

mode with the core and cladding layers to estimate the expected two-photon absorption, wg , of 

a waveguide structure. 
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where ( , )E x y  is the x-component of the electric field of the TE mode at the location ( , )x y  in the 

waveguide cross section, and ( , )x y  is the material two-photon absorption coefficient at the 

location ( , )x y .   

3.2.7 Nonlinear refractive index characterization techniques 

 A simple technique to characterize the nonlinear refractive index of a waveguide is to 

measure the spectral broadening [100,163-166].  A short pulse is coupled into a waveguide, and 

the corresponding spectra before and after the waveguide are recorded.  The nonlinear refractive 

index will cause self-phase modulation in the waveguide, which can broaden the spectrum as the 

pulse propagates along the waveguide.  Waveguide dispersion can further complicate pulse 

propagation.   

 The nonlinear Schrödinger equation describes pulse propagation in a dispersive, nonlinear 

optical medium.  Assuming the field varies slowly in the propagation direction z , and neglecting 

Raman and self-steepening effects, the nonlinear Schrödinger equation can be written as 
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      (3.34) 

where ( , )A z t  is the slowly-varying field envelope, n  is the thn  order dispersion, t  is time, and 

  is the nonlinear parameter [62,142,167].  Note that the Fourier transform of the field envelope, 

( , )A z  , is related to the Fourier transform of the electric field, ( , , , )E x y z   by  

    0( , , , ) ( , ) ( , ) exp( ),E x y z F x y A z i z         (3.35) 
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where 0  is the wave number,   is the optical frequency of the wave, and ( , )F x y  is the spatial 

mode profile.  The nonlinear Schrödinger equation can also be modified to include the effects of 

multi-photon absorption [167,168]. 

 To determine 2,wgn , experimental spectral measurements can be compared to simulated 

spectra, generated with code, using the split-step Fourier method to solve the scalar nonlinear 

Schrödinger equation and calculate pulse propagation in a nonlinear waveguide.  In the split-step 

method, the field is propagated over a series of small steps, approximating that dispersion and 

nonlinearity act roughly independently over short steps [62].  Taking advantage of the fast Fourier 

transform (FFT) algorithm, the split-step method is a relatively fast method to numerically solve 

the scalar nonlinear Schrödinger equation [62].  Although analysis is somewhat complex for 

dispersive waveguides, the spectral broadening method requires little specialized equipment, aside 

from a pulsed source.   

3.3 Waveguides at 1.0 µm 

3.3.1 Waveguide design and fabrication at 1.0 µm 

 For thin film devices, chalcogenides are prepared in bulk glass form and then deposited 

onto a substrate using thermal evaporation [169], pulsed laser deposition [170], or sputtering [171].  

Although pulsed laser deposition can be used to quickly fabricate few-µm-thick films, films can 

suffer from poor uniformity and quality [172].  RF-sputtering produces films with stoichiometry 

in good agreement with bulk [173], but this deposition method can be slow and more difficult to 

combine with a lift-off process [226].  Thermal evaporation is a particularly attractive, simple 

technique that yields high quality films.  Although it suffers from shadowing effects, thermal 
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evaporation provides good surface roughness, is relatively inexpensive, and allows for uniform 

deposition over a few cm2.   

 
 

Figure 3.8. Fabrication process flow for strip waveguides.  Photolithography was used to form 

a resist pattern on a substrate, consisting of a Si wafer with a 3 micron-thick oxide layer.  A thin 

layer of Ge-Sb-Se glass was thermally evaporated, and then lift-off was used to remove the resist 

and pattern strip Ge-Sb-Se waveguides.   
 

 To fabricate waveguides, Ge28Sb12Se60 glass was thermally evaporated onto a Si wafer with 

a 3 µm oxide layer, and lift-off was used to pattern strip Ge-Sb-Se waveguides of 2.2 µm width 

and 45 nm height.  The fabrication process flow is shown in Fig. 3.8.   

 Energy Dispersive X-ray Spectroscopy (EDX or EDS) measurements on thin Ge-Sb-Se 

films confirmed that the stoichiometry of the fabricated thin films is within 4 atomic % of the bulk 

material, as shown in Fig. 3.9(a).  Figure 3.9(b) shows a scanning electron micrograph (SEM) of 

the fabricated waveguides.  The surface roughness was measured to be 0.8 nm using atomic force 

microscopy (AFM).  The average sidewall roughness was measured to be 11.8 nm using data from 

high resolution SEMs.  These measured roughness values are comparable to values obtained by 

other groups using a similar fabrication process [88].   

 Waveguide modes were simulated using a 2D finite-difference vectorial mode solver 

developed by Dr. Milos Popovic [141].  The mode solver solves for the modes of a given two-

dimensional dielectric distribution, using the finite-difference approximation of the transverse-E 

wave equation [141].  The use of photolithography set a limit on the waveguide width, requiring  
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2w   µm for successful fabrication.  Given this constraint, initial waveguide dimensions were 

chosen to ensure single-mode operation at 1.03 µm.  The simulated TE mode profile for the 2.2 

µm wide (W) by 45 nm tall (H) waveguide at 1.03 µm is shown in Figure 3.9(c).  Although the 

guided mode is not well confined to the chalcogenide core material, having 13% confinement, the 

highly asymmetric dimensions do provide an advantage.  Given the wide, flat waveguide design, 

the field at the sidewalls of the waveguide is weak, desirable for reduced sidewall scattering.   

 

 

Figure 3.9. Atomic composition, SEM image, and mode profile of thin-film Ge-Sb-Se devices.  
(a) Atomic composition of thin film and bulk Ge-Sb-Se samples.  (b) Scanning electron 

micrograph (SEM) of a chalcogenide strip waveguide, consisting of silicon substrate, 3-μm-thick 

SiO2, a 2.2-μm-wide and 45-nm-thick Ge-Sb-Se layer, and air upper cladding. (c) Simulated mode 

profile for the single-mode Ge-Sb-Se strip waveguide.  The black dotted rectangular outline 

indicates the x and y position and size of the Ge-Sb-Se core relative to the mode.  Figure reprinted 

with permission from [56], Optical Society of America.   
 

3.3.2 Linear waveguide characterization at 1.0 µm 

 Waveguides were characterized at 1.0 µm by measurements of linear and nonlinear loss.  

A schematic of the waveguide characterization setup is shown in Figure 3.10.  Light was coupled 



62 
 

in and out of the Ge-Sb-Se waveguides using high numerical aperture fibers (Nufern UHNA3, 

NA=0.35) mounted on piezo-actuated three-axis stages (Thorlabs MAX312D and MDT693A) for 

precise alignment.  Fibers were chosen for improved coupling efficiency for the given waveguide 

structures, with efficiencies.   

 

Figure 3.10. Waveguide characterization setup.  Light is coupled from an Er- or Yb-doped fiber 

laser into a fiber tap coupler and high numerical aperture (Nufern UHNA3, NA=0.35) fiber.  A 

half waveplate and polarizing beam splitter are used to control the input power, and another half 

and quarter waveplate are used to control the launched polarization.  The ends of the fiber are 

mounted on precision piezo-actuated 3-axis stages for alignment to the optical waveguides.  

Imaging optics, consisting of a camera, zoom lens, and 32X objective, are mounted above the 

waveguide to aid in alignment.  For work at 1030nm, a CCD is used, and at 1550 nm, an InGaAs 

array is used.  Light is coupled out of the waveguides with another high NA fiber, and sent to a 

calibrated photodiode.  For more sensitive detection, the beam is chopped, and a lock-in amplifier 

is used.  For sub-micron waveguides, the high NA fiber is replaced with lensed fiber (Lase Optics, 

1 µm spot diameter, 12-14 µm working distance) for improved coupling efficiency.   
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Horizontally polarized light was used to match the polarization of the guided TE mode.  End-fire 

coupling was used, as it can provide reasonable efficiency ~10 - 25% per facet with less alignment 

complexity than techniques such as prism coupling.  Additionally, unlike grating coupling, end-

fire coupling requires no special design or fabrication to function over broad bandwidths, which is 

important when performing measurements of nonlinear properties using short-pulsed sources.  

Using the end-fire coupling method, coupling efficiencies of ~10-25% per facet were routinely 

achieved.  This could be further improved with inverse tapers at the output facets, to expand the 

mode size and provide better overlap with the coupling fiber mode.  For example, Almeida et al. 

demonstrated inverse tapers in silicon waveguides, showing coupling efficiencies up to ~89% (-

0.5 dB loss) [230].   

 

Figure 3.11. Ge-Sb-Se waveguide propagation loss at 1.03 µm.  Plot of scattered light intensity 

vs. distance for a single-mode Ge-Sb-Se waveguide at a wavelength of 1.03 µm.  A fit to a decaying 

exponential yields a total loss of 2.8±0.3 cm-1, or 12.2 dB/cm, for the waveguide illustrated.  An 

average total loss of 11.9±1 dB/cm is obtained for measurements on six adjacent waveguides.  

Reprinted with permission from [56], Optical Society of America.   
 

 The linear loss of the Ge-Sb-Se waveguides was measured by coupling low power, cw light 

into a given waveguide, and recording the intensity of the light scattered above the waveguide 

surface as a function of distance along the waveguide using a CCD image sensor.  The intensity 

of the scattered light is proportional to the intensity of the light remaining in the waveguide, and 

thus a fit of the scattered light intensity vs. distance curve to a decaying exponential will yield the 
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total loss.  A linear loss measurement on one waveguide is shown in Fig. 3.11.  Averaging over 

measurements on six adjacent waveguides, the linear loss was determined to be 11.9±1 dB/cm.  

Scatter in the data comes primarily from imperfections (scatterers) in the sample itself, not noise 

on the camera.  To improve the sensitivity and enable measurement of lower losses, longer samples 

with length 1/  would be desired.  Note that the loss measurement includes material 

absorption, as well as scattering loss from the surface and sides of the waveguide.   

 Since the fabricated thin films appear to have similar composition to the bulk glass, the 

material absorption of the waveguide core material is expected to be similar to that of the bulk 

glass, 0.27cm-1 or 1.17 dB/cm.  The under cladding SiO2 material has negligible absorption at 1.03 

µm.  By simulating the electric field of the guided TE mode [141] and calculating the overlap 

integral of the field with the linear absorption using Equation 3.3, the loss in the waveguide from 

material absorption is estimated to be 0.15 dB/cm, leaving ~11.75 dB/cm of loss due to scattering.  

Note that the contribution of material loss to the total waveguide loss is low due to the weak ~13% 

confinement of the mode to the core material.   

 Due to the asymmetric waveguide geometry, the electric field of the guided mode is very 

weak near the sidewalls of the waveguide, but it is ~3 times stronger near the surface, as illustrated 

in Fig. 3.9(c).  Additionally, the 2200 nm waveguide width provides ~49 times longer interaction 

surface than the 45-nm sidewall length.  Thus, scattering loss due to surface roughness, rather than 

sidewall roughness, is expected to dominate.  Approximating the waveguide as a slab waveguide 

and following the theory of Payne and Lacey [144], the scattering loss due to 0.8 nm surface 

roughness is expected to be on the order of 13 dB/cm, consistent with our measurements.  (This 

calculation uses the half-waveguide thickness of 22.5 nm, core index of 2.718, average 

surrounding cladding index of 1.225, effective mode index of 1.4843, wavelength of 1030 nm, 0.8 
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nm RMS surface roughness, and assumes a correlation length of 50 nm.)  For comparison to other 

work, etched high-contrast, chalcogenide-based embedded strip waveguides have been shown to 

have losses ~10-15 dB/cm [174].  Additionally, measurements made by Hu et al. at 1550 nm on 

single-mode thermally-evaporated chalcogenide waveguides with significantly smaller core aspect 

ratios suggest that lower losses on the order of 2-6 dB/cm for strip waveguides and < 0.5 dB/cm 

for rib waveguides are possible [88].  While our measured loss is reasonable for the given design, 

we expect the scattering loss of Ge-Sb-Se waveguides can be similarly reduced by optimizing the 

design of the strip waveguide cross section dimensions to decrease the field at the surface and 

thereby decrease scattering loss, or by using a rib waveguide design.   

3.3.3 Nonlinear waveguide characterization at 1.0 µm 

 The nonlinear loss of Ge-Sb-Se waveguides was measured by coupling linearly polarized, 

7 ps-long pulses from a Yb-doped fiber laser at a 37.4 MHz repetition rate into 6 mm-long 

waveguides and measuring the output intensity as a function of input intensity.  To determine the 

coupling loss at the input and output waveguide facets, measurements were made launching light 

forwards through the waveguide, and then backwards, switching input and output fiber patch cord 

connectors while leaving the high numerical aperture coupling fibers fixed in position.  Figure 

3.12 shows the reciprocal transmission as a function of incident peak intensity.  Since saturation 

became noticeable at intensities around 1 GW/cm2, data was fit to Eq. 3.30, replacing βwg by βeff 

with Eq. 3.31 and using βwg, α, and Isat as fitting parameters.  Earlier independent measurements 

of α for the waveguides agreed with values from fits.  An average of fits to three data sets yields 

βwg=11.5±0.7 cm/GW and Isat=4.3±0.7 GW/cm2 for the waveguides.  The main sources of 

uncertainty are the measured output power and coupling efficiency.   
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Figure 3.12. Nonlinear loss in Ge-Sb-Se waveguide at 1.03 µm.  Plot of reciprocal transmission 

as a function of incident peak intensity for a single-mode Ge-Sb-Se waveguide.  The average 

effective two-photon absorption coefficient of the waveguide is measured to be 11.5±0.7 cm/GW.  

Reprinted with permission from [56], Optical Society of America. 
 

 Aside from saturation, one other suggested cause of the roll-off observed in the reciprocal 

transmission in Figure 3.12 is a change in pulse shape induced by strong nonlinear absorption, 

which has been discussed by J. J. Wathen et al. [175].  In particular, as a pulse propagates through 

a material with significant two-photon absorption, the peak will be preferentially absorbed relative 

to the weaker sides of the pulse, effectively broadening the pulse and reducing the peak intensity 

as the pulse travels.  P. Apiratikul has derived this effect for pulses having intensity 

2

0 0( ) sech ( / )I t I t t   [176], but for Gaussian pulses, this effect does not have an analytic solution.  

To check for this effect in our data, the time-average output power per area was numerically 

calculated with a temporal integral of the time-dependent intensity.  Additionally, split-step code 

was used to iteratively account for changes in the output pulse width for a given two-photon 

absorption and intensity.  We found that this model alone does not fit the shape of our data well.   

 The expected nonlinearity of the waveguide structure was calculated using Equation 3.33, 

using the value for   measured in bulk glass under similar 37.4 MHz repetition rate illumination 

conditions.  The effect of linear (vs. circular) polarization was also taken into account with 

Equation 2.13.  wg  is expected to be 5.8 cm/GW, within a factor of 2 of our measured value.  It 
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is important to note that small changes in composition of Ge-Sb-Se glasses have been shown to 

greatly affect the two-photon absorption coefficient near 1 µm, with β increasing with increasing 

Sb content [94].  Given the small but measurable differences in stoichiometry, shown in Fig. 3.9(a), 

the difference in β could be explained by the slight increase in Sb-content and decrease in Ge-

content in our fabricated waveguides compared to the bulk.   

 
Figure 3.13. Spectral broadening in Ge-Sb-Se waveguide at 1.03 µm.  Plot of percentage 

increase in measured spectral full-width-at-half-max (FWHM) as a function of incident coupled 

peak intensity, measured after propagation through 6 mm-long Ge-Sb-Se waveguide using 6.59 ps 

pulses at 37.4 MHz repetition rate at 1.03 µm. 
 

 The input and output spectra from our waveguides were also measured, revealing a very 

weak, power-dependent broadening of the spectral full-width at half-maximum (FWHM).  A plot 

of the percent change in the full width half max of the spectra, as a function of incident intensity, 

is shown in Figure 3.13.  Estimates of spectral broadening from split-step numerical solutions to 

the nonlinear Schrödinger equation, using the expected effective 2n  for the waveguide and 

measured wg  with saturation, suggest the changes in FWHM are predominately due to    

selectively decreasing the high-intensity peak of the pulses.  This, coupled with the small 

magnitude of spectral changes, made accurate determination of 2n  for the waveguide difficult at 

this wavelength.   
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3.4 Waveguides at 1.55 µm 

3.4.1 Motivation 

 Our first designs and measurements were performed at 1.03 µm to leverage existing 

equipment and provide characterization of Ge-Sb-Se waveguides at a relatively unexplored 

wavelength.  However, Ge-Sb-Se glass is better suited for operation at telecom and mid-infrared 

wavelengths, where two-photon absorption becomes negligible [93].  Although bulk Ge-Sb-Se 

shows excellent nonlinearity at 1550 nm [93], to the best of our knowledge, no work had been 

reported characterizing or demonstrating the nonlinearity of Ge-Sb-Se waveguides in this regime.  

Studies on Ge-Sb-Se waveguides had characterized only linear optical properties and utilized 

relatively large mode areas   4 µm2 [177,178].  In our work, sub-micron Ge-Sb-Se waveguides 

are designed, and both the nonlinear and linear optical properties are characterized at 1.53-1.55 

µm.  The waveguides exhibit large nonlinearity and weak nonlinear absorption, showing potential 

for applications such as ultrafast optical switching at telecom wavelengths.  

3.4.2 Waveguide design at 1.55 µm 

 

Figure 3.14. Mode profiles of Ge-Sb-Se waveguides at 1550 nm.  Simulated TE and TM mode 

profiles, |Ex|
2 and |Ey|

2 respectively, for the a) 2000 nm by 90 nm and b) 700 nm by 340 nm Ge-

Sb-Se strip waveguides [141].  The black solid outline indicates the x and y position and size of 

the Ge-Sb-Se core and lower SiO2 substrate relative to the mode.   
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 Strip, air-clad Ge28Sb12Se60 waveguides on a SiO2 substrate were designed.  Two different 

cross-sections were chosen: (a) 2 μm width (W) x 90 nm height (H), and (b) 700 nm (W) x 340 

nm (H).  The 2 μm x 90 nm design supported a single TE mode and could be patterned with 

photolithography, a relatively inexpensive technique offering high throughput.  This design 

supported one TE mode, as illustrated in Figure 3.14(a).  The second design, featuring sub-micron 

dimensions, was chosen to provide anomalous dispersion for the TE mode through the waveguide 

geometrical contribution to dispersion.  The improved control of dispersion enabled more spectral 

broadening for measurement of the nonlinearity in the waveguide, 2,wgn , at reasonable peak power 

levels ~ a few hundred W.  Additionally, the reduced effective mode area effA  [86] in the second 

design yielded a large nonlinear parameter, increasing local intensity for a given input power.  As 

shown in Fig. 3.14(b-c) [141], at 1.55 µm, the 700 nm x 340 nm design supported one TE and one 

TM mode, which had effA  of 0.2148 µm2 and 0.3156 µm2, respectively.  Furthermore, these 

dimensions allowed for tight bend radii of ~3 µm with negligible calculated radiation loss and 

anomalous dispersion of -0.556 ps2/m (TE mode).   

 Dispersion is calculated using a mode solver to calculate the effective index at nearby 

wavelengths, including the effect of material dispersion on the substrate, core, and cladding 

indices, and using finite-difference formula to calculate the desired derivatives.  Code for using a 

mode solver to calculate various waveguide mode properties is included in Appendix C.  While 

the dispersion depends on exact waveguide dimensions [See Fig. 3.15(a)], using fabrication 

tolerances of ± 10 nm for waveguide heights and ± 40 nm for waveguide widths, the targeted 

dispersion is expected to be within ± 0.18 ps2/m.   
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Figure 3.15. Dispersion and SEM of Ge-Sb-Se waveguide at 1550 nm.  (a) Simulated net 

dispersion (in ps2/m) at 1550 nm for the TE mode of strip, air-clad Ge28Sb12Se60 waveguides on a 

SiO2 substrate for various core dimensions. (b) Scanning electron micrograph of a strip waveguide 

cross section, consisting of a Si substrate (not pictured), a 3-μm-thick SiO2 layer, a 700 nm x 340 

nm Ge-Sb-Se layer, and an air upper cladding.  Figure reproduced with permission from [140], 

copyright IEEE 2016. 
 

3.4.3 Waveguide fabrication at 1.55 µm 

 
 

Figure 3.16 Schematic illustrating sub-micron waveguide fabrication flow.  A bilayer resist 

consisting of PMMA and MMA/PMMA is spun onto a substrate.  Following e-beam lithography 

and development, Ge-Sb-Se is thermally evaporated, and lift-off is used to remove the resist and 

produce strip waveguides 700 nm (W) by 340 nm (H).   
 

 To fabricate waveguides, a resist pattern is first formed on a substrate, consisting of a 3 

µm-thick oxide layer on top of a Si wafer.  Ge28Sb12Se60 is then thermally evaporated onto the 

patterned wafer, and lift-off is used to produce strip Ge-Sb-Se waveguides.  Conventional 

photolithography was used to pattern the wider 2 µm x 90 nm waveguides (See Figure 3.8).  Sub-

micron waveguides were patterned with e-beam lithography (See Figure 3.16), which offered 
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improved resolutions of ~10 nm and reduced sidewall roughness, compared with 

photolithography.  To further improve the lift-off process for thicker films, a bilayer resist 

composed of PMMA and PMMA-MMA copolymer was used [179,180].  Due to the difference in 

molecular weight, more of the underlying PMMA-MMA layer is removed than the PMMA 

overlayer, creating a slight overhang desired for subsequent lift-off.  The fabrication process flow 

with e-beam lithography is shown in Fig. 3.16.  E-beam lithography was performed by Richard 

Bojko at the Washington Nanofabrication Facility, using the JEOL JBX-6300FS Electron Beam 

Lithography System, with e-beam current of 8 nA and writing grid size of 8 nm.   

 

3.4.4 Linear waveguide characterization at 1.55 µm 

To measure the bandedge of thin films, transmission measurements were performed by Dr. 

Sungmo Ahn on a 4.35µm-thick, thermally evaporated Ge-Sb-Se thin film using a 

spectrophotometer.  Data and corresponding fits for bulk Ge-Sb-Se and the thin film are shown in 

Figure 3.17.  For materials lacking a sharp absorption edge, the point at which the absorption 

changes from a quadratic dependence on energy to an exponential dependence (Urbach tail region 

[181]) can be defined as the bandedge [65].  In the Urbach region, the absorption   can be fit to  

                                            
0
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                 (3.36) 

where   is the frequency, gE  is the energy gap, h  is the energy of the incident photons, and uE  

is a measure of the slope of the absorption edge [182].  Here, one can define the optical bandgap 

as the point at which the   [65].   

 It can also be useful to fit to the strong absorption, or Tauc regime, where the absorption 

depends quadratically on energy, such that 
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where gE  is the energy gap and h  is the energy of the incident photons.  To determine the band 

edge in the strong absorption regime, one can fit to Equation 3.37, and extrapolate where the 

( ) 0h    cm-1.   

 
Figure 3.17 Band edge measurements of bulk and thin-film Ge-Sb-Se.  a) Bulk band edge of 

Ge28Sb12Se60 fit to be 1.79±0.01eV, fitting to Urbach tail.  b) Tauc band edge of Ge-Sb-Se thin 

film determined to be 1.59±0.01eV from fit to strong absorption (Tauc) regime.   

 

As noted, two regimes are commonly used to extract a value for the bandedge: the Urbach 

regime, and the strong absorption, or Tauc, regime.  For data on the bulk material, the strong 

absorption region was severely limited by detector sensitivity and could not be accurately fit.  As 

a result, the bulk material transmission data was fitted to the Urbach region, shown in Figure 

3.17(a).  The bulk Urbach bandedge of 1.79±0.01 eV is in good agreement the 1.8 eV Urbach 

bandedge from literature [65].  For the thin Ge-Sb-Se film, the Urbach region was obscured by 

strong interference fringes, so the thin film data could only be accurately fit to the high absorption 
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region, yielding a Tauc bandedge of 1.59±0.01 eV.  The measured value on the thin film is close 

to the 1.62 eV Tauc bandedge of bulk Ge28Sb12Se60 reported in literature [108].  Energy Dispersive 

X-ray Spectroscopy measurements on thin Ge-Sb-Se films confirmed that the stoichiometry of the 

fabricated thin films is within 4 atomic % of the bulk material [56]. 

A scanning electron micrograph (SEM) of a fabricated waveguide is shown in Fig. 3.15(b).  

Using SEM images of the waveguide edges, the RMS sidewall roughness was ~12 nm and 4 nm 

for the waveguides fabricated with photo- and e-beam lithography, respectively [140].  The top 

RMS surface roughness was measured to be 0.8 nm using atomic force microscopy (AFM).   

 To characterize propagation loss, light at a wavelength of 1.53 μm was coupled into and 

out of the Ge-Sb-Se waveguides using high numerical aperture (Nufern UHNA3, NA=0.35) fibers 

or tapered fibers (Lase Optics, 1 µm spot diameter, 12-14 µm working distance) mounted on piezo-

actuated three-axis stages for precise alignment, as illustrated in Fig. 3.10.  Fibers were chosen to 

provide the best mode overlap and coupling efficiency for the given waveguide designs.  Linearly 

polarized light was used to match the polarization of the desired guided mode. Using low, 1-2 mW 

coupled cw power, the intensity of the light scattered above the waveguide surface was measured 

as a function of distance along the waveguide using a cooled InGaAs detector array.  The resulting 

data was fit to a decaying exponential to determine the total loss.  To account for the background 

noise of the InGaAs camera, measurements without the laser were subtracted from those with the 

laser.  Note that this background is roughly constant, around 6% of the maximum signal level 

before subtraction, and that the scatter in the data is predominately from imperfections (scatterers) 

in the waveguide sample itself.  Data from the first ~3 mm of the waveguide near the input facet 

was excluded from fitting, due to non-negligible background from uncoupled light from the input 

fiber.  The InGaAs camera was confirmed to respond linearly for the experimental settings.  



74 
 

Background light from slab-guided light was verified to be negligible, by slightly misaligning the 

input fiber and confirming that no visible signal on the camera was produced.  

 Loss measurements were made on 3-5 adjacent waveguides for each mode, and then 

averaged to obtain the loss, as summarized in Table 3.1 [140].  Given the low material absorption 

of Ge28Sb12Se60 and SiO2, propagation loss is dominated by scattering loss.  The measured linear 

loss in our Ge-Sb-Se waveguides is comparable to loss measured in other chalcogenide 

(Ge23Sb7S70) strip waveguides of similar dimensions [88].  Although strip waveguides have higher 

loss than rib designs (typically by ~ one order of magnitude), the strip geometry enables broader 

dispersion engineering and significantly reduced bend radii for resonator-enhanced nonlinear 

photonics. 

Table 3.1 Average Loss for Ge-Sb-Se Waveguides at 1.53 µm [140] 

Fabrication 

method 

Fabrication 

parameters 

Waveguide 

dimensions 

Average TM 

loss (dB/cm) 

Average TE 

loss (dB/cm) 

Photo-

lithography 
NA 2000 nm x 90 nm no TM mode 4.0±0.9 

E-beam 

lithography 

8 nA current, 

8 nm grid 
700 nm x 340 nm 5.6±1.0 6.1±0.8 

 

3.4.5 Nonlinear waveguide characterization at 1.55 µm 

 To measure the nonlinear properties of waveguides, a mode-locked Er-doped fiber laser 

was constructed.  A schematic of the home-built laser, based on the designs by H. Liu et al. [183] 

and B. Oktem et al. [184], is shown in Figure 3.18.  The laser operates at a center wavelength 

~1555 nm and provides an average power ~15-20 mW (measured at the polarizing beam splitter 

output).  A typical autocorrelation trace and spectrum of the laser are shown in Figure 3.19.  The 

laser produces ~170 fs pulses (measured after compression with external grating pair) at a 17.8 

MHz repetition rate.   
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Figure 3.18. Er-doped fiber laser schematic.  The mode-locked Er-doped fiber laser operates 

~1555 nm with a slightly normal net cavity dispersion of ~ +0.0136 ps2.  The laser design is based 

on designs by H. Liu et al. [183] and B. Oktem et al. [184].   

 

 

  

Figure 3.19. Er-doped fiber laser optical spectrum and intensity autocorrelation.  Optical 

spectrum (left) reveals full-width-at-half-maximum (FWHM) spectral width of ~15 nm, and -30 

dB width of ~52 nm.  Autocorrelation (right) compares data (blue line) to fit (dotted black line), 

with FWHM pulse duration of 170 fs.   
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 As noted in Section 3.2.6, the loss in a waveguide due to both linear absorption and two-

photon absorption is given by Equation 3.30.  The nonlinear loss of 700 nm x 340 nm Ge-Sb-Se 

waveguides was determined by measuring the output intensity as a function of input intensity. 

Vertically-polarized (P-polarized), 170 fs-long pulses from an Er-doped fiber laser at a 17.8 MHz 

repetition rate were coupled into the TM mode of 10 mm-long waveguides. To verify the coupling 

loss, measurements were made launching light forwards through the waveguide, and then 

backwards, switching fiber patch cord connectors while leaving the lensed coupling fibers fixed 

in position. Waveguides were illuminated with peak intensity up to 65 GW/cm2 over 10 minutes. 

Data taken with increasing and decreasing power agreed and was repeatable.  

  

Figure 3.20. Nonlinear absorption in Ge-Sb-Se waveguides at 1550 nm.  Plot of reciprocal 

transmission as a function of incident peak intensity for the TM mode of the 700 nm by 340 nm 

Ge-Sb-Se waveguide. The average effective two-photon absorption coefficient is 0.0055 ± 0.0004 

cm/GW [231]. 
 

 Figure 3.20 shows the reciprocal transmission vs. incident peak intensity.  The data is 

linear, showing no saturation effects, as one would expect, considering the weak linear and 

nonlinear absorption at this wavelength.  Additionally, given the extremely low two-photon 

absorption, no roll-off due to nonlinear-absorption-driven pulse broadening is observed.  An 

average of fits to three data sets yields βwg=0.0055±0.0004 cm/GW for the TM mode of the 

waveguides [231].  The main sources of error are the uncertainty in pulse shape and coupling 

efficiency, leading to uncertainty in the coupled peak power.  The measured value for β is in line 
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with values measured for bulk Ge-Sb-Se near 1550 nm, which from negligible values to 0.04-0.2 

cm/GW, depending on exact composition [65,93-95].  Theory by Lenz et al. can be used to predict 

the expected two-photon absorption, using the material’s bandedge, wavelength, and the field of 

the guided mode [65].  However, this calculation is exquisitely sensitive to bandedge position 

relative to the measurement wavelength.  For example, a shift in bandedge from 1.59 eV to 1.62 

eV results in predicted   of 0.015 to 0 cm/GW at 1555 nm.  The measured   is found to be 

within the range predicted by theory, taking into account this uncertainty. 

 The input and output spectra from the 700 nm x 340 nm Ge-Sb-Se waveguides were also 

measured, revealing a power-dependent broadening of the output spectral width.  170 fs-long 

pulses at a 17.8 MHz repetition rate were coupled into the waveguide.  Using coupled input peak 

powers ranging from 60-140 W, the corresponding -30 dB spectral width increased by ~26% to 

200% from the input spectral width.   

 To analyze our experimental results, simulations using the symmetrized split-step Fourier 

method [142] were employed to solve the scalar nonlinear Schrödinger equation, which included 

the effects of group velocity dispersion, higher order dispersion, linear and two-photon absorption, 

and self-phase modulation.  A complete description of the split step method is in Section 3.2.7  

The initial electric field amplitude and phase were determined with the PICASO phase retrieval 

algorithm, with experimental data of the spectrum and interferometric autocorrelation [143].  The 

PICASO phase retrieval method iteratively guesses the electric field amplitude and phase that best 

fits experimental data.  The algorithm begins with an initial guess of the complex field spectrum, 

including the spectral phase.  The routine computes an inverse Fourier transform to calculate the 

field in the time domain.  The corresponding interferometric autocorrelation and RMS deviation 

from the experimental data are calculated.  The program generates a new guess for the spectral 
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phase, and after thousands of iterations, can retrieve the spectral phase [143].  While other 

techniques such as frequency-resolved optical gating (FROG) or spectral phase interferometry for 

direct electric-field reconstruction (SPIDER) also exist to characterize short pulses [143], the 

PICASO algorithm offers the advantages of a relatively simple, inexpensive set up.  One main 

challenge of using the PICASO algorithm includes being able to resolve interferometric 

autocorrelations well enough for relatively longer ps pulses  

 

Figure 3.21. Spectral broadening experiment and simulation for Ge-Sb-Se waveguides.  
Comparison of experimental data (solid blue line) and simulation (dashed orange line) of input 

and output spectra of the 10 mm-long, 700 nm by 340 nm Ge-Sb-Se waveguide, using coupled 

peak power of 87 W and 109 W for the TM and TE mode, respectively. The TE mode produces 

significantly more broadening than the TM mode due to its relatively low, anomalous dispersion 

of -0.556 ps2/m (vs. 6.23 ps2/m for TM).  Reproduced from [231]. 
 

 

 To determine 2,wgn  from the broadened spectra, experimental spectra were compared to 

simulations.  Measured parameters corresponding to the experimental setup, including ,  ,wg  

,wgL  ,effA  the coupling efficiency, the input field, and the dispersion (up to 4th order) were fixed 

in the simulations, and 2,wgn was used as a free parameter to find a best fit to the experimentally 

measured spectral widths.  A set of input and output spectra, along with corresponding simulation 

results, are shown in Fig. 3.21 [231].  While the simulations do not capture all the fine spectral 

features, they reproduce the general spectral shapes well.  From measurements on the TM mode 

taken at various coupled peak power levels from 60-140 W, the average 2,wgn  was found to be      
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4.4±1.4x10-19 m2/W.  This corresponds to a nonlinear parameter,   of 5.6±1.7 W-1m-1 (~4500x γ 

of single-mode SiO2 fiber) and a figure of merit, 2,( / )wg wgFOM n    of 5.2±1.6.  The main 

sources of error in 2,wgn  are due to uncertainty in the initial pulse shape and temporal phase. 

 The measurements of the waveguide nonlinearity are not time-resolved.  Low throughput 

from the waveguides, primarily due to coupling loss, limits us from performing a pump-probe 

experiment with significantly weaker probe beam to study the time constant of the nonlinear 

response.  These measurements are performed at wavelengths far from the bandedge, where both 

linear and two-photon absorption are weak.  This makes photosensitivity-induced changes less 

likely, though still possible, given observation of defect absorption-driven photosensitivity in other 

chalcogenides [185].  Note that the measurements of the transmission were stable and 

reproducible, indicating the Ge-Sb-Se waveguides are photostable under these conditions.  

Furthermore, no degradation of waveguide samples has been observed for over two years.   

 The waveguide FOM  is the same order-of-magnitude as values measured on bulk 

samples of Ge-Sb-Se with slightly different composition, typically ~1-8 at 1550 nm [65,93-95].  

However, our values for 2,wgn  are roughly an order of magnitude lower than what is typically 

measured on bulk Ge-Sb-Se of similar composition [65,93-95].  Additionally, the predicted 2n  of 

8.22x10-18 m2/W for the material, calculated from Miller’s rule [65] using the linear refractive 

index of 2.66, is ~16x larger than that measured in our waveguides, after accounting for a 0.867x 

enhancement factor from waveguide geometry for the TM mode [154]. While studies have shown 

that variations in composition can lead to changes in 2n  by ~2-3x [93,95], this cannot fully explain 

the large difference observed between bulk and waveguide. Some laser-written chalcogenide 

waveguides have been shown to exhibit significantly lower 2n  than bulk [186], but reports of 
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As2S3 and Ge-As-Se chalcogenide waveguides fabricated with lithography and etching show 2n  

similar to bulk [163,187].   

 Nonlinear optical measurements were also performed with the TE mode of 2 μm x 90 nm 

Ge-Sb-Se waveguides. These waveguides had effA  of 0.9241 μm2, group velocity dispersion of 

3.42 ps2/m, and a 1.12x enhancement factor of 2n  from waveguide geometry [154]. Intensity-

dependent transmission measurements revealed an average wg  of 0.012±0.002 cm/GW. 

Similarly, spectral broadening measurements indicated an average 2,wgn  of 7.9±2.5x10-19 m2/W, 

corresponding to FOM of 4.2±1.3.  These values for the waveguides made using 

photolithography are the same order-of-magnitude as those for the waveguides fabricated using e-

beam lithography (average 2,wgn  of 4.4±1.4x10-19 m2/W and FOM  of 5.2±1.6).  This suggests 

that the writing process alone is not the main cause of the nonlinearity discrepancy between bulk 

and waveguides.  The two samples, in addition to having different patterning methods (photo- vs. 

e-beam lithography) are also from two different chalcogenide evaporations.  This indicates the low 

nonlinearity compared to bulk is a relatively consistent issue.  Additional study is required to better 

understand the source of our observed difference between waveguide and bulk.  We are aware that 

this issue is a challenge for the broader chalcogenide community, probably not limited to our 

chosen material.   

Ellipsometry measurements have revealed a small difference in linear index between bulk 

and film, and we are exploring annealing as a potential way to improve the nonlinearity of films.  

In particular, during thermal evaporation, the non-equilibrium conditions under which thin films 

are formed can cause both structural disorder and defective bonds, which alter thin film properties 

[188].  Additionally, chalcogenide and silica have a thermal expansion mismatch [153,189], 
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leading to thermal stress which can also produce changes in refractive index [232].  Annealing can 

be used to relax stresses and reduce defects, bringing thin film properties closer to those of bulk in 

various chalcogenides [188,190-191].  In spite of the lower nonlinearity currently observed in the 

waveguides, the measured FOM  suggests that Ge-Sb-Se still holds promise as a nonlinear 

integrated optics platform at telecom wavelengths and beyond.   

 

3.5 Waveguides at 3.5 µm 

 Initial Ge-Sb-Se waveguide demonstrations in the near-infrared successfully leveraged 

existing equipment, but most interest in chalcogenide glasses stems from their excellent 

transparency and nonlinearity in the mid-infrared, where other optical materials are lacking.  To 

further explore Ge-Sb-Se in the mid-infrared, we have designed waveguides at 3.5 µm.  Single-

mode chalcogenide waveguides were designed for operation at 3.5 µm, taking into account 

dispersion, mode area, and effective nonlinearity.  A range of substrate materials were considered.  

ZnSe, ZnS, and Al2O3 (sapphire) were all found to be unsuitable due to the limited achievable 

dispersion ranges, given the reduced index contrast.  However, the stronger index contrast 

provided by MgF2 substrates yielded a wider range of waveguide geometry dispersion, sufficient 

for our designs.   

 A schematic of a waveguide and the corresponding dispersion plot is shown in Figure 3.22.  

For straight, air-clad Ge-Sb-Se strip waveguides on MgF2 substrates, cross-sectional dimensions 

of 1.44 µm (W) x 580 nm (H) provide a single TE and TM mode.  The TE mode has near zero,      

-0.0687 ps2/m net dispersion, small effective area of 1.03 µm2, and an expected nonlinear 

parameter of ~9.35/W-m, using the definitions in Equations 3.17-3.19.  For the calculation of the 

nonlinear parameter, a nonlinear refractive index in bulk of 4.2x10-18 m2/W is assumed (roughly 
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0.45 times the bulk nonlinearity at 1550 nm), using the prediction from Lenz et al. [65] for 

Ge28Sb12Se60 at a wavelength of 3.5 µm.   

 

 
 

Figure 3.22. Strip waveguide schematic and simulated dispersion at 3.5 µm. Left: Schematic 

of Ge-Sb-Se waveguide.  Right: Plot of dispersion (in ps2/m) as a function of straight waveguide 

height and width.  Near-zero, slightly anomalous dispersion (deep blue) is achieved for cross 

section of 1.44 µm (w) x 580 nm (h) for a straight waveguide.   

 

3.6 Conclusion 

 Ge-Sb-Se waveguides were designed, fabricated, and characterized over a range of 

wavelengths, from 1.03 to 3.5 µm.  At 1.03 µm, Ge-Sb-Se waveguides, fabricated by 

photolithography and lift-off, had an average linear propagation loss of 11.9 dB/cm in agreement 

with theory, and a large two-photon absorption coefficient of wg =11.5±0.7 cm/GW.   

 As expected, the linear loss and nonlinear optical properties of Ge-Sb-Se waveguides 

improved greatly at telecom wavelengths of 1.53-1.55 µm.  Ge-Sb-Se waveguides, fabricated by 

photolithography and lift-off, had an average linear loss of 4.0 dB/cm at 1.53 µm.  Additionally, 

the average linear loss for 700 nm (W) by 340 nm (H) waveguides, fabricated by e-beam 
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lithography, was 5.6±1.0 for the TM mode, and 6.1±0.8 dB/cm for the TE mode.  The nonlinear 

loss of the waveguides fabricated with e-beam lithography was 0.0055±0.0004 cm/GW, 

reasonable considering other Ge-Sb-Se bulk measurements in literature.  Corresponding spectral 

broadening measurements revealed a nonlinear figure of merit of 5.2±1.6 and a nonlinear 

parameter of 5.6±1.7 W-1m-1, indicating preliminary promise for nonlinear applications such as 

ultrafast switching at telecom wavelengths.  Finally, single-mode Ge-Sb-Se waveguides were 

designed for operation at 3.5 µm, with near-zero dispersion for improved spectral broadening.   

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

 

 

 

4. GE-SB-SE RING RESONATORS 

4.1. Overview 

 Chalcogenide ring resonators are designed, with dimensions optimized for four-wave 

mixing at wavelengths of 1.55 and 3.5 µm.  In Section 4.2, background on ring resonators for 

nonlinear optics is provided.  Specifically, the motivation for exploring ring resonators is 

discussed, and concepts useful for design are described, including basic ring resonator properties, 

four-wave mixing, resonant enhancement, and bus waveguide-to-ring coupling.  Section 4.3 

describes the design process and final Ge-Sb-Se ring resonator designs, optimized for four-wave 

mixing at wavelengths of 1.55 and 3.5 µm.  Additionally, this section provides basic 

characterization of first-generation ring resonators at 1.55 µm.   

 This work was performed in collaboration with Professor Wounjhang Park, Dr. Gumin 

Kang, and Michael Grayson at the University of Colorado Boulder.  In particular, Dr. Gumin Kang 

and Michael Grayson provided fabrication process development, fabricated the ring resonators, 

and provided SEM images.  For all devices described in this chapter, e-beam lithography was 

performed by Kevin Roberts and Dr. Greg Cibuzar at the Minnesota Nano Center at the University 

of Minnesota.   

 We benefited from technical discussions with Professor Milos Popovic, YangYang Liu, 

and Cale Gentry at the University of Colorado Boulder.  A waveguide mode solver from Professor 

Milos Popovic was used to simulate guided waveguide modes [141].   
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4.2 Ring resonators for nonlinear optics 

4.2.1 Ring resonator motivation and applications 

 A ring resonator consists of a waveguide wrapped around on itself to form a circle, along 

with a mechanism to couple light to the structure, as illustrated in Figure 1.4.  Given their ability 

to trap light in small volumes, ring resonators have been used for intriguing applications in a broad 

range of fields [52].  For example, they have served as important building blocks for optical signal 

processing [192], including wavelength-selective filters [193] and modulators [194].  Ring 

resonators have also found use in biology for biosensing applications such as protein detection 

[195] and as refractometric sensors for lab-on-chip development [196].  Finally, ring resonators 

have provided compact platforms for novel sources, including quantum-correlated photon pair 

sources [197], Raman lasers [198], Brillouin lasers [199], and optical frequency combs [9]. 

 Achieving high quality factor, Q , in micron-scale ring resonators can be a challenge, given 

loss resulting from standard fabrication processes.  To date, state-of-the-art ring resonators exhibit 

Q s from 3x106 for µm-scale radii [50,51], to Q s of 8x107 for mm-scale radii [49].  However, 

compared to other microresonator geometries shown in Figure 1.4, ring resonators offer three key 

advantages.  Ring resonators can be easily integrated, they can be designed to eliminate higher 
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order modes, and their geometry offers simple changes to better control the dispersion through 

waveguide geometry.  These features make ring resonators a promising platform for robust, chip-

scale nonlinear photonics.  Ring resonators have been demonstrated in many materials, including 

silicon [200], silicon nitride [46], doped silica [201], gallium arsenide [202], and chalcogenide 

glasses such as Ge-As-Se [203] and As2Se3 [204].  To push development of ring resonator-

enhanced nonlinear optics in the near- and mid-infrared, this research explores Ge28Sb12Se60-based 

ring resonators.  In addition to the excellent nonlinear material properties and broad transparency 

found in chalcogenide glasses, Ge28Sb12Se60 is arsenic free and commercially available.   

 Chalcogenide-based ring resonators are designed with dimensions optimized for cavity-

enhanced four-wave mixing efficiency.  First-generation ring resonators are fabricated and quality 

factors are characterized.   

4.2.2 Ring resonator properties 

 Two common ring resonator and bus waveguide geometries, including the all-pass and 

add-drop ring resonators, are illustrated schematically in Figure 4.1.  In general, resonance is 

achieved when the round trip accumulated phase is an integer multiple of 2 , such that the 

circulating waves constructively interfere.  This occurs when an integer m  number of wavelengths 

match the cavity length L , such that 

                               
( )

,
eff

res

n L

m


          (4.1) 

where ( )effn   is the effective index of the ring resonator, which depends on the wavelength  .   
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Figure 4.1. Schematic of all-pass ring resonator and add-drop ring resonator.  (a) An all-pass 

ring resonator consists of a single bus waveguide and ring resonator.  Ein is the input field, Eout is 

the output field, Ereturn is the return field, Ecoupled is the coupled field, κ is the cross-coupling 

coefficient, τ is the self-coupling coefficient, and a is the power attenuation coefficient.  (b) An 

add-drop ring resonator consists of a ring resonator with two coupled bus waveguides.  Here, Eadd 

is the added field, and Edrop is the dropped field.  Both the input and output bus waveguides have 

cross-coupling coefficients κ1 and κ2, as well as cross-coupling coefficients τ1 and τ2. 

 

At the coupling point between the bus waveguide and ring resonator, one can use scattering 

matrix formalism [208] to write the relationship between the input, output, and circulating fields, 

as illustrated in Figure 4.1(a), as 

     
( ) ( )

,
( ) ( )

coupled return

out in

E Ei

E Ei

  

  

    
    

    
        (4.2) 

where τ and κ are the self- and cross-coupling coefficients, which satisfy the relation 

2 2| | | | 1.     Here, inE  is the input field, outE is the output field, returnE is the return field, and 

coupledE  is the coupled field [See Figure 4.1(a)]. 
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Figure 4.2. Example transmission spectra for an all-pass ring resonator.  An example resonant 

wavelength, full width at half max (FWHM), and free spectral range (FSR) are illustrated on the 

plot.  Plot generated using τ=a=0.95, neff of 2, and ring radius of 100 µm. 

 

 Using Equation 4.2 to calculate 
2| / |out inE E  , the transmission for an all-pass ring resonator, 

consisting of a single bus waveguide and ring resonator, is given by [205] 

                              

2 2

2

2
2 cos

( ) ,
2

1 2 cos ( )

eff

all pass

eff

n L
a a

T
n L

a a


 





 





 
  

 


 
  

 

        (4.3) 

where τ is the self-coupling coefficient, and α is related to the power attenuation coefficient a by 

[205] 

      
2 exp[ ].a L           (4.4) 
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Coupling will be described in more detail in Section 4.2.4.  From the transmission, the full width 

at half maximum (FWHM) for an all-pass ring is given by  

                                      
2(1 )

,res
all pass

g

a
FWHM

n L a

 

 



         (4.5) 

where gn  is the group index [205].  The wavelength spacing between two adjacent resonances, or 

free spectral range ( FSR ) is given by [205] 

                                      
2

.
g

FSR
n L


         (4.6)  

Finally, the quality factor, Q, is a measure of the resonance sharpness, relative to its central 

wavelength: 

      ,res

FWHM

Q






         (4.7) 

where FWHM  is the full width at half maximum spectral width.  Another equivalent definition 

for Q is 2  times the ratio of the stored energy in the oscillator to the dissipated energy per cycle.  

For an all-pass ring, one can re-write Q as [205] 

     .
(1 )

g

all pass

res

n L a
Q

a

 

 
 


           (4.8) 

The transmission and corresponding spectral features of an all-pass ring resonator are illustrated 

in Figure 4.2.   

 As noted earlier, one other common ring geometry is called an add-drop filter, which 

consists of a ring resonator, input bus waveguide, and output bus waveguide [See Figure 4.1(b)].  

Corresponding transmission and spectral properties for the add-drop geometry can be derived in a 
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similar fashion, assuming cw operation and using scattering matrix formalism, as described in 

[208]. 

4.2.3 Four-wave mixing and resonant enhancement 

 High-Q ring resonators are particularly attractive for nonlinear optical applications, given 

their tight confinement and resonant enhancement of efficiencies.  Four-wave mixing is a third-

order nonlinear process which has drawn significant interest with the ability to efficiently generate 

light at new frequencies [62].  For example, four-wave mixing and corresponding cascaded 

processes are central to generating optical frequency combs, which are illustrated in Figure 1.5.   

 Degenerate four-wave mixing is a χ(3)-based nonlinear optical process in which two pump 

photons are annihilated to create a signal and idler photon at frequencies obeying energy and 

momentum conservation.  From energy conservation, 

                          2 ,p s iE E E           (4.9) 

where ,pE ,sE  and iE  are the photon energies at the pump, signal, and idler, respectively, given 

by  

                           .x xE hf        (4.10) 

Here, xE  is the photon energy and xf is the frequency for the corresponding pump, signal, or idler 

beam.  To obey momentum conservation,  

                         2 ,p s ik k k         (4.11) 

where ,pk ,sk  and ik  are the propagation constants at the pump, signal, and idler, respectively, 

given by  
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2

.x
x

x

n
k




        (4.12) 

Here, x  is the wavelength and xn  is the effective index for the corresponding pump ( )x p , 

signal ( )x s , or idler beam ( , )x i c .  In seeded four-wave mixing, this process is initiated by 

launching a strong pump beam and weak signal beam into a χ(3)-based nonlinear material, to 

generate output light at the pump, signal, and idler wavelengths, obeying energy and momentum 

conservation.  This is illustrated schematically in Figure 4.3.   

 

Figure 4.3. Illustration of degenerate four-wave mixing.  A strong pump beam and weak signal 

beam are launched into a χ(3)-based nonlinear material, to generate output light at the pump, signal, 

and idler frequencies ( pf , sf , and if   respectively).  In degenerate four-wave mixing at the photon 

level, two pump photons are annihilated to generate a signal and idler photon at frequencies 

obeying energy and momentum conservation.   

 

 Given an intense pump and weak signal at frequencies pf  and sf , respectively, an idler 

(also called converted) wave is generated at a frequency cf .  The derivation for four-wave mixing 

theory is outlined by Agrawal in [62].  Beginning with the wave equation for the various 

frequencies, one finds that the evolution of the field is governed by a set of coupled differential 
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equations [62].  Assuming a slowly varying envelope, undepleted pump, small signals, lossless 

media, and negligible self-phase modulation and cross phase modulation effects, the output 

converted wave power cP  will satisfy [62] 

                                     
2 2 2 2( ) sinc ,

2
c p s

z k
P z P z P

 
  

 
       (4.13) 

where pP  is the input pump power, sP  is the input signal power, z  is the distance propagated in 

the nonlinear medium,  is the nonlinear parameter, and k  is the phase mismatch, given by 

                                                              2 .p s ck k k k          (4.14) 

Recall xk   is given by Equation 4.12.  Note that the maximum power transfer from the pump to 

the converted wave in Equation 4.13 is limited by the phase mismatch [206].  It is useful to define 

a four-wave mixing conversion efficiency, which is equal to the output idler power, divided by the 

input signal power as shown: 

                                                                 
c

FWM

s

P

P
  .                                                                  (4.15) 

Combining Equations 4.13 and 4.15, the theoretical four-wave mixing efficiency is given by 

     
2 2 2 2sinc .

2
FWM p

z k
P z 

 
  

 
      (4.16) 

Thus, the four wave mixing efficiency depends on the square of the nonlinear parameter, pump 

power, and length.  With the use of a straight, 5 mm-long Si nanocrystal-embedded silicon slot 

waveguide with large nonlinear parameter ~1100W-1m-1, A. Trita et al. demonstrated four-wave 

mixing efficiency of -28.9 dB and -43 dB for the quasi-TM and quasi–TE mode with 5 mW pump 

power and 4 mm effective length (taking into account loss) [207].  While this result is impressive, 

it requires sophisticated fabrication techniques and materials to achieve large nonlinear parameter.   
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Alternatively, the four-wave mixing efficiency can be significantly enhanced with the use 

of ring resonators.  One can assume that a ring resonator is pumped with a strong pump beam with 

power pP , and seeded with a weak signal beam with power sP , such that .p sP P   Combining 

Equation 4.2 for the fields with four-wave mixing theory, applying small-signal analysis by 

assuming | | | | | |p s cE E E , Absil et al. showed that conversion efficiency in a ring resonator is 

given by  

    
2 4 2 2| ' | ,FWM p p s cP L FE FE FE         (4.17) 

where γ is the effective nonlinearity, Pp is the pump power [202].  Here, L’ and FEi are the effective 

length and field enhancement factors at the pump (p), signal (s) and converted idler (c) 

wavelengths, given by the following 

             
2

1 exp[ / 2 ]
i

i

FE
L jLk



 


  
       (4.18) 
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
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 

 
                 (4.19) 

Here, κ is the ring coupling (cross-coupling) coefficient, τ is the ring transmission (self-coupling) 

coefficient, L is the ring circumference, α is the loss, ki is the propagation constant (also called β) 

of the pump, signal, or converted idler, and Δk is the phase mismatch, equal to 2kp-ks-kc [202].   

 Ring resonators improve the four-wave mixing efficiency through resonant enhancement, 

with maximum efficiency for critical coupling, where the power coupled to the ring is equal to the 

power lost such that τ = a.  However, dispersion can cause unequal spacing in the resonances, 

leading to phase mismatch that can decrease this enhancement.  This is illustrated in Figure 4.4.   
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Figure 4.4 Field enhancement factor as a function of wavelength.  Dispersion causes uneven 

spacing in resonance frequencies at the pump λp, signal λs, and idler, leading to reduced 

enhancement at the converted wavelength λc [202].  The shift from optimum enhancement is given 

by δλ. 

 

  In our design, ring waveguide dimensions are optimized to provide maximize four-wave 

mixing efficiency.  To simplify the calculations of four-wave mixing efficiency, we assume critical 

coupling, with both pump and signal on-resonance, and we assume equal losses across the signal, 

idler, and pump waves.  Under these assumptions, the four-wave mixing efficiency in a ring 

resonator is given by  

                           
2 2

2 2 2

1
.

(1 )

L

p L

e
P

e k




 







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      (4.20) 

In general, multiple effects contribute to phase mismatch, including material dispersion, 

waveguide geometry dispersion, as well as self- and cross-phase modulation, nonlinear effects 

which shift the resonant wavelengths.  The resonant shift from nonlinear effects is negligible when 

it is small compared to the resonance wavelength, such that [202] 

      

2( )
.

2
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res

L FE P
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 


       (4.21) 
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In practice, this constraint can be satisfied by using suitably low power levels and small cavity 

lengths.  In this case, it can be useful to write the phase mismatch in terms of the effective index, 

such that   

                            
,( 1) 2p eff c

c

m n
k

R






   .        (4.22) 

Here, R is the ring radius, ,eff cn  is the effective index at the converted idler wavelength c , and 

pm  is the resonance integer at the pump wavelength.   

 

Figure 4.5 Phase mismatch for air-clad, Ge-Sb-Se ring resonators on SiO2 at 1550 nm.  

Simulated phase mismatch is plotted in color (in 1/µm) as a function of ring resonator radius and 

waveguide width.  For simulations, a fixed height of 350 nm and air cladding are assumed.   

 

A plot of the simulated phase mismatch at 1550 nm for various Ge-Sb-Se ring resonator waveguide 

dimensions is shown in Figure 4.5, neglecting nonlinear resonant shifts.  Although the Ge-Sb-Se 

material has normal dispersion at 1550 nm (see Figure 3.5), the anomalous dispersion from the 
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wider, curved waveguide geometry can be used to compensate, reducing the overall phase 

mismatch.   

 

 The theoretical four-wave mixing efficiency is plotted in Figure 4.6.  By calculating the 

phase mismatch (caused by dispersion) for various ring radii and cross sectional dimensions, one 

can use Equation 4.20 to find which dimensions optimize this efficiency, assuming a fixed loss, 

nonlinearity and pump power.    

 

Figure 4.6.  Theoretical four-wave mixing efficiency.  The theoretical four-wave mixing 

efficiency is plotted as a function of ring radius, for various values of phase mismatch dk.  

Calculations assume loss of 4 dB/cm, nonlinear parameter of 6/W-m, and 5 mW pump power. 

 

 In general, experimental four-wave mixing efficiencies demonstrated in ring resonators 

tend to match predictions from the theory by Absil et al. [197,202,225], though some deviation at 

high power, due to free carriers, nonlinear absorption, and thermal effects have been observed 

[197].  Example code to optimize ring resonator geometry for four-wave mixing efficiency is given 

in Appendix E.   
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4.2.4. Ring coupling design 

 A resonator can be characterized through measurements of its quality factor.  Physically, 

the quality factor represents the number of field oscillations before the energy decays to 1/ e  of 

its initial value [205].  Note that the total (or loaded) quality factor Q  is given by  

   
1 1 1

int ,extQ Q Q                               (4.23) 

where extQ  represents the extrinsic coupling losses, and intQ is due to intrinsic loss in the ring from 

scattering and absorption, given by [210] 

        
int

2
.

gn
Q




                  (4.24)   

Here, ng is the group index, α is the absorption, and λ is the wavelength.   

 
Figure 4.7.  Schematic of bus-to-ring coupling and coupling strength.  A fraction of power 

from a bus waveguide with width w2, spaced a distance xgap from a ring resonator with radius R 

and width w1, is coupled to the ring.  Pin the input power to the bus waveguide, Pthru is the power 

that remains in the bus waveguide, and Pring is the power coupled to the ring.   

 

For extrinsic coupling loss, it is useful to first define the power coupling coefficient,  

κ2= Pring/Pin,        (4.25) 
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where Pin is the power launched into the waveguide, and Pring is the power coupled to the ring, as 

illustrated in Fig. 4.7.  For small coupling loss, where the coupling coefficient |κ2| << 1,  

Qext=ω0τ/|κ
2|,                   (4.26) 

where τ is the round-trip time [210]. 

Two coupling regimes were examined: weak coupling and critical coupling.  To 

characterize the intrinsic loss of a resonator, one can use the ‘weakly coupled cavity’ method 

described in [211].  In this method, coupling into and out of the ring is intentionally designed to 

be weak, so that ext intQ Q , and intrinsic loss dominates the linewidth.  In this case, int,~Q Q and 

a measure of the linewidth is ~ Qint.  For a measurement with enough power, yet reasonably low 

error, 10 < Qext/Qint < ~30 is suggested [211].  By including a range of coupling gaps on a chip and 

testing to find the smallest gap that provides measurable signal, this method provides a quick, 

accurate estimate of the intrinsic loss.  For the ‘weakly-coupled cavity’ method, if intrinsic losses 

~1-10 dB/cm are expected, and an add-drop configuration (See Figure 4.1b) with equal coupling 

gaps is used, coupling strengths of roughly -4.7< log10(κ
2) < -3.7 would be desired.   

 Four-wave mixing is most efficient under critical coupling, where the power coupled to the 

ring is equal to loss in the ring, such that the coupling strength is given by  

      κ2=1-a2, (for critical coupling)    (4.27) 

Here, α is the power attenuation coefficient given by Equation 4.4, and L is the length of the 

resonator, 2πR for a ring [205].  Depending on the range of expected loss of the ring, there will be 

a corresponding range of values for κ2 to achieve critical coupling.  For example, for a 6 µm-radius 

ring with 1 to 10 dB/cm loss would require coupling strength of -3.1 < log10(κ
2) < -2.1 is desired, 

depending on the exact loss.   
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 Sometimes, strong enough coupling cannot be obtained with simple straight bus 

waveguides due to fabrication constraints.  In particular, although smaller coupling gaps increase 

coupling strength, gaps less than a few hundred nanometers are challenging to fabricate 

successfully.  Two possible solutions to increase the required coupling gap are illustrated in Figure 

4.8.  One option is to use racetrack resonators, effectively increasing the coupling length.  

However, racetrack resonators require additional design to mitigate loss from modal mismatch at 

the curved and straight waveguide junctions.  An alternate solution is to use curved waveguide 

structures, called pulley couplers.  This increases the coupling length and decreases the required 

gap sizes.   

 

 

Figure 4.8. Schematic of alternative coupling schemes.  A pulley coupler, consisting of a curved 

bus waveguide, can be used to increase the effective coupling length and reduce the gap required 

to achieve a particular coupling strength, compared to a straight coupler.  Alternatively, a racetrack 

coupler, consisting of a straight bus waveguide coupling to a stretched ring “racetrack” resonator 

can be used to increase the coupling length.   

  

 

 For these longer coupling lengths, it is important to design the width of the bus waveguide 

to be ‘phase-matched’ to the ring resonator waveguide to ensure proper coupling [208].  A bent 

mode solver was used to simulate two concentric rings: the inner with the fixed ring waveguide 

width, and the outer with a width w2 and given gap distance.  The propagation constants of the first 

two modes were calculated as a function of w2 for a single gap xgap and plotted, as shown in Fig. 
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4.9.  If straight lines are fit to the asymptotes, then the phase-matched width will occur at the 

intersection of these two lines.  This process can be repeated for a range of different gap sizes, 

yielding a plot of phase-matched w2 vs. xgap.  The result can be used in ring design with curved 

pulley couplers (See Fig. 4.10).  Example code for phase-matching the widths of a coupler 

waveguide to a particular ring resonator is given in Appendix E.   

 

 

Figure 4.9.  Propagation constant vs. bus width for concentric (pulley) coupler.  This shows 

the angular propagation constants of 2 supermodes vs. the outer waveguide width w2.  For this 

plot, the waveguide height was 330 nm, and the inner waveguide width was 800 nm, with 6 µm 

radius and fixed gap of xgap=100 nm.  The waveguides are phase-matched for w2=0.55 µm, where 

the propagation constants of the two modes are approximately equal.   

 

 

 

Figure 4.10. Phase-matched width vs. gap distance for concentric (pulley) coupler.  Example 

plot of the phase-matched outer waveguide width, w2 as a function of bus-to-ring gap xgap, 

calculated for phase-matching to a 6-micron radius inner ChG-on-SiO2 ring with 800 nm width 

and 330 nm height at 1550 nm. 
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4.3 Ge-Sb-Se ring resonators for four-wave mixing 

4.3.1 Near-infrared ring resonator design 

 Chalcogenide microring resonators were designed for operation at near-infrared 

wavelengths and optimized for four-wave mixing efficiency.  The resonances and dispersion were 

simulated over a range of waveguide cross-sectional dimensions and ring radii.  Using these 

results, the theoretical four-wave mixing efficiency was calculated, and the optimal waveguide 

dimensions, within fabrication and source constraints, were determined.  The coupling region 

between bus waveguides and ring resonators was also designed to enable measurements of the Q 

factor and nonlinear effects such as four-wave mixing.   A flow chart of the general process used 

to design ring resonators is shown in Figure 4.11.   

 

 

Figure 4.11.  Design process for ring resonators optimized for four-wave mixing.  A mode 

solver is first used to calculate bend loss, resonances, and effective index neff over a range of 

dimensions.  The corresponding four-wave mixing efficiency is calculated, and optimal ring 

dimensions are chosen.  Coupling is then designed, and a .GDS file for chip layout is written. 

 

 

 For a range of waveguide cross sections and ring radii, the four-wave mixing efficiency 

was predicted, using calculated resonance locations and dispersion, along with a fixed estimate of 
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waveguide loss, nonlinearity, coupled pump power, and critical coupling.  An example plot of the 

four wave mixing efficiency for various waveguide dimensions and radii is shown in Figure 4.12.  

In general, four-wave mixing efficiency improves with decreasing ring radius due to decreased 

mode volume.  At small radii, where resonances are spaced farther apart, dispersion becomes 

increasingly important, causing the efficiency to also depend on waveguide width.   

 

 

Figure 4.12 Four-wave mixing efficiency for various chalcogenide waveguide dimensions.  

Color plot shows the four wave mixing efficiency (color scale, in dB, defined in Eqn. 4.15) for an 

air-clad chalcogenide ring resonator on SiO2 near 1550 nm, as a function of waveguide width and 

ring radius.  Calculations assume 350 nm waveguide height, fixed loss of 6 dB/cm, nonlinearity 

of 6/W-m, and pump power of 5 mW.   

 

 A plot of the simulated radiation loss due to bending is shown in Figure 4.13.  Bend loss 

decreases exponentially with increasing radius.  At radius of 3.3 µm, bending loss becomes 

comparable to the measured 0.07 cm-1 material absorption loss.  At radius  3.93R   µm, radiative 

loss becomes negligible compared to material loss.  As illustrated in Figure 4.12, while smaller 

radii rings provide best four-wave mixing efficiency, they also produce larger free spectral range 



103 
 

(FSR), which requires larger laser tunability for characterization.  Additionally, tighter bend radii 

lead to increased field strength at the rough outer waveguide sidewall, as illustrated and discussed 

in Section 3.2.1 and Figure 3.2.  The final chosen design dimensions used 800 nm (W) by 330 nm 

(H) cross section with small 6 micron-radius rings, which still provide a few resonances within the 

tuning range of available lasers for thorough characterization.   

 

Figure 4.13 Simulated bend loss vs. radius and corresponding fit for Ge-Sb-Se waveguide.  

Calculations assume 800 nm (W) x 330 nm (H) air-clad Ge-Sb-Se waveguide on SiO2 substrate at 

1550 nm.  Bend loss decreases exponentially with increasing ring radius, and radiative loss is 

comparable to or less than material loss for radii 3.3R   µm.   

 

 The bus-to-ring coupling coefficient was also calculated for various bus waveguide 

geometries as a function of the gap distance between the ring resonator and bus waveguide.  

Structures were simulated using Lumerical’s Mode Solutions variational finite difference time 

domain (varFDTD) and full 3D finite difference time domain (FDTD) simulations.  The 

chalcogenide material dispersion was imported into Lumerical and the desired structures were 

drawn using Lumerical’s graphical user interface.  An optical mode source was launched into the 

bus waveguide, and monitors were used to check the input power and output power at the bus and 
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ring (See Fig. 4.14).  Based on the power splitting fraction between the bus and the ring, the 

coupling coefficient κ2 was calculated.   

 

 

 

 

 

 

 

 

 

 
Figure 4.14. Example Lumerical varFDTD simulation of pulley coupler.  The mode is 

launched at the start (left) of the waveguide, propagating towards the right.  Yellow power 

monitors are placed at the input, as well as the output bus and ring waveguides, and data of the 

power and transmission at these points as a function of wavelength is recorded over the range of 

interest.  Note that the simulated region, indicated by the orange box, only includes half of the 

ring, in order to decrease run time and while still extracting meaningful power coupling results.  

The graph on the right shows example extracted coupling strength κ2 
for phase-matched curved 

structures as a function of bus-ring gap distance, xgap, for 6-micron rings.   

 

By varying the gaps, as well as the bus waveguide widths and straight vs. curved bus geometry, a 

range of acceptable coupler designs were found for the expected range of waveguide losses.  Note 

that to significantly decrease computation time, only half-ring, rather than full ring, structures were 

simulated.  As discussed in Section 4.2.4, propagation constants of pulley couplers were simulated 

with a mode solver as a function of gap size, to find the proper phase-matched waveguide width.  

Results of the phase-matching simulations are shown in Figure 4.10.  Additional coupling 

simulation results for larger-radii ring resonators at 1550 nm are shown in Figure 4.15.  Coupling 

strength decreases with increasing bus-ring gap distance.   
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Figure 4.15. Coupling strength vs. gap for straight coupler with various ring radii.  Coupling 

strength κ2 is plotted as a function of bus-ring gap distance, xgap, for rings of 20, 50, and 100 micron 

radii.  Using Lumerical MODE Solutions, the ChG ring waveguide cross section used is 800 nm 

(W) by 330 nm (H), with 65 degree base angle and SiO2 substrate.  The straight bus waveguide 

width is fixed at 700 nm.   

 

 

 Our final designs are summarized in Table 4.1.  They featured add-drop rings with 6 micron 

radius, along with larger rings of radii of 20, 50, and 100 microns, and variety of coupling gaps to 

cover a range of possible losses.  (Larger rings were included to examine the radius-dependence 

of loss.)  For the smallest add-drop rings with 6 µm radius, curved couplers for critical coupling 

were also designed for four-wave mixing, using a phase-matched bus width of 520 nm, and 90 

degree section with constant coupling gaps of 350, 370, and 390 nm.  Additionally, alternate all-

pass ring resonators with straight critical couplers were included, using a bus waveguide width of 

530 nm and coupling gaps of 300, 400, and 500 nm.   

Table 4.1 Summary of ring design for 800 nm (w) x 330 nm (h) Ge-Sb-Se rings at 

λ=1.55µm. 

Radius 

(µm) 

FSR 

(GHz) 

Straight Coupler xgap 

(nm) 

FWM Efficiency 

(dB) 

6 2580 380-660 -28 

20 777 480-760 -38 

50 311 450-730 -46 

100 155 300-700 -52 
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Straight waveguides and ring resonators were laid out using KLayout to create a .GDS file for e-

beam lithography.  An image of the chip layout is shown in Figure 4.16.  As shown, each chip 

includes a series of straight waveguides, waveguides with fixed number of bends, and ring 

resonators with radii of 6, 20, 50, and 100 µm.   

 

 

Figure 4.16. Chip layout for ring resonators at 1550 nm.  KLayout is used to create a .GDS file 

of the chip layout for e-beam lithography.  Left: two mirror-image, 15 mm-long chips are placed 

side-by-side.  Each chip includes a series of straight waveguides, waveguides with fixed number 

of bends, and ring resonators with radii of 6, 20, 50, and 100 µm.  After fabrication, the side-by-

side chips are cleaved apart to provide two samples for testing. Right inset: Zoomed-in view of 

ring resonator on chip. 

 

 

4.3.2 Mid-infrared ring resonator design 

 Chalcogenide (ChG) microrings were also designed for operation at a mid-infrared 

wavelength of 3.5 µm, applying the same design methods.  This design work was based on an air-

clad, ChG-on-MgF2 platform.  For a range of waveguide cross-sections and ring radii, the four-

wave mixing efficiency was predicted, using calculated resonance locations, dispersion, and 

nonlinearity, along with a fixed estimate of waveguide loss, coupled pump power, and critical 

coupling.   
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 An example plot of predicted four-wave mixing efficiency as a function of radius is shown 

in Figure 4.17, using a fixed waveguide height of 580 nm, a calculated nonlinear parameter based 

on estimate from Lenz et al. [36], and assuming 5 mW pump power and 4 dB/cm loss.  Four-wave 

mixing efficiency tends to increase with decreasing radius.  However, at very small bend radii, the 

enhancement from smaller mode volume begins to compete with the phase-matching constraint 

from dispersion. (Recall that the dispersion shifts as the waveguide is bent more tightly.)  For 580 

nm-thick ChG-on-MgF2 waveguide, maximum four-wave mixing efficiency is achieved with a 

waveguide width of 1120 nm.   

 

  

Figure 4.17 Four-wave mixing efficiency vs. radius for chalcogenide (ChG) ring at 3500 nm.  
Efficiency calculated for air-clad 580 nm-thick ChG-on-MgF2 waveguide at 3500 nm, for various 

waveguide widths.  Calculations assume input pump power of 5 mW and 4 dB/cm loss.  At large 

radii, four-wave mixing efficiency tends to decrease with increasing radius.  For 580 nm-thick 

waveguide, maximum four-wave mixing is achieved with waveguide width of 1120 nm.   

 

 Simulations for a few different waveguide heights were compared.  For a given height, a 

corresponding optimal width could be found to compensate for dispersion and provide comparable 

efficiency, as illustrated in Figure 4.18.  However, our bilayer resist and liftoff process is limited 
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to making ChG films <600 nm thick, due to the available resists and achievable resist thickness.  

Considering this constraint, cross-sectional dimensions of 1220 nm (W) x 520 nm (H) provided 

good four-wave mixing efficiencies ~ -25 to -38 dB at 3.5 µm in the curved geometry while 

maintaining single mode operation and falling well within the fabrication constraint. 

 

Figure 4.18. Four-wave mixing efficiency vs. radius for ChG rings, for optimized dimensions.  
Structures simulated are air-clad Ge-Sb-Se rings on MgF2, at 3500 nm wavelength.  Calculations 

assume input pump power of 5 mW and 4 dB/cm loss.  At large radii, four-wave mixing efficiency 

decreases with increasing radius.   

 

 

 In the mid-infrared, larger bend radii ≥ 16.9 µm are required for radiation loss comparable 

to material loss, and radii ≥ 20 µm are needed for negligible loss relative to material loss (See Fig. 

4.19).  Additionally, as discussed in Section 4.3.1, although smaller radii rings provided best four-

wave mixing efficiency, they also produced larger FSR .  For example, at 3.5 μm wavelength, 

with a group index of 3.14, the radii of 20 μm and 30 μm correspond to FSR  of 31.0 nm and 20.7 

nm, respectively.  The final chosen design dimensions utilize mid-sized 30 µm radius rings with 

~20.7 nm FSR, which still provide multiple resonances within the tuning range of available sources 

for thorough characterization.   
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Figure 4.19. Simulated bend loss vs. radius and corresponding fit for ChG-on-MgF2 at 3500 

nm.  The bend loss is simulated for 1220 nm (W) x 520 nm (H) air-clad Ge-Sb-Se waveguide on 

MgF2 substrate.  The bend loss decreases exponentially with increasing ring radius.  Extrapolating 

from the fit, radiative loss is comparable to or less than material loss of 0.05 cm-1 at 3500 nm for 

radii 16.9R   µm.   

 

 

Figure 4.20. Example straight coupler simulated using Lumerical varFDTD.  Left: Schematic 

of simulated add-drop ChG-on-MgF2 ring resonator.  Right inset: Cross section of a coupling 

region showing waveguide dimensions, with gap distance xgap. 

 

 The bus-to-ring power coupling coefficient was calculated as a function of the gap distance 

between the ring resonator and bus waveguide, using Lumerical’s varFDTD solver in the MODE 

Solutions package.  (The ring resonators, ≥100 µm3, were too large for efficiency 3D FDTD, given 

the large simulation volume required.)  By varying the gaps for given bus waveguide widths, a 
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range of acceptable coupler designs were found for the anticipated possible range of waveguide 

losses (See Figures 4.20 and 4.21).   

 
Figure 4.21. Plot of extracted coupling strength a function of bus-ring gap distance at 

λ=3.5µm. Coupling strength is simulated as a function of bus-ring gap, using ring radius R=30 

µm, 1220 nm (W) x 520 nm (H) ring cross section, and 1120 nm bus waveguide width.   

 

 

Table 4.2.  Summary of coupling gap designs for 1220 nm (W) x 520 nm (H) Ge-Sb-

Se rings at λ=3.5µm 

Radius 

(µm) 

FSR 

(GHz) 
Weak xgap (µm) Critical xgap (µm) 

30 507 2.02-2.76 1.13-1.46 

60 253 1.96-2.68 1.09-1.40 

100 152 1.84-2.57 1.04-1.43 

 

  

 Our final mid-infrared designs featured rings with 30 micron radius, along with larger 

rings of radii of 60 and 100 microns, and variety of coupling gaps to cover a range of possible 

losses (see Table 4.2).   

4.3.3 Ring resonator fabrication 

 The ring resonators designed for operation at 1550 nm (described in Section 4.3.1), were 

fabricated in collaboration with Dr. Wounjhang Park, Dr. Gumin Kang, and Michael Grayson at 
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the University of Colorado Boulder.  The process flow for fabrication of ring resonator samples 

was analogous to the earlier process used for fabrication of sub-micron waveguides, and is 

illustrated in Figure 3.16.  A bilayer resist consisting of PMMA and MMA/PMMA is spun onto a 

substrate, consisting of a 300 µm-thick Si wafer with 3 µm-thick SiO2 layer on top, from University 

Wafer.  Glass pipettes, compatible with PMMA, are used and e-beam exposure conditions were 

optimized (1500 uC/cm) to yield a clean pattern and reduce contaminants.  Following e-beam 

lithography and development, Ge-Sb-Se is thermally evaporated, and lift-off is used to remove the 

resist and produce ring resonators with cross-sectional dimensions of 800 nm (W) by 330 nm (H).  

E-beam lithography was carried out using a Vistec EBPG5000 e-beam lithography system at the 

Minnesota Nano Center at the University of Minnesota out by Kevin Roberts and Dr. Greg 

Cibuzar.  The fabricated sample included ring resonators, as well as straight waveguides of various 

widths, in order to compare losses to previous samples fabricated at the University of Washington.   

4.3.4 Ring resonator characterization 

Near-infrared ring resonators and waveguides, fabricated by e-beam lithography, thermal 

evaporation, and liftoff, were characterized from 1500-1630 nm.  The experimental setup for 

optical characterization is illustrated in Figure 4.22.  To characterize the Q  of the ring resonators, 

light from a sub-MHz linewidth, tunable laser (Yenista TUNICS, 1500 ≤ λ ≤ 1630 nm) is coupled 

on and off chip using lensed fibers (Lase Optics, 1 µm spot diameter, 12-14 µm working distance, 

part # LF-SM-SC-01-SMF-28-FC/APC), and the transmission is monitored as a function of 

wavelength using a swept-wavelength interferometer system (Yenista CT400).  The polarization 

of the input light is controlled using fiber polarization paddles (Thorlabs FPC562).  Both the taper 

and wedge resonator are mounted on 3-axis piezo-actuated stages (Thorlabs MAX312D) with 20 

nm resolution, and imaged from above using a microscope (See Appendix G for components).     
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Figure 4.22. Ring resonator coupling schematic.  Light from a tunable, narrow-linewidth laser 

is coupled to and from the chip using lensed fibers, mounted on a piezo-actuated 3-axis stage and 

positioned one working distance (12-14 µm) from the chip.  A polarization controller is used to 

optimize the polarization.  The transmission vs. wavelength is monitored using a swept-

wavelength interferometer system.   

 

 

 

Figure 4.23.  Average TE propagation loss vs. waveguide width for various samples.  E-beam 

lithography was performed at the University of Minnesota for samples 1 and 2 (same conditions), 

and at the University of Washington for sample 3.  Chalcogenide waveguide samples (height of 

330 nm) from two different batches, fabricated at the University of Minnesota, exhibit losses 

ranging from 7-10 dB/cm.  Errors are estimated from the standard deviation.  This loss is within 

the uncertainty of loss from earlier sample (height of 340 nm) fabricated at the University of 

Washington, using normal writing conditions.    
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Linear propagation loss of straight waveguides was measured using the scattered light 

method.  The TE propagation loss is shown in Figure 4.23 as a function of waveguide width (for 

fixed height of 330 nm), averaging over 8-9 waveguides for each data point.  Error bars are 

estimated using the standard deviation of the measurements.  For comparison, the loss of a previous 

waveguide sample fabricated at the University of Washington (with fixed height of 340 nm) is also 

shown.  Average propagation losses for the samples consistently range from 7-10 dB/cm, even for 

two different fabrication runs at the University of Minnesota.  Additionally, taking the uncertainty 

into account, the measured loss is comparable to the loss of previous samples fabricated at the 

University of Washington.   

 

Figure 4.24.  Near-infrared transmission vs. wavelength for Ge-Sb-Se ring with 6 µm radius.  
Six resonances are observed over the transmission scan, with a free spectral range (FSR) of roughly 

21 nm.  Large, oscillatory parasitic background with ~40 nm period is likely caused by 

wavelength-dependent polarization effects in the experimental setup. 

 

 The quality factor of fabricated ring resonators was characterized through measurements 

of transmission vs. wavelength.  Here, all-pass resonator structures consisting of a single bus 

waveguide and ring resonator with 6 µm radius, were utilized.  An example transmission plot for 

a 6 µm radius ring is shown in Figure 4.24.  Although there is substantial oscillatory background, 
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six resonances can be observed, with free spectral range (FSR) of roughly 21 nm.  The magnitude 

of the background ripple and shape do not fit well to a Fabry-Perot effect.  Instead, the background 

is likely due to wavelength dependent polarization in the setup.  We are exploring options to 

resolve this.  One additional cause of background ripple may be due to parasitic modal coupling 

to a higher order mode [224].  Although the ring dimensions were designed to support one TE and 

one TM mode, the design assumed the bulk refractive index.  Updating the calculations to use Ge-

Sb-Se thin film material dispersion from ellipsometry measurements instead of bulk material 

dispersion, the 800 nm x 330 nm dimensions support two TE modes and one TM modes, though 

the second TE mode is very weakly guided, resulting in high bend loss.   

 

Figure 4.25.  Lorentzian fit to resonance for an all-pass ChG ring with 6 µm radius.  An all-

pass ring resonator configuration was used, with a single straight bus waveguide.  From the fit, 

Qloaded is 6.0x103, the coupling coefficient τ is 0.9837, and the power coupling coefficient a is 

0.9788.   

 

 A resonance and corresponding Lorentzian fit are illustrated in Figure 4.25.  From fits to 

multiple resonances from multiple samples, loadedQ  ranges from 0.5 to 1x104 and intQ  ranges from 

1 to 2x104 are obtained.  These measurements were consistent between two different sample 
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batches (using same fabrication conditions) with multiple ring resonators.  Note that the measured 

intrinsic Q  corresponds to losses ~ 25-50 dB/cm, roughly 3-6x higher than measured loss in 

straight waveguides.  Calculations suggest radiative loss due to bending is negligible, ~3x10-6/cm, 

corresponding to radiation Q  of 4x1010.  There are a few possible causes of the increased loss 

observed in the ring resonators, including pattern discretization and fabrication issues, as well as 

changes in mode profile from bending.   

 

 

Figure 4.26.  Schematic of pattern discretization in a ring resonator.  Curved patterns can 

become discretized and less smooth if not enough vertices are used in the .GDS file, or if e-beam 

conditions (such as beam size and step size) are not optimal [167].   

 

 Pattern discretization is illustrated in Figure 4.26.  In particular, curved patterns can 

become discretized if too few vertices are used in the .GDS file, or if e-beam conditions (such as 

beam size and step size) are not optimal [167].  This discretization effect could cause rougher 

edges, increasing the scattering loss for curved structures.  To explore discretization in the samples, 

SEM images of rings were examined (See Figure 4.27).  Although clear examples of discretization 

were not observed, small residue ~30-100 nm in diameter was noted near the rings.  This residue 

may lead to increased roughness, thereby increasing scattering loss.  The residue was not observed 
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near the simple straight waveguides on the sample.  An investigation to better understand the cause 

of the residue, and how to best remove it, is ongoing.   

 

Figure 4.27.  Scanning electron micrographs (SEMs) of ring resonator sample.  Left: Ring 

resonator SEM. Right: High-magnification SEM of portion of ring.  No clear evidence of 

discretization exists.  Undesired residue, in the form of small dots with ~30-100 nm diameter, is 

observed near ring structures on the sample.   

 

 Changes in mode profile from bending can also cause increased loss in rings compared to 

straight waveguides.  As a waveguide is bent, the mode profile shifts, increasing the strength of 

the electric field at the outer edge of the waveguide as the waveguide is bent more tightly.  This 

effect is illustrated in Figure 3.2.  This enhanced field at the rough sidewall would cause more 

scattering loss, resulting in higher propagation loss.  To explore this mode profile effect, larger 

ring resonators on the same chip were also examined.  Preliminary data on a larger add-drop ring 

resonator with radius of 20 µm is shown in Figure 4.28.  A fit to the transmission spectra at 1616.57 

nm yields 
4 of 3.4x10loadedQ  and 

4

int  of 8.3x10Q , corresponding to a propagation loss of 6 dB/cm, 

within the error of the loss measured in comparable straight waveguides.  The higher quality factor 
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measured in 20 µm rings suggests that the bent waveguide mode profile may be the cause of the 

reduced Q in the 6 µm rings.   

 

Figure 4.28.  Transmission spectra from drop port of 20 µm add-drop ring resonator.  Ring 

resonator has 20 µm radius with cross section dimensions of 800 nm (W) by 330 nm (H).  Coupling 

gap distance is 550 nm, and bus waveguide dimensions are 700 nm (W) by 330 nm (H).  Fit to 

data yields 
4 of 3.4x10loadedQ and 

4

int  of 8.3x10Q corresponding to a propagation loss of 6 dB/cm.  

Propagation loss in ring is within error of measured loss in 800 nm (W) by 330 nm (H) straight 

waveguides.   

 

4.4 Conclusion 

 To summarize, chalcogenide ring resonators were designed with dimensions optimized for 

four-wave mixing efficiency at 1.55 and 3.5 μm.  The coupling between bus waveguides and ring 

resonators was simulated and designed for weakly coupled resonators for quick Q   measurements, 

as well as critically coupled resonators for optimal power transfer for nonlinear effects.  First-

generation ring resonators with 6- μm radius are shown to have loadedQ of 0.5-1x104 and intQ of 1-

2x104.  The measured intQ corresponds to losses ~25-50 dB/cm, ~3-6 times higher than propagation 

losses measured in straight waveguides on the same chip.  The larger measured loss in the small 

ring structures is likely due to stronger electric field at the rough sidewalls for tightly bend 

waveguides, given higher intQ  ~8.3x104 measured in larger rings with 20-µm radius.  Scanning 
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electron micrographs also reveal residue near some of the ring structures, a possible cause of 

increased roughness.  Low Q in the small ring resonators prohibited initial four-wave mixing 

measurements.  In the future, one could optimize fabrication conditions to remove this residue and 

improve intQ , or explore larger ring resonators using more power, in order to enable nonlinear 

optical demonstrations in chalcogenide ring resonators.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



119 
 

 

 

 

5. GE-SB-SE WEDGE RESONATORS 

5.1. Overview 

 High-Q, hybrid chalcogenide-silica wedge resonators were designed, fabricated, and 

characterized at 1.55 µm.  Section 5.2 introduces wedge resonators and provides motivation for 

this work.  Section 5.3 describes the design and fabrication of hybrid chalcogenide-silica wedge 

resonators, and Section 5.4 summarizes Q measurements in the hybrid wedge resonators.  Large 

46.5 µm diameter resonators exhibited loaded Qs up to 1.5x105.  Section 5.5 describes thermal 

characterization of the wedge resonators with an average thermal resonant wavelength shift of 60.5 

pm/C, in good agreement with theoretical predictions.   

 This work was performed in collaboration with Professor Wounjhang Park, Dr. Gumin 

Kang, and Michael Grayson at the University of Colorado Boulder, along with Dae-Gon Kim and 

Dr. Hansuek Lee at Korea Advanced Institute of Science and Technology.  In particular, Dr. 

Gumin Kang designed the wedge and athermal microresonators.  Dae-Gon Kim, Dr. Gumin Kang 

and Michael Grayson fabricated the microresonators.  Additionally, Dr. David Carlson and Dr. 

Scott Papp at NIST generously provided silica fiber tapers and a mount to couple to the 

microresonators. 

 This work was supported in part by AFOSR under Grant FA9550-15-1-0506, in part by 

the DARPA SCOUT Program through ARO under Contract W911NF-15-1-0621, and in part by 

the Asian Office of Aerospace R&D (FA2386-16-1-4139).  Additionally, equipment funding was 
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provided in part by the Defense University Instrumentation Program (DURIP) Award ONR 

N00014-16-1-2544.  This chapter is adapted from [212].   

5.2 Wedge resonator motivation 

 Given the lack of mature chalcogenide fabrication technologies, particularly etching 

recipes, obtaining ultrahigh- Q , chip-compatible microresonators can be a considerable challenge.  

To date, the highest Q  obtained in a chalcogenide microresonator was ~7x107, which utilized laser 

reflow on high purity As2S3 fiber [235].  However, these devices are not integrated and lack options 

for dispersion engineering.  Our first generation ring resonators exhibited intrinsic Q s up to 

8.3x104.  In the near-infrared, state-of-the-art chalcogenide ring resonators have revealed intrinsic 

Q s up to 7.5x105 in 50 µm radii Ge-Sb-S microrings [236].  However, these devices require careful 

optimization of fluorine plasma dry etching conditions, which is material dependent.   

 One promising microresonator geometry is the wedge resonator, which is illustrated in 

Figure 1.4.  By optimizing the etching process and oxide growth conditions, ultrahigh- Q  silica 

wedge resonators have been demonstrated with Q s up to 8.75x108 [42].  Importantly, the 

fabrication process for high- Q  wedge resonators offers precise dimensional control since it does 

not rely on a reflow technique, which can deform the resonator [42].  Control of dimensions, such 

as wedge angles, has been shown to be a useful tool to engineer the wedge resonator dispersion 

[42,213].  A main disadvantage of the wedge resonator geometry is that fabricating side-coupled 

waveguides can be a challenge.  As a result, to couple to wedge resonators, tapered fiber coupling 

schemes are often used, which are not particularly robust and require precise alignment.  However, 

tapered fiber coupling can enable tunable coupling gaps and strengths.  Additionally, Ramiro-

Manzano et al. have demonstrated that fabricating vertically-coupled waveguides, integrated with 
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wedge resonators is feasible [214], offering more stable coupling at the cost of increased 

fabrication complexity.   

 In order to improve Q  in chalcogenide (ChG) microresonators, a new type of hybrid 

resonator is developed by extending the process that had been developed for ultrahigh-Q  silica 

wedge resonators [42].  For these devices, a layer of Ge-Sb-Se glass is thermally evaporated on 

silica wedge resonators, utilizing the smooth surface obtained from the optimized silica etching 

process for reduced roughness.  We demonstrate high-Q  hybrid chalcogenide-silica wedge 

resonators, operating at near-infrared wavelengths.  

5.3 Wedge resonator design and fabrication 

  

Figure 5.1 Fabrication process flow for hybrid chalcogenide-silica wedge resonators.  

Photoresist is spin-coated onto a SOI wafer, and disks are patterned with photolithography.  Wet 

etch (using buffered hydrofluoric solution) is used to etch the sides of the silica resonator.  

Photoresist is removed, and the Si is undercut using dry etch.  A thin, 125-nm-thick film of 

chalcogenide (ChG) is thermally evaporated to form a hybrid chalcogenide-silica wedge resonator.   

 

 Hybrid wedge resonators were fabricated as a collaboration between Professor Hansuek 

Lee’s group at KAIST and Professor Wounjhang Park’s group at the University of Colorado 
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Boulder.  The fabrication process flow is illustrated in Figure 5.1.  Two-micron-thick silica wedge 

resonators of various diameters were prepared by Professor Hansuek Lee’s group at KAIST.  Disk-

shaped photoresist patterns are first defined by photolithography on the silicon wafer with 2 µm-

thick thermal oxide.  Then, the sample is immersed in a buffered oxide etchant (BOE) to produce 

circular silica wedges.  This wet etch step ensures that the silica surface is extremely smooth.  

(With optimized processing, RMS roughnesses of 0.46 to 0.75 nm have been achieved on the 

wedge part of the resonators [42].)  After removing the photoresist using organic solvent, the 

silicon substrate is dry-etched with xenon difluoride (XeF2) to create air-suspended wedge 

structures.  Finally, a 125 nm-thick chalcogenide glass film is thermally evaporated onto the silica 

wedge at a base pressure of 3 x 10-7 Torr, resulting in hybrid chalcogenide-silica wedge resonators 

as illustrated in Figure 5.1 [212].   

 

 

Figure 5.2 Simulated fundamental mode profiles of hybrid wedge resonators.  The white solid 

outline indicates the silica wedge and ChG film.  Left:  Fundamental mode profile for wedge 

resonator with 13.5 µm diameter.  Right: Fundamental mode profile for wedge resonator with 46.5 

µm diameter.  Note that the larger resonator provides better confinement of the mode to the 

chalcogenide layer.  Modified from [212]. 
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         Hybrid resonators with two outer diameters were fabricated:  46.5 µm and 13.5 µm.  The 

46.5 µm-diameter resonators supported over eight TE radial mode families, and the 13.5 µm-

diameter resonators supported just two TE radial mode families.  The 125 nm chalcogenide film 

thickness was chosen to reduce the effective mode index, allowing for phase-matching and 

efficient coupling with relatively standard silica fiber tapers.  (Coupling efficiency depends on the 

field overlap of the fiber mode with the resonator mode, along with the phase-mismatch between 

these modes [216].  Since efficiency decreases exponentially with the square of the phase 

mismatch, similar effective indices are desired for efficient coupling [216,217].)  Given the very 

thin chalcogenide layer, the hybrid resonators did not support TM radial mode families and only 

supported TE radial mode families.  The fundamental optical mode profiles for the two hybrid 

resonators, shown in Figure 5.2, were simulated by 2D axisymmetric eigenmode analysis by Dr. 

Gumin Kang using COMSOL.  Scanning electron micrograph (SEM) images of the hybrid wedge 

resonators are shown in Figure 5.3, showing a tilted view as well as the cross section of the wedge 

resonator [212].   

 

Figure 5.3 Scanning electron micrographs (SEMs) of hybrid wedge resonators.  Left: Tilted 

SEM of a hybrid chalcogenide-silica wedge resonator, with 46.5 µm diameter.  Right: SEM of 

cross section of wedge resonator.  From [212].  
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5.4 Q measurements in wedge resonators 

A schematic of the setup used to couple to wedge resonators is shown in Figure 5.4.  

Tapered fibers, which can be fabricated by heating and pulling standard SMF-28 fiber down to 

diameters ~1-3 microns, are used to couple to the chalcogenide wedge resonators.  Tapering the 

fiber produces a mode which is less well confined to the optical, fiber, allowing light to 

evanescently couple to a resonators when placed in close proximity to the fiber.  The efficiency of 

this coupling will depend on the spatial mode overlap and the change in effective index, or phase 

mismatch, between the fiber and resonator modes [216,217].  For this project, silica fiber tapers 

were generously provided by Dr. Scott Papp and Dr. David Carlson at NIST Boulder.  To couple 

to the wedge samples, the requested fiber taper dimensions were minimum diameter of 1-2 μm, 

and 1 cm length with diameter <10 μm to accommodate the sample geometry.  

 

Figure 5.4 Wedge resonator coupling schematic.  Light from a tunable, narrow-linewidth laser 

is polarization-controlled and launched into a tapered fiber, positioned within µm of a wedge 

resonator, mounted on a piezo-actuated 3-axis stage for precise alignment.  Light couples to the 

wedge resonator, and the transmission vs. wavelength is monitored using a swept-wavelength 

interferometer system.  The setup is placed in an enclosure to prevent drift from air currents.   
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To characterize the Q  of a wedge resonator, light from a sub-MHz linewidth, tunable laser 

(Yenista TUNICS, 1500 ≤ λ ≤ 1630 nm) is coupled into a fiber taper positioned hundreds of nm 

from a wedge resonator, and the transmission is monitored as a function of wavelength using a 

swept-wavelength interferometer system (Yenista CT400).  The polarization of the input light is 

controlled using fiber polarization paddles.  Both the taper and wedge resonator are mounted on 

3-axis piezo-actuated stages with 20 nm resolution, and imaged from above using a microscope 

(See Appendix G for components).  The coupling setup is surrounded by a sealed plastic enclosure 

to block air currents and reduce taper fiber drift.  A photo of the setup, along with a microscope 

image of a wedge resonator and fiber taper, are shown in Fig. 5.5.   

 

        

Figure 5.5. Coupling setup and wedge resonator.  Left:  Photo of coupling setup.  Both wedge 

resonator sample (mounted on aluminum mount) and fiber taper (mounted to U-shaped aluminum 

mount) are on 3-axis piezo-controlled stages for precise alignment.  Right:  Microscope image of 

wedge resonator (46.5 µm diameter) and fiber taper (2.8 µm diameter).   

 

 Light was coupled to larger wedge resonators with 46.5 µm diameter.  An example 

transmission spectrum and rough fit to resonance are shown in Figures 5.6 and 5.7.  From fits to 

resonances, loaded Q s up to ~1.5 x 105 are measured.  The average loaded Q  is ~6.4x104, based 

on measurements on 3 adjacent resonators, using ~12 fitted resonances each.  Intrinsic Q s up to 

~1.6 x 105 are measured.  However, identifying the modes is challenging given the presence of 

10µm 
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over eight nearby mode families.  As such, smaller wedge resonators with 13.5 µm diameter, which 

feature only two radial mode families, were also characterized.   

 

Figure 5.6. Transmission vs. wavelength for 46.5 μm diameter hybrid wedge resonator.  

While the FSR of the fundamental mode family is expected to be ~8 nm, multiple nearby higher 

order modes are also observed in the scan.   

 

 

Figure 5.7. Fit for one resonant mode from the 46.5 μm diameter hybrid wedge resonator.  

From measurement of the resonant wavelength and full-width-half-max (FWHM), a total Q  factor 

of ~2.1 x 104 is obtained.   
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 Coupling to the smaller resonators with 13.5 micron diameter proved to be difficult, 

because the small resonators were ~4.8 µm from the substrate, leaving less clearance for 

positioning the fiber taper.  (For comparison, the larger 46.5 µm-diameter resonators were ~ 14.6 

µm from the substrate.)  To mitigate this issue, the fiber taper was mounted on a tip/tilt mount for 

more precise fiber angle adjustments, and the substrate was cleaved from its initial 5 mm width to 

a 1.2 mm width.  This enabled positioning of the fiber close enough to allow light to couple to the 

resonator.   

Figure 5.8. Transmission vs. wavelength for 13.5 µm diameter chalcogenide wedge resonator.  
Both the first-order and (weaker) second-order radial mode families are observed.  The FSR of the 

fundamental mode family is expected to be ~30.6 nm, close to the measured FSR of ~30 nm.   

 

 A full transmission spectra from a smaller resonator is shown in Fig. 5.8.  Coupling is 

achieved for two main mode families, the first- and second-order radial modes.  From fits on these 

smaller devices (See Fig. 5.9), loaded Q s up to ~4.8 x 103 are measured.  Averaging over multiple 
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critically-coupled resonances, the average intrinsic Q  is found to be ~9.2x103.  Simulations 

indicate radiation Q s >107, and the bulk Ge28Sb12Se60 absorption limited Q  factor is 1.6x106, 

using the 0.3 dB/cm linear absorption measured at 1550 nm [140].  Given the significantly lower 

Q s measured for the wedge resonators with diameters of 13.5 µm, Q s are likely limited by 

scattering loss.  The two different resonators exhibit a similar level of RMS edge roughness, 2.2 

nm and 1.6 nm, as measured from SEM images of the large and small resonators, respectively.  

However, the 13.5 µm wedge resonators are expected to be more influenced by scattering loss than 

the 46.5 µm resonators, given the stronger electric field of the mode at the chalcogenide-silica and 

chalcogenide-air interfaces (See Figure 5.2).  Moreover, the optical field is shifted away from the 

lithographically defined rough edges as the size increases, which leads to reduced edge scattering 

loss [218].  Fabrication of second-generation wedge resonators, which will optimize fabrication 

conditions to reduce surface roughness, is currently underway.   

 
 

Figure 5.9. Fit for critically-coupled mode from the 13.5 μm diameter hybrid wedge 

resonator.  The fit yields a total (loaded) Q factor of ~4.6 x 103, and coupling parameter τ of 

0.9826, and power attenuation coefficient a of 0.9826.  The intrinsic Q is 9.2 x 103. 
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 We note that nonlinear device efficiencies have an important tradeoff between loss and 

nonlinearity.  For example, the seeded four-wave mixing efficiency scales roughly as the square 

of both 2n  and Q .  At 1550 nm, since Ge-Sb-Se bulk glass has ~360 times higher 2n  than fused 

silica, we would require Q ~2.43x106 in chalcogenide devices to match efficiencies predicted in 

silica devices with Q ~8.75x108, assuming dispersion has been engineered for phase-matching.  

Achieving such Q s in chalcogenide may require not only optimized silica wedge etching, but also 

reduction of impurities which contribute to intrinsic absorption in chalcogenide glass [235].   

 

Figure 5.10. Inverted-plate ChG resonator for mid-infrared operation.  (a) Schematic of 

inverted-plate ChG resonator, fabricated by undercutting the SiO2 layer of hybrid ChG-silica 

wedge resonators.  (b) Scanning electron micrograph (SEM) of wedge resonator before oxide 

undercut.  (c) SEM of inverted-plate ChG resonator after oxide undercut, for mid-infrared 

operation.   

 

 Although first generation hybrid resonators were demonstrated in the near-infrared, 

chalcogenide-based devices have attracted most interest in the mid-infrared, where many other 

materials lack transparency.  However, the SiO2 layer in the hybrid structures becomes lossy 

beyond ~3.4 m.  To extend our ChG-based wedge structures to operation in the mid-infrared, we 

can remove the lower oxide layer to create inverted-plate resonators, as shown in Figure 5.10.  To 

fabricate these structures, we begin with our standard hybrid wedge resonator fabrication process, 

as shown in Figure 5.1, and add a final oxide undercut step to remove the SiO2  [See Figure 5.10(a)].  
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We employed vapor phase HF etching method with optimized processing conditions to selectively 

remove underlying oxide without breaking the thin and brittle ChG layer.  A scanning electron 

micrograph (SEM) of the inverted-plate resonator after the final oxide undercut is shown in Figure 

5.10(c).   

 
Figure 5.11. Simulated fundamental mode properties of As2S3 chalcogenide fiber.  Plot of 

effective index and percentage of power of mode outside of fiber as a function of fiber diameter 

for As2S3 fiber at 1550 nm.  As2S3 fibers can provide high effective index and reasonable power 

available for coupling for diameters ~0.6-1.2 µm. 

 

 In the future, other fiber and sample geometries, such as U-shaped fiber tapers and pedestal 

strips, are under consideration to reduce taper-resonator coupling challenges presented.  

Additionally, we are collaborating with Dr. Tobias Kippenberg’s lab to obtain chalcogenide fiber 

tapers with high effective index to enable phase-matching to future high-index resonators.  

Chalcogenide-based fibers also offer good transparency for future mid-infrared demonstrations.  
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A mode solver from Lumerical was used to calculate the effective index and percentage of mode 

power located outside the fiber for various chalcogenide As2S3 taper diameters.  The results from 

these simulations are plotted in Figure 5.11.  Simulations show that As2S3 fibers can provide high 

effective index and reasonable power available for coupling for diameters ~0.6-1.2 µm. 

5.5 Thermal characterization of wedge resonators 

 The thermal response of the wedge resonators was characterized by measuring the shift in 

resonant wavelength as a function of temperature.  The sample was attached to a thermo-electric 

cooler (TEC)-based temperature-controlled mount using thermally conductive tape, and a 

thermistor was used to monitor the temperature of the mount (and Si substrate).  Light was coupled 

to a wedge resonator (diameter of 46.5 µm) using a silica tapered fiber, and transmission spectra 

were recorded as a function of temperature.   

 

 

Figure 5.12. Thermal characterization setup for wedge resonators.  The sample is mounted on 

a TEC heating/cooling element with thermally conductive tape.  The temperature of the TEC is 

controlled through a temperature controller.  A silica tapered fiber is used to couple light to and 

from the wedge resonator. Figure reproduced from [212].   
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 A schematic of the experimental setup is illustrated in Fig. 5.12.  Although the thermistor 

measured the temperature of the mount and base of sample, COMSOL simulations showed the 

difference in temperature between the base of the sample and the edge of the resonator was 

negligible over the range of temperatures studied, ~20°C-42°C.   

 The resonant wavelength increases as the temperature increases, as shown in Figure 5.13.  

A plot of the corresponding shift in resonant wavelength as a function of temperature reveals a 

thermal resonant shift dλ/dT of 60.5 pm/°C, corresponding directly to the slope of a linear fit to 

the data, as shown in Figure 5.14.   

 

 

Figure 5.13. Wedge resonator transmission spectra, taken at various temperatures.  

Transmission spectra were measured for a 46.5 µm-diameter hybrid chalcogenide-silica wedge 

resonator, at various temperatures.  The resonant wavelength increases as the temperature 

increases. 
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Figure 5.14. Shift in resonant wavelength as a function of temperature.  As the hybrid 

resonator is heated, the resonant wavelength increases linearly.  A linear fit to the data yields 

dλ/dT of 60.5 pm/°C.   

 

The resonant wavelength is given by  
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where R  is the radius, effn  is the effective index, and m  is the mode index.  In general, both the 

thermo-optic coefficient and thermal expansion can cause a shift in resonant wavelength from 

heating.  By simply differentiating Equation 5.1 with respect to temperature, one finds that the 

temperature-dependent wavelength shift is expressed as 

     
2

,
effres

eff

dnd dR
R n

dT m dT dT

   
  

 
           (5.2) 

where T  is the temperature, effdn
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is the thermo-optic coefficient of the resonator, and 
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thickness of chalcogenide layer in our resonator geometry, the contributions from thermal 

expansion of these materials are found to be negligible [153,189]. Therefore, the temperature 

dependence of refractive index can be approximated as 

      .
2

effdn m d

dT R dT




         (5.3) 

For full calculations of the contributions to a resonant wavelength shift from heating, see Appendix 

F.  Using Equation 5.3 and the results of the temperature-dependent measurements, an average 

thermo-optic coefficient of the resonator, effdn

dT
of 5.5±0.4x10-5/K is calculated.  This is reasonable, 

considering the thermo-optic coefficients of Ge28Sb12Se60 (
57.44x10 / K ) and fused silica (~1x10-

5/K) [153,219].  Based on the fraction of modal power in the chalcogenide, silica, and air layers of 

the resonator, effdn

dT
 of 5.2x10-5/K is predicted theoretically, which is in good agreement with the 

average measured value.   

 Although a thermal resonant wavelength shift could be used as a temperature sensor, for 

other applications, this effect is undesirable.  To reduce the thermal resonant wavelength shift, an 

athermal, three-layer hybrid wedge resonator design has been explored.  Since both Ge28Sb12Se60 

and fused silica have a positive thermo-optic coefficient, including a third top layer material with 

a negative thermo-optic coefficient can help counter the thermal shift, compensating for thermal 

fluctuations from the environment or incident laser powers.  Some polymers such as PDMS, 

PMMA, and polystyrene have been used as a cladding layer to eliminate thermal effect [220,221].  

However, polymers have low thermal stability and suffer from poor thickness control.  In contrast, 

inorganic titanium dioxide (TiO2) is very stable at high temperatures and precise thickness control 

can be obtained with CMOS compatible technologies.  Moreover, at 1550 nm TiO2 has a relatively 
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high refractive index ~2.4, which can pull the optical mode from the lower layers towards the 

upper TiO2 cladding layer, reducing the thermal fluctuation significantly [222].    

 The optical mode profile of 3-layer hybrid resonator with TiO2 cladding layer was 

simulated by Dr. Gumin Kang using COMSOL (See Figure 5.15).  The light confinement factors, 

x , of air, ChG, TiO2, and SiO2 were calculated by integrating the computed light energy over 

each layer.  The effective thermo-optic coefficient and temperature dependent resonance shift of 

the device can be derived based on these simulations and Eq. (5.4), taking bulk thermo-optic 

properties into account. 

                   
2 2

2 2
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dn dn dn dn dn

d dT dT dT dT

       
           

        
                       (5.4) 

where x  is the power confinement in material x, and 
x

dn

dT

 
 
 

is the thermo-optic coefficient of 

material x [223].  Figure 5.15(b) shows the calculated thermal drift of the resonance wavelength 

for different TiO2 cladding thickness. The simulation results show that the thermo-optic properties 

of the resonator can be effectively engineered by changing the thickness of TiO2 cladding layer.  

For the resonator without TiO2 cladding layer, thermal shift of the resonant wavelength is 

25.4x10 nm/K.    However, the thermal shift can be reduced to 1.7 x 10-4 nm/K in the device with 

135 nm TiO2 cladding layer.  The result shows that with the addition of TiO2, the temperature 

insensitivity of the device can be improved by more than two orders of magnitude. 
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Figure 5.15 Athermal three-layer hybrid wedge simulation.  (a) Cross-sectional mode profile 

in the athermal 3-layer hybrid resonator, consisting of lower SiO2 layer, 125 nm-thick Ge-Sb-Se 

chalcogenide layer, and TiO2 upper cladding.  (b) Thermal shift of the resonant wavelength for the 

device with different TiO2 thickness.  The thermal resonance shift is minimized for TiO2 thickness 

of 135 nm.  Reproduced from [212]. 

 

5.6 Conclusion 

 A simple hybrid resonator design was reported, composed of a thin ChG layer deposited 

on a silica wedge resonator.  The well-developed etch recipes for silica enable an extremely smooth 

surface of a silica wedge can be obtained, and the ChG overlayer deposited on it naturally forms a 

smooth surface.  High-Q chalcogenide-silica hybrid wedge resonators were demonstrated, 

achieving intrinsic Qs up to 1.6 x 105.  Smaller wedge resonators were shown to have significantly 

lower Q than larger wedge resonators, likely due to mode profile differences resulting in increased 

scattering.  The temperature dependence of the resonances was also characterized.  A thermal 

resonant wavelength shift of 60.5 pm/C was measured, primarily due to the thermo-optic 

coefficient and in good agreement with theoretical predictions.  To mitigate thermal effects in 

future devices, athermal 3-layer hybrid resonator designs were explored, featuring a TiO2 coating 

with negative thermo-optic coefficient to reduce the thermal resonant shift by over two orders of 
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magnitude.  Additionally, a modification of the hybrid wedge resonators to create inverted-plate 

ChG resonators was proposed to enable operation in the mid-infrared.   
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6. CONCLUSIONS 

6.1 Summary 

 With long-wavelength transparency, high nonlinearity, and amorphous structure, 

chalcogenides are ideally suited for integrated nonlinear optical devices operating in the near- and 

mid-infrared regions.  The chalcogenide glass Ge-Sb-Se was characterized in both bulk and 

waveguide forms, exploring the potential of a chalcogenide nonlinear photonic platform.  From z-

scan measurements at 1.03 µm using circularly polarized, ~200 fs pulses at 374 kHz, Ge28Sb12Se60 

exhibited a nonlinear refractive index ~130 x fused silica and a two-photon absorption coefficient 

of 3.5 cm/GW.  Given the large two-photon absorption coefficient, Ge28Sb12Se60 shows promise 

for optical limiting applications at 1 µm.   

 Single-mode, air-clad Ge28Sb12Se60 strip waveguides, fabricated with thermal evaporation 

and lift-off, were also demonstrated at 1.03 µm.  The nonlinear loss of these waveguides were 

shown to be similar to bulk samples, with differences attributed to small variations in composition 

of ~4 atomic % or less.  In the waveguides, the linear loss, 11.9 dB/cm on average, was dominated 

by scattering loss.  The nonlinear loss of the fabricated waveguides was 11.5 cm/GW, reasonable 

considering the enhanced two-photon absorption with the 37.4 MHz repetition rate, the overlap of 

the mode with the waveguide structure, and slight variations in composition.   
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 At longer wavelengths of 1.53-1.55 µm, further from the bandedge, the linear and nonlinear 

loss of strip Ge-Sb-Se waveguides was significantly reduced.  The average linear loss of 

waveguides, fabricated by photo- or e-beam lithography and liftoff, ranged from 4-6 dB/cm, and 

was still dominated by scattering loss at 1.53 µm.  The nonlinear loss of the waveguides fabricated 

with e-beam lithography was 0.0055±0.0004 cm/GW, in line with bulk values from literature.  

Using spectral broadening measurements, the nonlinear parameter of the waveguides was found 

to be 5.6±1.7 W-1m-1, ~4500 x that of standard single-mode fiber.  The corresponding nonlinear 

refractive index of the waveguides is significantly lower than what is expected from bulk, and 

annealing is being explored as a possible solution to improve the thin film optical properties.  In 

spite of this, the measured nonlinear parameter and FOM  indicates preliminary promise for 

nonlinear applications such as ultrafast switching at telecom wavelengths.   

 Ge-Sb-Se ring resonators were designed for maximum four-wave mixing efficiency at 1.55 

microns.  The waveguide cross sectional dimensions of the ring and bus waveguide couplers were 

adjusted to provide the desired dispersion and coupling strength, using a fully-vectorial mode 

solver and FDTD simulations.  First-generation rings with 6- μm radius were found to have loaded 

Q s of ~ 5x103-1x104, with intrinsic Q s up to ~1-2x104, corresponding to losses ~25-50 dB/cm.  

Considering the size-dependent intrinsic Q s , the higher measured loss in the small ring structures, 

is likely due to stronger electric field at the rough sidewalls for tightly bent waveguides.   

 High-Q hybrid chalcogenide-silica wedge resonators were also demonstrated.  First 

generation devices with 46.5 µm diameter exhibited intrinsic Q s up to 1.6x105, and smaller 13.5 

µm diameter devices had intrinsic Q s up to 9.6x103.  The smaller devices are expected to have 

higher loss than the larger devices, given the stronger electric field at the surfaces of the device, 

causing more scattering loss.  A second generation of wedge resonators is in progress, utilizing 
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optimized dry etch formulas for reduced roughness.  Thermal characterization of the wedge 

resonators was also performed, revealing a resonant wavelength shift of 60.5 pm/C, primarily due 

to the thermo-optic coefficient of the Ge-Sb-Se and silica.  In the future, athermal designs utilizing 

negative thermo-optic materials to mitigate this shift can be studied.     

 Finally, in the mid-infrared, new single-mode, air-clad Ge-Sb-Se-on-MgF2 waveguides 

were designed for operation at 3.5 µm, focusing on dimensions with near-zero dispersion for 

improved spectral broadening, compared to designs with no dispersion-engineering.  

Corresponding ring resonators were designed for optimized four-wave mixing efficiency at 3.5 

µm.  To date, other demonstrations of chalcogenide microrings have focused solely on linear 

properties and have failed to take advantage of the materials’ excellent nonlinear optical properties.  

With our Ge-Sb-Se chalcogenide resonator designs, we hope to demonstrate resonantly-enhanced 

nonlinear optics in a chalcogenide platform, providing a route to reduce thresholds through 

improved nonlinearity, and to extend nonlinear device operation further into the mid-infrared, 

where the chalcogenide platform maintains excellent transparency.   

 

6.2 Future directions 

      This research has raised multiple questions to investigate in the future.  Our initial z-scan 

experiments at 1 µm highlighted the fact that the photosensitivity of chalcogenide materials is not 

well understood.  Gaining a better sense of the exact origin and mechanisms behind this effect, 

along with developing models for how it scales with intensity and wavelength would aid 

researchers developing chalcogenides for practical applications.  One could use Raman 

spectroscopy or X-ray absorption spectroscopy to systematically explore changes in atomic 

structure in the materials, under a range of illumination conditions and wavelengths.  Examining 

various chalcogenide samples with different compositions may help give further clues to the 



141 
 

origins of photosensitivity, particularly if certain compositions are found to be more photostable 

than others.  Additionally, by exploring the time response of photosensitivity with a time-resolved 

technique, one may gain further insight into possible mechanisms that could act on the given time 

scale. 

 From our chalcogenide waveguide studies, we found that the nonlinear refractive index in 

thin film and bulk can vary quite drastically, indicating the importance of checking thin film 

properties when fabricating new devices.  We found at conferences that this is a widespread 

problem.  Our collaborators are just beginning to explore annealing as a potential solution.  In the 

future, the group plans to measure the nonlinearity of multiple waveguide samples as a function 

of annealing temperature, to determine optimal processing conditions which yield nonlinearity 

closest to bulk.   

 The Q  measured in our first-generation 6 µm rings prohibited an initial four-wave mixing 

demonstration.  To enable such a demonstration in the near future, one could utilize the higher Q

~8x104 measured in the larger 20 µm ring resonators, with an important revision of the chip layout.  

We suggest including add-drop, critically-coupled, 20 µm ring resonators, with just a single ring 

per input bus waveguide.  (The current layout utilized multiple rings per bus waveguide for loss 

measurements in the larger ring resonators.  While this was a compact, efficient layout for loss 

measurements, it reduced the power coupled to the ring and prohibited low power four-wave 

mixing demonstrations in the larger ring resonators.)   

 To further improve four-wave mixing efficiency, one could also explore approaches to 

increase Q .  Our waveguide and ring resonator work focused on single-mode strip waveguides, 

which offer substantial dispersion engineering through waveguide dimensions, along with good 
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confinement, enabling few µm-radii bends with negligible calculated radiation loss.  However, 

strip waveguides tend to have strong field along the full sidewalls of the waveguides, increasing 

scattering loss to values typically on the order of a few dB/cm or more.  Two waveguide geometries 

shown to reduce loss are rib and strip-loaded waveguides, with typical losses near or at the material 

loss limit, ~0.05-0.8 dB/cm [106,163].  Since the optical mode is not as strongly confined in these 

geometries, radiation loss from bending is more severe, requiring larger ring resonators to avoid 

bend loss.  Additionally, dispersion is more difficult to control.  However, through careful design, 

M. R. E. Lamont et al. has shown broadband dispersion engineering in rib waveguides [209].  To 

significantly reduce propagation losses and improve Q , further exploration of rib or strip-loaded 

waveguides may be a promising path.  Although using larger rings increases the mode volume, the 

improvement in Q  may easily compensate, improving the overall efficiency.  To explore this, one 

could design the dispersion and coupling of rib-based ring resonators, and then characterize Q  and 

the four-wave mixing efficiency.   

 While strip waveguide-based ring resonator dimensions were optimized for four-wave 

mixing in this research, one could imagine designing and optimizing resonators for other effects, 

such as stimulated Brillouin scattering, Raman scattering, rotation sensing, or switching.  The 

majority of this thesis work has focused on the near-infrared to leverage existing equipment and 

more readily available optical components.  However, we believe chalcogenides may be most 

useful in the mid- and long-wave infrared, where high quality optical materials are lacking.  For 

example, at ~10-12 µm, many commonly used materials, including Si, MgF2, and CaF2 are 

absorbing, while Ge-Sb-Se remains transparent.  We have successfully tested devices out to 

wavelengths ~1630 nm, and in the future, one could envision extending this work to longer 

wavelengths.  For example, sensing waveguides and resonators could be developed and tested to 
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more precisely detect various chemicals in the mid- and long-wave infrared, ~3-12 µm.  One could 

begin with Q  measurements to quantify the loss in basic resonator structures.  One could also 

design and test waveguides for sensing, considering surface-enhanced infrared absorption 

(SEIRA) as a potential method for boosting sensitivity.  Alternatively, one could design ultrafast 

chalcogenide-based switches and modulators in the mid-infrared, where components are limited.     

 The results presented show Ge-Sb-Se to be a promising candidate for nonlinear integrated 

optics, featuring high nonlinearity and low nonlinear loss at telecom wavelengths.  Future research 

at the University of Colorado Boulder will build on this work, exploring intricacies of thin-film 

devices and processing, and developing compact, low-threshold nonlinear optical devices in the 

near- to long-wave infrared.   
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Appendix A 

Circuit schematic for pulse-picking 

 Shown in Figure A.1 is the schematic for the circuit used for reduced repetition rate z-scans 

(described in Chapter 2).  This circuit converts a photodiode signal to a TTL (0-5V) trigger signal 

for the AOM pulse picker driver, at reduced repetition rate 100 times lower than input repetition 

rate.  An input signal from a photodiode, at the repetition rate of the laser, is provided to a high 

speed comparator (Maxim Integrated, MAX9010, designed for circuits up to 200 MHz) and 

compared with a reference voltage level, to provide a clean, TTL-compatible signal at the 

repetition rate of the laser.  This is sent to a counter (NXP USA Inc., 74HCT4059N), which is 

wired to divide down the repetition rate by a factor of 100.  Protection circuitry is included to 

prevent the RF driver from always being on, by monitoring the average of the counter output with 

a low pass filter, and passing a second comparator output to an AND gate (NXP USA Inc., 

74HCT08N).  (Note that if the AOM received constant RF power, it would be irreparably 

damaged.) If the average power is at or below an acceptable level, then the circuit will output a 

series of high speed, low duty cycle pulses synchronized to the laser.  If the average power exceeds 

an acceptable level, then the circuit will output 0V, still safe for the RF driver.  Note that the 

programmable counter can be re-wired to divide by other fixed values.   
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Figure A.1. Circuit schematic for driving pulse picker.  Illustrates circuit used to generate low 

duty-cycle trigger signal necessary to drive acousto-optic modulator to pick pulses.   
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Appendix B 

Z-scan fitting procedure 

 Open aperture z-scan traces were fit numerically to the following fit equation using Origin 

[113]: 
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Here, z is the sample’s distance from focus, and 0 ( )q z  is given by 
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where 0I   is the peak on-axis intensity, w  is the beam waist,    is the wavelength, and the effective 

sample length, (1 exp[ ]) /effL L     , where L   is the physical sample length and    is the 

linear absorption coefficient.  For the values of 0q  studied, all ≤0.59, using 9 terms in the sum 

provided accuracy within 0.05%.  For the fits, both   and w  were used as fit parameters.       

Closed aperture z-scan traces were fit numerically to the expression provided by Gu et al. 

shown below, assuming a Gaussian temporal profile [116]:   
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where 0/x z z  is the normalized sample position, 
2

0 0 /z w   is the confocal parameter, S  is 

the linear transmittance of the circular aperture, avgP  is the average incident power (taking into 

account front sample surface reflection), repR  is the repetition rate, and fwhmt  is the full-width at 

half maximum pulse duration.   

Mathematica’s NonlinearModelFit was used to fit data, summing terms up to 13M  , 

satisfying Gu’s optimum upper sum limit to ensure a high level of accuracy [116].  For fits, the 

values of   and w  determined earlier from open aperture scans were left fixed, and the phase 

shift 0  (directly proportional to 2n  ) was left as a free parameter.  An example Mathematica 

notebook file for fitting closed aperture z-scan data is provided below: 

(*Mathematica Code for fitting closed aperture z-scan*) 

(*Note:  First copy and paste data from Excel spreadsheet in 

between “” in the line below to import data:*) 

data=ImportString[“”,”TSV”]; 

 



168 
 

 

ClearAll[M, s, lambda, R, t, Trans, w, P, DD, S, A, gm, gn, T, 

nlm, B, n2, Intensity, phi, q, SumCheck]; 

 

(*Sets up constants from experiment in SI units,and how many 

terms to sum up to (M)*) 

M=13; 

s=0.376; (*aperture transmission*) 

R=37.5*^6; (*laser rep rate in Hz*) 

t=218*^-15; (*laser FWHM pulse width in seconds*) 

Trans=0.786; (*front fresnel reflectionthis is fraction of 

light that's actually incident on sample*) 

Leff=0.0019; (*effective sample length*) 

 

(*Constants, some from open ap fits, that change from trace to 

trace w/i experiment, in SI units*) 

P=6.0*^-3; (*Power in Watts, before taking into account fres 

reflection*) 

w=32.15*^-6;  (*beam waist in meters from 9 term open ap fit*) 

B=30.8*^-11; (*TPA coefficient in m/W from 9 term open ap fit*) 

 

(*Derived constants*) 

Intensity=2*P*Trans/(Pi*w^2*R*t)  

q=B*Intensity*Leff 

 

(*Intermediate calculations*) 

DD=(m+n+1)*(1+x^2)/(x+I*(2*m+1))/(x-I*(2*n+1)); 

S=(1-Exp[DD*Log[1-s]])/(DD*s); 

A=(m+n+1)^(-(1/2)); 

gm=I^m*phi^m*(x+I)/(m!*(x^2+1)^m*(x+I*(2*m+1)))*Product[1+I*(u-

0.5)*q/phi,{u,1,m}]; 

gn=Conjugate[I^n*phi^n*(x+I)/(n!*(x^2+1)^n*(x+I*(2*n+1)))*Produc

t[1+I*(v-0.5)*q/phi,{v,1,n}]]; 

 

T=Sum[Sum[gm*gn*A*S,{n,0,M}],{m,0,M}]; 

 

nlm=NonlinearModelFit[data,{Sum[Sum[I^m*phi^m*(x+I)/(m!*(x^2+1)^

m*(x+I*(2*m+1)))*Product[1+I*(u-

0.5)*q/phi,{u,1,m}]*Conjugate[I^n*phi^n*(x+I)/(n!*(x^2+1)^n*(x+I

*(2*n+1)))*Product[1+I*(v-0.5)*q/phi,{v,1,n}]]*(m+n+1)^(-

(1/2))*(1-Exp[DD*Log[1-s]])/(DD*s),{n,0,M}],{m,0,M}],phi<Pi, 

phi>0},{phi},x]; 

nlm["ParameterConfidenceIntervalTable"] 

 

(*Show[ListPlot[data],Plot[nlm[x],{x,-10,10},PlotRangeAll], 

FrameTrue,  
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PlotLabel"Closed Aperture Z-scan for IG5, 218 fs, 1.03 microns, 

P=6.00mW",  

PlotRange{{-10,10},{0.86,1.06}}, 

FrameLabel{"z/z0","Normalized Transmittance"}, 

LabelStyle{FontFamily->"Arial", 

FontSize14},GridLinesAutomatic]*) 

 

Show[Plot[nlm[x],{x,-

10,10},PlotRangeAll,PerformanceGoal"Quality"],ListPlot[data], 

 FrameTrue,  

 LabelStyle{FontFamily->"Arial", FontSize16}, 

 PlotLabel"Closed Aperture Z-scan for IG5, 218 fs, 1.030 

microns, P=6.00mW",  

 PlotRange{{-10,10},{0.86,1.06}}, 

 FrameLabel{"z/z0","Normalized Transmittance"}, 

 GridLinesAutomatic] 

 

nlm["BestFitParameters"] 
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Appendix C 

Waveguide design code 

C.1 Number of modes 

The following code shows how to calculate the number of modes over a range of 

waveguide cross sectional dimensions, using a mode solver developed by Dr. Milos Popovic [141].  

To do this, a rectangular waveguide cross section is input with corresponding refractive indices 

and dimensions, and the effective index effn of the first three modes is calculated at a chosen 

wavelength.  Modes will be guided if sub eff coren n n  , where coren is the refractive index of the 

core, and subn is the highest refractive index of the cladding (the substrate in the below example).  

Note that for our applications, we were interested in waveguides supporting one or two modes at 

most, so only the first three modes were calculated.  However, the code can easily be modified to 

calculate more modes. 

“Strip_1550nm_SiO2sub_SU8clad_nmodes.m” 

%Waveguide Top File 
%Commands to run Milos' 2d finite difference vectorial mode solver 
clear all 
clc 
%Parameters (lengths are in microns!) 
wavelength=1.55;    

  
%start clock to keep track of how long calculation takes 
tic 

  
%Define refractive index of materials at 1550 nm 
nChal=2.659633; 
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nSiO2=1.444;  
nSU8=1.575;  

  
%Assign specific materials for core, substrate, and cladding 
nSub=nSiO2; 
nCore=nChal; 
nClad=nSU8; 

  

  
r=0; 
c=0; 
count=0; 
w_array=zeros(1,8); 
h_array=zeros(1,7); 
n1_array=zeros(1,56); 
a_matrix=zeros(8,7); 
gamma_matrix=zeros(8,7); 

  
%For range of cross-sectional dimensions, solve for first 3 modes 
for w=0.500:0.1:1.2  
    c=0; 
    r=r+1; 
    w_array(1,r)=w; 
   for h=0.100:.1:0.700  
    c=c+1; 
    h_array(1,c)=h; 

  
w 
h 

  
xres=0.01;   %microns 
yres=0.01;   %microns 
xpad=2; %microns 
ypad=2; %microns 
Nmodes=3; %# of modes to solve for,  

  
%Run si solver 3d  (mode solver) to solve for propagation constants 
[N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength)); 

  
%View the modes 
SZ.F = F; SZ.N = N; modeview(SZ) 

  
%Calculate effective index of modes (scale the propagation constant) 

neff=F.beta/(2*pi/wavelength) 
count=count+1; 
n1_matrix(r,c)=neff(1,1); 
n2_matrix(r,c)=neff(2,1); 
n3_matrix(r,c)=neff(3,1); 
%n4_matrix(r,c)=neff(4,1); 
mode_matrix(r,c)=(neff(1,1)>nClad)+(neff(2,1)>nClad)+(neff(3,1)>nClad)%+(neff

(4,1)>nSub) 
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%Note:  As is, this code solves for the first 3 modes, so it can tell whether 

there are no guided modes, 1 guided mode, 2 guided modes, or ≥3 guided modes.  

In principle, if there is interest in multimode waveguides, one can adjust 

this code to solve for more modes (4, 5, 6, etc.). 

 

  
   end 
 end 
toc 

  
%Plot # of modes 
figure(3), imagesc([0.100 0.700], [0.5 1.2], mode_matrix); 
set(gca,'ydir','normal'); 

 

 

C.2 Second-order dispersion 

The following code shows how to calculate the second order dispersion over a range of 

waveguide cross sectional dimensions, using a mode solver developed by Dr. Milos Popovic [141].  

For each given cross section size, the propagation constant of the first guided mode is calculated 

at three nearby frequencies.  Note that at each frequency, the constituent materials’ refractive 

indices are updated using their given material dispersion, to include the effect of material 

dispersion.  A finite difference formula is used to calculate the second order derivative of the 

propagation constant with respect to frequency, which yields the second order dispersion, 

including both the effects of the waveguide geometry and material dispersion.  Using for loops, 

the process is repeated for a range of cross sectional dimensions. 

 

“Strip_1550nm_disp_fine_fixed_SU8clad.m” 

%Waveguide Top File 
%Commands to run Milos' 2d finite difference vectorial mode solver 
clear all 
clc 
%Parameters (lengths are in microns!) 
wavelength=1.550;    

  
tic 

  
%Case 2 
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nAir=1.0000;  
nSU8=1.575;  
nChal=@(x) sqrt(1+2.75840+3.09812*x^2/(x^2-0.399523^2)+1.64139*x^2/(x^2-

45.1071^2));%IRG25, ref index info/Schott; 
nSiO2=@(x) sqrt(1+0.6961663*x^2/(x^2-0.0684043^2)+0.4079426*x^2/(x^2-

0.1162414^2)+0.8974794*x^2/(x^2-9.896161^2)); %ref index info, Malitson;  
%Will set nCore, nSub later, and re-set each time I change the wavelength 

  
nClad=nSU8; %ignoring dispersion of SU8 for now, since unknown/un-measured at 

1550 

  

  
r=0; 
c=0; 
count=0; 
w_array=zeros(1,8);  
h_array=zeros(1,6);  
n1_array=zeros(1,48); 

  
disp_matrix=zeros(8,6); 
neff_matrix=zeros(8,6); 
ngroup_matrix=zeros(8,6); 

  

  
for w=0.500:0.100:1.200 
    c=0; 
    r=r+1; 
    w_array(1,r)=w; 
   for h=0.20:.10:0.70  
    c=c+1; 
    h_array(1,c)=h; 

  
w 
h 

  
xres=0.01; %microns 
yres=0.01; %microns 
xpad=2; %microns 
ypad=2; %microns 
Nmodes=1; %# of modes to solve for,  

  
%Run si solver 3d to calculate propagation constant  
nCore=nChal(wavelength); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength) 
[N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength)); 
%View the modes 
SZ.F = F; SZ.N = N; modeview(SZ) 

  
%Calculate effective index of modes (scale the propagation constant) 
neff=F.beta/(2*pi/wavelength) 
count=count+1 
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%Calculate the 2nd order dispersion (and 4th order dispersion and group index 

too now!) 
w2=2*pi*3e14/wavelength; 
dw=w2/1000; 

  
w1=w2-dw; 
w3=w2+dw; 

  
w0=w2-(2*dw); 
w4=w2+(2*dw); 

  
wavelength1=2*pi*3e14/w1; 
wavelength3=2*pi*3e14/w3; 

  
wavelength0=2*pi*3e14/w0; 
wavelength4=2*pi*3e14/w4; 

  
nCore=nChal(wavelength3); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength3); 
[N3,F3] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength3, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength3)); 

  
nCore=nChal(wavelength1); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength1); 
[N1,F1] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength1, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength1)); 

  

  
%calculate up to 2nd order dispersion using finite difference (B2) 
Dispersion_s_per_m2=(F3.beta-2*F.beta+F1.beta)/(dw^2)*(-

2*pi*3e14/(wavelength^2))*(10^12) 
B0_per_m=F.beta*1e6; 
B1_ps_per_m=(F3.beta-F.beta)/dw*1e6*(1e12) 
B2_ps2_per_m=(F3.beta-2*F.beta+F1.beta)/(dw^2)*1e6*((1e12)^2) 
% %Also calculate group index from 1st order dispersion 
n_group=B1_ps_per_m*1e-12*3e8 %unitless 
B2net_ps2_per_m=B2_ps2_per_m;  %%Note that material dispersion is already 

included! 

  
disp_matrix(r,c)=B2_ps2_per_m; 
neff_matrix(r,c)=neff; 
ngroup_matrix(r,c)=n_group; 

  
   end 
 end 
%  

  
figure(1), imagesc([0.200 0.700], [0.500 1.200], neff_matrix); 
set(gca,'ydir','normal'); 

  
figure(2), imagesc([0.200 0.700], [0.500 1.200], ngroup_matrix); 
set(gca,'ydir','normal'); 
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figure(3), imagesc([0.200 0.700], [0.500 1.200], disp_matrix); 
set(gca,'ydir','normal'); 

  

  

  
toc 

 

 

C.3 Effective area and nonlinear parameter 

The following code shows an example calculation of the effective area and nonlinear 

parameter of a mode over a range of waveguide cross sectional dimensions.  To do this, for a given 

waveguide cross section, the electric field, the H field, and propagation constant of the first guided 

mode of the waveguide is calculated using a mode solver developed by Dr. Milos Popovic [141].  

The fields are then used to calculate the effective area and nonlinear parameter by numerically 

evaluating the corresponding integrals, using the definitions for the effective area and nonlinear 

parameter given in chapter 3, Section 3.2.3 of the thesis.  Using for loops, the calculation is 

repeated for a range of cross sectional dimensions.   

“Strip_1550nm_SiO2sub_SU8clad_aeff.m” 

%Waveguide Top File 
%Commands to run Milos' 2d finite difference vectorial mode solver 
clear all 
close all 
clc 
%Parameters (lengths are in microns!) 
wavelength=1.550;    

  
tic 

  
%Set refractive indices for materials at 1550 nm 
nChal=2.659633; 
nSiO2=1.444;  
nSU8=1.575;  

  
%Choose which materials are the substrate, core, and cladding 
nSub=nSiO2; 
nCore=nChal; 
nClad=nSU8; 
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r=0; 
c=0; 
count=0; 
w_array=zeros(1,8); 
h_array=zeros(1,6); 
n1_array=zeros(1,48); 
a_matrix=zeros(8,6); 
gamma_matrix=zeros(8,6); 
n2vect_factor_matrix=zeros(8,6); 

  
%For range of waveguide widths w and heights h, solve for 1st mode and 
%calculate vectorial area and effective nonlinearity 

  
for w=0.5:0.1:1.2 
    c=0; 
    r=r+1; 
    w_array(1,r)=w; 
   for h=0.2:0.1:0.7 
    c=c+1; 
    h_array(1,c)=h; 

  
w 
h 

  
xres=0.01;  %microns 
yres=0.01;   %microns 
xpad=1;  %microns 
ypad=1;  %microns 
Nmodes=1; %# of modes to solve for,  

  
%Run si solver 3d  to solve for modes 
[N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength)); 
%View the modes 
SZ.F = F; SZ.N = N; modeview(SZ) 

  
%Calculate effective index of modes (scale the propagation constant) 
neff=F.beta/(2*pi/wavelength) 
count=count+1 
n1_matrix(r,c)=neff(1,1); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %Below: using fixed E4 vectorial A_eff definition, and vectorial n2 factor 
Ex_modef=F.Ex(:,:,1)'; 
Ey_modef=F.Ey(:,:,1)'; 
Ez_modef=F.Ez(:,:,1)'; 
Hx_modef=F.Hx(:,:,1)'; 
Hy_modef=F.Hy(:,:,1)'; 
Hz_modef=F.Hz(:,:,1)'; 

  
test=size(Ex_modef); 
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xmax1=test(1,1); 
ymax1=test(1,2)-1; 

  
%size to same dimensions (up to 10 nm error (1 pixel) expected; should be 

small, given wg dimensions relative to this) 
Ex_mode=Ex_modef(1:xmax1,1:ymax1); 
Ey_mode=Ey_modef(1:xmax1,1:ymax1); 
Hx_mode=Hx_modef(1:xmax1,1:ymax1); 
Hy_mode=Hy_modef(1:xmax1,1:ymax1); 
Ez_mode=Ez_modef(1:xmax1,1:ymax1); 

  

  
e_cross_h_dot_z=Ex_mode.*conj(Hy_mode)-Ey_mode.*conj(Hx_mode); 
Aeff_vectorial=sum(sum(e_cross_h_dot_z))^2/(sum(sum(e_cross_h_dot_z.*conj(e_c

ross_h_dot_z))))*xres*yres %in square microns! 

  
Ymax=round(((h+2*ypad)/yres))-1; 
Xmax=round((w+2*xpad)/xres-1); 

  
B=zeros(Ymax,Xmax); 

  
%assigning core values 
for rr=round(ypad/yres+1):round((ypad+h)/yres) 
    for cc=round(xpad/xres):round(xpad/xres+w/xres) 
        B(rr,cc)=1; 
    end 
end 

  
%assigning substrate values 
for rr=1:round(ypad/yres) 
    for cc=1:Xmax 
        B(rr,cc)=0; 
    end 
end 

  
length_sq=Ex_mode.*conj(Ex_mode)+Ey_mode.*conj(Ey_mode)+Ez_mode.*conj(Ez_mode

); 

  
EdotE=Ex_mode.*(Ex_mode)+Ey_mode.*(Ey_mode)+Ez_mode.*(Ez_mode); 
n2_vectorial_factor_fixed=8.85e-12/(4*pi*1e-

7)/3*nCore^2*sum(sum((2*length_sq.*length_sq+EdotE.*conj(EdotE)).*B))/sum(sum

(e_cross_h_dot_z.*conj(e_cross_h_dot_z))) 

  
gamma_eff=2*pi()*936e-20*n2_vectorial_factor_fixed/(wavelength*1e-

6*Aeff_vectorial*1e-12) 

  
a_matrix(r,c)=Aeff_vectorial; %in square microns!! 
n2vect_factor_matrix(r,c)=n2_vectorial_factor_fixed;  %in SI 
gamma_matrix(r,c)=gamma_eff;  %in SI 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%pause 
   end 
end 
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toc 

  
figure(1), imagesc([0.200 0.700], [0.50 1.200], a_matrix); 
set(gca,'ydir','normal'); 
figure(2), imagesc([0.200 0.700], [0.50 1.200], gamma_matrix); 
set(gca,'ydir','normal'); 
figure(3), imagesc([0.200 0.700], [0.50 1.200], n2vect_factor_matrix); 
set(gca,'ydir','normal'); 

 

C.4 Bend loss for curved waveguides 

 The following code shows how to calculate the bend loss as a function of bend radius for 

a given waveguide cross section.  A mode solver developed by Dr. Milos Popovic [141] is used to 

calculate the propagation constant of a waveguide bent in a circle.  As described in Chapter 3, 

Section 3.2.1 of the thesis, the imaginary part of the propagation constant is then used to calculate 

the radiative loss due to bending the waveguide.   

“ChG_ring_bendloss_1550nm_fixed_clean.m” 

%Waveguide Top File 
%Commands to run Milos' 2d finite difference vectorial mode solver 
clear all 
clc 
%Parameters (lengths are in microns!) 
wavelength=1.55;   

  
%Case 2 
nAir=1.0000;  
nChal=2.659633; 
nSiO2=1.444;  
%nMgF2=1.37; 

  
nSub=nSiO2 
nCore=nChal 
nClad=nAir 

  
r=0; 
count=0; 

  
%Set waveguide core width w and height h, in microns.   
w=0.800; 
h=0.330; 

  
%Guess effective index as starting point  
%(for faster run time, choose starting effective index near neff of a 

straight waveguide first)   
n_guess=2.3;  
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R_array=zeros(1,10); 

  
%a is the variable radius  
for a=1:0.5:5.5  
    R_eff=a  
    r=r+1; 
    R_array(1,r)=R_eff;  

  

  
%Run si solver 3d  
[N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], [2 

w 2], [2 h 2], [.01 .010], 2*pi/wavelength, struct('radius',R_eff-w/2-

2,'mu_guess',R_eff*n_guess*2*pi/wavelength,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
%View the modes 
modeview( struct('N',N,'F',F) ); 

  
%Calculate effective index of modes (scale the propagation constant)  
%fixed 2.25.14 
gamma=F.beta; 
beta_actual=F.beta/R_eff; 
n_eff_bend=beta_actual*wavelength/(2*pi) 

  
count=count+1; 
trans90=exp(-1*imag(gamma)*pi); %added in 3/2/17 
trans90_array(1,count)=trans90; %added in 3/2/17 
alpha_per_cm_array(1,count)=log(trans90)/(-1*R_eff*1e-4*pi/2) 

  
end 

  
%Plot the output bend loss as a function of radius 
figure(3), scatter(R_array,alpha_per_cm_array) 
xlabel('Effective Radius (microns)') 
ylabel('alpha (1/cm)') 
title('Bending Alpha vs Radius for 800 nm x 330 nm air-clad Chalcogenide 

Waveguide') 

  
R_array' 
alpha_per_cm_array' 

 
 

 

 

C.5 Higher-order dispersion (up to 5th order) 
 

The following code shows how to calculate higher order dispersion (up to 5th order) over a 

range of waveguide cross sectional dimensions.  For each given cross section size, the propagation 

constant of the first guided mode is calculated at a number of nearby frequencies.  Note that at 
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each frequency, the constituent materials’ refractive indices are updated using their given material 

dispersion, to include the effect of material dispersion.  Finite difference formulas are used to 

calculate the first, second, third, fourth, and fifth order derivative of the propagation constant with 

respect to frequency, which yields the first- through fifth-order dispersion, including both the 

effects of the waveguide geometry and material dispersion.  Using for loops, the process is repeated 

for a range of cross sectional dimensions.  Dispersion is discussed in Chapter 3, Section 3.2.2.   

“Strip_1550nm_disp_fine_fixed_90nmby2000nm_HODexample.m” 

 

%Waveguide Top File 
%Commands to run Milos' 2d finite difference vectorial mode solver 
clear all 
clc 
%Parameters (lengths are in microns!) 
wavelength=1.550;    

  
tic 

  
%Set up material refractive indices, including dispersion formulas 
nAir=1.0000;  
nChal=@(x) sqrt(1+2.75840+3.09812*x^2/(x^2-0.399523^2)+1.64139*x^2/(x^2-

45.1071^2));%IRG25, ref index info/Schott; 
nSiO2=@(x) sqrt(1+0.6961663*x^2/(x^2-0.0684043^2)+0.4079426*x^2/(x^2-

0.1162414^2)+0.8974794*x^2/(x^2-9.896161^2)); %ref index info, Malitson;  
%Will set nCore, nSub later, and re-set each time I change the wavelength 

  
nClad=nAir; 

  

  
r=0; 
c=0; 
count=0; 
w_array=zeros(1,9); %7 
h_array=zeros(1,7); %5 
n1_array=zeros(1,63); %35 
a_matrix=zeros(9,7); %7,5 
gamma_matrix=zeros(9,7);%7,5 

  
%Right now, just set to calculate for a 2 um (W) x 90 nm (H) waveguide, but 
%could adjust to calculate over a range of widths and heights 
for w=2.0:0.070:2.0 
    c=0; 
    r=r+1; 
    w_array(1,r)=w; 
   for h=0.090:.010:0.090  
    c=c+1; 
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    h_array(1,c)=h; 

  
w 
h 

  
xres=0.01;   %microns 
yres=0.005;   %microns 
xpad=1;  %microns 
ypad=2;  %microns 
Nmodes=1; %# of modes to solve for,  

  
%Run si solver 3d to solve for mode 
nCore=nChal(wavelength); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength) 
[N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength)); 
%View the modes 
SZ.F = F; SZ.N = N; modeview(SZ) 

  
%Calculate effective index of modes (scale the propagation constant) 
neff=F.beta/(2*pi/wavelength) 
count=count+1 

  
%%%%%%%%%%%higher order dispersion%%%%%%%%%%%% 
%Calculate the dispersion (up to 5th order dispersion and group index too!) 
w2=2*pi*3e14/wavelength; 
dw=w2/1000; 

  
w1=w2-dw; 
w3=w2+dw; 

  
w0=w2-(2*dw); 
w4=w2+(2*dw); 

  
wavelength1=2*pi*3e14/w1; 
wavelength3=2*pi*3e14/w3; 

  
wavelength0=2*pi*3e14/w0; 
wavelength4=2*pi*3e14/w4; 

  
%additional test wavelength for odd-ordered higher order dispersion terms 

(added 11/17/15) 
wp32=w2+(3/2*dw); 
wavep32=2*pi*3e14/wp32; 
wp12=w2+(1/2*dw); 
wavep12=2*pi*3e14/wp12; 
wm32=w2-(3/2*dw); 
wavem32=2*pi*3e14/wm32; 
wm12=w2-(1/2*dw); 
wavem12=2*pi*3e14/wm12; 
wp52=w2+(5/2*dw); 
wavep52=2*pi*3e14/wp52; 
wm52=w2-(5/2*dw); 
wavem52=2*pi*3e14/wm52; 



182 
 

  
nCore=nChal(wavelength3); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength3); 
[N3,F3] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength3, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength3)); 

  
nCore=nChal(wavelength1); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength1); 
[N1,F1] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength1, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength1)); 

  

  
nCore=nChal(wavelength4); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength4); 
[N4,F4] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength4, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength4)); 

  
nCore=nChal(wavelength0); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength0); 
[N0,F0] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavelength0, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavelength0)); 

  
nCore=nChal(wavep12); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavep12); 
[Np12,Fp12] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavep12, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavep12)); 

  
nCore=nChal(wavep32); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavep32); 
[Np32,Fp32] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavep32, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavep32)); 

  
nCore=nChal(wavep52); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavep52); 
[Np52,Fp52] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavep52, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavep52)); 

  
nCore=nChal(wavem12); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavem12); 
[Nm12,Fm12] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavem12, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavem12)); 

  
nCore=nChal(wavem32); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavem32); 
[Nm32,Fm32] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavem32, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavem32)); 
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nCore=nChal(wavem52); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavem52); 
[Nm52,Fm52] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [xpad w xpad], [ypad h ypad], [xres yres], 2*pi/wavem52, 

struct('NMODES_CALC',Nmodes,'mu_guess',nCore*2*pi/wavem52)); 

  
%calculate up to 2nd order dispersion (B2) 
Dispersion_s_per_m2=(F3.beta-2*F.beta+F1.beta)/(dw^2)*(-

2*pi*3e14/(wavelength^2))*(10^12) 
B0_per_m=F.beta*1e6 
B1_ps_per_m=(F3.beta-F.beta)/dw*1e6*(1e12) 
B2_ps2_per_m=(F3.beta-2*F.beta+F1.beta)/(dw^2)*1e6*((1e12)^2) 

  
%Also calculate 3rd - 5th order dispersion 
B3_ps3_per_m_check=(Fp32.beta-3*Fp12.beta+3*Fm12.beta-

Fm32.beta)/(dw^3)*1e6*((1e12)^3) %added 11/17/2015 
B4_ps4_per_m=(F4.beta-4*F3.beta+6*F.beta-

4*F1.beta+F0.beta)/(dw^4)*1e6*((1e12)^4) 
B5_ps5_per_m=(Fp52.beta-5*Fp32.beta+10*Fp12.beta-10*Fm12.beta+5*Fm32.beta-

Fm52.beta)/(dw^5)*1e6*((1e12)^5) %added 11/17/2015 

  

  
%Also calculate group index from 1st order dispersion 
n_group=B1_ps_per_m*1e-12*3e8 %unitless 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
   end 
end 

  
%%Commented out plot of dispersion below 
%%(useful if calculating dispersion over a range of waveguide dimensions) 
%figure(3), imagesc([0.320 0.380], [0.620 0.780], disp_matrix);%figure(3), 

imagesc([0.520 0.600], [1.34 1.46], disp_matrix); 
%set(gca,'ydir','normal'); 

  
toc 
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Appendix D 

Split Step Code 

 

D.1 Split-step base code with two-photon absorption 

Below is split-step code, with our modifications to include the effects of two-photon 

absorption, for the case of no Raman.  Base split-step code was provided from T. M. Murphy’s 

group at http://www.photonics.umd.edu/software/ssprop/ [142].  The general concept behind split-

step code is discussed in Chapter 3, under Section 3.2.7.   

“sspropc_tpa_mk.c” 

/*  File:           sspropc.c 
 *  Author:         Thomas E. Murphy (tem@umd.edu) 
 *  Created:        1/17/2001 
 *  Modified:       2/5/2006 
 *  Version:        3.0 
 *  Description:    This file solves the nonlinear Schrodinger 
 *                  equation for propagation in an optical fiber 
 *                  using the split-step Fourier method described 
 *                  in "Nonlinear Fiber Optics" (G. Agrawal, 2nd 
 *                  ed, Academic Press, 1995, Chapter 2).  The 
 *                  routine is compiled as a Matlab MEX program, 
 *                  which can be invoked directly from Matlab. 
 *                  The code makes extensive use of the fftw 
 *                  routines, which can be downloaded from 
 *                  http://www.fftw.org/, for computing fast 
 *                  Fourier transforms.  The corresponding m-file 
 *                  (sspropc.m) provides information on how to 
 *                  call this routine from Matlab. 
 */ 

  

  
/***************************************************************** 

  
    Copyright 2006, Thomas E. Murphy 
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    This file is part of SSPROP. 

  
    SSPROP is free software; you can redistribute it and/or 
    modify it under the terms of the GNU General Public License 
    as published by the Free Software Foundation; either version 
    2 of the License, or (at your option) any later version. 

  
    SSPROP is distributed in the hope that it will be useful, but 
    WITHOUT ANY WARRANTY; without even the implied warranty of 
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
    GNU General Public License for more details. 

  
    You should have received a copy of the GNU General Public 
    License along with SSPROP; if not, write to the Free Software 
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 
    02111-1307 USA 

  
*****************************************************************/ 

  
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include "fftw3.h" 
#include "mex.h" 

  
#ifdef SINGLEPREC 

  
#define REAL float 
#define COMPLEX fftwf_complex 
#define PLAN fftwf_plan 
#define MAKE_PLAN fftwf_plan_dft_1d 
#define DESTROY_PLAN fftwf_destroy_plan 
#define EXECUTE fftwf_execute 
#define IMPORT_WISDOM fftwf_import_wisdom_from_file 
#define EXPORT_WISDOM fftwf_export_wisdom_to_file 
#define FORGET_WISDOM fftwf_forget_wisdom 
#define WISFILENAME "fftwf-wisdom.dat" 

  
#else 

  
#define REAL double 
#define COMPLEX fftw_complex 
#define PLAN fftw_plan 
#define MAKE_PLAN fftw_plan_dft_1d 
#define DESTROY_PLAN fftw_destroy_plan 
#define EXECUTE fftw_execute 
#define IMPORT_WISDOM fftw_import_wisdom_from_file 
#define EXPORT_WISDOM fftw_export_wisdom_to_file 
#define FORGET_WISDOM fftw_forget_wisdom 
#define WISFILENAME "fftw-wisdom.dat" 

  
#endif 
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#define abs2(x) ((*x)[0] * (*x)[0] + (*x)[1] * (*x)[1]) 
#define prodr(x,y) ((*x)[0] * (*y)[0] + (*x)[1] * (*y)[1]) 
#define prodi(x,y) ((*x)[0] * (*y)[1] - (*x)[1] * (*y)[0]) 
#define round(x) ((int)(x+0.5)) 
#define pi 3.1415926535897932384626433832795028841972 

  
int nt = 0;                     /* number of fft points */ 
static int firstcall = 1;       /* =1 when sspropc first invoked */ 
int allocated = 0;              /* =1 when memory is allocated */ 
static int method = FFTW_PATIENT;   /* planner method */ 
PLAN p1,p2,ip1,ip2;             /* plans for fft and ifft */ 
COMPLEX *u0,                    /* these vectors are */ 
  *ufft, *uhalf, *uv, *u1,      /* workspace vectors used in */ 
  *halfstep;                    /* performing the calculations */ 

  
void sspropc_destroy_data(void); 
void sspropc_save_wisdom(void); 
void sspropc_initialize_data(int); 
void cmult(COMPLEX*, COMPLEX*, COMPLEX*); 
void cscale(COMPLEX*, COMPLEX*, REAL); 
int ssconverged(COMPLEX*, COMPLEX*, REAL); 
void mexFunction(int, mxArray* [], int, const mxArray* []); 

  
void sspropc_destroy_data(void) 
{ 
  if (allocated) { 
    DESTROY_PLAN(p1); 
    DESTROY_PLAN(p2); 
    DESTROY_PLAN(ip1); 
    DESTROY_PLAN(ip2); 
    mxFree(u0); 
    mxFree(ufft); 
    mxFree(uhalf); 
    mxFree(uv); 
    mxFree(u1); 
    mxFree(halfstep); 
    nt = 0; 
    allocated = 0; 
  } 
} 

  
void sspropc_save_wisdom(void) 
{ 
  FILE *wisfile; 

   
  wisfile = fopen(WISFILENAME, "w"); 
  if (wisfile) { 
    mexPrintf("Exporting FFTW wisdom (file = %s).\n", WISFILENAME); 
    EXPORT_WISDOM(wisfile); 
    fclose(wisfile); 
  }  
} 

  
void sspropc_load_wisdom(void) 
{ 
  FILE *wisfile; 
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  wisfile = fopen(WISFILENAME, "r"); 
  if (wisfile) { 
    mexPrintf("Importing FFTW wisdom (file = %s).\n", WISFILENAME); 
    IMPORT_WISDOM(wisfile); 
    fclose(wisfile); 
  } 
} 

  
void sspropc_initialize_data(int n) 
{ 
  FILE* wisfile;                   /* wisdom file */ 

  
  nt = n; 

  
  if (firstcall) { 
    sspropc_load_wisdom(); 
    firstcall = 0; 
  } 

   
  u0 = (COMPLEX*) mxMalloc(sizeof(COMPLEX)*nt); 
  ufft = (COMPLEX*) mxMalloc(sizeof(COMPLEX)*nt); 
  uhalf = (COMPLEX*) mxMalloc(sizeof(COMPLEX)*nt); 
  uv = (COMPLEX*) mxMalloc(sizeof(COMPLEX)*nt); 
  u1 = (COMPLEX*) mxMalloc(sizeof(COMPLEX)*nt); 
  halfstep = (COMPLEX*) mxMalloc(sizeof(COMPLEX)*nt); 

  
  mexPrintf("Creating FFTW plans (length = %d) ... ", nt); 

  
  p1 = MAKE_PLAN(nt, u0, ufft, FFTW_FORWARD, method); 
  p2 = MAKE_PLAN(nt, uv, uv, FFTW_FORWARD, method); 
  ip1 = MAKE_PLAN(nt, uhalf, uhalf, FFTW_BACKWARD, method); 
  ip2 = MAKE_PLAN(nt, ufft, uv, FFTW_BACKWARD, method); 
  mexPrintf("done.\n"); 

  
  allocated = 1; 
} 

  
/* computes a = b.*c for complex length-nt vectors a,b,c */ 
void cmult(COMPLEX* a, COMPLEX* b, COMPLEX* c) 
{ 
  int jj; 

  
  for (jj = 0; jj < nt; jj++) { 
    a[jj][0] = b[jj][0] * c[jj][0] - b[jj][1] * c[jj][1]; 
    a[jj][1] = b[jj][0] * c[jj][1] + b[jj][1] * c[jj][0]; 
  } 
} 

  
/* assigns a = factor*b for complex length-nt vectors a,b */ 
void cscale(COMPLEX* a, COMPLEX* b, REAL factor) 
{ 
  int jj; 
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  for (jj = 0; jj < nt; jj++) { 
    a[jj][0] = factor*b[jj][0]; 
    a[jj][1] = factor*b[jj][1]; 
  } 
} 

  
int ssconverged(COMPLEX* a, COMPLEX* b, REAL t) 
{ 
  int jj; 
  REAL num, denom; 

  
  for (jj = 0, num = 0, denom = 0; jj < nt; jj++) { 
    denom += b[jj][0] * b[jj][0] + b[jj][1] * b[jj][1]; 
    num += (b[jj][0] - a[jj][0]/nt)*(b[jj][0] - a[jj][0]/nt) +  
      (b[jj][1] - a[jj][1]/nt)*(b[jj][1] - a[jj][1]/nt); 
  } 
  return (num/denom < t); 
} 

  
void mexFunction(int nlhs, mxArray *plhs[], 
                 int nrhs, const mxArray *prhs[]) 
{ 
  REAL scale;        /* scale factor */ 
  REAL dt;           /* time step */ 
  REAL dz;           /* propagation stepsize */ 
  int nz;            /* number of z steps to take */ 
  int nalpha;        /* number of beta coefs */ 
  double* alphap;    /* alpha(w) array, if applicable */ 
  int nbeta;         /* number of beta coefs */ 
  double* beta;      /* dispersion polynomial coefs */ 
  REAL gamma;        /* nonlinearity coefficient */ 
  REAL TPA_eff_real;       /*TPA coefficient defined as TPA/2Aeff, no i in 

definition!!*/   
  REAL traman = 0;   /* Raman response time */ 
  REAL toptical = 0; /* Optical cycle time = lambda/c */ 
  int maxiter = 4;   /* max number of iterations */ 
  REAL tol = 1e-5;   /* convergence tolerance */ 

  
  REAL* w;           /* vector of angular frequencies */ 

  
  int iz,ii,jj;      /* loop counters */ 
  REAL phase, TPA_phas, alpha, 
    wii, fii, TPA;        /* temporary variables */ 
  COMPLEX  
    nlp,             /* nonlinear phase */ 
    *ua, *ub, *uc;   /* samples of u at three adjacent times */ 
  char argstr[100];  /* string argument */ 

  
  if (nrhs == 1) { 
    if (mxGetString(prhs[0],argstr,100))  
      mexErrMsgTxt("Unrecognized option."); 

     
    if (!strcmp(argstr,"-savewisdom")) { 
      sspropc_save_wisdom(); 
    } 
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    else if (!strcmp(argstr,"-forgetwisdom")) { 
      FORGET_WISDOM(); 
    } 
    else if (!strcmp(argstr,"-loadwisdom")) { 
      sspropc_load_wisdom(); 
    } 
    else if (!strcmp(argstr,"-patient")) { 
      method = FFTW_PATIENT; 
    } 
    else if (!strcmp(argstr,"-exhaustive")) { 
      method = FFTW_EXHAUSTIVE; 
    } 
    else if (!strcmp(argstr,"-measure")) { 
      method = FFTW_MEASURE; 
    } 
    else if (!strcmp(argstr,"-estimate")) { 
      method = FFTW_ESTIMATE; 
    } 
    else 
      mexErrMsgTxt("Unrecognized option."); 
    return; 
  } 

  
  if (nrhs < 7)  
    mexErrMsgTxt("Not enough input arguments provided."); 
  if (nlhs > 1) 
    mexErrMsgTxt("Too many output arguments."); 

  
  sspropc_initialize_data(mxGetNumberOfElements(prhs[0])); 

   
  /* parse input arguments */ 
  dt = (REAL) mxGetScalar(prhs[1]); 
  dz = (REAL) mxGetScalar(prhs[2]); 
  nz = round(mxGetScalar(prhs[3])); 
  nalpha = mxGetNumberOfElements(prhs[4]); 
  alphap = mxGetPr(prhs[4]); 
  beta = mxGetPr(prhs[5]); 
  nbeta = mxGetNumberOfElements(prhs[5]); 
  gamma = (REAL) mxGetScalar(prhs[6]); 
  TPA_eff_real = (REAL) mxGetScalar(prhs[7]); /*modify this and following 

lines for TPA*/ 
  if (nrhs > 8) 
    traman = (mxIsEmpty(prhs[8])) ? 0 : (REAL) mxGetScalar(prhs[8]); 
  if (nrhs > 9) 
    toptical = (mxIsEmpty(prhs[9])) ? 0 : (REAL) mxGetScalar(prhs[9]); 
  if (nrhs > 10) 
    maxiter = (mxIsEmpty(prhs[10])) ? 4 : round(mxGetScalar(prhs[10])); 
  if (nrhs > 11) 
    tol = (mxIsEmpty(prhs[11])) ? 1e-5 : (REAL) mxGetScalar(prhs[11]); 
/*end mods for TPA */   

  
  if ((nalpha != 1) && (nalpha != nt)) 
    mexErrMsgTxt("Invalid vector length (alpha)."); 

  
  /* compute vector of angular frequency components */ 
  /* MATLAB equivalent:  w = wspace(tv); */ 
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  w = (REAL*)mxMalloc(sizeof(REAL)*nt); 
  for (ii = 0; ii <= (nt-1)/2; ii++) { 
    w[ii] = 2*pi*ii/(dt*nt); 
  } 
  for (; ii < nt; ii++) { 
    w[ii] = 2*pi*ii/(dt*nt) - 2*pi/dt; 
  } 

  
  /* compute halfstep and initialize u0 and u1 */ 

  
  for (jj = 0; jj < nt; jj++) { 
    if (nbeta != nt)      
      for (ii = 0, phase = 0, fii = 1, wii = 1;  
           ii < nbeta;  
           ii++, fii*=ii, wii*=w[jj])  
        phase += wii*((REAL)beta[ii])/fii; 
    else 
      phase = (REAL)beta[jj]; 
    alpha = (nalpha == nt) ?  (REAL)alphap[jj] : (REAL)alphap[0]; 
    halfstep[jj][0] = +exp(-alpha*dz/4)*cos(phase*dz/2); 
    halfstep[jj][1] = -exp(-alpha*dz/4)*sin(phase*dz/2); 
    u0[jj][0] = (REAL) mxGetPr(prhs[0])[jj]; 
    u0[jj][1] = mxIsComplex(prhs[0]) ? (REAL)(mxGetPi(prhs[0])[jj]) : 0.0; 
    u1[jj][0] = u0[jj][0]; 
    u1[jj][1] = u0[jj][1]; 
  } 

  
  mxFree(w);                             /* free w vector */ 

  
  mexPrintf("Performing split-step iterations ... "); 

  
  EXECUTE(p1);                           /* ufft = fft(u0) */ 
  for (iz = 0; iz < nz; iz++) { 
    cmult(uhalf,halfstep,ufft);          /* uhalf = halfstep.*ufft */ 
    EXECUTE(ip1);                        /* uhalf = nt*ifft(uhalf) */ 
    for (ii = 0; ii < maxiter; ii++) {                 
/*only modify first case for TPA since there is no Raman!!*/ 
      if ((traman == 0.0) && (toptical == 0)) { 

  
        for (jj = 0; jj < nt; jj++) { 
            phase = gamma*(u0[jj][0]*u0[jj][0] + 
                         u0[jj][1]*u0[jj][1] +  
                         u1[jj][0]*u1[jj][0] + 
                         u1[jj][1]*u1[jj][1])*dz/2; 

  

         
       TPA_phas = TPA_eff_real*(u0[jj][0]*u0[jj][0] + 
                         u0[jj][1]*u0[jj][1] +  
                         u1[jj][0]*u1[jj][0] + 
                         u1[jj][1]*u1[jj][1])*dz/2; 

  

  

  
          uv[jj][0] = (uhalf[jj][0]*cos(phase) + 
                       uhalf[jj][1]*sin(phase))/nt; 
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          uv[jj][1] = (-uhalf[jj][0]*sin(phase) + 
                       uhalf[jj][1]*cos(phase))/nt; 

  
    uv[jj][0] = uv[jj][0]*exp(TPA_phas);   /*including effects of TPA on 

field envelope*/ 
    uv[jj][1] = uv[jj][1]*exp(TPA_phas); /*including effects of TPA on field 

envelope*/ 

           
        } 

  
      } else { /*please note that this case is not modified for TPA!!!*/ 

  
        jj = 0; 
        ua = &u0[nt-1]; ub = &u0[jj]; uc = &u0[jj+1]; 
        nlp[1] = -toptical*(abs2(uc) - abs2(ua) +  
                           prodr(ub,uc) - prodr(ub,ua))/(4*pi*dt); 
        nlp[0] = abs2(ub) - traman*(abs2(uc) - abs2(ua))/(2*dt)  
          + toptical*(prodi(ub,uc) - prodi(ub,ua))/(4*pi*dt); 

         
        ua = &u1[nt-1]; ub = &u1[jj]; uc = &u1[jj+1]; 
        nlp[1] += -toptical*(abs2(uc) - abs2(ua) +  
                            prodr(ub,uc) - prodr(ub,ua))/(4*pi*dt); 
        nlp[0] += abs2(ub) - traman*(abs2(uc) - abs2(ua))/(2*dt)  
          + toptical*(prodi(ub,uc) - prodi(ub,ua))/(4*pi*dt); 

  
        nlp[0] *= gamma*dz/2; 
        nlp[1] *= gamma*dz/2; 

  
        uv[jj][0] = (uhalf[jj][0]*cos(nlp[0])*exp(+nlp[1]) + 
                     uhalf[jj][1]*sin(nlp[0])*exp(+nlp[1]))/nt; 
        uv[jj][1] = (-uhalf[jj][0]*sin(nlp[0])*exp(+nlp[1]) + 
                     uhalf[jj][1]*cos(nlp[0])*exp(+nlp[1]))/nt; 

       
        for (jj = 1; jj < nt-1; jj++) { 
          ua = &u0[jj-1]; ub = &u0[jj]; uc = &u0[jj+1]; 
          nlp[1] = -toptical*(abs2(uc) - abs2(ua) +  
                             prodr(ub,uc) - prodr(ub,ua))/(4*pi*dt); 
          nlp[0] = abs2(ub) - traman*(abs2(uc) - abs2(ua))/(2*dt)  
            + toptical*(prodi(ub,uc) - prodi(ub,ua))/(4*pi*dt); 

  
          ua = &u1[jj-1]; ub = &u1[jj]; uc = &u1[jj+1]; 
          nlp[1] += -toptical*(abs2(uc) - abs2(ua) +  
                              prodr(ub,uc) - prodr(ub,ua))/(4*pi*dt); 
          nlp[0] += abs2(ub) - traman*(abs2(uc) - abs2(ua))/(2*dt)  
            + toptical*(prodi(ub,uc) - prodi(ub,ua))/(4*pi*dt); 

  
          nlp[0] *= gamma*dz/2; 
          nlp[1] *= gamma*dz/2; 

  
          uv[jj][0] = (uhalf[jj][0]*cos(nlp[0])*exp(+nlp[1]) + 
                       uhalf[jj][1]*sin(nlp[0])*exp(+nlp[1]))/nt; 
          uv[jj][1] = (-uhalf[jj][0]*sin(nlp[0])*exp(+nlp[1]) + 
                       uhalf[jj][1]*cos(nlp[0])*exp(+nlp[1]))/nt; 
        } 
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        /* we now handle the endpoint where jj = nt-1 */ 
      /*this part is also modified for TPA */ 
        ua = &u0[jj-1]; ub = &u0[jj]; uc = &u0[0]; 
        nlp[1] = -toptical*(abs2(uc) - abs2(ua) +  
                           prodr(ub,uc) - prodr(ub,ua))/(4*pi*dt); 
        nlp[0] = abs2(ub) - traman*(abs2(uc) - abs2(ua))/(2*dt)  
          + toptical*(prodi(ub,uc) - prodi(ub,ua))/(4*pi*dt); 

  
        ua = &u1[jj-1]; ub = &u1[jj]; uc = &u1[0]; 
        nlp[1] += -toptical*(abs2(uc) - abs2(ua) +  
                            prodr(ub,uc) - prodr(ub,ua))/(4*pi*dt); 
        nlp[0] += abs2(ub) - traman*(abs2(uc) - abs2(ua))/(2*dt)  
          + toptical*(prodi(ub,uc) - prodi(ub,ua))/(4*pi*dt); 

  
        nlp[0] *= gamma*dz/2; 
        nlp[1] *= gamma*dz/2; 

  
        uv[jj][0] = (uhalf[jj][0]*cos(nlp[0])*exp(+nlp[1]) + 
                     uhalf[jj][1]*sin(nlp[0])*exp(+nlp[1]))/nt; 
        uv[jj][1] = (-uhalf[jj][0]*sin(nlp[0])*exp(+nlp[1]) + 
                     uhalf[jj][1]*cos(nlp[0])*exp(+nlp[1]))/nt; 

  
        /*again, commented out 2 lines, as these are still in the 2nd case 

which we won't run into*/ 
       /* uv[jj][0] = uv[jj][0]*exp(-1*TPA);  */ /*including effects of TPA 

on field envelope*/  
       /* uv[jj][1] = uv[jj][1]*exp(-1*TPA); */ /*including effects of TPA on 

field envelope*/  
      } 

  
      EXECUTE(p2);                      /* uv = fft(uv) */ 
      cmult(ufft,uv,halfstep);          /* ufft = uv.*halfstep */ 
      EXECUTE(ip2);                     /* uv = nt*ifft(ufft) */ 
      if (ssconverged(uv,u1,tol)) {     /* test for convergence */ 
        cscale(u1,uv,1.0/nt);           /* u1 = uv/nt; */ 
        break;                          /* exit from ii loop */ 
      } else { 
        cscale(u1,uv,1.0/nt);           /* u1 = uv/nt; */ 
      } 
    } 
    if (ii == maxiter) 
      mexWarnMsgTxt("Failed to converge."); 
    cscale(u0,u1,1);                    /* u0 = u1 */ 
  } 
  mexPrintf("done.\n"); 

   
  /* allocate space for returned vector */ 
  plhs[0] = mxCreateDoubleMatrix(nt,1,mxCOMPLEX); 
  for (jj = 0; jj < nt; jj++) { 
    mxGetPr(plhs[0])[jj] = (double) u1[jj][0];   /* fill return vector */ 
    mxGetPi(plhs[0])[jj] = (double) u1[jj][1];   /* with u1 */ 
  } 

  
  sspropc_destroy_data(); 
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} 

 

 

D.2 Example using split-step code to calculate spectral broadening 

Example code for simulating the spectral broadening in a waveguide is shown below.  Note 

that this code calls the split-step solver in Appendix D.1.   

“splitstep_mex_1550nm_700by340_stripTM_picasofit.m” 

% This file solves the nonlinear Schrodinger equation for 
% pulse propagation in an optical fiber using the split-step 
% Fourier method described in:  
%  
% Agrawal, Govind.  Nonlinear Fiber Optics, 2nd ed.  Academic 
% Press, 1995, Chapter 2  
%  
% The following effects are included in the model: up to 5th order 
% dispersion, loss, and self-phase modulation (n2).  The core 
% routine for implementing the split-step propagation is 
% called sspropc_tpa_mk.m (modified to include 2-photon absorption) 

  
close all 
clc 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Start with A=[];, where 1st column is time in fs, and 2nd column is 
%magnitude of Electric field E, and 3rd column is phase of E 
x = A(:,1)/1000; %convert time values to ps   
yamp = A(:,2);  
yphase=A(:,3);   
maxy=max(yamp); 
yamp=yamp/maxy; %normalize by letting max value be 1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% CONSTANTS 

  
c = 299792458;                          % speed of light (m/s) 

  
% NUMERICAL PARAMETERS 
Lwg=10; %length of waveguide in millimeters (mm) 
dt = 0.001; % time step (ps) 
nt = 2^14; % number of points in FFT 
dz = 1e-6; % distance stepsize (m) 
nz = Lwg*1e-3/dz; % number of z-steps 
maxiter = 500;                           % max # of iterations 
tol = 1e-5;                             % error tolerance 

  
% OPTICAL PARAMETERS for strip airclad IG5 on SiO2 waveguide, TM 700x340 nm 

at 1550nm!! 
lambda = 1546.96;           % wavelength (nm) 
alpha = 4.12/4.34*100;       % linear loss, alpha (1/m) 
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TPA=-0.014e-11;  two-photon absorption coefficient measured in wg first (m/W) 
beta2 = 6.2025*1000; % beta2 (ps^2/km)   
beta3 = -4.34e-2*1000; % GVD slope (ps^3/km) 
beta4=1.05e-4*1000; %(ps^4/km) 
beta5=2.82e-6*1000; %(ps^5/km) 
ng = 3.0919;    % group index of waveguide 
n2 = 4.8e-19;    % nonlinear index (m^2/W) 
Aeff = 0.3156;   % effective area (um^2) 
Trans=0.9305; %0.9565*.96; %transmission coefficient for waveguide, using eff 

index and index for fiber/air  

  

  

  
% CALCULATED QUANTITIES 

  
T = nt*dt;                              % FFT window size (ps) 
gamma = 2e21*pi*n2/(lambda*Aeff);       % nonlinearity coef (m^-1.W^-1) 
TPA_eff_real=TPA/2/(Aeff*1e-12);        %real effective TPA coef (m^-1.W^-1) 
t = ((1:nt)'-(nt+1)/2)*dt;              % vector of t values (ps) 
w = 2*pi*[(0:nt/2-1),(-nt/2:-1)]'/T;    % vector of w values (rad/ps) 
v = 1000*[(0:nt/2-1),(-nt/2:-1)]'/T;    % vector of v values (GHz) 
vs = fftshift(v);                       % swap halves for plotting  
betap = [0 0 beta2/1000 beta3/1000 beta4/1000 beta5/1000]'; % polynomial beta 

coeffs.. converted from ps^2/km to ps^2/m, etc. 

  
% STARTING FIELD 
%Er Fiber laser (using picaso results) 
tfwhm= 0.169153;  
tp0 = tfwhm;    % actual pulse width FWHM (ps) (rough!!) 
Rep=17.8e6; %rep rate (Hz) 
Pavg=1.596e-3;   %average power in watts 

  
CEin=0.177;  %input coupling efficiency est and pol-dep loss 
P0=Pavg/(tp0*1e-12*Rep)*Trans*CEin;              % peak power (W) 
Tp = tfwhm/sqrt(2);                         %pulse width at 1/e point 
Lnl = 1/(P0*gamma),                     % nonlinear length (m) 
Ld = 1000*Tp^2/abs(beta2),              % dispersion length (m) 

  
yamp_inter = interp1(x,yamp,t,'spline',0);   
yphase_inter = interp1(x,yphase,t,'spline',0);  
y=yamp_inter.*exp(-1*1i.*yphase_inter); %complex electric field 
u0 = sqrt(P0)*y; %starting field (W^.5) includes chirp 

  
%%%%%%%%%%%%%%%%%% 

  
sspropc_tpa_mk -estimate 

  
% PROPAGATE 
tic %added to start MATLAB timer 

 

 
u = sspropc_tpa_mk(u0,dt,dz,nz,alpha,betap,gamma,TPA_eff_real); 

  
% PLOT OUTPUT 
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figure(1); 
t00 = 50*tp0; 
it = find(abs(t)<t00); 
a0 = abs(u0).^2/P0; 
a0 = a0./max(a0);   %normalizing from juliet 
a1 = abs(u).^2/P0; 
a1 = a1./max(a1);   % normalizing from juliet 

  
 

plot (t(it),a0(it),t(it),a1(it));  %plot all normalized from juliet 
grid on; 
xlabel ('t (ps)'); 
ylabel ('|u(z,t)|^2 (W)'); 
legend('initial','final') %added 4/29/14 
title ('Initial and Final Pulse Shapes'); 

  
figure(2); 
iv = find(abs(vs)<80000);  %iv = find(abs(vs)<40000); 
S0 = fftshift(abs(dt*fft(u0)/sqrt(2*pi)).^2); 
S = fftshift(abs(dt*fft(u)/sqrt(2*pi)).^2); 

  
max_initial_a0=max(a0); 
max_final_a1=max(a1); 

  
%normalizing 
S0 = S0./max(S0); %from juliet 
S = S./max(S);  %from juliet 

  
plot (vs(iv),S0(iv)/P0,vs(iv),S(iv)/P0); 
grid on; 
xlabel ('\nu (GHz)'); 
ylabel ('|U(z,\nu)|^2'); 
legend('initial','final') %added 4/29/14 
title ('Initial and Final Pulse Spectra'); 

  
%now, plot phase of output, from juliet 
S0phi = angle((dt*fft(u0)/sqrt(2*pi)).^2); 
Sphi = angle((dt*fft(u)/sqrt(2*pi)).^2); 

  
%unwrapping output phase.. it is very impt to fftshift before 
%unwrapping or there will be big discontinuities in data! 
S0phi = unwrap(fftshift((S0phi))); 
Sphi = unwrap(fftshift((Sphi))); 

  
%convert this to vs. lambda 
lambda0= lambda*1e-9;       %optical carrier frequency 
vs0 = 3e8/lambda0;    %conversion from 0 frequency to optical carrier 

frequency 
vs = vs0+(vs*1e9); 

  

  
lambda = 3e8./(vs(iv)); 
Sphilambda = Sphi(iv).*(lambda.^2)./3e8; 
S0philambda = S0phi(iv).*(lambda.^2)./3e8; 
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Slambda = S(iv).*(lambda.^2)./3e8; 
S0lambda = S0(iv).*(lambda.^2)./3e8; 
Slambda = Slambda./max(Slambda); 
S0lambda = S0lambda./max(S0lambda); 

  

  

  
figure(3) 
plot(lambda*1e9, S0lambda,'g', lambda*1e9, (Slambda),'b') 
grid on; 
ylabel ('|U(z,\nu)|^2'); 
title ('Initial and Final Pulse Spectra'); 
xlabel('lambda (nm)'); 
legend('initial','final') %added 4/29/14 

  

  
figure(4); 
plot(vs,(S0phi),'g', vs,(Sphi),'b') 
grid on; 
xlabel('lambda (nm)'); 
ylabel('phase (rad)'); 
title('Initial and final Pulse Spectral Phase'); 
legend('initial','final') %added 4/29/14 

  
%saves data to file 
jjj = (t00*1e12/((dt^2)*nt)) + (3e8/lambda0); 
jjjh = (-t00*1e12/((dt^2)*nt)) + (3e8/lambda0); 
uvt = find(jjjh<vs & vs<=jjj); 
size(vs(uvt)) 
size(t(it)) 

  

  
%saving time, initial intensity, final intensity, frequency(GHz), initial 

spectral 
% intensity, final spectral intensity, intial spectral phase, final spectral 

phase 
AA = 

[t(it)';a0(it)';a1(it)';vs(uvt)';S0(uvt)'/P0;S(uvt)'/P0;S0phi(uvt)';Sphi(uvt)

']; 
fid = fopen('splitstep.out','w'); 
fprintf(fid,'%12.9f\t %12.9f\t %12.9f\t %12.9f\t %12.9f\t %12.9f\t %12.9f\t 

%12.9f\n',AA); 
fclose(fid) 

  
nz*dz/Ld 
gamma 
toc %added to check elapsed time 
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Appendix E 

Ring design code 

 

E.1 Ring code for four-wave mixing 

The code below iteratively solves for the resonances nearest a target design wavelength.  

For four-wave mixing applications, assuming both pump and signal on resonance, the code uses 

dispersion to calculate the phase mismatch between the idler and resonance, for calculations of 

four-wave mixing efficiency.  The general ring resonator design process is described more in 

Chapter 4, in Section 4.3.1.   

“ChG_ring_1550nm_iterative_quadratic_fixedReff_example.m” 

%%Also kept dw for ALL dispersion calcs to 1/1000 for now... 
%3/17/2016 Update:  switch to iterative quadratic process for resonances (see 

code below) 

  
%1/8/2016 Update:  Fixed to include material dispersion in wg sim/neff calc, 

and 
%correspondingly fixed disp calc & recorded variables 

  
%1/5/2016 edited to calc dispersion and resonances near 1550 nm for fixed 
%wg dimension, varying only ring radius 

  
%Waveguide Top File 
%Commands to run Milos' 2d finite difference vectorial mode solver 
clear all 
close all 
clc 

  
tic 
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%Set waveguide materials below: (upper cladding, air, is dispersionless) 
nAir=1.0000;  
nChal=@(x) sqrt(1+2.75840+3.09812*x^2/(x^2-0.399523^2)+1.64139*x^2/(x^2-

45.1071^2));%IRG25, ref index info/Schott; 
nSiO2=@(x) sqrt(1+0.6961663*x^2/(x^2-0.0684043^2)+0.4079426*x^2/(x^2-

0.1162414^2)+0.8974794*x^2/(x^2-9.896161^2)); %ref index info, Malitson;  
%Will set nCore, nSub later, and re-set each time I change the wavelength 
nClad=nAir; 

  

  
%Initialize arrays to keep track of useful parameters 
size1=10; %#of different test radiuses R_eff 
R_array=zeros(1,size1); 
m_p_array=zeros(1,size1); 
lambda_p_array=zeros(1,size1); 
lambda_s_array=zeros(1,size1); 
lambda_i_array=zeros(1,size1); %where resonance is!! 
lambda_c_array=zeros(1,size1); %where converted idler actually is 
dlam_array=zeros(1,size1); 
n_eff_pump_array=zeros(1,size1); 
n_eff_signal_array=zeros(1,size1); 
B2_ps2_per_m_array=zeros(1,size1); 
n_group_array=zeros(1,size1); 
dk_array=zeros(1,size1); 
n_eff_c_array=zeros(1,size1); 
L_array=zeros(1,size1); 

  
count=0; 
c=0; 
for R_eff=3:1:12 %[3,4,5,6,7,8,9,10,11,12,13,14,15] %vary ring radius from 3 

to 12 microns 
    c=c+1; 
    R_array(1,c)=R_eff; 
    count=count+1 

  
%Set waveguide core width w and height h, in microns.   
filename = '1550nm_ChGring_sim_w800_h330_iterquad_fixedReff_example.xlsx';  
w=0.800; 
h=0.330;   
%Guess effective index as starting point.   
n_guess=2.04; %2.0337+0.3;  

  

  
%Initialize arrays for finding resonance nearest 1550 nm (in inner for loop) 
r=0; 
size2=10; % # of different test wavelengths for finding the nearest 

resonances 
wave_array=zeros(1,size2); 
w_array=zeros(1,size2); 
m_array=zeros(1,size2); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fprintf('First finding pump resonance... \n'); 
%First run through neff, dispersion at 1550 
wavelength=1.55; 
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    w2=2*pi*3e14/wavelength; 
    dw=w2/1000;  
    w1=w2-dw; 
    w3=w2+dw; 
    wavelength1=2*pi*3e14/w1; 
    wavelength3=2*pi*3e14/w3; 
nCore=nChal(wavelength); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength); 
[N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength, struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 
%View the modes 
modeview( struct('N',N,'F',F) ); 

  
nCore=nChal(wavelength3); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength3); 
[N3,F3] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength3, struct('radius',R_eff-

w/2-1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength3,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
nCore=nChal(wavelength1); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength1); 
[N1,F1] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength1, struct('radius',R_eff-

w/2-1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength1,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
%Calculate effective index of modes (scale the propagation constant)  
beta_actual=F.beta/R_eff; 
n_eff_bend=real(beta_actual)*wavelength/(2*pi) 

  
%calculate up to 2nd order dispersion, (in ps^n/m) 
B0=F.beta/R_eff*1e6; %(units of 1/m) 
B1=(F3.beta/R_eff-F.beta/R_eff)/dw*1e6*(1e12); %(units of ps/m) 
B2=(F3.beta/R_eff-2*F.beta/R_eff+F1.beta/R_eff)/(dw^2)*1e6*((1e12)^2); 

%%(units of ps^2/m) material and wg included implicitly 
n_group=B1*1e-12*3e8; %unitless 

  
%Calculate 'm' value, and find closest integer m to 1550 nm: 
m_res=2*pi*R_eff/wavelength*n_eff_bend; 
    m_p=round(m_res); 
       fprintf('Target pump resonance is m_p=%.4f.  \n',m_p); 
    m_p_array(1,c)=m_p; 
    m_s=m_p+1; 
    m_i=m_p-1;   
m_guess_p=m_res; 
fprintf('First guess pump resonance is m_p=%.5f.  \n',m_guess_p); 
toler=1e-8; %tolerance for m (i.e. how well we need to get resonance) 

    
    AA=real(R_eff*1e-6*B2/1e24/2); 
    BB=real(R_eff*1e-6*B1/1e12); 
    CC=real(R_eff*1e-6*B0-m_p);  
    dw_soln=(-BB+sqrt(BB^2-(4*AA*CC)))/(2*AA);  
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    w_new_guess=dw_soln+2*pi*3e14/wavelength; %in SI, in Hz 
    new_wavelength=2*pi*3e8/w_new_guess/1e-6; %in microns!) 
    fprintf('First guess pump wavelength is %.5f nm.  

\n',new_wavelength*1000); 
    err_p=(new_wavelength-wavelength)/wavelength; 
    fprintf('Relative error in pump wavelength guess is %.3e.  \n',err_p); 
    %pause 
%Run through while loop to find actual resonance for pump closest to 1550nm 

but still on resonance: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
while (abs(err_p)>toler) 
    wavelength=new_wavelength; 
        w2=2*pi*3e14/wavelength; 
        dw=w2/1000;  
        w1=w2-dw; 
        w3=w2+dw; 
        wavelength1=2*pi*3e14/w1; 
        wavelength3=2*pi*3e14/w3; 
    nCore=nChal(wavelength); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength); 
    [N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 
    %View the modes 
    modeview( struct('N',N,'F',F) ); 

  
    nCore=nChal(wavelength3); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength3); 
    [N3,F3] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength3, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength3,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
    nCore=nChal(wavelength1); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength1); 
    [N1,F1] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength1, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength1,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
    %Calculate effective index of modes (scale the propagation constant)  
    beta_actual=F.beta/R_eff; 
    n_eff_bend=real(beta_actual)*wavelength/(2*pi); 

  
    %calculate up to 2nd order dispersion, (in ps^n/m) 
    B0=F.beta/R_eff*1e6; %(units of 1/m) 
    B1=(F3.beta/R_eff-F.beta/R_eff)/dw*1e6*(1e12); %(units of ps/m) 
    B2=(F3.beta/R_eff-2*F.beta/R_eff+F1.beta/R_eff)/(dw^2)*1e6*((1e12)^2); 

%%(units of ps^2/m) material and wg included implicitly 
    n_group=B1*1e-12*3e8; %unitless 
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    %Calculate 'm' value, and find closest integer m to 1550 nm: 
    m_res=2*pi*R_eff/wavelength*n_eff_bend; 
    m_guess_p=m_res; 
    fprintf('Next guess pump resonance is mp= %.5f.  \n',m_guess_p); 

  
    AA=real(R_eff*1e-6*B2/1e24/2); 
    BB=real(R_eff*1e-6*B1/1e12); 
    CC=real(R_eff*1e-6*B0-m_p);  %fixed, using target m_p 
    dw_soln=(-BB+sqrt(BB^2-(4*AA*CC)))/(2*AA);  
    w_new_guess=dw_soln+2*pi*3e14/wavelength; %in SI, in Hz 
    new_wavelength=2*pi*3e8/w_new_guess/1e-6; %in microns!) 
    fprintf('Next guess pump wavelength is %.5f nm.  

\n',new_wavelength*1000); 
    err_p=(new_wavelength-wavelength)/wavelength; 
    fprintf('Relative error in next guess pump wavelength is %.3e.  

\n',err_p); 
    %pause 
end 
%Once tolerance met for pump, record the pump neff, dispersion, etc. 
lambda_p=wavelength; 
lambda_p_array(1,c)=lambda_p; 
B2_ps2_per_m_array(1,c)=B2; 
n_group_array(1,c)=n_group; 
n_eff_p=n_eff_bend; 
n_eff_pump_array(1,c)=n_eff_p; 
fprintf('Final pump resonance is m_p=%.6f.  \n',m_res); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%note idler wavelength guess 
idler_wavelength_guess=2*pi*R_eff*n_eff_bend/m_i; 

  
%Set new wavelength to guess of where signal resonance will be: 
fprintf('Now finding signal resonance. \n'); 
new_wavelength=2*pi*R_eff*n_eff_bend/m_s; 
fprintf('First guess signal wavelength is %.5f nm.  \n',new_wavelength*1000); 
err_s=(new_wavelength-wavelength)/wavelength; 
fprintf('Relative error in signal wavelength is %.3e.  \n',err_s); 

  
%Run through similar procedure to make sure signal wavelength on resonance 

(within specified tolerance) 
while(abs(err_s)>toler) 
    wavelength=new_wavelength; 
        w2=2*pi*3e14/wavelength; 
        dw=w2/1000; %w2*1e-6; %w2/1000; 
        w1=w2-dw; 
        w3=w2+dw; 
        wavelength1=2*pi*3e14/w1; 
        wavelength3=2*pi*3e14/w3; 
    nCore=nChal(wavelength); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength); 
    [N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 
    %View the modes 
    modeview( struct('N',N,'F',F) ); 
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    nCore=nChal(wavelength3); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength3); 
    [N3,F3] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength3, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength3,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
    nCore=nChal(wavelength1); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength1); 
    [N1,F1] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength1, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength1,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
    %Calculate effective index of modes (scale the propagation constant)  
    beta_actual=F.beta/R_eff; 
    n_eff_bend=real(beta_actual)*wavelength/(2*pi); 

  
    %calculate up to 2nd order dispersion, (in ps^n/m) 
    B0=F.beta/R_eff*1e6; %(units of 1/m) 
    B1=(F3.beta/R_eff-F.beta/R_eff)/dw*1e6*(1e12); %(units of ps/m) 
    B2=(F3.beta/R_eff-2*F.beta/R_eff+F1.beta/R_eff)/(dw^2)*1e6*((1e12)^2); 

%%(units of ps^2/m) material and wg included implicitly 
    n_group=B1*1e-12*3e8; %unitless 

  
    %Calculate new signal 'm' value, given effective index: 
    m_res=2*pi*R_eff/wavelength*n_eff_bend; 
    fprintf('Next guess signal resonance is ms=%.5f.  \n',m_res); 
    m_guess_s=m_res; 

  
    AA=real(R_eff*1e-6*B2/1e24/2); 
    BB=real(R_eff*1e-6*B1/1e12); 
    CC=real(R_eff*1e-6*B0-m_s); %fixed, using target m_signal 
    dw_soln=(-BB+sqrt(BB^2-(4*AA*CC)))/(2*AA);  
    w_new_guess=dw_soln+2*pi*3e14/wavelength; %in SI, in Hz 
    new_wavelength=2*pi*3e8/w_new_guess/1e-6; %in microns!) 
    fprintf('Next guess signal wavelength is %.5f nm.  \n',new_wavelength); 
    err_s=(new_wavelength-wavelength)/wavelength; 
     fprintf('Relative error in guess signal wavelength is %.3e.  \n',err_s); 
end 
%Once tolerance met for signal, record the signal wavelength, etc. 
fprintf('Final signal resonance is m_s=%.6f.  \n',m_res); 
lambda_s=wavelength; 
lambda_s_array(1,c)=lambda_s; 
dlam=lambda_s-lambda_p; %spacing btwn pump and signal resonances 
dlam_array(1,c)=dlam; 
n_eff_signal_array(1,c)=n_eff_bend; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Set new wavelength to guess of where idler resonance will be: 
%Note that this 3rd while loop to find idler not actually necessary.... 
fprintf('Now finding idler resonance. \n'); 
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new_wavelength=idler_wavelength_guess; 
fprintf('First guess idler wavelength is %.5f nm.  \n',new_wavelength*1000); 
err_i=(new_wavelength-wavelength)/wavelength; 
fprintf('Relative error in first guess idler wavelength is %.5f.  \n',err_i); 

  
while(abs(err_i)>toler)  
    wavelength=new_wavelength; 
        w2=2*pi*3e14/wavelength; 
        dw=w2/1000; %w2*1e-6; %w2/1000; 
        w1=w2-dw; 
        w3=w2+dw; 
        wavelength1=2*pi*3e14/w1; 
        wavelength3=2*pi*3e14/w3; 
    nCore=nChal(wavelength); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength); 
    [N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 
    %View the modes 
    modeview( struct('N',N,'F',F) ); 

  
    nCore=nChal(wavelength3); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength3); 
    [N3,F3] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength3, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength3,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
    nCore=nChal(wavelength1); %update index to account for IRG25 dispersion! 
    nSub=nSiO2(wavelength1); 
    [N1,F1] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad 

nClad], [1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength1, 

struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength1,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
    %Calculate effective index of modes (scale the propagation constant)  
    beta_actual=F.beta/R_eff; 
    n_eff_bend=real(beta_actual)*wavelength/(2*pi); 

  
    %calculate up to 2nd order dispersion, (in ps^n/m) 
    B0=F.beta/R_eff*1e6; %(units of 1/m) 
    B1=(F3.beta/R_eff-F.beta/R_eff)/dw*1e6*(1e12); %(units of ps/m) 
    B2=(F3.beta/R_eff-2*F.beta/R_eff+F1.beta/R_eff)/(dw^2)*1e6*((1e12)^2); 

%%(units of ps^2/m) material and wg included implicitly 
    n_group=B1*1e-12*3e8; %unitless 

  
    %Calculate new idler 'm' value, given effective index: 
    m_res=2*pi*R_eff/wavelength*n_eff_bend; 
    fprintf('Next guess idler resonance is mi=%.5f.  \n',m_res); 
    m_guess_i=m_res; 
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    AA=real(R_eff*1e-6*B2/1e24/2); 
    BB=real(R_eff*1e-6*B1/1e12); 
    CC=real(R_eff*1e-6*B0-m_i); %fixed, using target m_idler (trying to find 

mp-1 wavelength) 
    dw_soln=(-BB+sqrt(BB^2-(4*AA*CC)))/(2*AA);  
    w_new_guess=dw_soln+2*pi*3e14/wavelength; %in SI, in Hz 
    new_wavelength=2*pi*3e8/w_new_guess/1e-6; %in microns!) 
    fprintf('Next guess idler wavelength is %.5f nm.  

\n',new_wavelength*1000); 
    err_i=(new_wavelength-wavelength)/wavelength; 
    fprintf('Relative error in idler guess is %.3e.  \n',err_i); 
end 
%Once tolerance met for idler, record the idler wavelength, etc. 
fprintf('Final idler resonance is m_i=%.6f.  \n',m_res); 
lambda_i=wavelength; 
fprintf('Final idler wavelength is %.6f nm.  \n',lambda_i*1000); 
lambda_i_array(1,c)=lambda_i; %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  
%Finally, also calculate neff for actual converted idler (non-resonant) 

wavelength: 
wavelength=1/(2/lambda_p-1/lambda_s); 
fprintf('Converted wavelength from energy conservation is %.6f nm.  

\n',wavelength*1000); 

  
%Run si solver 3d  
nCore=nChal(wavelength); %update index to account for IRG25 dispersion! 
nSub=nSiO2(wavelength); 
[N,F] = sisolver3d([nSub nSub nSub; nClad nCore nClad; nClad nClad nClad], 

[1.5 w 1.5], [1 h 1], [.01 .010], 2*pi/wavelength, struct('radius',R_eff-w/2-

1.5,'mu_guess',R_eff*n_guess*2*pi/wavelength,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
%View the modes 
modeview( struct('N',N,'F',F) ); 
%Calculate effective index  
beta_actual=F.beta/R_eff; 
lambda_c=wavelength; %in microns--this is the converted idler wavelength 

(from E conservation)! 
n_eff_c=beta_actual*wavelength/(2*pi); 

  
lambda_c_array(1,c)=lambda_c; 
n_eff_c_array(1,c)=n_eff_c; 
L_array(1,c)=2*pi*R_eff; %in microns 

  
dk=(m_p-1)/R_eff-(2*pi*n_eff_c/lambda_c) %in 1/micron 
dk_array(1,c)=dk; 
end 

  
%Store data and write to file 
data_matrix1=real([R_array; m_p_array; 
lambda_p_array; 
lambda_s_array; 
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lambda_i_array; %where resonance is!! 
lambda_c_array; %where converted idler actually is 
n_eff_signal_array;  
n_eff_pump_array; 
B2_ps2_per_m_array; 
n_group_array; 
n_eff_c_array; 
R_array; 
dk_array; 
L_array]'); 

  
%write simulation data to file: 
data_cells=num2cell(data_matrix1);     %Convert data to cell array 
col_header={'R_eff_fixed (um)','m_p', 'lambda_p (um)', 'lambda_s (um)', 

'lambda_i (um)', 'lambda_c (um)','neff_s','neff_p','B2_p (ps2/m)', 

'ngroup_p', 'neff_c', 'R_eff_fixed (um)', 'dk (1/um)', 'L (um)'};     %Row 

cell array (for column labels) 
output_matrix=[col_header; data_cells];     %Join cell arrays 
xlswrite(filename,output_matrix);     %Write data and both headers 

  
toc 

 

 

E.2 Phase matching code for concentric (pulley) couplers 

The code below calculates the propagation constants for a ring and concentric (pulley) 

coupler, for a fixed gap distance and varying coupler waveguide width.  This can be used to find 

the phase-matched width desired for coupling from a curved waveguide to a ring resonator, as 

described in Chapter 4, in Section 4.2.4.   

“ChG_ring_Concentric_Coupling_1550nm_Example.m” 

 

%Waveguide Top File 
%Commands to run Milos' 2d finite difference vectorial mode solver 
clear all 
clc 
%Parameters (lengths are in microns!) 
filename = '1550nm_ChG_coupling_example.xlsx'; 
wavelength=1.55;   

  
%Case 2 
nAir=1.0000;  
nChal=2.659633; 
nSiO2=1.444;  
%nMgF2=1.37; 

  
nSub=nSiO2 
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nCore=nChal 
nClad=nAir 

  
r=0; 
count=0; 
% w_array=zeros(1,6); 
% h_array=zeros(1,6); 
% n1_array=zeros(1,36); 
% n2_array=zeros(1,36); 

  
%Set waveguide core width w and height h, in microns.   
w=0.800; 
h=0.330; 

  
%Guess effective index as starting point.   
n_guess=2.65; %2.0335;  

  
beta_array1=zeros(1,11); 
beta_array2=zeros(1,11); 
w2_array=zeros(1,11); 

  
%a is the variable radius (currently ranges from 40 to 120 microns, in 
%intervals of 10 microns 
for w2=0.4:.02:0.7 %40 to 120 in 20's 
    R_eff=6; 
    xgap=0.100;  

     
    r=r+1; 
    w2_array(1,r)=w2;  

  

  
%Run si solver 3d  
[N,F] = sisolver3d([nSub nSub nSub nSub nSub; nClad nCore nClad nCore nClad; 

nClad nClad nClad nClad nClad], [1 w xgap w2 1], [1 h 1], [.01 .010], 

2*pi/wavelength, struct('NMODES_CALC',2,'radius',R_eff-w/2-

1,'mu_guess',R_eff*n_guess*2*pi/wavelength,'PMLwidth',[0 1. 0 

0],'PMLsigma',[0.2 0.2])); 

  
%View the modes 
modeview( struct('N',N,'F',F) ); 

  
%Calculate effective index of modes (scale the propagation constant)  
%fixed 2.25.14 
gamma=F.beta; 
beta_actual=F.beta/R_eff; 
n_eff_bend=beta_actual*wavelength/(2*pi) 

  

  
count=count+1; 
beta_array1(1,count)=real(beta_actual(1,1)); 
beta_array2(1,count)=real(beta_actual(2,1)); 

  
end 
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figure(2), scatter(w2_array,beta_array1) 
hold on 
scatter(w2_array,beta_array2) 
xlabel('2nd wg width (microns)') 
ylabel('beta actual [1/um]') 
title('beta vs. 2nd wg width for 800 nm by 330 nm ChG wgs, Rcent=6mic, 

1550nm, xgap=100 nm') 

  
%Store data and write to file 
data_matrix1=real([w2_array; beta_array1; 
beta_array2;]'); 

  
%write simulation data to file: 
data_cells=num2cell(data_matrix1);     %Convert data to cell array 
col_header={'width w2 (um)','beta_actual 1 (1/um)', 'beta_actual 2 (1/um)'};     

%Row cell array (for column labels) 
output_matrix=[col_header; data_cells];     %Join cell arrays 
xlswrite(filename,output_matrix);     %Write data and both headers 
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Appendix F 

Derivation of thermal resonant wavelength shift in wedge resonator 

 In this section, we calculate the shift in resonant wavelength for a microresonator, and show 

how to relate this to the thermo-optic coefficient of the resonator for the hybrid chalcogenide-silica 

wedge resonator geometry used in Chapter 5.  In a microresonator, the resonant wavelength, res  

is given by 

     
2

,
eff

res

Rn

m


            (F.1) 

where R  is the radius, effn is the effective index, and m  is an integer.  One can differentiate to 

find dependence on temperature, T  :  

2
.

effres
Rnd

dT T m

  
  
  

       (F.2) 

Separating into contributions from thermal expansion and the thermo-optic coefficient, one finds 

2
.

effres
eff

nd R
R n

dT m T T

   
  

  
       (F.3) 

Note that the coefficient of thermal expansion L  is given by 

1
,L

dL

L dT
             (F.4) 
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where L   is the length.  The wedge resonator geometry used in this work is composed primarily 

of silica (with 𝛼𝐿,𝑆𝑖𝑂2), but also includes a thin, 125-nm layer of chalcogenide (with 𝛼𝐿,𝐶ℎ𝐺), as 

illustrated in Figure F.1. 

 

Figure F.1. Schematic of hybrid wedge resonator cross section.  Resonator consists of 2000-

nm thick layer SiO2 wedge with 23.25 μm radius, 42 degree wedge angle, and 125-nm thick ChG 

(Ge-Sb-Se) layer.   

 

Letting R L , one finds 

, 2 1 , .L SiO L ChG

R R
R w

T T
 

 
  

 
       (F.5) 

where 1R  is the silica resonator radius and w  is the lateral ChG thickness, as illustrated in Figure 

F.1.  Plugging Equation F.5 into Equation F.3, one gets  

 , 2 1 ,

2 2
.

effres
eff L SiO eff L ChG

nd
R n R n w

dT m T m

  
 

 
   

 
      (F.6) 

Note that the first term contains the contribution from the thermo-optic coefficient, and the second 

term contains contributions from thermal expansion of SiO2 and ChG.  It is useful to note 

magnitudes of thermo-optic coefficient and thermal expansion for our materials, which are 

provided in Table F.1. 
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Table F.1. Thermo-optic and thermal expansion coefficients. 

Material dn/dT (K-1) αL (K-1) Reference 

Calculated Contribution of 

thermal expansion to dλ/dT 

(pm/°C) 

IRG25 (ChG) 7.44x10-5 1.4x10-5 [62] 0.13 

SiO2 ~1x10-5 0.57x10-6 [108,109] 0.88 

Combined    1.01 

 

  

 We measured dλ/dT~60.5 pm/°C, so the total calculated contribution from thermal 

expansion of ~1 pm/°C, calculated from the values in Table F.1 and Equation F.6, is negligible.  

Neglecting the thermal expansion contribution, one finds  

2
.

effres
nd

R
dT m T

   
  

 
         (F.7) 

Substituting Equation F.1 to eliminate m, this can be re-written as 

.
effres res

eff

nd

dT n T

  
    

          (F.7) 

Re-arranging, one can calculate the thermo-optic coefficient of the resonator to be 

.
eff eff res

res

n n d

T dT





  
  

  
          (F.8) 

A summary of the measured resd

dT


and corresponding calculated 

effdn

dT
  are provided in Table 

F.2.  From this data, the average resd

dT


=59 pm/C, with average 

effdn

dT
=5.5x10-5 K-1. 
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Table F.2. Summary of measured thermal resonant shift and thermo-optic coefficient. 

Date resd

dT


 (pm/C) 

res  (nm) effn  Calculated  
effdn

dT
 (K-1) 

11.23.16 60.5 1584.7 1.4755 5.6x10-5 

11.29.16 60.9 1566.1 1.4795 5.8x10-5 

11.29.16 55.6 1566.1 1.4795 5.3x10-5 

Average 59.0   5.5x10-5 
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Appendix G 

Microscope Components 

 A list of parts used in the optical microscope for device characterization is listed in Table 

G.1.   

Table G.1. Parts list for microscope 

Vendor Part Number Description 

Edmund Optics 59-671 Manual upper zoom module for 12.5x zoom 

Edmund Optics 59-756 Coaxial lower zoom module for 12.5x zoom 

Edmund Optics 56-626 2.0x TV tube 

Edmund Optics 59-683 Mounting clamp for 12.5x zoom lens 

Edmund Optics 54-794 Rack and pinion coarse/fine movement 

Edmund Optics 39-353 ¾-inch diameter stainless post, 18-inch height 

Edmund Optics 46-144 10X Mitutoyo plan apo infinity corrected objective, 

long working distance of 33.5 mm, 0.28 NA, M26x36 

TPI threads 

Edmund Optics 59-675 Adapter for Mitutoyo objective 

Edmund Optics 54-262 Breadboard adapter for ¾-inch diameter post 

 

 


